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RESUMO

Machine Type Communications (MTC) é um dos principais casos de uso do 5G e tende
a se tornar ainda mais relevante nas próximas gerações. Além disso, por conta da
natureza ultra-densa das redes de massive MTC (mMTC), a otimização de métodos de
acesso ao meio apresenta diversos desafios. Uma solução promissora é a utilização
de métodos de aprendizagem de máquina, como aprendizagem por reforço, para
alocar eficientemente recursos de rádio aos dispositivos MTC. Com isso em mente,
neste trabalho é proposto um método distribuído baseado em Non-Orthogonal Multiple
Access (NOMA) e Q-Learning para alocar dinamicamente os dispositivos MTC. Os
resultados numéricos demonstram que o método proposto é capaz de melhorar muito
o throughput da rede quando comparado a métodos de trabalhos recentes.

Palavras-chave: Internet das Coisas, Comunicações entre Máquinas, NOMA, Apren-
dizagem de Máquina.



RESUMO EXPANDIDO

Introdução
A implementação do 5G e demais redes de dispositivos móveis como a Internet da
Coisas move o desenvolvimento de tecnologias de comunicação de máquinas. Essas
redes e aplicações devem ser capazes de suportar uma quantidade enorme de dis-
positivos. A natureza ultra-densa das redes mMTC apresenta diversos desafio para
a otimização de métodos de acesso ao meio. Uma das soluções promissoras senso
estudadas é a utilização de algorítimos de aprendizagem de máquina para controle
do tráfego de dispositivos. Entre esses algoritmos o Q-Learning se apresenta como
um dos mais interessantes por sua capacidade de ser implementado de uma maneira
distribuída. Além disso, para atender os requisitos também é necessário aumentar
a eficiência espectral. Com isso em mente, neste trabalho é proposto um método
distribuído baseado em Non-Orthogonal Multiple Access (NOMA) e Q-Learning para
alocar dinamicamente os dispositivos MTC. Os resultados numéricos demonstram que
o método proposto é capaz de melhorar muito o throughput da rede quando comparado
a métodos de trabalhos recentes.

Objetivos
Esta dissertação tem como objetivo principal realizar o estudo dos efeitos da combi-
nação de aprendizagem de máquina com NOMA para a melhoria de esquemas de
acesso aleatório. Os objetivos secundários são: (i) propor um esquema que utilize
Q-Learning e NOMA; (ii) analisar a melhoria no throughput da rede; (iii) analisar o im-
pacto do esquema proposto em situações dinâmicas; (iv) analisar o efeito do controle
de potência sobre a rede; (v) encontrar parâmetros para a otimização do algorítimo.

Metodologia
Inicialmente é apresentada uma revisão das tecnologias do estado da arte. Onde
é apresentado o 5G, suas diferentes categorias e requisitos e a sua relação com
as redes máquina-a-máquina. Além disso é feita uma revisão das tecnologias que
integram as redes máquina-máquina atualmente. Seguindo com uma análise do 6G,
suas tendências e seus desafios e como este trabalho irá focar em duas tecnologias
cruciais para o sucesso do 6G que é NOMA e técnicas modernas de acesso aleatório.

Em seguida é apresentado o modelo do sistema a ser considerado durante o trabalho.
O modelo este que assume um sistema onde todos os dispositivos rodam a mesma
aplicação. Assim N dispositivos sincronizados são dispostos de forma uniformemente
aleatória ao redor de uma estação rádio base. É definido também que o método de
acesso ao meio é feito pro grant-free Slotted Aloha. Assim cada dispositivo transmite
uma vez por frame.

Seguindo com proposta de trabalho é apresentado como NOMA é implementado no
sistema. É considerado o uso de NOMA no uplink . Sendo feito o cancelamento suces-
sivo de interferência na estação rádio base. Assume-se também que os dispositivos
são decodificados em ordem decrescente de potência recebia. Nota-se que para um
melhor funcionamento do NOMA é necessária uma diversidade de potência recebida.
Assim, o sistema permite que os dispositivos calculem uma potência de referência



a partir do seu conhecimento do canal e apliquem um desvio de �. Com isso os
dispositivo podem transmitir em três níveis de potência Pref – �,Pref e Pref – �.

Feita a definição do modelo do sistema é apresentado o método proposto iniciando-se
pela apresentação do algorítimo Q-Learning. Adapta-se o algorítimo para que ele seja
aplicado de forma distribuída, assim cada dispositivo possui a sua própria Q-Table.
Para isso os níveis de potência do diapositivos são considerados os estados enquanto
a ação é considerada como transmitir em um determinado slot . Também é determinada
a recompensa de +1 para transmissões com sucesso e de –1 para transmissões falhas.

Resultados e Discussão
O método proposto é então comparado com outros três esquemas: i) Slotted Aloha;
Slotted Aloha com NOMA; e o método Q-Learning Colaborativo. Para analisar o com-
portamento médio do dos esquemas todas as curvas são o resultado de uma média de
30 simulações. Assim o método proposto apresenta o pico de throughput , calculado
ao longo deste trabalho como o transmissões com sucesso por slots, em N = 2, 5K
com um throughput de 1, 6. Assim com uma melhora significante sobre o Q-Learning

Colaborativo que tem seu pico em N = K . Isto pode ser explicado pelo efeito coletivo
de NOMA e o controle de potência que permitem uma melhor eficiência espectral.

Segue-se com uma análise do efeito de �, coeficiente de desconto. Onde é apresen-
tada uma análise sobre uma rede dinâmica. Nota-se que apesar de � = 0, 5 apresentar
throughputs mais altos ele não é capaz de se recuperar de um overload . Justificando a
escolha de � = 1. Demonstra-se também que o método proposto consegue dar a pos-
sibilidade de todos os dispositivos serem decodificados. Alocando até três dispositivos
por slot . Enquanto o método Q-Learning Colaborativo consegue alocar pelo menos
um dipositivo por slot mas apresenta uma forte queda no throughput por não utilizar
NOMA.

Além disso, também é analisado o efeito do controle de potência e NOMA sobre a
potência de transmissão dos dispositivos. Nota-se que se NOMA não é utilizado em
conjunto com o controle de potência há um aumento da potência de transmissão
enquanto temos mais dispositivos que slots porque os dispositivos aprendem que uma
potência maior significa uma maior probabilidade de sucesso em sua transmissão.

Também foram analisados outros parâmetros do algoritmo, como a política de explo-
ração e a forma de inicialização da Q – Table. Encontrou-se que os melhores resulta-
dos foram apresentados pela política de exploração greedy e com uma inicialização
aleatória.

Considerações Finais
Esta dissertação introduz um novo método para acesso aleatório combinando a habili-
dade de medir incertezas do algorítimo Q-Learning e a eficiência espectral de NOMA.
O método proposto permite também que os dispositivos reconheçam seus parceiros
NOMA de maneira autônoma, sem a necessidade de um custo esquema de parea-
mento. Além disso, também aprendem qual é o melhor slot para transmitir. O método
ainda requere uma complexidade mínima por parte do dispositivo. Sendo necessário



implementar apenas uma equação e memória o suficiente para uma tabela de tamanho
dependente dos níveis de potência e slots do frame. Nota-se que o controle de potência
além de fornecer a diversidade de potência recebida necessária para o bom funciona-
mento do NOMA ainda permite que os dispositivos utilizem uma menor potência de
transmissão dada a redução da competição por slot fornecida pelo algorítimo.

Palavras-chave: Internet das Coisas, Comunicações entre Máquinas, NOMA, Apren-
dizagem de Máquina.



ABSTRACT

Machine Type Communications (MTC) is a main use case of 5G and beyond wireless
networks. Moreover, due to the ultra-dense nature of massive MTC networks, Random
Access (RA) optimization is very challenging. A promising solution is to use machine
learning methods, such as reinforcement learning, to efficiently accommodate the MTC
devices in RA slots. In this sense, we propose a distributed method based on Non-
Orthogonal Multiple Access (NOMA) and Q-Learning to dynamically allocate RA slots
to MTC devices. Numerical results show that the proposed method can significantly
improve the network throughput when compared to recent work.

Keywords: Internet of Things, Machine Type Communications, NOMA, Machine Learn-
ing.
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1 INTRODUCTION

The deployment of 5G and beyond mobile networks, including the Internet of
Things (IoT), is driving the development of advanced Machine-Type-Communications
(MTC) networks (TULLBERG et al., 2016; AAZHANG et al., 2019; BI, 2019). These
networks should be able to support new applications with a massive number of devices,
such as those in smart cities and industry 4.0. According to Cisco, the number of MTC
devices can be as large as 3.9 billions by 2022 (CISCO, 2019). With the surge of new
devices many challenges arise with massive MTC (mMTC) networks, such as meeting
diverse performance requirements and congestion in Radio Access Network (RAN).
Moreover, mMTC networks suffer from inefficient Random Access (RA) procedures
and resource allocation with current RA protocols performing poorly in ultra-dense
networks (CLAZZER, 2019), and leading to the need of efficient RA schemes able to
handle massive requests.

In terms of standardization, 3GPP is evolving 5G to improve mobility, while ag-
gregating physical downlink control channel (PDCCH) enhancements, and addressing
new MTC use cases. Enhancements in 3GPP Rel-16 and Rel-17 (3GPP, 2020; 5G
AMERICAS, 2020) include: a) 2-step Random Access Channel (RACH) to reduce la-
tency and signaling overhead; b) reliability improvements; c) power saving techniques;
d) enhanced support for new use cases, including industrial IoT. However, there is still
plenty of room for improvement both in terms of performance and efficiency.

The authors in (SHARMA; WANG, 2019b) present a comprehensive survey of
the issues related with RAN congestion while introducing machine learning algorithms
to improve RA for mMTC networks. Machine learning presents itself as a good al-
ternative to solve the congestion problem as it is able to improve scheduling without
a complex algorithm. Among other machine learning techniques, the reinforcement
learning method known as Q-Learning stands out due to its capability of being imple-
mented in a model-free and distributed manner (SUTTON; BARTO, 2018). The authors
of (SHARMA; WANG, 2019a) propose a Q-Learning based method to address the RAN
congestion using the number of collisions per slot as a reward. However, it needs sub-
stantial feedback from the base station (BS), besides the complexity of determining the
number of colliding devices. Another example is (BELLO et al., 2018), which attempts
to conciliate the traffic load of Human-Type-Communication (HTC) with MTC devices in
the RA of a cellular network, making MTC devices learn which slot to access, reducing
collisions and improving throughput.

The work in (JIHUN MOON; YUJIN LIM, 2017) utilizes Q-Learning at the BS to
better adapt the barring factor in an Access Class Barring (ACB) scheme. Although
this method reduces the load in the network, it is a reactive solution, while the current
ever increasing number of devices calls for a proactive solution that tries to avoid
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collisions rather than recovering from it at the base station. Another work that uses
adaptive ACB is (ZHAO et al., 2018). They propose two algorithms to minimize delay
or maximize throughput. However, one needs to know the number of devices in the
network and the other requires the BS to know how many devices collided in a past
slot. In (MOHAMMED et al., 2015), Q-Learning is used to select the best available
BS in a Long-Term Evolution (LTE) network, using throughput and delay both as a
QoS measurement and as the reward for the MTC devices. Whilst the MTC devices do
select the best BS in this scheme, thus efficiently organizing RA within a cell, it does
not deal with the growth in density of the mMTC networks and therefore overload is
still a problem. In (HAN et al., 2019), Non-Orthogonal Multiple Access (NOMA) (SAITO
et al., 2013) and Q-Learning are utilized in order to maximize energy efficiency in short
packet communications. The method in (HAN et al., 2019) makes use of Q-Learning
with the goal of pairing devices in sub channels. In order to maximize energy efficiency,
they propose a power allocation scheme, finding the optimal transmit power for each
device.

In this work, we propose the use of Q-Learning and NOMA, alongside with a
power control scheme, to improve the throughput in mMTC networks. This work differs
from (SHARMA; WANG, 2019b, 2019a; BELLO et al., 2018) because, besides using
Q-Learning for slot allocation, we implement NOMA and consider the effect of path loss
and fading. Unlike (SHARMA; WANG, 2019a), this method requires minimal feedback
from the BS, a single bit per time slot, instead of the number of contending devices per
time slot. Moreover, even though (JIHUN MOON; YUJIN LIM, 2017; MOHAMMED et al.,
2015) use Q-Learning in a MTC network, neither use it to improve slot allocation. The
first adapts a class barring factor, while the second selects the best BS for connection.
Moreover, in (ZHAO et al., 2018) machine learning techniques are not used. Finally,
compared to (HAN et al., 2019), we are looking at improving throughput rather than
energy efficiency, although our proposed power control scheme prevents the excessive
use of power.

The main contributions of this work are: i) evaluation of the beneficial impact
in RA when combining Q-Learning with NOMA; ii) a RA scheme which improves the
network throughput with limited transmit power and complexity. The average throughput
is 2.52 times higher than the compared method for the case of 225 devices and 100
time-slots. The peak throughput is reached at 225 devices while the compared method
reaches its peak at 100 devices. The increased number of the devices can be attributed
to NOMA’s spectral efficiency.

1.1 PUBLICATION

The work related in this dissertation yielded a publication in the IEEE Wireless
Communications Letters:
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M. V. da Silva, R. D. Souza, H. Alves and T. Abrão, “A NOMA-based Q-Learning
Random Access Method for Machine Type Communications,” in IEEE Wireless Com-

munications Letters , DOI: 10.1109/LWC.2020.3002691.
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2 MACHINE TYPE COMMUNICATIONS

MTC is a fundamental building block of both mMTC and Ultra Reliable Low
Latency Communications (URLLC), two of the three mains uses cases defined for
5G systems, the other being enhanced Mobile BroadBand (eMBB). The eMBB use
case aims to achieve high date rates that address mainly human type communications
such as high speed Internet, video calls and media streaming. URLLC focuses on
providing an extremely reliable connection mainly for critical MTC applications, while
mMTC intends to support a huge number of devices with limited radio and processing
resources (OSSEIRAN et al., 2020). Thus, both URLLC and mMTC target mainly MTC
applications but with different requirements. While the former needs high reliability to
support applications like autonomous driving and real-time monitoring and control, the
latter needs to support low-cost sensors and meters. One way to visualize the different
5G requirements is the diagram in Fig. 1.

Figure 1 – Different requirements of the three main use cases planned for 5G: mMTC,
URLLC and eMBB adapted from (OSSEIRAN et al., 2020)

Moreover, one of the biggest drivers of 5G is the IoT. According to Ericsson
there are over one billion cellular IoT connections in 2020 alone (OSSEIRAN et al.,
2020). The main IoT segment that better incorporates MTC is defined by Ericsson
as massive IoT targeting a huge flow of low-complexity devices that do not need to
communicate very often. As URLLC is not the focus of this work it will not be further
discussed. However, recent developments of this use case are thoroughly discussed
by the authors of (POPOVSKI et al., 2019).
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2.1 CURRENT TECHNOLOGIES

IoT applications nowadays are being developed and deployed using several
different standards and protocols. These protocols are not always originally designed
for the IoT and, given the different set of requirements for each application, no protocol
is able to fulfill such a wide range of specifications.

The most common IoT networks nowadays either use unlicensed spectrum
through short-range technologies such as IEEE802.15.x and 802.11x or a proprietary
technology such as SigFox or LoRA (BOCKELMANN et al., 2018), which shows the
market need for new MTC solutions. In the following sub-sections we overview some of
the most prominent technologies currently being used to implement IoT applications.

2.1.1 Bluetooth

The Bluetooth technology was invented by Ericsson in 1994 (LETHABY, 2017).
The wireless standard for communication between mobiles phones and comput-
ers remains appealing due to its widespread implementation, specially to industrial
applications such as data loggers and smart metering. Originally standardized as
IEEE802.15.1, the Bluetooth link layer is now controlled by Bluetooth SIG. The original
Bluetooth is now called the Classic Bluetooth, and the Bluetooth Low Energy (BLE)
invented by Nokia was added to the standard Bluetooth 4.0 in 2010 making a shift
towards the IoT applications (LETHABY, 2017). The Bluetooth 5, the most current BLE
standard implemented in 2016, can reach data rates up to 2 Mbps and distances up to
750 meters (LETHABY, 2017).

2.1.2 IEEE802.15.4 based technologies

There are many technologies based on the IEEE802.15.4 standard. Such as
Zigbee, Thread and 6LoWPAN, among others. This is the most prominent standard for
low-power radio technologies and defines both the Physical (PHY) layer and the Medium
Access Control (MAC) layer (PALATTELLA et al., 2013). The main characteristics of the
802.15.4 are listed by (MA; LUO, 2008) as:

1. Relatively low transmission rate: up to 250 kbps.

2. Low power consumption: small batteries should last several months.

3. Low cost: limited embedded processing power.

4. Short range: up to 100m.

5. Multiple device types: Full Function Device (FFD) and Reduced Function Device
(RFD).
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6. Two transmission modes: the beacon-enabled mode and the non-beacon-enabled
mode.

7. Supports both mesh and star topologies.

The 6LoWPAN standard (P. THUBERT et al., 2017) defines an efficient adapta-
tion layer between the 802.15.4 link layer and the TCP/IP protocol providing low-power
devices direct access to the Internet. In fact, 6LoWPAN stands for IPv6 over Low Power
Wireless Personal Area Networks. As the 6LoWPAN protocol is only an adaptation layer
it offers every advantage of the 802.15.4 protocol with implementations for both ISM
bands 2.4 GHz and 868/915 MHz. As most of the Internet infrastructure still relies on
IPv4 most 6LoWPAN implementations come with an IPv4-IPv6 converter. One of the
downsides of this protocol is the fact that as the 802.15.4 link layer has multiple modes
the multiple 6LoWPAN solutions from different developers are not able to interact at the
local level. One of most popular open-source implementations of this protocol is the
Contiki OS (CONTIKI-OS. . . , 2020).

Trying to fill the gap left by 6LoWPAN the Thread Group (THREAD. . . , 2020)
formed by Google, Samsung and other companies defined the Thread standard that
connects low-power devices directly to the Internet and also ensures interoperability.
Thread can reach data rates up to 250 kbps, operates in the 2.4 GHz ISM band and
uses a mesh network implementation.

ZigBee is another standard based on 802.15.4. The standard is maintained by
the ZigBee Alliance (ZIGBEE. . . , 2020), which consists of more than 400 companies.
ZigBee is meant to be a complete solution providing interoperability among devices
from different manufacturers. It operates in the 2.4 GHz ISM band and the network is
designed with a mesh-topology. The main focus of ZigBee applications lies in smart
homes and smart buildings.

2.1.3 Wi-Fi

The Wi-Fi technology (WI-FI. . . , 2020) is based on the IEEE802.11 standard
and was designed as a wireless replacement for the Ethernet 802.3. The Wi-Fi can be
considered ubiquitous as it is deployed in most offices, schools and other business. The
advantage of being widely deployed led IoT applications to use Wi-Fi without needing
additional infrastructure and custom gateways. The Wi-Fi embraces different protocols
from IEEE802.11, with 802.11ah, known as Wi-Fi Ha-Low, being the one designed for
low power devices for applications such as home automation. This protocol uses the
900MHz band and provides a longer battery life (LETHABY, 2017).
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2.1.4 LPWANs

Low-Power Wide Area Networks (LPWANs), unlike the technologies above, focus
on long range radio communication, from 10km to 30km in rural areas and 1km to 5km
in urban areas (MEKKI et al., 2019). Two of the most well established LPWAN solutions
are SigFox and LoRA.

SigFox (SIGFOX. . . , 2020) works as a network provider, its network utilizes a
ultra-narrow band modulation in the 868/915 MHz ISM band. It can provide a range
up to 30km in rural areas. SigFox is able to achieve such a long range by using an
extremely low data rate up to 100 bps.

LoRa in its turn is a physical layer protocol that uses Chirp Spread Spectrum
(CSS) modulation spreading a narrow-band signal over a wider channel, resulting
in a noise and interference resilient communication (LORA, 2015). LoRaWAN is a
LoRa based MAC layer protocol maintained by the LoRa Alliance (LORA. . . , 2020).
LoRaWAN defines different device classes to better fulfill the different requirements for
distinct IoT applications.

2.1.5 Cellular

Cellular networks, even though they were not initially designed for IoT appli-
cations, are very attractive to the IoT market due to their worldwide availability. The
downside of using cellular networks is that they tend to be cost and energy inefficient.
With that in mind, the 3GPP defined two standards that work as an extension of LTE
for IoT applications (T-MOBILE, 2019). The Long Term Evolution for Machines (LTE-M)
was defined in Release 12 in 2015 and the NB-IoT in Release 13 in 2016. While the
first uses a significantly higher bandwidth and reaches higher data rates the last one
is less complex and cheaper, making it extremely attractive to IoT applications (ZAIDI
et al., 2019).

A simplified comparison of the technologies described above can be seen in
Table 1.

Table 1 – Current wireless IoT technologies adapted from (LETHABY, 2017) and (T-
MOBILE, 2019).

Maximum
data rate Range Power consumption Topology

Wi-Fi 72 Mbps 100 m Up to 1 Year Star
BLE/Bluetooth 5 2 Mbps 750 m Up to years Point-to-point/Mesh

Thread 250 Kbps 100 m Up to years Mesh and Star
ZigBee 250 Kbps 130m LoS Up to years Mesh and Star
SigFox 100 bps 30 km Up to 10 Years Star

LoRaWAN 20 kbps 20 km Up to 10 Years Star of Stars
NB-IoT 250 Kbps 10 km Up 5 to 10 Years Star
LTE-M 1 Mbps 10 km Up to 10 Years Star
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2.2 5G AND MTC REQUIREMENTS

The vision for the 5G intended to include a wide range of diverse applications
with its main requirements being lower latency, higher data rates, greater reliability and
increased security (OSSEIRAN et al., 2020). However, as previously explained, 5G
was divided into three categories in order to meet these divergent demands. The sheer
number of mMTC devices connected calls for a paradigm shift in device connectivity
and management. That being said, to fulfill the vision of billions of wireless connected
devices, 5G defines the connection density as 1,000,000 devices per squared kilometer
with a minimum QoS value (OSSEIRAN et al., 2020). The other key requirement for
mMTC applications is the energy efficiency, as in many deployments devices are meant
to be in areas difficult to access. Therefore, the devices should not only be energy
efficient while communicating, but also consume very little energy when there are no
transmissions (OSSEIRAN et al., 2020).

Besides massive connectivity, industrial applications usually require low latency
and high reliability. Both of which are key driving requirements of 5G. According to
Ericsson (OSSEIRAN et al., 2020), the main requirements for URLLC and mMTC are
the ones defined in Table 2 below.

Table 2 – 5G Requirements for URLLC and mMTC (OSSEIRAN et al., 2020)

Requirement Value
User plane latency 1ms
Control plane latency 10 ms
Connection latency 1,000,000 devices per km2

Reliability 99.999% success rate
Mobility interruption time 0 ms
Battery life 10 years

2.3 6G: CHALLENGES AND TRENDS FOR MTC

Following the trend of a new generation of cellular communications every decade,
by 2030 we should have 5G with world wide deployment. Such fact raises the question,
what direction will 6G take? According to (MAHMOOD et al., 2020), the following six
trends will form society in the next ten years and therefore drive the development of
new technologies:

1. Autonomous mobility: MTC and Artificial Intelligence will play a big role in au-
tonomous driving.

2. Connected living: With 6G cities and homes should be fully connected.

3. Factories of the future: Industry 5.0 should be more interactive with real time
control and monitoring.
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4. Digital reality as frontier technology: The augmented, virtual and mixed reality
should play a fundamental role in man and machine interaction.

5. Towards a ’zero’ world: Zero-energy and zero-touch paradigms call for improve-
ments on MTC devices and networks.

6. Data as the new oil: Considering the amount of devices connected the data
collected will be extremely important as the age of information arises.

The drivers and use cases above point towards a new set of requirements. The
already stringent requirements of the 5G in latency, reliability, connection density, low
cost and low energy will become even more rigorous. The connection density should
be up to 100 devices per 1m3 in order to keep up with Industrial IoT and the arrival
of Industry 5.0. Real-time monitoring and control will require an end-to-end latency of
1ms. When thinking about energy efficiency, 6G aims at zero energy, making devices
fully sustainable. Besides the requirements inherited from 5G becoming more strict, 6G
has its own set of requirements to fulfill its vision.

As discussed before in this chapter, MTC is divided into two 5G use cases,
URLLC (or critical MTC) and mMTC. With 6G applications becoming even more diverse,
the authors of (MAHMOOD et al., 2020) propose a new set of categories for 6G MTC:

1. Dependable cMTC: ultra-reliability and low latency with security.

2. Broadband cMTC: high data rate with high reliability and low latency.

3. Scalable cMTC: massive connectivity with high reliability and low latency.

4. Globally-scalable mMTC: supporting ultra-wide coverage.

5. Zero-energy mMTC: Energy-efficient radios with extremely long battery life.

As we can see, 6G envisioned service classes mostly involve combining 5G ser-
vice characteristics which highly depend on improvements at the PHY and MAC layers
for massive connectivity. At the PHY Layer, the authors of (MAHMOOD et al., 2020)
point out that we should look into non-orthogonal solutions, CSI-free/limited schemes
and coding for short packets. NOMA has the potential to improve resource sharing
while CSI-free can become more interesting in 6G. The likelihood of operating with a
strong line of sight increases with denser networks and statistical beam-forming relying
on channel statistics can operate with near-optimum performance eliminating the need
for CSI acquisition (MAHMOOD et al., 2020). Coding for short packets becomes in-
creasingly important as the coding schemes for 5G, low-density-parity-check and polar
codes, are not well optimized for short packets. Medium Access challenges include the
need for a modern random access design as scheduling a huge amount of devices
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rapidly becomes impractical and random access schemes like ALOHA have serious
throughput limitations. In this work we will be exploring two of the above technologies
seen as fundamental for 6G: NOMA and modern RA.
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3 SYSTEM MODEL

Assuming a single communication system in which all devices run the same
application, we consider a setup with N synchronized devices distributed in a circular
cell around a common Base Station (BS), as shown in Fig. 2. All devices transmit at
the same power Pt , frequency fc , and rate, each one having L data packets ready for
transmission. Medium access is based on grant free Slotted Aloha (SA), where each
device transmits in one of K time-slots within a frame, which is illustrated in Fig. 3.
There is no restriction on the quantity of devices per time-slot thus several devices can
be allocated to the same time-slot. After each frame the BS sends a group feedback
using one bit per time-slot, informing if the transmissions were successful or not. This
control message is also used to synchronize the devices. As usual, we assume that
the BS acquires CSI by means of pilots within a header contained in each transmission
from the devices. Moreover, assuming a quasi-static scenario, the devices can estimate
the statistics of their channels using the common control message and apply channel
inversion to reach a reference average power at the BS that assures a given outage
probability.

The message from the m-th device, m 2 {1, 2, · · · ,M}, M  N, transmitting in
the k -th time slot, k 2 {1, 2, · · · ,K }, is considered to be successfully decoded if the
Signal to Interference plus Noise Ratio (SINR) at the BS is larger than the threshold
from Shannon’s capacity, so that (GOLDSMITH, 2005)

SINRm,k � 2r – 1, (1)

where SINRm,k is the SINR for the m-th device transmitting in the k -th time slot, and r

is the spectral efficiency in bits/s/Hz. As we consider a quasi-static non-LoS scenario,
the asymptotic outage probability is a meaningful performance metric even in the finite
blocklength regime (MARY et al., 2016).

3.1 NOMA

We consider the use of NOMA in the uplink, with SIC at the BS to decode colliding
packets (SAITO et al., 2013). The signal received by the BS in the k -th time-slot, in the
t-th frame, is

yk (t) =
MX

m=1
xm,k (t) + nk (t), (2)

where xm,k (t) is the attenuated signal received at the BS from the m-th device in time-
slot k , with instantaneous power Pm,k , while nk (t) is the additive white Gaussian noise.

The BS then performs SIC on the overall received signal yk , starting from the
strongest to the weakest user. Without loss of generality we assume that the users are
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Figure 2 – Device disposition

ordered in decreasing received power from m = 1 to m = M. Then, the SINR for the
m-th device after SIC becomes

SINRm,k =
Pm,kP

M
j=m+1 Pj ,k + Pn

, (3)

where Pm,k = h2
m,kPm,k is the instantaneous received power from the m-th device

in the k -th time slot, hm,k is Rayleigh fading, which is independent and identically
distributed in time and space, while Pm,k is the average received power, which is
modelled considering log-distance path loss (GOLDSMITH, 2005),

Pm,k = Pm,k (d0) – 10⌘ log10

✓
dm,k
d0

◆
, (4)

where dm,k is the distance from that device to the BS, d0 is the reference distance,
Pm,k (d0) is calculated using the Friis equation, while ⌘ is the path loss exponent. Finally,
Pn = FN0B denotes the noise power, where N0 is the noise power spectral density, B
is the bandwidth, and F is the noise figure.
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Figure 3 – Frame example

It is important to mention that (SHARMA; WANG, 2019a), which is the most
relevant reference for this work as it is used as base for comparison, considers a hard
collision model, in which the transmissions fail if a collision happens in a given time-slot,
whatever the SINR is. The hard model limits the performance since, in many cases,
it is possible to decode the strongest user in a collision (BJÖRNSON et al., 2017).
Moreover, the introduction of the NOMA strategy above allows us to potentially decode
all colliding users, greatly impacting the overall throughput. As mentioned previously,
the devices can apply channel inversion to reach a certain average power at the BS.
However, NOMA does not work well if devices yield the same power at the BS. In order
to add the needed power diversity for NOMA to work properly, we let the devices deviate
±� from a reference power, which in turn is calculated so that Pref –� reaches a target
outage probability. Meaning that each device’s Pref has its own value. Thus, devices
have three options of transmit power: Pref –�, Pref, and Pref +�. An appropriate � can
increase NOMA efficiency as we no longer rely on the devices position to create the
diversity for NOMA pairing. This can be observed on the 4, here we can clearly see
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that there is no correlation between the device’s position and it’s chosen power level.

Figure 4 – Device disposition and Power level
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4 PROPOSED METHOD

This work proposes aQ-Learning based method to optimize slot allocation taking
advantage of NOMA spectral efficiency, making it possible for two or more devices to
transmit at the same time-slot. This method allows the MTC devices to autonomously
find NOMA partners and their dedicated time-slot while also preventing the excessive
use of transmit power.

4.1 Q-LEARNING

The use of reinforcement learning has great potential in MTC net-
works (SHARMA; WANG, 2019a; BELLO et al., 2018; JIHUN MOON; YUJIN LIM, 2017;
MOHAMMED et al., 2015; HAN et al., 2019), specially the widely adopted Q-Learning
algorithm, because it is model-free and can be implemented in a distributed fashion. By
modeling the RA in an MTC network as a Markov Decision Process (MDP) allows us
to use Q-Learning. In an MDP the agent interacts with the environment in a sequential
manner, selecting actions based on the state of the environment. The agent gets a
reward based on its action and moves to the next state (SUTTON; BARTO, 2018).

The Q-Learning algorithm formulates this agent-environment relationship with
an action-value function, the Q-table. At each time step u, while in a state Su, an agent
performs an action Au trying to maximize its action-value function. The Q-value update
rule can be defined as (SUTTON; BARTO, 2018)

Q(Su,Au)  � (1 – ↵)Q(Su,Au) + ↵
⇣
Ru+1 + �max

a
Q(Su+1, a)

⌘
, (5)

where ↵ 2 [0, 1] is the learning rate, � 2 [0, 1] is the discount factor quantifying the
importance of future rewards (� = 0 values only immediate rewards while a higher �
would aim at a better long-term reward), and R is the reward.

We can apply the Q-Learning algorithm to the system model by considering that
the agents are the MTC devices, the environment is the network, while the state-action
pair is the combination of the transmit power and the time-slot, with every device having
its own Q-Table. The simplest way to implement the Q-Learning algorithm is to apply
a greedy policy, this way the device always chooses the time-slot and transmit power
pair with the highest Q-value. Moreover, the greedy policy also presented the best
results during the simulation campaign when compared to ✏-greedy policies. In this
work, similar to (SHARMA; WANG, 2019a), the reward is defined as the following:

R =

8
<

:
+1, successful transmission

–1, failed transmission
. (6)

The work in (SHARMA; WANG, 2019a) also proposes an alternative reward
using a congestion level that improves the performance of the method proposed therein.
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However, it requires the BS to detect how many devices collided in each time slot. The
method in this paper requires only an acknowledgement bit per time slot, informing
the success or not of the transmissions (irrespective of their number), which is much
simpler in practice.

4.2 NOVEL RA METHOD: COMBINING Q-LEARNING AND NOMA

For each device, the Q-table for every possible (transmit power, time-slot) pair is
randomly initialized following a uniform distribution between -1 and 1. This initialization
adds an extra degree of randomness, improving throughput over an all 0’s initialization.
Then, the devices choose the (power, time-slot) pair with the highest Q-value. Next,
the devices transmit their messages and the BS tries to recover them making use of
SIC. At the end of the frame, the BS sends a single feedback message with one bit
per time-slot, informing if the messages were successfully decoded or not. With this
feedback each device updates its Q-value and proceeds to the next transmission. This
process continues for several iterations (or frames), until it eventually converges1.

Algorithm 1 SIC-based Distributed Q-learning RA Method
Require: Q-Table random initialized between -1 and 1
1: for Every frame do
2: for Every device do
3: Select the (power, time-slot) with the highest Q value
4: if More than one slot with the highest value then
5: Choose randomly among them
6: end if
7: end for
8: BS uses SIC, (3), to recover the transmitted messages
9: BS broadcasts feedback message

10: for Every device do
11: Update Q-value for (power, time-slot) pair using (5)
12: end for
13: end for

The proposed method is summarized in Algorithm 1. Note that it adds minimal
complexity at the device, requiring memory for storing one Q-Table with the number of
power levels times the number of time-slots, in this case 3⇥ 100 slots, and the compu-
tational resources (calculation and memory) for (5). At the BS the increased complexity
with respect to the method in (SHARMA; WANG, 2019a) is the SIC decoding, which is
non-negligible. However, it is not unrealistic to assume that the BS has more processing
power than the devices, while, it is very unlikely that many devices successfully share
1 The convergence of Q-Learning is well known (SUTTON; BARTO, 2018; KAR et al., 2013), however

the convergence of a multi-agent distributed Q-Learning needs further investigation, which is outside
the scope of this work. Nevertheless, in our extensive simulation campaign the proposed method
always converged.
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the same time-slot, reducing the SIC complexity. Moreover, note that the Q-Learning
implementation in Algorithm 1 is distributed, each device updates its own Q-Table,
which in turn influences their choice of (power, time-slot) in the next frame and the
whole environment output. Implementing a centralized Q-Learning algorithm in the BS
would be much more complex, requiring the BS to be aware of every device, storing
all Q-Tables and making it more difficult to deploy new nodes. Also, implementing the
Q-Learning at the BS would require extensive feedback as the BS would have to inform
every device of its time-slot and power. Compared to related works that use Q-Learning,
our method only requires the extra storage for the three power levels.
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5 RESULTS

We investigate the performance of the proposed method by means of computer
simulations, considering the setup in Chapter 3, with the parameters in Table 3, unless
stated otherwise. In order to get the average behaviour, the curves presented here are
the result of 30 simulation runs. The proposed method is compared to three schemes.
The first two are: i) SA, and ii) SA with NOMA. In SA the devices randomly choose
the time-slot within a frame, without any feedback from the BS. In SA with NOMA the
BS applies SIC decoding in order to try to recover some of the colliding packets. The
third method comes from (SHARMA; WANG, 2019a): iii) Collaborative Q-Learning. In
this method Q-Learning is used to allocate devices to slots, as discussed in Chapter 3,
but without NOMA. However, a different reward is employed, returning the congestion
level of each time-slot, requiring the knowledge of how many devices collided in each
time-slot. Note that all of the methods above do not use power control transmitting at
a fixed Pt = 10 dBm. Finally the proposed method is presented using two different
discount factors.

Table 3 – Simulation Parameters

Parameter Value
Bandwidth B 100 kHz
Carrier frequency fc 915 MHz
Cell radius 133 m
Path loss exponent ⌘ 3
Power Deviation � 7.78 dB
Noise figure F 6 dB
Noise PSD N0 -174 dBm/Hz
Outage Probability 0.01
Transmit power Pt 10 dBm
Spectral efficiency r 2 bits/s/Hz
Reference distance d0 1 m
Devices N 25-300
Messages L 100
Simulation Runs 30
Time-slots K 100
Learning rate ↵ 0.1
Discount factor � 0.5 and 1

First, we look at the throughput, the number of successful transmissions over the
number of time-slots; a metric of how efficiently the frame is being utilized. It is important
to note that this is a worst case scenario simulation where every device is transmitting
in every frame. However, the proposed method does not require a transmission ev-
ery frame. The device is free to move into sleep mode whenever necessary. Fig. 5
shows that the addition of NOMA considerably improves the throughput of SA. More-
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over, SA with NOMA is able to outperform Collaborative Q-Learning from (SHARMA;
WANG, 2019a) when the number of devices is relatively large. However, the proposed
Q-Learning method with NOMA outperforms all the other strategies, while requiring a
very reduced feedback (one bit per time slot), which is much simpler in practice than
the reward used in Collaborative Q-Learning (SHARMA; WANG, 2019a). Note that
the peak performance occurs when N = K for Collaborative Q-Learning, but with the
proposed method it is obtained for N = 2.25K . This behaviour can be attributed to the
joint effort of NOMA and Power Control which increases spectral efficiency, allowing
for more successful transmissions per time-slot. After N = 225 performance falls as we
have more devices per slot and the fading becomes more relevant. Another interesting
takeaway is that while the proposed method with � = 0.5 performs slightly better when
N < 150, when � = 1.0 the performance is drastically better for N > 150. This can
be due to the fact that � takes future rewards into consideration. For a smaller N the
devices are able to find their time-slot faster, making future rewards less important,
while for a larger N the devices can take longer finding their pairs and slots making the
role of � crucial.

Figure 5 – Throughput versus number of devices for different RA methods and the
proposed scheme.

In order to further evaluate the performance and convergence of the proposed
method, next we consider a dynamic operation setup in three stages: i) first, N/2 de-
vices send L/2 messages, ii) then, the second half of the devices join the network and
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therefore in this stage N devices transmit L/2 messages, iii) lastly, in the third stage, as
the first N/2 devices already transmitted their L messages, only the second half of N/2
devices transmit their final L/2 messages. Moreover, we consider two cases: N = 130
and L = 200, so that N/2 < K , and N = 300 and L = 200, so that N/2 > K . Finally, in
such dynamic operation mode we can better investigate the effect of the discount factor
� in the performance of the proposed algorithm, so that we consider � 2 {0, 0.5, 1.0}.

As can be seen in Fig. 6-a, when N/2 < K , in the first stage the value of �
does not make a difference, a consequence of having more time-slots than transmitting
devices. At the second stage the network is overloaded, with more devices than time-
slots. In this case it is possible to see the positive effect of a larger �, leading to faster
convergence. Finally, at the third stage the network is under-loaded, so that throughput
decreases but again the choice of � does not impact significantly. In Fig. 6-b N/2 > K ,
so that the network already starts with more devices than available time-slots. In this
situation the advantage of a large � is evident, converging faster and to larger values of
throughput for the three stages.

In order to better understand the behaviour of the curves in Fig. 6, recall that
the discount factor � prioritizes future rewards by softening the penalty when a collision
happens, as the reward is added to the maximum Q-value weighted by �. The curves
in Fig. 6 provide a better insight on how the proposed method with � = 0.5 is able to
slightly outperform � = 1.0 for a smaller quantity of devices. The positive effects of a
smaller penalty when a collision happens can be noticed in the middle stage in Fig. 6-
b, as the network suddenly becomes overloaded. A smaller � can dismiss potential
slots too quickly after collisions, making them unlikely to be utilized, resulting in a drop
in the maximum system capacity and consequently in throughput, while a larger � is
able to recover the network faster and better allocate the devices resulting in a larger
throughput. Moreover, we also investigated the impact of the learning rate ↵ and found
out that it is not very significant. Therefore, as ↵ = 0.1 has been used in (SHARMA;
WANG, 2019a), we then used it in all methods.
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(a) N/2 < K with N = 130 and K = 100.

(b) N/2 > K with N = 300 and K = 100.

Figure 6 – Convergence analysis as a function of the discount factor gamma, for a
dynamic network, with a varying number of nodes.
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Next, we illustrate how the devices are allocated to time slots in two cases,
Collaborative Q-Learning (SHARMA; WANG, 2019a) and the proposed method, con-
sidering N = 200, while showing only the allocation at the last frame. In Fig. 7-a we
can see that, even though Collaborative Q-Learning succeeds in allocating at least one
device to every time slot, this success is not reflected in the throughput as we have
more devices than slots. Moreover, note that after allocating one device per slot the
other devices are poorly distributed and interfere with each other, what could end up
preventing successful transmissions.

Then, we have the proposed method in Fig. 7-b, where the algorithm is able to
allocate devices exploiting all time-slots, while also taking advantage of NOMA. Note
that almost every slot is allocated to two devices providing a good distribution and there
are no more than 3 devices per slot. Therefore, the algorithm was able to distribute
the resources in such a way that every device has the possibility of being decoded,
considering the three available power levels.
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(a) Collaborative Q-Learning

(b) Proposed Method

Figure 7 – Allocation of devices to time slots for the proposed method.
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Moreover, the power control in the Q-learning based RA method leads to impor-
tant power savings when compared to the case without power control. The average
transmit power when using power control is well below the average when power control
is deactivated, in which every device had the same transmit power as shown in Fig. 8.
Note that the transmit power when there is no power control is used as an upper limit
for the power control case, and the lower limit is the case where the closest device to
the base station is allocated to transmit at Pref – �. It is important to note here that
when NOMA is not enabled the average power raises along with the number of devices
until N = 125. That is due to the fact that when SIC is not performed at the BS the
devices learn that using a higher power will increase their chances of having a suc-
cessful transmission. However, after the number of devices becomes significantly larger
than the number of slots, this strategy no longer works and the devices become better
distributed among the three power modes, lowering the overall transmit power.

Figure 8 – Average Transmit Power versus number of devices

When working with Q-Learning, ✏-greedy policy can often achieve better results,
presenting a good trade-off between exploration and exploitation. However, it is not the
case for our method and scenario as shown in Fig. 9. The main reason behind the
utilization of a random search scheme is that a greedy search can oftentimes lead the
algorithm to a sub-optimal solution. The simplicity of our method has to be kept in mind,
as we only have the action of transmitting on a selected slot, the device has little to
gain further exploring in search for other slots. Nevertheless, exploration happens as
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devices can disrupt one another and fading could hinder the possibility of a successful
transmission even in a slot where the devices already converged. For those reasons it
is important to keep potential slots from being discarded. Even though our algorithm
performs a greedy search it does not lack in exploration. As pointed out earlier, the
discount factor used prevents the algorithm from converging to a sub-optimal solution.

Figure 9 – Throughput versus number of devices for greedy and ✏-greedy policies.

Furthermore, another key parameter in Q-Learning is the initialization scheme.
Initializing the Q-Values to 0 is quite common in the related work. Taking into account
that the end result for the Q-Values tend to be negative, initializing them to 0 is actu-
ally considered an optimistic initialization (SUTTON; BARTO, 2018) and can motivate
exploration. Nevertheless, adding another degree of randomness can be beneficial in
avoiding early collisions. That being said, the random initialization has been chosen be-
cause it slightly improves the overall throughput when the number of devices becomes
very large as shown in Fig. 10.Note that the values from the random initialization are
chosen from a uniform distribution over an [–1, 1] interval.
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Figure 10 – Throughput versus number of devices for All 0’s initialization and uniformly
random initialization.
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6 CONCLUSION

We introduced a novel method for RA combining the Q-Learning ability to mea-
sure uncertainties and NOMA spectral efficiency. The proposed method enables MTC
devices to automatically choose their time-slots and transmit power for improving
throughput. Moreover, the method requires minimal additional complexity at the device-
side, as only a simple equation has to be implemented and 3⇥ K numerical values are
stored while also preventing the device from using an unnecessary amount of trans-
mit power when compared to methods without power control. From the BS it requires
very limited feedback, one bit per time slot. Simulations showed that using a larger
discount factor presents the best performance when operating with a large number of
devices, converging faster for a higher throughput and better handling network overload
in a dynamic scenario. Furthermore, the proposed method provides significant gains in
performance over other solutions.

6.1 FUTURE WORKS

Following the work done in this dissertation we can expand this research in a
variety of ways, with the two main topics being the application of machine learning to
communication systems and further investigating the utilization of NOMA through SIC
in different models. The work done in (ZHOU et al., 2020) also uses Q-Learning to
improve throughput. But unlike our work it focuses on assigning secondary users to
subcarrier bands. However, the most interesting idea proposed by the authors that we
could adapt and investigate its benefits to our model is that the devices are able to
exchange information before certain frames and update the whole Q-Table. This could
improve our model reducing collisions and providing an earlier convergence. Of course,
this exchange of information means a trade-off between reducing collisions and the
computational cost and would have to be thoroughly investigated. Besides that, the
addition of NOMA along the lines of our model could also be an interesting research
topic.

Another step in the direction of machine learning and random access would be
looking into implementing Deep Q-Learning to our model. The authors of (ZHANG et
al., 2020) have proposed a Deep Reinforcement Learning grant-free NOMA algorithm
looking to improve throughput. This would however greatly increase the complexity
and computational cost of our method. Perhaps low-end devices can not handle the
storage and computational demands of neural networks. This would have to be deeply
investigated.

When looking at the other side of this work we have yet another interesting
path forward. Adapting our system model with conjunction of the fast model proposed
by (HAJIZADEH et al., 2019) looking to add the capture effect and SIC. Furthermore,
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the method here proposed can be adapted to a myriad of different system models to
analyse the impact and interaction of NOMA and Q-Learning.
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