

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

Paulo Henrique Staciarini

Análise de confiabilidade estrutural de modelos de bielas e tirantes de vigas-parede

FLORIANÓPOLIS 2020 Paulo Henrique Staciarini

Análise de confiabilidade estrutural de modelos de bielas e tirantes de vigas-parede

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Santa Catarina para a obtenção do título de Mestre em Engenharia Civil

Orientador: Prof. Ph.D. Roberto Caldas de Andrade Pinto.

Coorientador: Prof. Dr. Wellison José de Santana Gomes.

FLORIANÓPOLIS

2020

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Staciarini, Paulo Henrique Análise de confiabilidade estrutural de modelos de bielas e tirantes de vigas-parede / Paulo Henrique Staciarini ; orientador, Roberto Caldas de Andrade Pinto, coorientador, Wellison José de Santana Gomes, 2020. 154 p. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Civil, Florianópolis, 2020. Inclui referências. 1. Engenharia Civil. 2. Concreto armado. 3. Viga parede. 4. Bielas e tirantes. 5. Confiabilidade estrutural. I. Pinto, Roberto Caldas de Andrade . II. Gomes, Wellison José de Santana. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia Civil. IV. Título.

Paulo Henrique Staciarini

Análise de confiabilidade estrutural de modelos de bielas e tirantes de vigas-parede

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca examinadora composta pelos seguintes membros:

Prof. Rafael Alves de Souza, Dr. Universidade Estadual de Maringá

Prof. Rafael Holdorf Lopez, Dr. Universidade Federal de Santa Catarina

Prof. Jano d'Araujo Coelho, Dr. Universidade Federal de Santa Catarina

Certificamos que esta é a **versão original e final** do trabalho de conclusão que foi julgado adequado para obtenção do título de mestre em Engenharia Civil, área de concentração em Estruturas.

Prof^a. Poliana Dias de Moraes, Dr^a. Coordenadora do Programa

Prof. Roberto Caldas de Andrade Pinto, Ph.D. Orientador

Florianópolis, 09 de Novembro de 2020.

Este trabalho é dedicado a minha família e aos meus queridos pais.

AGRADECIMENTOS

Ao meu orientador Prof. Ph.D. Roberto Caldas de Andrade Pinto, pelos conhecimentos transmitidos, pela disponibilidade, paciência e atenção dispensada nas orientações.

Ao Prof. Dr. Wellison José de Santana Gomes, coorientador do trabalho, pela prestatividade e pelos ensinamentos de Confiabilidade Estrutural.

Aos meus pais Elizeu e Cleusa que sempre me apoiaram e incentivaram.

A minha irmã Carolina pelo incentivo e motivação.

Aos colegas do mestrado, pela ajuda e pelos conhecimentos compartilhados no decorrer das disciplinas.

A todos os funcionários e professores do PPGEC, em especial aos professores Leandro Fleck Fadel Miguel, Otávio Augusto Alves da Silveira, Poliana Dias de Moraes e Rafael Holdorf Lopez, que contribuíram para minha formação.

À CGT Eletrosul que disponibilizou tempo para que eu pudesse cursar as disciplinas e elaborar este trabalho.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

RESUMO

elementos estruturais com características particulares As vigas-paredes são de dimensionamento, são caracterizadas como regiões de descontinuidades, nas quais não são válidas as hipóteses simplificadoras usualmente empregadas nas estruturas de concreto armado. O método das bielas e tirantes (MBT) tem sido amplamente utilizado nos casos em que a Hipótese de Bernoulli não pode ser aplicada. No entanto, a aplicação do MBT segundo as normas técnicas é feita de maneira semiprobabilística, e não leva em consideração as incertezas associadas às variáveis envolvidas, tão pouco as incertezas inerentes aos modelos de cálculo, apresentando imprecisões que devem ser consideradas para garantir a segurança. Com a utilização da confiabilidade estrutural é possível considerar as incertezas relacionadas ao problema, ao adotar métodos probabilísticos que incorporam tais incertezas na caracterização da resistência estrutural e das solicitações. Além disso, a análise de confiabilidade pode ser utilizada para verificar e comparar o nível de segurança entre diversas soluções estruturais. Desse modo, este trabalho tem como objetivo realizar e comparar as análises de confiabilidade estrutural de diferentes modelos de bielas e tirantes para vigasparedes, dimensionados pelos critérios da NBR 6118, do ACI 318, do EUROCODE 2 e de bibliografia. Para tal propósito, foram utilizados ensaios experimentais de vigas-paredes disponíveis na literatura para calcular e caracterizar os erros de modelo de resistência intrínsecos a cada modelo. O método FORM foi utilizado para avaliar a importância das variáveis aleatórias envolvidas no problema e identificar quais variáveis têm maior contribuição nas probabilidades de falha. Por meio da Simulação de Monte Carlo foram obtidos os índices de confiabilidade de cada modelo. Com a utilização da razão da probabilidade de falha foi possível identificar os modos de falha mais significativos e assim avaliar a ductilidade dos diferentes modelos. Os resultados encontrados na pesquisa indicaram que, os modelos de bielas e tirantes com armadura vertical e que demandaram maior quantidade de aço no dimensionamento demonstraram maior segurança e maior probabilidade de apresentar ruptura dúctil. Modelos de bielas e tirantes com tirantes de concreto tiveram maior probabilidade de apresentar ruptura frágil. Verificou-se também, grande influência do carregamento variável nos resultados dos índices de confiabilidade, especialmente para os modelos da NBR 6118, quando a carga variável é grande em relação ao carregamento permanente. Esse trabalho possibilita avaliar a segurança de modelos de bielas e tirantes aplicados a vigas-paredes, obter a caracterização dos modos de falhas, e a influência das variáveis aleatórias envolvidas nesse tipo de problema.

Palavras-chave: Confiabilidade estrutural. Viga-parede. Bielas e tirantes.

ABSTRACT

Deep beams are structures that demand a specific design. They can be considered as discontinuities regions, in which the simplifying hypotheses usually employed in reinforced concrete structures are not valid. The strut-and-tie method (STM) has been widely used in cases where the Bernoulli Hypothesis cannot be applied. However, the application of the MBT according to the codes is done in a semiprobabilistic approach, and thus it does not take into account the uncertainties associated with the variables involved, nor the uncertainties inherent in the calculation models, presenting inaccuracies that must be considered to ensure safety. With the use of structural reliability, it is possible to consider the uncertainties related to the problem, by adopting probabilistic methods that incorporate such uncertainties in the characterization of the structural resistance and the load effect. Also, the reliability analysis can be adopted to check and compare the level of safety between different structural solutions. The present study aims to evaluate and compare the structural reliability analyses of different models of the strut-and-tie for deep beams, presented in the NBR 6118, ACI 318, EUROCODE 2 codes and also by bibliography criteria. For this purpose, experimental deep beam tests available in the literature were used to determine and characterize the intrinsic resistance model errors for each model. The FORM method was used to assess the importance of the random variables involved in the problem and also to identify which variables have a greater contribution to the failure probabilities. Through Monte Carlo Simulation, the reliability indexes of each model were obtained. Using the failure probability ratio, it was possible to identify the most significant failure modes and thus evaluate the ductility of the different models. The results found in the research indicated that the strut-and-tie models with vertical reinforcement and that demanded a greater amount of steel presented higher safety levels and a higher probability of ductile rupture. Strut-and-tie models with concrete ties showed a higher probability of fragile rupture. There was also a great influence of the variable live load on the results of the reliability indexes, especially for the NBR 6118 models, when the variable live load is very large in relation to the permanent action. The present study provides to evaluate the safety of strut-and-tie models applied to deep beams and to obtain the characterization of failure modes, and the influence of random variables involved in this type of problem.

Keywords: Structural reliability. Deep beam. Strut-and-tie.

LISTA DE FIGURAS

Figura 1 - Exemplos de vigas-parede: (a) viga alta com cargas concentrada, (b) viga de
transição com carga próxima ao apoio e (c) viga-parede de uma caixa d'água15
Figura 2 – Distribuição linear de deformações em viga de concreto armado21
Figura 3 – Exemplos de divisões em regiões B-D22
Figura 4 - Estrutura de um pórtico contendo regiões B e D: (a) estruturas de barras e (b)
diagramas de momentos fletores23
Figura 5 – Trajetória de tensões na região B e próximas a descontinuidades (regiões – D)24
Figura 6 – O método do caminho de carga (Schlaich e Schäfer, 1991): (a) a região e as cargas
dos contornos, (b) os caminhos de carga através da região e (c) o MBT correspondente25
Figura 7 – Trajetória das tensões elásticas, distribuição das tensões elásticas e correspondente
modelo de bielas e tirantes
Figura 8 – Componentes de um modelo de bielas e tirantes de uma viga-parede28
Figura 9 – Formas geométricas das bielas
Figura 10 – Resistência no estado multiaxial de tensões
Figura 11 – Distribuição de tensão elástica para biela em forma de garrafa e modelo biela e
tirante
Figura 12 – Modelo de biela e tirante para biela em forma de garrafa e forças de equilíbrio
associadas
Figura 13 – Variações de 2:1 modelos para bielas tipo garrafa
Figura 14 – 1 – Nó contínuo e 2 - Nó singular em uma região D; a) modelo; b) e c) campo de
tensões e regiões nodais
Figura 15 – Estado de tensão em nós hidrostáticos e não hidrostáticos
Figura 16 – Diferentes tipos de zonas nodais
Figura 17 – Classificação dos nós
Figura 18 – Distribuição normal padronizada: (a) função de densidade de probabilidades e (b)
função de distribuição acumulada de probabilidades44
Figura 19 – Distribuição lognormal: (a) função de densidade de probabilidades e (b) função
de distribuição acumulada de probabilidades46
Figura 20 – Distribuição de Gumbel para máximos: (a) função de densidade de probabilidades
e (b) função de distribuição acumulada de probabilidades47
Figura 21 – Equação de estado-limite e domínios de falha e não falha
Figura 22 – Distribuição marginal de segurança $Z = R - S$

Figura 23 – Probabilidade de falha em termos da variável normal padrão Y52
Figura 24 – Exemplos de sistemas em série: a) corrente; b) treliça isostática
Figura 25 – Exemplo de sistemas em paralelo: a) elementos paralelos; b) pórtico hiperestático
formado por barras rígidas53
Figura 26 – Sorteio de pontos: simulação de Monte Carlo
Figura 27 – Gráficos de convergência e intervalo de confiança (I.C) para SMC: (a)
probabilidade de falha Pf e (b) índice de confiabilidade β = - Φ – 1(Pf)60
Figura 28 – Distância Dmáx – Teste K-S66
Figura 29 – Influência do <i>f ck</i> na razão de falha dos diferentes modos de falha68
Figura 30 – Modelo 1 - esquema de forças no modelo de bielas e tirantes69
Figura 31 – Modelo 1 - detalhes das bielas e tirantes e dos nós
Figura 32 – Modelo 2 - detalhes das bielas e tirantes e dos nós
Figura 33 – Modelo 2 - detalhes das bielas e tirantes e dos nós
Figura 34 – Esquema típico dos ensaios79
Figura 35 - Comparação entre cargas experimentais e cargas previstas nos modelos para o
Modelo 1: (a) ACI 318, (b) NBR 6118, (c) EUROCODE2 e (d) Schäfer e Schläich (1991)84
Figura 36 - Comparação entre cargas experimentais e cargas previstas nos modelos para o
Modelo 2: (a) ACI 318 e (b) NBR 611885
Figura 37 - Comparação entre cargas experimentais e cargas previstas nos modelos para o
Modelo 3: (a) ACI 318 e (b) NBR 611886
Figura 38 – Ajustes de distribuição de probabilidade para erros de modelo do Modelo 1: (a)
ACI 318, (b) NBR 6118, (c) EUROCODE2 e (d) Schäfer e Schläich (1991)
Figura 39 – Ajustes de distribuição de probabilidade para erros de modelo do Modelo 2: (a)
ACI 318 e (b) NBR 6118
Figura 40 – Ajustes de distribuição de probabilidade para erros de modelo do Modelo 3: (a)
ACI 318 e (b) NBR 611891
Figura 41 – Geometria da viga-parede, dimensões em mm
Figura 42 - Modelo 1: (a) ACI 318, (b) NBR 6118, (c) EUROCODE2 e (d) Schäfer e
Schläich (1991)
Figura 43 – Modelo 2: (a) ACI 318 e (b) NBR 6118, Modelo 3: (c) ACI 318 e (d) NBR 6118.
Figura 44 – Fatores de importância das variáveis aleatórias Modelo 1: (a) ACI 318, (b) NBR
6118, (c) EUROCODE 2 e (d) Schäfer e Schläich (1991)100

Figura 45 - Fatores de importância das variáveis aleatórias do Modelo 2: (a) ACI 318 e (b)
NBR 6118101
Figura 46 - Fatores de importância das variáveis aleatórias do Modelo 3: (a) ACI 318 e (b)
NBR 6118102
Figura 47 – Fatores de importância das variáveis aleatórias, Modelo 1 – ACI: $\theta r=1$ e
determinístico
Figura 48 - Índice de confiabilidade x resistência do concreto: (a) Modelo 1, (b) Modelo 2 e
(c) Modelo 3
Figura 49 - Modelo 1: (a) ACI 318 , (b) NBR 6118, (c) EUROCODE2 e (d) Schäfer e
Schläich (1991)108
Figura 50 – Modelo 2: (a) ACI 318 e (b) NBR 6118
Figura 51 – Modelo 3: (a) ACI 318 e (b) NBR 6118
Figura 52 – Índice de confiabilidade (β) x razão de carga (ψ): (a) Modelo 1, (b) Modelo 2 e
(c) Modelo 3
Figura 53 – Comparativo NBR 6118 edificações tipo 1 e tipo 2: (a) Modelo 1, (b) Modelo 2 e
(c) Modelo 3

LISTA DE QUADROS

Qı	ıadro	1 –	Limites	de varia	ição do	o ângule	ο <i>θ</i>	entre	biela	s e t	tirantes	
· ·					,	0						

LISTA DE TABELAS

Tabela 1 – Tensões máximas nos nós	40
Tabela 2 – Grupo 1 – Vigas sem armadura vertical.	79
Tabela 3 – Grupo 2 – Vigas com armadura vertical	81
Tabela 4 – Valores estatísticos dos erros de modelo para o Modelo 1	
Tabela 5 – Valores estatísticos dos erros de modelo para o Modelo 2	85
Tabela 6 – Valores estatísticos dos erros de modelo para o Modelo 3	
Tabela 7 – Ajustes de distribuição e testes de aderência – Modelo 1	87
Tabela 8 – Ajustes de distribuição e testes de aderência – Modelo 2	90
Tabela 9 – Ajustes de distribuição e testes de aderência – Modelo 3	91
Tabela 10 – Resultados das variáveis erros de modelo	92
Tabela 11 – Valores estatísticos e característicos da análise da confiabilidade	93
Tabela 12 – Coeficientes parciais de segurança e fatores redutores de resistência	96
Tabela 13 – Dimensionamento	97
Tabela 14 – Comparativo entre os Modelos – Peso de aço, índice de confiabilidade e	e índice de
eficiência	104
Tabela 15 – Patamares limites do índice de confiabilidade	107
Tabela 16 – Cálculos dos erros de modelo do Modelo 1 – ACI 318	125
Tabela 17 – Cálculos dos erros de modelo do Modelo 1 – NBR 6118	129
Tabela 18 – Cálculos dos erros de modelo do Modelo 1 – EUROCODE 2	132
Tabela 19 – Cálculos dos erros de modelo do Modelo 1 - Schäfer e Schläich (1991).	136
Tabela 20 – Cálculos dos erros de modelo do Modelo 2 – ACI 318	138
Tabela 21 – Cálculos dos erros de modelo do Modelo 2 – NBR 6118	140
Tabela 22 – Cálculos dos erros de modelo do Modelo 3 – ACI	143
Tabela 23 – Cálculos dos erros de modelo do Modelo 3 – NBR 6118	145
Tabela 23 – Cálculos dos erros de modelo do Modelo 3 – NBR 6118 Tabela 24 – Propriedades geométricas e mecânicas e carga última das vigas sem	145 armadura
Tabela 23 – Cálculos dos erros de modelo do Modelo 3 – NBR 6118 Tabela 24 – Propriedades geométricas e mecânicas e carga última das vigas sem vertical	145 armadura 147
Tabela 23 – Cálculos dos erros de modelo do Modelo 3 – NBR 6118 Tabela 24 – Propriedades geométricas e mecânicas e carga última das vigas sem vertical Tabela 25 – Propriedades geométricas e mecânicas e carga última das vigas com	145 armadura 147 armadura

LISTA DE ABREVIATURAS E SIGLAS

- ABNT Associação Brasileira de Normas Técnicas
- ACI American Concrete Institute
- CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível
- CAST Computer Aided Strut and Tie
- CORE Center for Optimization and Reliability in Engineering
- ELS Estado-Limite de Serviço
- ELU Estado-Limite Último
- EMV Estimativa de Máxima Verossimilhança
- EUROCODE European Standard
- FORM Método de confiabilidade de primeira ordem (First Order Reability Method)
- HLRF Hasofer, Lind, Rackwitz e Fiessler
- I.C. Intervalo de Confiança
- iHLRF improved Hasofer, Lind, Rackwitz e Fiessler
- JCSS Joint Committee on Structural Safety
- K-S Teste de aderência de Kolmogorov-Smirnov
- MBT Método das Bielas e Tirantes
- MEF Método dos Elementos Finitos
- NBR Norma Brasileira Registrada
- PPGEC Programa de Pós-Graduação em Engenharia Civil
- UFSC Universidade Federal de Santa Catarina
- VA Variável Aleatória

LISTA DE SÍMBOLOS

F _i	força
l _i	comprimento
ε _i	deformação específica média
T _i	força de tração no tirante
θ	ângulo da biela
σ_1	tensão principal
σ_2	tensão principal
σ_3	tensão principal
f _{ck}	resistência à compressão característica
f _{ctk}	resistência à tração característica
f _{cdb}	resistência das bielas de concreto
β_{ef}	coeficiente de efetividade
β_c	coeficiente de confinamento dado pelo ACI 318
β_s	coeficiente de efetividade dado pelo ACI 318
f_c'	resistência à compressão do concreto ACI 318
f _{cd}	resistência de cálculo do concreto
γ _c	coeficiente de ponderação da resistência do concreto
φ	fator redutor da resistência do ACI
ν'	fator redutor da resistência do concreto ao cisalhamento EUROCODE 2
α_{v2}	fator redutor da resistência do concreto ao cisalhamento NBR 6118
b	largura da viga
w	largura da biela
F _{cdb}	força resistente da biela
A _c	área de concreto contribuinte da biela
t	espessura da biela
T _d	tração no tirante de cálculo
A _s	área de aço
f _{yd}	resistência de cálculo ao escoamento da armadura
f_{yk}	resistência característica ao escoamento da armadura
γ_s	coeficiente de ponderação da resistência do aço

X variável aleatória

u média

 σ desvio-padrão

 $F_X(x)$ função de distribuição acumulada de probabilidades

 $f_X(x)$ função de densidade de probabilidades

Y variável normal padrão

 $f_{Y}(y)$ função de densidade de probabilidade normal

 $F_{v}(y)$ função de distribuição acumulada de probabilidade normal

- λ parâmetro da distribuição lognormal
- ξ parâmetro da distribuição lognormal

 $f_{X_n}(x)$ função de densidade de probabilidades de Gumbel

 $F_{X_n}(x)$ função de distribuição acumulada de probabilidades de Gumbel

 u_n parâmetro da distribuição de Gumbel

 β_g parâmetro da distribuição de Gumbel

 n_{rv} número de variáveis aleatórias

X vetor de variáveis aleatórias

 $g(\mathbf{X})$ equação do estado-limite

 D_f domínio de falha

- D_s domínio de segurança
- *R* variável aleatória de resistência
- *S* variável aleatória de solicitação
- P_f probabilidade de falha
- μ_R média de uma variável aleatória normal de resistência
- μ_S média de uma variável aleatória normal de solicitação
- Z margem de segurança
- μ_Z média da margem de segurança
- σ_Z desvio-padrão da margem de segurança
- β índice de confiabilidade
- P_f^{s} probabilidade de falha para sistemas em série

 d_{min} distância mínima entre o ponto de projeto y^* e a origem

 y_k ponto inicial de projeto

 y_{k+1} novo ponto de projeto

 $\nabla g(\mathbf{y}_k)$ gradiente da equação de estado limite no espaço normal padrão no ponto \mathbf{y}_k

 λ_k passo

- d_k direção de busca
- β_k índice de confiabilidade inicial
- α_i vetor de cossenos diretores

 $m(\mathbf{y})$ função de mérito

- I_i fator de importância
- $E[I[\mathbf{x}]]$ valor esperado da variável aleatória $I[\mathbf{x}]$
- n_f número de pontos no domínio de falha
- n_{si} número de simulações
- \widehat{P}_f probabilidade de falha dada pelo método de Monte Carlo
- R_{est} resposta da estrutura
- f função do modelo
- R'_{est} resposta real da estrutura
- θ_i variáveis de incerteza do modelo
- χ^2 qui-quadrado
- *m* número de categorias ou intervalos contíguos
- o_i frequência observada
- e_i frequência esperada
- χ_i razão de falha
- P_{fmi} probabilidade de falha individual
- P_f probabilidade de falha do sistema
- h altura da viga
- *a* vão de cisalhamento
- *d* altura útil
- *b_i* largura do nó
- *V* carregamento total
- G_k carregamento permanente
- Q_k carregamento acidental
- γ_g coeficiente de majoração da carga permanente
- γ_q coeficiente de majoração da carga acidental
- L_d braço de alavanca interno

 a_i altura do nó

 w_{ij} largura da biela

 w_i largura da biela

- α_i ângulo de inclinação das bielas
- L_{tk} comprimento do tirante

 f_{ykh} resistência ao escoamento do aço da armadura longitudinal

 f_{ykv} resistência ao escoamento do aço da armadura vertical

k parâmetro que determina o comprimento do tirante T_2

 $f_{ct,inf}$ resistência à tração inferior do concreto

 $f_{ct,m}$ resistência à tração média do concreto

- ρ taxa de armadura longitudinal
- ρ_v taxa de armadura vertical
- ρ_h taxa de armadura horizontal
- ε_i erro de modelo
- Pexp resistência do ensaio
- P_M resistência do modelo
- θ_R erro de modelo de resistência
- θ_s erro de modelo de solicitação
- ψ razão de carga variável

SUMÁRIO

1	INTRODUÇÃO	15
1.1	JUSTIFICATIVA	17
1.2	OBJETIVOS	
1.2.1	Objetivo geral	
1.2.2	Objetivos específicos	
1.3	ORGANIZAÇÃO DO TEXTO	19
2	REVISÃO DE LITERATURA	
2.1	MÉTODO DAS BIELAS E TIRANTES	
2.1.1	Histórico	
2.1.2	Princípios básicos do método das bielas e tirantes	
2.1.3	Regiões B e D	21
2.1.3.1	Definições das fronteiras entre regiões B e D	
2.1.4	Método do caminho das cargas	24
2.1.5	Análises elásticas de tensões	
2.1.6	Otimização do modelo	
2.1.7	Componentes de um modelo de bielas e tirantes	
2.1.8	Dimensionamento das bielas	
2.1.8.1	Tipos fundamentais de bielas de concreto	
2.1.8.2	Parâmetros de resistência das bielas	
2.1.8.3	Confinamento das bielas de concreto	
2.1.9	Dimensionamento dos tirantes	
2.1.9.1	Tirantes de concreto - Tc	
2.1.9.2	Tirantes de armadura - Ts	
2.1.10	Dimensionamento dos nós	
2.1.10.1	Tipos de nós	
2.1.10.2	Verificação das tensões nos nós	

2.1.11	Rotina de projeto	
2.2	CONFIABILIDADE ESTRUTURAL	41
2.2.1	Generalidades	41
2.2.2	Variáveis aleatórias	41
2.2.3	Função de distribuição acumulada de probabilidades	41
2.2.4	Função de densidade de probabilidades	
2.2.5	Média, variância, desvio-padrão e variância de uma variável aleató	ria 42
2.2.5.1	Média	
2.2.5.2	Variância	
2.2.5.3	Desvio-Padrão	
2.2.5.4	Coeficiente de variação	
2.2.6	Modelos probabilísticos	43
2.2.6.1	Distribuição normal ou gaussiana	
2.2.6.2	Distribuição lognormal	
2.2.6.3	Distribuição de Gumbel para máximos	
2.2.7	Estados-limites	
2.2.8	Probabilidade de falha	
2.2.9	Índice de confiabilidade	50
2.2.10	Confiabilidade de sistemas estruturais	
2.2.11	Método de confiabilidade de primeira ordem	54
2.2.11.1	Algoritmo de Hasofer, Lind, Rackwitz e Fiessler	
2.2.11.2	Medidas de sensibilidade	57
2.2.12	Simulação de Monte Carlo	58
2.2.13	Erro de modelo	
2.2.14	Inferência estatística	63
2.2.15	Teste Qui-Quadrado (χ²)	64

2.2.16	K-S - Teste de aderência de Kolmogorov-Smirnov	65
2.3	ANÁLISE DE CONFIABILIDADE DE VIGAS-PAREDES	67
3	DESENVOLVIMENTO	69
3.1	ANÁLISE DE CONFIABILIDADE DE UMA VIGA-PAREDE	69
3.1.1	Modelo 1	69
3.1.1.1	Geometria	69
3.1.1.2	Dados de entrada	70
3.1.1.3	Cálculo do modelo de bielas e tirantes	70
3.1.1.4	Cálculo das forças solicitantes	71
3.1.1.5	Forças resistentes	72
3.1.2	Modelo 2	72
3.1.2.1	Geometria	73
3.1.2.1	Dados de entrada	73
3.1.2.2	Cálculo do modelo de bielas e tirantes	74
3.1.2.3	Cálculo das forças solicitantes	75
3.1.2.4	Forças resistentes	76
3.1.3	Modelo 3	76
3.2	ENSAIOS EXPERIMENTAIS E DETERMINAÇÃO DOS ERROS D	ЭE
MODELO	,	78
3.2.1	Ensaios experimentais	78
3.2.2	Determinação dos erros de modelo	82
3.2.2.1	Determinação de estatísticas do erro de Modelo 1	83
3.2.2.2	Determinação de estatísticas do erro de Modelo 2	85
3.2.2.3	Determinação de estatísticas do erro Modelo 3	86
3.2.3	Ajustes de distribuição	87
3.2.3.1	Ajustes de distribuição do Modelo 1	87
3.2.3.2	Ajustes de distribuição do Modelo 2	89
3.2.3.3	Ajustes de distribuição do Modelo 3	90

3.2.3.4	Resumo das variáveis erro de modelo	
3.3	ANÁLISE DE CONFIABILIDADE	
3.3.1	Descrição do problema	95
3.3.2	Dimensionamento	
3.3.3	Importância das variáveis aleatórias	
3.3.4	Resultados da análise de confiabilidade	
3.3.5	Avaliação da ductilidade	
3.3.6	Avaliação da razão de carga variável	110
3.3.7	Avaliação dos Modelos para a metodologia da NBR 6118 o	com coeficientes
parciais	da NBR 8681	113
4	CONSIDERAÇÕES FINAIS	116
4.1	CONCLUSÃO	116
4.2	SUGESTÕES PARA TRABALHOS FUTUROS	118
	REFERÊNCIAS	119
	APÊNDICE A – Resultados dos cálculos dos erros de Modelo	1125
	APÊNDICE B – Resultados dos cálculos dos erros de Modelo	2 138
	APÊNDICE C – Resultados dos cálculos dos erros de Modelo	3143
	ANEXO A – Ensaios experimentais de vigas parede	147

1 INTRODUÇÃO

O concreto armado é um dos materiais de construção mais utilizados atualmente em estruturas, pois concilia a resistência à compressão do concreto com a resistência à tração do aço a um custo relativamente baixo. O dimensionamento de estruturas de concreto armado, assim como o de estruturas constituídas de outros materiais, deve levar em consideração aspectos de economia e segurança.

É particularmente desafiador, no entanto, dimensionar os elementos estruturais de concreto armado em que as tensões de cisalhamento são significativas, tendo em vista que algumas hipóteses simplificadoras usualmente empregadas deixam de ser válidas nesse caso. Essas tensões provocam deformações não lineares ao longo da seção transversal, impedindo a utilização das metodologias correntes de dimensionamento.

Dentre esses elementos "especiais" de concreto armado têm-se as vigas-parede, que além de serem regiões de descontinuidade, em alguns casos podem estar sujeitas a cargas elevadas. Como aplicações típicas de vigas-parede podem ser citadas: vigas altas sujeitas a cargas concentradas; vigas de transição em edifícios com cargas próximas aos apoios; viga-parede que sustenta pela borda inferior o fundo de uma caixa d' água. A Figura 1 apresenta exemplos de vigas-parede.

Figura 1 – Exemplos de vigas-parede: (a) viga alta com cargas concentrada, (b) viga de transição com carga próxima ao apoio e (c) viga-parede de uma caixa d'água.

No dimensionamento das estruturas convencionais de concreto armado, como vigas, pilares e lajes, sujeitos à flexão, assume-se que a distribuição de deformações ao longo da altura da seção transversal é linear (Hipótese de Bernoulli). As deformações por força cortante são muito pequenas quando comparadas às por flexão, podendo ser desprezadas. Esta aproximação simplifica a obtenção das equações de equilíbrio numa seção transversal e consequentemente o cálculo estrutural.

No caso das vigas-parede, a Hipótese de Bernoulli não é válida, pois esses elementos são considerados como "zonas de descontinuidade generalizada", nas quais a distribuição das deformações ao longo da altura da estrutura é não linear. As hipóteses simplificadoras não podem ser utilizadas e as deformações pelo esforço cortante devem ser consideradas.

A norma brasileira de projeto de estruturas de concreto armado (NBR 6118-2014) estabelece, para paredes e vigas-parede, que o dimensionamento deve ser feito por meio de modelos de cálculos específicos, baseados, por exemplo, no método dos elementos finitos (MEF) ou no método das bielas e tirantes (MBT).

O MBT tem sido amplamente utilizado no projeto de elementos estruturais com descontinuidades. Consiste na substituição do modelo que considera a estrutura real de concreto armado por um modelo de treliça, no qual os elementos tracionados, os tirantes, são constituídos pelas armaduras, e os elementos comprimidos, as bielas, são constituídas pelo concreto. As interseções entre bielas e tirantes são denominadas nós, e representam os volumes de concreto que envolvem esses elementos.

A aplicação do modelo mecânico do MBT segundo as prescrições normativas é feito de maneira semiprobabilística, não levando em consideração as incertezas associadas às variáveis envolvidas, nem as incertezas inerentes aos modelos de cálculo. Desta forma, o MBT conforme apresentado pelas normas técnicas contém imprecisões que devem ser consideradas para que se possa garantir a segurança.

Como alternativa ao problema, a confiabilidade estrutural é uma ferramenta que permite considerar as incertezas relacionadas ao problema, ao adotar métodos probabilísticos que incorporam tais incertezas na caracterização da resistência estrutural e das solicitações. Além disso, a análise de confiabilidade pode ser utilizada para verificar e comparar o nível de segurança entre diversas soluções estruturais.

Portanto, este trabalho se propõe a realizar a análise de confiabilidade de modelos de bielas e tirantes aplicados a vigas-parede, elaborados segundo critérios da norma americana (ACI 318-2019), da norma brasileira (NBR 6118-2014), da norma européia (EUROCODE 2-

2002) e também segundo diretrizes encontradas na literatura (Schäfer e Schläich (1991)), avaliando a probabilidade de falha dos modelos e sua ductilidade.

1.1 JUSTIFICATIVA

O MBT é fundamentado, dentre outros princípios, no teorema do limite inferior da teoria da plasticidade, o qual afirma que um campo de tensões (no presente caso representado pelas tensões atuantes nas bielas e tirantes), que atenda as condições de equilíbrio e de resistência, conduz a um limite inferior da carga de ruptura da estrutura, desde que haja ductilidade suficiente. Assim, diferentes modelos de bielas e tirantes podem ser adotados e independentemente do modelo escolhido, a carga de colapso será sempre inferior ou igual à carga de colapso da estrutura contínua.

Ademais, diferentes normas e pesquisadores apresentam diferentes critérios e parâmetros de cálculo para a aplicação de modelos de bielas e tirantes. Desse modo, mesmo modelos únicos de bielas e tirantes para uma mesma estrutura, utilizando diferentes critérios, podem conduzir a resultados distintos.

Uma forma de avaliar e comparar os diferentes modelos é por meio da avaliação das incertezas inerentes a cada modelo, comparando os resultados previstos dos modelos de cálculo, com resultados experimentais, obtidos por meio de ensaios de laboratório. Com a caracterização estatística adequada do erro de modelo, pode-se incorporar o erro de modelo na análise de confiabilidade, esperando-se então que o modelo corrigido represente melhor o comportamento da estrutura real.

Sendo assim, dado a importância prática do MBT nas aplicações de engenharia (Figura 1), procura-se nesta dissertação estudar o nível de segurança dos modelos de bielas e tirantes aplicados a vigas-parede, incorporando as incertezas dos modelos de resistência e solicitação na análise de confiabilidade, bem como as incertezas referentes aos carregamentos permanentes e acidentais aplicados, às resistências do concreto e do aço, à área de aço e a outros parâmetros relacionados à geometria.

Nota-se que a literatura apresenta alguns trabalhos que abordam confiabilidade estrutural e modelos de bielas e tirantes (Pantoja (2012), Oliveira (2016) e Díaz *et al.*(2020)). Porém, o presente trabalho apresenta contribuições no sentido de realizar as determinações estatísticas dos erros de modelo para cada modelo, conforme metodologia estudada, e incorporá-los nas análises, bem como em tratar todas as variáveis que compõem o modelo

mecânico de bielas e tirantes proposto, como variáveis aleatórias. Também são realizadas avaliações da importância dessas variáveis e da influência da proporcionalidade da carga variável nos resultados de confiabilidade.

1.2 OBJETIVOS

1.2.1 Objetivo geral

Utilizar técnicas de confiabilidade estrutural para comparar diferentes modelos de bielas e tirantes de vigas-parede elaborados por diferentes critérios e estudar o comportamento desses modelos em função das variáveis envolvidas.

1.2.2 Objetivos específicos

Para atingir o objetivo geral os seguintes objetivos específicos são elencados:

- a) Avaliar a confiabilidade de modelos de bielas e tirantes para vigas-parede de concreto armado isostáticas com duas cargas simétricas;
- b) Montar um banco de dados de ensaio de ruptura de vigas-parede encontrados na literatura;
- c) Determinar distribuições de probabilidades para erros de modelo, associados a modelos de bielas e tirantes de vigas-parede, considerando as formulações apresentadas nos critérios normativos do ACI 318 (2019), da NBR 6118 (2014) e do EUROCODE 2 (2002) e no artigo de Schäfer e Schläich (1991);
- d) Avaliar a importância das variáveis aleatórias na constituição das probabilidades de falha dos modelos de bielas e tirantes de vigas-parede;
- e) Estudar a ductilidade dos modelos de bielas e tirantes por meio da análise da probabilidade de falha das funções de falha referentes ao escoamento das armaduras (tirantes), e das rupturas frágeis do concreto (bielas e nós);
- f) Utilizar a confiabilidade estrutural como base para a escolha entre diferentes modelos de bielas e tirantes para uma mesma estrutura;
- g) Avaliar a influência da razão de carga variável no comportamento dos índices de confiabilidade dos diferentes modelos de bielas e tirantes estudados.

1.3 ORGANIZAÇÃO DO TEXTO

A presente dissertação é constituída de quatro capítulos. O capítulo 1 apresenta o tema da pesquisa, os objetivos e as justificativas. O capítulo 2 apresenta a revisão da literatura e é dividido em três partes: a primeira apresenta a revisão relacionada ao método das bielas e tirantes, a segunda a revisão referente à confiabilidade estrutural, técnicas de confiabilidade, métodos de inferência estatística e testes de aderência que são utilizados no trabalho, e a terceira a revisão de trabalhos que abordam confiabilidade estrutural e vigas-parede. O capítulo 3 apresenta o desenvolvimento da pesquisa, com a análise de confiabilidade de três modelos de bielas e tirantes para uma mesma viga-parede, dimensionadas por diferentes critérios, apresentando os resultados obtidos. Finalmente, o capítulo 4 apresenta as conclusões e as proposições para trabalhos futuros.

2 REVISÃO DE LITERATURA

2.1 MÉTODO DAS BIELAS E TIRANTES

2.1.1 Histórico

O Método das Bielas e Tirantes consiste em uma analogia do comportamento do concreto armado com o de uma treliça. A utilização desses modelos associados a modelos de vigas de concreto armado para o dimensionamento das armaduras teve origem Século XX, quando Ritter e Mörsh introduziram a clássica "Analogia de Treliça".

Essa analogia é ainda hoje utilizada no dimensionamento de vigas de concreto armado ao momento de torsão e a força cortante.

A aplicação inicial de Mörsh visava o dimensionamento da armadura transversal de vigas, sendo essas modeladas como treliça. No caso de uma viga biapoiada, haveria tirantes na face inferior, bielas na face superior, bielas inclinadas (no modelo inicial a 45°) e tirantes verticais ligando os nós das bielas inclinadas.

Posteriormente, o modelo foi melhorado e aperfeiçoado por diversos pesquisadores (Kupfer (1964), Leonhardt (1957), Lampert e Thürlimann (1971), Collins e Michel (1980), Martí (1980) e (1985)).

O método teve suas bases consolidadas com estudos de Schlaich, Schäfer e Jennewein (1987) e Schlaich e Schäfer (1991) e validados por estudos experimentais.

A nomenclatura "Método das Bielas e Tirantes", ou do inglês "*Strut-and-tie*" é considerada ambígua por muitos pesquisadores, o que fez com que o método fosse também denominado de "Método das Escoras e Tirantes", ou apenas "Método das Bielas". Neste trabalho procurou-se manter "Método das Bielas e Tirantes" em referência a terminologia apresentada nas normas técnicas.

2.1.2 Princípios básicos do método das bielas e tirantes

Os modelos de bielas e tirantes são representações simplificadas dos campos de tensão nos elementos estruturais em concreto armado. As bielas são idealizações dos campos de compressão no concreto, e os tirantes são campos de tensão de tração, absorvidos por uma ou mais camadas de armadura (SILVA; GIONGO, 2000).

O modelo consiste na idealização de uma treliça, que concentra todas as tensões em barras comprimidas e tracionadas, ligadas por meio de nós. As forças nas bielas e nos tirantes são obtidas por meio do equilíbrio das forças externas e internas na estrutura.

A ideia básica do modelo de treliça, utilizado em vigas para o dimensionamento de armaduras transversais devido ao esforço cortante e ao momento torçor, foi estendida a outras estruturas de concreto. Dessa forma, vários elementos estruturais especiais, tais como consolos, dentes gerber, vigas com furos na alma e blocos de fundação sobre estacas têm sido dimensionados utilizando esses modelos (SOUZA, 2004).

Para a determinação do modelo existem diferentes metodologias como o método do caminho de cargas, pré-processamento por meio do método dos elementos finitos, análise do padrão de fissuração e métodos de otimização (SATO; PIMENTA, 2014).

2.1.3 Regiões B e D

A "Hipótese de Bernoulli" estabelece que: "seções planas perpendiculares ao eixo neutro de uma barra, permanecem planas depois da ocorrência da flexão nessa barra". Isso facilita bastante o dimensionamento de elementos de concreto armado, pois é possível assumir que a distribuição de deformações ao longo da altura da seção transversal seja mantida linear, desde o início do carregamento até a ruptura, conforme ilustra a Figura 2.

Dessa forma, a obtenção das tensões e deformações no aço e no concreto é imediata, bastando para isso conhecer as relações constitutivas dos dois materiais.

Figura 2 – Distribuição linear de deformações em viga de concreto armado.

Fonte: Souza (2004).

Na maior parte dos casos, os elementos estruturais mais comuns de concreto armado ou protendido são dimensionados utilizando métodos racionais, que levam em consideração a distribuição linear de deformações ao longo do elemento estrutural, desprezando as deformações oriundas do esforço cortante (SOUZA, 2004). No entanto, nem todos os elementos estruturais em concreto podem ser dimensionados com essas hipóteses simplificadoras, isto é, nem sempre se podem desprezar as deformações provocadas pelo esforço cortante.

De acordo com Schäfer e Schläich (1991), é possível dividir uma estrutura em regiões contínuas ("Regiões B", em que a "Hipótese de Bernoulli" de distribuição linear de deformações ao longo da seção transversal é válida) e regiões descontínuas ("Regiões D", em que a "Hipótese de Bernoulli" não pode ser aplicada, isto é, onde a distribuição de deformações ao longo do elemento é não linear).

A Figura 3 mostra a divisão de uma estrutura em regiões B e D.

Fonte: FIB (2008).

As regiões D, onde a distribuição de tensões é não linear, podem ser produzidas por descontinuidades elásticas e/ou geométricas. As descontinuidades elásticas são decorrentes de ações concentradas e reações de apoio, enquanto as geométricas são provenientes de aberturas em vigas e nós de pórticos.

Em alguns casos, a estrutura é considerada no todo como uma "Região D", sendo então denominada de "zona de descontinuidade generalizada". Situações típicas de blocos rígidos sobre estacas, sapatas rígidas, consolos curtos e vigas-parede (SOUZA, 2004).

Nas regiões B, de *Bernoulli, Beam* (viga) e *Bending theory* (teoria de flexão), o estado interno de tensões é facilmente obtido dos esforços na seção (momentos fletores, torçores, cortante e esforço normal). Enquanto a seção não está fissurada, as tensões são calculadas a partir das propriedades da seção, tais como áreas e momentos de inércia. Por outro lado, quando as tensões de tração excedem a resistência à tração do concreto, o comportamento pode ser representado por modelo da treliça.

Nas "Regiões D", de Descontinuidade, Detalhe, Distúrbio, *Deep beam* (viga-parede), é o esforço cortante que comanda o dimensionamento e os métodos de cálculos correntes, que levam em consideração distribuição das deformações lineares ao longo da altura da viga, são pouco eficientes, conduzindo a um dimensionamento inseguro (SOUZA, 2004).

Para as regiões D ainda não fissuradas, podem ser utilizados modelos elásticos lineares. Após a fissuração, o fluxo interno dos esforços pode ser descrito pelos modelos de bielas e tirantes.

Os modelos de bielas e tirantes representam, de modo aproximado, o fluxo interno de tensões em regiões D (SILVA; GIONGO, 2000).

A NBR 6118 (2014) permite a análise da segurança no estado-limite último de um elemento estrutural, ou de uma região D contida neste elemento, por meio de uma treliça idealizada composta por bielas, tirantes e nós.

2.1.3.1 Definições das fronteiras entre regiões B e D

A análise estrutural é essencial para que as forças de fronteira nas regiões D possam ser identificadas. Essas forças de fronteira provêm do efeito das regiões B anexas e de outras forças e reações externas, como pode ser visto no exemplo da Figura 4.

Figura 4 – Estrutura de um pórtico contendo regiões B e D: (a) estruturas de barras e (b) diagramas de momentos fletores.

Fonte: Salah e Wai (2018).

Em contraste com as regiões D, as tensões e as trajetórias nas regiões B são suaves, conforme pode ser visto na Figura 5. Nas regiões D, as intensidades de tensão diminuem rapidamente com a distância da origem da concentração de tensão. Esse comportamento é a chave na identificação das regiões de estrutura B e D (SALAH; WAI, 2018).

Figura 5 – Trajetória de tensões na região B e próximas a descontinuidades (regiões – D).

Fonte: Salah e Wai (2018).

A divisão da estrutura em regiões B e D pode ser feita considerando essas trajetórias de tensões nas proximidades das regiões descontínuas.

Ao aplicar o Princípio de Saint-Venant, pressupõe-se que há uma região com mesma altura da seção transversal na qual acontece a regularização das tensões. Segundo Silva e Giongo (2000), esse procedimento é aproximado, uma vez que, para cada tipo de descontinuidade, a distribuição de tensões pode ser diferente. Contudo, como não é necessário exatidão na linha divisória entres essas regiões, o procedimento proposto é satisfatório.

2.1.4 Método do caminho das cargas

Os modelos de bielas e tirantes podem ser desenvolvidos a partir do fluxo de tensões dentro da estrutura pelo processo conhecido como "*load path approach*".

Schäfer e Schlaich, (1998), e Schlaich e Schäfer, (1993) *apud* Salah e Wai (2018) apresentam o desenvolvimento do método de bielas e tirantes utilizando o caminho das cargas através da estrutura com referência ao modelo da Figura 6.

Os passos são apresentados a seguir:

- a) As forças de contorno que atuam em uma região D, a partir das regiões B ou suportes, ou forças externas anexas, devem ser determinadas, como ilustrado para a região D na Figura 6a;
- b) Subdividir os diagramas de carregamentos para combinar com as forças opostas. Localizar as resultantes dos diagramas de carregamento subdivididos em seu centro de gravidade, Figura 6b;
- c) Conectar as forças opostas por caminhos de carga simplificados, que podem ser retos ou suavemente curvados, Figura 6b. Começar na direção da carga,

evitar cruzamentos com outros caminhos de carga, escolher a curvatura perto das descontinuidades de carga ou geométrica tão grande quanto possível;

- d) Indicar as forças de desvio como base para as bielas e tirantes transversais, Figura 6b;
- e) Após traçar as linhas, deve-se substituí-las por poligonais, atentando-se para adicionar bielas e tirantes para obter o equilíbrio transversal do modelo;
- f) Substituir os caminhos de carga curvos por polígonos com dobras nos pontos de maior curvatura ou na localização estimada da força de desvio resultante, Figura 6c. No modelo, linhas tracejadas indicam bielas e linhas sólidas indicam tirantes;
- g) Conectar os diagramas de carregamento restantes por caminhos de carga;
- h) Estender os tirantes (reforços) de preferência retos, tanto quanto necessário, equilibrando as forças transversais dos caminhos de carga primários.

Figura 6 – O método do caminho de carga (Schlaich e Schäfer, 1991): (a) a região e as cargas dos contornos, (b) os caminhos de carga através da região e (c) o MBT correspondente.

Fonte: (Schlaich e Schäfer, 1991).

Pode-se notar por intermédio da Figura 6, que biela e tirante adicionais foram inseridos no modelo a fim de se obter o equilíbrio.

2.1.5 Análises elásticas de tensões

O desenvolvimento de um modelo para uma região D, utilizando o método das bielas e tirantes, pode ser simplificado, caso seja utilizada uma análise elástica de elementos finitos para se obter as tensões elásticas e as direções das tensões principais (SCHLAICH; SCHÄFER, 1991).

A direção das bielas pode então ser tomada de acordo com a direção das tensões principais de compressão, ou as bielas e tirantes mais importantes, podem ser localizados no centro de gravidade do diagrama de tensão das seções típicas analisadas, como pode ser visto na Figura 7.

Figura 7 – Trajetória das tensões elásticas, distribuição das tensões elásticas e correspondente modele de bieles e tirentes

Fonte: (Schlaich e Schäfer, 1991).

Segundo Schlaich e Schäfer (1991), os ângulos entre as bielas e tirantes devem ser em torno de 60°, e nunca menores do que 45°, particularmente para aqueles onde as forças relativas são altas, como próximo aos apoios ou em regiões de aplicação de forças concentradas. Além disso, a posição da resultante das forças desviatórias pode ser determinada por meio das distribuições das tensões; e as distâncias z e z_1 podem ser facilmente encontradas, conforme mostrado na Figura 7

A geometria dos modelos é estritamente relacionada à configuração de um carregamento particular, não podendo ser utilizada para outras cargas sem que sejam feitas modificações. Portanto, as combinações de carga que governam o modelo devem ser investigadas. Conforme Silva e Giongo (2000), essa desvantagem não é uma peculiaridade do
método das bielas e tirantes, sendo inerente às propriedades não lineares do concreto fissurado.

2.1.6 Otimização do modelo

O conhecimento da distribuição de tensões ajuda o projetista a reduzir o grande número de modelos possíveis. Sendo assim, é apropriado orientar as bielas e tirantes ao longo do fluxo de forças a partir da análise elástica. Todavia, em alguns casos, essa abordagem pode parecer inconveniente para o arranjo das armaduras. Assim, uma otimização do modelo é destinada a ajustar o fluxo principal de forças, de acordo com as trajetórias de tensões elásticas, e, ao mesmo tempo, dar a devida consideração às propriedades e características específicas do concreto armado.

Isto é ilustrado nos seguintes passos (Schäfer e Schlaich, 1998 *apud* Salah e Wai 2018):

- a) O arranjo dos tirantes deve satisfazer os requisitos práticos para simplicidade de construção. O projetista deve usar barras retas com um número mínimo de dobras, dispostas em arranjos paralelos, ortogonais às bordas da estrutura, sempre que possível;
- b) As bordas e superfícies de uma estrutura devem ser equipadas com tirantes próximos à superfície para controlar a fissuração;
- c) O arranjo dos tirantes deve ser projetado de modo a cobrir vários casos de carregamento;
- d) A formação de fissuras no concreto e as deformações plásticas dos elementos estruturais são associadas à redistribuição das forças internas, obtidas a partir da análise elástica linear. As ações tendem a seguir o caminho de mínimas forças e deformações. Isso pode ser expresso pela seguinte equação para concreto armado fissurado:

$$\sum F_i l_i \varepsilon_i = \min$$
,

(1)

onde:

$$F_i =$$
força;
 $l_i =$ comprimento;

 ε_i = deformação específica média.

Como os tirantes são muito mais deformáveis do que as bielas, o modelo com menos tirantes e tirantes mais curtos será o melhor. A seguinte equação pode ser utilizada como um critério simplificado para a otimização do modelo:

$$\sum T_i l_i = \text{minimo},\tag{2}$$

onde:

 T_i = força de tração no tirante;

 $l_i =$ comprimento.

2.1.7 Componentes de um modelo de bielas e tirantes

Os modelos de bielas e tirantes são compostos por bielas, tirantes e regiões nodais. As bielas representam campos de tensões de compressão no concreto. Os tirantes representam uma ou mais camadas de armaduras, e em alguns casos, podem representar campos de tensões de tração no concreto, como por exemplo, em lajes sem estribos. Já os nós são definidos como o volume de concreto que envolve as interseções das bielas e tirantes, combinando forças concentradas, forças de ancoragem, reações de apoio ou cargas concentradas.

Os componentes de um modelo de bielas e tirantes para uma viga-parede estão apresentados na Figura 8.

Fonte: Salah e Wai (2018) - modificado.

De acordo com a NBR 6118 (2014), o ângulo θ da Figura 8 representa a inclinação da biela, e deve possuir tangente entre 0,57 e 2.

Diferentes códigos e pesquisadores sugerem outros valores, conforme apresentado no Quadro 1 abaixo:

Norma ou Pesquisador	\hat{A} ngulo de Variação $oldsymbol{ heta}$
CSA (2004)	$15^\circ \le \theta \le 75^\circ$
Schäfer; Schlaich (1988, 1991)	$45^\circ \le \theta \le 60^\circ$
CEB-FIP Model Code 1990 (1993)	$18,4^\circ \le \theta \le 45^\circ$
Fusco (1994)	$26^\circ \le \theta \le 63^\circ$
EUROCODE 2 (2004)	$21^\circ \le \theta \le 45^\circ$
Código Suíço (Swiss Code) apud Fu (2001)	$26^\circ \le \theta \le 64^\circ$
ACI-318 (2019)	$25^\circ \le \theta \le 65^\circ$
NBR 6118 (2014)	$30^\circ \le \theta \le 63^\circ$

Fonte: Souza (2004) - modificado

2.1.8 Dimensionamento das bielas

2.1.8.1 Tipos fundamentais de bielas de concreto

As bielas são discretizações de campos de tensão de compressão no concreto. Dependendo da forma como as tensões de compressão se distribuem através da estrutura, têmse campos de tensões de compressão diferentes.

De acordo com Schlaich e Schäfer (1991), a partir da forma do campo de tensões idealizado para uma biela em uma estrutura plana, pode-se classificá-la como: em formato de leque, formato de garrafa e prismática, conforme mostrado na Figura 9.

A distribuição de tensões em leque, ou radial, apresenta curvatura desprezível, sendo encontrada em regiões D, que são carregadas por uma carga uniforme, como pode ser observado na Figura 9. Nesse campo de tensões não se desenvolvem tensões de tração transversais.

A distribuição de tensões prismática, ou paralela, ocorre quando as tensões se distribuem de forma uniforme, sem provocar perturbações. Esse é o campo típico de tensões encontrados em regiões B, e também não desenvolvem tensões transversais.

A distribuição de tensões em formato de garrafa apresenta tensões em linhas curvilíneas com afunilamento da seção e ocorrem quando forças concentradas são introduzidas e propagadas por meio de curvas acentuadas. A difusão dessas tensões provoca compressão biaxial ou triaxial abaixo da força e tensões de tração transversais consideráveis, que podem provocar fissuras longitudinais quando combinadas com a compressão longitudinal, iniciando uma ruptura prematura.

Fonte: Salah e Wai (2018).

2.1.8.2 Parâmetros de resistência das bielas

A resistência do concreto nas bielas depende do seu estado multiaxial de tensões, de perturbações causadas pelas fissuras e armaduras, entre outros fatores.

Quanto ao estado multiaxial de tensões, as tensões principais no concreto são representadas por $\sigma_3 \ge \sigma_2 \ge \sigma_1$, considerando-se a tensão de compressão como positiva e a de tração como negativa. A NBR 6118 (2014) estabelece que, estando o concreto submetido a um estado múltiplo de tensões, devem-se obedecer as seguintes equações:

$$\sigma_1 \ge -f_{ctk} \tag{3}$$

$$\sigma_3 \le f_{ck} + 4\sigma_1 \tag{4}$$

A Equação (3) determina que a tração máxima deve ser menor do que resistência a tração do concreto, representando a ruptura frágil do concreto. Já a Equação (4) está ligada a tensão cisalhante como limitante.

Figura 10 - Resistência no estado multiaxial de tensões.

A compressão transversal é favorável, caso ocorra em ambas às direções transversais. É a situação encontrada nas regiões confinadas, confinamento esse, produzido pela existência de um volume considerável de concreto envolvendo o campo de tensão ou armadura transversal. As tensões de tração transversais e as fissuras por elas provocadas são prejudiciais, pois pode levar a ruptura do concreto com tensões inferiores a resistência à compressão (SILVA; GIONGO, 2000).

O comportamento frágil do concreto das bielas é sujeito a incertezas, especialmente em campos de tensões complexos como em regiões D. Vários parâmetros afetam a resistência das bielas como: o grau de perturbação de tensões; a resistência uniaxial do concreto; o ângulo das bielas; a orientação; a largura e a extensão das fissuras e o grau de confinamento lateral (SU; LOOI, 2016).

Portanto, a tensão resistente das bielas comprimidas é diferente da resistência característica dos ensaios de concreto a partir de corpos de prova. De maneira geral pode-se considerar a resistência das bielas de concreto com uma parcela da resistência uniaxial do concreto, $f_{cdb} = \beta_{ef} f_{cd}$ onde, f_{cdb} é a resistência da biela, f_{cd} a resistência de compressão uniaxial do concreto, situação raramente encontrada em uma biela, e β_{ef} é o coeficiente de efetividade. O valor de β_{ef} é menor ou igual a 1 e varia conforme o tipo de biela e outros fatores relativos ao confinamento transversais.

Os pesquisadores e as referências normativas apresentam variações nos valores do coeficiente de efetividade das bielas para as mesmas condições. Schlaich e Schäfer (1991)

sugerem os seguintes valores, com base na localização e grau de perturbação de tensões nas bielas:

- a) 0,85 f_{cd} para um estado uniaxial de tensões sem perturbação (campos de tensão em forma de leque e prismático);
- b) 0,68 f_{cd} para campos de tensão de compressão com fissuras paralelas às tensões de compressão;
- c) $0,51 f_{cd}$ para campos de compressão com fissuras inclinadas;
- d) $0,34 f_{cd}$ fissuras com grandes espessuras.

O ACI 318 (2019) estabelece a resistência das bielas por $0.85\beta_s \beta_c \phi f'_c$, com base na localização, no grau de perturbação de tensões e no confinamento das bielas, onde:

- a) $\beta_s = 1,00$ bielas prismáticas;
- b) $\beta_s=0,75$ bielas em forma de garrafa;
- c) $\beta_s=0,40$ bielas localizadas em elementos de tensão ou zonas de tensões em elementos;
- d) $\beta_s = 0.40$ para outros casos.

Onde:

 $\phi = 0.75$ - fator redutor da resistência do concreto.

O coeficiente β_c considera a influência do confinamento do concreto, e é aplicado para bielas que se desenvolvem a partir de áreas carregadas, ou regiões de apoio, no caso em que estes possuem menores dimensões do que a estrutura em todas as suas direções. Os valores de β_c são dados pela tabela 23.4.3(b) do ACI 318 (2019).

O EUROCODE 2 (2004) determina a resistência das bielas em função da existência ou não de tensões transversais, sendo igual a:

- a) f_{cd} para bielas sem tensões transversais;
- b) $0,60 \nu' f_{cd}$ para bielas com tensões transversais.

Onde:

$$\nu' = \left(1 - \frac{f_{ck}}{250}\right) \tag{5}$$

$$f_{cd} = \frac{f_{ck}}{\gamma_c} \tag{6}$$

O coeficiente de ponderação da resistência γ_c é dado pela tabela 2.1 N do EUROCODE 2 (2004).

A NBR 6118 (2014) preconiza a adoção dos seguintes valores, os quais dependem também da resistência do concreto:

- a) 0,85 $\alpha_{\nu 2} f_{cd}$ bielas prismáticas;
- b) 0,72 $\alpha_{v2} f_{cd}$ bielas atravessadas por tirante único;
- c) 0,60 $\alpha_{v2} f_{cd}$ bielas atravessadas por mais de um tirante.

Onde:

$$\alpha_{\nu 2} = \left(1 - \frac{f_{ck}}{250}\right) \tag{7}$$

$$f_{cd} = \frac{f_{ck}}{\gamma_c} \tag{8}$$

O coeficiente de ponderação da resistência γ_c é dado pela tabela 12.1 da NBR 6118 (2014).

Os valores acima são válidos para concreto estrutural, com as limitações de aberturas de fissuras que são impostas pelas normas.

A força resistente final em uma biela é dada por $F_{cdb} = A_c f_{cdb}$, onde A_c é a área de concreto contribuinte de biela, dada pelo produto entre a profundidade fora do plano analisado t, e a largura da biela dentro do plano, w. Portanto, $F_{cdb} = twf_{cdb}$.

2.1.8.3 Confinamento das bielas de concreto

Pode-se considerar um aumento da resistência para estados de tensão de compressão bi ou tridimensionais, caso se tenha certeza da ocorrência das tensões de compressão transversais. Isto ocorre, por exemplo, em regiões confinadas. O confinamento pode ser obtido utilizando-se uma armadura transversal ou quando um volume considerável de concreto envolve um campo de compressão.

Como a resistência do concreto a tração é baixa, normalmente se reforça as bielas do tipo garrafa com armadura transversal.

A armadura transversal requerida para combater as forças de tração oriundas do espraiamento de cargas em uma biela tipo garrafa pode ser obtida de forma simplificada utilizando um modelo de bielas e tirantes, onde as bielas representam as forças de compressão

espraiadas e os tirantes as armaduras de confinamento. A idealização desse modelo e o equilíbrio de forças envolvidas são apresentados nas Figura 11 e Figura 12.

Figura 11 – Distribuição de tensão elástica para biela em forma de garrafa e modelo biela e

Fonte: (Ghanei e Aghayari, 2016).

Fonte: (Ghanei e Aghayari, 2016).

O ACI 318 indica uma inclinação constante de 2:1 para espraiamento do fluxo de tensão de compressão.

Dependendo da geometria das bielas tipo garrafa, são possíveis três formatos diferentes de modelos e de localização dos tirantes, os quais são apresentados na Figura 13. O formato em diamante ou tipo (a), ocorre quando a largura da biela é maior do que duas vezes o seu comprimento, os tipos (b) e (c) acontecem nos demais casos, sendo que o tipo (c) aparece em modelos com bielas alongadas.

Ghanei e Aghayari (2016) verificaram o efeito da geometria das bielas, razão entre altura e largura, na determinação da resistência e dispersão da compressão em bielas do tipo garrafa. Os pesquisadores realizaram ensaios experimentais em 16 painéis planos de concreto com diferentes dimensões e diferentes quantidades de armadura transversais, representando bielas isoladas. Os estudos concluíram que a proporção entre a altura e a largura das bielas influência a dispersão elástica de tensão de compressão nesse tipo de biela, e não apresenta uma proporção fixa de 2:1 conforme recomendações do ACI 318. Constatou-se também, que a capacidade última de resistência das bielas tipo garrafa é função da quantidade e armadura de confinamento.

Figura 13 – Variações de 2:1 modelos para bielas tipo garrafa.

Fonte: (Ghanei e Aghayari, 2016).

2.1.9 Dimensionamento dos tirantes

2.1.9.1 Tirantes de concreto - Tc

A resistência à tração do concreto pode ser utilizada em casos de campos de tensão de tração não fissurados.

Na utilização do fluxo de forças para construção dos modelos de bielas e tirantes, podem ocorrer situações em que o equilíbrio só pode ser satisfeito se a resistência do concreto à tração for considerada.

2.1.9.2 Tirantes de armadura - Ts

As armaduras são colocadas para resistir esforços de tração. O eixo da armadura deve coincidir com o eixo do tirante do modelo. O dimensionamento destes tirantes é feito por:

$$A_s = \frac{T_d}{f_{yd}} \tag{9}$$

$$f_{yd} = \frac{f_{yk}}{\gamma_s} \tag{10}$$

O coeficiente de ponderação da resistência γ_s é dado pela tabela 12.1 da NBR 6118 (2014).

Deve-se dar atenção especial à ancoragem das barras da armadura nas extremidades das regiões nodais.

2.1.10 Dimensionamento dos nós

Os nós do modelo são uma idealização da realidade, e podem ser definidos como um volume de concreto que envolve o cruzamento das bielas comprimidas, em combinação com forças de ancoragem e/ou forças de compressão externas (ações concentradas de reações de apoio). Eles aparecem nas interseções de três ou mais bielas ou tirantes retos.

Ao introduzir-se um nó em um modelo, deseja-se representar uma mudança abrupta na direção das forças. Em uma estrutura real de concreto este desvio ocorre ao longo de um certo comprimento (SCHLAICH; SCHÄFER, 1991).

Segundo Schlaich e Schäfer (1991), os nós podem ser classificados em contínuos ou distribuídos e singulares ou concentrados.

Os nós contínuos são aqueles em que o desvio de forças é feito em comprimentos razoáveis. Usualmente não são críticos desde que haja uma ancoragem adequada para a armadura.

Os nós singulares são aqueles onde forças concentradas são aplicadas e o desvio é feito de forma localizada e abrupta. Esses nós são críticos e devem ter suas tensões verificadas. Os nós singulares são originários de ações concentradas, reações de apoio e forças concentradas introduzidas pelas armaduras. Nós singulares podem também aparecer em concentrações de tensões causadas por descontinuidades geométricas.

A Figura 14 mostra a disposição dos nós contínuos e singulares em um modelo de bielas e tirantes.

Figura 14 – 1 – Nó contínuo e 2 - Nó singular em uma região D; a) modelo; b) e c) campo de tensões e regiões nodais.

Fonte: (Schlaich e Schäfer, 1991).

2.1.10.1 Tipos de nós

Quanto às tensões atuantes em cada face, um nó pode ser classificado em: hidrostático e não hidrostático. Se um nó é dimensionado de forma que as tensões em todas as faces sejam iguais, esse é considerado um nó hidrostático. Neste tipo de nó, as tensões principais são iguais e, portanto, não há cisalhamento, conforme se observa na Figura 15

Fonte: Brown and Bayrak, (2006) apud Salah e Wai (2018).

A ausência de esforço cortante no nó é uma das grandes vantagens do nó hidrostático, mas a grande desvantagem é a dificuldade em dimensionar as faces obedecendo às limitações entre os ângulos.

Por outro lado, em um nó não hidrostático não é necessário que todas as faces tenham a mesma tensão. Entretanto, Schlaich *et al.* (1987) recomenda que a razão entre a dimensão da maior face e a menor seja, no máximo, 2, para limitar o cisalhamento. Os pesquisadores propuseram um método simplificado para as configurações típicas de nós. O nó tem sua geometria definida pela interseção das dimensões das bielas e tirantes, cujos eixos devem coincidir, assim, as tensões planas atuantes em todos os lados da região nodal não precisam ser iguais, porém as tensões em cada lado do nó devem ser constantes e permanecer abaixo de um limite pré-estabelecido para a tensão nodal.

Os nós são nomeados de acordo com a quantidade de bielas e tirantes que nele se cruzam, C e T denotam forças de compressão e tração, respectivamente:

- a) CCC Comportamento hidrostático idealizado. Nó singular somente com forças de compressão. Estado de tensões bi ou tridimensional. A região do nó pode ser suposta limitada por um polígono não necessariamente em ângulos retos com a direção das bielas. As tensões ao longo da superfície do nó podem ser supostas uniformemente distribuídas.
- b) CCT Biela diagonal e reação vertical são equilibradas pela armadura devidamente ancorada. Ocorre quando os tirantes encontram uma ou mais bielas.
- c) CTT Biela diagonal é resistida por armação em duas direções. Ocorrem em extremidades e vértices de elementos. Verificam-se o comprimento de ancoragem e as tensões de compressão diagonais.
- d) TTT Somente elementos tracionados chegando ao nó.

As diferentes zonas nodais e a classificação dos nós são mostradas na Figura 16 e na Figura 17.

Fonte: Salah e Wai (2018).

Fonte: Salah e Wai (2018).

2.1.10.2 Verificação das tensões nos nós

A Tabela 1 abaixo apresenta as tensões máximas nos nós segundo pesquisadores e diferentes códigos.

As tensões nas regiões nodais podem ser reduzidas por:

- a) Aumento das dimensões dos apoios e das regiões de introdução de forças;
- b) Aumento das dimensões das bielas;
- c) Aumento da área de armadura efetiva ancorada dos tirantes.

Tabela 1 – Tensões máximas nos nós.			
ACI 318 (2019)	NBR 6118 (2014)	EUROCODE 2	Schafer e Schlaich
		(2004)	(1991)
CCC - $0.85\beta_c\phi fc'$	CCC - 0,85 $\alpha_{v2} f_{cd}$	CCC - 1,00 $\nu' f_{cd}$	CCC - 0,935 <i>f</i> _{cd}
CTT - $0,51\beta_c\phi fc'$	CTT - 0,60 $\alpha_{v2} f_{cd}$	CTT - 0,75 $\nu' f_{cd}$	CTT - 0,68 <i>f</i> _{cd}
CCT - $0,68\beta_c\phi fc'$	CCT - 0,72 $\alpha_{v2} f_{cd}$	CCT - 0,85 $\nu' f_{cd}$	CCT - 0,68 <i>f</i> _{cd}
$\phi = 0,75$	$\alpha_{v2} = \left(1 - \frac{f_{ck}}{250}\right)$	$\nu' = \left(1 - \frac{f_{ck}}{250}\right)$	
β_c - Tabela 23.4.3 -	$f_{cd} = \frac{f_{ck}}{f_{cd}}$	$f_{cd} = \frac{f_{ck}}{f_{ck}}$	
ACI 318 (2019).	γ_c	γ_c	

Fonte: Autor (2020).

De acordo com Schafer e Schlaich (1991) como os nós singulares são resultantes do afunilamento de campos de tensões, pode-se considerar que uma região D é segura, se a pressão sob a placa de apoio ou de ancoragem for menor que $0,51 f_{cd}$ e se todos os esforços significativos de tração forem resistidos por armaduras e estas forem ancoradas adequadamente.

2.1.11 Rotina de projeto

A seguir é apresentada uma rotina para desenvolvimento de projetos de elementos estruturais utilizando MBT:

- a) Dividir a estrutura em regiões B e D;
- b) Isolar a região D e determinar os esforços solicitantes seu contorno;
- c) Realizar a análise elástica em elementos finitos da região D e definir as trajetórias principais de tração e compressão;
- d) Aplicar o procedimento do caminho de cargas;
- e) Posicionar as bielas e tirantes conforme o fluxo de tensões mantendo o equilíbrio dos nós;
- f) Resolver a treliça e obter os esforços nas bielas e tirantes;
- g) Dimensionar os tirantes;
- h) Verificar as tensões nas bielas e regiões nodais;
- i) Definir o tipo e os comprimentos das ancoragens;
- j) Fazer o arranjo e detalhamento das armaduras.

2.2 CONFIABILIDADE ESTRUTURAL

2.2.1 Generalidades

As estruturas são dimensionadas de modo a cumprir uma determinada função estrutural, a qual deve ser desempenhada durante a vida útil com nível adequado de segurança e de maneira economicamente viável.

A metodologia de projeto é baseada usualmente na abordagem semiprobabilística, que muitas vezes representa satisfatoriamente o comportamento estrutural. Essa abordagem, no entanto, não leva em conta o grau de incerteza das variáveis envolvidas (presentes durante toda a vida da estrutura), podendo acarretar em situações indesejadas.

Dentre as diversas incertezas a considerar, citam-se aquelas relacionadas aos parâmetros geométricos, às propriedades mecânicas, à distribuição e à intensidade das solicitações permanentes e variáveis, aos modelos de cálculo dos elementos estruturais, etc. Muitas dessas incertezas são inerentes às variáveis, uma vez que não existe certeza absoluta sobre as ações e a capacidade resistente dos elementos estruturais.

A teoria da confiabilidade permite calcular probabilidades de ocorrência de falhas nas estruturas, considerando as incertezas das variáveis de projeto, geralmente a partir de distribuições de probabilidades (BECK, 2019).

2.2.2 Variáveis aleatórias

Uma variável aleatória $X(\omega)$ é definida como uma função que fornece um número real x para cada resultado de um experimento aleatório ω dentro de um determinado espaço amostral Ω (BECK, 2014).

As variáveis aleatórias podem ser do tipo: discretas ou contínuas. As variáveis aleatórias discretas possuem um domínio finito ou infinito contável de valores possíveis. As variáveis aleatórias contínuas são definidas por um número infinito de pontos no seu domínio.

2.2.3 Função de distribuição acumulada de probabilidades

Seja um número real x qualquer, o conjunto $\{X \le x\}$ formado por todos os pontos amostrais ω tais que $X(\omega) \le x$, representa um evento. A probabilidade de ocorrência desse evento depende de x, e é dada pela função $F_X(x)$, denominada função de distribuição acumulada de probabilidades (BECK, 2014).

O número $F_X(x)$ corresponde à probabilidade de que a variável aleatória X assuma qualquer valor menor ou igual a x, conforme a equação:

$$F_X(x) = P[\{X \le x\}] \qquad -\infty \le x \le \infty \tag{11}$$

2.2.4 Função de densidade de probabilidades

A função de densidade de probabilidades é a derivada em relação a x da função de distribuição acumulada de probabilidades:

$$f_X(x) = \frac{dF_x(x)}{dx} \tag{12}$$

2.2.5 Média, variância, desvio-padrão e variância de uma variável aleatória

2.2.5.1 Média

A média ou valor esperado representa o centro de gravidade da "massa" de distribuição de probabilidades da variável. Pode ser calculada por:

$$E(X) = \mu = \int_{-\infty}^{\infty} x f_X(x) dx$$
(13)

2.2.5.2 Variância

A variância é uma medida de dispersão dos valores da variável aleatória em torno da média. É definida por:

$$Var(X) = E(X - \mu)^2 = \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$
(14)

2.2.5.3 Desvio-Padrão

O desvio padrão é a raiz quadrada da variância:

$$\sigma = \sqrt{Var(X)} \tag{15}$$

2.2.5.4 Coeficiente de variação

O coeficiente de variação, CV(X) é uma medida adimensional da dispersão da variável aleatória em torno da média. Valores baixos de CV indicam que os valores da variável estão distribuídos próximos à média, ao passo que valores altos do coeficiente de variação, indicam forte dispersão dos resultados em torno da média.

$$CV(X) = \frac{\sigma}{\mu} \tag{16}$$

2.2.6 Modelos probabilísticos

No presente trabalho as incertezas são consideradas por meio de variáveis aleatórias (VAs) contínuas. Neste sentido, a seguir são apresentadas as distribuições de probabilidades aqui consideradas, que estão entre as mais comuns em análises de confiabilidade estrutural.

2.2.6.1 Distribuição normal ou gaussiana

A variável aleatória X com distribuição normal é uma das mais amplamente utilizadas dentre as variáveis contínuas e possui como parâmetros a média μ e o desviopadrão σ . A sua função densidade de probabilidade é dada por:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \qquad -\infty \le x \le \infty$$
(17)

A distribuição normal possui simetria em relação à média μ e sua função de distribuição acumulada pode ser representada pela integral da função densidade de probabilidade, conforme expressão:

$$F_X(x) = \int_{-\infty}^x \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2} dz \quad -\infty \le x \le \infty$$
(18)

Essa integral não possui solução analítica, ela é resolvida numericamente e os resultados utilizados para construir tabelas de referência ou aproximações polinomiais para $F_X(x)$. Os resultados são apresentados em termos de uma distribuição normal com $\mu=0$ e $\sigma=1$, chamada de distribuição normal padrão (SPIEGEL, 1977).

Para isso, a variável normal X deve ser transformada em uma variável normal padrão Y da seguinte maneira:

$$Y = \frac{X - \mu}{\sigma} \tag{19}$$

onde as funções de probabilidade são representadas pelas Equações (20) e (21) e graficamente pela Figura 18.

$$f_Y(y) = \phi(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{y^2}{2}} \qquad -\infty \le x \le \infty$$
(20)

$$F_{y}(y) = \int_{-\infty}^{y} \phi(z) \, dz \qquad -\infty \le x \le \infty$$
⁽²¹⁾

Fonte: Autor (2020)

Para a variável aleatória X a distribuição cumulativa de probabilidades $F_X(x)$ é determinada a partir de $\Phi(y)$:

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right) \tag{22}$$

Pelo Teorema do Limite Central a soma de um grande número de variáveis aleatórias, independente da sua distribuição tende a uma distribuição normal. Esse é um dos motivos porque a distribuição normal é utilizada em tantos testes estatísticos, podendo representar vários fenômenos naturais (EL-REEDY, 2013).

Nas análises de confiabilidade estrutural, Ellingwood e Galambos (1982) sugerem a utilização da distribuição normal com valores médios iguais a 1,05 do valor característico e coeficiente de variação de 0,1 para representar o comportamento das cargas permanentes.

2.2.6.2 Distribuição lognormal

Se uma variável Y tem distribuição normal, então a variável $X = e^{[Y]}$ tem distribuição lognormal, com as funções de probabilidade dadas pelas equações a seguir:

$$f_X(x) = \frac{1}{\xi x \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\ln(x) - \lambda}{\xi}\right)^2} \qquad 0 \le x \le \infty$$
(23)

$$F_X(x) = \Phi\left[\frac{\ln(x) - \lambda}{\xi}\right] \qquad \qquad 0 \le x \le \infty$$
(24)

Os momentos (média e desvio-padrão, respectivamente) de uma variável lognormal são:

$$\mu = e^{\lambda + 0.5\xi^2} \tag{25}$$

$$\sigma = \mu \sqrt{\left(e^{\xi^2} - 1\right)} \tag{26}$$

E os parâmetros $\lambda \in \xi$ são calculados a partir dos momentos conforme as equações:

$$\lambda = \ln(\mu) - 0.5\xi^2 \tag{27}$$

$$\xi = \sqrt{\ln\left(1 + \left(\frac{\sigma}{\mu}\right)^2\right)} \tag{28}$$

A Figura 19 apresenta o comportamento da distribuição lognormal, verifica-se que a função de densidade de probabilidades admite somente valores positivos e não nulos. Essa distribuição é muitas vezes empregada quando um fenômeno não pode assumir valores negativos. O JCSS (2001) sugere a utilização da distribuição lognormal para representar modelos de resistência de aço e concreto.

Figura 19 – Distribuição lognormal: (a) função de densidade de probabilidades e (b) função de distribuição acumulada de probabilidades

2.2.6.3 Distribuição de Gumbel para máximos

A distribuição de Gumbel para máximos, também conhecida como distribuição de Valor Extremo Tipo I, é uma distribuição limite para representar valores máximos de uma variável aleatória X em n realizações da mesma. As funções de probabilidade são dadas pelas equações abaixo:

$$f_{X_n}(x) = \beta_g e^{-\beta_g(x-u_n) - e^{-\beta_g(x-u_n)}} \quad -\infty \le x \le \infty$$
(29)

$$F_{X_n}(x) = e^{-\beta_g(x-u_n)} \quad -\infty \le x \le \infty$$
(30)

47

Determinação dos parâmetros:

$$u_n = \mu - \frac{\gamma}{\beta_g} \tag{31}$$

$$\beta_g = \frac{\pi}{\sqrt{6}} \frac{1}{\sigma} \tag{32}$$

Os parâmetros de distribuição são: u_n , parâmetro de posição, e β_g , parâmetro de escala. Quando $u_n = 0$ e $\beta_g = 1$, a distribuição é chamada de Gumbel padrão. Esses parâmetros são estimados a partir de observações de amostras, podendo, no entanto, também ser determinados pelas Equações (31) e (32), sendo σ o desvio padrão, μ a média e γ a constante de Euler-Mascheroni, aproximadamente igual a 0,5772 (BECK, 2014).

A Figura 20 apresenta o comportamento da distribuição de Gumbel para diferentes parâmetros, percebe-se que quanto maior o parâmetro de escala β_g menor é o desvio padrão σ . Essa distribuição é usada quando a expressão pretendida do valor máximo do evento ocorre em um período de tempo. Portanto, é empregada para representar efeitos de inundações, terremotos ou chuva (EL-REEDY, 2013), por exemplo.

Figura 20 – Distribuição de Gumbel para máximos: (a) função de densidade de probabilidades e (b) função de distribuição acumulada de probabilidades

Fonte: Autor (2020)

Na análise de confiabilidade estrutural a distribuição de Gumbel é comumente usada para representar cargas acidentais. Ellingwood e Galambos (1982) sugerem a utilização da distribuição valor extremo tipo I com valores médios iguais aos valores característicos e coeficiente de variação de 0,25 para carregamentos acidentais para um período de retorno de 50 anos.

2.2.7 Estados-limites

Um estado-limite pode ser definido como a fronteira entre o estado desejado e o indesejado de uma estrutura. Os estados limites podem ser divididos em dois tipos: Estado-Limite Último (ELU) e Estado-Limite de Serviço (ELS).

Segundo a ABNT NBR 8681:2003, os ELU se referem a situações que determinam a paralisação total ou parcial de uma construção. Dentre eles podem-se citar: perda de equilíbrio da estrutura por movimento de corpo rígido, esgotamento da capacidade máxima de seções, elementos ou conexões por ruptura ou deformação excessiva, instabilidade, escoamento da armadura, etc. Já os ELS são aqueles relacionados ao uso normal da construção, ou ainda que representam indícios de comprometimento da durabilidade da mesma. Dentre eles estão os estados limites de deformações excessivas, vibração excessiva, deformações permanentes, formação e abertura de fissuras.

Os estados limites podem ser quantificados por meio de funções chamadas de funções de estado-limite. De forma geral, para problemas estruturais envolvendo n_{rv} variáveis aleatórias, o vetor de VAs que caracteriza o problema pode ser chamado simplesmente de **X**. Então, para cada estado-limite da estrutura uma função de estado-limite g(.) é escrita em função das variáveis de projeto **X** como:

$$g(\mathbf{X}) = g(X_1, X_2, X_3, \dots, X_n)$$
(33)

Os valores negativos da função de estado-limite representam a falha da estrutura e os positivos a não falha. Portanto as equações de estados limites estabelecem para cada modo de falha, a fronteira entre os domínios de falha e não falha, D_f e D_s , respectivamente. Ou seja:

$$D_f = \{\mathbf{x} | g(\mathbf{x}) \le 0\} \tag{34}$$

$$D_s = \{\mathbf{x} | g(\mathbf{x}) > 0\} \tag{35}$$

49

O domínio de falha é formado por todos os pontos do espaço amostral $\mathbf{X} (\mathbb{R}^n)$ que levam a falha da estrutura. O domínio D_s é o domínio de segurança que é complementar ao domínio de falha. Esses domínios são ilustrados na Figura 21.

Figura 21 – Equação de estado-limite e domínios de falha e não falha.

Fonte: Pantoja (2012).

Como exemplo, caso o problema de confiabilidade envolva apenas uma variável aleatória de resistência, R, e uma de solicitação, S, a respectiva equação de estado limite é dada por:

$$g(R,S) = R - S \tag{36}$$

2.2.8 Probabilidade de falha

A probabilidade de falha é uma medida da violação de um estado-limite. No caso envolvendo somente duas VAs, $R \in S$, por exemplo, a avaliação da probabilidade de falha é dada por:

$$P_f = P[\{R - S \le 0\}]; \tag{37}$$

a qual é também denominada de problema fundamental da confiabilidade.

Para problemas envolvendo n_{rv} variáveis aleatórias, a probabilidade de falha pode ser determinada pela integração da função conjunta de densidade de probabilidade $f_X(\mathbf{x})$ sobre o domínio da falha, conforme a equação:

$$P_f = \int_{g(\mathbf{X}) \le 0} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$
(38)

A integral apresentada na Equação (38) pode não possuir resposta analítica. Além disso, na prática muitas vezes não se conhece a distribuição conjunta das variáveis aleatórias, tendo-se somente as informações individuais de cada variável e correlações entre pares de variáveis. Portanto métodos numéricos são utilizados para sua resolução, tais como: Método de Integração Numérica, Métodos de Transformação e Método de Simulação de Monte Carlo.

Nesse trabalho são abordados e utilizados o Método de Simulação de Monte Carlo e o método de confiabilidade de primeira ordem (FORM - *First Order Reliability Method*).

2.2.9 Índice de confiabilidade

Quando *R* e *S* são variáveis aleatórias normais com médias μ_R e μ_S e variâncias σ_R^2 e σ_S^2 , pode-se resolver o problema fundamental de confiabilidade empregando-se a denominada margem de segurança (*Z*), dada pela seguinte equação:

$$Z = R - S \tag{39}$$

Sendo R e S variáveis normais, Z também é uma variável normal, e sua média e variância são dadas por:

$$\mu_Z = \mu_R - \mu_S \tag{40}$$

$$\sigma_Z = \sqrt{\sigma_R^2 - \sigma_S^2} \tag{41}$$

A variável Z pode ser transformada em uma variável normal padrão:

$$Y = \frac{Z - \mu_Z}{\sigma_Z} \tag{42}$$

A probabilidade de falha resulta em:

$$P_f = P[\{Z \le 0\}] = P\left[\left\{Y \le \frac{0 - \mu_Z}{\sigma_Z}\right\}\right] = \Phi\left(\frac{-\mu_Z}{\sigma_Z}\right)$$
(43)

Onde $\Phi(.)$ é a função de distribuição acumulada normal padrão (com média nula e desvio-padrão unitário).

A distribuição da variável aleatória Z pode ser vista na Figura 22, onde a região sombreada corresponde à falha, isto é, $Z \le 0$.

Figura 22 – Distribuição marginal de segurança Z = R - S.

Fonte: Adaptado de Melchers e Beck (2018).

Usando as Equações (40) e (41) a probabilidade de falha resulta em:

$$P_f = \Phi\left(\frac{-(\mu_R - \mu_S)}{\sqrt{\sigma_R^2 - \sigma_S^2}}\right) = \Phi(-\beta)$$
(44)

onde $\beta = \frac{\mu_Z}{\sigma_Z}$ é denominado índice de confiabilidade.

A Figura 23 mostra a probabilidade de falha P_f em termos da variável normal padrão Y. Pode-se observar que o índice de confiabilidade β representa a distância entre z = 0 e a origem da distribuição Y.

A definição de β se estende a casos que envolvem várias VAs e com quaisquer distribuições de probabilidades, onde $\beta = -1 \times \Phi^{-1}(P_f)$, correspondendo geometricamente à mínima distância entre a equação de estado limite e a origem do espaço normal padrão.

Figura 23 – Probabilidade de falha em termos da variável normal padrão Y.

O índice de confiabilidade β é um parâmetro comumente utilizado para medir o nível de segurança de um sistema. Altos valores de β implicam uma menor probabilidade de falha, enquanto baixos valores significam sistemas inseguros, com maior probabilidade de falha.

O valor aceitável para o índice de confiabilidade, usualmente denominado índice de confiabilidade alvo, é muito discutível e depende do tipo de estrutura, das consequências de falhas e dos custos envolvidos.

Na calibração da norma americana ANSI A58, Galambos *et al.* (1982) obtiveram valores de índices e confiabilidade entre 2,50 e 3,50 para estruturas de concreto armado e aço, para combinações envolvendo cargas permanentes e cargas acidentais.

O EUROCODE EN 1990 (2002) estabelece índices de confiabilidade de referência a partir de consequências de falha, classes de confiabilidade e períodos de retorno. Para edifícios comerciais e residenciais recomenda-se um valor de 3,8 para um período de 50 anos.

Melchers e Beck (2018) recomendam valores de índices de confiabilidade entre 3,0 e 3,5 para edificações comerciais e residenciais para vida útil de 50 anos.

2.2.10 Confiabilidade de sistemas estruturais

Estruturas completas ou sistemas estruturais apresentam múltiplos modos de falha. A confiabilidade de sistemas estruturais é definida quando a falha da estrutura pode ocorrer devido a mais de uma função de estado-limite ou de falha.

Um sistema pode ser classificado como em série ou paralelo. No sistema em série, como o apresentado na Figura 24, a falha segundo um dos modos de falha acarreta na falha do sistema.

Figura 24 – Exemplos de sistemas em série: a) corrente; b) treliça isostática.

Fonte: Melchers e Beck (2018).

No sistema em paralelo (Figura 25) a falha do sistema só ocorre quando todos os seus modos de falha resultam em falha.

Figura 25 – Exemplo de sistemas em paralelo: a) elementos paralelos; b) pórtico hiperestático formado por barras rígidas.

Fonte: Melchers e Beck (2018).

Sistemas complexos podem ser decompostos em subsistemas com componentes associados em série e/ou em paralelo.

A probabilidade de falha pode ser então calculada para cada modo de falha e posteriormente é feita a avaliação da probabilidade do sistema falhar como um todo, considerando todos os modos de falha.

Para sistemas em série, a probabilidade de falha é a união dos eventos E_i que representam a falha segundo os modos de falha individuais, e é dada por (Freudenthal, 1961; Freudenthal *et al.*, 1966 a*pud* Melchers e Beck, 2018):

$$P_{f}^{s} = P(E_{1} \cup E_{2} \cup E_{3} \cup E_{4} \cup ... \cup E_{n})$$
(45)

A probabilidade de falha do sistema em paralelo é definida pela intersecção entre os eventos de falha individuais dos componentes, conforme segue:

$$P_f^{\ s} = (E_1 \cap E_2 \cap E_3 \cap E_4 \cap ... \cap E_n)$$
(46)

2.2.11 Método de confiabilidade de primeira ordem

O método de confiabilidade de primeira ordem FORM (*First Order Reability Method*) é um método comumente utilizado para estimar probabilidades de falha. No escopo do trabalho o FORM é utilizado na avaliação das importâncias das variáveis aleatórias utilizadas nos problemas de confiabilidade de bielas e tirantes de vigas-parede.

No método FORM a função conjunta de densidade de probabilidade $f_X(\mathbf{x})$ é construída utilizando as informações estatísticas de função de distribuição de probabilidade e de correlação das variáveis aleatórias originais do problema (BECK, 2014).

Esse processo envolve a transformação de um vetor de variáveis aleatórias normais **X** com qualquer distribuição conjunta de probabilidade em um vetor de variáveis aleatórias normais **Y** com média zero e desvio padrão unitário. Para isso, utiliza-se a transformação de Hasofer e Lind (1974) dada por:

$$Y_i = \frac{X_i - \mu x_i}{\sigma x_i}, \qquad i = 1, \dots n.$$
(47)

Ao aplicar a transformação de Hasofer e Lind às variáveis R e S do problema fundamental de confiabilidade da Equação (37), obtém-se as variáveis Y_1 e Y_2 . A expressão da margem de segurança passa a ser:

$$z(y_{1,y_{2}}) = r - s = y_{1}\sigma_{R} + \mu_{R} - y_{2}\sigma_{s} - \mu_{s}$$
(48)

Para $z(y_1, y_2)=0$ e isolando y_2 , tem-se:

$$y_2 = \frac{y_1 \sigma_R + \mu_R - \mu_s}{\sigma_s} \tag{49}$$

Sendo o quadrado da distância (*d*) entre um ponto qualquer $(y_{1,}y_{2})$ e a origem dado por $d^{2} = y_{1}^{2} + y_{2}^{2}$, e a condição de mínimo dada pela sua derivada em relação a y_{1} igual e a zero, tem-se:

$$2y_1 + 2y_2 \frac{\partial y_2}{\partial y_1} = 0$$
, ou derivando a Equação (49) em relação a y_1 (50)

$$2y_1 + 2y_2 \frac{\sigma_R}{\sigma_s} = 0 \tag{51}$$

Utilizando a Equação (49) obtém-se a coordenada y_1^* do ponto sobre a equação $z(y_1,y_2)=0$ mais próximo da origem:

$$y_1^* = -\frac{\sigma_R(\mu_R - \mu_s)}{\sigma_R^2 + \sigma_s^2}$$
(52)

Seguindo mesmo raciocínio, porém agora com y_2 , deriva-se novamente o quadrado da distância em relação a y_2 , iguala-se a zero e utilizando a Equação (49), obtém-se a coordenada y_2^* :

$$y_2^* = -\frac{\sigma_s(\mu_R - \mu_s)}{\sigma_R^2 + \sigma_s^2}$$
(53)

Substituindo o ponto de projeto $(y_{1,}^{*}y_{2}^{*})$ na expressão $d^{2} = y_{1}^{2} + y_{2}^{2}$, encontra-se a seguinte equação para a distância mínima entre z $(y_{1,}y_{2})=0$ e a origem:

$$d_{min} = \frac{\mu_R - \mu_s}{\sqrt{\sigma_R^2 + \sigma_s^2}}$$
(54)

Verifica-se que esse resultado corresponde ao índice de confiabilidade β , ou seja, a mínima distância entre a equação de estado limite e a origem do espaço normal padrão.

Os resultados obtidos para \mathbb{R}^2 podem ser generalizados para \mathbb{R}^n e envolvem a solução de um problema de otimização com restrições para a busca do pronto e projeto y^* . Um dos algoritmos mais utilizados é o do Hasofer, Lind, Rackwitz e Fiessler (HLRF) que foi desenvolvido especificamente para resoluções de problemas de confiabilidade. Esse algoritmo possui uma versão melhorada (iHLRF) que garante a convergência.

2.2.11.1Algoritmo de Hasofer, Lind, Rackwitz e Fiessler

O HLRF é baseado na aproximação de um ponto aleatório y a uma superfície g(y) = 0 e na perpendicularidade entre o vetor y e a tangente à superfície no ponto (BECK, 2014).

Seja y_k um ponto inicial qualquer e realizando-se uma expansão da equação de estado limite em série de Taylor, considerando apenas os termos de primeira ordem, tem-se:

$$g(\mathbf{y}_{k+1}) \simeq \tilde{g}(\mathbf{y}_{k+1}) = g(\mathbf{y}_k) + \nabla g(\mathbf{y}_k)^T \cdot (\mathbf{y}_{k+1} - \mathbf{y}_k) = 0$$
(55)

onde $\nabla g(\mathbf{y}_k)$ é o gradiente da equação de estado limite analisado no espaço normal padrão e avaliado no ponto \mathbf{y}_k .

Um novo ponto y_{k+1} pode ser encontrado sobre a equação linearizada, fazendo $\tilde{g}(y_{k+1}) = 0$. O valor inicial do índice de confiabilidade é $\beta_k = \sqrt{y_k^T \cdot y_k}$ e o vetor de cossenos diretores da equação de estado limite no ponto y_k é dado por:

$$\alpha_k = \frac{\nabla g(\mathbf{y}_k)}{\|\nabla g(\mathbf{y}_k)\|}$$
(56)

Desse modo a equação do novo ponto fica definida como:

$$\mathbf{y}_{k+1} = -\alpha_k \left[\beta_k + \frac{g(\mathbf{y}_k)}{\|\nabla g(\mathbf{y}_k)\|} \right]$$
(57)

O termo entre colchetes reprenta a nova aproximação do índice de confiabilidade. O processo, utilizando a Equação (57) é feito iterativamente até atingir a convergência em y ou em β .

Como o HLRF não apresenta garantia de convergência, uma alternativa ao mesmo consiste no método iHLRF (*improved* HLRF). Neste caso, a direção de busca é dada pelo HLRF original:

$$\boldsymbol{d}_{k} = \boldsymbol{y}_{k+1} - \boldsymbol{y}_{k} = \frac{\nabla g(\boldsymbol{y}_{k})^{T} \cdot \boldsymbol{y}_{k} - g(\boldsymbol{y}_{k})}{\|\nabla g(\boldsymbol{y}_{k})\|^{2}} \cdot \nabla g(\boldsymbol{y}_{k}) - \boldsymbol{y}_{k}$$
(58)

Porém, enquanto no HLRF original o passo era unitário:

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \lambda_k \mathbf{d}_k \tag{59}$$

no iHLRF é introduzida uma função de mérito $m(\mathbf{y})$ com o objetivo de se obter um passo ótimo. A cada iteração é realizada uma busca linear por λ_k que minimiza $m(\mathbf{y})$.

Essa busca linear é realizada utilizando a regra de Armijo (Luenberger, 2003), dada por:

$$\lambda = \max_{p \in \mathbb{N}} [b^p | m(\mathbf{y}_k + b^p \mathbf{d}_k) - m(\mathbf{y}_k) \le -ab^p \| \nabla g(\mathbf{y}_k) \|^2], \ a, b \in (0, 1)$$

$$(60)$$

Zhang e Kiureghian (1997) propuseram a seguinte função de mérito que garante a convergência incondicional do algoritmo:

$$m(\mathbf{y}_k) = \frac{1}{2} \mathbf{y}_k \|\mathbf{y}_k\|^2 + c|g(\mathbf{y})|$$
(61)

2.2.11.2 Medidas de sensibilidade

O método de confiabilidade FORM também proporciona a determinação de medidas locais de sensibilidade, ou fatores de importância de uma determinada variável aleatória na contribuição da probabilidade de falha da estrutura.

O fator de importância é obtido para cada variável aleatória e é dado por:

$$I_i = \alpha_i^2 \tag{62}$$

sendo, α_i o cosseno diretor inerente à variável y_i do vetor normal à superfície de falha no ponto de projeto y^* , definido por:

$$\alpha_i = -\frac{\nabla g(y^*)}{\|\nabla g(y^*)\|} \tag{63}$$

onde $\nabla g(y^*)$ é o gradiente da equação de estado limite no ponto de projeto y^* .

O vetor α é um vetor unitário, ou seja, $\sum \alpha_i^2 = 1$, portanto os componentes α_i^2 indicam a contribuição relativa da variável y_i (logo, também da variável aleatória x_i) na composição da probabilidade de falha, sendo uma combinação do valor médio, do desviopadrão e da distribuição de probabilidade da variável aleatória x_i (BECK, 2019).

O sinal de cada componente do vetor α indica se a variável é de "resistência" ou de "solicitação". Sendo assim, preservando o sinal ao elevar α ao quadrado é possível obter a contribuição relativa de cada variável aleatória, e se ela contribui para a resistência ou para a solicitação (BECK, 2019).

2.2.12 Simulação de Monte Carlo

A simulação de Monte Carlo é uma técnica que permite a solução de problemas complexos e com muitas variáveis. É também chamado de método exato, porque teoricamente o resultado da simulação tende para o resultado exato quando o número de simulações tente ao infinito (BECK, 2014).

Segundo Melchers e Beck (2018), a técnica de simulação de Monte Carlo envolve a amostragem aleatória para simular artificialmente um grande número de experimentos e observar o resultado. No caso da análise da confiabilidade de estruturas, isto significa que a cada simulação corresponderá um vetor $\hat{\mathbf{x}} = \{x_1, x_2, ..., x_n\}$ de realizações das variáveis aleatórias envolvidas, geradas de acordo com as funções de distribuição de probabilidades. A função do estado limite $g(\mathbf{x}) = 0$ é então verificada usando estas realizações. Se a função do estado limite for violada, isto é, $g(\hat{\mathbf{x}}) \leq 0$, a estrutura ou o elemento estrutural terá "falhado" nesta simulação.

O método de Monte Carlo substitui a Equação (38) por um estimador da probabilidade de falha com o cálculo do valor esperado da variável aleatória $I[\mathbf{x}]$, conforme:

$$P_f = \int_{\Omega} I[\mathbf{x}] f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} \equiv E[I[\mathbf{x}]]$$
(64)

onde:

 $E[I[\mathbf{x}]]$ = valor esperado da variável aleatória $I[\mathbf{x}]$

$$I[\mathbf{x}] = 1 \qquad \text{se } \mathbf{x} \in D_f \quad \text{(falha)} \tag{65}$$

$$I[\mathbf{x}] = 0 \quad \text{se } \mathbf{x} \notin D_f \quad (\text{sobrevivencia}) \tag{66}$$

Portanto, o valor esperado da probabilidade de falha pode ser estimado, com base em uma amostra de tamanho finito, por:

$$\widehat{P}_f = \frac{1}{n_{si}} \sum_{i=0}^{n_{si}} I[\mathbf{x}_i] = \frac{n_f}{n_{si}}$$
(67)

O chapéu indica a estimativa da probabilidade de falha, n_f é o número de pontos no domínio de falha e n_{si} é o número de simulações.

A visualização gráfica da simulação de Monte Carlo Simples pode ser vista na Figura 26.

Figura 26 – Sorteio de pontos: simulação de Monte Carlo.

Fonte: Pantoja (2012) - modificado.

Como a Equação (67) é baseada em uma amostra de tamanho finito, está sujeita a um erro estatístico que corresponde à variância de $I[\mathbf{x}]$:

$$Var[\widehat{P}_{f}] = \frac{1}{(n_{si}-1)} \sum_{i=1}^{n_{si}} \left(I[\mathbf{x}_{i}] - \widehat{P}_{f} \right)^{2}$$

$$\tag{68}$$

A Equação (68) mostra que a incerteza diminui com o aumento do número de simulações, no entanto não tende a zero quando n_{si} tende para o infinito. Pode-se mostrar que:

$$\lim_{n \to \infty} Var[\widehat{P}_f] = \left(\widehat{P}_f\right)^2 \tag{69}$$

Uma forma de avaliar se o tamanho da amostra é suficiente para resolver o problema com precisão é por meio de uma análise de convergência, em que se determina um intervalo de confiança (I.C.) desejado para o resultado da simulação.

A partir das Equações (67) e (68) determina-se o I.C. por:

$$\widehat{P}_f - k \frac{\sqrt{\operatorname{Var}[\widehat{P}_f]}}{\sqrt{n_{si}-1}} \le P_f \le \widehat{P}_f + k \frac{\sqrt{\operatorname{Var}[\widehat{P}_f]}}{\sqrt{n_{si}-1}},\tag{70}$$

o parâmetro k está relacionado com o nível de confiança estabelecido, conforme uma distribuição normal.

A Figura 27 ilustra o exemplo da análise de convergência com I.C. de 95% para um dos modelos avaliados na pesquisa, verifica-se que a oscilação em torno da média diminui e o intervalo de confiança se torna mais estreito à medida que se aumenta o número de simulações n_{si} .

Figura 27 – Gráficos de convergência e intervalo de confiança (I.C) para SMC: (a) probabilidade de falha P_f e (b) índice de confiabilidade $\beta = -\Phi^{-1}(P_f)$.

Fonte: Autor (2020)

Um dos fatores importantes na aplicação da simulação de Monte Carlo é a geração de números aleatórios. Na realidade números aleatórios gerados por meio de algoritmos recursivos, são determinísticos e reproduzíveis, sendo denominados de pseudoaleatórios (BECK, 2019). Nas simulações realizadas no trabalho foram utilizados números pseudoaleatórios gerados via função específica do MATLAB. O valor inicial é dado por meio da semente que, em geral, é um número inteiro, por meio de operações aritméticas (algoritmo) gera-se outro valor. Desta maneira números pseudoaleatórios uniformemente distribuídos no intervalo de 0 a 1 e independentes são obtidos.

A simulação de Monte Carlo também propicia o cálculo da probabilidade do sistema, sem a necessidade de calcular as probabilidades de falha individuais de cada equação de estado-limite.

Considerando um sistema hipotético com duas ou mais equações de estado-limite: g_1 e $g_2,..., g_i$, as probabilidades de falha serão:

$$P_{f1} = P[\{g_1 \le 0\}]; \ P_{f2} = P[\{g_2 \le 0\}]; \dots \ P_{fi} = P[\{g_i \le 0\}];$$
(71)

Para um sistema em série a Equação (45) pode ser substituída por:

$$P_f^s = P[\{g_1 \le 0 \text{ ou } g_2 \le 0 \text{ ou } \dots g_i \le 0\}]$$
(72)

$$P_f^s = P[m(n) = \{(g_1, g_2 \dots g_i) \le 0\}]$$
(73)

Na Simulação de Monte Carlo as equações de estado-limite g_1 e $g_2,..., g_i$ são substituídas por uma única equação:

$$g = minimo(g_1, g_2 \dots g_i) \tag{74}$$

Para um sistema em paralelo, substitui-se a Equação (46) por:

$$P_f^s = P[\{g_1 \le 0 \ e \ g_2 \le 0 \ e \ \dots \ g_i \le 0\}]$$
(75)

$$P_f^s = P[maximo\{(g_1, g_2 \dots g_i) \le 0\}]$$
(76)

Da mesma forma, como no sistema em série, tem-se na Simulação de Monte Carlo, uma única equação de estado-limite:

$$g = m \acute{a} ximo(g_1, g_2 \dots g_i) \tag{77}$$

Para sistemas complexos ou mistos, pode ser feita a divisão do sistema em subsistemas, em série e/ou em paralelo, e na sequência monta-se as devidas combinações entre elas.

Por exemplo, para um sistema em paralelo com dois subsistemas em série, tem-se:

$$P_f^s = P[m\acute{a}ximo\{min(g_1, g_2); min(g_3, g_4) \le 0\}]$$
(78)

$$g = m \acute{a} ximo\{min(g_1, g_2); min(g_3, g_4)\}$$
(79)

As análises de confiabilidade utilizando o método FORM e o método de simulação de Monte Carlo, utilizadas neste trabalho, foram implementadas em ambiente MATLAB a partir de códigos computacionais disponibilizados pelo grupo de pesquisa *Center for Optimization and Reliability in Engineering* (CORE), da UFSC.

2.2.13 Erro de modelo

A resposta de uma estrutura considerando a variabilidade das propriedades dos materiais e das ações pode ser dada pelo seguinte modelo JCSS (2001):

$$R_{est} = f(X_1, X_{2,\dots} X_n) \tag{80}$$

onde:

 R_{est} = resposta da estrutura; f = função do modelo;

 X_i = variáveis aleatórias (propriedades dos materiais e as ações).
A função do modelo f(.) geralmente não é completa e exata, de modo que o resultado de R_{est} não pode ser previsto sem erro, mesmo que os valores de todas as variáveis aleatórias sejam conhecidos.

Segundo Beck (2019) os modelos de cálculo aproximam de forma abstrata, a complexa natureza do comportamento das estruturas, em especial próximo às situações de falha. Essas aproximações podem decorrer, por exemplo, em assumir resposta linear geométrica das estruturas e linear dos materiais, bem como outras várias aproximações feitas nos modelos de cálculo para torná-los mais simples e operacionais, ou ainda, realizadas simplesmente porque a natureza exata do comportamento não é conhecida.

Portanto, para se obter o resultado real da estrutura, R'_{est} , é necessário incluir os parâmetros de incerteza do modelo de cálculo, e a Equação (80) pode ser reescrita como:

$$R'_{est} = f(X_1 \dots X_n, \ \theta_1 \dots \ \theta_2) \tag{81}$$

As variáveis θ_i são parâmetros relacionados às incertezas do modelo, tratados como variáveis aleatórias. As incertezas do modelo tentam representar efeitos aleatórios que são negligenciados nos modelos e simplificações nas relações matemáticas.

Idealmente, as incertezas do modelo devem ser obtidas de um conjunto de experimentos representativos em laboratórios e medições em estruturas reais, onde todos os valores de x_i são medidos ou controlados.

A maneira mais comum de introduzir a incerteza do modelo no modelo de cálculo é por meio da seguinte equação:

$$R'_{est} = \theta_m f(X_1 \dots X_n) \tag{82}$$

onde, a variável aleatória θ_m , um erro de modelo multiplicativo, tem a função de corrigir, ou melhorar a estimativa do modelo e aproximá-la do comportamento real.

2.2.14 Inferência estatística

Inferência estatística compreende um conjunto de técnicas que tem por objetivo estudar uma população por meio de informações fornecidas por uma amostra (MAGALHÃES; LIMA, 2011).

No âmbito deste trabalho, a inferência estatística é aplicada para determinar as distribuições de probabilidade que melhor se ajustem aos dados dos erros de modelos, de modelos de bielas e tirantes de vigas-parede.

Um dos métodos de inferência estatística utilizados é a estimativa de máxima verossimilhança (EMV). Para ilustrar o método, supõe-se que uma população tenha função de densidade que contenha um parâmetro populacional δ a ser estimado por meio de uma determinada estatística. A função de densidade pode ser representada por $f(x, \delta)$. Admitindo que haja n observações independentes $X_1, X_2, ..., X_n$, a função de densidade conjunta para essas observações é:

$$L = f(x_1, \delta) f(x_2, \delta) \dots f(x_n, \delta) = \prod_{i=1}^n f(x_i, \delta),$$
(83)

a qual é chamada de *verossimilhança*. O valor δ que maximiza essa função é a estimativa de verossimilhança (SPIEGEL, 1977).

A função verossimilhança nos diz quão provável a amostra observada é em função dos valores dos parâmetros possíveis. Maximizar a verossimilhança fornece os valores dos parâmetros para os quais a amostra observada é mais provável de ter sido gerada, isto é, os valores de parâmetro que "mais aproximadamente concordam" com os dados observados (DEVORE, 2006).

Para a aplicação do método, foi utilizado o algoritmo *allfitdist* em linguagem MATLAB desenvolvido por Sheppard (2012). Pode-se utilizar também, testes de aderência para avaliar a representatividade de uma distribuição ajustada, como o Teste Qui-Quadrado (χ^2) e o Teste de Kolmogorov-Smirnov (K-S).

2.2.15 Teste Qui-Quadrado (χ^2)

O Teste Qui-Quadrado é usado para testar se uma distribuição de frequência observada se ajusta a uma distribuição esperada (LARSON; FABER, 2015). Por meio do teste, é possível verificar se a distribuição de dados de uma amostra se ajusta a um modelo probabilístico conhecido.

O Teste Qui-Quadrado é dado pela seguinte expressão:

$$\chi^2 = \sum_{i=1}^m \frac{(o_i - e_i)^2}{e_i}$$
(84)

sendo, m número de categorias ou intervalos contíguos, o_i a frequência observada na amostra e e_i a frequência esperada.

A estatística do teste χ^2 representa uma medida de discrepância entre as freqüências observadas e as freqüências esperadas. Nota-se que valores pequenos de χ^2 indicam que o modelo probabilístico pode ser adequado aos dados. Por outro lado, valores acima de certo valor crítico podem levar a rejeição do modelo.

Pode-se assim, estabelecer hipóteses para avaliar a representatividade de a distribuição ajustada estar de acordo com os dados que foram utilizados para criá-la.

Estas hipóteses são descritas da seguinte maneira:

- a) Hipótese (0): Não rejeita a hipótese nula.
- b) Hipótese (1): Rejeita.

A hipótese nula considera que os dados em análise seguem a distribuição em ajuste. As hipóteses são avaliadas utilizando a distribuição Qui-Quadrado, para rejeitar ou aceitar a hipótese nula com um determinado nível de significância. É calculado um *valor-p*, que corresponde à probabilidade de ocorrer uma estatística de teste igual ou mais extrema que aquela observada em uma amostra.

Caso o *valor-p* obtido seja inferior ao nível de significância, há uma forte evidência de que a hipótese nula seja falsa, e, portanto, rejeita-se esta hipótese. Entretanto, se o *valor-p* for superior ao nível de significância, não existem evidências suficientes para rejeitar a hipótese nula, sendo esta aceita.

Um valor comum utilizado para o nível de significância é de 5%, o qual foi utilizado neste trabalho.

2.2.16 K-S - Teste de aderência de Kolmogorov-Smirnov

O teste K-S busca calcular a distância máxima $(D_{máx})$ absoluta entre a distribuição cumulativa ajustada e a dos dados, como pode ser observado na Figura 28.

Fonte: Autor (2020)

$$D_{max} = \max_{1 \le i \le n} |F(x_i) - F_e(x)|$$
(85)

onde $F(x_i)$ representa a curva de distribuição acumulada e $F_e(x)$ a curva de distribuição empírica (BUSSAB; MORETTIN, 2010).

O valor encontrado deve ser comparado com um valor crítico, relacionado ao nível de significância do teste. Hipóteses são feitas para avaliar a representatividade de uma distribuição ajustada da mesma maneira que as hipóteses geradas para o teste Qui-Quadrado:

- a) Hipótese (0): Não rejeita a hipótese nula.
- b) Hipótese (1): Rejeita.

Por meio desses testes é feita a investigação acerca da hipótese nula, se é aceita ou rejeitada com um determinado nível de significância (adotado 5%). Da mesma forma, um *valor-p* é calculado, e caso o *valor-p* obtido seja inferior ao nível de significância, há uma forte evidência de que a hipótese nula seja falsa, e, portanto, rejeita-se esta hipótese. Por outro lado, se o *valor-p* for superior ao nível de significância, não existem evidências suficientes para rejeitar a hipótese nula, sendo esta aceita.

Neste trabalho, os testes Qui-Quadrado (χ^2) e K-S foram realizados em ambiente MATLAB por meio de funções específicas do *software*.

2.3 ANÁLISE DE CONFIABILIDADE DE VIGAS-PAREDES

Dentre as poucas obras encontradas na literatura sobre análise de confiabilidade de modelos de bielas e tirantes de vigas-paredes, pode-se citar o trabalho de Oliveira (2016), com a aplicação de análise de confiabilidade em modelos de bielas e tirantes de vigas-curtas; o de Pantoja (2012), com geração automática de modelos de bielas e tirantes de estruturas planas de concreto, utilizando otimização topológica e avaliação de segurança via análise de confiabilidade; e o de Díaz *et al.* (2020) com análises de confiabilidade de vigas-parede acopladas a modelos em elementos finitos.

Oliveira (2016) obteve resultados de índices de confiabilidade da ordem de 3,00 para simulações com percentual de carga variável entre 40% e 50%, chegando à conclusão de que o tratamento semiprobabilístico adotado pela NBR 6118 fornece índices de confiabilidade aceitáveis para estruturas solicitadas com essa faixa de carregamento.

Pantoja (2012) propôs o uso da formulação de confiabilidade nos problemas estruturais de concreto armado para identificar e quantificar a importância dos modos de falha de uma estrutura. Assim, a razão de falha χ_i foi definida como a razão de cada modo de falha P_{fmi} pela falha do sistema P_f , dada pela seguinte expressão:

$$\chi_i = \frac{P_{fmi}}{P_f} \tag{86}$$

Com base na Equação (86), é possível traçar um gráfico de todos os modos de falha envolvidos no problema e identificar quando seu comportamento passa a ter a maior probabilidade de falha.

A Figura 29 apresenta o gráfico de um modelo hipotético de biela e tirante, onde as falhas frágeis correspondem à ruptura das bielas e as falhas dúcteis ao escoamento das armaduras. Da análise do gráfico, é possível identificar um ponto de transição, onde a probabilidade de falha frágil passa a ser menor que a de falha dúctil, quando se observa os modos de falha mais significativos dados pela biela 1 e tirante 1.

Díaz *et al.* (2020) realizou análises de confiabilidades acopladas com análises nãolineares em elementos finitos da vigas-parede. Para a viga-parede com armadura dimensionada pelo método de bielas e tirantes do trabalho Souza (2004), Díaz *et al.* (2020) obteve índice de confiabilidade β de 3,43.

Figura 29 – Influência do f_{ck} na razão de falha dos diferentes modos de falha.

Fonte: Pantoja (2012) - modificado.

3 DESENVOLVIMENTO

3.1 ANÁLISE DE CONFIABILIDADE DE UMA VIGA-PAREDE

Neste capítulo é realizada a análise de confiabilidade de três modelos de bielas e tirantes, para uma mesma viga-parede, sujeita a duas cargas concentradas e simétricas.

3.1.1 Modelo 1

O Modelo 1 é apresentado na Figura 30. Por simetria, o modelo é composto por duas bielas $S_1 e S_2$, um tirante $T_1 e$ dois nós $N_1 e N_2$. A carga V é transferida do ponto de aplicação da carga para os apoios de forma direta, apenas por compressão nas bielas S_1 . O equilíbrio é feito por uma força de tração na fase interior da viga, resistida pelo tirante $T_1 e$ por uma força de compressão na face superior da viga, resistida pela biela S_2 .

Figura 30 - Modelo 1 - esquema de forças no modelo de bielas e tirantes.

Fonte: El-zoughiby et al. (2013) - modificado.

3.1.1.1 Geometria

Na Figura 31, pode ser vista a geometria do modelo, os detalhes dos nós, $N_1 e N_2$, e as variáveis envolvidas no problema, onde: h, b, e d são a altura, largura e altura útil, respectivamente; a e L representam o vão de cisalhamento e o vão efetivo; a_i , b_i , $L_d e \alpha$ são a altura e comprimento do nó i, o braço de alavanca interno, e o ângulo da biela S_1 ; w_{11} , w_{21} , e w_2 são a largura da biela S_1 , no nó 1, a largura da biela S_1 no nó 2 e a largura da biela S_2 , que é constante, respectivamente. A largura da biela é medida perpendicular a sua linha de centro w_{ij} , que corresponde à largura da biela j no nó i.

Figura 31 – Modelo 1 - detalhes das bielas e tirantes e dos nós.

Fonte: El-zoughiby et al. (2013) - modificado.

3.1.1.2 Dados de entrada

Os dados de entrada do modelo são as dimensões da viga $(h, b, b_1 \in b_2)$, o vão de cisalhamento a, a altura útil d, as resistências do concreto f_{ck} e do aço f_{yk} e o carregamento V.

3.1.1.3 Cálculo do modelo de bielas e tirantes

O cálculo do braço de alavanca interno é dado pela seguinte expressão:

$$L_d = h - \frac{(a_1 + a_2)}{2} \tag{87}$$

A altura do nó N_1 é definida como:

$$a_1 = 2(h - d) \tag{88}$$

A altura do nó $N_2(a_2)$ é estabelecida como uma parcela da altura a_1 , pela relação proposta por Tan *et al.* (1997):

$$a_2 = a_1 \frac{\beta_{n1}}{\beta_{n2}} \tag{89}$$

sendo: β_{n1} o coeficiente de efetividade do nó N_1 e β_{n2} o coeficiente de efetividade do nó N_2 .

Com a definição de L_d , pode-se calcular o ângulo de inclinação da biela S_1 pela seguinte equação:

$$\alpha = \tan^{-1}\left(\frac{L_d}{a}\right) \tag{90}$$

Conhecendo-se o valor de α , podem-se calcular as larguras das bielas $w_{11}e w_{21}$:

- $w_{11} = a_1 cos\alpha + b_1 sen\alpha \tag{91}$
- $w_{21} = a_2 \cos\alpha + b_2 \sin\alpha \tag{92}$

Como a altura da biela S_2 é constante, tem-se que:

$$w_2 = a_2 \tag{93}$$

3.1.1.4 Cálculo das forças solicitantes

A carga aplicada V, em cada ponto de aplicação de carga, é resultante da soma de uma parcela de carga permanente G_k e uma parcela de carga variável Q_k , com seus respectivos coeficientes de majoração $\gamma_a \in \gamma_a$.

$$V = \gamma_g G_k + \gamma_q Q_k \tag{94}$$

Com a resolução da treliça do modelo de biela e tirante, podem-se obter as solicitações nas bielas S_1 e S_2 , no tirante T_1 e nos nós N_1 e N_2 , respectivamente, pelas seguintes expressões:

$$S_1 = \frac{V}{sen\alpha} \tag{95}$$

$$S_2 = S_1 cos\alpha \tag{96}$$

$$T_1 = S_1 cos\alpha \tag{97}$$

$$N_1 = V \tag{98}$$

$$N_2 = V \tag{99}$$

3.1.1.5 Forças resistentes

As forças resistentes são calculadas para as bielas S_1 e S_2 , no tirante T_1 e nos nós N_1 e N_2 , respectivamente:

$$R_{s1} = \min \begin{cases} f_{cd} \beta_{s1} w_{11} b \\ f_{cd} \beta_{s1} w_{21} b \end{cases}$$
(100)

$$R_{s2} = f_{cd}\beta_{s2}w_2b \tag{101}$$

$$R_{t1} = Asf_{yd} \tag{102}$$

$$R_{n1} = f_{cd}\beta_{n1}b_1b \tag{103}$$

$$R_{n2} = f_{cd}\beta_{n2}b_2b \tag{104}$$

onde: $\beta_{s1} \in \beta_{s2}$ são os coeficientes de efetividade das bielas $S_1 \in S_2$, respectivamente, e $f_{yd} = \frac{f_{yk}}{\gamma_s}$, com γ_s = coeficiente de minoração da resistência do aço.

Para a metodologia de cálculo do ACI 318, deve-se substituir f_{cd} por $\phi(0,85\beta_c f'_c)$, no qual ϕ é o fator redutor da resistência do concreto; e f_{yd} por $\phi(f_y)$, sendo ϕ é o fator redutor da resistência do aço. O valor do coeficiente β_c é igual a 1 em função das larguras do apoio e da área de carregamento serem as mesmas das vigas.

3.1.2 Modelo 2

No Modelo 2, a carga é transferida para os apoios por meio de um mecanismo de arco, que, por simetria, é composto por quatro bielas $(S_1, S_2, S_3 \in S_4)$, três tirantes $(T_1, T_2 \in T_3)$ e quatro nós $(N_1, N_2, N_3 \in N_4)$. Os tirantes $T_1 \in T_3$ representam a armadura longitudinal e o tirante T_2 , a armadura transversal, conforme apresentado na Figura 32.

Figura 32 - Modelo 2 - detalhes das bielas e tirantes e dos nós.

Fonte: El-zoughiby et al. (2013) - modificado.

3.1.2.1 Geometria

Na Figura 33 está apresentada a geometria do modelo, os detalhes dos nós, $N_1 e N_4$, e as variáveis envolvidas no problema, onde: h, b e d são a altura, largura e altura útil, respectivamente; a e L são o vão de cisalhamento e o vão efetivo; $a_1 é$ a altura do N_1 ; $b_1 e b_2$ são as larguras dos nós $N_1 e N_4$; Ld_d é o braço de alavanca interno; $\alpha_j e w_j$, são o ângulo de inclinação e a largura das bielas, as quais são assumidas como constante; e L_{tk} é o comprimento do tirante.

Figura 33 – Modelo 2 - detalhes das bielas e tirantes e dos nós.

Fonte: El-zoughiby et al. (2013) - modificado.

3.1.2.1 Dados de entrada

Os dados de entrada do modelo são as dimensões da viga $(h, b, b_1 \in b_2)$, o vão de cisalhamento a, a altura útil d, a resistência do concreto f_{ck} , a resistência do aço da armadura longitudinal f_{ykh} , a resistência do aço da armadura vertical f_{ykv} e o carregamento V.

O braço de alavanca interno L_d pode ser estimado inicialmente utilizando a seguinte relação:

$$L_d = h - \frac{(a_1 + a_2)}{2} \tag{105}$$

Como $a_2 = w_4$, tem-se:

$$L_d = h - \frac{(a_1 + w_4)}{2} \tag{106}$$

onde:

$$w_4 \cong a_1 \, \frac{\beta_{n1}}{\beta_{n4}} \tag{107}$$

A altura do nó N_1 é definida como:

$$a_1 = 2(h - d) \tag{108}$$

O ângulo de inclinação das bielas é obtido seguindo o procedimento desenvolvido por Tan *et al.* (1997), no qual o comprimento dos tirantes T_1 e T_2 é dado por:

$$L_{T_1} = 0.5a$$
 (109)

$$L_{T_2} = kL_d \tag{110}$$

$$k = 0,4 + 0,2\left(\frac{a}{d}\right) \quad \text{quando} \qquad 0,5 < \left(\frac{a}{d}\right) < 2,5 \tag{111}$$

$$\alpha_1 = \tan^{-1} \left(\frac{L_{T_2}}{L_{T_1}} \right) = \tan^{-1} \left(\frac{2kL_d}{a} \right)$$
(112)

$$\alpha_2 = \tan^{-1}\left(\frac{L_d - L_{T_2}}{0.5a}\right) = \tan^{-1}\left(\frac{2(1-k)L_d}{a}\right)$$
(113)

$$\alpha_3 = \tan^{-1}\left(\frac{2L_d}{a}\right) \tag{114}$$

O parâmetro k representa uma medida de eficiência relativa entre as bielas $S_1 e S_2 e$ está relacionado com (a/d). Quando (a/d) é muito baixo, $a/d \le 0.5$, o carregamento é transferido diretamente do ponto de aplicação N_4 para o suporte N_1 . Nesse caso k = 0.5 e $\alpha_1 = \alpha_2$. Por outro lado, em vigas onde (a/d) é maior do que 2.5, a orientação da biela S_2 é quase paralela ao eixo da viga. Nesse caso é assumido como limite superior k = 0.9, pois para k = 1.0 a biela S_2 simplesmente desaparece (Equação (113)). A proposta da Equação (111) é estabelecer uma relação linear entre os limites de k e (a/d).

Para a obtenção das larguras das bielas é necessário um cálculo iterativo.

Baseado no procedimento simplificado proposto por Tan *et al.* (1997), as larguras das bielas $w_1, w_2, w_3 \in w_4$ podem ser obtidas pelas seguintes expressões:

$$w_1 = a_1 \cos \alpha_1 + b_1 \sin \alpha_1 \tag{115}$$

$$w_2 = (b_2 - w_3 sen\alpha_3)sen\alpha_2 + (w_4 - w_3 cos\alpha_3)cos\alpha_2$$
(116)

$$w_3 = w_4 cos\alpha_3 \tag{117}$$

$$w_4 = a_1 \frac{\beta_{n1}}{\beta_{n4}} [1 + (\tan \alpha_3)^{-1} (\tan \alpha_1 - \tan \alpha_2)]$$
(118)

onde: $\beta_{n1} \in \beta_{n4}$ são os coeficientes de efetividade dos nós $N_1 \in N_4$, respectivamente.

O braço de alavanca L_d deve ser ajustado para a nova largura w_4 , conforme expressão Equação (106). Esse processo iterativo deve ser repetido até que os valores w_4 sejam iguais.

3.1.2.3 Cálculo das forças solicitantes

A carga aplicada V, em cada ponto de aplicação de carga, é resultante da soma de uma parcela de carga permanente G_k e uma parcela de carga variável Q_k :

$$V = \gamma_g G_k + \gamma_q Q_k \tag{119}$$

Com a resolução da treliça do modelo de bielas e tirantes, podem-se obter as solicitações nas bielas S_1 , S_2 , S_3 e S_4 , no tirante T_1 , T_2 e T_3 e nos nós N_1 e N_4 , respectivamente, pelas seguintes expressões:

$$S_1 = \frac{V}{sen\alpha_1} \tag{120}$$

$$S_2 = V \frac{\cot g \alpha_1}{\cos \alpha_2} \tag{121}$$

$$S_3 = \frac{V}{sen\alpha_3} (1 - cotg\alpha_1 tg\alpha_2) \tag{122}$$

$$S_4 = V[cotg\alpha_1 + (1 - cotg\alpha_1 tg\alpha_2)cotg\alpha_3]$$
(123)

$$T_1 = \frac{V}{tg\alpha_1} \tag{124}$$

$$T_2 = V(1 - \cot g \alpha_1 t g \alpha_2) \tag{125}$$

$$T_3 = V[\cot g\alpha_1 + (1 - \cot g\alpha_1 t g\alpha_2) \cot g\alpha_3]$$
(126)

$$N_1 = V \tag{127}$$

$$N_4 = V \tag{128}$$

3.1.2.4 Forças resistentes

As forças resistentes são calculadas para as bielas S_1 , S_2 , S_3 e S_4 , para os tirantes T_1 , T_2 e T_3 e para os nós N_1 e N_4 , respectivamente:

$$R_{s1} = f_{cd}\beta_{s1}w_1b \tag{129}$$
$$R_{s2} = f_{cd}\beta_{s1}w_2b \tag{130}$$

$$R_{s2} = \int_{cd} \rho_{s2} w_2 b \tag{130}$$
$$R_{s2} = \int_{cd} \rho_{s2} w_2 b \tag{131}$$

$$R_{s3} = \int_{cd} \beta_{s3} w_{3b} \tag{131}$$

$$R_{s4} = \int_{cd} \beta_{s4} w_{4b} \tag{132}$$

$$R_{t1} = As_l f_y \tag{133}$$

$$R_{t2} = As_t f_y \tag{134}$$

$$R_{t3} = As_l f_y \tag{135}$$

$$R_{n1} = f_{cd}\beta_{n1}b_1b \tag{136}$$

$$R_{n4} = f_{cd}\beta_{n4}b_2b \tag{137}$$

onde: β_{s1} , β_{s2} , β_{s3} e β_{s4} são os coeficientes de efetividade das bielas S_1 , S_2 , S_3 e S_4 e As_l e As_t são as armaduras longitudinais e transversais, respectivamente.

3.1.3 Modelo 3

O Modelo 3 apresenta a mesma configuração do Modelo 2, aplicado a uma vigaparede, porém sem armadura vertical. O tirante T_2 (Figura 33), que no Modelo 2 representa a armadura vertical distribuída no vão de cisalhamento, no Modelo 3 será representado por um tirante de concreto.

Segundo Tan *et al.* (1997), para estimar a capacidade do tirante de concreto, supõe-se que uma fissura diagonal completa ocorra em uma linha reta entre os pontos de carregamento e o suporte (a). Se a contribuição total do concreto ao longo dessa linha for considerada, a capacidade do tirante é dada por:

$$T_{2m\acute{a}x} = \left(f_{ct}b\sqrt{a^2 + h^2}\right)\frac{a}{\sqrt{a^2 + h^2}} = f_{ct}ab$$
(138)

sendo:

por:

a = vão de cisalhamento; $f_{ct} =$ resistência a tração do concreto; b = largura da viga; h = altura da viga;

No entanto, conforme estudos experimentais realizados por Tan *et al.* (1997), Tan *et al.* (1995) e Tan *et al.* (1994), observou-se que a primeira fissura diagonal não se estende inteiramente entre o carregamento e o suporte. Para vigas sem armadura vertical, qualquer aumento adicional de carga é transferido por meio de um arco de concreto acima da fissura diagonal até que seja atingido o colapso.

Assim, apenas parte da porção de concreto ao longo de toda a fissura diagonal assumida contribui com a resistência à tração do tirante de concreto T_2 e, por consequência, um fator de redução de 0,5 é introduzido na capacidade de carga do tirante:

$$T_2 = 0.5 f_{ct} ab \tag{139}$$

O valor de T_2 foi assumido nos modelos do Modelo 3.

Na falta de ensaios à tração do concreto, as resistências f_{ct} podem ser calculadas como uma parcela da resistência à compressão do concreto f_{ck} .

Para a metodologia do ACI 318 (2019), a resistência à tração do concreto é dada por:

$$f_{ct} = 0,62\sqrt{f_{ck}}$$
 (140)

Para a metodologia da NBR 6118 (2014), a resistência à tração do concreto é dada

$$f_{ct,inf} = 0.7\sqrt{f_{ct,m}} \tag{141}$$

Para concretos de classes até C50, tem-se:

$$f_{ct,m} = 0.3 f_{ck}^{2/3} \tag{142}$$

Para concretos de classes C50 até C90, tem-se:

$$f_{ct,m} = 2,12\ln(1+0,11f_{ck}) \tag{143}$$

77

Algumas observações são necessárias a respeito do Modelo 3. Como esse Modelo possui apenas armadura longitudinal, deve-se levar em consideração a existência do efeito escala, em especial em peças de grandes dimensões, que pode fazer com que as tensões de cisalhamento resistentes sejam menores do que as tensões de cisalhamento recomendados pelas normas. O efeito escala consiste na redução da resistência ao cisalhamento na ruptura, com o aumento do tamanho da viga.

Esse fenômeno está relacionado a dois fatores: ao intertravamento do agregado que é reduzido em elementos maiores, devido ao desenvolvimento de fissuras mais espessas e a conceitos de mecânica da fratura, em que mais energia é liberada no processo de fraturamento do material em peças de maiores dimensões (EL-SAYED; SHURAIM, 2015).

Outro aspecto a ser mencionado é que pelas prescrições da NBR 6118 (2014) não seria possível a utilização prática do Modelo 3 sem a utilização de armaduras transversais e longitudinais mínimas, como estribos mínimos e armaduras de pele mínimas.

3.2 ENSAIOS EXPERIMENTAIS E DETERMINAÇÃO DOS ERROS DE MODELO

Depois de definidos os três modelos de resistência de bielas e tirantes para a vigaparede, é necessário determinar os erros desses modelos, os quais subsidiarão a análise de confiabilidade.

A determinação do erro de modelo é feita comparando-se os valores de resistência, calculados por meio das equações analíticas dos modelos descritos na seção 3.1, com os resultados de resistência de vigas-parede, obtidos a partir de ensaios experimentais realizados em laboratório. Para tanto, foi realizada uma extensa pesquisa na literatura para montar um banco de dados de ensaios de ruptura de vigas-parede.

3.2.1 Ensaios experimentais

Os ensaios experimentais de vigas-parede encontrados na literatura apresentam diversas finalidades de pesquisa, tais como: avaliação de parâmetros (taxas de armadura vertical e horizontal, vão de cisalhamento, altura útil e resistência do concreto) no comportamento estrutural desses elementos; proposição e validação de novos modelos de resistência; sugestões de melhorias de projeto; etc.

No presente trabalho foram utilizadas pesquisas nas quais fosse possível identificar todas as propriedades geométricas e mecânicas das vigas-parede, bem como as cargas de ruptura obtidas nos ensaios. A Figura 34 apresenta o esquema típico das vigas-paredes dos ensaios.

Figura 34 – Esquema típico dos ensaios.

Fonte: Autor (2020).

Tendo em vista que os modelos avaliados neste trabalho apresentam disposições de armaduras distintas, o banco de dados de ensaios foi dividido em dois grupos: Grupo 1, composto por vigas sem armadura vertical, e Grupo 2, composto por vigas com armadura vertical.

O Grupo 1 é utilizado para determinação dos erros de modelo dos Modelos 1 e 3 e o Grupo 2 é utilizado para determinação do erro de modelo do Modelo 2.

A Tabela 2 apresenta o resumo dos ensaios de vigas-parede sem armadura vertical utilizados na pesquisa. Os dados totalizam 191 ensaios, com valores de f_{ck} variando de 11,3 a 79,9 MPa; f_{yk} , de 267 a 1330 MPa; a/d, de 0,5 a 1,96; altura útil (d), de 132 mm a 1559 mm; e taxa de armadura longitudinal (ρ), de 0,14% a 6,64%.

Tabel	Tabela 2 – Grupo 1 – Vigas sem armadura vertical.					
	Número					
Fonte	de	Vigas				
	Ensaios					
Moody at al. (1054)	12	III-24a, III-24b, III-25a, III-25b, III-26a, III-26b,				
Moody <i>et ut</i> . (1954)		III-27a, III-27b, III-28a, III-28b, III-29a e III-29b.				
		B14-E2, B14-A4, B14-B4, B14-E4, B14-A6, B14-				
Morrow e Viest (1957)	20	B6, B21-B2, B21-E2, B21-A4, B21-B4, B21-E4,				
$Worrow \in Vrest(1957)$	20	B21-E4R, B21-F4, B21-A6, B21-B6, B28-E2,				
		B28-A4, B28-B4, B28-E4 e B28-B6.				

Chang e Kesler (1958)	1	IIIA2.
Watstein e Mathew		B-18-1, C-18-1, C-18-2, D-18-1, D-18-2, E-18-1 e
(1958)	7	E-18-2.
Cossio e Seiss (1960)	1	D-5
Mathey e Watstein		12I-1, II-3, II-4, III-5, III-6, IV-7, IV-8, V-9, V-10,
(1963)	17	VI-11, VI-12, V-13, V-14, VI-15 e VI-16.
de Pavia e Siess (1965)	5	G23S-11, G33S-11, G34S-11, G43S-11 e G44S-11.
	10	24, 53, 54, 67, 69, 109, 113, 129, 148, 174, 178,
Kanı (1967)	18	184, 188, 201, 249, 250, 265 e 269.
Ramakrishnan e Ananthanarayana (1968)	2	C1, K1'-R
Manuel, Slight e Suter (1971)	4	5, 7, 10 e 11.
Niwa e Maekawa (1981)	3	T1, T3 e T7.
Smith e Vantsiotis (1982)	4	0A0-44, 0A0-48, 0B0-49 e 0C0-50.
Ahmad e Lue (1987)	5	A12, B6, B12, C6 e C12.
		V111, V122, V221, V222, V311, V321, V322,
Walraven e Lehwaalter	25	V611, V811, V011, V012, V013, V014, V021,
(1994)		V023, V024, V031, V032, V033, V034, V711,
		V022, V511, V411 e V211.
Tan e Lu (1999)	3	500/0.50, 500/0.75 e 500/1.00.
Adebar (2000)	3	DF-14, DF-15 e DF-16.
Oh e Shin (2001)	4	N4200, H4100, H4200 e H4300.
Lertsrisakulrat <i>et al.</i> (2002)	3	D200, D400 e D600.
		L5-40, L5-60, L5-60R, L5-75, L5-100, L10-40,
Yang, Chung, Lee e	10	L10-40R, L10-60, L10-75, L10-75R, L10-100,
Eun (2003)	19	UH5-40, UH5-60, UH5-75, UH5-100, UH10-40,
		UH10-40R, UH10-60 e UH10-100.
Tan <i>et al</i> . (2005)	4	1-500/1.5, 2-1000/1.5, 3-1400/1.5 e 4-1750/1.5.
Tanimura e Sato (2005)	9	1A, 5A,9A,13B, 24F, 25F, 26F, 35E e 38E.
Seliem <i>et al.</i> (2006)	3	G-1.9-51, M-1.9-51 e M-1.9-38.
	0	2DB35, 2DB50, 2DB70, 2DB100, 3DB35b,
Zhang e 1 an (2007)	8	3DB50b, 3DB70b e 3DB100b.

Tan <i>et al</i> . (2008)	4	*1-500/0.75, *2-1000/0.75, *3-1400/0.75 e *4-1750/0.75		
Nagarajan e Pillai (2008)	7	TF-0.14/1, TF-0.14/2, TF-0.14/3, TF-0.25/1, TF-0.25/2, TS-0.58/1 e TS-058/2.		
Total	191			
Fonte: Autor (2020).				

A Tabela 3 apresenta o resumo dos ensaios de vigas parede com armadura vertical, utilizados no presente trabalho. Os dados totalizam 102 ensaios, com valores de f_{ck} variando de 16,20 a 97,50 MPa; f_{yk} , de 220,6 a 1051 MPa; a/d, de 0,84 a 1,25; altura útil (d), de 203 mm a 1563 mm; e taxa de armadura longitudinal (ρ), de 0,42% a 3,66%; taxa de armadura vertical (ρ_v), de 0,12% a 2,45%; e taxa de armadura horizontal (ρ_h), de 0,0% a 0,91%.

Tabela 3 – Grupo 2 – Vigas com armadura vertical.				
	Número			
Fonte	de	Vigas		
	Ensaios			
Clark (1951)	6	D1-1, D1-3, D2-1, D2-2, D3-1 e D4-1.		
de Pavia e Siess (1965)	2	G33S-12 e G33S-32.		
Kong et al. (1970)	3	B1-10, B2-10, B5-10.		
		1BI-01, 1B3-29, 1B4-30, 1B6-31, 2BI-05, 2B3-06,		
Smith e	15	2B4-07, 2B4-52, 2B6-32, 3B1-08, 3B1-36, 3B3-33		
vantsiotis (1982)		3B4-34, 3B6-35 e 4B1-09.		
Walraven e Lehwalter	6	V711/4, V511/4, V411/4, V022/3, V511/3 e		
(1994)		V411/3.		
Tan et al. (1997)	1	II		
Tan e Lu (1999)	1	2		
		N42A2, N42B2, N42C2, H42B2(1), H42C2(1),		
Oh and Shin (2001)	12	H43B2, H43C2, H42B2(2), H42C2(2), U42B2,		
		U42C2 e N33A2.		
Hong <i>et al.</i> (2002)	6	SS-2, SS-3, LBS-1, LBS-2, VSR-1 e VSR-2.		
		D-1,08-2,15, D-1,08-3,23, D-1,08-4,30 e		
Tan <i>et al</i> . (2005)	4	D-1,08-5,38.		

		6A, 7A, 8A,14B, 15B, 16B, 17C, 18C, 19C, 20D,		
Tanimura e Sato (2005)	18	21D, 33A, 34A, 39E, 40E, 46F, 47F e L6L.		
Zhang and Tan (2007)	4	1DB35bw, 1DB50bw, 1DB70bw e 1DB100bw.		
		1-500/0.75W, 2-1000/0.75W, 3-1400/0.75W e		
Tan <i>et al</i> . (2008)	4	4-1750/0.75W.		
Garay e Lubell (2008)	2	MS1-1 e MS1-2.		
Ismail et al. (2016)	5	C2, C3, F2, F3 e G3.		
Wu et al. (2017)	2	DB1-1.04-2 e DB2-1.04-3.		
		I-800-0.75-130, I-1000-0.75-130, I-1400-0.75-13,		
		II-500-1.00-130, II-800-1.00-130,		
Wu et al. (2020)	11	II-1000-1.00-130, II-1400-1.00-130,		
		III-500-1.00-200, III-800-1.00-200,		
		III-1000-1.00-200 e III-1400-1.00-200.		
Total	102			
		Easter Autor (2020)		

Fonte: Autor (2020).

3.2.2 Determinação dos erros de modelo

Realizações do erro de modelo ε_i são dadas pela razão entre resistência real, obtida no ensaio experimental (P_{exp}), e a resistência teórica de cálculo, obtida do modelo (P_M):

$$\varepsilon_i = \frac{P_{exp}}{P_M} \tag{144}$$

onde:

 ε_i = realização do erro de modelo;

 P_{exp} = resistência do ensaio;

 P_M = resistência do modelo.

Segundo Beck (2019), um erro de modelo com média maior que 1 indica que o modelo é conservador em média. Isso significa que o modelo prevê mais provavelmente resistências menores que a resistência real. O modelo ideal seria aquele com erro de modelo com média igual a 1 e desvio padrão igual a 0.

Para cada ensaio de viga-parede obtido na literatura, foram calculadas as resistências dos modelos, conforme modelo avaliado, utilizando as propriedades geométricas e mecânicas fornecidas pelos pesquisadores dos ensaios sem aplicação dos coeficientes de segurança, e, por conseguinte, foram calculados os respectivos erros de modelo.

A partir dos valores dos erros de modelo obtidos, foi realizada a análise estatística dos dados; foram calculados a média, o desvio-padrão, o coeficiente de variação, o máximo e o mínimo da amostra, com o intuito de caracterizar os modelos apresentados; e, por fim, foram avaliadas as distribuições de probabilidade que melhor se ajustaram aos resultados.

Destaca-se que nem todos os experimentos puderam ser avaliados para todas as metodologias, já que algumas restrições não foram verificadas. Cada metodologia de cálculo possui um limite de validação dos ângulos das bielas, ACI 318 ($25^{\circ} \le \theta \le 65^{\circ}$), NBR 6118 ($30^{\circ} \le \theta \le 63^{\circ}$), EUROCODE 2 ($21^{\circ} \le \theta \le 45^{\circ}$) e Schäfer e Schläich (1991) ($45^{\circ} \le \theta \le 60^{\circ}$).

Para a determinação do erro de modelo foram selecionados os resultados dentro dos limites de validação estabelecidos para cada metodologia. Justifica-se assim o número diferente de experimentos para cada modelo, conforme metodologia adotada.

No caso dos Modelos 2 e 3, devido a geometria imposta por eles, não foi possível obter experimentos suficientes que obedecessem as restrições para os critérios do EUROCODE 2 e de Schäfer e Schläich (1991).

Portanto, neste trabalho, os erros de modelo do Modelo 1 foram avaliados pelos critérios do ACI 318, NBR 6118, EUROCODE 2 e dos pesquisadores Schäfer e Schläich (1991); e dos Modelos 2 e 3 foram avaliados pelos critérios do ACI 318 e da NBR 6118.

3.2.2.1 Determinação de estatísticas do erro de Modelo 1

A Figura 35 apresenta os resultados das cargas experimentais dos ensaios comparadas com as respectivas cargas obtidas nos modelos de cálculo do Modelo 1. Por meio dos gráficos, pode-se depreender que os modelos de bielas e tirantes se mostraram adequados para todos os critérios; e, além disso, observa-se que a maioria dos resultados experimentais é maior do que a carga de falha prevista, comprovando o conservadorismo do método, que é baseado no limite inferior da teoria da elasticidade.

Figura 35 - Comparação entre cargas experimentais e cargas previstas nos modelos para o Modelo 1: (a) ACI 318, (b) NBR 6118, (c) EUROCODE2 e (d) Schäfer e Schläich (1991).

Fonte: Autor (2020).

A Tabela 4 apresenta os resultados estatísticos dos erros de modelo do Modelo 1.

Tabela	4 - values	estatisticos (ios erros de	modelo para		
Modelo 1	μ	σ	CV	Mínimo	Máximo	Ensaios
ACI 318	1,325	0,269	0,203	0,758	2,217	191
NBR 6118	1,548	0,356	0,230	0,838	2,888	157
EUROCODE 2	1,570	0,372	0,237	0,759	3,122	181
Schäfer e Schläich (1991)	1,350	0,274	0,203	0,896	2,149	35

Tabela 4 – Valores estatísticos dos erros de	modelo para o Modelo 1.
--	-------------------------

Fonte: Autor (2020).

Ao analisar os dados, constata-se que todos os modelos do Modelo 1 são conservadores em média, ou seja, apresentam valores médios maiores do que 1.

3.2.2.2 Determinação de estatísticas do erro de Modelo 2

A Figura 36 apresenta os resultados das cargas experimentais dos ensaios comparadas com as respectivas cargas obtidas nos modelos de cálculo do Modelo 2. Verificase, por intermédio dos gráficos, que os resultados dos modelos de bielas e tirantes para ambos os critérios se mostraram adequados, com a maioria dos resultados experimentais maiores que a carga do modelo prevista.

Figura 36 – Comparação entre cargas experimentais e cargas previstas nos modelos para o Modelo 2: (a) ACI 318 e (b) NBR 6118.

Fonte: Autor (2020).

A Tabela 5 apresenta os resultados dos valores estatísticos dos erros de modelo do Modelo 2.

Tabela	5 – Valores e	statísticos d	os erros de	modelo para	o Modelo 2	
Modelo 2	μ	σ	CV	Mínimo	Máximo	Ensaios
ACI 318	1,588	0,389	0,245	0,823	2,685	102
NBR 6118	1,730	0,405	0,234	0,879	3,30	66
		Fonte: A	utor (2020).			

Observa-se ainda que todos os modelos são conservadores em média.

3.2.2.3 Determinação de estatísticas do erro Modelo 3

A Figura 37 apresenta os resultados das cargas experimentais dos ensaios comparadas com as respectivas cargas obtidas nos modelos de cálculo do Modelo 3. Da mesma forma, observa-se que os resultados dos modelos de bielas e tirantes para ambos os critérios se mostraram adequados, com a maioria das cargas experimentais maiores que a carga do modelo prevista.

Figura 37 - Comparação entre cargas experimentais e cargas previstas nos modelos para o Modelo 3: (a) ACI 318 e (b) NBR 6118.

Fonte: Autor (2020).

A Tabela 6 apresenta os resultados dos valores estatísticos para os erros de modelo do Modelo 3.

Modelo 3	μ	σ	CV	Mínimo	Máximo	Ensaios
ACI 318	1,311	0,292	0,223	0,793	2,223	80
NBR 6118	1,613	0,395	0,245	0,947	2,729	67

Fonte: Autor (2020).

Depreende-se ainda que todos os modelos são conservadores em média.

3.2.3 Ajustes de distribuição

Após determinados os valores estatísticos dos erros de modelo, foram avaliadas as distribuições de probabilidade que melhor representavam cada erro de modelo em questão. Para tanto, utilizou-se o método da máxima verossimilhança (EMV) por meio do algoritmo *allfitdist* desenvolvido por Sheppar (2012) em linguagem MATLAB.

Para validar a escolha das distribuições, foram utilizados os testes de aderência quiquadrado (χ^2) e de Kolmogorov-Smirnov (K-S).

3.2.3.1 Ajustes de distribuição do Modelo 1

A Figura 38 ilustra os histogramas dos conjuntos de dados dos erros de modelo do Modelo 1 e as curvas das quatro melhores distribuições ajustadas, ordenadas do melhor para o pior ajuste.

Os resultados dos testes de aderência para cada uma das quatro melhores distribuições dos erros de modelo do Modelo 1 são apresentados na Tabela 7.

Modelo 1	Distribuição	χ	,2	K-S	
	Distribulção	Valor - p	Hipótese	Valor - p	Hipótese
	lognormal	0,856	(0)	0,942	(0)
A CT 219	gamma	0,834	(0)	0,932	(0)
ACI 318	normal	0,276	(0)	0,660	(0)
	weibull	0,005	(1)	0,247	(0)
NBR 6118	lognormal	0,387	(0)	0,752	(0)
	gamma	0,135	(0)	0,464	(0)
	normal	0,003	(1)	0,097	(0)
	weibull	0,00002	(1)	0,029	(0)
EUROCODE 2	gamma	0,183	(0)	0,825	(0)
	lognormal	0,062	(0)	0,487	(0)
	normal	0,185	(0)	0,885	(0)
	weibull	0,014	(1)	0,412	(0)

Tabela 7 – Ajustes de distribuição e testes de aderência – Modelo 1.

	lognormal	0,954	(0)	0,992	(0)	
Schäfer e	gamma	0,904	(0)	0,956	(0)	
Schläich (1991)	normal	0,690	(0)	0,804	(0)	
	weibull	0,292	(0)	0,613	(0)	
(0): Não reieita a	hinótese nula					

(1): Rejeita

Fonte: Autor (2020).

Figura 38 – Ajustes de distribuição de probabilidade para erros de modelo do Modelo 1: (a) ACI 318, (b) NBR 6118, (c) EUROCODE2 e (d) Schäfer e Schläich (1991).

Fonte: Autor (2020).

Para as metodologias do ACI 318, NBR 6118 e Schäfer e Schläich (1991), a distribuição lognormal foi a que melhor representou o erro de modelo. Verifica-se também,

por meio dos testes de aderência, que, não há evidências para rejeitar que a distribuição lognormal represente os dados, considerando um nível de significância de 5%.

Para a metodologia do EUROCODE 2, a distribuição gamma gerou o melhor ajuste. Entretanto, para esse modelo, os resultados obtidos para a distribuição lognormal foram semelhantes aos obtidos para a distribuição gamma. Então, optou-se por adotar a lognormal como a distribuição representante do modelo, por ser a mais usual para representar modelos de resistência. Ademais, por meio dos testes de aderência, constata-se que não há evidências para rejeitar que a distribuição lognormal não possa representar a amostra de dados, considerando um nível de significância de 5%.

3.2.3.2 Ajustes de distribuição do Modelo 2

A Figura 39 apresenta os histogramas dos conjuntos de dados dos erros de modelo do Modelo 2 e as curvas das quatro melhores distribuições ajustadas, ordenadas do melhor para o pior ajuste.

2 2 dados dados Densidade de Probabilidade Densidade de Probabilidade lognormal lognormal gamma gamma 1.5 1.5 - normal - normal ···· weibull ····· weibull 1 1 0.5 0.5 0 0.5 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 3.5 Valores Valores (a) (b)

Figura 39 – Ajustes de distribuição de probabilidade para erros de modelo do Modelo 2: (a) ACI 318 e (b) NBR 6118.

Fonte: Autor (2020).

Os resultados dos testes de aderência para cada uma das quatro melhores distribuições dos erros de modelo do Modelo 2 são apresentados Tabela 8.

		χ	,2	K-S	
Modelo 2	Distribuição	Valor - p	Hipótese	Valor - p	Hipótese
	lognormal	0,147	(0)	0,378	(0)
ACI 318	gamma	0,079	(0)	0,215	(0)
	normal	0,003	(1)	0,044	(1)
	weibull	0,0001	(1)	0,017	(1)
	lognormal	0,178	(0)	0,182	(0)
NBR 6118	gamma	0,072	(0)	0,232	(0)
	normal	0,014	(1)	0,232	(0)
	weibull	0,002	(1)	0,046	(1)
(0): Não rejeita	a hipótese nula				

Tabela 8 - Ajustes de distribuição e testes de aderência - Modelo 2

(1): Rejeita

Fonte: Autor (2020).

A distribuição lognormal foi a que melhor representou os dados para as metodologias do ACI 318 e da NBR 6118. Observa-se, por meio dos testes de aderência, que não há evidências para rejeitar que as distribuições lognormal e gamma não possam representar os dados, tendo em vista um nível de significância de 5%.

3.2.3.3 Ajustes de distribuição do Modelo 3

A Figura 40 apresenta os histogramas dos conjuntos de dados dos erros de modelo do Modelo 3 e as curvas das quatro melhores distribuições ajustadas, ordenadas do melhor para o pior ajuste.

Os resultados dos testes de aderência para cada uma das quatro melhores distribuições dos erros de modelo do Modelo 3 são apresentados Tabela 9.

Figura 40 – Ajustes de distribuição de probabilidade para erros de modelo do Modelo 3: (a) ACI 318 e (b) NBR 6118.

Fonte: Autor (2020).

		χ	²	K-S		
Modelo 3	Distribuição	Valor - p	Hipótese	Valor - p	Hipótese	
	lognormal	0,307	(0)	0,266	(0)	
A CI 210	gamma	0,313	(0)	0,190	(0)	
ACI 318	normal	0,164	(0)	0,065	(0)	
	weibull	0,013	(1)	0,016	(1)	
	lognormal	0,837	(0)	0,969	(0)	
NDD (110	gamma	0,791	(0)	0,859	(0)	
NBK 6118	normal	0,496	(0)	0,583	(0)	
	weibull	0,284	(0)	0,666	(0)	
(0): Não rejeita	a hipótese nula					

Tabela 9 – Ajustes de distribuição e testes de aderência – Modelo 3.

(1): Rejeita

Fonte: Autor (2020).

Novamente, a distribuição lognormal foi a que melhor representou os dados para as metodologias do ACI 318 e da NBR 6118. Constata-se, por meio dos testes de aderência, que não há evidências para rejeitar que as distribuições lognormal não possam representar os dados, tendo em vista um nível de significância de 5%.

Os resultados e a caracterização das variáveis erros de modelo para cada um dos modelos do estudo estão apresentados na Tabela 10.

Distribuição	μ	CV
lognormal	1,325	0,203
lognormal	1,548	0,230
lognormal	1,570	0,237
lognormal	1,350	0,203
lognormal	1,588	0,245
lognormal	1,730	0,234
lognormal	1,311	0,223
lognormal	1,613	0,245
	Distribuição lognormal lognormal lognormal lognormal lognormal lognormal lognormal lognormal	Distribuição μ lognormal 1,325 lognormal 1,548 lognormal 1,570 lognormal 1,350 lognormal 1,588 lognormal 1,730 lognormal 1,311 lognormal 1,613

3.3 ANÁLISE DE CONFIABILIDADE

A análise de confiabilidade para os três modelos de bielas e tirantes, Modelo 1, Modelo 2 e Modelo 3, é efetuada considerando a seguinte equação de estado limite:

$$g(\mathbf{X}) = \theta_R R(\mathbf{X}) - \theta_s S(\mathbf{X}) \tag{145}$$

onde:

 $g(\mathbf{X}) =$ Função de estado limite; $R(\mathbf{X}) =$ Função de resistência; $S(\mathbf{X}) =$ Função de solicitação; $\theta_R =$ Erro de modelo de resistência; $\theta_s =$ Erro de modelo das solicitações. Para o Modelo 1 foram estabelecidas 5 equações de estado limite, considerando a simetria do modelo. As funções de falha $g(\mathbf{X})$, do modelo de biela e tirante, foram definidas para a falha das bielas S_1 e S_2 , para o tirante T_1 e para os nós N_1 e N_2 .

Para o Modelo 2 foram estabelecidas 8 equações de estado limite, levando em consideração também a simetria do modelo. As funções de falha $g(\mathbf{X})$ foram definidas para a falha das bielas S_1 , S_2 , S_3 e S_4 , tirantes T_1 , T_2 e T_3 e para os nós N_1 e N_4 .

Para o Modelo 3 foram estabelecidas também 8 equações de estado limite, levando em consideração também a simetria do modelo. As funções de falha $g(\mathbf{X})$ foram definidas para a falha das bielas S_1 , S_2 , S_3 e S_4 , tirantes T_1 , T_2 (tirante de concreto) e T_3 e para os nós N_1 e N_4 .

As funções de solicitações e resistências para cada modelo estão apresentadas na seção 3.1.

Como os modelos de bielas e tirantes das análises são formados por um sistema em série, a falha do sistema será dada pela falha em um dos seus componentes, tirantes, bielas ou nós.

As seguintes variáveis aleatórias foram consideradas na análise:

$$\mathbf{X} = \{G_k, Q_k, f_c, f_t, f_y, h, b, b_1, b_2, a, d, A_s, \theta_R, \theta_s\}$$
(146)

A variável aleatória f_t , que representa a resistência a tração do concreto está presente apenas no Modelo 3.

Os valores estatísticos e característicos da análise de confiabilidade, bem como suas descrições são apresentados Tabela 11.

Variáveis aleatórias	Símb.	Distr.	Dim.	μ_{x}	σ_x	Fonte
Carregamento permanente	G _k	Normal	kN	1,05 G _k	0,10µ _x	Ellingwood e Galambos (1982)
Carregamento acidental	Q_k	Gumbel	kN	1,00 Q _k	0,25µ _x	Ellingwood e Galambos (1982)

Tabela 11 – Valores estatísticos e característicos da análise da confiabilidade.

Resistência do concreto à compressão	f _{ck}	Normal	MPa	f_{ck} +1,65 σ_x	4	NBR 12655 (2015)
Resistência do concreto à tração	f _{tk}	Normal	MPa	f_{tm}	0,218µ _x	Araujo (2012)
Resistência ao escoamento do aço	f _{yk}	Normal	MPa	1,18 <i>f_{yk}</i>	0,04µ _x	Santiago (2019)
Altura da viga	h	Normal	mm	h_n	$4+0,006h_n$	JCSS (2001)
Largura da viga	b	Normal	mm	b_n	4+0,006 <i>b</i> _n	JCSS (2001)
Largura do nó N1	<i>b</i> ₁	Normal	mm	b_{1n}	4+0,006 <i>b</i> _{1n}	JCSS (2001)
Largura do nó N2	<i>b</i> ₂	Normal	mm	b_{2n}	4+0,006 <i>b</i> _{2n}	JCSS (2001)
Vão de Cisalhamento	а	Normal	mm	a _n	4+0,006a _n	JCSS (2001)
Centro Geométrico da Armadura do Tirante	d	Normal	mm	d_n	10	JCSS (2001)
Área de aço do Tirante	A _s	Normal	mm ²	A_s	0,015µ _x	Stucchi e Santos (2007)
Erro de modelo da Resistência	$ heta_R$	Erro de modelo	-	Conforme cada modelo	Conforme cada modelo	Autor (2020)
Erro de modelo da Solicitação	$ heta_s$	Lognormal	-	1	0,1 <i>µ</i> _x	JCSS (2001)

Fonte: Autor (2020).

3.3.1 Descrição do problema

A viga-parede do estudo é baseada na geometria do exemplo prático apresentado por Reineck (2002) para uma viga-parede dimensionada pelo método das bielas e tirantes, utilizando os critérios do ACI.

A geometria da viga-parede é indicada na Figura 41. A viga apresenta comprimento total (*L*) de 6908 mm, vão livre (*l*) de 6096 mm, largura (*b*) de 508 mm, vão de cisalhamento (*a*) de 2032 mm, largura do apoio (*b*₁) de 457 mm, largura do apoio (*b*₂) de 457 mm, altura (*h*) de 2032 mm. O concreto possui f_{ck} de 35 MPa e o aço f_{vk} de 500 MPa.

Fonte: Autor (2020).

A carga aplicada V, em cada ponto de aplicação de carga, é resultante da soma de uma parcela de carga permanente G_k e uma parcela de carga variável Q_k dado por:

$$V = \gamma_a G_k + \gamma_a Q_k \tag{147}$$

Foi considerado um carregamento atuante G_k =750 kN e Q_k =750 kN.

Os valores dos coeficientes de majoração das solicitações γ_g e γ_q foram estabelecidos conforme metodologia de cálculo em análise.

Os carregamentos são aplicados de forma simultânea e existe dependência perfeita do ponto de vista probabilístico entre eles.

As análises de confiabilidade são realizadas para os Modelos 1, 2 e 3. Para o Modelo 1, são utilizados os critérios de cálculo do ACI 318, da NBR 6118, do EUROCODE 2 e dos pesquisadores Schäfer e Schläich (1991). O Modelos 2 e 3 são avaliados pelos critérios do ACI 318 e da NBR 6118, pois, nesses dois modelos a geometria da viga-parede do problema, impõe ângulos das bielas fora dos limites estabelecidos para o EUROCODE ($21^{\circ} \le \theta \le 45^{\circ}$) e Schäfer e Schläich (1991) ($45^{\circ} \le \theta \le 60^{\circ}$).

Os coeficientes parciais de segurança no ELU para as metodologias utilizadas são apresentados na Tabela 12.

Matadalagias	Resist	tência	Carregamentos		
Metodologias	Concreto	Aço	Permanente	Acidental	
ACI 318	* <i>ф</i> =0,75	* \$\$\$ =0,75	$\gamma_c = 1,20$	$\gamma_c = 1,60$	
NBR 6118	$\gamma_c = 1,40$	$\gamma_{s} = 1,15$	$\gamma_{c} = 1,40$	$\gamma_{c} = 1,40$	
EUROCODE 2	$\gamma_c = 1,50$	$\gamma_{s} = 1,15$	$\gamma_{c} = 1,35$	$\gamma_{c} = 1,50$	
Schäfer e Schläich (1991)	$\gamma_c = 1,40$	$\gamma_{s} = 1,15$	$\gamma_c = 1,40$	$\gamma_c = 1,40$	
*Fator redutor da resistência					

Tabela 12 – Coeficientes parciais de segurança e fatores redutores de resistência.

Fonte: Autor (2020).

3.3.2 Dimensionamento

Os Modelos 1, 2 e 3 foram dimensionados conforme as equações apresentadas nos itens 3.1.1, 3.1.2 e 3.1.3. As dimensões dos modelos de bielas e tirantes e as armaduras são apresentadas na Tabela 13.

Com intuito de validar e ilustrar o dimensionamento, foram feitas verificações no *software* CAST (*Computer Aided Strut and Tie*), as quais são apresentadas na Figura 42 e na Figura 43. Para cada modelo são apresentadas as solicitações nos elementos do modelo de bielas e tirantes e a razão entre os esforços resistentes e solicitantes.

		Mo	delo 1	Γ	Modelo 2		Modelo 3	
Dimensões		NDD	. .	Schlaich		NDD		NIDD
	ACI	NBK	Eurocode	e Schäfer	ACI	NBK	ACI	NBR
a. (mm)	315	314	405	314	310	318	310	318
u_1 (mm)	252	2((244	229	200	202	200	202
$a_2 (\mathrm{mm})$	252	266	344	228	306	283	306	283
w_{11} (mm)	537	536	603	536	545	551	545	551
$w_{21}(mm)$	489	499	556	472	-	-	-	-
<i>w</i> ₂ (mm)	252	266	344	228	-	-	-	-
w ₂₂ (mm)	-	-	-	-	367	358	367	358
w ₃₃ (mm)	-	-	-	-	155	143	155	143
w ₄₄ (mm)	-	-	-	-	306	283	306	283
α (°)	40,72	40,61	39,20	40,73	-	-	-	-
α_1 (°)	-	-	-	-	46,3	46,4	46,3	46,4
α_2 (°)	-	-	-	-	33,1	33,1	33,1	33,1
α_3 (°)	-	-	-	-	59,5	59,6	59,5	59,6
$L_d(mm)$	1749	1742	1657	1750	1724	1731	1724	1731
$L_{T1}(mm)$	-	-	-	-	1016	1016	1016	1016
L_{T2} (mm)	-	-	-	-	1063	1068	1063	1068
d ′ (mm)	157	157	202	157	155	159	155	159
d (mm)	1875	1875	1830	1875	1877	1873	1877	1873
$T_1 - A_s$ (cm ²)	65,97	56,55	60,32	56,55	66,60	57,18	66,60	57,18
$T_2 - A_s$ (cm ²)	-	-	-	-	21,99	18,85	-	-
$\begin{array}{c} T_3 - A_s \\ (\text{cm}^2) \end{array}$	-	-	-	-	66,60	57,18	66,60	57,18
T_1	21 Ø 20	18 Ø 20	16 Ø 20 5 Ø 16	18 Ø 20	18 Ø 20 5 Ø 16	15 Ø 20 5 Ø 16	18 Ø 20 5 Ø 16	15 Ø 20 5 Ø 16
T_2	-	-	-	-	28 Ø 10	24 Ø 10	-	-
T_3	-	-	-	-	18 Ø 20 5 Ø 16	15 Ø 20 5 Ø 16	18 Ø 20 5 Ø 16	15 Ø 20 5 Ø 16

Tabela 13 – Dimensionamento.

Fonte: Autor (2020)

Figura 42 – Modelo 1: (a) ACI 318, (b) NBR 6118, (c) EUROCODE2 e (d) Schäfer e Schläich (1991).

Fonte: Autor (2020).

Figura 43 – Modelo 2: (a) ACI 318 e (b) NBR 6118, Modelo 3: (c) ACI 318 e (d) NBR 6118.

Fonte: Autor (2020).

3.3.3 Importância das variáveis aleatórias

Com a utilização do FORM é possível obter os parâmetros de sensibilidade das variáveis aleatórias envolvidas no problema. Esses parâmetros fornecem uma aproximação (linear) da contribuição relativa de cada variável na composição da probabilidade de falha.

A Figura 44, Figura 45 e Figura 46 apresentam os fatores de importâncias das variáveis aleatórias dos Modelos 1, 2 e 3, respectivamente, na constituição da probabilidade individual de falha das bielas, tirantes e nós, que constituem cada modelo.

Figura 44 – Fatores de importância das variáveis aleatórias Modelo 1: (a) ACI 318, (b) NBR 6118, (c) EUROCODE 2 e (d) Schäfer e Schläich (1991).

Figura 45 – Fatores de importância das variáveis aleatórias do Modelo 2: (a) ACI 318 e (b) NBR 6118.

De forma geral, verifica-se que a variável de resistência θ_r (erro de modelo de resistência) tem grande impacto na probabilidade de falha, apresentando uma importância relativa na ordem de 40 a 50% para o Modelo1 e na ordem de 50% para os Modelo 2 e 3.

Para o Modelo 3, em que o tirante T_2 é constituído de concreto, observa-se também uma importância relativa elevada da variável f_{ct} , com valores superiores a 80%, na contribuição para a probabilidade de falha do tirante T_2 , impactando diretamente na probabilidade de falha desse modelo.

Constata-se também, fatores de importância elevados para a variável de solicitação Q_k , na ordem de 30% a 40% para todos os Modelos, a depender da equação de estado limite. Observa-se adicionalmente, fatores de importância na ordem de 10 a 15%, para a variável de resistência f_{ck} , e na ordem de 10% para a variável de solicitação θ_s .

Afere-se, também, a variável *d* como uma variável de solicitação. Para o Modelo 1, o fator de importância é na ordem de 2 a 4%, na composição da probabilidade de falha da biela S_2 . Para os Modelos 2 e 3, na ordem de 5%, na composição da probabilidade de falha das bielas S_3 e S_2 , respectivamente.

Figura 46 – Fatores de importância das variáveis aleatórias do Modelo 3: (a) ACI 318 e (b) NBR 6118.

Fonte: Autor (2020).

Com relação à variável de resistência f_y , a importância é na ordem de 2% para todos os Modelos. Para a variável de solicitação G_k , constata-se uma importância relativa baixa, na ordem de 1% para todos os modelos.

Por fim, observa-se que as variáveis aleatórias a, b, b_1 , b_2 , A_{sl} e A_{sw} apresentam importâncias relativas menores do 1%, com baixa contribuição para as probabilidades de falha.

Visto que a variável aleatória θ_r apresentou fator de importância elevado e as demais variáveis aleatórias de resistência, *b*, *b*₁, *b*₂ e *A*_s apresentaram fatores de importância muito baixos, realizou-se também, uma análise de sensibilidade para o Modelo 1 do ACI considerando a variável θ_r com valor igual a 1 e determinística (Figura 47), afim de se avaliar a influência da variável θ_r na importância das demais variáveis de resistência.

Figura 47 – Fatores de importância das variáveis aleatórias, Modelo 1 – ACI: θ_r =1 e determinístico

Fonte: Autor (2020).

Como resultado da simulação, verificou-se que os fatores de importância das variáveis, b, b_1 , b_2 e A_s , continuaram muito baixos e os acréscimos nos fatores de importâncias se deram nas VAs f_{ck} , Q_k e h, constatando-se assim, que as respectivas variáveis tem mesmo pouco impacto na probabilidade de falha dos modelos, fato que pode estar relacionado às baixas variabilidades dessas VAs.

3.3.4 Resultados da análise de confiabilidade

Os resultados dos índices de confiabilidade do sistema (β), peso de aço (M) e o índice de eficiência $\left(\frac{\beta}{M}\right)$ para os Modelos 1, 2 e 3, são apresentados na Tabela 14.

Em resumo, cada Modelo é dimensionado segundo as metodologias das normas e da literatura, resultando em diferentes estruturas. Em seguida, nas análises de confiabilidade, cada estrutura tem seu índice de confiabilidade calculado via simulação de Monte Carlo, empregando funções de estado limite baseadas nas respectivas metodologias de dimensionamento e considerando também os respectivos erros de modelo. Assim, as análises foram divididas em oito casos distintos.

cheleneta.			
CASOS	M - Peso de aço (kg)	β	Índice de eficiência $\frac{\beta}{M} (10^{-3})$
CASO 1: Modelo 1;			
Dimensionamento segundo ACI 318;	353,62	3,68	10,41
Funções de estado limite baseadas no ACI 318.			
CASO 2: Modelo 1;			
Dimensionamento segundo NBR 6118;	303,10	3,51	11,58
Funções de estado limite baseadas na NBR 6118.			
CASO 3: Modelo 1;			
Dimensionamento segundo EUROCODE 2;	323,31	3,62	11,20
Funções de estado limite baseadas no EUROCODE 2.			
CASO 4: Modelo 1 ;			
Dimensionamento segundo Schäfer e Schläich (1991);	202 10	2 2 2	10.05
Funções de estado limite baseadas - Schäfer e Schläich	303,10	3,32	10,95
(1991)			
CASO 5: Modelo 2;			
Dimensionamento segundo ACI 318;	375,45	3,98	10,60
Funções de estado limite baseadas no ACI 318.			
CASO 6: Modelo 2;			
Dimensionamento segundo NBR 6118;	322,30	3,79	11,76
Funções de estado limite baseadas na NBR 6118.			
CASO 7: Modelo 3;			
Dimensionamento segundo ACI 318;	356,98	3,30	9,24
Funções de estado limite baseadas no ACI 318.			
CASO 8: Modelo 3;			
Dimensionamento segundo NBR 6118;	306,47	3,19	10,41
Funções de estado limite baseadas na NBR 6118.			

Tabela 14 – Comparativo entre os Modelos – Peso de aço, índice de confiabilidade e índice de eficiência.

Fonte: Autor (2020).

O Modelo 2 apresenta armadura vertical e maior quantidade de aço, o que contribui para a obtenção de maiores valores do índice de confiabilidade. É de se esperar que uma maior quantidade de aço implique em menor probabilidade de falha, pois as propriedades do aço têm menor variabilidade do que as do concreto. No entanto, mais aço também resulta em maiores custos, corroborando com a tese de que, geralmente, mais segurança implica maiores

custos, apesar de que muitas vezes é possível reduzir custos mantendo o nível de segurança por meio de procedimentos de otimização baseada em confiabilidade.

Ao se dividir o índice de confiabilidade β , pelo peso de aço total dos tirantes do modelo, pode-se estabelecer uma medida de eficiência, ou índice de eficiência. Assim, da mesma forma, ao se comparar os Modelos 1, 2 e 3 para uma mesma metodologia (ACI e NBR 6118), verifica-se que, o Modelo 2 apresenta também os maiores de índice de eficiência.

Numa comparação, para uma mesma metodologia (ACI e NBR 6118), entre os Modelos 1 e 3, (ambos com vigas sem armadura vertical), observa-se que, embora o Modelo 3 demande maior armadura, ainda assim, apresenta valores de β menores do que o Modelo 1.

Dessa forma, pode-se concluir que o Modelo 3 é o menos eficiente do ponto de vista de segurança e o menos econômico, o que pode ser constatado também, pelos menores índices de eficiências.

3.3.5 Avaliação da ductilidade

Com o intuito de avaliar a ductilidade de modelos de bielas e tirantes por meio de técnicas de confiabilidade, foi elaborado um estudo comparativo entre os modelos estudados, onde foram traçados gráficos do índice de confiabilidade e da razão de falha χ_i em função do f_{ck} .

A Figura 48 apresenta o índice de confiabilidade em função do f_{ck} , para os Modelos 1, 2 e 3. Por meios dos gráficos, verifica-se um aumento gradual do índice de confiabilidade com o acréscimo da resistência do concreto para todos os modelos, o que é esperado. No entanto, para os Modelos 1 e 2 esse acréscimo, apresenta um limite bem estabelecido, a partir do qual o índice de confiabilidade se mantém constante. Desse ponto em diante, a resistência do concreto não mais contribui para o aumento do índice de confiabilidade, que passa a ser governado pelo escoamento da armadura do tirante. Para aumentar o índice de confiabilidade a partir desse ponto seria necessário aumentar a área de aço dos tirantes.

Esses valores são apresentados na Tabela 15, e representam os máximos valores de índice de confiabilidade que as diferentes estruturas do Modelo 1 e 2 poderiam alcançar com o acréscimo da resistência à compressão do concreto. Da mesma forma, verifica-se que os modelos com mais aço apresentam maiores valores máximos de índice de confiabilidade.

4.5 4 3.5 .1 Ы L1 3 θ 2.5 ----*****--- ACI NBR6118 2 - Schafer e Schlaich – ⊟ – Eurocode 1.5 20 30 40 50 60 fck (MPa) (a) 4.5 4 3.5 \mathcal{O} 3 2.5 2 ••••••• ACI •••• NBR6118 1.5 └─ 20 40 30 50 60 fck (MPa) (b) 4.5 4 3.5 \mathcal{O} 3 2.5 2 1.5 └─ 20 30 40 50 60 70 fck (MPa) (c)

Figura 48 – Índice de confiabilidade x resistência do concreto: (a) Modelo 1, (b) Modelo 2 e (c) Modelo 3.

Fonte: Autor (2020)

Modelos	f _{ck}	β
Modelo 1 - ACI 318	44,6	3,85
Modelo 1 - NBR 6118	43,8	3,58
Modelo 1 - EUROCODE 2	35,0	3,62
Modelo 1 - Schäfer e Schläich (1991)	42,2	3,40
Modelo 2 - ACI 318	40,7	4,00
Modelo 2 - NBR 6118	38,0	3,80
Fonte: A	utor (2020)	

Tabela 15 – Patamares limites do índice de confiabilidade.

Para as estruturas do Modelo 3, que possuem um tirante de concreto (T_2) , constata-se que a princípio o aumento no f_{ck} altera significativamente o índice de confiabilidade. Porém, o β tende a se estabilizar para f_{ck} suficientemente alto. Isso se deve ao fato de que, para maiores valores de f_{ck} , têm-se maiores valores de f_{ct} , e com o acréscimo da resistência do concreto à tração há contribuição no índice de confiabilidade, devido ao aumento da resistência do tirante T_2 .

A Figura 49 apresenta as razões de falha do Modelo 1, obtidas segundo a Equação (86) para as metodologias do ACI 318, NBR 6118, EUROCODE 2 e Schäfer e Schläich (1991).

Verifica-se que as funções de falha mais importantes para o Modelo 1 são: a falha nas biela S_1 ou S_2 (ruptura frágil) e a falha no tirante T_1 (ruptura dúctil). Pode-se observar que a probabilidade de falha na biela é maior, para valores menores da resistência característica do concreto. Com o aumento do f_{ck} a probabilidade de falha em S_1 ou S_2 diminui e no tirante T_1 aumenta, até um ponto de transição, onde a falha tem maior probabilidade de ocorrer no tirante. Assim, acima desse ponto tem-se uma maior probabilidade de ocorrência de uma ruptura dúctil para o modelo de bielas e tirantes, o que é esperado para as estruturas de concreto armado. Maior ductilidade pode reduzir as consequências de falha. A ductilidade permite, por exemplo, evacuar a estrutura antes que a mesma entre em colapso, reduzindo as consequências deste colapso, ou possibilitar uma manutenção ou reparo.

Figura 49 – Modelo 1: (a) ACI 318, (b) NBR 6118, (c) EUROCODE2 e (d) Schäfer e Schläich (1991).

Constata-se também, que as funções de falha para os nós N_1 e N_2 apresentam pouca importância, ou seja, baixa probabilidade de ocorrência.

Como todos os modelos foram dimensionados para f_{ck} =35 MPa, verifica-se, que a ruptura tem maior probabilidade de ser dúctil em todos os modelos.

A Figura 50 apresenta os gráficos das razões de falha do Modelo 2, para as metodologias do ACI 318 e NBR 6118. Para a metodologia do ACI 318, verifica-se que as funções de falha mais importantes são a falha na biela S_3 , juntamente com a biela S_4 (rupturas frágeis) e a falha no tirante T_3 (ruptura dúctil). No caso da metodologia da NBR 6118, são a falha na biela S_3 e a falha no tirante T_3

Da mesma forma, os modelos foram dimensionados para f_{ck} =35 MPa, verifica-se que a ruptura tem maior probabilidade de ser dúctil nos dois os modelos.

Observa-se também, que as funções de falha para os nós N_1 e N_4 apresentam pouca importância, ou seja, baixa probabilidade de ocorrência.

A Figura 51 apresenta os gráficos das razões de falha do Modelo 3.

Figura 51 – Modelo 3: (a) ACI 318 e (b) NBR 6118.

No tocante a metodologia do ACI 318, verifica-se que as funções de falha mais importantes são a falha na biela S_2 (ruptura frágil) e a falha no tirante T_2 (ruptura também frágil), uma vez que o tirante T_2 é de concreto. Observa-se que, para valores menores do que 25 MPa a ruptura tem maior probabilidade de ocorrer na biela S_2 . Com o aumento da resistência do concreto a ruptura passa a ter maior probabilidade de ocorrer no tirante T_2 , até o valor de f_{ck} de 58 MPa. A partir desse ponto, tem-se uma maior probabilidade de ocorrência de uma ruptura dúctil, dada pelo tirante T_3 .

No que se refere à metodologia da NBR 6118, consta-se que as funções de falha mais importantes são: o tirante T_2 (ruptura frágil) e o tirante T_3 (ruptura dúctil). Para esse modelo percebe-se uma maior probabilidade de ocorrência de falha dúctil para valores f_{ck} acima de 45 MPa.

Novamente, conforme verificado para os demais modelos, observa-se uma baixa importância da probabilidade de falha para os nós, no caso N_1 e N_4 .

Como os modelos foram dimensionados para o f_{ck} de 35 MPa, consta-se que a ruptura teria maior probabilidade de ser frágil para os dois modelos.

Ao comparar os Modelos 1, 2 e 3, dimensionados pelas metodologias do ACI 318 e da NBR 6118 (comuns a todos eles), e analisados segundo mesmas funções de estado limite, constata-se que o Modelo 2 apresenta maior probabilidade de apresentar ruptura dúctil. Esse modelo é também o que apresenta a maior quantidade de armadura e os maiores índices de confiabilidade. O fato de se ter mais aço provavelmente aumenta a ductilidade, o que aumenta a capacidade de deformação da estrutura antes de entrar em colapso.

3.3.6 Avaliação da razão de carga variável

Conforme visto na seção 3.3.3, a variável aleatória carga variável (Q_k) apresenta grande contribuição na probabilidade de falha dos modelos.

Para avaliar a influência de Q_k no comportamento dos índices de confiabilidade dos diferentes modelos, é apresentada a avaliação da confiabilidade para o problema da seção 3.3.1 variando a porcentagem de Q_k em relação ao carregamento total característico ($Q_k + G_k$). Essa relação é dada pelo parâmetro ψ :

$$\psi = \frac{Q_k}{Q_k + G_k} \tag{148}$$

O problema de confiabilidade da seção 3.3.1 considerou a razão de carga variável ψ =0,5, ou seja, Q_k =750kN e G_k =750kN.

Segundo Santos *et al* (2014), para vigas em concreto armado de edifícios os valores de ψ estão usualmente entre 0,1 e 0,6.

Os valores de G_k e Q_k podem ser calculados em função ψ e seus respectivos coeficientes de majoração, por meio das seguintes equações:

$$G_k = \frac{V}{\gamma_g + \gamma_q \frac{\Psi}{(1 - \Psi)}} \tag{149}$$

$$Q_k = \frac{V}{\gamma_g \frac{(1-\psi)}{\psi} + \gamma_q}$$
(150)

$$V = \gamma_g G_k + \gamma_q Q_k \tag{151}$$

Como o carregamento total majorado é mantido constante, independente do valor de ψ , o dimensionamento se mantém inalterado. Portanto, é possível avaliar o efeito da proporção da carga variável nos resultados dos índices de confiabilidade de cada modelo.

Na Figura 52 são apresentados os gráficos da evolução dos índices de confiabilidade com a razão de carga variável ψ para os Modelo 1, 2 e 3.

Para a metodologia do ACI 318, dos Modelos 1 e 2, constata-se inicialmente um aumento de β com acréscimo da proporção da carga variável, atingindo um valor máximo próximo a $\psi = 0,4$. A partir desse ponto, observa-se um declínio nos valores de β com acréscimo de ψ . A metodologia do ACI estabelece coeficientes de majoração das ações $\gamma_a=1,2$ e $\gamma_a=1,6$.

No caso do Modelo 3 dimensionado pela metodologia do ACI, o valor máximo de β é atingido para $\psi = 0,6$, com um declínio mais suave do índice de confiabilidade com o acréscimo de ψ .

No tocante ao Modelo 1 dimensionado pela metodologia do EUROCODE 2, verifica-se um comportamento mais uniforme do índice de confiabilidade para diferentes razões de carga variável. A metodologia de cálculo do EUROCODE 2 estabelece coeficientes de majoração das ações γ_a =1,35 e γ_a =1,5.

Figura 52 – Índice de confiabilidade (β) x razão de carga (ψ): (a) Modelo 1, (b) Modelo 2 e (c) Modelo 3.

Fonte: Autor (2020).

No que se refere aos modelos dimensionados pela metodologia da NBR 6118, observa-se que o valor de β se mantêm praticamente constante, para valores de ψ variando de 0 a 0,20. A partir desse valor, constata-se uma queda acentuada dos valores do índice de confiabilidade. Para os modelos dimensionados por essa metodologia os piores cenários seriam aqueles em que a carga variável Q_k é relativamente grande em relação à carga permanente G_k . O critério da NBR 6118 estabelece coeficientes de majoração das ações $\gamma_a=1,4$ e $\gamma_a=1,4$.

O Modelo 1 dimensionado conforme critério de Schäfer e Schläich (1991), demonstra um comportamento similar ao observado pelos modelos dimensionados pelo critério da NBR 6118. Para essa metodologia foi adotado, também, os valores de γ_g =1,4 e γ_g =1,4.

De maneira geral, constata-se para todos os Modelos uma grande influência da razão de carga variável ψ nos resultados da análise de confiabilidade.

Nos casos em que a carga variável Q_k é relativamente grande em relação à carga permanente G_k , observa-se um melhor comportamento para o modelos dimensionados pelas metodologias do ACI 318 e do EUROCODE 2, que adotam valores de coeficientes de majoração das solicitações menores para a carga permanente e maiores para a carga variável.

Já os modelos dimensionados pelas metodologias da NBR 6118 e de Schäfer e Schläich (1991), e que utilizam os mesmos coeficientes parciais para cargas permanentes e cargas variáveis, apresentam um desempenho pior quando ψ é alto.

3.3.7 Avaliação dos Modelos para a metodologia da NBR 6118 com coeficientes parciais da NBR 8681

Conforme apresentado na seção 3.3.6, para os casos em que a carga variável é grande em relação à carga permanente (ψ é alto), os Modelos dimensionados pela metodologia da NBR 6118 apresentam desempenho pior quanto ao índice de confiabilidade.

Um comportamento semelhante é apresentado por Santos *et al* (2014) para vigas esbeltas dimensionadada por flexão. Para casos com grandes razões de carga variável, os pesquisadores sugerem o dimensionamento por meio dos coeficientes parciais da NBR 8681 para edificações do tipo 1, com coeficientes das ações γ_a =1,35 e γ_a =1,5.

Figura 53 – Comparativo NBR 6118 edificações tipo 1 e tipo 2: (a) Modelo 1, (b) Modelo 2 e (c) Modelo 3.

Fonte: Autor (2020)

Segundo a NBR8681, as edificações tipo 1 são aquelas onde as cargas acidentais superam 5 kN/m² e as edificações tipo 2 são aquelas onde as cargas acidentais não superam 5 kN/m².

A Figura 53 apresenta o comparativo para os Modelos 1, 2 e 3 da NBR 6118 dimensionados segundo os coeficientes da NBR 8681 para edificações do tipo 1 (γ_g =1,35 e γ_q =1,5) e tipo 2 (γ_g =1,4 e γ_q =1,4).

Verifica-se que os Modelos dimensionados para edificações do tipo 1 apresentam índices de confiabilidade mais altos de uma forma geral e melhores para os casos com grandes razões de carga variável.

4 CONSIDERAÇÕES FINAIS

4.1 CONCLUSÃO

Este trabalho apresentou análises de confiabilidade estrutural de três diferentes modelos de bielas e tirantes para vigas-paredes, isostáticas e com duas cargas simétricas, dimensionados por diferentes critérios normativos e de literatura, os quais resultaram em oito estruturas diferentes.

Com a utilização de resultados de ensaios experimentais de vigas-paredes disponíveis na literatura, foi possível elaborar um banco de dados de ensaios de ruptura e determinar estatísticas de erros de modelo. Observou-se que a maioria dos resultados de carga experimental é maior do que a carga de falha prevista nos modelos de cálculo. Foram realizados os ajustes estatísticos e caracterizados os erros de modelo de resistência de cada modelo. Pode-se concluir, por meio dos resultados dos erros de modelo, que os modelos de bielas e tirantes estudados são em média conservadores, independente do tipo e da metodologia utilizada.

Por meio da aplicação do método de confiabilidade FORM, foi possível obter o fator de importância das variáveis aleatórias envolvidas nos problemas, e verificar quais variáveis aleatórias tem maior contribuição nas probabilidades de falha de cada elemento dos modelos de bielas e tirantes analisados. As variáveis aleatórias que apresentaram maior impacto na probabilidade de falha foram: a resistência do concreto a tração (f_{ct}), o erro de modelo de resistência (θ_r) e a carga variável (Q_k), com fatores de importância superiores a 35%. Já as variáveis aleatórias vão de cisalhamento (a), largura (b), largura dos apoios b_1 e b_2 , área de aço dos tirantes A_s apresentaram fatores de importância muito baixos, menores do que 1%.

Com o emprego de técnicas de confiabilidade estrutural foi possível avaliar e comparar diferentes modelos de bielas e tirantes para vigas-parede. Foi utilizada a simulação de Monte Carlo para a obtenção dos índices de confiabilidade de cada modelo, empregando funções de estado limite baseadas nas respectivas metodologias de dimensionamento e considerando também os respectivos erros de modelo.

Para o Modelo 1, foram obtidos valores de índices de confiabilidade de 3,68, 3,62, 3,51 e 3,32 para as metodologias do ACI 318, do EUROCODE 2, da NBR 6118 e de Schäfer e Schläich (1991), respectivamente. Para o Modelo 2, foram obtidos índices de confiabilidade de 3,98 e 3,79, para as metodologias do ACI 318 e NBR 6118, respectivamente. E por fim,

para o Modelo 3, foram obtidos índices de confiabilidade de 3,30 e 3,19, respectivamente, para as metodologias do ACI 318 e NBR 6118.

Pode-se concluir que o Modelo 2, que apresenta armadura vertical, foi o mais seguro dentre os modelos estudados. Verificou-se também, que foi o modelo que apresentou maior quantidade de armadura.

Ao realizar as análises de confiabilidade com a variação da resistência à compressão do concreto, observou-se que a princípio o aumento no f_{ck} , altera significativamente os índices de confiabilidade. Porém, o β tende a se estabilizar para f_{ck} mais altos. Quando isso acontece, a falha ocorre no tirante principal de aço, com o escoamento da armadura. Para aumentar o índice de confiabilidade, a partir desse ponto, seria necessário aumentar a área de aço do tirante.

Com a análise de confiabilidade, também foi possível avaliar a ductilidade dos diferentes modelos. Por meio da avaliação das razões de probabilidade de falha (χ_i), pode-se concluir que o Modelo 2 tem maior probabilidade de apresentar ruptura dúctil do que os demais Modelos. Conclui-se, também, que modelos de bielas e tirantes com tirantes em concreto (Modelo 3) apresentam maior probabilidade de apresentar ruptura frágil.

Por intermédio da avaliação da razão de carga variável foi possível avaliar a influência do carregamento variável no comportamento dos índices de confiabilidade dos diferentes modelos dimensionados por diferentes metodologias. Para os casos onde a carga variável é relativamente grande em relação à carga permanente, os modelos dimensionados pelas metodologias do EUROCODE 2 e do ACI 318, que adotam valores de coeficientes de majoração das solicitações menores para a carga permanente e maiores para a carga variável, apresentaram melhores índices de confiabilidade.

Já para os modelos dimensionados conforme a NBR 6118, observou-se uma redução acentuada do índice de confiabilidade para os casos de carregamentos com valores elevados de carga variável em relação ao carregamento permanente. Constatou-se também, que a adoção de coeficientes parciais para edificações do tipo 1 da NBR 8681 se mostrou efetivo nesses casos, com melhora nos valores dos índices de confiabilidade.

4.2 SUGESTÕES PARA TRABALHOS FUTUROS

A seguir são apresentadas sugestões para estudos futuros a cerca do tema:

- a) Elaboração de modelos em elementos finitos de vigas-parede para a avaliação dos erros de modelo e comparação com os erros de modelo obtidos pelos modelos mecânicos analíticos;
- b) Avaliação da análise de confiabilidade acoplada a modelos em elementos finitos de vigas-parede com e sem armaduras verticais e assim realizar a comparação com os resultados obtidos neste trabalho;
- c) Realizar a calibração baseada em confiabilidade estrutural dos coeficientes parciais de segurança aplicados a modelos de bielas e tirantes de vigas-parede para a metodologia da NBR 6118 (2014).

REFERÊNCIAS

ADEBAR, P., One-way shear strength of large footings. Canadian journal of civil engineering, [s.l.], v.27, n.3, p. 553-562, 2000.

AHMAD, Shuaib H.; LUE, D. M. Flexure-Shear Interaction of Reinforced High Strength Concrete Beams. Aci Structural Journal, [s.l.], v. 84, n. 4, 1987. American Concrete Institute. http://dx.doi.org/10.14359/1662.

AMERICAN CONCRETE INSTITUTE COMITTEE. ACI 318: 14: Building Code Requirements for Structural Concrete and Commentary. Farmington Hills, 2014. 524 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 12655**: Concreto de cimento Portland: Preparo, controle, recebimento e aceitação: Procedimento. Rio de Janeiro: ABNT, 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118:** Projeto de Estruturas de Concreto: Procedimento. Rio de Janeiro: ABNT, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8681**: Ações e segurança nas estruturas: Procedimento. Rio de Janeiro: ABNT, 2003.

BECK, A. T. **Curso de Confiabilidade Estrutural** São Carlos; 2014. [Departamento de Engenharia de Estruturas – Universidade de São Paulo].

BECK, André Teófilo. Confiabilidade e Segurança das Estruturas. Rio de Janeiro: Elsevier, 2019. 416 p.

BUSSAB, Wilton de O.; MORETTIN, Pedro A.. Estatística Básica. 6. ed. São Paulo: Saraiva, 2010. 540 p

CHANG, Tien S.; KESLER, Clyde E.. Static and Fatigue Strength in Shear of Beams with Tensile Reinforcement. Aci Journal Proceedings, [s.l.], v. 54, n. 6, 1958. American Concrete Institute. http://dx.doi.org/10.14359/11493.

CLARK, Arthur P.. Diagonal Tension in Reinforced Concrete Beams. Aci Journal **Proceedings**, [s.l.], v. 48, n. 10, p. 145-156, 1951. American Concrete Institute. http://dx.doi.org/10.14359/11876.

COSSIO, Roger Diaz de; SIESS, Chester P.. Behavior and Strength in Shear of Beams and Frames Without Web Reinforcement. Aci Journal Proceedings, [s.l.], v. 56, n. 2, 1960. American Concrete Institute. http://dx.doi.org/10.14359/8118.

DEVORE, Jay L. Probabilidade e Estatística para Engenharia e Ciências. 6. ed. São Paulo: Cengage Learning, 2006. 708 p.

DÍAZ, Rafael A. Sanabria et al. Reliability analysis of shear strength of reinforced concrete deep beams using NLFEA. **Engineering Structures**, [S.L.], v. 203, p. 109760, jan. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.engstruct.2019.109760.

ELLINGWOOD, B.; GALAMBOS, T. V. **Probability-based criteria for structural design**. Structural Safety, v. 1, p. 15-26, 1982.

EL-METWALLY, Salah El-Din E.; CHEN, Wai-Fah. **Structural Concrete** : Strut-and-Tie Models for Unified Design. 2018. ed. New York: CRC Press, 2018. 230 p. v. 1.

EL-REEDY, Mohamed A.. Reinforced Concrete Structural Reliability. New York: CRC Press, 2013. 369 p.

EL-SAYED, Ahmed K.; SHURAIM, Ahmed B. Size effect on shear resistance of high strength concrete deep beams. Materials And Structures, [s. 1], p. 1871-1882, abr. 2015.

EL-ZOUGHIBY, Mohamed E. et al. Strength Prediction of Simply Supported R/C Deep Beams Using the Strut-and-Tie Method. **Arabian Journal For Science And Engineering**, [s.l.], v. 38, n. 8, p. 1973-1991, 18 abr. 2013. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s13369-013-0609-y.

GARAY, Juan de Dios; LUBELL, Adam S.. Behavior of Concrete Deep Beams with High Strength Reinforcement. Structures Congress 2008, S I, p.1-10, 2008.

GHANEI, Amir H.; AGHAYARI, Reza. Experimental Investigation on Effect of Aspect Ratio on Behavior of Isolated Reinforced Concrete Struts. Aci Structural Journal, [s.l.], v. 113, n. 4, p.643-654, jul. 2016. American Concrete Institute. http://dx.doi.org/10.14359/51688744.

GHANEI, Amir H.; AGHAYARI, Reza. Experimental Investigation on Effect of Aspect Ratio on Behavior of Isolated Reinforced Concrete Struts. Aci Structural Journal, [s.l.], v. 113, n. 4, p.643-654, jul. 2016. American Concrete Institute. http://dx.doi.org/10.14359/51688744.

HONG, Sung-gul et al. Shear Strength of Reinforced Concrete Deep Beams with End Anchorage Failure. Aci Structural Journal, S I, v. 1, n. 99, p.12-22, jan. 2002.

International Federation For Structural Concreto (FIB). **Practitioner's guide to finite** element modeling of reinforced concrete strucutres. Stuttgart: Sprint – Digital – Druck, 2008.

ISMAIL, Kamaran S.; GUADAGNINI, Maurizio; PILAKOUTAS, Kypros. Shear Behavior Of Reinforced Concrete Deep Beams. Aci Structural Journal, [s.l.], v. 114, n. 1, p.12-22, jan. 2016. American Concrete Institute. http://dx.doi.org/10.14359/51689151.

JOINT COMMITTEE ON STRUCTURAL SAFETY, JCSS: Probabilistic Model Code, 2001.

KANI; G.N.J. How Safe Are Our Large Reinforced Concrete Beams. Aci Journal **Proceedings**, [s.l.], v. 64, n. 3, p. 128-141, mar. 1967.

Kong, F.-K., P.J. Robins, and D.F. Cole. Web reinforcement effects on deep beams. in ACI Journal Proceedings. 1970. ACI.

KONG, Fung-kew *et al.* Web Reinforcement Effects on Deep Beams. Aci Journal **Proceedings**, [s.l.], v. 67, n. 12, p. 1010-1018, 1970. American Concrete Institute. http://dx.doi.org/10.14359/7336.

LARSON, Ron; FABER, Betsy. Estatística Aplicada. 6. ed. São Paulo: Pearson Education do Brasil, 2015. 656 p.

LERTSRISAKULRAT, T., J. NIWA, A. Yanagawa, and M. Matsuo. Concept of concrete compressive fracture energy in RC deep beams without transverse reinforcement. Japan Concrete Institute. 2002.

MAGALHÃES, Marcos Nascimento; LIMA, Antônio Carlos Pedroso de. **Noções de Probabilidade e Estatística**. 7. ed. São Paulo: Editora da Universidade de São Paulo, 2011. 432 p.

Manuel, R.F., B.W. Slight, and G.T. Suter, Deep beam behavior affected by length and shear span variations. Am Concrete Inst Journal & Proceedings, 1971. 68(12).

MANUEL, Robert F.; SLIGHT, Bruce W.; SUTER, Gerhard T.. Deep Beam Behavior Affected by Length and Shear Span variations,". Aci Journal Proceedings, [s.l.], v. 68, n. 12, p. 954-958, 1971. American Concrete Institute. http://dx.doi.org/10.14359/7246.

MATHEY, Robert G.; WATSTEIN, David. Shear Strength of Beams Without Web Reinforcement Containing Deformed Bars of Different Yield Strengths. Aci Journal **Proceedings**, [s.l.], v. 60, n. 2, 1963. American Concrete Institute. http://dx.doi.org/10.14359/7851.

MELCHERS, Robert E.; BECK, André T. Structural Reliability Analysis and Prediction. 3. ed. [s.i.]: Wiley, 2018. 506 p.

MOODY, K. G. et al. Shear Strength of Reinforced Concrete Beams Part 1 -Tests of Simple Beams. Aci Journal Proceedings, [s.l.], v. 51, n. 12, p. 317-332, 1954. American Concrete Institute. http://dx.doi.org/10.14359/11680.

MORROW, Jodean; VIEST, I. M.. Shear Strength of Reinforced Concrete Frame Members Without Web Reinforcement. Aci Journal Proceedings, [s.l.], v. 53, n. 3, 1957. American Concrete Institute. http://dx.doi.org/10.14359/11558.

NAGARAJAN, Praveen; PILLAI, T. M. Madhavan. Analysis and Design of Simply Supported Deep Beams Using Strut and Tie Method. **Advances In Structural Engineering**, [s.l.], v. 11, n. 5, p.491-499, out. 2008. SAGE Publications. http://dx.doi.org/10.1260/136943308786412050.

NIWA, J., K. Maekawa.; H. Okamura, Non-linear Finite Element Analysis of Deep Beams. Advanced Mechanics of Reinforced Concrete, IABSE Colloqium Delft Netherlands, 1981: p. 13.

OH, Jung-keun; SHIN, Sung-woo. Shear Strength of Reinforced High-Strength Concrete Deep Beams. Aci Structural Journal, [s.l.], v. 98, n. 2, p. 164-173, 2001. American Concrete Institute. http://dx.doi.org/10.14359/10184.

OLIVEIRA, Esdras Pereira de. Análise de Confiabilidade de Modelo de Bielas e Tirantes: Vigas Curtas de Concreto Armado. 2016. 207 f. Tese (Doutorado) - Curso de Engenharia Civil, Tecnologia da Construção e Estruturas., Universidade Federal Fluminense, Niterói, 2016

PAIVA, Henry Albert Rawdon da. Strength And Beeavior In Shear Of Deep Reinforced Concrete Beams Under Static And Dynamic Loading. 1961. 263 f. Tese (Doutorado) - Curso de Engenharia Civil, University Of Illinois, Urdana, 1961.

PANTOJA, João da Costa. Geração automática via otimização topológica e avaliação de segurança de modelos de bielas e tirantes. 2012. 240 f. Tese (Doutorado) - Curso de Engenharia Civil, Departamento de Engenharia Civil, Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2012.

RAMAKRISHNAN, V.; ANANTHANARAYANA, Y.. Ultimate Strength of Deep Beams in Shear. Aci Journal Proceedings, [s.l.], v. 65, n. 2, p. 87-98, 1968. American Concrete Institute. http://dx.doi.org/10.14359/7458.

REINECK, Karl-heinz. Examples for Design of Structural Concrete with Strut-and-Tie Models. Farmington Hills: American Concrete Institute, 2002. 242 p.

SANTOS, D. M.; STUCCHI, F. R.; BECK, A. T. Reliability of beams designed in accordance with Brazilian codes. IBRACON Structures and Materials Journal, v. 7, n. 5, p. 723–746, 2014.

SATO, Henrique Towata; PIMENTA, Paulo de Mattos. **Dimensionamento de Regiões D Através do Método dos Elementos Finitos e o Método de Bielas e Tirantes**. VII Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro, 2014.

SCHÄFER, K.; SCHLAICH, J.; JENNEWEIN, M.: Strut-And-Tie Modelling of Structural Concrete. IABSE COLLOQUIUM STRUCTURAL CONCRETE, v.62, Stuttgart, p.235-240, 1991. Proceedings.

SCHÄFER, K.; SCHLAICH, J.; Design and Detailing of Structural Concrete Using Strutand-Tie Models. The Structural Engineer, v.69, n.06, p.113-125, 1991.

SCHLAICH, J. The Need for Consistent and Translucent Models. IABSE COLLOQUIUM STRUCTURAL CONCRETE, v.62, Stuttgart, p.169-184, 1991.Proceedings.

SELIEM, H., A. HOSNY, H. DWAIRI, AND S. RIZKALLA, Shear behavior of concrete beams reinforced with MMFX steel without web reinforcement. **NC State University Final Report, Project** No. IS-06-08, 2006.

SILVA, R. C.; GIONGO, J. S. Modelos de Bielas e Tirantes Aplicados a Estruturas de Concreto Armado. São Carlos: EESC-USP, 2000.

SPIEGEL, Murray R.. **Probabilidade e Estatística**. São Paulo: Mcgraw-hill do Brasil, 1977. 528 p.

SMITH, K. N.; VANTSIOTIS, A. S.. Shear Strength of Deep Beams. Aci Journal **Proceedings**, [s.l.], v. 79, n. 3, p. 201-213, 1982. American Concrete Institute. http://dx.doi.org/10.14359/10899.

SOUZA, R. A. Concreto **Estrutural: Análise e Dimensionamento de Elementos com Descontinuidades**. Tese (Doutorado) – Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações. São Paulo, 2004.

STUCCHI, F. R.; SANTOS, S. H. C. Reliability based comparison between ACI 318-05 and NBR 6118. Revista Ibracon de Estruturas, São Paulo, v. 3, n. 2, 2007.

SU, Ray Kai Leung; LOOI, Daniel Ting Wee. Revisiting Unreinforced Strut Efficiency Factor. Aci Structural Journal, [s.l.], v. 113, n. 2, p.301-312, mar. 2016. American Concrete Institute. http://dx.doi.org/10.14359/51688062.

TAN, K. H. *et al.* Size effect in shear strength of large beams—behaviour and finite element modelling. **Magazine Of Concrete Research**, [s.l.], v. 57, n. 8, p. 497-509, out. 2005. Thomas Telford Ltd.. http://dx.doi.org/10.1680/macr.2005.57.8.497.

TAN, K. H.; LU, H. Y.. Shear Behavior of Large Reinforced Concrete Deep Beams and Code Comparisons. Aci Structural Journal, [s.l.], v. 96, n. 5, p. 836-845, 1999. American Concrete Institute. http://dx.doi.org/10.14359/738.

TAN, Kang-hai; KONG, Fung-kew; TENG, Susanto; GUAN, Lingweii. High-Strength Concrete Deep Beams With Effective Span and Shear Span Variations. Aci Structural Journal, [s.l.], v. 92, n. 4, p. 395-405, 1995. American Concrete Institute. http://dx.doi.org/10.14359/991.

TAN, K. H., Kong, F. K.: **Design of single-span medium-to-high strength concrete deep beams**, Applied Research Project RP9/91, School of Civil & Structural Engineering, Singapore, Nanyang Technological University, dezembro 1994

TAN, K., G. Cheng, and H. Cheong, Size effect in shear strength of large beams—behaviour and finite element modelling. **Magazine of Concrete Research**, 2005. 57(8): p. 497-509.

TAN, K.-H., G.-H. Cheng, and N. Zhang, Experiment to mitigate size effect on deep beams. Magazine of Concrete Research, 2008. 60(10): p. 709-723.

TAN, K. H.; WENG, L. W.; TENG, S.. A strut-and-tie model for deep beams subjected to combined top-and-bottom loading. **The Structural Engineer**, S.l, v. 13, n. 75, p. 215-225, 01 jul. 1997.

TAN, Kang-hai et al. Effect of Web Reinforcement on High-Strength Concrete Deep Beams. Aci Journal Proceedings, S.l, v. 94, n. 5, p. 572-578, 1997.

TAN, Kang-hai; KONG, Fung-kew; TENG, Susanto; GUAN, Lingweii. High-Strength Concrete Deep Beams With Effective Span and Shear Span Variations. Aci Structural Journal, [s.l.], v. 92, n. 4, p. 395-405, 1995. American Concrete Institute. http://dx.doi.org/10.14359/991.

TANIMURA, Yukihiro; SATO, Tsutomu. Evaluation of Shear Strength of Deep Beams with Stirrups. **Quarterly Report Of Rtri**, [s.l.], v. 46, n. 1, p.53-58, 2005. Railway Technical Research Institute. http://dx.doi.org/10.2219/rtriqr.46.53.

Walraven, J. and N. Lehwalter, Size effects in short beams loaded in shear. ACI Structural Journal, 1994. 91(5): p. 585-593.

WALRAVENA, Joost; LEHWALTER, Norbert. Size Effects in Short Beams Loaded in Shear. Aci Structural Journal, [s.l.], v. 91, n. 5, 1994. American Concrete Institute. http://dx.doi.org/10.14359/4177.

WATSTEIN, D.; MATHEY, R. G.. Strains in Beams Having Diagonal Cracks. Aci Journal **Proceedings**, [s.l.], v. 55, n. 12, 1958. American Concrete Institute. http://dx.doi.org/10.14359/11384.

WU, Tao *et al.* Experimental investigation of shear models for lightweight aggregate concrete deep beams. Advances In Structural Engineering, [s.l.], v. 21, n. 1, p.109-124, 14 jul. 2017. SAGE Publications. http://dx.doi.org/10.1177/1369433217711618.

WU, Tao et al. Shear Behavior of Large-Scale Deep Beams with Lightweight-Aggregate Concrete. Aci Structural Journal, [s.l.], v. 117, n. 1, p.75-89, jan. 2020. American Concrete Institute. http://dx.doi.org/10.14359/51718009.

YANG, Keun-hyeok; CHUNG, Heon-soo; LEE, Eun-taik; EUN, Hee-chang. Shear characteristics of high-strength concrete deep beams without shear reinforcements. **Engineering Structures**, [s.l.], v. 25, n. 10, p. 1343-1352, ago. 2003. Elsevier BV. http://dx.doi.org/10.1016/s0141-0296(03)00110-x.

ZHANG, Ning; TAN, Kang-hai. Size effect in RC deep beams: experimental investigation and stm verification. : Experimental investigation and STM verification. Engineering Structures, [s.l.], v. 29, n. 12, p. 3241-3254, dez. 2007. Elsevier BV. http://dx.doi.org/10.1016/j.engstruct.2007.10.005.

APÊNDICE A – Resultados dos cálculos dos erros de Modelo 1Tabela 16 – Cálculos dos erros de modelo do Modelo 1 – ACI 318.gas α (°) P_{exp} (kN) P_M (kN) ε_i ElementoTipo de
ruptura

¥.7•	(0)					Tipo de
Vigas	α(°)	P_{exp} (KN)	P_M (KN)	ε _i	Elemento	ruptura
III-24a	29,56	593,00	376,44	1,58	S2	Frágil
III-24b	29,56	606,40	435,65	1,39	S2	Frágil
III-25a	29,56	535,20	513,90	1,04	S2	Frágil
III-25b	29,56	579,60	363,75	1,59	S2	Frágil
III-26a	29,56	842,20	458,91	1,84	S2	Frágil
III-26b	29,56	793,20	435,65	1,82	S2	Frágil
III-27a	29,56	695,40	452,57	1,54	S2	Frágil
III-27b	29,56	713,20	484,29	1,47	S2	Frágil
III-28a	29,56	606,40	492,75	1,23	S2	Frágil
III-28b	29,56	682,00	473,72	1,44	S2	Frágil
III-29a	29,56	779,80	458,91	1,70	S2	Frágil
III-29b	29,56	873,20	528,70	1,65	S2	Frágil
B14-E2	44,27	556,00	359,44	1,55	S2	Frágil
B14-A4	42,55	1023,00	718,18	1,42	S1	Frágil
B14-B4	43,48	1000,80	786,25	1,27	S2	Frágil
B14-E4	43,48	1023,00	863,98	1,18	S2	Frágil
B14-A6	41,59	1801,40	1494,80	1,21	S1	Frágil
B14-B6	43,48	1556,80	1399,11	1,11	S2	Frágil
B21-B2	32,21	477,00	283,34	1,68	S2	Frágil
B21-E2	33,31	423,40	190,94	2,22	S2	Frágil
B21-A4	32,35	1046,20	595,04	1,76	S2	Frágil
B21-B4	32,35	792,80	541,13	1,47	S2	Frágil
B21-E4	31,93	846,00	513,03	1,65	S2	Frágil
B21-E4R	32,35	868,40	636,97	1,36	S2	Frágil
B21-F4	32,63	935,20	600,32	1,56	S2	Frágil
B21-A6	30,66	1157,60	1085,54	1,07	S1	Frágil
B21-B6	33,31	1157,40	768,83	1,51	S2	Frágil
B28-E2	25,87	260,00	187,40	1,39	S2	Frágil
B28-A4	25,40	647,00	411,64	1,57	S2	Frágil
B28-B4	25,40	513,60	483,49	1,06	S2	Frágil
B28-E4	25,40	535,80	495,47	1,08	S2	Frágil
B28-B6	25,40	647,00	657,13	0,98	S2	Frágil
IIIA2	26,20	41,40	30,52	1,36	S2	Frágil
B-18-1	30,66	622,80	396,68	1,57	S1	Frágil
C-18-1	30,66	578,20	399,81	1,45	S1	Frágil
C-18-2	30,66	622,80	412,30	1,51	S1	Frágil
D-18-1	30,66	533,80	401,37	1,33	S1	Frágil
D-18-2	30,66	533,80	421,67	1,27	S1	Frágil
E-18-1	30,66	441,60	349,83	1,26	S1	Frágil
E-18-2	30,66	444,80	416,99	1,07	S1	Frágil

D-5	31,10	181,00	186,64	0,97	S2	Frágil
1	40,43	777,00	640,02	1,21	S 1	Frágil
2	29,90	520,00	466,37	1,12	S1	Frágil
I-1	30,53	625,80	399,58	1,57	S1	Frágil
II-3	30,53	523,60	344,52	1,52	S1	Frágil
II-4	30,53	625,80	415,31	1,51	S1	Frágil
III-5	30,53	577.00	404.30	1,43	S1	Frágil
III-6	30,53	581,40	402,73	1,44	S1	Frágil
IV-7	30.53	581.60	379.13	1.53	S1	Frágil
IV-8	30.53	608.00	391.71	1.55	S1	Frágil
V-9	30.53	448.00	363.40	1.23	<u>S1</u>	Frágil
V-10	30.53	536.80	424.75	1,26	<u>S1</u>	Frágil
VI-11	30,53	448.00	399.58	1 12	<u>S1</u>	Frágil
VI-12	30,53	536.80	404 30	1 33	<u>S1</u>	Frágil
V-12	30,53	444 80	352.38	1,35	<u>S1</u>	Frágil
V-14	30,53	448.00	420.03	1,20	<u>S1</u>	Frágil
V-14 VI 15	30,53	359.00	401.15	0.80	<u>S1</u>	Frágil
VI-15	30,53	377.20	358.68	1.05	<u>S1</u>	Frágil
G22S 11	54.54	170.60	110.78	1,05	<u>S1</u>	Frágil
G23S-11	<u> </u>	179,00	119,78	1,50	<u> </u>	Fragi
C24S 11	41,91	210,60	112,40	1,32	<u> </u>	Flagi
G345-11	41,91	219,00	109,81	1,29	<u> </u>	Fragil
G43S-11	32,87	155,80	112,83	1,30	52 T1	Fragil
G44S-11	32,87	167,20	154,44	1,08	11	Dutcil
24	30,92	364,00	234,93	1,55	<u>S2</u>	Fragil
53	40,46	310,40	332,11	0,93	<u>S2</u>	Fragil
54	42,17	315,40	158,95	1,98	<u>S2</u>	Fragil
67	40,42	1095,60	780,33	1,40	S1	Frágil
69	41,92	1170,80	705,38	1,66	<u>S2</u>	Frágil
109	30,92	143,80	172,74	0,83	T1	Dúteil
113	31,42	174,40	190,27	0,92	T1	Dútcil
129	31,66	286,60	137,29	2,09	S2	Frágil
148	31,42	159,80	153,44	1,04	T1	Dútcil
174	42,29	213,00	153,32	1,39	T1	Dútcil
178	30,55	134,40	101,25	1,33	T1	Dúteil
184	30,92	326,60	299,45	1,09	S2	Frágil
188	25,12	185,20	180,85	1,02	S2	Frágil
201	42,50	507,40	421,49	1,20	S2	Frágil
249	43,12	208,20	145,43	1,43	T1	Dútcil
250	31,54	125,60	96,23	1,31	T1	Dútcil
265	30,55	106,00	101,25	1,05	T1	Dútcil
269	42,71	178,00	150,44	1,18	T1	Dútcil
C1	52,37	180,20	160,56	1,12	S1	Frágil
K1'-R	42,18	78,80	40,69	1,94	T1	Dútcil
5	60,93	805,00	579,57	1,39	T1	Dútcil
7	60.93	974.20	723.54	1.35	S1	Frágil
10	44,94	587.20	537.92	1.09	S2	Frágil
11	40.21	547.20	386.36	1,42	S2	Frágil
T1	40,43	629.00	528.35	1,19	S1	Frágil
	/	,		/		<i>U</i>

T3	40,43	228,00	165,24	1,38	S1	Frágil
T7	48,64	892,00	814,64	1,09	N1	Frágil
0A0-44	48,35	319,00	259,85	1,23	S1	Frágil
0A0-48	48,35	312,20	264,92	1,18	S1	Frágil
0B0-49	40,62	298,00	235,82	1,26	S1	Frágil
0C0-50	32,93	231,40	181,35	1,28	S1	Frágil
A12	39,46	222,40	114,00	1,95	N1	Frágil
B6	38,45	205,60	126,09	1,63	N1	Frágil
B12	39,46	213,60	126,09	1,69	N1	Frágil
C6	34,82	164,00	120,91	1,36	N1	Frágil
C12	39,30	244,60	120,91	2,02	N1	Frágil
V111	61,99	1698,00	1216,98	1,40	S1	Frágil
V122	61,99	1284,00	1144,54	1,12	S1	Frágil
V221	43,22	1176,00	912,57	1,29	S2	Frágil
V222	43,22	860,00	688,90	1,25	S2	Frágil
V311	32,07	738,00	506,99	1,46	S2	Frágil
V321	32,07	774,00	504,00	1,54	S2	Frágil
V322	32,07	750,00	447,34	1,68	S2	Frágil
V611	57,99	442,00	270,64	1,63	N1	Frágil
V811	28,07	280,00	232,66	1,20	S1	Frágil
V011	42,34	452,00	373,01	1,21	S1	Frágil
V012	42,34	644,00	505,07	1,28	S1	Frágil
V013	42,34	688,00	512,02	1,34	S1	Frágil
V014	42,34	850,00	562,99	1,51	S1	Frágil
V021	42,34	440,00	322,04	1,37	S1	Frágil
V023	42,34	694,00	465,69	1,49	S1	Frágil
V024	42,34	792,00	583,84	1,36	S1	Frágil
V031	42,34	646,00	463,37	1,39	S1	Frágil
V032	42,34	636,00	421,67	1,51	S1	Frágil
V033	42,34	492,00	458,74	1,07	S1	Frágil
V034	42,34	874,00	611,65	1,43	S1	Frágil
V711	38,66	330,00	246,16	1,34	N1	Frágil
V022	42,34	540,00	461,05	1,17	S1	Frágil
V511	43,32	700,00	507,79	1,38	S2	Frágil
V411	43,08	790,00	740,18	1,07	S2	Frágil
V211	43,22	1010,00	894,68	1,13	S2	Frágil
500/0.50	57,94	1700,00	1234,60	1,38	S1	Frágil
500/0.75	46,79	1400,00	903,41	1,55	S1	Frágil
500/1.00	38,60	1140,00	636,76	1,79	S2	Frágil
DF-14	27,94	818,00	575,10	1,42	S1	Frágil
DF-15	26,15	660,00	712,71	0,93	S1	Frágil
DF-16	32,98	760,00	713,11	1,07	S1	Frágil
N4200	46,76	530,40	459,25	1,15	S1	Frágil
H4100	61,05	1284,40	1128,52	1,14	N1	Frágil
H4200	46,76	802,20	895,09	0,90	T1	Dútcil
H4300	35,87	674,80	608,66	1,11	T1	Dúteil
D200	38,66	428,40	391,68	1,09	N1	Frágil

D400	41,99	570,60	573,91	0,99	S1	Frágil
D600	43,03	849,00	776,84	1,09	S2	Frágil
L5-40	57,91	893,80	667,39	1,34	S1	Frágil
L5-60	59,97	1070,20	679,96	1,57	S1	Frágil
L5-60R	59,97	958,40	679,96	1,41	S1	Frágil
L5-75	59,36	1193,60	683,27	1,75	N1	Frágil
L5-100	60,48	1164,20	683,27	1,70	N1	Frágil
L10-40	38,57	384,20	473,85	0,81	S1	Frágil
L10-40R	38,57	623,20	473,85	1,32	S1	Frágil
L10-60	40,86	750,60	502,35	1,49	S1	Frágil
L10-75	40,16	543,00	594,83	0,91	S1	Frágil
L10-75R	40,16	660,60	594,83	1,11	S1	Frágil
L10-100	41,44	1087,80	1371,34	0,79	T1	Dútcil
UH5-40	57,91	1466,00	1480,24	0,99	T1	Dútcil
UH5-60	59,97	1646,40	1699,90	0,97	S1	Frágil
UH5-75	59,36	2020,80	1708,16	1,18	N1	Frágil
UH5-100	60,48	2058,00	1708,16	1,20	N1	Frágil
UH10-40	40,39	997,60	782,01	1,28	T1	Dútcil
UH10-40R	40,39	770,20	782,01	0,98	T1	Dútcil
UH10-60	40,86	1146,60	1199,29	0,96	T1	Dútcil
UH10-100	41,44	1538,60	1371,34	1,12	T1	Dútcil
1-500/1.5	28,02	680,00	474,45	1,43	S2	Frágil
2-1000/1.5	27,81	940,00	768,27	1,22	S1	Frágil
3-1400/1.5	28,02	1380.00	1080,55	1.28	S1	Frágil
4-1750/1.5	28,18	940,00	1239,51	0,76	N1	Frágil
G-1.9-51	25,95	1488,20	1281,78	1,16	T1	Dútcil
M-1.9-51	25,95	1577,20	1447,78	1,09	T1	Dútcil
M-1.9-38	25,95	1381,20	1447,78	0,95	T1	Dútcil
2DB35	39,58	170,00	139,19	1,22	S1	Frágil
2DB50	40,16	271,00	209,96	1,29	S1	Frágil
2DB70	40,47	311,00	211,81	1,47	S1	Frágil
2DB100	40,39	483,00	378,93	1,27	S1	Frágil
3DB35b	39,58	170,00	139,19	1,22	S1	Frágil
3DB50b	39,90	334,00	278,33	1,20	S1	Frágil
3DB70b	40,15	721,00	523,39	1,38	S1	Frágil
3DB100b	39,77	1344,00	1176,26	1,14	S1	Frágil
*1-500/0.75	46,79	1400,00	943,71	1,48	S1	Frágil
*2-1000/0.75	46,53	1300,00	933,92	1,39	N1	Frágil
*3-1400/0.75	46,78	1900,00	1033,88	1,84	N1	Frágil
*4-1750/0.75	46,96	2480,00	1153,83	2,15	N1	Frágil
TF-0.14/1	59,00	45,00	39,17	1,15	T1	Dútcil
TF-0.14/2	59,00	50,00	39,17	1,28	T1	Dútcil
TF-0.14/3	59,00	60,00	39,17	1,53	T1	Dútcil
TF-0.25/1	56,48	80,00	59,68	1,34	T1	Dútcil
TF-0.25/2	56,48	85,00	59,68	1,42	T1	Dútcil
TS-0.58/1	53,46	145,00	115,96	1,25	T1	Dútcil
TS-058/2	53,46	150,00	115,96	1,29	T1	Dútcil
1A	60,95	1706,00	946,56	1,80	N1	Frágil

5A	41,99	1264,00	937,66	1,35	S1	Frágil
9A	30,96	568,00	541,02	1,05	S1	Frágil
13B	41,99	1322,00	1034,65	1,28	S1	Frágil
24F	60,95	3916,00	3259,92	1,20	N1	Frágil
25F	41,99	2806,00	2470,23	1,14	S1	Frágil
26F	30,96	1808,00	1849,84	0,98	S1	Frágil
35E	60,95	1176,00	1032,24	1,14	N1	Frágil
38E	41,99	716,00	814,79	0,88	S1	Frágil
				~		

Fonte: Autor (2020).

Tabela 17 – Cálculos dos erros de modelo do Modelo 1 – NBR 6118.

Vigas	α (⁰)	<i>P</i> (kN)	P (k N)	۶.	Flemento	Tipo de
v igas	u ()	- exp (m ()			Liemento	ruptura
B14-E2	44,13	556,00	341,27	1,63	S2	Frágil
B14-A4	42,37	1023,00	659,22	1,55	S2	Frágil
B14-B4	43,33	1000,80	663,03	1,51	S2	Frágil
B14-E4	43,33	1023,00	711,74	1,44	S2	Frágil
B14-A6	41,38	1801,40	1156,43	1,56	S1	Frágil
B14-B6	43,33	1556,80	973,50	1,60	S2	Frágil
B21-B2	32,07	477,00	266,11	1,79	S2	Frágil
B21-E2	33,20	423,40	183,54	2,31	S2	Frágil
B21-A4	32,21	1046,20	486,20	2,15	S2	Frágil
B21-B4	32,21	792,80	453,06	1,75	S2	Frágil
B21-E4	31,78	846,00	440,56	1,92	S2	Frágil
B21-E4R	32,21	868,40	510,59	1,70	S2	Frágil
B21-F4	32,50	935,20	483,58	1,93	S2	Frágil
B21-A6	30,47	1157,60	784,93	1,47	S2	Frágil
B21-B6	33,20	1157,40	542,44	2,13	S2	Frágil
B-18-1	30,49	622,80	372,52	1,67	S1	Frágil
C-18-1	30,49	578,20	374,78	1,54	S1	Frágil
C-18-2	30,49	622,80	383,74	1,62	S1	Frágil
D-18-1	30,49	533,80	375,91	1,42	S1	Frágil
D-18-2	30,49	533,80	390,36	1,37	S1	Frágil
E-18-1	30,49	441,60	337,35	1,31	S1	Frágil
E-18-2	30,49	444,80	387,06	1,15	S1	Frágil
D-5	30,97	181,00	158,08	1,15	S2	Frágil
1	40,14	777,00	559,39	1,39	S1	Frágil
I-1	30,36	625,80	375,31	1,67	S1	Frágil
II-3	30,36	523,60	333,75	1,57	S1	Frágil
II-4	30,36	625,80	386,62	1,62	S1	Frágil
III-5	30,36	577,00	378,72	1,52	S1	Frágil
III-6	30,36	581,40	377,59	1,54	S1	Frágil
IV-7	30,36	581,60	360,23	1,61	S1	Frágil
IV-8	30,36	608,00	369,56	1,65	S1	Frágil
V-9	30,36	448,00	348,35	1,29	S1	Frágil
V-10	30,36	536,80	393,28	1,36	S1	Frágil

VI-11	30,36	448,00	375,31	1,19	S1	Frágil
VI-12	30,36	536,80	378,72	1,42	S1	Frágil
V-13	30,36	444,80	339,88	1,31	S1	Frágil
V-14	30,36	448,00	389,96	1,15	S1	Frágil
VI-15	30,36	359,00	376,45	0,95	S1	Frágil
VI-16	30,36	377,20	344,73	1,09	S1	Frágil
G23S-11	54,43	179,60	102,67	1,75	S2	Frágil
G33S-11	41,72	170,60	97,21	1,75	S2	Frágil
G34S-11	41,72	219,60	131,84	1,67	S2	Frágil
G43S-11	32,63	153,80	96,55	1,59	S2	Frágil
G44S-11	32,63	167,20	131,35	1,27	S2	Frágil
24	30,76	364,00	195,04	1,87	S2	Frágil
53	40,23	310,40	229,07	1,36	S2	Frágil
54	42,00	315,40	133,45	2,36	S2	Frágil
67	40,18	1095,60	697,01	1,57	S1	Frágil
69	41,74	1170,80	588,25	1,99	S2	Frágil
109	30,76	143,80	171,61	0,84	T1	Dútcil
113	31,27	174,40	169,45	1,03	S2	Frágil
129	31,52	286,60	124,91	2,29	S2	Frágil
148	31,27	159,80	138,92	1,15	S2	Frágil
174	42,11	213,00	152,35	1,40	T1	Dútcil
178	30,37	134,40	100,54	1,34	T1	Dútcil
184	30,76	326,60	232,74	1,40	S2	Frágil
201	42,33	507,40	327,53	1,55	S2	Frágil
249	42,96	208,20	144,65	1,44	T1	Dútcil
250	31,39	125,60	95,67	1,31	T1	Dútcil
265	30,37	106,00	100,54	1,05	T1	Dútcil
269	42,54	178,00	149,56	1,19	T1	Dútcil
C1	52,21	180,20	149,39	1,21	N1	Frágil
K1'-R	42,02	78,80	40,46	1,95	T1	Dútcil
5	60,77	805,00	539,63	1,49	N1	Frágil
7	60,77	974,20	598,58	1,63	N1	Frágil
10	44,75	587,20	406,50	1,44	S2	Frágil
11	40,02	547,20	308,17	1,78	S2	Frágil
T1	39,86	629,00	444,78	1,41	S1	Frágil
T3	39,86	228,00	169,39	1,35	N1	Frágil
T7	48,07	892,00	498,74	1,79	N1	Frágil
0A0-44	48,09	319,00	252,32	1,26	S1	Frágil
0A0-48	48,09	312,20	256,35	1,22	S1	Frágil
0B0-49	40,36	298,00	227,05	1,31	S1	Frágil
0C0-50	32,69	231,40	167,41	1,38	S2	Frágil
C6	34,13	164,00	66,37	2,47	N1	Frágil
V111	61,90	1698,00	1209,28	1,40	S1	Frágil
V122	61,90	1284,00	1147,07	1,12	S1	Frágil
V221	43,11	1176,00	811,92	1,45	S2	Frágil
V222	43,11	860,00	639,91	1,34	S2	Frágil
V311	31,97	738,00	464,53	1,59	S2	Frágil
V321	31,97	774,00	462,19	1,67	S2	Frágil

V322	31,97	750,00	416,94	1,80	S2	Frágil
V611	57,61	442,00	242,76	1,82	N1	Frágil
V011	42,17	452,00	367,68	1,23	S2	Frágil
V012	42,17	644,00	473,89	1,36	S2	Frágil
V013	42,17	688,00	479,15	1,44	S2	Frágil
V014	42,17	850,00	516,72	1,64	S2	Frágil
V021	42,17	440,00	323,44	1,36	S2	Frágil
V023	42,17	694,00	443,47	1,56	S2	Frágil
V024	42,17	792,00	531,59	1,49	S2	Frágil
V031	42,17	646,00	441,64	1,46	S2	Frágil
V032	42,17	636,00	408,21	1,56	S2	Frágil
V033	42,17	492,00	437,99	1,12	S2	Frágil
V034	42,17	874,00	550,98	1,59	S2	Frágil
V711	38,25	330,00	224,27	1,47	N1	Frágil
V022	42,17	540,00	439,82	1,23	S2	Frágil
V511	43,21	700,00	454,24	1,54	S2	Frágil
V411	42,96	790,00	664,09	1,19	S2	Frágil
V211	43,11	1010,00	798,78	1,26	S2	Frágil
500/0.50	57,77	1700,00	894,91	1,90	N1	Frágil
500/0.75	46,60	1400,00	699,10	2,00	S2	Frágil
500/1.00	38,42	1140,00	484,37	2,35	S2	Frágil
DF-16	32,86	760,00	701,21	1,08	S1	Frágil
N4200	46,58	530,40	433,84	1,22	S1	Frágil
H4100	60,90	1284,40	771,64	1,66	N1	Frágil
H4200	46,58	802,20	708,35	1,13	S1	Frágil
H4300	35,70	674,80	511,90	1,32	S2	Frágil
D200	38,25	428,40	297,11	1,44	N1	Frágil
D400	41,80	570,60	488,38	1,17	S1	Frágil
D600	42,90	849,00	573,55	1,48	S2	Frágil
L5-40	57,74	893,80	553,14	1,62	N1	Frágil
L5-60	59,87	1070,20	553,14	1,93	NI	Frágil
L5-60R	59,87	958,40	553,14	1,73	NI	Frágil
L5-75	59,23	1193,60	553,14	2,16	NI	Frágil
L5-100	60,39	1164,20	553,14	2,10	<u>NI</u>	Frágil
L10-40	38,39	384,20	394,38	0,97	S2	Frágil
L10-40R	38,39	623,20	394,38	1,58	<u>S2</u>	Frágil
L10-60	40,74	750,60	428,86	1,75	<u>S2</u>	Frágil
L10-75	40,03	543,00	528,78	1,03	<u>SI</u>	Frágil
L10-75R	40,03	660,60	528,78	1,25	<u>S1</u>	Frágil
L10-100	41,35	1087,80	836,26	1,30	SI	Frágil
UH5-40	57,74	1466,00	851,14	1,72	NI	Frágil
UH5-60	59,87	1646,40	851,14	1,93	Nl	Frágil
UH5-75	59,23	2020,80	851,14	2,37	NI	Frágil
UH5-100	60,39	2058,00	851,14	2,42	NI	Frágil
UH10-40	40,20	997,60	647,31	1,54	S2	Fragil
UHI0-40R	40,20	770,20	647,31	1,19	<u>S2</u>	Frágil
UH10-60	40,74	1146,60	659,91	1,74	S2	Frágil

UH10-100	41,35	1538,60	836,26	1,84	S1	Frágil
2DB35	39,41	170,00	128,33	1,32	S1	Frágil
2DB50	40,03	271,00	184,49	1,47	S1	Frágil
2DB70	40,36	311,00	197,02	1,58	S2	Frágil
2DB100	40,27	483,00	338,04	1,43	S1	Frágil
3DB35b	39,41	170,00	128,33	1,32	S1	Frágil
3DB50b	39,75	334,00	254,23	1,31	S1	Frágil
3DB70b	40,02	721,00	475,72	1,52	S1	Frágil
3DB100b	39,61	1344,00	1065,32	1,26	S1	Frágil
*1-500/0.75	46,60	1400,00	699,10	2,00	S2	Frágil
*2-1000/0.75	46,33	1300,00	747,09	1,74	N1	Frágil
*3-1400/0.75	46,59	1900,00	800,62	2,37	N1	Frágil
*4-1750/0.75	46,78	2480,00	858,75	2,89	N1	Frágil
TF-0.14/1	58,89	45,00	39,00	1,15	T1	Dútcil
TF-0.14/2	58,89	50,00	39,00	1,28	T1	Dútcil
TF-0.14/3	58,89	60,00	39,00	1,54	T1	Dútcil
TF-0.25/1	56,28	80,00	59,23	1,35	T1	Dútcil
TF-0.25/2	56,28	85,00	59,23	1,43	T1	Dútcil
TS-0.58/1	53,14	145,00	113,08	1,28	N1	Frágil
TS-058/2	53,14	150,00	114,46	1,31	N1	Frágil
1A	60,79	1706,00	824,86	2,07	N1	Frágil
5A	41,80	1264,00	847,01	1,49	S1	Frágil
9A	30,80	568,00	486,61	1,17	S2	Frágil
13B	41,80	1322,00	909,42	1,45	S1	Frágil
24F	60,79	3916,00	1597,94	2,45	N1	Frágil
25F	41,80	2806,00	1376,88	2,04	S1	Frágil
26F	30,80	1808,00	951,07	1,90	S2	Frágil
35E	60,79	1176,00	882,94	1,33	N1	Frágil
38E	41,80	716,00	761,55	0,94	S1	Frágil

Fonte: Autor (2020).

Tabela 18 – Cálculos dos erros de modelo do Modelo 1 – EUROCODE 2.

Vigas	α (°)	P _{exp} (kN)	P_M (kN)	ε	Elemento	Tipo de ruptura
III-24a	29,36	593,00	343,58	1,73	S1	Frágil
III-24b	29,36	606,40	388,09	1,56	S1	Frágil
III-25a	29,36	535,20	443,15	1,21	S1	Frágil
III-25b	29,36	579,60	333,72	1,74	S1	Frágil
III-26a	29,36	842,20	404,90	2,08	S1	Frágil
III-26b	29,36	793,20	388,09	2,04	S1	Frágil
III-27a	29,36	695,40	400,36	1,74	S1	Frágil
III-27b	29,36	713,20	422,82	1,69	S1	Frágil
III-28a	29,36	606,40	428,69	1,41	S1	Frágil
III-28b	29,36	682,00	415,41	1,64	S1	Frágil
III-29a	29,36	779,80	404,90	1,93	S1	Frágil
III-29b	29,36	873,20	453,09	1,93	S1	Frágil

B14-E2	44,12	556,00	331,57	1,68	S1	Frágil
B14-A4	42,36	1023,00	571,76	1,79	S1	Frágil
B14-B4	43,32	1000,80	618,52	1,62	S1	Frágil
B14-E4	43,32	1023,00	663,96	1,54	S1	Frágil
B14-A6	41,37	1801,40	965,02	1,87	S1	Frágil
B14-B6	43,32	1556,80	908,15	1,71	S1	Frágil
B21-B2	32,06	477,00	265,75	1,79	S1	Frágil
B21-E2	33,19	423,40	206,27	2,05	S1	Frágil
B21-A4	32,20	1046,20	491,63	2,13	S1	Frágil
B21-B4	32,20	792,80	458,12	1,73	S1	Frágil
B21-E4	31,77	846,00	429,81	1,97	S1	Frágil
B21-E4R	32,20	868,40	516,29	1,68	S1	Frágil
B21-F4	32,49	935,20	502,21	1,86	S1	Frágil
B21-A6	30,46	1157,60	704,32	1,64	S1	Frágil
B21-B6	33,19	1157,40	609,61	1,90	S1	Frágil
B28-B2	24,54	402,40	218,54	1,84	S1	Frágil
B28-E2	25,76	260,00	187,66	1,39	S1	Frágil
B28-A4	25,27	647,00	347,08	1,86	S1	Frágil
B28-B4	25,27	513,60	390,26	1,32	S1	Frágil
B28-E4	25,27	535,80	397,00	1,35	S1	Frágil
B28-B6	25,27	647,00	475,40	1,36	S1	Frágil
IIIA2	26,07	41,40	33,53	1,23	S2	Frágil
B-18-1	30,47	622,80	311,00	2,00	S1	Frágil
C-18-1	30,47	578,20	312,89	1,85	S1	Frágil
C-18-2	30,47	622,80	320,37	1,94	S1	Frágil
D-18-1	30,47	533,80	313,83	1,70	S1	Frágil
D-18-2	30,47	533,80	325,89	1,64	S1	Frágil
E-18-1	30,47	441,60	281,64	1,57	S1	Frágil
E-18-2	30,47	444,80	323,14	1,38	S1	Frágil
A-11	22,52	206,80	243,24	0,85	S2	Frágil
D-5	30,96	181,00	186,55	0,97	S2	Frágil
1	40,12	777,00	466,77	1,66	S1	Frágil
2	29,63	520,00	341,22	1,52	S1	Frágil
3	22,85	294,40	254,57	1,16	S1	Frágil
GA1	24,47	179,00	207,49	0,86	S1	Frágil
GA2	24,47	212,00	207,49	1,02	S 1	Frágil
G6	24,47	287,20	234,81	1,22	S1	Frágil
I-1	30,35	625,80	313,33	2,00	S1	Frágil
II-3	30,35	523,60	278,64	1,88	S1	Frágil
II-4	30,35	625,80	322,77	1,94	S1	Frágil
III-5	30,35	577,00	316,18	1,82	S1	Frágil
III-6	30,35	581,40	315,23	1,84	S1	Frágil
IV-7	30,35	581,60	300,74	1,93	S1	Frágil
IV-8	30,35	608,00	308,53	1,97	S1	Frágil
V-9	30,35	448,00	290,82	1,54	S1	Frágil
V-10	30,35	536,80	328,34	1,63	S1	Frágil
VI-11	30,35	448,00	313,33	1,43	S1	Frágil

VI-12	30,35	536,80	316,18	1,70	S1	Frágil
V-13	30,35	444,80	283,75	1,57	S1	Frágil
V-14	30,35	448,00	325,56	1,38	S1	Frágil
VI-15	30,35	359,00	314,28	1,14	S1	Frágil
VI-16	30,35	377,20	287,80	1,31	S1	Frágil
G33S-11	41,71	170,60	114,16	1,49	S1	Frágil
G34S-11	41,71	219,60	154,83	1,42	S1	Frágil
G43S-11	32,62	153,80	113,91	1,35	S2	Frágil
G44S-11	32,62	167.20	152,91	1.09	T1	Dútcil
24	30,75	364,00	230,16	1,58	S2	Frágil
46	24,23	138,00	76,01	1,82	S2	Frágil
53	40,22	310,40	270,29	1,15	S2	Frágil
54	41,99	315,40	157,48	2,00	S2	Frágil
94	24,35	221,00	154,01	1,43	S2	Frágil
67	40,16	1095,60	581,69	1,88	S1	Frágil
69	41,72	1170,80	641,86	1.82	S1	Frágil
72	24,58	393.60	240,49	1.64	S1	Frágil
3041	24,35	652,00	591.32	1,10	S1	Frágil
109	30.75	143.80	171.54	0.84	T1	Dútcil
113	31.26	174.40	189.09	0.92	T1	Dútcil
129	31.51	286.60	147,41	1.94	S2	Frágil
134	24.32	119.80	114.03	1.05	<u>S2</u>	Frágil
135	24.48	153.60	107.69	1.43	<u>S2</u>	Frágil
142	24.80	116.60	116.81	1.00	<u>S2</u>	Frágil
148	31.26	159.80	152.48	1,05	T1	Dútcil
162	24.19	118.00	108.35	1,09	T1	Dútcil
174	42.10	213.00	152.29	1,09	T1	Dúteil
178	30.36	134.40	100.49	1.34	T1	Dúteil
181	24.19	190,40	196.63	0.97	<u>S2</u>	Frágil
184	30.75	326.60	274.65	1.19	<u>S2</u>	Frágil
188	25.00	185.20	169.23	1 09	<u>S2</u>	Frágil
199	24.32	153.60	109,71	1,09	<u>S2</u>	Frágil
201	42.32	507.40	386.52	1,10	<u>S2</u>	Frágil
204	24.68	294.20	183.70	1,60	<u>S2</u>	Frágil
205	24.64	251.00	186.00	1.35	<u>S2</u>	Frágil
249	42.95	208.20	144.60	1,44	T1	Dútcil
250	31.38	125.60	95.64	1.31	T1	Dúteil
250	24.80	83.80	73.76	1,14	T1	Dútcil
265	30.36	106.00	100.49	1,05	T1	Dútcil
269	42 53	178.00	149 50	1,09	T1	Dúteil
270	24 39	82.80	74 35	1 11	T1	Dúteil
K1'-R	42 01	78.80	40.44	1.95	T1	Dúteil
10	44 74	587.20	397 52	1,99	S1	Fráoil
11	40.01	547.20	316.37	1 73	<u>S1</u>	Fráoil
T1	39.83	629.00	371.00	1 70	S1	Fráoil
T3	39.83	228.00	147.80	1,70	<u>S1</u>	Fráoil
080-49	40.35	228,00	189.46	1 57	<u>S1</u>	Frágil
000-49	32.67	231.40	147 33	1.57	<u>S1</u>	Frágil
000-30	54,07	2J1,+U	17,55	1,57	51	i lagii
A11	22,10	75,60	50,40	1,50	N1	Frágil
----------	-------	---------	--------	------	----	--------
A12	39,08	222,40	156,62	1,42	N1	Frágil
B6	38,00	205,60	79,01	2,60	N1	Frágil
B11	22,10	122,40	79,01	1,55	N1	Frágil
B12	39,08	213,60	79,01	2,70	N1	Frágil
C6	34,08	164,00	78,35	2,09	N1	Frágil
C11	21,97	106,80	78,35	1,36	N1	Frágil
C12	38,90	244,60	78,35	3,12	N1	Frágil
V221	43,11	1176,00	865,73	1,36	S1	Frágil
V222	43,11	860,00	682,31	1,26	S1	Frágil
V311	31,96	738,00	524,81	1,41	S1	Frágil
V321	31,96	774,00	522,17	1,48	S1	Frágil
V322	31,96	750,00	471,05	1,59	S1	Frágil
V811	27,70	280,00	190,60	1,47	S1	Frágil
V011	42,16	452,00	314,49	1,44	S1	Frágil
V012	42,16	644,00	405,33	1,59	S1	Frágil
V013	42,16	688,00	409,83	1,68	S1	Frágil
V014	42,16	850,00	441,97	1,92	S1	Frágil
V021	42,16	440,00	276,65	1,59	S1	Frágil
V023	42,16	694,00	379,31	1,83	S1	Frágil
V024	42,16	792,00	454,69	1,74	S1	Frágil
V031	42,16	646,00	377,75	1,71	S1	Frágil
V032	42,16	636,00	349,16	1,82	S1	Frágil
V033	42,16	492,00	374,63	1,31	S1	Frágil
V034	42,16	874,00	471,27	1,85	S1	Frágil
V711	38,22	330,00	225,97	1,46	S1	Frágil
V022	42,16	540,00	376,19	1,44	S1	Frágil
V511	43,21	700,00	501,40	1,40	S1	Frágil
V411	42,96	790,00	677,29	1,17	S1	Frágil
V211	43,11	1010,00	854,08	1,18	S1	Frágil
500/1.00	38,41	1140,00	456,11	2,50	S1	Frágil
3	23,72	62,00	47,84	1,30	S1	Frágil
5	23,72	70,00	50,20	1,39	S1	Frágil
DF-11	24,79	660,00	420,68	1,57	S1	Frágil
DF-14	27,82	818,00	476,55	1,72	S1	Frágil
DF-15	25,98	660,00	588,49	1,12	S1	Frágil
DF-16	32,85	760,00	585,45	1,30	S1	Frágil
H4300	35,69	674,80	457,97	1,47	S1	Frágil
H4500	24,18	225,00	296,41	0,76	S1	Frágil
D200	38,22	428,40	299,35	1,43	S1	Frágil
D400	41,79	570,60	407,57	1,40	S1	Frágil
D600	42,90	849,00	575,38	1,48	S1	Frágil
L10-40	38,37	384,20	349,27	1,10	S1	Frágil
L10-40R	38,37	623,20	349,27	1,78	S1	Frágil
L10-60	40,74	750,60	370,67	2,02	S1	Frágil
L10-100	41,34	1087,80	698,14	1,56	S1	Frágil
UH10-40	40,19	997,60	562,82	1,77	S1	Frágil

UH10-10110,12100,20100,20100,20100,20100,20UH10-6040,741146,60570,362,01S1FrágilUH10-7540,02676,20679,261,00S1FrágilUH10-75R40,02721,20679,261,06S1FrágilUH10-10041,341538,60698,142,20S1Frágil1-500/1.527,86680,00351,081,94S1Frágil2-1000/1.527,64940,00532,261,77S1Frágil3-1400/1.527,851380,00718,541,92S1Frágil4-1750/1.528,02940,00835,241,13S1FrágilG-1.9-5125,851488,201276,561,17T1DútcilM-1.9-5125,851577,201441,891,09T1Dútcil
UH10-7540,02676,20679,261,00S1FrágilUH10-75R40,02721,20679,261,06S1FrágilUH10-10041,341538,60698,142,20S1Frágil1-500/1.527,86680,00351,081,94S1Frágil2-1000/1.527,64940,00532,261,77S1Frágil3-1400/1.527,851380,00718,541,92S1Frágil4-1750/1.528,02940,00835,241,13S1FrágilG-1.9-5125,851488,201276,561,17T1DútcilM-1.9-5125,851577,201441,891,09T1Dútcil
UH10-75R40,02721,20679,261,06S1FrágilUH10-10041,341538,60698,142,20S1Frágil1-500/1.527,86680,00351,081,94S1Frágil2-1000/1.527,64940,00532,261,77S1Frágil3-1400/1.527,851380,00718,541,92S1Frágil4-1750/1.528,02940,00835,241,13S1FrágilG-1.9-5125,851488,201276,561,17T1DútcilM-1.9-5125,851577,201441,891,09T1Dútcil
UH10-10041,341538,60698,142,20S1Frágil1-500/1.527,86680,00351,081,94S1Frágil2-1000/1.527,64940,00532,261,77S1Frágil3-1400/1.527,851380,00718,541,92S1Frágil4-1750/1.528,02940,00835,241,13S1FrágilG-1.9-5125,851488,201276,561,17T1DútcilM-1.9-5125,851577,201441,891,09T1Dútcil
1-500/1.527,86680,00351,081,94S1Frágil2-1000/1.527,64940,00532,261,77S1Frágil3-1400/1.527,851380,00718,541,92S1Frágil4-1750/1.528,02940,00835,241,13S1FrágilG-1.9-5125,851488,201276,561,17T1DútcilM-1.9-5125,851577,201441,891,09T1Dútcil
2-1000/1.5 27,64 940,00 532,26 1,77 S1 Frágil 3-1400/1.5 27,85 1380,00 718,54 1,92 S1 Frágil 4-1750/1.5 28,02 940,00 835,24 1,13 S1 Frágil G-1.9-51 25,85 1488,20 1276,56 1,17 T1 Dútcil M-1.9-51 25,85 1577,20 1441,89 1,09 T1 Dútcil
3-1400/1.527,851380,00718,541,92S1Frágil4-1750/1.528,02940,00835,241,13S1FrágilG-1.9-5125,851488,201276,561,17T1DútcilM-1.9-5125,851577,201441,891,09T1Dútcil
4-1750/1.528,02940,00835,241,13S1FrágilG-1.9-5125,851488,201276,561,17T1DútcilM-1.9-5125,851577,201441,891,09T1Dútcil
G-1.9-5125,851488,201276,561,17T1DútcilM-1.9-5125,851577,201441,891,09T1Dútcil
M-1.9-51 25,85 1577,20 1441,89 1,09 T1 Dútcil
M-1.9-38 25,85 1381,20 1313,90 1,05 S1 Frágil
2DB35 39,40 170,00 107,13 1,59 S1 Frágil
2DB50 40,03 271,00 153,99 1,76 S1 Frágil
2DB70 40,35 311,00 166,07 1,87 S1 Frágil
2DB100 40,26 483,00 282,14 1,71 S1 Frágil
3DB35b 39,40 170,00 107,13 1,59 S1 Frágil
3DB50b 39,74 334,00 212,23 1,57 S1 Frágil
3DB70b 40,01 721,00 397,09 1,82 S1 Frágil
3DB100b 39,60 1344,00 889,33 1,51 S1 Frágil
5A 41,79 1264,00 706,85 1,79 S1 Frágil
9A 30,79 568,00 432,51 1,31 S1 Frágil
13B 41,79 1322,00 758,94 1,74 S1 Frágil
25F 41,79 2806,00 1149,04 2,44 S1 Frágil
26F 30,79 1808,00 845,33 2,14 S1 Frágil
27F 24,08 1504,00 641,92 2,34 S1 Frágil
38E 41,79 716,00 635,53 1,13 S1 Frágil

Fonte: Autor (2020).

Tabela 19 – Cálculos dos erros de modelo do Modelo 1 - Schäfer e Schläich (1991).

Vigas	α (°)	P _{exp} (kN)	<i>P_M</i> (kN)	εί	Elemento	Tipo de ruptura
G23S-11	54,54	179,60	119,78	1,50	S2	Frágil
C1	52,37	180,20	165,08	1,09	T1	Dútcil
5	60,93	805,00	579,57	1,39	T1	Dúteil
7	60,93	974,20	771,77	1,26	S1	Frágil
Τ7	48,64	892,00	814,64	1,09	N1	Frágil
0A0-44	48,35	319,00	277,18	1,15	S1	Frágil
0A0-48	48,35	312,20	282,59	1,10	S1	Frágil
V611	57,99	442,00	270,64	1,63	N1	Frágil
500/0.50	57,94	1700,00	1308,81	1,30	N1	Frágil
500/0.75	46,79	1400,00	963,63	1,45	S1	Frágil
N4200	46,76	530,40	489,86	1,08	S1	Frágil
H4200	46,76	802,20	895,09	0,90	T1	Dúteil
L5-40	57,91	893,80	683,27	1,31	N1	Frágil
L5-60	59,97	1070,20	683,27	1,57	N1	Frágil

L5-60R	59,97	958,40	683,27	1,40	N1	Frágil
L5-75	59,36	1193,60	683,27	1,75	N1	Frágil
L5-100	60,48	1164,20	683,27	1,70	N1	Frágil
UH5-40	57,91	1466,00	1480,24	0,99	T1	Dútcil
UH5-60	59,97	1646,40	1708,16	0,96	N1	Frágil
UH5-75	59,36	2020,80	1708,16	1,18	N1	Frágil
UH5-100	60,48	2058,00	1708,16	1,20	N1	Frágil
*1-500/0.75	46,79	1400,00	964,79	1,45	S2	Frágil
*2-1000/0.75	46,53	1300,00	933,92	1,39	N1	Frágil
*3-1400/0.75	46,78	1900,00	1033,88	1,84	N1	Frágil
*4-1750/0.75	46,96	2480,00	1153,83	2,15	N1	Frágil
TF-0.14/1	59,00	45,00	39,17	1,15	T1	Dútcil
TF-0.14/2	59,00	50,00	39,17	1,28	T1	Dútcil
TF-0.14/3	59,00	60,00	39,17	1,53	T1	Dútcil
TF-0.25/1	56,48	80,00	59,68	1,34	T1	Dútcil
TF-0.25/2	56,48	85,00	59,68	1,42	T1	Dútcil
TS-0.58/1	53,46	145,00	115,96	1,25	T1	Dútcil
TS-058/2	53,46	150,00	115,96	1,29	T1	Dútcil
1A	60,95	1706,00	946,56	1,80	N1	Frágil
24F	60,95	3916,00	3259,92	1,20	N1	Frágil
35E	60,95	1176,00	1032,24	1,14	N1	Frágil

Fonte: Autor (2020).

	Tabela 20	– Cálculo	s dos erro	s de model	lo do Mod	elo 2 – A	CI 318.	
				P _{exp}	P _M			Tipo de
Vigas	α_1 (°)	α_2 (°)	α_3 (°)		(kN)	ε	Elemento	runtura
							~ ~ ~	- i ii
D1-1	42,92	28,64	55,89	620,20	401,49	1,54	S2	Frágil
D1-3	42,41	28,01	55,32	573,20	412,27	1,39	S2	Frágil
D2-1	42,41	28,01	55,32	597,80	428,28	1,40	S2	Frágil
D2-2	42,92	28,64	55,89	642,40	475,02	1,35	S2	Frágil
D3-1	41,89	27,37	54,74	789,80	567,33	1,39	S2	Frágil
D4-1	42,41	28,01	55,32	624,40	462,30	1,35	S2	Frágil
B1-10	41,36	26,75	54,16	178,80	112,23	1,59	S2	Frágil
B2-10	41,36	26,75	54,16	199,20	103,95	1,92	S2	Frágil
B5-10	41,36	26,75	54,16	195,60	113,50	1,72	T3	Dúctil
1BI-01	45,00	33,47	58,95	295,00	215,12	1,37	S2	Frágil
1 B3-29	45,00	33,47	58,95	287,20	215,12	1,34	S2	Frágil
1B4-30	45,00	33,47	58,95	300,60	215,16	1,40	T2	Dútcil
1B6-31	45,00	33,47	58,95	306,60	208,70	1,47	S2	Frágil
2BI-05	45,00	33,47	58,95	258,00	184,08	1,40	S2	Frágil
2B3-06	45,00	33,47	58,95	262,40	181,94	1,44	S2	Frágil
2B4-07	45,00	33,47	58,95	252,20	187,29	1,35	S2	Frágil
2B4-52	45,00	33,47	58,95	299,80	233,31	1,28	S2	Frágil
2B6-32	45,00	33,47	58,95	290,40	211,91	1,37	S2	Frágil
3B1-08	45,00	33,47	58,95	261,60	173,38	1,51	S2	Frágil
3B1-36	45,00	33,47	58,95	318,00	218,33	1,46	S2	Frágil
3B3-33	45,00	33,47	58,95	316,80	203,34	1,56	S2	Frágil
3B4-34	45,00	33,47	58,95	310,00	205,49	1,51	S2	Frágil
3B6-35	45,00	33,47	58,95	332,20	221,54	1,50	S2	Frágil
4B1-09	45,00	33,47	58,95	307,00	183,01	1,68	S2	Frágil
V711/4	46,99	35,55	60,76	634,00	294,84	2,15	T2	Dútcil
V511/4	47,95	36,24	61,50	930,00	490,19	1,90	T2	Dútcil
V411/4	49,43	38,60	63,05	934,00	501,16	1,86	S4	Frágil
V022/3	46,99	35,55	60,76	760,00	470,07	1,62	S2	Frágil
V511/3	47,95	36.24	61.50	1160.00	651.91	1.78	S4	Frágil
V411/3	49.43	38.60	63.05	1330.00	583.70	2.28	S4	Frágil
II-2N/1.00	43.94	29.93	56,99	2080.00	958.37	2,17	S2	Frágil
2-1000/1.00	43.94	29.93	56.99	870.00	345.55	2.52	T2	Dútcil
N42A2	50.06	42.02	64.49	568.20	224.05	2.54	T2	Dútcil
N42B2	50.06	42.02	64.49	754.00	410.76	1.84		Dútcil
N42C2	50.06	42.02	64.49	715.00	463.90	1.54	S2	Frágil
H42B2(1)	50.06	42.02	64.49	912.60	410.76	2.22	T2	Dútcil
H42C2(1)	50.06	42.02	64.49	841.20	634.80	1.33	T2	Dútcil
H43B2	42.31	26.11	54.47	761.80	321.46	2.37	T2	Dútcil
H43C2	42.31	26.11	54,47	804.80	496,79	1.62	T2	Dútcil

T2

T2

Dútcil

Dútcil

H42B2(2)

H42C2(2)

50,06

50,06

42,02

42,02

64,49

64,49

721,20

747,60

413,63

637,67

1,74

1,17

APÊNDICE B – Resultados dos cálculos dos erros de Modelo 2

U42B2	50,06	42,02	64,49	820,80	413,63	1,98	T2	Dútcil
U42C2	50,06	42,02	64,49	816,00	637,67	1,28	T2	Dútcil
N33A2	42,31	26,11	54,47	456,40	175,34	2,60	T2	Dútcil
1DB35bw	44,83	31,35	58,05	199,00	133,39	1,49	S2	Frágil
1DB50bw	45,37	31,83	58,53	373,00	275,89	1,35	S2	Frágil
1DB70bw	45,73	32,16	58,85	854,00	536,26	1,59	S2	Frágil
1DB100bw	45,23	31,71	58,41	1550,00	1170,22	1,32	S2	Frágil
1-500/0.75W	50,31	42,50	64,76	671,00	416,61	1,61	T2	Dútcil
2- 1000/0.75W	49,67	41,63	64,18	1603,00	812,25	1,97	T2	Dútcil
3- 1400/0.75W	50,31	42,50	64,76	2104,00	1225,36	1,72	S2	Frágil
4- 1750/0.75W	50,32	42,51	64,77	2610,00	1300,41	2,01	S2	Frágil
C2	45,77	36,44	60,47	1000,00	640,34	1,56	T2	Dútcil
C3	45,77	36,44	60,47	1000,00	775,30	1,29	T3	Dúctil
F2	45,77	36,44	60,47	706,00	640,34	1,10	T2	Dútcil
F3	45,77	36,44	60,47	748,00	706,06	1,06	S2	Frágil
G3	45,77	36,44	60,47	489,00	371,42	1,32	S2	Frágil
SS-2	45,64	34,29	59,60	610,34	457,71	1,33	S2	Frágil
SS-3	41,14	25,19	53,35	560,66	400,05	1,40	S2	Frágil
LBS-1	45,64	34,29	59,60	397,78	457,71	0,87	S2	Frágil
LBS-2	45,64	34,29	59,60	579,96	457,71	1,27	S2	Frágil
VSR-1	45,64	34,29	59,60	593,29	457,71	1,30	S2	Frágil
VSR-2	45,64	34,29	59,60	658,07	457,71	1,44	S2	Frágil
D-1,08-2,15	46,42	33,23	59,62	540,00	525,73	1,03	T2	Dútcil
D-1,08-3,23	46,42	33,23	59,62	560,00	513,75	1,09	S4	Frágil
D-1,08-4,30	46,42	33,23	59,62	580,00	525,73	1,10	T2	Dútcil
D-1,08-5,38	46,42	33,23	59,62	580,00	525,73	1,10	T2	Dútcil
G33S-12	46,56	35,15	60,40	172,37	110,78	1,56	S4	Frágil
G33S-32	46,56	35,15	60,40	206,84	111,54	1,85	S4	Frágil
I-800-0.75- 130	49,02	40,74	63,58	2199,60	1322,56	1,66	T2	Dútcil
I-1000-0.75- 130	48,85	40,57	63,44	2692,80	1644,91	1,64	T2	Dútcil
I-1400-0.75- 130	49,80	41,76	64,28	3160,00	2012,06	1,57	S2	Frágil
II-500-1.00- 130	42,94	28,66	55,90	1346,60	672,82	2,00	T2	Dútcil
II-800-1.00- 130	43,03	28,73	55,98	1628,20	1078,82	1,51	T2	Dútcil
II-1000- 1.00-130	42,83	28,56	55,80	1846,80	1341,76	1,38	T2	Dútcil
II-1400- 1.00-130	43,97	29,96	57,02	2243,80	1932,03	1,16	T2	Dútcil
III-500-1.00- 200	42,94	28,66	55,90	1406,40	672,82	2,09	T2	Dútcil

III-800-1.00- 200	43,03	28,73	55,98	2133,40	1078,82	1,98	T2	Dútcil
III-1000- 1.00-200	42,83	28,56	55,80	2234,20	1341,76	1,67	T2	Dútcil
III-1400- 1.00-200	43,97	29,96	57,02	2737,80	1932,03	1,42	T2	Dútcil
6A	46,56	35,15	60,40	1462,00	559,44	2,61	T2	Dútcil
7A	46,56	35,15	60,40	1500,00	958,46	1,57	S2	Frágil
8A	46,56	35,15	60,40	1608,00	961,75	1,67	S2	Frágil
14B	46,56	35,15	60,40	1502,00	559,44	2,68	T2	Dútcil
15B	46,56	35,15	60,40	1548,00	1050,37	1,47	S2	Frágil
16B	46,56	35,15	60,40	1698,00	1050,37	1,62	S2	Frágil
17C	46,56	35,15	60,40	1140,00	559,44	2,04	T2	Dútcil
18C	46,56	35,15	60,40	1546,00	1033,96	1,50	S2	Frágil
19C	46,56	35,15	60,40	1512,00	1043,81	1,45	S2	Frágil
20D	46,56	35,15	60,40	1330,00	797,63	1,67	S2	Frágil
21D	46,56	35,15	60,40	1322,00	882,97	1,50	S2	Frágil
33A	46,56	35,15	60,40	1294,00	810,76	1,60	S2	Frágil
34A	46,56	35,15	60,40	1196,00	814,04	1,47	S2	Frágil
39E	46,56	35,15	60,40	940,00	833,73	1,13	S2	Frágil
40E	46,56	35,15	60,40	940,00	850,14	1,11	S2	Frágil
46F	46,56	35,15	60,40	2486,00	1446,99	1,72	T2	Dútcil
47F	46,56	35,15	60,40	2600,00	3160,95	0,82	S2	Frágil
L6L	46,56	35,15	60,40	1330,00	812,24	1,64	T2	Dútcil
MS1-1	39,92	25,25	52,61	1252,00	856,97	1,46	T3	Dúctil
MS1-2	40,18	25,55	52,90	2142,00	868,65	2,47	T2	Dútcil
DB1-1.04-2	48,26	35,81	61,50	318,50	305,12	1,04	S4	Frágil
DB2-1.04-3	48,26	35,81	61,50	360,00	305,12	1,18	S4	Frágil

Fonte: Autor (2020).

Tabela 21 – Cálculos dos erros de modelo do Modelo 2 – NBR 6118.

-								-
Vigas	a. (°)	α_{2} (°)	$\alpha_{\rm e}$ (°)	Pexp	P_M	c .	Flomento	Tipo de
v Igas	<i>u</i> ₁ ()	u ₂ ()	u ₃ ()	(kN)	(kN)	ε _i	Liemento	ruptura
1BI-01	44,67	33,17	58,66	295,00	194,37	1,52	S2	Frágil
1B3-29	44,67	33,17	58,66	287,20	194,37	1,48	S2	Frágil
1B4-30	44,67	33,17	58,66	300,60	199,91	1,50	S2	Frágil
1B6-31	44,67	33,17	58,66	306,60	189,55	1,62	S2	Frágil
2BI-05	44,67	33,17	58,66	258,00	170,55	1,51	S2	Frágil
2B3-06	44,67	33,17	58,66	262,40	168,86	1,55	S2	Frágil
2B4-07	44,67	33,17	58,66	252,20	173,08	1,46	S2	Frágil
2B4-52	44,67	33,17	58,66	299,80	207,70	1,44	S2	Frágil
2B6-32	44,67	33,17	58,66	290,40	191,97	1,51	S2	Frágil
3B1-08	44,67	33,17	58,66	261,60	162,02	1,61	S2	Frágil
3B1-36	44,67	33,17	58,66	318,00	196,76	1,62	S2	Frágil
3B3-33	44,67	33,17	58,66	316,80	185,49	1,71	S2	Frágil

3B4-34	44,67	33,17	58,66	310,00	187,12	1,66	S2	Frágil
3B6-35	44,67	33,17	58,66	332,20	199,13	1,67	S2	Frágil
4B1-09	44,67	33,17	58,66	307,00	169,70	1,81	S2	Frágil
V711/4	46,79	35,36	60,59	634,00	294,84	2,15	T2	Dútcil
V511/4	47,83	36,12	61,39	930,00	490,19	1,90	T2	Dútcil
V411/4	49,35	38,52	62,98	934,00	423,13	2,21	S3	Frágil
V022/3	46,79	35,36	60,59	760,00	428,07	1,78	S2	Frágil
V511/3	47,83	36,12	61,39	1160,00	549,24	2,11	S3	Frágil
V411/3	49,35	38,52	62,98	1330,00	481,05	2,76	S3	Frágil
1DB35bw	44,60	31,15	57,84	199,00	115,73	1,72	S2	Frágil
1DB50bw	45,18	31,66	58,36	373,00	236,08	1,58	S2	Frágil
1DB70bw	45,57	32,01	58,71	854,00	454,90	1,88	S2	Frágil
1DB100bw	45,03	31,53	58,23	1550,00	989,86	1,57	S2	Frágil
C2	45,35	36,04	60,11	1000,00	469,63	2,13	S2	Frágil
C3	45,35	36,04	60,11	1000,00	469,58	2,13	S2	Frágil
F2	45,35	36,04	60,11	706,00	441,32	1,60	S2	Frágil
F3	45,35	36,04	60,11	748,00	438,36	1,71	S2	Frágil
G3	45,35	36,04	60,11	489,00	303,93	1,61	S2	Frágil
SS-2	45,35	34,02	59,35	610,34	404,86	1,51	S2	Frágil
LBS-1	45,35	34,02	59,35	397,78	404,86	0,98	S2	Frágil
LBS-2	45,35	34,02	59,35	579,96	404,86	1,43	S2	Frágil
VSR-1	45,35	34,02	59,35	593,29	404,86	1,47	S2	Frágil
VSR-2	45,35	34,02	59,35	658,07	404,86	1,63	S2	Frágil
D-1,08-2,15	46,27	33,09	59,49	540,00	372,14	1,45	S3	Frágil
D-1,08-3,23	46,27	33,09	59,49	560,00	354,56	1,58	S3	Frágil
D-1,08-4,30	46,27	33,09	59,49	580,00	366,41	1,58	S3	Frágil
D-1,08-5,38	46,27	33,09	59,49	580,00	371,46	1,56	S3	Frágil
G33S-12	46,33	34,93	60,20	172,37	98,54	1,75	S4	Frágil
G33S-32	46,33	34,93	60,20	206,84	99,11	2,09	S4	Frágil
6A	46,33	34,93	60,20	1462,00	559,44	2,61	T2	Dútcil
7A	46,33	34,93	60,20	1500,00	802,02	1,87	S2	Frágil
8A	46,33	34,93	60,20	1608,00	804,04	2,00	S2	Frágil
14B	46,33	34,93	60,20	1502,00	559,44	2,68	T2	Dútcil
15B	46,33	34,93	60,20	1548,00	856,78	1,81	S2	Frágil
16B	46,33	34,93	60,20	1698,00	856,78	1,98	S2	Frágil
17C	46,33	34,93	60,20	1140,00	559,44	2,04	T2	Dútcil
18C	46,33	34,93	60,20	1546,00	847,27	1,82	S2	Frágil
19C	46,33	34,93	60,20	1512,00	852,99	1,77	S2	Frágil
20D	46,33	34,93	60,20	1330,00	697,39	1,91	S2	Frágil
21D	46,33	34,93	60,20	1322,00	754,32	1,75	S2	Frágil
33A	46,33	34,93	60,20	1294,00	706,36	1,83	S2	Frágil
34A	46,33	34,93	60,20	1196,00	708,59	1,69	S2	Frágil
39E	46,33	34,93	60,20	940,00	721,87	1,30	S2	Frágil
40E	46,33	34,93	60,20	940,00	732,81	1,28	<u>S2</u>	Frágil
46F	46,33	34,93	60,20	2486,00	1277,47	1,95	<u>S2</u>	Frágil
47F	46,33	34,93	60,20	2600,00	1281,68	2,03	S2	Frágil
L6L	46,33	34,93	60,20	1330,00	812,24	1,64	T2	Dútcil

DB1-1.04-2	48,18	35,74	61,44	318,50	208,90	1,52	S3	Frágil
DB2-1.04-3	48,18	35,74	61,44	360,00	208,90	1,72	S3	Frágil
DB-1	55,83	52,78	70,28	458,58	521,62	0,88	S3	Dúctil
U41A0	60,90	60,90	74,45	876,00	755,40	1,16	S4	Frágil
H42C2(2)	49,86	41,81	64,33	747,60	622,66	1,20	S4	Frágil
L7L	46,33	34,93	60,20	2584,00	783,00	3,30	T2	Dútcil
DB-2	55,83	52,78	70,28	474,46	521,62	0,91	S4	Dúctil

Fonte: Autor (2020).

¥ 7•	(0)			Pexp	P _M			Tipo de
Vigas	$\alpha_1(^{\circ})$	α_2 (°)	<i>α</i> ₃ (°)	(kN)	(kN)	ε _i	Elemento	ruptura
B14-E2	48,57	38,24	62,50	556	408,95	1,36	S2	frágil
B14-A4	47,01	35,94	60,91	1023	739,76	1,38	S2	frágil
B14-B4	47,90	37,16	61,80	1000,8	847,86	1,18	S2	frágil
B14-E4	47,90	37,16	61,80	1023	931,67	1,10	S2	frágil
B14-A6	46,07	34,69	59,98	1801,4	1360,79	1,32	T2	frágil
B14-B6	47,90	37,16	61,80	1556,8	1461,94	1,06	T2	frágil
1	44,62	33,34	58,70	777	543,13	1,43	T2	frágil
G33S-11	46,46	35,05	60,31	170,6	131,80	1,29	S4	frágil
G34S-11	46,46	35,05	60,31	219,6	170,26	1,29	T2	frágil
53	45,10	33,12	58,87	310,4	250,46	1,24	T2	frágil
54	46,79	35,36	60,59	315,4	186,77	1,69	S4	frágil
67	45,02	33,08	58,81	1095,6	770,23	1,42	S2	frágil
69	46,51	35,06	60,34	1170,8	816,94	1,43	T2	frágil
174	46,82	35,56	60,68	213	150,07	1,42	T3	dúctil
201	47,08	35,80	60,90	507,4	471,00	1,08	T2	frágil
249	47,62	36,65	61,47	208,2	142,88	1,46	T3	dúctil
269	47,23	36,11	61,08	178	147,53	1,21	T3	dúctil
K1'-R	46,88	35,32	60,62	78,8	39,89	1,98	T3	dúctil
10	48,68	39,44	62,97	587,2	516,26	1,14	T2	frágil
11	45,28	32,54	58,75	547,2	421,73	1,30	T2	frágil
T1	42,94	34,47	58,27	629	282,97	2,22	T2	frágil
T3	42,94	34,47	58,27	228	139,54	1,63	S2	frágil
0B0-49	45,01	33,48	58,96	298	232,24	1,28	S2	frágil
A12	43,39	32,22	57,59	222,4	114,00	1,95	N1	frágil
B6	42,10	31,06	56,41	205,6	126,09	1,63	N1	frágil
B12	43,39	32,22	57,59	213,6	126,09	1,69	N1	frágil
C6	37,30	26,92	51,77	164	120,91	1,36	N1	frágil
C12	43,18	32,03	57,41	244,6	120,91	2,02	N1	frágil
V221	48,07	36,58	61,68	1176	1081,05	1,09	S4	frágil
V222	48,07	36,58	61,68	860	816,09	1,05	S4	frágil
V011	46,99	35,55	60,76	452	386,13	1,17	S2	frágil
V012	46,99	35,55	60,76	644	522,83	1,23	S2	frágil
V013	46,99	35,55	60,76	688	530,03	1,30	S2	frágil
V014	46,99	35,55	60,76	850	582,79	1,46	S2	frágil
V021	46,99	35,55	60,76	440	333,37	1,32	S2	frágil
V023	46,99	35,55	60,76	694	482,06	1,44	S2	frágil
V024	46,99	35,55	60,76	792	604,37	1,31	S2	frágil
V031	46,99	35,55	60,76	646	479,66	1,35	S2	frágil
V032	46,99	35,55	60,76	636	436,49	1,46	S2	frágil
V033	46,99	35,55	60,76	492	474,87	1,04	S2	frágil

Tabela 22 – Cálculos dos erros de modelo do Modelo 3 – ACI.

V034	46,99	35,55	60,76	874	633,15	1,38	S2	frágil
V711	42,36	31,30	56,66	330	231,44	1,43	S2	frágil
V022	46,99	35,55	60,76	540	477,26	1,13	S2	frágil
V511	48,18	36,69	61,77	700	601,96	1,16	S4	frágil
V411	47,90	36,42	61,53	790	875,89	0,90	S4	frágil
V211	48,07	36,58	61,68	1010	1059,86	0,95	S4	frágil
500/0.75	50,02	42,10	64,50	1400	875,85	1,60	T2	frágil
500/1.00	44,14	30,18	57,20	1140	662,59	1,72	T2	frágil
N4200	50,06	42,02	64,49	530,4	463,90	1,14	S2	frágil
H4200	50,06	42,02	64,49	802,2	881,78	0,91	T3	dúctil
H4300	42,31	26,11	54,47	674,8	589,27	1,15	T3	dúctil
D200	42,36	31,30	56,66	428,4	345,78	1,24	T2	frágil
D400	46,56	35,15	60,40	570,6	582,63	0,98	S2	frágil
D600	47,83	36,35	61,48	849	918,88	0,92	S4	frágil
L10-40	44,10	30,14	57,17	384,2	484,49	0,79	S2	frágil
L10-40R	44,10	30,14	57,17	623,2	484,49	1,29	S2	frágil
L10-60	46,37	33,15	59,57	750,6	532,31	1,41	S2	frágil
L10-75	45,69	32,24	58,86	543	608,16	0,89	S2	frágil
L10-75R	45,69	32,24	58,86	660,6	608,16	1,09	S2	frágil
L10-100	46,93	33,93	60,15	1087,8	1352,95	0,80	Т3	dúctil
UH10-40	45,39	32,81	58,91	997,6	762,37	1,31	Т3	dúctil
UH10-40R	45,39	32,81	58,91	770,2	762,37	1,01	Т3	dúctil
UH10-60	46,37	33,15	59,57	1146,6	1179,95	0,97	Т3	dúctil
UH10-100	46,93	33,93	60,15	1538,6	1352,95	1,14	T3	dúctil
2DB35	45,00	31,53	58,21	170	139,64	1,22	S2	frágil
2DB50	45,77	32,19	58,88	271	218,33	1,24	S2	frágil
2DB70	46,16	32,55	59,23	311	224,43	1,39	S2	frágil
2DB100	46,06	32,45	59,14	483	399,67	1,21	S2	frágil
3DB35b	45,00	31,53	58,21	170	139,64	1,22	S2	frágil
3DB50b	45,41	31,89	58,58	334	284,37	1,17	S2	frágil
3DB70b	45,75	32,18	58,87	721	543,41	1,33	S2	frágil
3DB100b	45,25	31,74	58,43	1344	1193,51	1,13	S2	frágil
*1-500/0.75	50,02	42,10	64,50	1400	875,85	1,60	T2	frágil
*2-1000/0.75	49,78	41,77	64,27	1300	933,92	1,39	N1	frágil
*3-1400/0.75	50,01	42,09	64,49	1900	1033,88	1,84	N1	frágil
*4-1750/0.75	50,18	42,32	64,64	2480	1153,83	2,15	N1	frágil
5A	46,56	35,15	60,40	1264	951,90	1,33	S2	frágil
13B	46,56	35,15	60,40	1322	1050,37	1,26	S2	frágil
25F	46,56	35,15	60,40	2806	1950,93	1,44	T2	frágil
38E	46,56	35,15	60,40	716	827,17	0,87	S2	frágil

Fonte: Autor (2020).

	(0)	<i>(</i>)		P _{exp}	P _M			Tipo de
Vigas	$\alpha_1(^{\circ})$	α_2 (°)	α ₃ (°)	(kN)	(kN)	ε _i	Elemento	ruptura
B14-E2	48,41	38,08	62,37	556,00	394,05	1,41	S2	frágil
B14-A4	46.79	35.73	60.73	1023.00	562.43	1.82	T2	frágil
B14-B4	47,72	36,99	61,64	1000,80	640,14	1,56	T2	frágil
B14-E4	47,72	36,99	61,64	1023,00	681,66	1,50	T2	frágil
B14-A6	45,81	34,44	59,75	1801,40	870,55	2,07	T2	frágil
B14-B6	47,72	36,99	61,64	1556,80	940,01	1,66	T2	frágil
1	44.25	33.00	58.37	777.00	328,47	2.37	T2	frágil
G33S-11	46.23	34.83	60.11	170.60	79.29	2.15	T2	frágil
G34S-11	46.23	34.83	60.11	219.60	104.40	2.10	T2	frágil
53	44.81	32.85	58.61	310.40	161.38	1.92	T2	frágil
54	46.57	35.16	60.41	315.40	115.58	2.73	T2	frágil
67	44.72	32.81	58.55	1095.60	498.61	2.20	T2	frágil
69	46.28	34.84	60.14	1170.80	480.44	2.44	T2	frágil
174	46.60	35.35	60.49	213.00	148.91	1.43	T3	dútil
201	46.87	35.60	60.72	507.40	288.80	1.76	T2	frágil
249	47.43	36.46	61.32	208.20	141.95	1.47	T3	dútil
269	47.02	35.91	60.91	178.00	146.48	1.22	T3	dútil
K1'-R	46.68	35.13	60.45	78.80	39.61	1.99	T3	dútil
10	48.45	39.22	62.79	587.20	320.76	1.83	T2	frágil
11	45.05	32 33	58 54	547.20	254.92	2 15	T2	frágil
T3	42.24	33.82	57.64	228.00	89.02	2,15	T2	frágil
080-49	44.68	33.18	58.67	298.00	151.51	1.97	T2	frágil
A12	42.93	31.81	57.18	222.40	201.31	1,10	<u>S2</u>	frágil
B6	41.54	30.57	55.89	205.60	201,01	0.95	<u>S2</u>	frágil
B12	42.93	31.81	57.18	213.60	206.04	1.04	<u>S2</u>	frágil
C12	42.71	31.61	56.98	244.60	206.41	1,19	<u>S2</u>	frágil
V221	47.94	36.46	61 57	1176.00	922.68	1 27	<u>\$2</u>	frágil
V222	47 94	36.46	61 57	860.00	727.20	1 18	<u>S3</u>	frágil
V011	46 79	35 36	60 59	452.00	361 52	1,10	T2	frágil
V012	46.79	35.36	60.59	644.00	442.48	1.46	T2	frágil
V013	46.79	35.36	60.59	688.00	446.53	1.54	T2	frágil
V014	46.79	35.36	60.59	850.00	475.69	1,79	T2	frágil
V021	46.79	35.36	60.59	440.00	318.79	1.38	<u>S2</u>	frágil
V023	46.79	35.36	60.59	694.00	419.16	1,66	T2	frágil
V024	46.79	35.36	60.59	792.00	487.36	1.63	T2	frágil
V031	46.79	35.36	60.59	646.00	417.77	1,55	T2	frágil
V032	46.79	35.36	60.59	636.00	392.31	1.62	T2	frágil
V033	46,79	35,36	60.59	492.00	414.98	1,19	T2	frágil
V034	46.79	35,36	60 59	874.00	502 71	1.74	T2	fráoil
V711	41.83	30.82	56.16	330.00	173 72	1 90	T2	fráoil
V022	46 79	35 36	60 59	540.00	416 38	1 30	T2	fráoil
V511	48.06	36 57	61 67	700.00	513.23	1 36	<u>S3</u>	fráoil
V411	47.75	36.28	61,41	790.00	761.32	1,04	S3	frágil

Tabela 23 – Cálculos dos erros de modelo do Modelo 3 – NBR 6118.

V211	47,94	36,46	61,57	1010,00	907,75	1,11	S3	frágil
D200	41,83	30,82	56,16	428,40	215,12	1,99	T2	frágil
D400	46,33	34,93	60,20	570,60	408,30	1,40	T2	frágil
D600	47,68	36,21	61,35	849,00	659,77	1,29	S3	frágil
L10-60	46,22	33,02	59,44	750,60	437,93	1,71	S2	frágil
L10-75	45,52	32,08	58,70	543,00	502,54	1,08	S2	frágil
L10-75R	45,52	32,08	58,70	660,60	502,54	1,31	S2	frágil
L10-100	46,80	33,81	60,04	1087,80	808,96	1,34	S2	frágil
UH10-40	45,15	32,59	58,70	997,60	554,07	1,80	T2	frágil
UH10-40R	45,15	32,59	58,70	770,20	554,07	1,39	T2	frágil
UH10-60	46,22	33,02	59,44	1146,60	673,87	1,70	S2	frágil
UH10-100	46,80	33,81	60,04	1538,60	808,96	1,90	S2	frágil
2DB35	44,78	31,34	58,01	170,00	119,52	1,42	S2	frágil
2DB50	45,61	32,04	58,74	271,00	178,40	1,52	S2	frágil
2DB70	46,02	32,42	59,11	311,00	196,23	1,58	S2	frágil
2DB100	45,91	32,31	59,01	483,00	331,78	1,46	S2	frágil
3DB35b	44,78	31,34	58,01	170,00	119,52	1,42	S2	frágil
3DB50b	45,22	31,72	58,41	334,00	241,36	1,38	S2	frágil
3DB70b	45,58	32,03	58,72	721,00	459,29	1,57	S2	frágil
3DB100b	45,05	31,56	58,25	1344,00	1004,07	1,34	S2	frágil
5A	46,33	34,93	60,20	1264,00	713,60	1,77	T2	frágil
13B	46,33	34,93	60,20	1322,00	762,00	1,73	T2	frágil
25F	46,33	34,93	60,20	2806,00	1197,31	2,34	T2	frágil
38E	46,33	34,93	60,20	716,00	649,82	1,10	T2	frágil

Fonte: Autor (2020).

¥7•	h	b	d	а	b ₁	b ₂	f_{ck}	ρ	f_{yk}	Pexp
vigas	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(MPa)	(%)	(MPa)	(kN)
III-24a	610	178	533	831	203	203	17,8	2,72	483	593
III-24b	610	178	533	831	203	203	20,6	2,72	483	606,4
III-25a	610	178	533	831	203	203	24,3	3,46	483	535,2
III-25b	610	178	533	831	203	203	17,2	3,46	483	579,6
III-26a	610	178	533	831	203	203	21,7	4,25	483	842,2
III-26b	610	178	533	831	203	203	20,6	4,25	483	793,2
III-27a	610	178	533	831	203	203	21,4	2,72	483	695,4
III-27b	610	178	533	831	203	203	22,9	2,72	483	713,2
III-28a	610	178	533	831	203	203	23,3	3,46	483	606,4
III-28b	610	178	533	831	203	203	22,4	3,46	483	682
III-29a	610	178	533	831	203	203	21,7	4,25	483	779,8
III-29b	610	178	533	831	203	203	25	4,25	483	873,2
B14-E2	410	305	375	356	102	102	12,7	0,57	483	556
B14-A4	406	305	362	356	102	102	22,6	2,50	483	1023
B14-B4	406	305	368	356	102	102	26,3	1,85	483	1000,8
B14-E4	406	305	368	356	102	102	28,9	1,24	483	1023
B14-A6	406	305	356	356	102	102	45,4	3,83	483	1801,4
B14-B6	406	305	368	356	102	102	46,8	1,85	483	1556,8
B21-B2	406	305	367	533	102	102	13,9	1,86	483	477
B21-E2	406	305	375	533	102	102	11,3	0,57	483	423,4
B21-A4	406	305	368	533	102	102	29,8	2,46	483	1046,2
B21-B4	406	305	368	533	102	102	27,1	1,85	483	792,8
B21-E4	406	305	365	533	102	102	24,2	1,24	483	846
B21-E4R	406	305	368	533	102	102	31,9	1,24	483	868,4
B21-F4	406	305	370	533	102	102	31,4	1,17	483	935,2
B21-A6	406	305	356	533	102	102	45,3	3,83	483	1157,6
B21-B6	406	305	375	533	102	102	45,5	1,82	483	1157,4
B28-E2	406	305	372	711	102	102	13,7	0,57	483	260
B28-A4	406	305	368	711	102	102	27,5	2,46	483	647
B28-B4	406	305	368	711	102	102	32,3	1,85	483	513,6
B28-E4	406	305	368	711	102	102	33,1	1,24	483	535,8
B28-B6	406	305	368	711	102	102	43,9	1,85	483	647
IIIA2	152	102	137	254	64	64	14,9	2,37	328	41,4
B-18-1	457	203	404	610	89	89	25,4	3,05	267	622,8
C-18-1	457	203	404	610	89	89	25,6	1,85	490	578,2
C-18-2	457	203	404	610	89	89	26,4	1,88	466	622,8
D-18-1	457	203	404	610	89	89	25,7	1,17	724	533,8
D-18-2	457	203	404	610	89	89	27	1,16	669	533,8
E-18-1	457	203	404	610	89	89	22,4	0,75	686	441,6

Tabela 24 – Propriedades geométricas e mecânicas e carga última das vigas sem armadura vertical.

E-18-2	457	203	404	610	89	89	26,7	0,75	688	444,8
D-5	305	152	276	419	152	152	25,8	1,35	361	181
1	320	190	270	270	100	100	32,4	2,07	465	777
2	320	190	270	400	100	100	32,4	2,07	465	520
I-1	457	203	403	610	89	89	25,4	3,05	267	625,8
II-3	457	203	403	610	89	89	21,9	1,88	466	523,6
II-4	457	203	403	610	89	89	26,4	1,88	466	625,8
III-5	457	203	403	610	89	89	25,7	1,85	490	577
III-6	457	203	403	610	89	89	25,6	1,85	490	581,4
IV-7	457	203	403	610	89	89	24,1	1,86	443	581,6
IV-8	457	203	403	610	89	89	24,9	1,86	443	608
V-9	457	203	403	610	89	89	23,1	1,16	698	448
V-10	457	203	403	610	89	89	27	1,16	698	536,8
VI-11	457	203	403	610	89	89	25,4	1,17	698	448
VI-12	457	203	403	610	89	89	25,7	1,17	698	536,8
V-13	457	203	403	610	89	89	22,4	0,75	712	444,8
V-14	457	203	403	610	89	89	26,7	0,75	712	448
VI-15	457	203	403	610	89	89	25,5	0,75	712	359
VI-16	457	203	403	610	89	89	22,8	0,75	712	377.2
G23S-11	330	51	305	203	98	98	24,6	0,83	463	179,6
G33S-11	229	76	203	203	98	98	23.3	1.67	463	170.6
G34S-11	229	76	203	203	98	98	35.2	1.67	463	219.6
G43S-11	178	102	152	203	98	98	24.2	1.67	463	153.8
G44S-11	178	102	152	203	98	98	37	1.67	463	167.2
24	305	152	271	407	152	152	27,9	1,87	396	364
53	152	151	132	136	152	152	47,4	2,84	392	310,4
54	152	151	136	136	152	152	26,7	2,76	392	315,4
67	610	157	528	543	152	152	30,3	2,75	407	1095,6
69	610	155	542	543	229	229	27,4	2,67	373	1170,8
109	305	153	271	407	152	152	25	0,76	457	143,8
113	305	152	274	408	152	152	25,5	0,77	486	174,4
129	305	155	275	407	152	152	17,6	1,78	348	286,6
148	305	152	274	408	152	152	19,9	0,79	382	159,8
174	305	153	272	270	152	152	36,4	0,51	396	213
178	305	153	269	407	152	152	34,5	0,52	400	134,4
184	305	154	271	407	152	152	35,1	1,80	394	326,6
188	305	153	277	543	152	152	33,1	1,76	384	185,2
201	305	155	274	272	152	152	35,2	2,65	381	507,4
249	305	153	276	270	152	152	28	0,49	376	208,2
250	305	152	274	406	152	152	28	0,50	376	125,6
265	305	153	269	407	152	152	18,1	0,52	400	106
269	305	154	274	270	152	152	18,1	0,49	396	178
C1	381	76	343	241	76	76	21,5	0,76	320	180.2
K1'-R	381	79	343	345	76	76	13.7	0,26	320	78.8
5	457	102	406	203	152	152	31.7	0.97	401	805
7	457	102	406	203	152	152	36,9	1,38	432	974.2
10	457	102	406	366	152	152	38.1	1,88	374	587.2
11	457	102	406	432	152	152	32,3	1,88	374	547,2
	1							· ·		

T1	300	100	228	200	140	140	35,8	6,00	364	629
T3	300	100	228	200	100	100	13,1	3,00	364	228
Τ7	300	100	228	150	100	100	59,9	6,00	364	892
0A0-44	356	102	305	235	102	102	20,5	1,93	431	319
0A0-48	356	102	305	235	102	102	20,9	1,93	431	312,2
0B0-49	356	102	305	308	102	102	21,7	1,93	431	298
0C0-50	356	102	305	408	102	102	20,7	1,93	431	231,4
A12	254	127	208	208	10	10	66	1,77	414	222,4
B6	254	127	202	202	10	10	73	5,04	414	205,6
B12	254	127	208	208	10	10	73	2,25	414	213,6
C6	254	127	184	184	10	10	70	6,64	414	164
C12	254	127	207	207	10	10	70	3,26	414	244,6
V111	1000	250	930	465	232	232	16,8	0,66	420	1698
V122	1000	250	930	465	232	232	15,8	0,66	420	1284
V221	1000	250	930	930	232	232	20,4	1,08	420	1176
V222	1000	250	930	930	232	232	15,4	1,08	420	860
V311	1000	250	930	1395	232	232	17	1,69	420	738
V321	1000	250	930	1395	232	232	16,9	1,69	420	774
V322	1000	250	930	1395	232	232	15	1,69	420	750
V611	200	250	160	80	40	40	19,9	0,85	420	442
V811	200	250	160	240	40	40	20,6	1,90	420	280
V011	400	250	360	360	90	90	16,1	1,13	420	452
V012	400	250	360	360	90	90	21,8	1,13	420	644
V013	400	250	360	360	90	90	22,1	1,13	420	688
V014	400	250	360	360	90	90	24,3	1,13	420	850
V021	400	250	360	360	90	90	13,9	1,13	420	440
V023	400	250	360	360	90	90	20,1	1,13	420	694
V024	400	250	360	360	90	90	25,2	1,13	420	792
V031	400	250	360	360	90	90	20	1,13	420	646
V032	400	250	360	360	90	90	18,2	1,13	420	636
V033	400	250	360	360	90	90	19,8	1,13	420	492
V034	400	250	360	360	90	90	26,4	1,13	420	874
V711	200	250	160	160	40	40	18,1	1,52	420	330
V022	400	250	360	360	90	90	19,9	1,13	420	540
V511	600	250	560	560	140	140	19,8	1,12	420	700
V411	800	250	740	740	185	185	19,4	1,10	420	790
V211	1000	250	930	930	233	233	20	1,08	420	1010
500/0.50	500	140	444	250	140	140	49,1	2,60	520	1700
500/0.75	500	140	444	375	140	140	42,5	2,60	520	1400
500/1.00	500	140	444	500	140	140	37,4	2,60	520	1140
DF-14	1090	250	1000	1750	150	150	19,5	0,84	550	818
DF-15	1090	250	962	1751	150	150	20,3	1,75	550	660
DF-16	1090	250	1000	1430	150	150	20,3	0,84	550	760
N4200	560	130	500	425	130	130	23,7	1,56	415	530,4
H4100	560	130	500	250	130	130	49,1	1,56	415	1284,4
H4200	560	130	500	425	130	130	49,1	1,56	415	802,2
H4300	560	130	500	625	130	130	49,1	1,56	415	674,8

D200	250	150	200	200	50	50	38,4	1,91	1026	428,4
D400	450	150	400	400	100	100	35,5	1,69	1004	570,6
D600	650	150	600	600	150	150	40,8	1,76	1006	849
L5-40	400	160	355	200	100	100	31,4	1,01	804	893,8
L5-60	600	160	555	300	100	100	31,4	0,97	804	1070,2
L5-60R	600	160	555	300	100	100	31,4	0,97	804	958,4
L5-75	750	160	685	375	100	100	31,4	1,05	804	1193,6
L5-100	1000	160	935	500	100	100	31,4	0,90	577	1164,2
L10-40	400	160	355	400	100	100	31,4	1,01	804	384,2
L10-40R	400	160	355	400	100	100	31,4	1,01	804	623,2
L10-60	600	160	555	600	100	100	31,4	0,97	804	750,6
L10-75	750	160	685	750	100	100	31,4	1,05	804	543
L10-75R	750	160	685	750	100	100	31,4	1,05	804	660,6
L10-100	1000	160	935	1000	100	100	78,5	0,90	577	1087,8
UH5-40	400	160	355	200	100	100	78,5	1,01	804	1466
UH5-60	600	160	555	300	100	100	78,5	0,97	804	1646,4
UH5-75	750	160	685	375	100	100	78,5	1,05	804	2020,8
UH5-100	1000	160	935	500	100	100	78,5	0,90	577	2058
UH10-40	400	160	355	375	100	100	78,5	1,01	804	997,6
UH10-40R	400	160	355	375	100	100	78,5	1,01	804	770,2
UH10-60	600	160	555	600	100	100	78,5	0,97	804	1146,6
UH10-100	1000	160	935	1000	100	100	78,5	0,90	577	1538,6
1-500/1.5	500	140	444	750	150	150	41,8	2,60	620	680
2-1000/1.5	1000	140	884	1500	150	150	39,4	2,60	620	940
3-1400/1.5	1400	140	1243	2100	150	150	44,1	2,60	620	1380
4-1750/1.5	1750	140	1559	2625	150	150	43,4	2,60	620	940
G-1.9-51	915	460	850	1640	230	230	51	0,72	468	1488,2
M-1.9-51	915	460	850	1640	230	230	51	0,44	865	1577,2
M-1.9-38	915	460	850	1640	230	230	38	0,44	865	1381,2
2DB35	350	80	314	345	53	53	27,4	1,25	469	170
2DB50	500	80	459	505	75	75	32.4	1.15	500	271
2DB70	700	80	650	715	105	105	24,8	1,28	508	311
2DB100	1000	80	926	1019	150	150	30,6	1,26	508	483
3DB35b	350	80	314	345	53	53	27,4	1,25	469	170
3DB50b	500	115	454	499	75	75	28,3	1,28	508	334
3DB70b	700	160	642	706	105	105	28,7	1,22	520	721
3DB100b	1000	230	904	994	150	150	29.3	1.20	540	1344
*1-500/0.75	500	140	444	375	150	150	42.5	2.60	530	1400
*2-1000/0.75	1000	140	884	750	150	150	32.7	2.60	530	1300
*3-1400/0.75	1400	140	1243	1050	150	150	36.2	2.60	530	1900
*4-1750/0.75	1750	140	1559	1313	150	150	40.4	2.60	530	2480
TF-0.14/1	350	60	322	180	60	60	26,67	0,14	435	45
TF-0.14/2	350	60	322	180	60	60	27.11	0,14	435	50
TF-0.14/3	350	60	322	180	60	60	28.88	0,14	435	60
TF-0.25/1	350	60	306.5	180	60	60	27.55	0.25	430	80
TF-0.25/2	350	60	306.5	180	60	60	29.33	0.25	430	85
TS-0.58/1	350	60	290.5	180	60	60	27.55	0.58	425	145
TS-058/2	350	60	290.5	180	60	60	28	0.58	425	150
		~ ~	,-					- ,- 0	•	

1A	450	300	400	200	100	100	23,2	2,14	458	1706
5A	450	300	400	400	100	100	29	2,14	458	1264
9A	450	300	400	600	100	100	22,9	2,14	458	568
13B	450	300	400	400	100	100	32	2,14	458	1322
24F	450	300	400	200	100	100	79,9	2,14	702	3916
25F	450	300	400	400	100	100	76,4	2,14	702	2806
26F	450	300	400	600	100	100	78,3	2,14	702	1808
35E	450	300	400	200	100	100	25,3	0,42	1330	1176
38E	450	300	400	400	100	100	25,2	0,42	1330	716

Fonte: Autor (2020).

Tabela 25 – Propriedades geométricas e mecânicas e carga última das vigas com armadura vertical.

						01 01 0 0010						
Vizar	h	b	d	а	b ₁	b ₂	f _{ck}	ρ	ρυ	f_{yk}	f_{ykv}	Pexp
vigas	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(MPa)	(%)	(%)	(MPa	(MPa)	(kN)
D1-1	457	203	397	457	89	89	20,2	1,62	0,46	335	331	620,2
D1-3	457	203	394	457	89	89	20,6	1,63	0,46	335	331	573,2
D2-1	457	203	394	457	89	89	21,4	1,63	0,61	335	331	597,8
D2-2	457	203	397	457	89	89	23,9	1,62	0,61	335	331	642,4
D3-1	457	203	391	457	89	89	28,2	2,47	0,92	335	331	789,8
D4-1	457	203	394	457	89	89	23,1	1,63	1,22	335	331	624,4
B1-10	254	76	215	254	76	76	21,7	1,74	2,45	287	280	178,8
B2-10	254	76	215	254	76	76	20,1	1,74	0,86	287	303	199,2
B5-10	254	76	215	254	76	76	22,6	1,74	0,61	287	280	195,6
1BI-01	356	102	305	308	102	102	20,1	1,93	0,24	431	484	295,0
1B3-29	356	102	305	308	102	102	20,1	1,93	0,24	431	484	287,2
1B4-30	356	102	305	308	102	102	20,8	1,93	0,24	431	484	300,6
1B6-31	356	102	305	308	102	102	19,5	1,93	0,24	431	484	306,6
2BI-05	356	102	305	308	102	102	17,2	1,93	0,42	431	484	258,0
2B3-06	356	102	305	308	102	102	17,0	1,93	0,42	431	484	262,4
2B4-07	356	102	305	308	102	102	17,5	1,93	0,42	431	484	252,2
2B4-52	356	102	305	308	102	102	21,8	1,93	0,42	431	484	299,8
2B6-32	356	102	305	308	102	102	19,8	1,93	0,42	431	484	290,4
3B1-08	356	102	305	308	102	102	16,2	1,93	0,63	431	484	261,6
3B1-36	356	102	305	308	102	102	20,4	1,93	0,77	431	484	318,0
3B3-33	356	102	305	308	102	102	19,0	1,93	0,77	431	484	316,8
3B4-34	356	102	305	308	102	102	19,2	1,93	0,77	431	484	310,0
3B6-35	356	102	305	308	102	102	20,7	1,93	0,77	431	484	332,2
4B1-09	356	102	305	308	102	102	17,1	1,93	1,25	431	484	307,0
V711/4	400	250	360	360	90	90	18,2	1,13	0,13	420	420	634,0
V511/4	600	250	559	565	140	140	18,7	1,12	0,14	420	420	930,0
V411/4	800	250	763	740	185	185	17,0	1,07	0,17	420	420	934,0
V022/3	400	250	360	360	90	90	19,6	1,13	0,35	420	420	760,0
V511/3	600	250	559	565	140	140	21,3	1,12	0,33	420	420	1160,0
V411/3	800	250	763	740	185	185	19,8	1,07	0,33	420	420	1330,0
II-	500	110	442	500	110	110	77,6	2,58	1,43	499	353	2080,0

2N/1.00												
2-	1000	140	885	1000	140	140	30,8	2,60	0,12	520	414	870,0
1000/1.0												
0												
N42A2	560	130	500	425	130	180	23,7	1,56	0,12	420	415	568,2
N42B2	560	130	500	425	130	180	23,7	1,56	0,22	420	415	754,0
N42C2	560	130	500	425	130	180	23,7	1,56	0,34	420	415	715,0
H42B2	560	130	500	425	130	180	49,1	1,56	0,22	420	415	912,6
(1)												
H42C2	560	130	500	425	130	180	49,1	1,56	0,34	420	415	841,2
(1)												
H43B2	560	130	500	625	130	180	49,1	1,56	0,22	420	415	761,8
H43C2	560	130	500	625	130	180	49,1	1,56	0,34	420	415	804,8
H42B2	560	120	500	425	130	180	50,6	1,29	0,24	420	415	721,2
(2)												
H42C2	560	120	500	425	130	180	50,6	1,29	0,37	420	415	747,6
(2)												
U42B2	560	120	500	425	130	180	73,6	1,29	0,24	420	415	820,8
U42C2	560	120	500	425	130	180	73,6	1,29	0,37	420	415	816,0
N33A2	560	130	500	625	130	180	23,7	1,56	0,12	420	415	456,4
1DB35b	350	80	313	344	53	53	25,9	1,25	0,40	469	426	199,0
W												
1DB50b	500	115	454	499	75	75	27,4	1,28	0,39	505	426	373,0
W												
1DB70b	700	160	642	706	105	105	28,3	1,22	0,45	522	370	854,0
W												
1DB100	1000	230	904	994	150	150	28,7	1,20	0,41	540	455	1550,0
bw												
1-	500	140	446	375	150	150	30,7	2,60	0,38	530	250	671,0
500/0.75												
W	1000	1.40	0.00		1.50	1.50	27.6	2 (0	0.00	520	250	1 (0.2.0
2-	1000	140	882	750	150	150	37,6	2,60	0,38	530	250	1603,0
1000/0./												
<u> </u>	1400	140	1250	1050	150	150	27.2	2.60	0.41	520	250	2104.0
3- 1400/07	1400	140	1230	1050	150	150	37,2	2,00	0,41	550	230	2104,0
1400/0.7												
	1750	140	1563	1313	150	150	353	2.60	0.38	530	250	2610.0
1750/0 7	1750	140	1505	1313	150	150	55,5	2,00	0,38	550	250	2010,0
5W												
C^2	400	100	330	300	100	100	85.8	3.65	0.67	364	448	1000.0
C_2	400	100	330	300	100	100	86.0	3.66	0,07	364	448	1000,0
F2	400	100	330	300	100	100	60.6	3.66	1 44	364	448	706.0
F3	400	100	330	300	100	100	59.5	3.66	0.56	364	448	748.0
G3	400	100	330	300	100	100	31.3	3.66	1 34	364	448	489.0
<u>SS-</u> 2	600	150	520	520	100	100	22.5	0.66	0.49	307	302	610 3
<u>SS-3</u>	600	150	520	650	100	100	23,5	0.66	0.49	392	302	560 7
$I BS_1$	600	150	520	520	100	100	23,5	1 27	0,58	302	302	307 8
ו-טעע	000	150	520	520	100	100	23,5	1,41	0,50	574	574	0,170

LBS-2	600	150	520	520	100	100	23,5	1,45	0,42	392	392	580,0
VSR-1	600	150	520	520	100	100	23,5	1,45	0,42	392	392	593,3
VSR-2	600	150	520	520	100	100	23,5	1,45	0,42	392	392	658,1
D-1,08-	500	110	463	500	120	110	48,2	1,23	0,48	505	375	540,0
2,15												
D-1,08-	500	110	463	500	121	110	44,1	1,23	0,48	505	375	560,0
3,23												
D-1,08-	500	110	463	500	122	110	46,8	1,23	0,48	505	375	580,0
4,30												
D-1,08-	500	110	463	500	123	110	48,0	1,23	0,48	505	375	580,0
5,38												
G33S-12	229	76	203	203	102	102	19,9	1,23	0,48	326	221	172,4
G33S-32	229	76	203	203	102	102	20,1	1,23	0,48	305	221	206,8
I-800-	800	180	698	600	130	130	49,5	1,23	0,48	421	453	2199,6
0.75-130												
I-1000-	1000	180	868	746	130	130	52,0	1,23	0,48	421	453	2692,8
0.75-130												
I-1400-	1400	180	1240	1054	130	130	49,7	1,23	0,48	421	453	3160,0
0.75 - 130		100	10.5	-	120	100	10.	1.64	1.00	100	1.50	1016.6
II-500-	500	180	435	500	130	130	49,5	1,64	1,09	438	453	1346,6
1.00-130	000	100	(00	0.02	120	120	52.1	0.56	1.00	401	4.5.2	1 (20.2
II-800-	800	180	698	802	130	130	53,1	2,56	1,09	421	453	1628,2
1.00-130	1000	100	0.00	000	120	120	50.0	2.40	0.24	401	4.5.2	1046.0
11-1000-	1000	180	868	998	130	130	50,9	2,40	0,34	421	453	1846,8
1.00-130 H 1400	1400	100	1240	1401	120	120	50 (2.40	0.24	401	452	2242.9
11-1400-	1400	180	1240	1401	130	130	50,6	2,40	0,34	421	453	2243,8
1.00-130 III 500	500	190	125	500	200	200	47.0	2.40	0.24	120	452	1406 4
111-300-	300	180	433	300	200	200	47,9	2,40	0,54	438	433	1400,4
1.00-200	800	190	608	802	200	200	54.4	2.40	0.24	421	452	2122 4
111-800-	800	160	098	802	200	200	54,4	2,40	0,54	421	433	2155,4
1.00-200 III 1000	1000	180	868	008	200	200	50.7	2.40	0.34	421	153	2234.2
1 00_200	1000	160	808	990	200	200	50,7	2,40	0,54	421	433	2234,2
1100-200 III_1400_	1400	180	1240	1401	200	200	50.6	2 40	0.34	421	453	2737.8
1 00-200	1400	100	1240	1401	200	200	50,0	2,40	0,54	721	-55	2757,0
6A	450	300	400	400	100	100	29.1	2 40	0.34	458	370	1462.0
7A	450	300	400	400	100	100	29,1	2,40 2 40	0.34	458	388	1500.0
8A	450	300	400	400	100	100	29.3	2,40	0,34	458	368	1608.0
14B	450	300	400	400	100	100	32.0	2,11 2 14	0.48	458	370	1502.0
11D	450	300	400	400	100	100	32,0	2,11 2 14	0.84	458	388	1548.0
16B	450	300	400	400	100	100	32,0	2,14 2 14	0.21	458	368	1698.0
10D	450	300	400	400	100	100	31.3	2,14 2 14	0.48	458	370	1140.0
17C	450	300	400	400	100	100	31.5	2,14 2 14	0.84	458	388	1546.0
10C	450	300	400	400	100	100	31.8	2,11 2 14	0.21	458	368	1512.0
20D	450	300	400	400	100	100	243	2,14	0.48	702	952	1330.0
20D	450	300	400	400	100	100	26.9	2,14	0.84	702	1051	1322 0
33A	450	300	400	400	100	100	24.7	2.14	0.48	458	388	1294 0
34A	450	300	400	400	100	100	24.8	2.14	0.84	458	375	1196.0
		200					, _	,· ·			210	1,0,0

39E	450	300	400	400	100	100	25,4	2,14	0,84	1330	388	940,0
40E	450	300	400	400	100	100	25,9	2,14	0,95	1330	368	940,0
46F	450	300	400	400	100	100	97,5	0,42	0,84	750	957	2486,0
47F	450	300	400	400	100	100	96,3	0,42	0,48	750	953	2600,0
L6L	450	300	400	400	100	100	31,2	2,14	0,84	1016	389	1330,0
MS1-1	607	300	501	600	200	200	46,0	2,14	0,48	838	400	1252,0
MS1-2	607	300	503	600	200	200	44,0	2,14	0,21	870	400	2142,0
DB1-	500	130	480	500	130	130	38,5	2,29	0,26	449	341	318,5
1.04-2												
DB2-	500	130	480	500	130	130	38,5	0,90	0,45	449	341	360,0
1.04-3												

Fonte: Autor (2020).