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Códigos de reticulado possuem uma estrutura que não só é capaz de atingir a capacidade do

canal AWGN como também é essencial para vários esquemas que exploram suas propriedades

lineares, tais como os esquemas com múltiplos terminais. Construir códigos de reticulado

capazes de obter uma boa performance em termos de probabilidade de erro de bloco ao mesmo

tempo em que se possibilita uma implementação prática com baixa complexidade computacional

para a codificação e a decodificação é um problema desafiador. Nesta tese, algoritmos de

codificação e decodificação eficientes são propostos para reticulados LDPC multinível binários

construídos via Construção D′ cuja complexidade é linear em relação ao número total de

bits codificados. Além disto, a Construção D′ é generalizada com o intuito de relaxar as

restrições de aninhamento das matrizes de verificação de paridade dos códigos componentes.

Isto facilita o projeto de reticulados e melhora a performance dos códigos construídos. Para

provar a eficiência da generalização da Construção D′, projetamos e testamos a performance de

reticulados LDPC multinível sob decodificação multi-estágio. O desempenho de decodificação

se mostrou comparável à de reticulados polares e próximo daquele evidenciado para LDLCs

(low-density lattice codes) para códigos de reticulado projetados para o canal AWGN sem

restrição de potência.





Resumo Expandido

Introdução

Reticulados têm atraído um aumento de interesse nos últimos anos. Sua estrutura não só

permite alcançar a capacidade de canais gaussianos aditivos brancos (AWGN), como também

serve como a base para esquemas multiterminal que exploram propriedades lineares [1]. No

entanto, apesar de teoricamente interessantes, a construção de códigos de reticulado confiáveis

e de baixa complexidade representa ainda um problema desafiador.

Nossa ideia é fazer uso de reticulados com estrutura LDPC (Low-Density Parity Check -

verificação de paridade de baixa densidade), os quais admitem decodificadores do tipo Belief

Propagation cuja complexidade é linear com relação à dimensão do reticulado. Apesar de

várias construções desta forma terem sido propostas recentemente e terem demonstrado atingir

um desempenho notável [2–4], todas sofreram da necessidade de realizar operações sobre corpos

finitos de alta cardinalidade (seja F? [3, 4] ou R [2]). Isto torna a complexidade por bit muito

maior que para códigos estritamente binários.

Construções multinível de reticulado que usam códigos binários incluem a Construção D e a

Construção D′ [5, 6]. Elas dependem de uma família de ! códigos binários aninhados (o código

de maior cardinalidade contém todas as palavras código do código de menor cardinalidade)

usados em conjunto com uma modulação 2!-PAM. A Construção D (D′) descreve um reticulado

através das matrizes geradoras (de verificação de paridade) dos códigos componentes aninhados.

Quando usado em conjunto com a decodificação multi-estágio (MSD) [7, 8], cada código

componente pode ser codificado e decodificado individualmente sobre um corpo binário, levando

a uma redução significativa da complexidade.

Reticulados construídos com a Construção D′ usando códigos LDPC como componentes são

referidos como reticulados LDPC. Eles foram originalmente introduzidos em [9] e estudados

posteriormente em [10–12]. Até onde sabemos, nenhum artigo sobre a teoria ou aplicação

de reticulados LDPC estritamente multinível (! ≥ 2) usando a Construção D′ foi publicado.

Esta aparente falta de interesse pode ser parcialmente explicada pelos grandes desafios que a

Construção D′ apresenta.

A Construção D′ tal como definida não possui um esquema de codificação eficiente [9]. A

complexidade da codificação de um reticulado LDPC é quadrática na dimensão do reticulado

se realizada via "força bruta" utilizando a matriz geradora do reticulado. Para explorar métodos



de codificação sistemáticos de baixa complexidade, deve-se codificar cada código componente

individualmente usando sua matriz de verificação de paridade. No entanto, na definição da

Construção D′, os níveis individuais se acoplam através de equações modulares não binárias de

forma não trivial [6], tornando difícil o desenvolvimento de regras para realizar a codificação

individual.

Além do problema da codificação, a definição da Construção D′ impõe dificuldades à formu-

lação de regras que implementam de forma eficiente a decodificação multi-estágio. Em princípio,

esta forma de decodificação requer a remoção da influência de todos os níveis passados—pela

re-codificação da palavra parcialmente decodificada e sua subtração do vetor recebido—antes

da decodificação do nível atual. No entanto, quando do uso da Construção D′, não é claro no

processo de re-codificação como um nível influencia os níveis posteriores. Além disto, dada

a dependência na re-codificação, um método de codificação eficiente seria exigido para que a

decodificação multi-estágio fosse eficiente.

Constata-se também que projetos feitos com a Construção D′ apresentam uma grande dife-

rença de desempenho com relação aos feitos com a Construção D [13]. Resultados experimentais

revelam que o desempenho de comprimento finito para reticulados LDPC construídos via Cons-

trução D′ é tipicamente inferior, contradizendo a expectativa baseada no excelente desempenho

de códigos LDPC binários de um único nível. Uma das razões é que a Construção D′ requer não

somente códigos componentes aninhados mas também matrizes de verificação de paridade ani-

nhadas (isto é, uma matriz contém outra como submatriz) [6]. Trata-se de uma restrição severa

que gera códigos com um perfil de distribuições de graus de variável extremamente sub-ótimo

em termos de desempenho de decodificação via Belief Propagation.

Nesta tese, os desafios previamente apresentados são resolvidos através de reinterpretações

da Construção D′. Nossas contribuições incluem uma descrição alternativa da Construção D′

que permite a codificação sequencial dos códigos componentes, a demonstração que cosets

de códigos LDPC podem ser codificados e decodificados em tempo linear, uma generalização

da Construção D′ e um método baseado no particionamento de equações de paridade para a

construção prática de matrizes de verificação de paridade capazes de satisfazer as restrições da

Construção D′ Generalizada.

Objetivos

Este trabalho visa a produzir bons códigos em termos de probabilidade de erro com alta efi-

ciência espectral — fazendo uso de codificação multinível — e estrutura algébrica de reticulado.



Mais especificamente, o objetivo é flexibilizar a construção de reticulados LDPC. Primeira-

mente, tenta-se realizar a redefinição da Construção D′ para tornar a codificação e a decodificação

mais eficientes. Depois, por meio de uma generalização da definição clássica da Construção D′,

tenta-se melhorar o projeto de códigos de reticulado. De fato, pretende-se obter projetos flexí-

veis com desempenho superior ao dos reticulados LDPC previamente discutidos na Literatura e

semelhante ao de reticulados construídos com a Construção D.

Metodologia

Analisamos a Construção D′ e os códigos de reticulado por ela construídos. Detectamos que

a Construção D′ possui uma definição restritiva que limita o desempenho de reticulados LDPC.

Sugerimos, portanto, primeiramente alterá-la de forma a comportar a codificação sequencial

e a decodificação multi-estágio. Verificamos que a contribuição de níveis passados no nível

atual passa simplesmente por um vetor de síndrome que a palavra-código atual deve satisfazer.

Em seguida, demonstramos como algoritmos para a codificação e decodificação em tempo

linear de códigos LDPC podem ser adaptados para cosets destes códigos sem aumento da ordem

de complexidade.

Analisando mais a fundo a definição da Construção D′, nota-se que ela exige o aninhamento

das matrizes de verificação de paridade dos códigos componentes envolvidos. Esta exigência

não é necessária; basta que os códigos componentes sejam aninhados. Propomos então uma

generalização da Construção D′ que relaxa as restrições de aninhamento sobre as matrizes de

verificação de paridade dos códigos componentes.

Para implementar a Construção D′ Generalizada, propomos um método de construção das

matrizes de verificação de paridade dos códigos componentes com base na matriz de verificação

de paridade do código LDPC de maior taxa. Também apresentamos variações deste método

básico com o fim de maximizar o girth da matriz e de permitir a codificação em tempo linear.

Resultados e Discussão

Desenvolvemos uma definição para a Construção D′ que possibilita o uso de codificação

sequencial e decodificação multi-estágio. Como para cada nível um vetor de síndrome contendo

as contribuições de níveis anteriores pode ser computado diretamente das equações de verificação

de paridade, evita-se a re-codificação explícita para a decodificação multi-estágio. Assim,

reticulados LDPC multinível sempre podem ser codificados e decodificados com complexidade

$ (!=) se os códigos componentes permitirem codificação sistemática em tempo linear, onde =

é a dimensão do reticulado.



Desenvolvemos uma abordagem que permite para cada nível a decodificação de códigos de

coset (vetor de síndrome não nulo). Identificamos ser viável realizar esta decodificação com

complexidade linear por meio do uso de decodificadores Belief Propagation binários padrão

apenas ligeiramente adaptados.

Também verificamos que a Construção D′ possui restrições muito severas de aninhamento.

Os códigos devem ser aninhados, mas não necessariamente suas matrizes de verificação de

paridade. Generalizamos a Construção D′, impondo a ela apenas uma restrição de linearidade

sobre as matrizes de verificação de paridade dos códigos componentes. Esta generalização

aumenta consideravelmente o espaço de projeto para bons códigos componentes, possibilitando

projetos de códigos LDPC multinível com melhor desempenho.

Os métodos de implementação da Construção D′ Generalizada por meio do particionamento

de equações de paridade se provaram práticos e eficientes. Permitiram construir, por exemplo,

reticulados LDPC de dois níveis com complexidade de codificação e decodificação linear no

número total de bits codificados e com desempenho comparável ao de reticulados estado da arte

construídos via Construção D [13].

Considerações Finais

Obtivemos resultados teóricos para códigos de reticulado no canal sem restrição de po-

tência. Duas contribuições se destacam: uma descrição alternativa da Construção D′ e uma

generalização da Construção D′.

A descrição alternativa da Construção D′ possibilita a codificação sequencial dos códigos

componentes. Como consequência, mostramos que codificadores e decodificadores binários

LDPC podem ser utilizados para produzir algoritmos de codificação sequencial e decodificação

multi-estágio para reticulados LDPC com complexidade linear no número total de bits codifica-

dos. A complexidade linear não foi atingida até o momento por nenhuma outra construção de

reticulado capaz de se aproximar do limite de Poltyrev (limite teórico do canal sem restrição de

potência [14]).

A Construção D′ Generalizada relaxa as restrições de aninhamento das matrizes de verifi-

cação de paridade dos códigos componentes, facilitando significativamente o projeto; especi-

ficamente, através da nova construção, apenas os códigos componentes devem ser aninhados e

não suas matrizes de verificação de paridade. Seguindo este resultado, propomos um princípio

generalizado para a construção de códigos aninhados baseado no particionamento das equações

de verificação de paridade, assim como um método prático, inspirado pelo algoritmo PEG [15],



para a construção de códigos componentes LDPC de alto girth e decodificação eficiente.

Baseados na nova construção, reticulados LDPC com baixa complexidade computacional

foram projetados. Demonstramos por meio de simulações de probabilidade de erro que seu

desempenho é comparável ao de reticulados polares [13], acabando com a disparidade de

desempenho que existia entre reticulados construídos via Construção D e Construção D′. De-

monstramos também que os reticulados LDPC propostos são capaz de alcançar desempenho

semelhante ao dos reticulados LDLC [29] mas com muito menor complexidade computacional.

Apesar de o desempenho alcançado ser ainda aquém do de reticulados ?-ários como os GLD

[4] e LDA [28], deve-se ressaltar que apenas reticulados regulares com relação ao peso dos

nós de variáveis foram considerados nesta tese. Pode-se esperar um desempenho muito melhor

para reticulados LDPC irregulares com distribuições de grau mais flexíveis e cuidadosamente

projetadas. No entanto, para tanto, é necessário um novo procedimento de projeto que garanta o

aninhamento dos códigos componentes resultantes, o que constitui um interessante desafio para

trabalhos futuros.

Palavras-chave: Códigos de reticulado, reticulados, codificação multinível, decodificação

multi-estágio, códigos LDPC (low-density parity-check) aninhados.
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Lattice codes have a structure that is not only able to achieve the capacity of the AWGN

channel but that is also essential to a number of multiterminal schemes which exploit its linear

properties. To construct lattice codes capable of good performance in terms of word error

probability and of a practical implementation that allows for low encoding and decoding com-

putational complexity is a challenging problem. In this thesis efficient encoding and decoding

algorithms are proposed for multilevel binary LDPC lattices constructed via Construction D′

whose complexity is linear in the total number of coded bits. In addition, Construction D′ is

generalized with the intent of relaxing the nesting constraints on the parity-check matrices of the

component codes. This leads to simpler lattice design and improved performance of the con-

structed codes. In order to prove the effectiveness of the generalized construction, we design and

test the performance of multilevel LDPC lattices constructed under this framework under mul-

tistage decoding. The decoding performance is comparable to that of polar lattices and close to

that of low-density lattice codes (LDLC) for lattice codes designed for the power-unconstrained

AWGN channel.

.
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1
Introduction

In this chapter we set out the background and scope of this thesis. Specifically, we underline

why this research work is relevant, and we present its major technical contributions. We

also perform a bibliographical review of the work most closely related to the concepts herein

discussed. To conclude this introductory chapter, we describe how this thesis is structured.

1.1 Motivation

Given the developments in mobile technology and the transition to data-intensive media

consumption, it has become extremely important to find communication strategies that deliver

reliable high-rate data exchanges. In particular, it seems very promising to do so in a scenario

where the computational complexity is shared amongst many mobile devices. In this way,

mathematical tools and transmitting/receiving schemes addressing the requirements of such co-

operative communication ensembles need to be studied and developed. One such mathematical

tool are lattices.

Lattice codes, the analogue of linear codes in the Euclidean space, have attracted an increasing

amount of attention in recent years. Their rich structure not only provides an elegant and powerful

solution to achieving the capacity of the additive white Gaussian noise (AWGN) channel, but is

also a key ingredient to many multiterminal information theory schemes that exploit linearity

[1]. However, despite the potential for reliable communication with high spectral efficiency,

constructing lattice codes that can realize these benefits with low complexity still poses many

challenges.

A promising direction is to construct lattices with a low-density parity-check structure. These

allow the use of a Belief Propagation decoder with complexity linear in the lattice dimension.

While several constructions of this form have been proposed recently and shown to achieve
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remarkable performance [2–4], they all suffer from the need to perform operations over a large

field (either F? [3, 4] or R [2]), whose complexity per bit is much higher than that of binary

codes.

Alternative lattice constructions that leverage the use of binary codes are the multilevel

Construction D and Construction D′ [5, 6], which rely on a family of ! nested binary linear

codes used in conjunction with the 2!-PAM modulation. These constructions use the concepts

of nested codes and nested matrices. The former identifies codes whose codebooks are contained

within the codebook of higher-rate codes. The latter describes matrices that are contained in

higher-dimension matrices. Construction D (Construction D′) describes a lattice through the

generator (parity-check) matrices of the nested component codes. When used together with

multistage decoding (MSD) [7, 8], each component code can be individually encoded and

decoded over the binary field, leading to a significant reduction in complexity.

Construction D′ lattices based on binary low-density parity-check (LDPC) codes, referred to

as LDPC lattices, were originally introduced in [9] and subsequently studied in [10–12]. To the

best of our knowledge, no papers have been published on the theory or applications of strictly

multilevel (! ≥ 2) Construction D′ LDPC lattices. The apparent lack of interest in this lattice

construction may be partly explained by three major challenges of Construction D′ which have

so far remained unsolved:

• Lack of efficient encoding: The complexity of encoding an LDPC lattice is quadratic

in the lattice dimension if done via the generator matrices of the component codes,

i.e., deriving them from the related parity-check matrices present in the definition of

Construction D′. In order to exploit low-complexity systematic encoding methods for

LDPC codes, one should be able to encode each component code individually using its

parity-check matrix. However, in the definition of Construction D′ [5, 6], individual levels

are coupled through non-binary modular equations in a nontrivial way, making it unclear

how to perform individual encoding.

• Lack of efficient multistage decoding: In principle, multistage decoding requires the

influence of all past levels to be removed—by re-encoding the partially decoded lattice

codeword and subtracting it from the received vector—before the current level is decoded.

However, when using Construction D′, it is unclear how a level influences the subsequent

ones, so that re-encoding can be performed. Moreover, due to such dependence on re-

encoding, an efficient encoding method would be required for multistage decoding to be
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efficient.

• Performance gap: Even if we ignore the issue of low-complexity decoding, experimental

results reveal that the finite-length performance of existing Construction D′ LDPC lattices

is typically much inferior to that of Construction D lattices [9, 11, 13], contradicting the

expectation one might have given the excellent performance of one-level LDPC codes.

Part of the reason may be that Construction D′ requires not only the component codes,

but also their parity-check matrices, to be nested (i.e., one matrix must contain the other

as a submatrix) [6], a stringent constraint that may degrade the overall performance of the

resulting lattice.

1.2 Contributions

In this thesis, the three challenges presented previously are solved starting from a reinterpre-

tation of Construction D’. In particular, reinterpreting and reassessing the restrictions placed on

the parity-check matrices of the component codes is the key to obtaining our theoretical results

and the performance improvement shown by our LDPC lattices.

Our main technical contributions are summarized as follows:

• We present an alternative description of Construction D′ which enables sequential en-

coding of the component codes. The contribution of past levels on the current level is

subsumed by a syndrome vector that the current codeword must satisfy. Apart from that,

the actual encoding of a level is done entirely over the binary field. Moreover, as the syn-

drome vector can be computed directly from parity-check equations, the need for explicit

re-encoding is avoided for multistage decoding.

• We show how existing linear-time algorithms for encoding and decoding LDPC codes can

be adapted to handle cosets of LDPC codes without increasing the order of complexity

(coset codes result from the fact that a level’s codeword does not produce a null syndrome

vector). It follows that multilevel LDPC lattices can always be decoded with complexity

$ (!=) and can be encoded also with complexity $ (!=) if the component codes admit

linear-time systematic encoding, where = is the lattice dimension. Moreover, encoding

and decoding can be performed with off-the-shelf binary LDPC encoders and decoders.

• We propose a generalization of Construction D′ that relaxes the nesting constraints on

the parity-check matrices of the component codes (which, by the traditional definition of
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Construction D′ [6], must themselves remain nested). This new construction significantly

enlarges the design space for good component codes, enabling the design of multilevel

LDPC lattices with much better error probability performance under decoding algorithms

bounded in computational complexity, i.e, for practical decoders. This contribution may

also be of independent interest from a mathematical perspective.

• We propose an efficient method to construct the parity-check matrices of the remaining

component codes given only the parity-check matrix of the highest-rate LDPC code, whilst

respecting the conditions of the Generalized Construction D′. We also present variations

of this basic method which are inspired by the PEG algorithm of [15] and which aim at

maximizing girth and enabling linear-time encoding.

• We present examples of two-level LDPC lattices, with encoding and decoding complexity

linear in the total number of coded bits, that achieve performance comparable to state-

of-the-art Construction D lattices [13], closing the long-standing gap of such lattices to

Construction D′ lattices.

It is worth mentioning that, although we have opted to use binary codes for simplicity and

computational efficiency, our results can be straightforwardly generalized to a general prime ?,

as well as to Complex Construction D′ lattices over a complex ring [6, 16, 17].

1.3 Related Work

A lattice is a discrete additive subgroup of the Euclidean space, prized in many applications

for its linear properties. A lattice code consists of the intersection of a lattice and a bounded

region, also called a shaping region. While it is well-known that lattice codes can achieve

the capacity of the AWGN channel (see [18] and references therein), renewed interest in the

topic can be traced to the seminal paper by Erez and Zamir [19], which showed that capacity

can be achieved by nested lattice codes with lattice decoding (a suboptimal decoding approach

which effectively ignores the shaping region). Since then, several applications of lattice codes

to multiterminal information theory have been proposed based on their properties, including:

distributed source coding [20], physical-layer security [21], and communication over Gaussian

networks [1]—in particular, lattice codes are essential to the compute-and-forward strategy for

relay networks [22] and to integer-forcing methods for MIMO channels [23].

The main problem in the design of a lattice code is arguably the design of the underlying

lattice, which must be good at rejecting noise. This problem can be formalized by means of the
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power-unconstrained AWGN channel model introduced by Poltyrev [14], leading to the notion

of AWGN-goodness as a necessary condition to achieve capacity. As a consequence, much of

the literature on the topic, as well as this thesis, is focused on the unconstrained lattice design

problem. Recent work has shown that the use of a fixed shaping region is not essential to

achieve capacity under lattice decoding if signal points are selected with a nonuniform (discrete

Gaussian) distribution [24, 25]. In principle, the lattices designed in this thesis can be combined

with a variety of shaping methods, such as trellis shaping [26, 27] or probabilistic shaping [24,

25], which are however outside the scope of this work.

A popular way of constructing lattices, which exploits the power of linear codes, is the so-

called Construction A [6]. The basic (real-valued) version of this construction relies on a single

?-ary linear code, where ? is a prime, which is repeated across the Euclidean space (at multiples

of ? along each coordinate) to produce an infinite constellation. This construction is the source

of most proofs of achievable rates (using asymptotically long random codes) [1, 19], but is

also shown to produce lattices with excellent finite-length performance and complexity linear

in the lattice dimension, provided that ? is sufficiently large. This is the case with Generalized

Low-Density (GLD) lattices [4, 30] and Low-Density Construction A (LDA) lattices [3, 28, 31],

which are shown to be AWGN-good. However, decoding a ?-ary code, for large ?, is much more

complex than decoding a similarly structured binary code. For instance, the Belief Propagation

decoder in [3] has complexity $ (?2=), i.e., the complexity is exponential in the bit depth log2 ?.

Another approach is to construct lattices that are designed and decoded directly in the

Euclidean space, such as low-density lattice codes (LDLC) [2]. However, since the decoder now

has to process continuous functions [2, 29], the decoding complexity is typically even higher

than that of Construction A lattices.

Multilevel lattice constructions based on binary codes are potentially harder to design, but

have the promise of complexity that scales linearly with the number of levels. Moreover, they

are known to be AWGN-good under multistage decoding [8]. Construction D was used in [32]

to produce turbo lattices and in [13] to construct polar lattices; the latter are shown to be AWGN-

good with encoding and decoding complexity $ (!= log =). Construction D has also been used

in [33] to construct spatially-coupled LDPC lattices, which were shown to be AWGN-good under

multistage Belief Propagation decoding. However, both the encoding and the cancellation step

that has to be performed at each decoding stage rely on the generator matrices of the component

LDPC codes, which are generally dense, leading to an overall high complexity.

Construction D′ was used in [9–12] to construct multilevel LDPC lattices; however, these
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papers consider only joint decoding1 of the component codes, whose complexity is exponential

in !, while the encoding complexity is not addressed. Both issues can be avoided using a

single-level LDPC lattice, as done in [35–38, 43], allowing the use of conventional encoding

and decoding methods for LDPC codes. However, in this case the construction reduces to

Construction A, which is known to result in a poor performance for ? = 2. More precisely, since

all the higher levels are uncoded, the performance in terms of word error rate quickly degrades

as the block length increases and does not improve sharply as the noise level decreases.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews basic concepts

on lattices, giving special emphasis to the power-unconstrained channel, Forney-Trott-Chung’s

two-stage decoding scheme, and the definition of Construction D′. In Chapter 3, we present a

sequential description of Construction D′, which is used to derive efficient multilevel encoding

and multistage decoding schemes for Construction D′ LDPC lattices. Also in Chapter 3, a

generalization of Construction D′ is proposed that relaxes the nesting constraints of the original

definition whilst still satisfying the requirements for sequential encoding. Essentially, the section

on Generalized Construction D′ explains how the constraint of nested parity-check matrices is

exchanged by the constraint of linearly dependent parity-check matrices. In addition, Chapter 3

also proposes an efficient method for the implementation of Generalized Construction D′ LDPC

lattices, which is based on the partition of parity-check equations and which we call check

splitting. This construction method is then formalized by the use of the PEG construction

into variants that maximize girth and provide linear-time encoding. Chapter 4 presents design

examples and their corresponding simulation results in terms of word error probability. Finally,

Chapter 5 presents the conclusions we derived from our work and traces possible new research

directions.

1The multistage decoder mentioned in [11] is unsuitable for Construction D′ since it relies on independent
encoding of levels through the Code Formula [16], which does not generally produce lattices [34].
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Preliminaries

In this chapter, we set forth the preliminary constructs underlying the rest of this thesis. We

describe our notation and review basic concepts on lattices. In particular, we define Construction

D′ (for further details, we refer the reader to [1, 6, 8]). In addition, we describe transmission over

a power-unconstrained channel. We also outline the Poltyrev limit and Forney-Trott-Chung’s

two-stage decoding strategy for achieving this limit [8].

2.1 Notation

Let 0 denote the all-zero vector, with appropriate length implied by the context. If A is a

set, thenA= andA<×= denote the set of length-= vectors and < × = matrices, respectively, with

entries in A. Let F2 be the finite field of size 2 and let i : Z → Z/2Z � F2 be the natural

reduction homomorphism, extended to vectors and matrices in a component-wise fashion.

We follow common convention for the notation “mod <” when < is an integer. For any

0, 1 ∈ Z, we use the modular congruence 0 ≡ 1 (mod <) to denote that 0 − 1 is divisible by

<. For any G ∈ R, we define G mod < as the unique A ∈ [0, <) such that G = A + @<, for some

@ ∈ Z. These notations are again extended to vectors and matrices in a component-wise fashion.

In this thesis, we treat binary linear codes and associated parity-check matrices as having

entries in {0, 1} ⊆ Z, rather than in F2. This approach significantly simplifies notation when

dealing with lattices. The algebraic properties of a linear code are recovered by using modular

equations or the explicit mapping to F2. For instance, if H ∈ {0, 1}<×=, then a binary linear

code C ⊆ {0, 1}= is defined by the parity-check matrix H as

C = {x ∈ {0, 1}= : Hx) ≡ 0 (mod 2)}.

The dimension of C as a linear code is the dimension of the subspace i(C) ⊆ F=
2

or, equivalently,
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the dimension of the null space of i(H) ∈ F<×=
2

.

2.2 Lattices

A lattice Λ ⊆ R= is a discrete subgroup of R=. This implies that Λ is closed under integer

linear combinations and may be expressed as Λ = {uG, u ∈ Z=}, where G ∈ R=×= is a generator

matrix.

A fundamental region of Λ is a set RΛ ⊆ R= such that any x ∈ R= can be uniquely expressed

as x = ,+ r, where , ∈ Λ and r ∈ RΛ. Every fundamental region has the same volume, which is

denoted by + (Λ). A fundamental region RΛ defines a quantizer &Λ : R= → Λ and a modulo-Λ

operation R= → RΛ as&Λ(x) = , and x mod Λ = r, respectively, where x = ,+r. In particular,

the Voronoi region of Λ (around the origin) is the set VΛ of points that are closer to 0 than to

any other lattice point, with ties decided arbitrarily but such thatVΛ is a fundamental region.

A sublattice Λ′ ⊆ Λ is a subset of Λ which is itself a lattice. If Λ and Λ′ ⊆ Λ are lattices,

then C = Λ ∩ RΛ′ is said to be a nested lattice code. Note that |C| = + (Λ′)/+ (Λ).

2.3 Transmission Without a Power Constraint

In the design of lattice codes, one is often interested in addressing the coding problem

separately from the shaping problem. This leads to the so-called (power-)unconstrained AWGN

channel studied by Poltyrev [14], over which any lattice point may be transmitted without

restrictions. In that case, the main performance metric for a lattice is its probability of decoding

error for a given density of lattice points.

More precisely, let Λ ⊆ R= be a lattice. The channel output is given by y = x + z, where

x ∈ Λ is the transmitted vector and z ∈ R= is a white Gaussian noise vector with variance f2

per component. Decoding is performed via lattice decoding, i.e., by quantizing y to the nearest

lattice point x̂ = QΛ(y). The probability of error, denoted by %4 (Λ, f2), is the probability that

z falls outsideVΛ.

Given that the density of Λ is inversely proportional to + (Λ), it is convenient to define the

volume-to-noise ratio (VNR) as1

WΛ(f) ,
+ (Λ)2/=
2c4f2

(2.1)

which gives a measure of the density of Λ relative to the noise level.

It is well-known [1, 8] that, if %4 (Λ, f2) ≈ 0, then WΛ(f) is necessarily greater than 1,

1The VNR is also commonly defined [1] without the term 2c4 in the denominator.
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or 0 dB. This fundamental limit is known as the Poltyrev limit or the sphere bound. On the

other hand, for all f2 > 0 and all %4 > 0, there exists a family of =-dimensional lattices with

%4 (Λ, f2) ≤ %4 such that lim=→∞ WΛ(f) = 1. Lattices with this property are said to be good

for AWGN coding.

In practice, nearest-neighbor lattice decoding may not be feasible to implement, so a sub-

optimal lattice decoder D : R= → Λ may be used instead. In this case, one should refer to

the probability of error of the pair (Λ,D), i.e., %4 ((Λ,D), f2). For simplicity, we keep the

notation %4 (Λ, f2) when the decoder is clear from the context.

2.3.1 Forney-Trott-Chung’s Two-Stage Decoding

A practical way to approach the Poltyrev problem, which often simplifies the decoding and

the code design, is the two-level partition proposed in [8]. Given a lattice Λ ⊆ R=, a sublattice

Λ′ ⊆ Λ is chosen such that the modulo-Λ′ operation (as well as the enumeration of elements of

Λ′) is easy to implement. In this manner, Λ can be partitioned as Λ = C+Λ′, where C = Λ∩RΛ′

is a lattice code and RΛ′ is a fundamental region (usually chosen as a Voronoi region) defining

the modulo-Λ′ operation.

In order to transmit x ∈ Λ, vectors c ∈ C and ,
′ ∈ Λ′ are chosen independently. The point x

is transmitted as the sum of these two components, i.e., x = c + ,′. Let y = x + z be the channel

output, as described above. Decoding from y is as follows. First,

r = y mod Λ
′
= c + z mod Λ

′ (2.2)

is computed, eliminating the influence of ,′. For instance, if Λ′ = @Z=, with RΛ′ = [0, @)=, then

the modulo-Λ′ operation can be easily implemented by component-wise modulo-@ reduction

over R (see Section 2.1). Next, a decoder for code C is applied on the modulo-Λ′ equivalent

channel described above, from which the estimate ĉ ∈ C is obtained. Finally, ĉ is subtracted

from y, resulting in

y′ = y − ĉ = (c − ĉ) + ,′ + z, (2.3)

and a decoder for Λ′ is applied, obtaining the estimate ,̂
′ ∈ Λ′ and, consequently, x̂ = ĉ + ,̂′.

It follows by the union bound that

%4 (Λ, f2) ≤ %4 (C,Λ′) + %4 (Λ′, f2) (2.4)
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where %4 (C,Λ′) is the probability of error for the code C when used on the channel in (2.2).

Note that, when Λ′ = @Z=, nearest-neighbor lattice decoding can be easily implemented and

%4 (Λ′, f2) can be computed exactly, i.e.,

%4 (@Z=, f2) = 1 −
(
1 − 2&

( @

2f

))=
(2.5)

where &(G) = (1/
√

2c)
∫ ∞
G

4−D
2/23D is the Q-function.

2.4 Construction D′

Let C0 ⊆ C1 ⊆ · · · ⊆ C!−1 ⊆ {0, 1}= be a family of nested binary linear codes. For

ℓ = 0, . . . , ! − 1, let :ℓ be the dimension of Cℓ, let 'ℓ = :ℓ/=, and let <ℓ = = − :ℓ. For

convenience, define <! = 0. Clearly,

<0 ≥ <1 ≥ · · · ≥ <!−1 ≥ <! .

Let h1, . . . , h<0
∈ {0, 1}= be such that

Hℓ =



h1

...

h<ℓ



(2.6)

is a parity-check matrix for Cℓ, for ℓ = 0, . . . , ! − 1. An !-level Construction D′ lattice [6] is

defined as

Λ = {v ∈ Z= : h 9v
T ≡ 0 (mod 2ℓ+1),

<ℓ+1 < 9 ≤ <ℓ, 0 ≤ ℓ ≤ ! − 1}. (2.7)

We can also express Λ = C + 2!
Z
=, where

C = Λ ∩ [0, 2!)= (2.8)

is a lattice code. In particular, + (Λ) = 2=(!−') , where

' = '(C) , 1

=
log2 |C|. (2.9)
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If matrices H0, . . . ,H!−1 are sparse, i.e., if C0, . . . , C!−1 are LDPC codes, then Λ is said to

be an !-level LDPC lattice [9].

It is worth emphasizing that the number of levels in the construction, !, refers to the number

of coded levels—there is always an additional uncoded level2 (ℓ = !) corresponding to the

lattice 2!
Z
=, which tiles the lattice code C into an infinite constellation. Note that, for ! = 1,

the construction is “degenerate” in the sense that it reduces to Construction A [6]. Thus, strictly

multilevel Construction D′ lattices require ! ≥ 2. For the remainder of this thesis, we assume

! ≥ 2 when referring to Construction D′.

Remark: When an !-level Construction D′ lattice Λ ⊆ Z= is used for the Poltyrev channel

under the approach of Section 2.3.1, we naturally choose Λ′ = 2!
Z
= and RΛ′ = [0, 2!)=, so that

the mod Λ′ operation becomes simply mod 2! over R. In this case, decoding of Λ essentially

reduces to decoding of the lattice code C over the mod-2! channel y = c + z mod 2! , where

c ∈ C.

2The uncoded level is not shown explicitly in equation (2.7). It is implicit in the operation (mod 2ℓ+1).





3
Efficient Encoding and Decoding and a Generalization of

Construction D’

In this chapter, an alternative description of Construction D′ is proposed that enables se-

quential multilevel encoding over the construction’s component coset codes. Based on this

description, we also present a multistage decoder adapted to LDPC coset codes. We show that

it is unnecessary to continuously re-encode the partially decoded codeword in between levels

during decoding, and that the influence of past levels can be subsumed in the current level’s

syndrome vector. We also adapt off-the-shelf binary encoders and decoders for the component

LDPC codes to take into account that the codebook actually consists of an LDPC coset code,

i.e., the syndrome of the codewords is not necessarily the null vector.

The analysis starts from rewriting (2.7) in matrix form (see Proposition 3.1). This step is not

only useful for the sequential description of Construction D′ but also for this chapter’s latter half,

which presents a generalization of Construction D′. Firstly, Construction D′ is reworked in order

to describe it in terms of component vectors having syndromes which synthesize the effects of

previous levels. Then, Construction D′ is reworked to eliminate the need for component codes

to have nested parity-check matrices. Instead, we require only that the codes be nested, which is

ensured by linearity rules between the component codes’ parity-check matrices. Furthermore,

we present an implementation for the Generalized Construction D′ based on the partition of

parity-check equations. This set-up is applied to an adapted PEG matrix construction algorithm,

allowing for girth-maximizing parity-check matrices and also for a linear-time encoding rule.

3.1 A Sequential Description of Construction D’

In this section, we define Construction D′ using coset component codes with syndromes that

contain the information of prior coset component codes. In particular, this alternative definition
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is important, because it affords the possibility of using sequential encoding and multistage

decoding for Construction D′ lattices.

Proposition 3.1. Let Λ be a lattice defined by (2.7). Then

Λ =
{
v ∈ Z= : Hℓv

T ≡ 0 (mod 2ℓ+1), 0 ≤ ℓ ≤ ! − 1
}
. (3.1)

Proof. The proof is straightforward and is omitted.

Lemma 3.1. If H0, . . . ,H!−1 are matrices satisfying (2.6), then these matrices have the property

that, for all v ∈ Z= and all 1 ≤ ℓ ≤ ! − 1,

Hℓ−1v) ≡ 0 (mod 2ℓ) =⇒ Hℓv
) ≡ 0 (mod 2ℓ). (3.2)

Proof. The proof follows immediately since, by definition, Hℓ is a submatrix of Hℓ−1.

We state the following result with slight generality since this will be useful later on. For

convenience, define an empty summation as the all-zero vector with the appropriate size.

Theorem 3.1 (Sequential Encoding). Let C = Λ∩[0, 2!)= be a lattice code carved from a lattice

Λ defined by (3.1). Suppose that the corresponding matrices H0, . . . ,H!−1 have the property

described in Lemma 3.1 and are such that i(Hℓ) ∈ F<ℓ×=
2

, ℓ = 0, . . . , ! − 1, are full-rank.

Consider the following procedure:

1. Sequentially, for ℓ = 0, 1, . . . , ! − 1, obtain some vector cℓ ∈ Cℓ (sℓ), where

Cℓ (sℓ) ,
{
v ∈ {0, 1}= : Hℓv

T ≡ sℓ (mod 2)
}

(3.3)

is a coset of the linear code Cℓ = Cℓ (0) and sℓ ∈ {0, 1}<ℓ is such that

sℓ ≡
−Hℓ

∑ℓ−1
8=0 28cT

8

2ℓ
(mod 2). (3.4)

2. Finally, compute c =
∑!−1

ℓ=0 2ℓcℓ.

The procedure described above is well-defined. Moreover, let Cseq be the set of all possible

vectors c ∈ Z= produced by this procedure. Then Cseq = C.
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Proof. First, we prove that the procedure is well-defined, i.e., that

Hℓ

ℓ−1∑

8=0

28cT
8 ≡ 0 (mod 2ℓ) (3.5)

for ℓ > 0, so that sℓ can always be computed. Note that a solution for cℓ always exists, since Hℓ

is full-rank modulo 2. We proceed by induction. The base case ℓ = 0 is already established by

definition, since s0 = 0. Let ℓ > 0 and suppose that c0, . . . , cℓ−1 and sℓ−1 have been computed.

Thus,

2ℓ−1sℓ−1 +Hℓ−1

ℓ−2∑

8=0

28cT
8 = 2ℓa

for some a ∈ Z<ℓ−1 . But Hℓ−1c)
ℓ−1
≡ sℓ−1 (mod 2), i.e., Hℓ−1c)

ℓ−1
= sℓ−1 + 2b, for some

b ∈ Z<ℓ−1 . It follows that

2ℓa = 2ℓ−1(Hℓ−1c)ℓ−1 − 2b) +Hℓ−1

ℓ−2∑

8=0

28cT
8

= −2ℓb +Hℓ−1

ℓ−1∑

8=0

28cT
8

or simply

Hℓ−1

ℓ−1∑

8=0

28cT
8 ≡ 0 (mod 2ℓ).

Now (3.5) follows by Lemma 3.1, completing the induction.

Since the procedure is well-defined, the set Cseq is also well-defined. We now prove that

Cseq = C. First, let c ∈ C. Then, for all 0 ≤ ℓ ≤ ! − 1,

0 ≡ Hℓc
) (mod 2ℓ+1)

≡ Hℓ

!−1∑

8=0

28c)8 (mod 2ℓ+1)

≡ Hℓ2
ℓc)ℓ +Hℓ

ℓ−1∑

8=0

28c)8 (mod 2ℓ+1)

and therefore

Hℓc
)
ℓ ≡
−Hℓ

∑ℓ−1
8=0 28c)8

2ℓ
(mod 2)

≡ sℓ (mod 2).
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Thus, c can be generated by the procedure described, which implies C ⊆ Cseq. Now, let c ∈ Cseq.

For all 0 ≤ ℓ ≤ ! − 1, we have that

Hℓc
T
ℓ ≡ sℓ ≡

−Hℓ

∑ℓ−1
8=0 28cT

8

2ℓ
(mod 2)

which implies

2ℓHℓc
T
ℓ +Hℓ

ℓ−1∑

8=0

28cT
8 = 2ℓ+1a

for some a ∈ Z<ℓ , and therefore

Hℓc
) ≡ Hℓ

ℓ∑

8=0

28c)8 (mod 2ℓ+1)

≡ 0 (mod 2ℓ+1).

It follows that c ∈ C. This proves that Cseq ⊆ C and thus C = Cseq, completing the proof.

Remark: In the proof of Theorem 3.1, we have only assumed the conclusion of Lemma 3.1

(property (3.2)), not the hypothesis (definition (2.6)). This will also prove useful when general-

izing Construction D′.

The essence of sequential encoding for Construction D′ is that, when encoding level ℓ, rather

than using the original linear code Cℓ, we encode using the coset code Cℓ (sℓ) defined by the

syndrome sℓ, which is computed based on the codewords from the previous levels. Another

important point is that we operate on mod 2, and not on mod 2ℓ+1, which is why non-trivial

cosets are created. Thus, at each level, encoding can be performed entirely using a binary code.

The following result has been used in the literature (e.g., [9, 10]) without an explicit proof.1

Here, the proof follows immediately from Theorem 3.1.

Corollary 3.1. Let C satisfy the conditions of Theorem 3.1, and let Cℓ be the null space of

i(Hℓ), for ℓ = 0, . . . , ! − 1. Then

|C| = |C0 | · · · · · |C!−1 | (3.6)

1The classical result in [6, Chapter 8, Theorem 14] assumes that “some rearrangement of h1, . . . , h<0
forms

the rows of an upper triangular matrix,” which allows the linear congruences to be independently solved. However,
this assumption is omitted in the definition of Construction D’ that commonly appears in the literature, such as in
[9, 10, 34] and here. While it is always possible to find some h1, . . . , h<0

of this form given a family of nested
codes, an explicit proof was lacking that the result still holds even for specific h1, . . . , h<0

that are not of this form.
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and therefore

'(C) = '(C0) + · · · + '(C!−1). (3.7)

Example 3.1. Let C be the code described in Theorem 3.1 for ! = 3 and matrices

H0 =



1 1 1 1

1 0 1 0

1 1 0 0



H1 =



1 1 1 1

1 0 1 0



H2 =

[
1 1 1 1

]
.

We construct c ∈ C by sequential encoding through the vectors c0, c1, c2 ∈ {0, 1}4. First, we

select some c0 satisfying

H0cT
0 ≡ 0 (mod 2)

for instance, c0 = (1, 1, 1, 1). Then, we compute s1 = −H1cT
0
/2 mod 2 = (0, 1)T and select some

c1 satisfying

H1cT
1 ≡ s1 (mod 2)

for instance, c1 = (0, 1, 1, 0). Next, we compute s2 = −(H22cT
1
+H2cT

0
)/4 mod 2 = 0 and select

some c2 satisfying

H2cT
2 ≡ s2 (mod 2)

for instance, c2 = (0, 0, 1, 1). Finally, we obtain

c = c0 + 2c1 + 4c2

= (1, 1, 1, 1) + (0, 2, 2, 0) + (0, 0, 4, 4)

= (1, 3, 7, 5).

Since c = (1, 3, 7, 5) satisfies all conditions in (3.1), we confirm that c ∈ C.
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3.2 Encoding and Decoding

In this section, we discuss conditions under which an LDPC lattice code can be encoded

and decoded with constant per-bit complexity. Throughout the section, let C be an !-level

LDPC lattice code with component codes Cℓ defined by parity-check matrices Hℓ ∈ {0, 1}<ℓ×=,

ℓ = 0, . . . , ! − 1.

3.2.1 Systematic Encoding

Encoding of C consists of bĳectively mapping a tuple of message vectors (u0, . . . , u!−1) ∈
{0, 1}:0 × · · · × {0, 1}:!−1 to a codeword c =

∑!−1
ℓ=0 2ℓcℓ ∈ C. We say that the encoding is

systematic if, for each ℓ, there exists some permutation matrix Tℓ such that, for all uℓ, we can

express cℓ =
[
uℓ pℓ

]
Tℓ, for some pℓ ∈ {0, 1}<ℓ .

Let 0 ≤ ℓ < !. From Theorem 3.1, we know that we must have cℓ ∈ Cℓ (sℓ), where sℓ is

computed from c0, . . . , cℓ−1 using (3.4). Note that sℓ can always be computed in$ (=) operations,

since Hℓ is sparse. Thus, we focus on encoding the coset code Cℓ (sℓ), for any sℓ.

Let Hℓ be denoted by Hℓ =

[
HD

ℓ
H

?

ℓ

]
Tℓ, where H

?

ℓ
∈ {0, 1}<ℓ×<ℓ is invertible over F2.

Note that this can always be enforced by properly choosing Tℓ, since Hℓ is assumed to be

full-rank over F2. Finding cℓ ∈ C(sℓ) amounts to finding pℓ ∈ {0, 1}<ℓ such that

HD
ℓu

T
ℓ +H

?

ℓ
pT
ℓ = Hℓc

T
ℓ ≡ sℓ (mod 2)

or, equivalently, such that

H
?

ℓ
pT
ℓ ≡ sℓ −HD

ℓu
T
ℓ (mod 2).

Note that HD
ℓ
uT
ℓ

can always be computed in $ (=), since Hℓ is sparse. Thus, we have proved the

following result.

Proposition 3.2. Let s′
ℓ
= sℓ − HD

ℓ
uT
ℓ
. Encoding of C can be done in $ (!=) operations if the

system H
?

ℓ
pT
ℓ
≡ s′

ℓ
(mod 2) can be solved in $ (=) for all ℓ.

One example situation where the condition of Proposition 3.2 holds, as shown in [39], is

when each H
?

ℓ
is in approximate lower triangular (ALT) form, i.e.,

H
?

ℓ
=



B L

D E


(3.8)
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where L ∈ {0, 1}(<ℓ−6)×(<ℓ−6) is lower triangular with ones along the diagonal and 6, called the

gap of the ALT form, is $ (1).
Thus, if each Hℓ satisfies (3.8) (up to row/column permutations), then the lattice code C

admits systematic encoding with complexity $ (!=).

3.2.2 Multistage Decoding

Let c =
∑!−1

ℓ=0 2ℓcℓ ∈ C be the transmitted codeword, where cℓ ∈ {0, 1}=, and let r =

c + z mod 2!
Z
= be the received vector, where z is a noise vector of variance f2 per component.

Multistage decoding of C is inspired by [8]. Suppose that the vectors cℓ have been correctly

decoded for 8 = 0, 1, . . . , ℓ − 1. We compute

rℓ =
r −∑ℓ−1

8=0 28c8

2ℓ
mod 2 (3.9)

= cℓ +
z

2ℓ
mod 2. (3.10)

This may be interpreted as the transmission of cℓ ∈ Cℓ (sℓ) through a modulo-2 channel subject

to additive noise z/2ℓ. In particular, maximum-likelihood decoding on this channel would be

given by ĉℓ = argmaxcℓ∈Cℓ (sℓ ) ?(rℓ |cℓ). It should be emphasized that re-encoding is not needed

for multistage decoding, only the ability to decode a coset code. Thus, provided that each sℓ can

be efficiently computed from the previous levels (which is always the case for LDPC lattices),

efficient encoding is not needed for efficient multistage decoding.

To obtain low complexity decoding with near optimum performance, the iterative Belief

Propagation algorithm can be used, which has $ (=) complexity for sparse matrices and a

limited number of iterations. The algorithm has as its input a vector LLR ∈ R= with the

log-likelihood ratio (LLR) of each component Aℓ 9 of the received vector rℓ, defined as

LLR 9 = ln

(
?(Aℓ 9 |2ℓ 9 = 0)
?(Aℓ 9 |2ℓ 9 = 1)

)
, 9 = 1, . . . , =. (3.11)

However, this algorithm assumes codewords cℓ belonging to a linear code, as opposed to an

affine code Cℓ (sℓ).
We can exploit this algorithm for the problem at hand using the lengthened linear code

C′
ℓ
⊆ F=+<ℓ

2
defined by the parity-check matrix H′

ℓ
=

[
−I Hℓ

]
, which remains sparse. In this
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case, the admissible codewords must be restricted to the form c′
ℓ
=

[
sℓ cℓ

]
, so that

H′ℓc
′T
ℓ ≡ 0 (mod 2). (3.12)

In order to impose this constraint, it suffices to provide as an input LLR vector the vector given

as

LLR′ =
[
(1 − 2sℓ) · ∞ LLR

]
(3.13)

where the LLR value ∞ (−∞) indicates certainty that the corresponding codeword symbol is

equal to 0 (1).

We conclude that the decoding of C can be realized with complexity $ (!=). By means of

the union bound, the probability of error satisfies

%4 (C, f2) ≤ %4 (C0, f
2) + %4

(
C1, (f/2)2

)
+ · · · +

+ %4

(
C!−1, (f/2!−1)2

)
(3.14)

where, for 0 ≤ ℓ ≤ ! − 1, %4 (Cℓ, (f/2ℓ)2) is the probability of error of Cℓ on channel (3.10).

3.2.3 Multistage Decoding with Re-encoding

Linear-time decoding can also be proved in a more general way, without relying on a specific

algorithm for the coset codes, under the assumption of linear-time re-encoding of the all-zero

vector.

Proposition 3.3. Decoding of C can be done in $ (!=) operations if each linear code Cℓ admits

linear-time decoding and the condition of Proposition 3.2 is satisfied.

Proof. For ℓ = 0, . . . , ! − 1, let vℓ ∈ Cℓ (sℓ) be the coset codeword corresponding to systematic

encoding of the all-zero message vector 0 of length :ℓ and let c′
ℓ
∈ Cℓ be the codeword

corresponding to systematic encoding of the message vector uℓ ∈ {0, 1}:ℓ . It follows that

cℓ ∈ Cℓ (sℓ), the coset codeword corresponding to the systematic encoding of uℓ, is given by

cℓ = c′ℓ + vℓ mod 2. (3.15)

Now, we can modify the multistage decoding procedure to compute

r′ℓ = rℓ − vℓ mod 2 (3.16)
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= c′ℓ +
z

2ℓ
mod 2 (3.17)

then decode c′
ℓ
∈ Cℓ and finally obtain cℓ with (3.15). Note that vℓ can be computed by choosing

s′
ℓ
= sℓ in Proposition 3.2. Since all the steps involved are $ (=), the result follows.

3.3 A Generalization of Construction D′

A significant limitation of Construction D′ is the requirement that not only the component

codes but also their corresponding parity-check matrices Hℓ be nested, i.e., that Hℓ be a submatrix

of Hℓ−1. This constraint complicates the design of LDPC codes as it requires, for instance, that

the average column weight of Hℓ−1 be strictly (and often significantly) higher than that of Hℓ,

conflicting with the optimum design of LDPC codes for their corresponding target rates. In

principle, one could eliminate this constraint entirely and redefine Construction D′ by means of

expression (3.1). However, with that approach there would be no guarantee of the cardinality

of C (as given by (3.6)), let alone the possibility of sequential encoding, thus compromising

essential properties of the construction. The reason is that a congruence modulo 2ℓ+1 in

(3.1) applies not only to level ℓ but also to all levels 8 < ℓ through a reduction modulo 28+1.

Thus, sequential encoding is not possible unless these new congruences for previous levels are

completely redundant. This idea is captured by Lemma 3.1, which is the fundamental ingredient

enabling sequential encoding and the guarantee of cardinality as an immediate consequence.

However, requiring that Hℓ be a submatrix of Hℓ−1 is simple, but it is not the only way of

satisfying Lemma 3.1. Instead, we can relax the nesting constraint on matrices Hℓ by enforcing

the more general constraint

Hℓ ≡ FℓHℓ−1 (mod 2ℓ) (3.18)

for some integer matrix Fℓ, from which Lemma 3.1 immediately follows. Clearly, requiring that

Hℓ be a submatrix of Hℓ−1 is a special case of this constraint.

Definition 3.1 (Generalized Construction D′). Let the matrices Hℓ ∈ Z<ℓ×=, ℓ = 0, . . . , ! − 1,

be such that

1. i(Hℓ) is full-rank, for ℓ = 0, . . . , ! − 1;

2. Hℓ ≡ Fℓ Hℓ−1 (mod 2ℓ), for some Fℓ ∈ Z<ℓ×<ℓ−1 , for ℓ = 1, . . . , ! − 1.

The lattice

Λ =
{
v ∈ Z= : Hℓv

T ≡ 0 (mod 2ℓ+1), 0 ≤ ℓ ≤ ! − 1
}
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is said to be obtained by the Generalized Construction D′ applied to H0, . . . ,H!−1. Equivalently,

we can express Λ as Λ = C + 2!
Z
=, where C = Λ ∩ [0, 2!)= is a lattice code.

It follows immediately that the set Λ defined above is indeed a lattice.

The emphasis of Definition 3.1 is on the parity-check matrices Hℓ, rather than on the

component codes. The interpretation based on nested component codes can be reestablished by

taking Cℓ ⊆ {0, 1}= to be such that i(Cℓ) ⊆ F=2 is the null space of i(Hℓ) ∈ F<ℓ×=
2

. Clearly, as

a consequence of (3.18), we have C0 ⊆ C1 ⊆ · · · ⊆ C!−1.

The main result of this section is given by the following theorem.

Theorem 3.2. Let C be a lattice code satisfying Definition 3.1. Then C admits sequential

encoding according to Theorem 3.1. Moreover, |C| = |C0 | · · · · · |C!−1 |.

Proof. The proof follows immediately since Theorem 3.1 only relies on (3.1) and Lemma 3.1.

It is easy to see that all of the results yielded from redescribing Construction D′ in order to

make it amenable to sequential encoding are valid for the Generalized Construction D′.

Example 3.2. Let

F1 =



2 7 4

11 9 6



F2 =

[
3 5

]

be arbitrarily chosen integer matrices, and let

H0 =



1 1 1 1

1 0 1 0

1 1 0 0



H1 = F1H0 mod 2 =



1 0 1 0

0 1 0 1
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H2 = F2H1 mod 4 =

[
3 1 3 1

]
.

It is easy to check that i(H0), i(H1) and i(H2) are full-rank. Generalized Construction D′

applied to matrices H0, H1, and H2 produces a lattice code C with ! = 3 levels and rate

' =
1
=

log2 |C| = 1
4

log2(21+2+3) = 1.5 bits per dimension.

Note that H2 is non-binary, as may be any of the matrices Hℓ, for ℓ ≥ 2. Nevertheless, all

the encoding and decoding operations are still performed over F2 with i(Hℓ), except for the

computation of the syndrome sℓ in (3.4).

The following theorem shows that the only real requirement for Generalized Construction D′

is that the linear component codes be nested. Any (full-rank) parity-check matrices for these

codes, nested or not, may be used in the construction, although we may need to lift them to

non-binary integers.

Theorem 3.3. Let C0 ⊆ C1 ⊆ · · · ⊆ C!−1 ⊆ {0, 1}= be nested linear codes with parity-check

matrices H̄ℓ ∈ {0, 1}<ℓ×=, ℓ = 0, . . . , ! − 1, respectively. Then there exist matrices Hℓ ∈ Z<ℓ×=,

ℓ = 0, . . . , ! − 1, satisfying (3.18) and such that Hℓ ≡ H̄ℓ (mod 2).

Proof. Let H0 = H̄0. For ℓ = 1, . . . , ! − 1, we proceed by induction. Assume that Hℓ−1 ≡
H̄ℓ−1 mod 2, which is true for ℓ = 1. Since Cℓ−1 ⊆ Cℓ, we have that C⊥

ℓ
⊆ C⊥

ℓ−1
, where C⊥

ℓ

denotes the dual code of Cℓ. This implies that there exists some Fℓ ∈ {0, 1}<ℓ×<ℓ−1 such that

H̄ℓ ≡ FℓH̄ℓ−1 mod 2. Let Hℓ = FℓHℓ−1 mod 2ℓ, which automatically satisfies (3.18). It follows

that

Hℓ ≡ FℓHℓ−1 mod 2 (3.19)

≡ FℓH̄ℓ−1 mod 2 (3.20)

≡ H̄ℓ mod 2 (3.21)

completing the induction.

3.3.1 Comparison with Construction D′

In the remainder of this section, we compare Construction D′ and Generalized Construc-

tion D′ under two common perspectives, which differ essentially on whether complexity is taken

into account.
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As a Codebook Construction

From a purely theoretical (or geometric) perspective, a code or lattice is defined as a set

of points in some space, i.e., as a codebook. In this case, one is concerned with geometric

properties of the codebook such as minimum distance or probability of error under minimum

distance decoding. This is the approach implicit in classical descriptions of linear codes and

lattices [6] and, for instance, in the comparison between Constructions D and D′ in [34].

From this perspective, Generalized Construction D′ is strictly more general than Construc-

tion D′, as there exist examples of the former that cannot be described by the latter. Considering

an !-level Generalized Construction D′ lattice with matrices H0, . . . ,H!−1, such examples can

always be produced if ! > 2 or if H1 mod 4 is non-binary. Otherwise, if ! = 2 and H1 mod 4

is binary, then the same codebook can be produced using Construction D′ with matrices H̄0

and H̄1, where H̄1 = H1 mod 2 and H̄0 is any binary matrix that defines C0 and contains H1

as a submatrix. This follows since, as can be seen from Proposition 3.1 and Theorem 3.1, both

constructions depend only on C0 and Hℓ mod 2ℓ+1, ℓ = 1, . . . , ! − 1.

Examples of the non-equivalent cases are shown next.

Example 3.3. Consider again Examples 3.1 and 3.2, but let all matrices, syndromes, codewords

and lattice code of Example 3.1 be denoted with an overline, such as H̄ℓ, s̄ℓ, c̄ℓ and C̄, to

distinguish them from those of Example 3.2. Clearly, the underlying binary codes are the same,

namely,

C0 = 〈(1, 1, 1, 1)〉

C1 = 〈(1, 1, 1, 1), (1, 0, 1, 0)〉

C2 = 〈(1, 1, 1, 1), (1, 0, 1, 0), (0, 0, 1, 1)〉.

However, in contrast to H̄0, H̄1 and H̄2, neither H1 is a submatrix of H0, nor H2 is a submatrix

of H1. We will construct a codeword c = c0 + 2c1 + 4c2 ∈ C such that c ∉ C̄.

Let c0 = c̄0 = (1, 1, 1, 1). Then s1 = (1, 1)) , from which we may select c1 = (1, 1, 0, 0) ∈
C1(s1). However, as noted before, s̄1 = (0, 1)) ≠ s1, which implies that c̄1 must be chosen from

a different coset of C1 and therefore it cannot equal c1. Thus, necessarily c ∉ C̄, regardless of
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c2.

Since H1 is binary, one may attempt to work around this problem by redefining H̄1 = H1 and

H̄0 =



1 0 1 0

0 1 0 1

1 1 0 0



so that H̄1 is still a submatrix of H̄0, but now s̄1 = s1. Thus, we can select c̄1 = c1. However,

H̄2 must be chosen as a submatrix of H̄1 and no such choice can produce C2; for instance, the

vector (0, 0, 1, 1) ∈ C2 will never be in the null space of i(H̄2).
More generally, the code C2 defined by H2 can only be produced with H̄2 =

[
1 1 1 1

]
,

which in turn implies that (1, 1, 1, 1) must be a row of H̄1. Hence, c̄0 must produce a syndrome

s̄1 with at least one zero entry, and thus s̄1 ≠ s1. It follows that necessarily C̄ ≠ C, i.e., the

lattice code C cannot be produced by Construction D′.

Example 3.4. Let ! = 2 and

F1 =

[
3 1

]

H0 =



1 0 0 1

1 1 0 0



H1 = F1H0 mod 4 =

[
0 1 0 3

]
.

Clearly, we still have H1 ≡ F1H0 (mod 2). Let C ⊆ [0, 4)4 be the lattice code produced by

Generalized Construction D′ with matrices H0 and H1. The underlying nested codes are

C0 = 〈(0, 0, 1, 0), (1, 1, 0, 1)〉

C1 = 〈(0, 0, 1, 0), (1, 1, 0, 1), (1, 0, 0, 0)〉.

Let H̄0 ∈ {0, 1}2×4 and H̄1 ∈ {0, 1}1×4 be nested matrices that define the same codes C0 and C1,

respectively, and let C̄ ⊆ [0, 4)4 be the corresponding lattice code produced by Construction D′
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with H̄0 and H̄1. Clearly, there is a single possibility for H̄1, namely,

H̄1 =

[
0 1 0 1

]
.

Let c0 = (1, 1, 1, 1). Then the corresponding syndrome at level 1, when computed with H1, is

equal to s1 = 0 but, when computed with H̄1, it is equal to s̄1 = 1. Thus, for any valid choice of

C̄, we have c = (1, 1, 1, 1) ∈ C but c ∉ C̄.

It is worth pointing out that the greater flexibility of Generalized Construction D′ does not

offer any advantage in terms of theoretical performance (with unbounded complexity) under

multistage decoding. This is because the error probability in (3.14) depends solely on the

component codes C0, . . . , C!−1, and we can always produce a Construction D′ lattice with the

same component codes. In this case, as shown in the examples above, the only difference

between the two constructions is in the syndrome calculation at each level.

More generally, any multilevel codes that share the same component codes (including Con-

struction D lattices) will also have the same error probability under multistage decoding if we

allow unbounded complexity.

As a Construction of a Coding Scheme

From a practical (or complexity-constrained) perspective, a coding scheme consists of a

codebook, an encoding function and a decoding function, and one is concerned, in particular,

with the performance of the scheme under a certain complexity. The decoder thus plays a key

role in the construction of the scheme. This is the approach implicit in descriptions of modern

codes such as Turbo and LDPC codes [40]; in particular, an LDPC code is described not simply

as a set of codewords, but through some specific parity-check matrix that induces a convenient

decoder structure.

This second perspective is the focus of this thesis and is what motivates our definition of

Generalized Construction D′. From this perspective, assuming that the decoder is specified

by the parity-check matrices used in the lattice construction, Generalized Construction D′ is

indeed more general than Construction D′, since it introduces fewer constraints on the choice

of the parity-check matrices. This increased flexibility can translate into a better performance

if the decoder is sensitive to the choice of the parity-check matrices, which is the case of LDPC

lattices under a multistage Belief Propagation decoder. Numerical examples of their difference
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in performance are shown in Section 4.2.

One way to artificially match the performance of the two constructions may be to first design

a Generalized Construction D′ lattice with matrices H0, . . . ,H!−1 and then create a Construc-

tion D′ lattice with nested matrices H̄0, . . . , H̄!−1 that correspond to the same component codes.

Then, use H̄0, . . . , H̄!−1 for encoding and demapping from a codeword to a message vector,

whilst using H0, . . . ,H!−1 solely for “denoising,” i.e., for decoding from the received vector to

a codeword. A clear disadvantage of this approach is that, for each component code, two distinct

parity-check matrices must be stored and used, whereas, with Generalized Construction D′, a

single matrix can be used in all encoding and decoding steps. Moreover, it is unclear whether the

nested matrices H̄0, . . . , H̄!−1 (of which we have less control) will have a convenient structure

for efficient encoding and demapping. In other words, requiring the parity-check matrices to be

nested is an unnecessary constraint of Construction D′, both in theory and in practice.

More fundamentally, Construction D′ was originally defined [5, 6] with a focus on minimum

distance, i.e., on packing density, regardless of the availability of an efficient decoder. Therefore,

allowing for a flexible choice of parity-check matrices was unnecessary. In contrast, the approach

of Generalized Construction D′ allows the decoder structure, embodied by specific parity-check

matrices, to be taken into account as part of the design. This is important for the design of

LDPC component codes with good error correction performance.

3.4 Nested LDPC Codes by Check Splitting

In this section, we propose a method to construct suitable binary matrices H0, . . . ,H!−1 that

satisfy the conditions of Generalized Construction D′. Our approach is to sequentially construct

matrix Hℓ−1 based on matrix Hℓ, for ℓ = ! − 1, . . . , 1, assuming we are given the parity-check

matrix H!−1 of the highest-rate code and the desired number of rows for the remaining matrices,

namely, <!−2, . . . , <0.

Our method guarantees that, for each new level, the column weights of the initial matrix

are preserved, i.e., all component codes will share the same variable-node degree distribution.

While this approach may not lead to an optimal design for all rates, it allows us to choose, for

instance, all component codes to be variable-regular LDPC codes with variable-node degree

3E = 3, which we can expect to exhibit at least a reasonable performance. This choice is simply

not available with the original Construction D′.

We also present variations of the basic method aimed at maximizing girth and at allowing

linear-time encoding, inspired by the progressive edge growth (PEG) algorithm [15].
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row of H. Similarly, let I(H) = (I1(H), . . . ,I= (H)), where each I9 (H) = {8 ∈ {1, . . . , <} :

H(8, 9) ≠ 0} is a set containing the indices of the nonzero entries of the 9 th column of H.

Let < ≥ 1 and let ? : {1, . . . , <} → {1, . . . , 1} be a surjective mapping. A matrix

H ∈ {0, 1}<×= is said to be obtained from B ∈ {0, 1}1×= by check splitting based on the parent

mapping ? if, for all 8 = 1, . . . , <, the set {J8 (H) : 8 ∈ ?−1(:)} forms a partition of J: (B),
where ?−1(:) = {8 ∈ {1, . . . , <} : ?(8) = :} is the preimage of : under ?.

Clearly, check splitting preserves column weights, since every nonzero entry of B appears

in H in the same column, although possibly in a different row. Moreover, it is easy to see that

B = FH, where F ∈ {0, 1}1×< is such that J (F) = (?−1(1), . . . , ?−1(1)), i.e., adding the rows

of H with indices in ?−1(:) gives precisely the :th row of B.

Example 3.5. Starting with

H2 =

[
1 1 1 1 1 1 1 1

]

we can partition it into

H1 =



1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1


which, in turn, can be partitioned into

H0 =



0 0 0 1 0 1 0 0

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

0 0 1 0 1 0 0 0



.

It is plain to check that H1 = F1H0 and H2 = F2H1, where

F1 =



1 1 0 0

0 0 1 1



F2 =

[
1 1

]
.

Note that all matrices are binary and that each column has the same weight, namely 1.

A useful property of check splitting, which follows from [42, Lemma 8], is that it cannot
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Algorithm 3.1 PEG-based check splitting

Input: B ∈ {0, 1}1×=, <
Output: H ∈ {0, 1}<×=

1: Create the parent mapping ?.
2: Initialize H← 0.
3: for 9 = 1, . . . , = do
4: for : ∈ I9 (B) do
5: I ← ?−1(:)
6: I ← {8 ∈ I : 3H(8, 9) = max8′∈I 3H(8′, 9)}
7: I ← {8 ∈ I : |J8 (H) | = min8′∈I |J8′ (H) |}
8: Choose some 8 ∈ I and set H(8, 9) ← 1.
9: end for

10: end for

reduce girth. Thus, in particular, H is guaranteed to be free of 4-cycles if B is so.

3.4.2 PEG-Based Check Splitting

While girth preservation is a desirable feature, one typically expects a lower-rate code to

have a better cycle distribution than a higher-rate code of the same length, preferably a larger

girth. This is possible in the check splitting procedure if checks are split in a way that breaks

short cycles in which they are involved. More generally, it is conceivable that a judicious choice

of check splits may increase the performance of the resulting code.

In the following, we propose a check splitting algorithm, inspired by the PEG algorithm

[15], that attempts to maximize the girth of the resulting matrix. For all 8 = 1, . . . , < and all

9 = 1, . . . , =, let 3H(8, 9) denote the distance from check node 8 to variable node 9 in the Tanner

graph induced by H, where 3H(8, 9) = ∞ if there is no path joining these nodes. As shown in

Algorithm 3.1, the proposed method greedily processes each (:, 9) non-zero entry of B, adding

a corresponding entry in H in the same column 9 but in some child row 8 ∈ ?−1(:) satisfying

two goals: first, it should maximize the distance to variable node 9 of the resulting Tanner graph;

second, if multiple possibilities remain, a check of lowest degree is chosen. The algorithm can

be interpreted as a generalization of the PEG algorithm where, for each iteration, the set of

allowed checks is restricted to ?−1(:), as shown in line 5. It is worth noting that the original

PEG algorithm is essentially recovered if this line is replaced by I ← {1, . . . , <}.
A secondary goal of the algorithm is to make the weights of the resulting rows as uniform as

possible, which is also a desirable feature for a good LDPC code. However, some care must be

taken to ensure that the parent mapping ? is indeed suitable to result in concentrated weights,
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Algorithm 3.2 Create the parent mapping for Algorithm 3.1

Input: B ∈ {0, 1}1×=, <
Output: ? : {1, . . . , <} → {1, . . . , 1}

1: Set ?(8) = 8 for 8 = 1, . . . , 1.
2: for 8 = 1 + 1, . . . , < do
3: K ← {1, . . . , 1}
4: K ← {: ∈ K : `? (:) = max: ′∈K `? (:′)}
5: Choose some : ∈ K and set ?(8) ← : .
6: end for

which is accomplished by Algorithm 3.2. Specifically, for each 8th row of H, this algorithm

chooses as its parent row in B one that maximizes the metric

`? (:) ,
|J: (B) |
|?−1(:) | + 1

(3.22)

which can be interpreted as the average weight of a corresponding child row after the parent

assignment is made (i.e., a row is chosen that maximizes the resulting weight after a further

split).

3.4.3 Triangular PEG-Based Check Splitting

A drawback of Algorithm 3.1 is that it generally does not produce matrices that have an

approximate triangular structure. We propose a simple adaptation that ensures such a structure,

thereby enabling efficient encoding. The algorithm takes a base matrix B in ALT form with gap

6 and returns a check-split matrix H in the same form and with the same gap 6. Thus, B and H

will have exactly the same encoding complexity.

For ease of notation, we assume that B is actually in approximate upper triangular form,

which can be easily accomplished by left-right and up-down flipping of a matrix in ALT form.

The resulting matrix H is similarly given in the same form.

The proposed method, which again takes inspiration from [15], is given in Algorithm 3.3.

The differences to Algorithm 3.1 are essentially the inclusion of lines 5–9, which add a 1 in the

6th subdiagonal, and the modification in line 11, which restricts the valid choices of child rows

to those above the 6th subdiagonal. The crucial assumption is that ?(6 + 9) ∈ I9 (B) for all

9 = 1, . . . , < − 6, since a 1 can only be added in position (6 + 9 , 9) of H if a 1 exists in position

(:0, 9) of B, where :0 = ?(6 + 9) is the corresponding parent row. This property can be ensured

during the creation of the parent mapping by a simple modification in line 3 of Algorithm 3.2,
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Algorithm 3.3 Triangular PEG-based check splitting

Input: B ∈ {0, 1}1×=, 6, <
Output: H ∈ {0, 1}<×=

1: Create the parent mapping ?.
2: Initialize H← 0.
3: for 9 = 1, . . . , = do
4: K ← I9 (B)
5: if 9 ≤ < − 6 then
6: H(6 + 9 , 9) ← 1

7: :0 ← ?(6 + 9)
8: K ← K \ {:0}
9: end if

10: for : ∈ K do
11: I ← ?−1(:) ∩ {1, . . . ,min{6 + 9 − 1, <}}
12: I ← {8 ∈ I : 3H(8, 9) = max8′∈I 3H(8′, 9)}
13: I ← {8 ∈ I : |J8 (H) | = min8′∈I |J8′ (H) |}
14: Choose some 8 ∈ I and set H(8, 9) ← 1.
15: end for
16: end for

Algorithm 3.4 Create the parent mapping for Algorithm 3.3

Input: B ∈ {0, 1}1×=, <
Output: ? : {1, . . . , <} → {1, . . . , 1}

1: Set ?(8) = 8 for 8 = 1, . . . , 1.
2: for 8 = 1 + 1, . . . , < do
3: K ← I8−6 (B)
4: K ← {: ∈ K : `? (:) = max: ′∈K `? (:′)}
5: Choose some : ∈ K and set ?(8) ← : .
6: end for

as shown in Algorithm 3.4.
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Simulation Results

This chapter discusses the design and word error probability performance of LDPC lattices

with ! = 2 coded levels. The analysis is performed for LDPC lattices constructed using check

splitting, i.e., built with Generalized Construction D′. To serve as a benchmark, lattice design

using the traditional definition of Construction D′ [5, 6] is also employed, emulating what was

done in [9].

We use three different design requirements in order to assess the performance of the con-

structed lattices. We design lattices for:

1. an error probability %4 ≤ 10−5 and with code length = = 1024;

2. %4 ≤ 10−2 and = = 1000;

3. %4 ≤ 10−2 and = = 10000.

We compare the error performance of our codes to state-of-the-art, high-performance lattices

built using either Construction D, Construction A, or a construction directly over R, namely:

polar lattices [13], LDA [28], GLD [4], and LDLC [29].

4.1 General Simulation Set-up

In all scenarios considered, we construct LDPC lattices Λ = C + 4Z= with the Generalized

Construction D′ applied to matrices H0 ∈ {0, 1}<0×=, and H1 ∈ {0, 1}<1×=, corresponding to

the nested codes C0 ⊆ C1 of rates '0 and '1, respectively. Both codes are chosen to be

variable-regular LDPC codes with variable-node degree 3E = 3. Matrix H1 is constructed via

the triangular version of the PEG algorithm [15], modified to allow for a gap 6, which is chosen

to be 6 = 22, while H0 is obtained from H1 via triangular PEG-based check splitting with the

same gap (Algorithm 3.3 with 6 = 22). Thus, C is guaranteed to have efficient encoding.
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Transmission over a power-unconstrained AWGN channel with noise variancef2 is simulated

using the approach of Subsection 2.3.1. Decoding of the lattice code C is performed as described

in Subsection 3.2.2, where for each component code the Belief Propagation decoder performs

a maximum of 50 iterations. Each simulation point is obtained after the occurrence of at least

100 word errors, except for points with word error rate (WER) below 10−6, which were obtained

with at least 50 word errors.

Decoding of the sublattice Λ′ = 4Z= is not simulated; instead, %4 (4Z=, f2) is computed

analytically from (2.5) and applied to (2.4), which is assumed to hold with equality. Note that,

by combining (2.4) and (3.14), we have

%4 (Λ, f2) ≤%4 (C0, f
2) + %4 (C1, (f/2)2) + %4 (4Z=, f2). (4.1)

4.2 Design for %4 ≤ 10−5 and = = 1024

For our first example, we have used the same design parameters as the 2-level polar lattice of

[13], namely %4 ≤ 10−5 and = = 1024. For the choice of <0 and <1, or, equivalently, '0 and '1,

we have not made any attempt at optimizing for a target error probability, but simply adopted

the same values obtained in [13], namely '0 = 0.23 (<0 = 788) and '1 = 0.90 (<1 = 103),

in order to allow for a simpler comparison.

The rate design in [13] was done using the equal error probability rule [7] applied to the

union-bound estimate of equation (4.1). Under this rule, the goal is to make the error probability

of the three levels equal (in this case, equal to 10−5/3). Using (2.5), uncoded level 2 achieves

%4 = 10−5/3 at f = 0.3380, yielding a design VNR of 2.34 dB.

Fig. 4.1 shows the word error rate as a function of the VNR for the Generalized Con-

struction D′ LDPC lattice and for the polar lattice. As can be seen, at the design VNR, the

performance of both lattices is comparable. In particular, the LDPC lattice attains WER = 10−5

at VNR = 2.2865 dB.

In order to better understand the performance of the LDPC lattice, Fig. 4.1 also shows the

performance of each individual level computed without error propagation. As we can see, the

fact that the slope of the curve becomes less steep after WER = 10−5 is due to the performance

of level 1 and, especially, of level 2. Thus, the error rate of level 2 induces a lower bound on the

performance of the LDPC lattice. Note that the polar lattice has the exact same uncoded level and

the same fundamental volume, being therefore limited by the same lower bound. As depicted
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Figure 4.1: Performance of 2-level LDPC lattices of dimension 1024 via Generalized Construction D′ and via
the original Construction D′, designed to achieve %4 ≤ 10−5 under multistage decoding. For comparison, the
performance of a 2-level polar lattice with = = 1024 [13], a 2-level LDPC lattice with = = 1000 decoded with joint
min-sum [9], and the Poltyrev limit are also shown.
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in the next section, this dependence on the uncoded level can be mitigated by an improved rate

design procedure.

To illustrate the motivation for the Generalized Construction D′, Fig. 4.1 shows the perfor-

mance of a (2, 3; 4)-regular LDPC lattice with = = 1000 from [9], where all levels are decoded

jointly using the min-sum algorithm. Fig. 4.1 also shows the performance of our best attempt

at designing an LDPC lattice via the original Construction D′, where H0 is constrained to be

a submatrix of H1, for which we used a low-complexity multistage decoder. In this case, both

matrices were constructed together via the extended PEG algorithm from [9]. We used the

same design criterion as before (equal error probability under multistage decoding). Assuming

variable-regular degree distributions, our best design was found with degrees 30
E = 6 and 31

E = 3

and rates '0 = 0.0967 (<0 = 925) and '1 = 0.9043 (<1 = 98). Compared to our previous

design, the design of C1 remained almost unchanged, while '0 had to be significantly decreased

in order for C0 to meet the desired error rate. The poor performance of C0 may be explained by

the highly suboptimal degree distribution, which was constrained by H1.

As we can see, using the sequential approach of Section 3.2 allows us to a obtain a perfor-

mance similar to that of [9], but with a lower decoding complexity. On the other hand, both

lattices display a significant performance gap as compared to polar lattices, as well as to LDPC

lattices constructed with Generalized Construction D′.

4.3 Design for %4 ≤ 10−2 and = = 1000

For our second design example, we use %4 ≤ 10−2 and = = 1000 as design parameters.

However, we now adopt an optimized rate design procedure.

Let C(') ⊆ {0, 1}= denote a family of LDPC codes parameterized by their rate '. Define

5 (', f) , %4 (C('), f2).

as a function of the rate ' and noise level f. Our proposed design rule selects the code rates

that minimize VNR such that the error probability is kept less than or equal to %4.

Using the fact that

VNR =
2=(!−

∑
!−1
ℓ=0 'ℓ)

2c4f2
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this optimization problem can be rewritten as

{'∗0, '
∗
1, f

∗} = argmax
'0,'1,f2

'0 + '1 + log2 f (4.2)

s.t. 5 ('0, f) + 5 ('1, f/2) + %4 (4Z=, f2) ≤ %4 .

The function 5 (', f) is computed numerically by constructing a code C(') and estimating

its error probability at noise levelf via simulation. To alleviate the complexity of this estimation,

simulation is used only for certain values of ' and f and linear regression is used to interpolate

between any other values required by the optimization algorithm.

With this design rule, rates '0 = 0.5 (<0 = 500) and '1 = 0.978 (<1 = 22) are obtained,

yielding VNR = 1.356 dB for %4 = 10−2.

Fig. 4.2 shows the WER as a function of the VNR for our proposed LDPC lattice, as well

as for the individual levels used in its multilevel construction. Note that the error probability

of the uncoded level is so low that it does not appear in Fig. 4.2. It is also interesting to point

out that, at the design VNR, code C0 displays WER = 6.9 · 10−3, whereas code C1 displays

WER = 3.2 · 10−3. This suggests that the optimal design criterion under multistage decoding

may not be the equal error probability rule, even if only the coded levels are considered.

For the sake of comparison, Fig. 4.2 also shows the performance of other state-of-the-art

lattices with dimension around 1000, namely: a one-level QC-LDPC lattice with = = 1190 and

rate ' = 0.786 (< = 935) [37]; an LDLC lattice with degree 7 and = = 1000 decoded with

the three/two Gaussian parametric decoder [29]; an LDA lattice with = = 1000 based on an

(2, 5)-regular LDPC code over F11 [28]; and a GLD lattice with = = 1000 based on a [4, 3, 2]
linear code over F11 [4].

As we can see, the performance of the proposed LDPC lattice is only slightly inferior to that

of the LDLC lattice, but it achieves this result with a much lower decoding complexity.

On the other hand, the QC-LDPC lattice has a much worse performance. This can be

attributed to the fact that it contains a single coded level, suffering from the low performance of

the uncoded level at these design parameters.

Fig. 4.2 also shows that the LDA and GLD lattices have a significantly better performance

compared to our LDPC lattice. However, these lattices rely on linear codes defined over F11,

leading to a much higher decoding complexity.

It can be seen in Fig. 4.2 that our proposed LDPC lattice displays an error floor caused by
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Figure 4.2: Performance of a Generalized Construction D′ 2-level LDPC lattice of dimension 1000, designed to
achieve %4 ≤ 10−2 under multistage decoding. For comparison, the performance of a 1-level QC-LDPC lattice
with = = 1190 [38], an LDLC lattice with = = 1000 [29], an LDA lattice with = = 1000 [28], a GLD lattice with
= = 1000 [4], and the Poltyrev limit are also shown.
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Figure 4.3: Performance of a Generalized Construction D′ 2-level LDPC lattice of dimension 10000, designed
to achieve %4 ≤ 10−2 under multistage decoding. For comparison, the performance of an LDLC lattice with
= = 10000 [29], an LDA lattice with = = 10000 [28], and the Poltyrev limit are also shown.

the low performance of C1. This may be partly explained by the high value of '1 for this block

length and by the presence of a substantial amount of 4-cycles in the parity-check matrix H1.

4.4 Design for %4 ≤ 10−2 and = = 10000

As our last example, we design an LDPC lattice with dimension = = 10000 for %4 ≤ 10−2.

We use the same design rule as in Section 4.3. However, we place an additional constraint on '1,

requiring it to be sufficiently small such that the PEG construction [15] does not generate any

4-cycles. Following this constraint, we designed for WER = 10−2, arriving at rates '0 = 0.4094

(<0 = 5906) and '1 = 0.973 (<1 = 270) and VNR = 0.884 dB. The simulated result indicates

the crossing of WER = 10−2 at VNR = 0.8790 dB.

Fig. 4.3 shows the word error rate versus VNR curve for our LDPC lattice. As benchmarks,

we have also plotted performance curves for other lattices with dimension = = 10000, including
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an LDLC lattice with degree 7 and an LDA lattice, once again based on a (2, 5)-regular LDPC

code over F11.

Similarly to Section 4.3, we see that our LDPC lattice almost matches the performance of

the LDLC lattice, with the benefit of providing less complex decoding. We can also see that the

gap to the LDA lattice performance has decreased.

4.5 Discussion

A limitation of the check splitting procedure is that the variable-node degree distributions

for the component codes must be the same. Since the independent optimization of the compo-

nent codes leads to different variable-node degree distributions, it is clear that using a single

distribution for codes of significantly different rates cannot be optimal.

Note that this restriction on degree distributions is not necessarily imposed by the Generalized

Construction D′, but is rather a consequence of check splitting. Finding a method of designing

nested LDPC codes with a more flexible choice of variable-node degree distributions remains

an open problem.
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Conclusion

We achieved results for lattice codes in power-unconstrained channels. Two main contribu-

tions are provided to multilevel LDPC lattices: an alternative description and a generalization

of Construction D′.

The alternative description of Construction D′ enables sequential encoding of the component

codes. This in turn ensures the use of multistage decoding. We show that low-complexity off-

the-shelf binary LDPC encoders and decoders can be used to produce multilevel encoding and

multistage decoding algorithms for LDPC lattices with a complexity that is linear in the total

number of coded bits. The linear complexity of these operations has not been attained by any

other existing Poltyrev-limit approaching lattices.

Generalized Construction D′ relaxes the nesting constraints on the parity-check matrices of

the component codes, significantly facilitating the design; specifically, under the new construc-

tion, only the component codes have to be nested, not their parity-check matrices. We showed

that the codes are nested if their parity-check matrices respect the principle of linearity where the

linear operator can be seen as a multiplier matrix with integer coefficients. Following this result,

we have devised a general principle for constructing nested codes based on the partitioning of

parity-check equations, as well as a practical method inspired by the PEG algorithm to construct

check-split LDPC matrices of large girth that can be efficiently encoded.

Based on this new construction, low-complexity multilevel LDPC lattices are designed

whose performance under multistage decoding is shown to be comparable to that of polar lattices,

closing a long-standing gap in performance between Construction D and Construction D′ lattices.

Our proposed LDPC lattices are also shown to achieve a performance close to that of LDLCs,

albeit with a much lower decoding complexity.

While the achieved performance is still far from that of ?-ary lattices such as GLD and LDA,
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it should be noted that only variable-regular lattices have been considered in this thesis. One can

reasonably expect that a much better performance may be achieved by irregular LDPC lattices

with carefully designed degree distributions. However, in that case, a new design procedure

would be required in order to ensure that the resulting codes remain nested.

5.1 Future Work

As hinted previously, the use of irregular LDPC codes using the most optimized degree dis-

tributions for each level is an interesting problem with challenging requirements. The optimized

distributions for low-rate and high-rate LDPC codes tend (as seen by EXIT Chart analysis)

to have distributions with weights that cannot be attained by conventional parity-check matrix

nesting procedures or by check splitting.

A possible research direction is to create a practical procedure that allows the use of irregular

codes and improves/generalizes upon the check splitting framework. The idea is to tailor matrix

Fℓ (the integer coefficient matrix of the linear operation) in (3.18) to the code rate design

necessary for a particular channel and lattice application. In other words, it would be highly

desirable to create at will generic linear combinations (Fℓ multiplier matrices), fully realizing

the potential of Generalized Construction D′. This would further enable the use of irregular

codes during lattice code construction. Accordingly, this would allow better optimized degree

distributions for the codes used at each level, i.e., the distributions that optimize the EXIT Chart

analysis for each component code.

Another direction for future projects is to use quasi-cyclic LDPC codes in the construction

of the multilevel lattice codes, allowing the code length to increase and, consequently, the error

correction performance to improve.

All the work described in this thesis was conducted over power-unconstrained channels.

However, we studied the implementation of shaping for power-constrained channels (the con-

ventional AWGN channel, for instance) using the framework for trellis shaping [27] which we

adapted in [26] for any linear code as the shaping code (as opposed to convolutional codes only).

In [26] we were able to enlarge the selection of possible data rates by constructing convolutional

codes via the Smith Normal Form. It would be interesting to test more powerful codes as the

shaping code, expanding on the results of [26] by using sparse or polar codes. Sparse codes

figure as a possibility given the application of LDGM (low-density generator matrix) codes for

the quantization problem, as seen in [44–46]. Based on [47–49], we also see that polar codes

can be successfully used for the quantization problem and lossy compression and in [13] for the
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shaping problem itself.

Finally, one further objective would be to implement the multilevel lattices of this thesis

in cooperative applications requiring lattice structures, such as distributed channel coding (see

[50] and references therein), binning for the wiretap channel [51] (which could exploit the coset

codes of Construction D′), and Compute-and-Forward Multiple Access (CFMA) [52].
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