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RESUMO

A audicdo é um sentido extremadamente importante para os seres humanos e a
vida em sociedade. Perdas auditivas dificultam significativamente a compreenséo
da fala, especialmente em ambientes ruidosos, diminuindo a qualidade de vida das
pessoas. Atualmente estao disponiveis diversas tecnologias de auxilio a deficiéncia
auditiva, como por exemplo os aparelhos auditivos biauriculares. Os conformadores
de feixe sao técnicas bastante efetivas para a redugdo de ruido em aparelhos
auditivos biauriculares. Sdo compostos por filtros que realizam uma selecéo espacial
da informagéo, impondo um determinado ganho na direcdo do sinal acustico de
interesse e uma atenuagao nos sinais provenientes das demais direcbes. Uma das
técnicas de conformadores mais usadas em aparelhos auditivos biauriculares é a
resposta de minima variancia sem distorcao (MVDR), cuja principal limitacao é a
sua sensibilidade as imprecisdes das estimativas dos parametros necessarios ao seu
projeto, acarretando uma degradacéo significativa no seu desempenho em situacoes
reais. Nesse sentido, o presente trabalho propée um conformador robusto estéreo para
reducdo de ruido em aplicacdes de aparelhos auditivos. O método de otimizacao de
desempenho do pior caso foi aplicado ao conformador biauricular de minima variancia
sem distorcao (BMVDR), visando a aumentar a robustez contra as incertezas na
estimativa de parametros. Os parametros de controle foram projetados como uma
funcéo da estimativa da diferenca de nivel interauricular da fala ruidosa, a qual € uma
importante pista biauricular. E apresentada a sustentagéo teérica e em sequéncia
experimentos de simulacdo sao realizados, demonstrando a eficiéncia do método
proposto na preservacdo da qualidade da fala e conforto acustico previstos em
condicdes ideais. Foram realizados experimentos de simulagao para ruidos sintéticos
e ruidos do mundo real, considerando razdes sinal e interferéncia (SIR) de entrada
desde -10 dB até 30 dB. Para um conjunto particular de parametros de controle fixos,
€ observado que a qualidade média dos sinais processados aumentou 0,76 WPESQ
em relacdo ao BMVDR convencional. O método proposto é especialmente efetivo
para SIRs de entrada maiores que 10 dB, as quais constituem uma faixa crucial para
usuarios de aparelhos auditivos.

Palavras-chave: Aparelhos auditivos biauriculares. Conformador de feixe. Optimizagéo
de desempenho do pior caso. Diferenga de nivel interauricular.



RESUMO EXPANDIDO

Introducao

O conformador de feixe de minima variancia com resposta sem distor¢cdo (MVDR,
minimum variance distortionless response) é uma técnica de reducao de ruido que
visa a minimizar a poténcia total do ruido, preservando a informacao relativa a fonte
de interesse. O projeto do conformador MVDR requer informacao a priori sobre o
cenario acustico como, por exemplo, a matriz de coeréncia do ruido e o vetor de
direcédo desejado. Os erros de estimacao desses parametros podem resultar em uma
degradacao significativa no desempenho do conformador, reduzindo a qualidade, o
conforto acustico, e a inteligibilidade da fala. Algumas fontes de erro sao: desajuste
de ganho e fase dos microfones; calibracao imperfeita do arranjo; e acoplamento
de microfones. Uma forma de lidar com a sensibilidade do conformador ao erro
de estimacao é projetar conformadores robustos. Nesse sentido, a otimizacado de
desempenho do pior caso (WCO, worst case optimization) € um método robusto que
minimiza a variancia do ruido, impondo uma magnitude de resposta maior ou igual a
unidade dentro de uma regiao ao redor da localizacao esperada da fonte desejada.

Objetivos

O presente trabalho tem como objetivo a proposicao de um novo conformador de feixe
MVDR biauricular para aplicagées em aparelhos auditivos. Este conformador é robusto
as incertezas dos parametros estimados, melhorando a qualidade da fala, o conforto
acustico, e a inteligibilidade em deficientes auditivos.

Metodologia

A proposta do conformador de feixe robusto consiste na seguinte cadeia de
processamento: a fala contaminada por ruido é recebida pelo arranjo de microfones
e as amostras sdo compartilhadas por ambos os aparelhos ao utilizar a configuragao
biauricular. Os sinais de fala ruidosa sao convertidos ao dominio da frequéncia através
da transformada de Fourier de tempo curto (STFT, short-time Fourier transform)
gerando um conjunto de frames no tempo e bins de frequéncia. A etapa de
processamento de sinais € realizada como segue: primeiro, um detector de voz (VAD,
Voice Activity Detector) é aplicado no sinal recebido pelo microfone de referéncia,
resultando em VAD = ‘0’ para frames que contém apenas ruido, e VAD = ‘1’ para
frames ge contém fala contaminada ou apenas fala. A saida binaria do VAD permite
obter uma estimativa da matriz de coeréncia do ruido (para VAD = ‘0’), e uma estimativa
da matriz de coeréncia da fala contaminada (para VAD = ‘1’). O conformador de
feixe biauricular MVDR convencional (E-BMVDR, Estimated Binaural MVDR) requer
estimativas da matriz de coeréncia do ruido e do vetor de direcdo desejado. A
estimativa do vetor de direcdo desejado € obtida diretamente da matriz de coeréncia
da fala, a qual € calculada através da subtragdo entre as matrizes de coeréncia
da fala contaminada e do ruido. Como foi explicado, os erros no conformador E-
BMVDR produzem degradagao na qualidade da fala e no conforto acustico. Nesse
sentido, 0 método de otimizacdo de desempenho do pior caso foi adaptado para ser
utilizado em aparelhos auditivos biauriculares. A formulacéo obtida depende de dois
parametros desconhecidos (um para cada orelha) que regulam o desempenho do novo
conformador. Foi proposta uma estratégia de projeto desses parametros utilizando



um parametro fisico presente na aplicacao de aparelhos auditivos, a diferenca de
nivel interauricular (ILD, Interaural Level Difference). Um conjunto de frases contendo
fala contaminada por ruido tipo ICRA-1 foi utilizado para estimar a ILD da fala
para diferentes niveis de contaminacéo (SIR, Signal-to-Interference Ratio). Duas
abordagens foram consideradas: uma abordagem conservadora e uma abordagem
restrita. A abordagem conservadora projeta um parametro para cada bin de frequéncia.
Devido a grande variabilidade da ILD ao longo da frequéncia, uma abordagem restrita
foi proposta. A abordagem restrita utiliza um percentual da mediana, com o objetivo
de obter um Unico parametro para todos os bins de frequéncia. Apds o calculo dessas
estimativas, o conformador é implementado de duas formas: utilizando restricbes
de desigualdade, o qual é resolvido através de algoritmos de pontos interiores; ou
utilizando restricbes de igualdade, resolvido de uma forma semi-fechada. Logo, os
sinais de fala contaminada séo filtrados pelo conformador robusto, resultando em um
sinal processado (no dominio da frequéncia) para cada orelha. Finalmente os sinais
de saida no dominio do tempo s&o reconstruidos e transmitidos para os autofalantes
das orelhas esquerda e direita.

Resultados e Discussao

Critérios objetivos foram aplicados para comparar o método proposto (WCO-BMVDR)
com o conformador convencional ideal (com parametros perfeitamente estimados),
e a sua implementagéao pratica (E-BMVDR). Além disso, outro conformador robusto
disponivel na literatura foi avaliado como referéncia. O primeiro experimento compara
as respostas do arranjo para cada conformador avaliado. No caso do conformador
WCO-BMVDR, a utilizacdo de um parédmetro de robustez pequeno resultou em
compensacoes nas perdas na direcao desejada e o nulo na direcao do ruido foi
mantido. Ao utilizar um valor grande, a reducdo do ruido pontual foi perdida de
forma significativa, piorando o desempenho do conformador. O segundo experimento
considera as métricas de qualidade (WPESQ, Wideband Perceptual Evaluation of
Speech Quality) e de conforto acustico (SINR, Signal to Interference plus Noise
Ratio). Foi realizada uma varredura do parametro (sem projeto) para determinar o
efeito do parametro de robustez na melhora destas métricas objetivas. As simulagdes
demonstram que para uma determinada faixa de valores, as métricas de qualidade
e de conforto acustico indicaram uma melhora psicoacusticamente significativa para
SIR entre 0 dB e 15 dB, a qual € uma faixa crucial para aplicacbes em aparelhos
auditivos. O terceiro experimento avaliou as mesmas métricas, porém realizando o
projeto do parametro de robustez utilizando a abordagem restrita. As simulacoes
demonstram que o conformador WCO-BMVDR com parametro de robustez projetado
possui um ganho significativo de qualidade e de conforto acustico em relagéo aos
demais conformadores avaliados. O quarto experimento avaliou a preservagao das
pistas acusticas biauriculares da fala e ruido provenientes de fontes acusticas pontuais.
Conclui-se que todos os conformadores, com excecao do conformador ideal, distorcem
as pistas da fala, principalmente para SIR menor de 10 dB. No caso do ruido pontual,
todos os conformadores distorcem as pistas acusticas. O quinto experimento avalia a
influéncia da poténcia do ruido de fundo no desempenho do método proposto (WCO-
BMVDR). Observou-se que para uma alta poténcia de ruido o desempenho diminui
drasticamente. O sexto experimento avaliou diferentes localizacdes da fala desejada
mantendo a separacao angular entre fala e ruido pontuais, obtendo métricas similares.
O sétimo experimento avaliou o desempenho dos conformadores em ambientes



reverberantes considerando um ambiente de escritério, resultando em quedas de
desempenho em todos os conformadores avaliados. O oitavo experimento considerou
0s seguintes tipos de ruido: ruido ICRA-1, motor de carro e cafeteria. Os resultados
mostram novamente que a abordagem restrita no conformador WCO-BMVDR atingiu
melhoras significativas (de até 0,76 WPESQ) em comparacdo ao conformador E-
BMVDR. Finalmente, o nono experimento realizou testes de hip6tese para determinar
a significancia estatistica nas métricas obtidas por cada conformador. Os resultados
novamente mostram que a abordagem restrita possui métricas estatisticamente
significativas em comparagéo ao conformador E-BMVDR.

Consideracoes Finais

O presente trabalho apresentou a proposta de um conformador de feixe robusto,
chamado WCO-BMVDR, para aplicagdo em aparelhos auditivos biauriculares. Este
conformador é baseado no método de otimizacao de desempenho do pior caso, o
qual utiliza os parametros estimados e inclui um par de restricoes de desigualdade no
problema de minimizag&o original, visando dar robustez as incertezas na estimacao de
parametros. Para atingir esse objetivo, foi proposto um método heuristico para projetar
0s seus parametros de controle, utilizando a fungédo de densidade de probabilidade da
diferenca de nivel interauricular da fala contaminada, estimada através dos microfones
de referéncia em ambas as orelhas. Experimentos estatisticos com ruidos sintéticos
e reais foram realizados, indicando um aumento psicoacusticamente relevante da
qualidade da fala e do conforto acustico em relagéo a implementacao convencional do
conformador de feixe biauricular MVDR para razdes sinal interferéncia acima de 10 dB.

Palavras-chave: Aparelhos auditivos biauriculares. Conformador de feixe. Optimizagéo
de desempenho do pior caso. Diferenga de nivel interauricular.



ABSTRACT

Hearing is extremely important for human beings and their life in society. Hearing
loss significantly impairs speech comprehension, especially in noisy environments,
decreasing the quality of life. Currently, several technologies are available to
compensate hearing loss, such as binaural hearing aids. Beamformers are very
effective techniques for noise reduction in binaural hearing aids. They are composed
by filters that perform a spatial selection of information, imposing a certain gain in the
direction of the acoustic source of interest and an attenuation for interferences incoming
from other directions. One of the most applied beamforming techniques in binaural
hearing aids is the minimum variance distortionless response (MVDR), whose main
limitation is its sensitivity to inaccuracies in the estimates required for the beamformer
design, leading to a significant degradation on its performance in real situations. In
this way, the present work proposes a robust beamformer for stereo noise reduction in
hearing aid applications. The worst-case performance optimization method was applied
into the binaural minimum variance distortionless response (BMVDR) beamformer,
for providing robustness against parameter estimation inaccuracies. It is shown that
its control parameters were designed as a function of the noisy-speech interaural
level difference estimate, which is an important binaural cue. Theoretical support is
presented, and simulation experiments performed, demonstrating the efficiency of
the proposed method in preserving speech quality and acoustic comfort. Simulation
experiments for synthetic and real-world noise, considering input signal to interference
ratios (SIR) from -10 dB to 30 dB were performed. For a particular set of fixed control
parameters, it is shown that the mean performance of the conventional BMVDR may be
improved by 0.76 WPESQ. The proposed method is especially effective for input SIRs
higher than 10 dB, which is a crucial range for hearing aid users.

Keywords: Binaural hearing aids. Beamforming. Worst-case performance optimization.
Interaural level difference.
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1 INTRODUCTION

According to the World Health Organization (2020), around 466 million people
worldwide present some level of hearing loss. About 90% of them present some kind of
hearing deterioration over the 500 Hz to 4 kHz frequency range, resulting in significant
difficulties in communication (DILLON, 2001). This disability produces strong social and
economic impacts in the quality of life of the affected people (PUDER, 2009).

The auditory system of normal hearing people has the natural ability to isolate
non-desired sound sources in noisy environments. This feature is imperative for
communication in extremely noisy acoustic scenarios, which characterize the well-
known cocktail-party problem. However, such ability is not preserved in many hearing
aid disorders, requiring artificial means for compensation.

In this way, hearing devices such as hearing aids were designed to compensate
hearing loss through the incorporation of sophisticated noise reduction algorithms,
in order to improve speech quality and intelligibility under noisy scenarios (GORDY;
BOUCHARD; ABOULNASR, 2008; DOCLO; GANNOQOT, et al., 2009).

In comparison with single-microphone algorithms, which can only use temporal
and spectral information, multi-microphone algorithms can additionally exploit the
spatial information to improve the noise reduction performance. This feature generally
results in a higher performance, especially when speech and noise sources are spatially
separated (WIDROW; LUO, 2003; DOCLO; GANNOT, et al., 2009; AYLLON; GIL-PITA;
ROSA-ZURERA, 2013).

When hearing impaired people require compensation in both ears, the gadgets
may operate in two ways: bilateral or binaural (DOCLO; GANNOT, et al., 2009). In
bilateral processing, left and right hearing aids operate independently, using signals
acquired by their own microphones. On the other hand, binaural processing has the
advantage of using the signals acquired at both ears (from ipsilateral and contralateral
microphones) through a wireless link, allowing to establish a unified noise reduction
strategy (MARIN-HURTADO; PARIKH; ANDERSON, 2012; LOPEZ; MARIN-HURTADO,
2015). As a consequence, binaural processing may allow better lateralization and
localization of multiple sources, which is not always possible with bilateral processing
due to the lack of synchronization between both hearing aids (STERN; BROWN; WANG,
2006; MARIN-HURTADO; PARIKH; ANDERSON, 2012).

1.1 BEAMFORMER TECHNIQUES

A widely explored tool for noise reduction in hearing aid applications is the
beamforming technique. Beamformers are spatial filters that apply multi-microphone
arrays. lts response produce pencil beams for enhancing a signal incoming from a
desired direction, while reducing signals arriving from other directions (VAN VEEN;
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BUCKLEY, 1988).

Beamformers were initially proposed in the antenna’s framework (VAN VEEN;
BUCKLEY, 1988) and, lately, successfully applied in hearing devices. The beamformer
can be designed in both time and frequency domains. Examples of time domain
implementations using one microphone at each hearing aid (left and right ears) are:
Greenberg and Zurek (1992), Welker et al. (1997), Kompis and Dillier (2001), and Luo et
al. (2002). Frequency-domain implementations offer the advantage of low computational
cost and faster convergence speed (NARAYAN; PETERSON; NARASIMHA, 1983).
Some examples are Kates and Weiss (1996), Desloge, Rabinowitz, and Zurek (1997),
Widrow and Luo (2003), Lotter and Vary (2006), Puder (2009), Puder, Fischer, and
Hain (2012), and Habets and Benesty (2012).

The time-domain Minimum Variance Distortionless Response (MVDR)
beamforming, proposed by Capon (1969), has been widely explored for noise reduction
in hearing aids. It aims to minimize the overall output power by preserving a set of
constraints. The MVDR frequency-domain formulation for noise reduction in hearing
aids was firstly presented by Gannot, Burshtein, and Weinstein (2001) and extended by
Cornelis et al. (2010), Marquardt, Hadad, et al. (2014), Hadad, Marquardt, et al. (2015),
and Baumgartel et al. (2015).

The frequency-domain MVDR beamformer has two parts: the cost function,
which requires information about the noise coherence matrix; and the linear constraint,
which makes use of the desired steering vector. The steering vector is defined as a
set of Acoustical Transfer Functions (ATF) measured from the desired source to each
microphone of the hearing aids. The ATFs contain implicit information about the acoustic
propagation, the head size and shape of the user, the distance between microphones,
etc.

In hearing aid applications, it is possible to obtain accurate estimations of the
second order moments of the additive noise using voice activity detectors. On the other
hand, the true ATFs are generally unknown and more elaborated methods are required.
In fact, both the noise coherence matrix and the steering vector are generally unknown
a priori, and estimated from the signals received by the microphone array (GANNOT;
VINCENT, et al., 2017).

1.2 MOTIVATION

Errors on estimations of both noise coherence matrix and steering vector may
result in significant impact over the optimum performance of the MVDR beamformer,
and can be caused by: microphone gain and phase mismatches, imperfect array
calibration, coupling between microphones, shape distortion, Direction-of-Arrival (DOA)
mismatch, movements and broadband interferences, incoherent signals, etc (CHEN;
SER; YU, 2007; CHEN, 2013; VOROBYQV, 2013). Particularly, steering vector errors
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result in the signal cancellation phenomenon (see Greenberg and Zurek (1992)), which
dramatically degrades the performance of the MVDR beamformer and affects both
quality and intelligibility of the desired speech (KOMPIS; DILLIER, 2001; SPRIET;
MOONEN; WOUTERS, 2004; DOCLO; GANNOQOT, et al., 2009; CAUCHI et al., 2015).

A common approach applied for dealing with this problem is the design of robust
beamformers based on extra linear constraints, aiming to assure adequate amplification
levels into a small range of angles around the presumed DOA (ZHENG; GOUBRAN;
EL-TANANY, 2004). The versatility of this multi-point constrained beamformer is limited
by the number of microphones of the array, which also limits the capability to cancel
interferences (LIU; WEISS, 2010).

The use of inequality constraints for robust beamformers has been successfully
applied in several situations, relaxing the constraints of the minimization problem, as
in Chen, Ser, and Zhou (2012), Vorobyov (2013), Jiang et al. (2015), Koutrouvelis
et al. (2017), Pu et al. (2017), and Xiao et al. (2017). Despite the large number of
robust techniques presented in the general beamforming literature, this issue was not
properly addressed for binaural hearing aid applications, with the aim of improving
speech quality, acoustic comfort, and intelligibility, which may be deteriorated due to
errors in the estimation process.

1.3 JUSTIFICATION

In hearing aid applications, noise reduction methods play an important role to
improve the speech quality and acoustic comfort. Beamformers are widely explored
techniques that prospect the spatiality of the acoustic scenario to attenuate noise and
preserve speech components. The conventional form of the MVDR beamformer applied
to binaural hearing aids, called Binaural Minimum Variance Distortionless Response
(BMVDR) beamformer, achieves its best performance when minimal errors are obtained
in its parameters. In this way, robust beamformers are interesting alternatives to
compensate for these estimation errors, improving the hearing capability of hearing-
impaired people.

1.4 OBJECTIVE

The main objective of this work is to develop a new BMVDR beamformer for
hearing aid applications. It must be robust to errors in the estimated parameters to
provide improved speech quality, acoustic comfort, and intelligibility for hearing impaired
people.
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1.5 CONTRIBUTIONS

In this work, in Chapter 3, we propose a block diagram for the practical
implementation of the classical MVDR beamformer for binaural hearing aids. This
implementation includes the adequacy of a robust beamformer (presented in Vorobyov,
Gershman, and Luo (2003)) into the binaural hearing aids framework, in order to
compensate degradation caused by estimation errors. However, this robust beamformer
depends on unknown parameters.

In this way, we proposed a method for designing these control parameters as
a function of physical measures (noisy-speech interaural level difference estimates)
related to the application. Results were recently presented in Lobato and Costa (2020),
achieving significant improvements in terms of speech quality.

In Chapter 4, a semi-closed-form solution for this robust beamformer was derived.
In addition, analytical expressions for objective measures such as the Binaural Signal-
to-Interference-plus-Noise Ratio (BSINR) are obtained for the practical implementation
of classical BMVDR beamformer and for the closed-solution of the proposed robust
BMVDR beamformer.

In summary, the main contributions of this work are the following:

a) To show the adequacy of the worst-case optimization method to the binaural
hearing aid framework (Section 3.4.2);

b) To provide a robust binaural MVDR beamformer, obtained as an extension of the
conventional worst-case-optimization beamforming method (Section 3.4.3);

c) To demonstrate that the control parameters of the proposed beamformer may
be properly designed as a function of noisy-speech interaural-level-difference
estimations (Section 3.4.4);

d) To provide a semi-closed-form solution of the robust MVDR beamformer, showing
its adequacy to the binaural hearing aid framework, achieving less processing
latency (Section 4.2); and

e) To provide simulation results under different acoustic scenarios to show that the
proposed formulation significantly improves speech quality (Section 5.5).

1.6 OUTLINE OF THE THESIS

Chapter 1 presented the motivation of this work and the objective of this thesis.
Chapter 2 presents the theoretical fundamentals of this work, such as the acoustic
scenario, the BMVDR beamformer, and the main performance measures. Chapter
3 explains the methods employed in this work: estimation of the parameters of the
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MVDR beamformer, a review of the worst-case optimization as a robust technique
against uncertainties on the estimated parameters, and the application of this concept
for binaural hearing aids. Chapter 4 presents an alternative semi-closed solution for the
proposed beamformer. Chapter 5 presents computational simulations that demonstrate
the performance of the proposed beamformer under different acoustic scenarios. Finally,
Chapter 6 presents the discussion and conclusion of this work.
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2 THEORETICAL FUNDAMENTALS

This chapter is organized as follows: firstly, the mathematical notation adopted
along this work is defined. Then, the characterization of speech and noise signals are
presented. After that, a brief explanation about digital hearing aids, its main components
and methods of processing are described. Then, the signal model considered along
this work was described under anechoic and reverberant environments. Subsequently,
the binaural minimum variance distortionless response (BMVDR) beamformer and
its optimal solution is introduced, as well as its main variants and features, as the
beampattern and binaural cues. Finally, some classical objective measures of speech
quality, acoustic comfort, and speech intelligibility are presented.

2.1 MATHEMATICAL NOTATION

Lowercase italic symbols z {-} represent signals (time or frequency domains). In
addition, bold lowercase symbols x {-} denote vectors and bold uppercase symbols
X{-} denote matrices. Suffixes are represented as follows: a variable or index is
denoted as italic lowercase {-},,,, and literals are denoted as non-italic uppercase {-}, .
Furthermore, variables and constants are represented, respectively, in italic lowercase
and uppercase formats. The whole mathematical notation is defined in the list of
symbols.

2.2 CHARACTERIZATION OF SIGNALS

In order to propose adequate strategies for noise reduction in hearing aids, it
is important to have prior knowledge of the main characteristics of speech and noise
signals aiming to exploit their differences in the time and frequency domains. In addition,
the knowledge of the acoustic environment properties allows to establish assumptions
and simplifications in the problem formulation (MARQUARDT, 2015). Along this work,
only one speech and one single-point noise sources are considered!.

2.2.1 Speech

In a stochastic perspective, speech signals are non-stationary, however, their
second-order statistics may be considered stationary for short periods of time (10 to
30 ms). Speech signals have a frequency range from 50 Hz to 8 kHz carrying the most
relevant information. They are formed mainly by: voiced signals, which are generally
harmonics whose power spectral density is concentrated below 4 kHz; unvoiced signals,
concentrated at higher frequencies; and pauses (LOIZOU, 2013; MARQUARDT, 2015).
In this work, speech signals are denoted as s(t) along the time index ¢, and as s(p, k)

1 Single-point noise source is also known as interference noise (HADAD; MARQUARDT, et al., 2015).
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into the time-frequency domain, in which p and k are the time-frame and frequency bin
indexes, respectively.

Figure 1 depicts the spectrogram of a speech signal. Note a high concentration
of spectral power below 4 kHz and some silence periods characterized by very low
power spectral density.

Figure 1 — Spectrogram of the speech signal: "It's easy to tell the depth of a well".
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2.2.2 Noise

In practical terms, noise is considered all undesired information included into the
observation. Into a speech communication point of view, noise signals are generally
characterized by slowly time-varying power spectral density, or simply more stationary
than speech signals (MARQUARDT, 2015). This feature was widely exploited in noise
reduction methods, such as in Hadad, Marquardt, et al. (2015), and Hadad, Doclo,
and Gannot (2016), to distinguish noise from speech. However, if the undesired signal
is a second speaker, noise can not be assumed stationary (MARQUARDT, 2015). In
this way, in order to reduce noise, it is crucial to understand its temporal and spectral
characteristics. In fact, certain types of noise may behave like speech signals (LOIZOU,
2013). In this work, interference noise signals are denoted as i(¢) in the time domain,
and as i(p, k) in the time-frequency domain.

Examples of acoustic noise are: International Collegium for Rehabilitative
Audiology (ICRA), and cafeteria babble noises.



Figure 2 — Spectrogram of two types of noise applied in this work: a) ICRA noise; b) cafeteria noise; c) speech plus ICRA noise; d)
speech plus cafeteria noise.
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ICRA noise was introduced in Dreschler et al. (2000) by the International
Collegium for Rehabilitative Audiology as a set of artificial noise signals for hearing
aid testing, inspired on psychophysical experiments. In fact, ICRA noise is designed to
present a spectrum similar of typical speech signals (DRESCHLER et al., 2000). Some
examples in which ICRA noise is applied are found in Wouters and Vanden Berghe
(2001), and Foo et al. (2007). Figure 2a shows ICRA noise spectrogram, with large
magnitudes in the power spectrum concentrated below 1 kHz, and stationary behavior
along the time axis. Cafeteria noise is a typical background noise encountered in real-
world environment which involves a wider band of frequencies, as compared to ICRA
noise. It is highly concentrated until 4 kHz (see Figure 2b). This kind of noise was
employed in Ricketts and Dhar (1999).

By considering an additive contamination context (DOCLO, 2003), the noisy-
speech signal, denoted as y(t) in the time domain and y(p, k) in the time-frequency
domain, contains both speech and noise. In addition, Figures 2c and 2d show
spectrograms of noisy-speech signals (received by hearing aid users) for each type of
noise by considering an input Signal-to-Interference Ratio (SIR) of 0 dB.

2.3 DIGITAL HEARING AIDS

Digital hearing aids are electronic devices used for compensating hearing loss
in hearing-impaired people, which employ audio signal processing methods (PUDER,
2009; VALENTE, 2002). This compensation is obtained by amplification of frequencies
in which speech has weak components or in which hearing loss is critical (DILLON,
2001).

Hearing aids are available on the market in the following models: Behind-The-
Ear (BTE), In-The-Canal (ITC), and Completely-In-the-Canal (CIC) (HOMTON et al.,
2013). Figure 3 shows the main components and usage of a BTE hearing aid.

In multi-microphone gadgets, sounds are received by one or more microphones,
transformed to the digital form by the Analog to Digital (A/D) converter using a preset
frequency sampling fs, and further processed by a Digital Signal Processor (DSP)
system. Following, the resulting signal is transformed back to the analog form by
the Digital to Analog (D/A) converter to drive a speaker (also called receiver), which
converts the electrical signal to the acoustic form. The volume level of the hearing aid is
previously programmed by the audiologist, and the whole circuit is commonly powered
by a lithium battery. The telecoil permits direct communication between the hearing
aid and an external device such as a telephone. The hearing aids may also support
communications with external peripherals (SELTECH, 2017).

A block diagram of a general hearing aid and its components is presented in
Figure 4. Sounds are acquired by one or more microphones. The power management
block is responsible for providing electrical power for the hearing aid circuitry. The
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Figure 3 — Hearing aids: a) components of the BTE hearing aid; b) BTE usage.

Source: Obtained from Seltech (2017), and Starkey Hearing Technologies (2018).

Figure 4 — Block diagram of a classical digital hearing aid.

Source: Adapted from NXP Semiconductor (2018).
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DSP system performs a large number of mathematical operations per second while
running all required compensating routines. In binaural hearing aids, the wireless link is
responsible for sharing the signals received at one side and transmitting it to the other
side (HADAD; MARQUARDT, et al., 2015).

2.4 SIGNAL MODEL

The proposed acoustic scenario is depicted in Figure 5, which consider two-point
sources: a desired speech component s(¢), and an interference noise component (%),
in which ¢ is the continuous time variable. In addition, there is the background noise
n(t) which represents the internal noise of the microphone array. The discrete time-
domain representation of the corrupted signals received by the left hearing aid y_,,,(7)
is defined as follows?:

YL (T) = SLm(T) + i m (7) + 1L (7) (1)
in whichm =0,1,..., M — 1 is the microphone index, M is the number of microphones
(in the left or right hearing aids), 7 = 0, 1,..., 7 —1 is the discrete-time index determined
as 7 = fst, and T is the total number of recorded samples. The point sources s(7) and
i(7) are acoustically filtered by the impulse responses a|_,,(7) and b_,,(7), respectively,
which carry information about the source localization (radial distance and azimuth
angle3), room acoustics, microphone characteristics and head shadow effect (DOCLO;
MOONEN, et al., 2009), resulting in:

SLn(T) = 8(T) * apm (T) ;L (7) = i(T) % by (7). (2)
in which x is the convolution operator. Speech and noise are considered stationary

in short periods of 10-30 ms?. These signals can be analyzed in the time-frequency
domain through the Short-Time Fourier Transform (STFT), converting (1) into:

yL,m(p’ k) = SLJn(p? k) + ZALJn(p7 k) + nL,m(pa k) ) 3)

inwhichp=20,,1,..., P — 1is the temporal frame index, and £ =0,1,..., K — 1 is the
frequency bin index; P and K are, respectively, the total number of time-frames and
frequency bins. Following the linear model in (2), the desired and interfering components
in the time-frequency domain are represented through the multiplicative model of the
STFT given by (DOCLO; GANNOQOT, et al., 2009):

SL,m(pa k) = s(p, k)aL,m<k) , Z'L,m(pa k) = i(p, k>bL,m(k) ) (4)

in which a_,,, (k) and b_,, (k) are named acoustical transfer functions (ATFs)®.

2 All signals and vectors are obtained in the same way for the left and right hearing aids.

8 Along this work, elevation angles were not considered.

4 In addition, noise signals are usually slower time-varying as compared to speech signals (GANNOT;
BURSHTEIN; WEINSTEIN, 2001).

5 Acoustical impulse responses are widely assumed to be time-invariant, i.e. a(p, k) ~ a(k) and b(p, k) ~
b(k) with infinite length (HABETS, 2010).
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Figure 5 — Acoustic scenario: The speech source s(t) is filtered by the impulse
responses a_(t) and ag o(t), while the noise source i(?) is filtered by the
impulse responses by_,(t) and br o(t). The signals are received by the first
left and right microphones of the bilateral array, resulting iny_(¢) and yg (%),
respectively. This representation can be extended for all microphones.

Source: Author.

It is important to remark that, under this multiplicative model in (4), each
bin of the STFT can be considered independent, also known as narrowband
approximation. This approximation can be properly applied when the temporal frame
length is significantly longer than the acoustical impulse response length (GANNOT;
BURSHTEIN; WEINSTEIN, 2001; DOCLO; GANNOT, et al., 2009; LOIZOU, 2013;
GANNOT; VINCENT, et al., 2017).
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Noisy-speech signals y_,,(p, k) can be represented into the vector form:

.
YL k) = (yLo k) v k) - w1 k)| - (5)

In addition, the noisy-speech vector can be expressed as the vector sum of
speech, interference, and background noise signals as:

yL(p, k) = sL(p, k) +iL(p, k) + nL(p, k), (6)

in which:

sL(p, k) = s(p, k)aL(k), iL(p,k) = i(p, k)bL(k), (7)

in which a_ (k) is the Steering Vector (SV), containing the speech ATFs, named Steering
Vector based on Acoustical Transfer Functions (ATF-SV) for the left side; and b (k) is
the Nulling Vector (NV), containing the noise ATFs, named Nulling Vector based on the
Acoustical Transfer Functions (ATF-NV) for the left side (HADAD; MARQUARDT, et al.,
2015; HADAD; DOCLO; GANNOT, 2016). Stacking the left and right components, the
following vectors are obtained:

s<p,k>=[SL(p’Z) ] i(p,k>=[i“p’2], n<p,k>=["L(p”“))]. ®)

sr(p, k) iR(p,

The received signals are finally expressed as:

Y(p, k) =s(p, k) +V(p, k), (9)

in which v(p, k) = i(p, k) + n(p, k) is the overall noise. In addition, the ATF-SV and
ATF-NV are also, respectively, stacked as a(k) = [a] (k) ak(k)]" and b(k) =
[b (k) bR(k) .

2.4.1 Anechoic and reverberant environments

The knowledge of the acoustical environment is a key factor to formulate noise
reduction techniques (MARQUARDT, 2015). The propagation of sound from a point
source to the microphone array is described by the acoustical impulse responses,
which carries all transmission features of the environment. In speech applications, the
environment can be considered as anechoic and reverberant (KAYSER et al., 2009).
Figure 6 depicts a classical impulse response composed by three sequential parts: the
direct path (in red color), early echoes (in green color), and late reverberation (in blue
color).
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Figure 6 — Example of an acoustical impulse response with reverberation time of 0.25
seconds composed by: direct path, early echoes, and late reverberation.
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Source: Obtained from Gannot, Vincent, et al. (2017)

The direct path is the acoustical transfer function obtained from the acoustical
source to the microphone. In an anechoic environment, there is only the direct path.
Early echoes represent the first few reflections on the room, until the moment when
the power decreases by 60 dB (5pq), Known as reverberation time. Finally, the late
reverberation component exponentially decreases along the rest of the acoustical
impulse response (JEUB; SCHAFER; VARY, 2009; GANNOT; VINCENT, et al., 2017).
In this way, the reverberant speech signal srey(7) can be expressed as the temporal
convolution s(7)xarey(7), in which arey(7) is the reverberant acoustical impulse response
given by®:

0, T<0
orov(r) = { doary(r), 057 < g (10
ate(T), T = T60dB

in which agqy(7) represents both the direct path a(0)(7) and the early reflections
occurred Up 10 Teqry, and ajgre(7) represents the late (reverberant) component that
occurs after g4y, according to Gannot, Vincent, et al. (2017).

In addition, the reverberant signal srev(7) can be expressed as the summation of

6 The reverberant interference noise signal can be obtained into a similar way.



Chapter 2. Theoretical fundamentals 39

the early and late components, segqriy(7) @nd sjate(7), given by Habets (2010):

T

5ear|y<7'> = s(7) * aearly(T) = Z 5(€)aearly(7' — 1), (11)
{=T—Te0aB+1
Slate(T) = s(7) * ajate(7) = Z s(O)ajate(T — 1) - (12)
f=—00

In this work, both anechoic and reverberant environments are considered.

2.4.2 Bilateral and binaural modes of processing

Both bilateral and binaural schemes are characterized by the use of two hearing
aids, one in each ear (see Figure 7). In the bilateral processing, the gadgets operate
independently of each other. On the other hand, in the binaural strategy, both devices
share information of all microphones, allowing an increased spatial resolution and
synchronized processing (GORDY; BOUCHARD; ABOULNASR, 2008).

According to the bilateral scheme (see Figure 7a), the outputs z|_pija(p, k) and
2R pila(p, k) are obtained as:

M-1
Lpita(Po k) = Y wf (0 kYL (P B) = Wi ia (0, K)YL(p. B (13)

m=0
M-1

ZR,biIa(Pa k) = Z w*R,m(pa k)yR7m<p, k) = WH’bHa(p’ k)yR(pa k) ) (14)

m=0
in which operator {-}* means conjugate, and {-}" is Hermitian transpose (GORDY;
BOUCHARD; ABOULNASR, 2008). The filters W pija(p, k) and Wgpija(p, k) with
dimension R *1 are given by:

Wesialp.K) = [ wLo@ k) wLak) - wLaab) | (15)
Webialp.K) = [ wron.k) wra(pk) oo wraaeb)] . (16)

and the recorded vectors y| (p, k) and ygr(p, k) with dimension R *1;
yL(p k) = [yL,o(p,/f) yLi(p k) ... yL,M_1(p,/<r)]T> (17)
YR(p k) = [yR,o(p,k) yr1(p k) - yR,Ml(p,k)}T- (18)

In the binaural scheme (see Figure 7b), the outputs z| (p, k) and zr(p, k) are
obtained as (GORDY; BOUCHARD; ABOULNASR, 2008):

2M -1

m=0
2M—1

RF) = Y wh (0 k) ym(p k) = WR(p, )Y (p, k), (20)
m=0
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Figure 7 — Processing modes for hearing aids: a) bilateral; and b) binaural.
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in which filters wy (p, k) and wg(p, k) with dimension ®2M*1 are given by:

T
wi (p, k) = [wL,o(p,k‘) w1 (p k) - wL,QM—1(pJ€)} : (21)
T
Wa(p, k) = | wro(p.k) wr (k) - wRa-1 (k) | (22)
and the recorded stacked vector y(p, k) with dimension %2 *1:
T
Y. k) = | vl k) YR R) | (23)

The main advantage of binaural beamformers in comparison with bilateral
beamformers is the possibility to increase noise reduction capability and
improve intelligibility due to the extra information and extra degrees of freedom
(KOUTROUVELIS et al., 2017).

2.5 COHERENCE MATRIX

The coherence matrix is Second-Order Statistic (SOS) information obtained from
a set of observed signals (VOROBYOV; RONG; GERSHMAN, 2005). For stationary
Gaussian signals, analysis of the SOS is enough to describe its behavior (KAY, 2006).
The coherence matrix is hermitian, Toeplitz’, and non-negative definite (HAYKIN, 2014).

For binaural hearing aid applications, signals may be approximately considered
as zero-mean Gaussian processes. In this way, the coherence matrix of the noisy-
speech signals, denoted as ®yy(p,k), can be determined in the time-frequency
domain, under the narrowband approximation, by (HADAD; MARQUARDT, et al., 2015;
SCHWARTZ; GANNOT; HABETS, 2017):

Pyy(p, k) =~ E {V(p, Ky (p, k?)} , (24)
~E{[s(p.k) +i(p, k) + n(p, D))" (0. 1) + o k) + 0o k)] | . (25)

in which E{-} is the expectation operation. By assuming that speech, interference and
background noise are zero-mean and independent random variables, (25) is converted
into:

yy(p, k) ~ E{s(p. )s"(p. k) } + E{ip. )M k) | + E{n(p. k)Mo k) | (26)

with dimension 2M x 2M. By also assuming that speech and noise are point sources,
i.e. s(p, k) = s(p,k)a(k), i(p,k) = i(p, k)b(k); and background noise is modeled as
White Gaussian Noise (WGN), each term in (26) results in:

Dss(p, k) = E {s(p, k)s"(p k) } = dss(p, K)a(k)a (k) (27)
i(p, k) = B {i(p. i? (0.1 } = i(p, K)b(R)BM (k) (28)
Srn(p. k) = E{n(p. nH(p. k) } = o3 (p. R, (29)

7 A Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant.
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in which ®ss(p, k), ®;i(p, k), and ®nn(p, k) are, respectively, the coherence matrix of
speech, interference, and background noise. In addition, ¢ss(p, k) = E {|s(p, k)\Q} and
¢ii(p, k) = E {]i(p, k)|*} are Power Spectral Density (PSD) terms, o (p, k) is the variance
of the WGN distribution, and I is identity matrix with dimension 2M x 2. . In this way,
the noisy-speech coherence matrix in (26) can be written as:

Dyy(p, k) ~ dss(p, k)a(k)a" (k) + 6ii(p, k)b(k)b7 (k) + oa(p, k)1, (30)

-~ -~

(}SS(pvk) ‘}vv(pak)

in which ®yy(p, k) is the overall noise coherence matrix. Note that, if an estimation of
®yy(p, k) is available, it is possible to estimate the speech coherence matrix through
the covariance subtraction procedure (HABETS; BENESTY, 2012).

2.6 BEAMFORMING TECHNIQUES

Beamformers are spatial filters designed to produce pencil beams in order
to enhance signals incoming from a desired direction, while attenuating all signals
incoming from undesired directions (VAN VEEN; BUCKLEY, 1988). Beamforming
techniques were initially designed for telecommunication applications. However,
nowadays, beamformers have new applications such as in: biomedicine, seismology,
speech enhancement (e.g. hearing aids), etc. These spatial filters are classified as fixed
and adaptive beamformers (see Figure 8).

2.6.1 Fixed beamformer

Fixed or data-independent beamformers are spatial filters designed for
approximating a unitary response on the desired direction (independently of data)
and zero elsewhere. They are based on the filter-and-sum operation (VAN VEEN;
BUCKLEY, 1988; DOCLO; GANNOT, et al., 2009). In general, fixed beamformers
are applied when the desired direction is known a priori, such as in cellphones, cars or
hearing aids (GANNOT; VINCENT, et al., 2017). However, uncertainties on microphone
positions may generate performance degradation (GANNOT; VINCENT, et al., 2017).

Examples of fixed beamformers (see Figure 8) are: the delay-and-sum
beamformer in Van Veen and Buckley (1988), which averages delayed microphone
signals; the superdirective beamformer in Lotter and Vary (2006), Doclo and Moonen
(2007), and Kodrasi, Rohdenburg, and Doclo (2011), which maximizes the microphone
array gain for a diffuse noise field; and the frequency-invariant beamformer in Ward,
Kennedy, and Williamson (1995), and Kennedy, Abhayapala, and Ward (1998), in which
the array beampattern has no frequency dependence for wideband signals. Other fixed
beamformers can be found in the literature, such as the matched-filter beamformer in
Jan and Flanagan (1996), and the differential microphone arrays in Elko (2000).
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Figure 8 — Beamforming classification: fixed and adaptive beamformers.
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These techniques were applied to both bilateral and binaural hearing aids in
several works. Examples are: Kates and Weiss (1996), Desloge, Rabinowitz, and Zurek
(1997), Luo et al. (2002), Gordy, Bouchard, and Aboulnasr (2008), Jeong and Park
(2014), and Cho et al. (2014). Fixed beamformers have low computational cost and do
not require control algorithms (DOCLO; MOONEN, 2003). However, they are not able
to adapt to complex acoustic scenarios, considering the speech and noise statistics,
the head shadow effect, microphone array mismatches, etc. (DOCLO; MOONEN, 2003;
GANNOT; VINCENT, et al., 2017).

2.6.2 Adaptive beamformer

Adaptive beamformers are auto-designed according to the statistics of the data
received by the microphone array. This optimization process aims to minimize noise
effects and emphasizes a desired direction (VAN VEEN; BUCKLEY, 1988).

Examples of adaptive beamformers (see Figure 8) are the Linearly Constrained
Minimum Variance (LCMV) beamformer proposed by Frost (1972), which modifies the
beamformer response to privilege signals incoming from the desired direction; the
Generalized Sidelobe Canceller (GSC) beamformer in Griffiths and Jim (1982), which
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decouples the spatial filter into a constraint-dependent (data-independent) and a data-
dependent part; and the Multichannel Wiener Filter (MWF) in Doclo and Moonen (2002),
which produces the Minimum Mean Square Error (MMSE) estimation of the desired
component.

Adaptive beamformers were applied to bilateral and binaural hearing aids in
several works, such as in Gordy, Bouchard, and Aboulnasr (2008), Doclo, Moonen, et al.
(2009), Hadad, Gannot, and Doclo (2012), Hadad, Marquardt, et al. (2015), Marquardt,
Hadad, et al. (2015), and Hadad, Doclo, and Gannot (2016).

2.6.3 The BMVDR and BLCMV beamformers

As stated in Section 2.2, speech is stationary signal only for short periods of time.
In this way, the designed filters are time-varying, resulting in wy (p, k) and wgr(p, k).

2.6.3.1 The BMVDR beamformer

Proposed initially by Capon, Greenfield, and Kolker (1967) in the time-domain
and adapted for binaural hearing aids in Hadad, Marquardt, et al. (2015) in the time-
frequency domain, the binaural minimum variance distortionless response (BMVDR)
beamformer is comprised of two filters w|_(p, k) and wr(p, k), which minimize the overall
noise power (cost function) and preserve the speech components (linear constraints).
Due to the linear characteristic of the filter and considering these signals as Gaussian
random processes, the overall noise power at each ear is given by (DOCLO; GANNOT,
et al., 2009):

E{ oL o(p. b)) = E{wl o, k)v(p, kWP (o, kwi (o, )}

= w (p, K)®w(p, k)W (p, k), (31)
E{smo (0 )P} = B {wB(p, )V (p, V" (5, k)W (p, 1) }
= WH(p, k) Bw (p, k)WR(p, k) , (32)

in which ®yy(p, k) =E {V(p, k‘)VH(p, k)}. In addition, linear constraints are designed to
preserve the speech components at the left and right output, by forcing the left and right
array responses w'l:' (p, k)a(k) and WH(p, k)a(k) to be equal to the ATFs associated to
the left and right reference microphones, a_ (k) and ag ((k), respectively, as follows:

s k) 2 s(p, kywl (p, k)a(k) = s(p, k)ag o (k) , (33)
(0, k) 2 s(p, k)WE(p, k)a(k) = s(p, k)ap (k) , (34)

)

)
A
- )

»
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in which a(k) is the steering vector containing the ATF-SVs measured from the speech
source to the microphone array, given by:

a(t) = [ aLo(®) aLs(k) -+ aLar1(k) apoR) ama(k) - amar ()] -
(35)
According to Hadad, Doclo, and Gannot (2016), the use of ATF-SV in the BMVDR
beamformer produces the self-cancellation phenomenon8, which is avoided by using
the Steering Vector based on the Relative Transfer Functions (RTF-SV). In addition, the
RTF-SV is easier to estimate as compared to the ATF-SV estimation, since it avoids
gain ambiguity (GANNOT; VINCENT, et al., 2017). The RTF-SVs a| (k) and ar(k) can
be expressed as normalized forms of (35) related to a|_o(k) and ag o(k), respectively,
given by:

_ B a1 (k) aLa—1(k)  aro(k) api(k) apar—1(k) 17
auh) = | 1 g o Y ey e o S ee)
— _ a _’()(k) a 71(]6) a , ,1(]6) a ’1(]6) a , wfl(k’) T
aR(k) = [ a;,o(k) a;,o(k) Laj:.,ro(k) 1 a:o(k) FXW ] ' (37)

In this way, the BMVDR beamformer is represented by the following minimization
problem (omitting p and & indexes) (HADAD; MARQUARDT, et al., 2015):
H,
wia =1
Lo (38)

min w'®yww| +wp®
Wi WL PwW + WR PwWi subject to{

WHéR =1
The minimization problem in (38) can be stacked by denoting the matrices @,
and A as:

(i)VV =

Qv  Ooprxom ] A_ [ aL O ] _ (39)

Oonrxons  Pwv O2p/x1 @R
In this way, the stacked form of the BMVDR beamformer results in (HADAD;
MARQUARDT, et al., 2015):

min wHa, w subject to Afw = 1951 |. (40)

in which w = [ w] wf ]T. A closed formula for the filter w is obtained through the

Capon’s solution (LIU; WEISS, 2010; HADAD; MARQUARDT, et al., 2015):
~ 1= ,H ~ 1=
W= q’vle[A (I’vle] 112><1 ; (41)
in which the term A&, A provides scalar factors for the optimal filters, which do not
affect the resulting left and right output Signal-to-Interference-plus-Noise Ratio (SINR)
(VOROBYOV; GERSHMAN; LUO, 2003). The BMVDR beamformer in (40) assumes

perfect (or ideal) parameters ®,y and A. In this way, from now on, (40) is named as
Ideal Binaural Minimum Variance Distortionless Response (I-BMVDR).

8  The self-cancellation phenomenon is caused by leakage of the desired signal into the noise reference
(GANNQT; BURSHTEIN; WEINSTEIN, 2001).
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2.6.3.2 Adaptive BMVDR beamformer

The adaptive version of the MVDR beamformer was presented in Griffiths (1969),
and further transformed into the time-frequency domain in Gannot, Burshtein, and
Weinstein (2001) is based in the steepest descent method. By considering the left side,
the adaptive vector wi_ (p + 1, k) can be obtained as:

WL (p+ 1, k) = W (p, k) — pu(p, k)Vw: L(p, k),
=W (p, k) = pu(p. k) [Bw(p, k)WL (p, k) + Alp, k)a_ (k)] , (42)

in which \(p, k) is the Lagrange multiplier. In addition, by imposing the linear constraint
éf(k)wL(p +1,k) = 1, we have (GANNOT; BURSHTEIN; WEINSTEIN, 2001):

L=a; (k)w_(p+1,k)

(k)WL (p, k) — pu(p, k)@l (k) ®w (p, k)WL (p, k) — pu(p, k)\(p, k)@ (k)aL (k). (43)

Il
V]
rIrT

By applying the Lagrange multiplier method, we have (GANNOT; BURSHTEIN;
WEINSTEIN, 2001):

Wi (p+ 1, k) = PL(k)WL(p, k) — pu(p, k)PL(K)®wy(p, k)WL (p, k) +aL(k),  (44)

in which the matrix P_(k) and the vector a|_ (k) are given by:

a (kal'(k) . a(k
PL(k)=1- L2 aL(k):_L)z, (45)
la ()ll5 [a ()]l5
in which || - ||o denotes the Euclidean norm operation, and ||a| (k)||o = é'l:'(k:)éL(k).

According to Gannot, Burshtein, and Weinstein (2001), further simplification can be
achieved in (44) by replacing the noise coherence matrix ®yy(p, k) by an instantaneous
estimator denoted as v(p, k), in which &y (p, k) = v(p, k)v" (p, k), yielding:

W (p+ 1, k) = PL(k) WL(p, k) — pu(p, k)v(p, k)W (p, k)] +aL(p, k) . (46)

According to Frost (1972), the value of u(p, k) is chosen to satisfy:

2

= 3-Tr{®w(p,k)} 4

0 < p(p, k)

in which Tr{-} is the trace operator. Similar procedure is applied to the right side to
obtain wr(p + 1, k).
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2.6.3.3 The BLCMV beamformer

The BMVDR beamformer can be extended for preserving Ny desired speech
sources and for attenuating V; undesired interference sources (SOUDEN; BENESTY;
AFFES, 2010). Such extension results in the Binaural Linearly Constrained Minimum
Variance (BLCMV) beamformer presented in Hadad, Doclo, and Gannot (2016). This
multi-source beamformer is capable of preserving not only a given number of desired
steering vectors, but also of reducing a number of nulling vectors in the form b(%), which
contains the ATFs of the interference noise sources. So, the SVs and NVs are grouped
into matrices A(k) and B(k), respectively, as in Hadad, Doclo, and Gannot (2016):

Ak) = an(k) a(k) ... aNoi(k) |, (48)
B(k) = | bio(k) bii(k) ... bN1(k) ] (49)
)

The steering and nulling matrices A(k) and B(k) can be, respectively, expressed
into the Relative Transfer Function (RTF)-based form as A (k) and B (k) with
dimension R2M*Ns and ®2M *Ni (HADAD; DOCLO; GANNOT, 2016), leading to:

A avh) anh e
Am=|BE B0 - e | (0)
e s e
Bi(k) = [ oK) Bl(R) T N } ‘ (1)

The same procedure is performed in the right hearing aid for Ag(k) and Bg(k).
As a result, the BLCMV beamformer can be represented (omitting p and % indexes) by:

( HR

Hr

whAR = k1

“r,mn wL DWW + WRQWWR subject to E_R Nyx1 , (52)
LW WLBL:p1Nix1

\WHER = p1NL><1

where 0 < x < 1and 0 < p <1 are real-valued scalars which define the gain for both
desired and undesired components (HADAD; DOCLO; GANNQOT, 2016). Typical values
for  are close to 1, while p is a small value (close to 0). By grouping the constraint

matrix C and the response vector r, respectively, with dimension R4M *2(Ns+Ni) gngd
R2(N:+Ni)x1 (HADAD; DOCLO; GANNOT, 2016), leads to:

— A B . 1
C_ AL 02]\_4st B_ 021»_1le T L
Oonrxn, AR Ooyxn, Br plan, x1
The stacked form of the BLCMV beamformer is given by (HADAD; DOCLO;
GANNOT, 2016):

min wHa, w subject to clw—r|. (54)
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Finally, the BLCMV solution is also given into the Capon’s form as (HADAD,;
DOCLO; GANNOQOT, 2016):

&, Cl . (55)

2.6.3.4 Geometrical interpretation

Figure 9 shows an example of the geometrical interpretation of the BMVDR
beamformer by only considering the left side and two microphones. The cost function
of the BMVDR beamformer, i.e. the noise output power w['(p, k)®w(p, k)W (p, k) is
represented by a quadratic surface whose minimization represents the maximization of
the output signal-to-noise ratio. This minimization results in the two-coefficient optimal
filter w_opt(p, k) = [ w o(p, k) wi1(p, k) |7, whose solution can be simply given by
a vector of zeros. In order to preserve the speech components, a constraint plane
imposes a new optimal and constrained filter.

Figure 9 — Geometric interpretation of the BMVDR beamformer for the left side and two
microphones.
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2.6.3.5 Array response

The array response (also called beampattern or spatial directivity pattern),
denoted here as BPyg (0, p, k), characterizes the beamformer through its magnitude
response, defined as a function of the azimuth angle ¢, time-frame index p, and
frequency bin & (BENESTY; CHEN; HUANG, 2008; GANNOT; VINCENT, et al., 2017).
By notation, negative azimuths correspond to the left side of the listener, while positive
azimuth corresponds to the right side. For binaural hearing aids, the corresponding left
and right magnitude array responses in logarithmic scale are denoted as BP|_4g(0, p, k)
and BPr 4g (¢, p, k), respectively, and are given by:

BPLag(0,p, k) = 201logg )WE (p, k)ap(0,k)

BPRa5(6. 1, k) = 20 logyg (W (p. K)ag (0, k)

, (56)
, (57)

in which a| (0, k) and ar(¢, k) are the left and right RTF-SVs for each azimuth angle ¢
and frequency bin k. Figure 10 shows an example of the array response of the BMVDR
beamformer presented in (40) for a speech source s(p, k) located at the azimuth angle
of 85 = 0° and an interfering noise source i(p, k) located at 6, = +90° (both sources
with elevation angle of 0°). Note that the 0 dB array response at 0° provides unitary gain
to any signal coming from this direction. On the other hand, at +90°, the —50 dB array
response is a nulling valley that attenuates the interfering noise source.

2.6.3.6 Binaural spatial cues

The human auditory system is capable to identify, emphasize, or inhibit spatially
separated sources of sound in an acoustical scenario. This separation is possible due
to the binaural hearing capability, which allows us to perceive the spatial localization of
sounds through the binaural cues (STERN; BROWN; WANG, 2006). Lord Rayleigh was
the pioneer in studying the main binaural cues, which are the Interaural Level Difference
(ILD), and the Interaural Time Difference (ITD). Despite some controversies, the ILD
and ITD are complementary along the frequency-domain (STERN; BROWN; WANG,
2006). The ILD is the difference of power between the left and right sides, resulting by
the shadowing effect of the head, and predominant above 1.5 kHz (STERN; BROWN;
WANG, 2006). On the other hand, the ITD is the time delay between the sounds arriving
in the left and right ears. This binaural cue is preponderant in lower frequencies (under
1.5 kHz).



Figure 10 — Example of array response for the BMVDR beamformer considering a speech source located at 0° and an interference
source located at 90° with input SIR = 0dB: a) Polar-plot for & = 16 frequency bin (1 kHz); and b) Beampattern scaled in dB.
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According to Cornelis et al. (2010), and Hadad, Doclo, and Gannot (2016),
the input and output ILD related to the speech source, denoted as ILDL”(p, k) and
ILDOYY(p, k), respectively, are given by:

B q[i)ss(p, k)aL

N QE‘I’ss(pa k)dRr

W (p, k) ®ss(p, k)W (p, )
 WH, k) @ss(p, k)WR(p, k)
in which g, and qr are the quiescent vectors which select the left and right reference
microphones, respectively, givenby q. = [ 1 0J,, , |Tandgr=[0], 1 0}, , |,
in which 0, is a column vector of M zeros. In addition, the input and output ITD related

to the speech source, denoted as ITD"(p, k) and ITDOU(p, k), respectively, are given
by:

ILDY (p, k)

(58)

ILDSY(p, k) (59)

TR (p, k) = £ (al @ss(p, K)aR) - (60)
ITD (p, k) = £ (W (p, k) @ss (p, k)W (p, ) (61)

The preservation of the binaural cues related to the speech source can be
measured through the differences of ILD and ITD between the input and output signals,
denoted as AILD; and AITDyg, respectively, and defined as (COSTA; NAYLOR, 2014):

P-1K-1
1 ILDOY(p, k)
AlLDy = —— 10 logy (s— : (62)
P-K pz::o kz:% ILD(p, k)
P_1K-1[ITDM(p, k) — ITDI(p, k)|
1 ‘ S pv S p7
AITD; = 5 > - . (63)
p=0 k=0

Similar metrics are obtained for the interference source by replacing ®ss(p, k)
by ®;i(p, k) from (58) to (63), obtaining ILDI"(p, k), ILDO!Y(p, k), ITDI"(p, k), ITDOMY(p, k),
AILD;, and AITD,;.

2.7 OBJECTIVE MEASURES

Speech processing methods usually introduce some degradation in both clean
and contaminated signals. In order to quantify this degradation, the performance
of noise reduction methods may be assessed through psychoacoustic listening
experiments. In fact, listening experiments are the most reliable way to obtain a
judgment about the processed speech in order to quantify speech quality, acoustic
comfort, and intelligibility. However, this task can be costly and time consuming (TAAL
et al., 2011; LOIZOU, 2013).

Because of such difficulties, researchers have proposed objective measures for
assessing speech quality, acoustic comfort, and intelligibility. These objective measures



Chapter 2. Theoretical fundamentals 52

may incorporate psychoacoustic considerations, semantics, linguistics and pragmatics
(LOIZOU, 2013). In fact, psychoacoustic experiments are only performed after a
thorough evaluation by objective measures to corroborate the predicted results.

2.7.1 Objective quality measures

Basically, the objective quality measures compute the distortion between a
reference and a target signal (contaminated or processed) by using signal segmentation
in frames of 10-30ms (LOIZOU, 2013). In this work, two widely known quality measures
are considered: the Signal-to-Interference-plus-Noise Ratio (SINR), and the Wideband
Perceptual Evaluation of Speech Quality (WPESQ).

2.7.1.1 Signal-to-interference-plus-noise ratio measures

In hearing aid applications, some input level of contamination in speech signal
is expected. It can be measured through the input Signal-to-Interference Ratio (iSIR),
and the input Signal-to-Noise Ratio (iISNR) given by (MARQUARDT, 2015):

P-1K-1 2

Pss(p; k)ar o(k)]
iISIR; = . 64
| o pz%) kz% ¢|| P, k |bL0( )|2 (54

P-1K-1 2
iSNR, — Z Z dss(p, k |aL O( )| . (65)

p=0 k=0 q)nn (p,k)aL

In addition, by considering the overall noise (interference plus background noise),
the input Signal -to-Interference-plus-Noise Ratio (iSINR) can be obtained as m =
ﬁ + |SNR (HADAD; MARQUARDT, et al., 2015)°.

After processing, the output SINR can be computed as the geometric mean
of the SINRs across all available frames of the speech signal (LOIZOU, 2013). This
objective measure provides an indication of speech intelligibility, and can be related to
the acoustic comfort for listeners (GOLMOHAMMADI; ALIABADI; NEZAMI, 2017). For
hearing aids, the output SINR for the left and right sides are computed as:

P-1K-1

. WE (I)SS(pv k)WL(p, k)
SINRL= 2 2 i e by ) (¢
wH (p, k) ®ss(p, k)WR(p, k)
B R ss R
SINRr = pzo Z wH k)®@w(p, k)Wg(p, k) )

in which the numerators and denominators are the processed speech and overall noise
powers for each ear.

®  The same procedure is performed for the right side by replacing ai o(k), b o(k) and q, with ag o(k),
br,o(k) and qg, respectively.
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In the binaural context, Hadad, Marquardt, et al. (2015) defined the binaural
output signal-to-noise ratio (BSINR) as:

P-1K-— 1
p=0 k= O (I)VV(p7 /{J)W(p, k)

In addition, the Binaural Speech Distortion (BSD) was defined as the ratio of
the average input power spectral density of the speech component in the left and
right reference microphones to the average output power spectral density of speech
component in the left and right loudspeakers (MARQUARDT, 2015). By denoting a(k) =
[aLo(k) app(k) |T, the BSD can be expressed as:

P-1K-1

dss(p, k)la(k)|?
BSD = | -
PZO l;) WH ‘I’ss(p, kYw(p, k) (69)

By considering a single-point noise source, a similar parameter can be
determined from (69) to assess the Binaural Interference Distortion (BID), by replacing
dss(p, k), a(k), and ®ss(p, k), respectively, by ;i(p, k), b(k) = [ b o(k) bro(k) 1T, and
®ji(p, k).

2.7.1.2 Wideband PESQ measure

Among the most applied measures for speech quality, the wideband Perceptual
Evaluation of Speech Quality (PESQ) score is employed in this work due to its high
correlation with the overall speech quality (LOIZOU, 2013). The PESQ reported in ITU
(2001) is an intrusive objective metric that compares a given processed signal with its
original version.

Figure 11 shows the PESQ block diagram. The first step is a pre-processing
stage that equalizes both signals to obtain a standard listening level. The second
step aligns both signals over time. In sequence, an auditory transformation maps the
signals into a model of perceived loudness, obtaining a loudness spectra. Following, the
difference (or disturbance) between the processed and the original loudness spectra is
computed for each frame. Finally, the wideband PESQ is obtained by averaging over
time the called symmetric and asymmetric disturbances, denoted as Jsym and Jasym,
respectively, under an specific criteria as (LOIZOU, 2013):

PESQ = 4.5 — 0.1 - Ygym — 0.0309 - Jasym - (70)

The auditory transformation used in PESQ allows to establish direct comparisons
with the Mean Opinion Score (MOS) test'? (CHIARAMELLO; MORICONI; TOGNOLA,
2015). In fact, according to Loizou (2013), the correlation of PESQ with MOS is 0.92.

10 1t ranges from 1 for worst quality to 5 for best quality.
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Figure 11 — Block diagram for PESQ computing.
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The range of the considered PESQ score is from -0.5 to 4.5, which represents an
equivalent MOS score between 1.0 to 4.6 (LOIZOU, 2013; BISPO; FREITAS, 2015).
Figure 12 shows the narrowband and wideband PESQ mapping functions to MOS, in
which each score corresponds respectively to: 1- bad; 2- poor; 3- fair; 4- good; and 5-
excellent. This objective quality metric was applied for hearing aids quality assessment
by Ayllon, Gil-Pita, and Rosa-Zurera (2011), Yousefian and Loizou (2012), and Ayllén,
Gil-pita, and Rosa-zurera (2013).

In Loizou (2013), it was demonstrated that PESQ correlates very well with three
important subjective measures applied to the analysis of enhanced speech: overall
quality, signal distortion, and background distortion. In this sense, PESQ has been
widely applied for assessment of processed speech for both monaural and binaural
beamformers (CAUCHI et al., 2015; KARIMIAN-AZARI; FALK, 2017; THIEMANN et al.,
2016).

2.7.2 Objective intelligibility measures

Speech intelligibility may suffer from several types of degradation, such as:
additive noise, reverberation'", filtering, clipping’2, etc. Currently, objective intelligibility
measures are based on comparisons between spectro-temporal features of clean and
contaminated signals (TAAL et al., 2011).

In this work, the Short-Time Objective Intelligibility (STOI) measure, proposed
in Taal et al. (2011), was chosen due to its high (0.85) correlation coefficient with

" Reverberation, in psychoacoustics, is the persistence time of sound after it is produced.
12 Clipping is a form of distortion that limits the signal through a preset threshold value.
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Figure 12 — Narrowband (dashed line) and wideband (solid line) PESQ mapping
functions to MOS scores.

Predicted MOS score

PESQ output

Source: Obtained from Loizou (2013).

psychoacoustic intelligibility experiments (LOIZOU, 2013).

2.7.2.1 STOIl measure

The short-time objective intelligibility (STOI) metric is an objective measure
based on the correlation between clean and contaminated speech, which is correlated
to the percentage of correctly understood words in a group of hearing users (TAAL
etal, 2011).

Figure 13 shows the basic structure of the STOI measure. Firstly, the clean
reference speech signal s o(¢) and the noisy-speech signal y ((t) are aligned
and transformed to the time-frequency domain, generating s o(p, k) and y_o(p, k).
Following, frequency bins are grouped into one-third octave bands, which results in
the following signals (TAAL et al., 2011):

kend(i)fl kend(i)fl
S = | D lso@R? e = | D lwoew kP, (71
k:kini(i) k:kini(i)

in which kini(¢) and kgnq(i) are the boundary values of each i-th one-third octave band.
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Figure 13 — Basic structure of STOI measure.
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The resulting vectors for clean speech 5| (p,i) and noisy-speech g (p,) are stacked
into ¢ sample vectors for temporal analysis (TAAL et al., 2011):

;

SL,p,¢=[5L(p—G+1,¢) S5 (p—-G+24) ... §L(p,i)} ) (72)
T

Yipi= | 0L -G+1i) ALp—-G+20) .. i) | - (73)

Next, vector y_,, ; is normalized and clipped, resulting in'y ,, ;. The intermediate
intelligibility measure w is defined as the sample correlation coefficient between the
resulting clean speech and the noisy-speech signal, denoted as wn (TAAL et al., 2011):

n _ (SLpi—n {SLpi DTV pi — (VL))
L HsL,p,i —H {SL,p,i} Hz HyL,p,i —H {VL,p,i}Hz 7

(74)

in which p {-} refers to the sample average. Then, the input STOl is calculated by the
average of all intermediate intelligibility bands, given by (TAAL et al., 2011):

P-171-1
STOIM = - 3" Y b (75)
L~7.p Lpi-
p 1

Finally, to compute the output STOI, the same procedure is applied to z| (¢). The
same process is performed for the right side. As stated in Taal et al. (2011), and Loizou
(2013), the STOI shows better correlation with intelligibility tests than any other objective
model.
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2.8 STATISTICAL ANALYSIS

Box-plots (see Figure 14) are widely used graphs that represent data variation
through the three quartiles: Q; (25th percentile), Q, (50th percentile, or median), and Q3
(75th percentile), which represent a probability density function, in which the difference
(Qz — Qq) is known as the Inter-Quartile Range (IQR). The lower (Q; — 1.5 - IQR) and
upper (Qs + 1.5 - IQR) outliers are also shown, which contain 99% of data (MCGILL;
TUKEY; LARSEN, 1978). In addition, the box-plot can be extended to analyze two
variables, such as in Chiea, Costa, and Barrault (2019).

In order to assess statistical significance within a sample space, a set of
hypothesis tests is defined in the flowchart presented in Figure 15. Firstly, data normality
is verified on the residuals of the sample space by using the Shapiro Wilk test (KOZAK;
PIEPHO, 2018). If true, the data sphericity'3 is assessed through the Mauchly test
(GUBERT, 2019). If true, the repeated-measures Analysis-of-Variance (ANOVA) is
applied. If data sphericity is not achieved, the sphericity parameter ¢ is computed.

After that, the repeated-measures ANOVA with Huynh-Feldt correction (if ¢ <
0.75), or with Greenhouse-Geisser correction (otherwise) are applied. Finally, in order
to find the groups with significant statistical difference, the Bonferroni test with multiple
comparisons is applied (GUBERT, 2019). In case of rejection of the normal hypothesis
on the Shapiro-Wilk test, the box-cox transformation is applied (OSBORNE, 2010). After
that, the Friedman test is employed, followed by the Dunn-Bonferroni test with multiple
comparisons (ELLIOTT; WOODWARD, 2007).

13 A high data sphericity indicates the same correlation coefficients within a population (GUBERT, 2019).
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Figure 14 — Box-plot diagram (upper side) which represent the quartiles Q1, Qs, IQR,
and the lower (Q; — 1.5 - IQR) and upper (Q3 + 1.5 - IQR) outliers of a
gaussian probability density function.

IQR

Q1 Q3
Q1 - 1.5*IQR Q3 + 1.5*IQR

od =

Median

—-40 —:'-30 —'20 —:'I.o 0'0 1la 2'0 3|0 40
-2.6980 —— -0.67450 — 0.67450 —— 2.6980

Y 0.301

o
N
(&

©
[N)
o

0.15 1

0.10

Probability Den

0.051

0.00 -
—40

Source: Obtained from Galarnyk (2018).



Chapter 2. Theoretical fundamentals

Figure 15 — Flowchart of statistical analysis for several sampling spaces.
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3 ROBUST BMVDR BEAMFORMER

This chapter presents a new robust binaural beamformer against steering vector
uncertainties. It is organized as follows: firstly, we present a general block diagram
containing the methods used for its implementation; then, the mathematical formulation
for the estimation of the parameters required for the BMVDR beamformer is presented.
In sequence, the performance degradation of the beamformer under estimation errors of
its parameters is discussed, in order to justify the need for robust formulations. Following,
the worst-case optimization method is described, due to its simplicity of implementation.
Finally, a mathematical derivation of the required robustness parameters for the binaural
hearing aid application is presented.

3.1 GENERAL BLOCK DIAGRAM

Figure 16 shows the general block diagram for the robust BMVDR beamformer.
The noisy-speech signals are acquired by the microphone array and samples are
shared by both gadgets through a transceiver and a wireless link, configuring a binaural
setup which has access to the noisy-speech signal vector y(t). The input signals are
converted to the frequency-domain through the short-time Fourier transform (STFT),
generating y(p, k) as explained in Chapter 2.

The processing steps of this binaural beamformer are explained as follows:
firstly, a Voice Activity Detector (VAD) is applied to the acquired signals (usually in the
reference microphone), resulting in ‘0’ for noise-only frames, and ‘1’ for noisy-speech or
speech-only frames. In this way, the VAD output allows computation of SOS of speech
and noise as follows: for VAD = 0, the coherence matrix estimation is computed for
noise-only frames, resulting in i)vv(p, k); and for VAD = 1, the noisy-speech coherence
matrix ®yy(p, k) is estimated. Left and right beamformers require both ®yy(p, k) and
®ss(p, k), in which the latter may be computed by the subtraction ®yy(p, k) — Sy (p, k).

The estimated coherence matrices are employed for designing filters wy (p, k)
and wg(p, k) in RBF_and RBFR blocks, respectively. Then, the noisy-speech signals
y(p, k) are filtered by w| (p, k) and wg(p, k), resulting in a single signal for each side
2 (p, k) and zr(p, k). Finally, the output signals in the time-domain are reconstructed
through the Weighted OverLap-Add (WOLA) structure and, after transformed back to
the continuous domain by the D/A block, drive the left and right loudspeakers as z| (¢)
and zR(t) signals, respectively.



Figure 16 — General block diagram.
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3.2 SHORT-TIME FOURIER TRANSFORM (STFT)

The noisy-speech signals in the continuous time domain y,,,(¢) are discretized by
an analog-to-digital (A/D) block, configured with a sampling frequency fs, generating
signals y,,(7), in which 7 = ft.

As explained in Section 2.2.2, speech signals can be considered stationary in
frames of 10-30ms. In Figure 17, the STFT technique is described, which is classically
formed by a windowing process followed by the Discrete Fourier Transform (DFT)
computed for each frame (PROAKIS; MANOLAKIS, 1996; LOIZOU, 2013). The most
applied window functions, denoted here as ¢ (7) are: Triangular, Rectangular, Bartlett,
Hamming, and Hanning (PROAKIS; MANOLAKIS, 1996; LOIZOU, 2013). A sliding
frame of G samples was applied (CROCHIERE, 1980). In this way, the DFT of the
windowed corrupted signal at each frame p and frequency bin k is calculated as follows:

Z-1
Y k) = 3 ym(C+ pQ)p(Q)e I E (76)
¢=0

in which ( is the discrete-time index in the STFT, and Z is the frame length.

3.3 PARAMETER ESTIMATION FOR THE BMVDR BEAMFORMER

The BMVDR beamformer described in (40) depends on two parameters: the
noise coherence matrix and the steering vector associated to the speech source. The
estimation procedure for these parameters is performed according to the general block
diagram presented in Figure 16. This section presents some general assumptions
about the estimation procedure, a brief introduction to VAD algorithms, and methods
for estimation of the coherence matrices and the steering vector.

3.3.1 General considerations

With regard to estimation errors, some considerations must be taken into account
to estimate the coherence matrices of the BMVDR beamformer:

* (C1): it is assumed that the output of the DFT is comprised of independent
Gaussian processes, resulting in inter-frame and inter-frequency independence
(GANNOT; VINCENT, et al., 2017).

* (C2): noise is assumed stationary and independent of speech (MARKOVICH;
GANNOT; COHEN, 2009).

* (C3): the performance of the VAD strongly depends of the input SINR (DOCLO;
SPRIET, et al., 2007).
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Figure 17 — STFT of the noisy-speech signals.
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3.3.2 Voice activity detection (VAD algorithms)

The voice activity detector is an important part of many hearing aids. They permit
to distinguish between noise-only and noisy-speech frames. These methods were early
based on Linear Predictive Coding (LPC), zero-crossing rate, and cepstral coefficients
(CHANG; KIM; MITRA, 2006). More recently, some statistical models were exploited,
such as the Likelihood Ratio Test (LRT) as in Ramirez et al. (2005), and Yu and Hansen
(2010), or hidden Markov models. In the BMVDR beamformer, the VAD allows to detect
the silence frames (also interpreted as noise-only frames), which allows to obtain noise
statistical information.

In addition, other approaches such as the Independent Component Analysis
(ICA) are found in the literature. However, the ICA method has drawbacks with dynamic
moving sources (AS’AD; BOUCHARD; KAMKAR-PARSI, 2019b). An advantage of
the VAD method is that low temporal-spectral resolution is required. However, all the
mentioned methods have poor performance for low input SINR.

Figure 18 shows some examples for the VAD method proposed by Sohn, Kim,
and Sung (1999) for iSIR = {20 dB, — 10 dB}, considering iISNR — . Note that the
output VAD value is highly dependent on the input SINR as stated in Doclo and Moonen
(2007). As the input SINR decreases, the VAD detects more noise-only frames and
less noisy-speech frames. In fact, the new detected noisy-only frames contain speech,
which generate errors on the estimation of the noise coherence matrix. In addition, the
missing noisy-speech frames increase the estimation errors of the speech coherence
matrix; hence, the steering vector estimation is also compromised.

3.3.3 Coherence matrix estimation

As explained above, ®yy(p, k), ®w(p, k), and ®gs(p, k) are unknown, and must
be estimated. In hearing aid applications, coherence matrices may be estimated with
help of a VAD (SOHN; KIM; SUNG, 1999). In this section, we explain offline and
online methods to estimate the coherence matrices of noisy-speech, noise, and speech
signals, defined previously in Section 2.5.

3.3.3.1 Offline estimation

In general, offline estimation procedures, e.g. batch techniques, consider sample
average methods for coherence matrix estimation. The application of batch techniques
assume that coherence matrices are time-invariant in a group of frames. As a
consequence, the beamformer filters are assumed as time-invariant along these
frames. This technique is commonly used for assessment of noise reduction methods
(MARQUARDT, 2015).

1

This consideration means that background noise is neglected.
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Figure 18 — Examples for the Sohn, Kim, and Sung (1999) VAD method. Contaminated
speech signal in blue color and VAD flag in red color, with input SIRs: a)
20dB; and b) —10dB.
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In hearing aid applications, the noise coherence matrix can be estimated from
the silence frames detected by the VAD, i.e., when VAD(p) is equal to ‘0’ (DOCLO;
GANNOT, et al., 2009). For this purpose, it is defined the set P, containing noise-only
frames. According to Cauchi et al. (2015), a classical estimation method is the sample
coherence matrix <i>w(k), defined as (MARQUARDT, 2015):

¢)VV Z y p7 D, - Z V p7 D, ) (77)

pEPV pEP\/

in which P, is the cardinality of P,. On the other hand, the noisy-speech coherence
matrix is estimated during the occurrence of noisy-speech, i.e. when VAD(p) is equal to
1" (DOCLO; GANNOQT, et al., 2009). These frames are grouped on the set R, whose
cardinality is ]5y. The whole set of frames is given by P = R, U By. In the same way as
(77), the sample noisy-speech coherence matrix éyy(k) is computed as:

By (k Z y(, k)Y (b, k), (78)
pePy

= = 3 (s k) +v(p. ) (M. )+ V1)) (79)
pEPy

As explained in Section 2.5, by considering that speech and overall noise signals
are independent random variables, (79) approximates to (MARQUARDT, 2015):

Byy(h) = = 3 s ks ) + = 3 vl v B): (80)

Y pep, Y pep,

and the sample speech coherence matrix ®ss(k) is obtained through the covariance
subtraction between (80) and (77) as (MARQUARDT, 2015):

(k) = Byy(k) ~ Bw() ~ = 3 sl B)sH ). (81)
Y pep,

3.3.3.2 Online estimation

For an online implementation, these matrices are estimated adaptively. The
noisy-speech coherence matrix is estimated as (MARIN-HURTADO; ANDERSON,
2012):

Byy(p, k) = iy @yy(p — 1, k) + (1 — 1)y (p, k)Y (p. k) , (82)

in which 7y is the forgetting factor related to the noisy-speech coherence matrix
estimation. During unvoiced periods (VAD inactive) the coherence matrix of noise can
be estimated as (MARIN-HURTADO; ANDERSON, 2012):

Syy(p, k) = w@w(p — 1, k) + (1 — )y (p k)Y (p. k) (83)
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in which 7y is the forgetting factor related to the noise coherence matrix estimation. For
voiced periods (VAD active), the estimation is obtained as follows:

Dy (p, k) = Pwy(p — 1,k), (84)

and the speech coherence matrix may be recursively estimated as (MARIN-HURTADO;
ANDERSON, 2012; MARQUARDT; HOHMANN; DOCLO, 2015; CARMO; COSTA,
2018):

‘i’ss(p» k‘) = Us‘i’ss(p -1, k?) + (1 - nS)((i)YY(pa k) - ‘i’vv(p, k’)) ) (85)

in which s is the forgetting factor related to the speech coherence matrix estimation.

3.3.4 Steering vector estimation

In the previous section, estimations for the coherence matrices were described.
These estimations may also be applied for estimation of the steering vectors a| (k) and
aR(k), which make part of the linear constraints of the BMVDR beamformer. In general,
any steering vector based on the relative transfer function ay(k) can be estimated
through the minimum distortion-based RTF estimation method (GANNOT; VINCENT,
et al., 2017), given by:

[%(k) - ‘i’VV(/f)} do

- - ; (86)
qg [‘I’yy(k?) - ‘I)vv(k)} Yo

ag(k) =

in which [®yy (k) — ®yy (k)] represents an estimate of the speech coherence matrix
dss(k), and the quiescent vector qo selects the reference microphone (TASESKA;
HABETS, 2015). For binaural hearing aids, the minimum distortion-based RTF method
considers the quiescent vectors q, and qg. In this way, the resultant RTF-SVs a| (k)
and ag(k) are computed as:

2 _ éss(k)QL

Pss(k)AR
p) = 2 , __Pss(MAR 87
L) = Thestka &7

ag(k) = — ,
ng’ss(k)CIR

whose 15t and (M + 1)th elements, respectively, are unitary. In fact, the estimated
RTF-SVs in (87) have the same vector form as obtained in (36) and (37), resulting in:

. G (k) aro(k) arar—1(k) 17
a (k) = [ Lo 00 ae® T avel®) } ’ (88)
A . a , (k) Q B _1(]{5) a 5 "—1(k) T
aR(k) = | Geogy o gyt 1o | (89)

At this point, the obtained estimations for the noise coherence matrix &y (k) and
the speech steering vectors aj (k) and ag(k) are enough to formulate the Estimated
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Binaural Minimum Variance Distortionless Response (E-BMVDR) beamformer (omitting
p and k indexes) as:

. Ha H 4 . WEéL =1
min w|'®yww|_ + Wr®ywWg subject to X (90)
WL, W wHag =1
RYR

By stacking (90) as done in (38), we denote &)VV and A instead d,y and A,
respectively, so the stacked form of the E-BMVDR beamformer is given by:

mvivn wHtfww subject to wHA = 19411 (91)

As stated in Chen (2013), and Vorobyov, Gershman, and Luo (2003), the
classical MVDR beamformer is highly sensitive to uncertainties on its estimated
parameters: the steering vectors and the noise coherence matrix.

The quality of the estimation is mainly determined by the accuracy of the applied
VAD and the input SINR (GANNOT; VINCENT, et al., 2017). In this way, it is expected
that (independently of the VAD performance), especially for low input SINRs, there
will be errors in the estimated parameters. In addition, estimation errors may affect
the performance of the BMVDR beamformer (AS’AD; BOUCHARD; KAMKAR-PARSI,
2019b).

3.4 ROBUSTNESS AGAINST STEERING VECTOR UNCERTAINTIES

The estimation of the steering vector has several sources of error, such
as: microphone gain and phase mismatches, imperfect array calibration, coupling
between microphones, shape distortion, direction-of-arrival mismatch, movements,
broadband interferences, incoherent signals, etc (CHEN; SER; YU, 2007; CHEN, 2013;
VOROBYOV, 2013; GANNOT; VINCENT, et al., 2017). This work considers that any
source of error mentioned will produce inaccurate RTFs, which degrade the response
on the desired direction.

A common approach applied for dealing with this problem is the addition of
extra linear constraints aiming to ensure adequate amplification levels into a small
region around the desired position (ZHENG; GOUBRAN; EL-TANANY, 2004). However,
the versatility of this multi-point constrained beamformer is limited by the number
of microphones of the array, which also limits the capability to cancel interferences
(LORENZ; BOYD, 2005; VOROBYOV, 2013).

There are several approaches for designing robust beamformers in the literature.
In Chang and Yeh (1992), the eigenspace-based beamformer was presented, which
is a robust scheme that projects a presumed desired subspace from the noisy-speech
coherence matrix. However, this technique is only useful for high SINRs and sufficiently
large data lengths (YU; SER, et al., 2009). In Cox, Zeskind, and Owen (1987), the
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diagonal loading method was introduced. It was based on the regularization of the cost
function, however, its main limitation is the design of an appropriate diagonal loading
factor (GANNOT; VINCENT, et al., 2017).

Another approach for robust beamforming is the use of probabilistic constraints,
as in Vorobyov (2013), in which the error mismatch is modeled as a random variable.
Other possibility is to impose multiple quadratic constraints into the MVDR beamforming,
as in Chen and Vaidyanathan (2007).

The worst-case optimization method is a robust approach based on the
minimization of the output variance, which imposes the magnitude array response
to exceed unity in an uncertainty set (JIANG et al., 2014). Under this approach, this
uncertainty set can be geometrically modeled and then solved as a convex optimization
problem (GANNOT; VINCENT, et al., 2017). In Vorobyov, Gershman, and Luo (2003),
the maximal Euclidian norm of the error (representing a hypersphere volume) was
applied; in Lorenz and Boyd (2005), the uncertainty was bounded by a convex region
modeled as an ellipsoid volume, requiring a priori information about its size and center;
and in Jiang et al. (2014), the error uncertainty region was modeled as a rhombus (see
Figure 19).

These approaches are widely used in wireless communications, speech
processing, radio astronomy, biomedicine and other fields (VOROBYOV, 2013).
However, until this moment, these approaches were not used for binaural hearing
aid applications.

In hearing aid applications, Xiao et al. (2017), and Pu et al. (2017) presented
robust MVDR beamformers which consider only errors in DOA and apply a previously
recorded ATF databank. This formulation uses an inequality constraint that penalizes
mismatches by using an unknown bound value. The use of inequality instead of equality
constraints allows to relax the optimization problem. However, the assumption of known
ATFs makes it impractical for real applications.

Despite the large number of techniques for obtaining robust beamformers,
binaural hearing aid applications still constitute an unexplored research area and an
interesting field of study.

3.4.1 Worst-case optimization modeled as a hypersphere

The worst-case performance optimization method, presented in Vorobyov,
Gershman, and Luo (2003), is a robust extension of the MVDR beamformer, which
models the error vector as pertaining to a hyperspherical region in a space of interest
defined by its Euclidian norm. The original problem is formulated as a non-convex
optimization with infinite nonlinear constraints, which is converted into a convex
optimization problem solved by interior point methods. For simplicity, this subsection
ignores the frame and frequency indexes.
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Figure 19 — Three geometrical descriptions for the uncertainty set are presented: (a)
spherical; (b) ellipsoid; (c) rhombus. Consider a as the presumed steering
vector, e as the error vector that defines the characteristic of the uncertainty
set, and c as the resultant actual steering vector.
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In general, when the steering vector is not exact, the presumed steering vector
a differs from the actual steering vector ¢, being?:

c—atea, (92)

in which e represents the error vector produced by the distortion of the actual steering
vector. Vorobyov, Gershman, and Luo (2003) pointed out the importance to have a
priori knowledge of the boundary limits on the Euclidian norm ||e||, for designing robust
techniques. In this way, the actual steering vector ¢ belongs to a set of uncertainties %
defined as:

() ={cle=a+e,fef, <¢}, (93)

in which ¢ is the upper bound of the Euclidian norm, given by ||e||; = VeHe = |[c—a||; <
&. From (98), note that the error norm is modeled in an isometric way, graphically
represented through an hypersphere. The worst-case optimization method aims to
preserve all possible steering vectors ¢ contained on the set ¥ by imposing non-convex
constraints in the form |wHc| > 1. These constraints guarantee at least a unitary gain
for any ¢ that belongs to the set . In this way, the classical MVDR beamforming in (40)
is re-formulated (for a single filter w characterizing a general beamforming problem) as
(VOROBYOQV; GERSHMAN; LUO, 2003):

min wHa,,w subject to jwHe| > 1, ve € €(¢), (94)

in which i)w is the estimation of the noise coherence matrix. However, this non-convex

constraint has semi-infinite possibilities into the set ¥". To overcome such problem, the
2

For hearing aid applications, a is the steering vector related to the speech signal, obtained by some
estimation procedure.
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first step is to convert the semi-infinite constraint |ch\ > 1 into a single constraint,
obtaining the vector ¢ in the set ¢ that minimizes the value of |wHe| (VOROBYOV;
GERSHMAN; LUQO, 2003). This single constraint is given by:

subject to ( min |ch|> >1, (95)
ce?(§)
whose solution satisfies the non-convex problem. Using (92) in (95), results in:
subject to ( min |wHé+wHe|> >1, (96)
ecé(§)

in which the set & is defined as £(¢) £ {e| |le||, < ¢} (VOROBYOV; GERSHMAN; LUO,
2003).
3.4.1.1 Triangle and reverse triangle inequalities

This section defines the lower and upper bounds for the term |wHe| = |wHa +
wHe| in order to solve the worst-case optimization in (94). Firstly, the upper bound of
(96) is given by the triangle inequality (MEYER, 2000):

wHa + wHe| < |wHa| + |wHe|. (97)

In addition, the lower bound can be obtained by proving the reverse triangle
inequality. The term |wHa| can be expressed as:

wHa| = jwHa + wHe + (—w'le)|. (98)
Applying the triangle inequality of (97) in (98):
wHa + whe + (—wHe)| < |wHa + wHe| + |(—wHe)]. (99)
Combining (98) and (99):
wHa| < (wHa +wHe| + |(—we)] . (100)
Rearranging (100) leads to:
iwHa) — jwhe| < (wHa + whe|. (101)
The same procedure is performed for [wHe|:
iwHe| = jwHa + wHe + (—wHa)| < jwHa + wHe| + |(—wHa)], (102)
wHe| — (wHa| < jwHa + whe|. (103)

Both inequalities (101) and (103) demonstrate the reverse triangle inequality:

wHa| — (wHe|| < jwHa + wHe|. (104)
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In this way, the upper and lower bounds for [wa-+wHe| are given by the triangle
and reverse triangle inequalities as follows:

wHa| — |wHe|| < wHa + wHe| < |wHa| + jwhe|. (105)
—_— ——
wHe|

As explained before, the worst-case optimization guarantees the fulfillment of the
requirements of |wHc| by satisfying its lower bound ‘|wHé\ — |wHe|| > 1. Using (105)
in (96) yields:

min )yw al — |w e|‘ >1. (1086)
ecé (¢

Equation (106) gives rise to two situations:

min (\wHe| — |wHé|) >1 OR min (\wHé| — \wHe|) >1. (107)
ecs(€) ecs'(§)

Analyzing the first situation, it is possible to show that:

< min \w e]) — wHa| > 1. (108)

ecé(§)

Clearly, since the error vector is part of the set &(¢), then:

min \w e[=0=|el,=0. (109)
665

Using (109) in (108) leads to:
wHa| < —1. (110)

Equation (110) does not contribute for a solution of (106). Analyzing the second
situation in (107), it is possible to show that:

iwHa| — max |wHe| >1; (111)
ecé(§)

and, proceeding in the same way as in the first situation, we get:
min ]w a+wHe| = jwHa| — max |w el. (112)
ecé(§) ecs (¢
3.4.1.2 Holder and Cauchy-Schwarz inequalities

In a general y-norm, the Holder’s inequality states that ||wHe||7 < [lw, llell, for
= + 5 , in which a, 8, and v € [0, +00]. A particular case known as Cauchy-Schwarz
mequallty is obtained for « = § =2 and v = 1 (ALLARD, 2009):

IwHe||; = |wHe| < [jwl|; [le]l; - (113)
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Figure 20 — The hypersphere uncertainty around the Euclidean error norm |je||, < ¢
proposed by Vorobyov, Gershman, and Luo (2003): a) The actual steering
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Source: Author.

By simplicity, along the remaining of this work, || - || refers to the Euclidean norm.
In this way, according to the Cauchy-Schwarz inequality in (113), and considering that

le| < &, the upper bound of |wHe| is given by ¢ |w|. From these facts, and (113) in the
right part of (112), results in:

min <|wHé| - |wHe|) > 1= |wHal - ¢|w| > 1. (114)
ecs(§)

This single constraint represents the worst-case optimization for |ch| > 1,
which is preserved by the robust beamformer. The geometric interpretation for the
worst-case optimization is shown in Figure 20. Figure 20a shows a situation in which ¢
is a general representation of the summation of a and e. Figure 20b shows the worst-
case, which occurs when ||¢|| is minimal. In summary, the preservation of the whole
uncertainty set can be obtained by preserving only the worst-case, as exemplified in
Figure 20. According to Vorobyov, Gershman, and Luo (2003), the semi-infinite non-

convex constrained problem in (94) is converted into the following single non-convex
constrained problem:

mvivn wHd,,w subject to |wHa| > 1+ ¢|w]. (115)
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The constraint in (115) is still non-convex due to the absolute value ]wHé|. Note
that the value of wa can be a complex or real-negative scalar. For omitting the absolute
value operator, it is necessary to guarantee that wHa is a real-positive scalar, which
can not be directly considered from (115) (VOROBYOV; GERSHMAN; LUO, 2003).

3.4.1.3 Phase change of the solution vector

Firstly, denote wy as a phase change of the vector w. Considering that a is a
fixed vector, the phase is modified to ensure that wOHé is a real-positive number, i.e. by
imposing the constraints Re{w'a} > 0 and Im{w}'a} = 0, in which Re{-} and Im{-}
denote the real and imaginary part of a complex number, respectively (VOROBYQOV;
GERSHMAN; LUO, 2003; VOROBYQOV; RONG; GERSHMAN, 2005).

Note that this phase change does not affect the cost function, since wOH DWWy =
wHo, w. In this way, (115) turns to (VOROBYOV; GERSHMAN; LUO, 2003):

whla > 1+ ¢|lw||
min whd,,wy subject to Re{wHa} >0 : (116)
0

Im{wla} = 0

Considering the third constraint in (116), wOHé is a real number. As a result,
following the first constraint w'(;'é is naturally greater than 1, and the second constraint
is not necessary (VOROBYOV; GERSHMAN; LUQO, 2003). In this way, the minimization
problem results in:

whia > 1+ ¢|wy|

(117)
Im{wla} = 0

min wh!®, W subject to {
0

The minimization problem in (117) is a convex formulation, named as Worst-
Case Performance Optimization of the Minimum Variance Distortionless Response
(WCO-MVDR), in which a feasible solution in practical terms can be found.

3.4.1.4 Robust SOCP beamforming

The WCO-MVDR beamformer presented in (117) may be solved by turning it
into a Second-Order Cone Programming (SOCP) problem (VOROBYOV; GERSHMAN;
LUO, 2003). For this, it is necessary to convert the quadratic function cost wHo,w
into a linear one3. In this sense, the coherence matrix can be decomposed through the
Cholesky factorization, i.e. ®yy = 7, converting the original cost function into || Tw]|2
(VOROBYOV; GERSHMAN; LUO, 2003). According to Vorobyov, Gershman, and Luo
(2003), the minimization of (115) is converted into another minimization problem that

3 By simplicity, subscript {-}o in (117) was omitted.
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introduces a scalar non-negative variable ¢ and imposes a bound into the quadratic
norm, i.e., |[Tw|| < ¢ in order to minimize the noise output power, without loss of
generality. As a result:

ITw| <o
min ¢ subjectto ¢ ¢ |w| <wHa—1. (118)
oW
Im{wHal =0
The minimization problem in (118) is a convex SOCP, which can be efficiently

solved through interior point methods, whose computational cost is similar to the
Capon’s solution of the MVDR beamformer (VOROBYOV; GERSHMAN; LUO, 2003).

3.4.2 Application to binaural hearing aids

The formulation presented in Vorobyov, Gershman, and Luo (2003) can be
extended for the left and right sides of a binaural hearing aids aiming to obtain the
robust beamformers w| and wg. As stated in Vorobyov, Gershman, and Luo (2003),
the MVDR performance decreases for low SINRs, in terms of both noise reduction and
speech distortion.

In the same way as in Section 3.4.1, consider ¢, and cr as any RTF-SV
containing their respective estimated steering vector into the form ¢, = a_ + e, and
Cr = aRp+eR, in which a, and ag, are the estimated left and right RTF-SVs, respectively.
Consider e and eR as the resultant error vectors. Assuming that the desired speech
SV is in an uncertainty region around the estimated SV, in a way that ||e| || < ¢ and
lerll < &R, inwhich ¢ and &R are boundary limits of the Euclidian norms (VOROBYOV;
GERSHMAN; LUO, 2003).

By considering the left and right hearing aids, the worst-case optimization can
be expressed as:
wile | > 1, Ve € 4.(&)

wid,,w + wHa,,wg subject to vl i} ;
IWReR| > 1, Ve € GR(ER)

min
WL,WRr

in which the uncertainty sets 4| ({| ) and ¢R(¢R) are given by:

L) 2{eL=a+eL [e.| <&}, (119)
%r(éR) = {Cr = ap +eR, [lerl < ¢R}. (120)

which can be transformed into the following minimization problem:

¢

& wy | < wlag —1
&R lwgl| < wHag —1

A (121)
Im{wEéL} =0

. HA HA .
min w; ®,yW, + wrp®,wWgr subject to
Wi WL P L +~ WRPwWWR J

Im{wHag} =0
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Equation (121) is named as the Worst-Case Performance Optimization of the
Binaural Minimum Variance Distortionless Response (WCO-BMVDR) beamformer.
Similar than (118), by introducing two scalar non-negatives variables ¢| and ¢R, which
impose bounds into the quadratic norm, i.e., ||[Tw| || < ¢ and ||Twg|| < ¢R, in order to
minimize the noise output power at the left and right sides, respectively, we may rewrite
(121) as:

[Tw || < o
ITWRl < ¢R

HQ
w | <w'a —1
min ¢ + ¢R subject to SLiwill < wiay (122)

PLPR,WL,WR fR ||WRH < WHéR -1 ‘

|m{W||:|é|_} =0

Im{wHagr} =0

\

Similar to Vorobyov, Gershman, and Luo (2003), the minimization problem in
(122) can be expressed trough its real-valued stacked version, by considering the
matrices and vectors: T € RIM XM 'y ¢ RAMX1 3 ¢ RIMx1 gnd a € R 1

T [ RG{T} —|m{:i-} ] Wi = [ Re{w} ] : (123)
| Im{T} Re{T} Im{w_}

. [ Refa.} [ mi{ay}

AL = | Im{a } ] A= [—Re{éL}] ' (124)

for the left side. Similar notation is adopted for the right side to obtain wg, agr, and aR.
In this way, (122) is expressed as (VOROBYOV; GERSHMAN; LUO, 2003):

[T [ <o
[Twg|| < ¢
min ¢ + ¢R subject to LWl < WETaL ! . (125)
PL,PR,WL,WR ERIIWR| < wgar — 1
wla =0
whag = 0

Similar to Vorobyov, Gershman, and Luo (2003), Boyd and Vandenberghe (2004),
and Koutrouvelis et al. (2017), the minimization problem in (125) can be transformed
into a SOCP problem in the form:

T .
x+ril|l<olx+pi, i=1,...1
min p'x subject to { A+ will < @i+ pi ; (126)

Fx =v,
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in which I is the number of conic constraints involved in (126)4; and the remaining ones
may be linear constraints.

From (126), the cost function is given by pTX, in which the vectors p and x with
dimension R(EM+2)x1 gre defined as:

T T
ST LT
p=[100 00 | x=[eL o W Wwh] (127)
In addition, from (126), we have four conic constraints (i.e. I = 4), denoting
A; € RIMXBM+2) o ¢ pAMX1 -, c RBM+2)x1 and the scalar p; for i = 1,...,4;
F e R2x(8M+2) and p € R2*1, as follows:

A1 =1 04arx2 T 0407540 ] : (128)
Ay = _ 04n7x2 Oanrxans 1’] ; (129)
Az = _ 04n0rx2 SLlanrxans Oanrxans } : (130)
As=| Ouprxa Ounrans ERlanrxanms ] ; (131)
K‘,1:K,2:K,3:K‘,4:[04MX1} , (132)
- T ) T
o= |10 03171 ] SR [Ogm al 0]y } ) (133)
- T T
02 = I 0 1 0-8rM><1 ] o 04 = [ O-erl OIMxl a; ] ) (134)
p1:p2:0a P3=p4:—1, (135)
i oT éT oT
F = 2x1 L 4M x1 ] vr=1,0 _ (136)
T T — ) 2x1
| 021 04p/51 aE [ }

By employing A;, k;, 0;, pi, F, and v on the SeDuMi toolbox, it returns x. In this
way, the robust coefficient vectors w; and wg are obtained, in addition to the left and
right noise output powers | and pr. The minimization problem in (126) is named as
Second-Order Cone Programming version of the Worst-Case performance Optimization
of the Binaural Minimum Variance Distortionless Response (SOCP-WCO-BMVDR)
beamformer. However, it is still required the design of the uncertainty parameters ¢
and &R for each frequency bin k. As explained before, inadequate choices may lead to
a performance decrease.

4 A conic constraint has the square-norm form presented in (126) (BOYD; VANDENBERGHE, 2004).
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3.4.2.1 Disadvantages of the Vorobyov’s formulation

Into the context of binaural hearing aid applications, the formulation presented
in this section has two disadvantages:

* It requires the definition of two unknown parameters (for each frequency bin): £
and ¢R.

» The worst-case performance optimization does not present a physical relation
with hearing aid applications, i.e. how much amount of error norm is related to a
mismatch in the speech localization such as the azimuth angle in degrees.

3.4.2.2 Design of ¢

In this section, a physical-based approach is proposed for designing the right
boundary parameter g for the WCO-BMVDR beamformer in (121).
Equation (37) that defines the RTF-SV aR, can be alternatively defined as:

) T
aR = | arp G@R1 --- ORM-1 ARM ORM+1 --- OR2M-1 | > (137)

in which ag 5y =1, and ag g = a|_o/aR g = ITFs, in which ITFs is the Interaural Transfer
Function (ITF) related to the speech source. In addition, the RTF-SV apR is estimated
as aR by (87), whose entries are:

.
R=|GRo @R1 --- GRM—-1 ORM ORM+1 --- OGR2M—1 | > (138)

Q>

in which ag 5, = 1 (due to the normalization process), and ag o = a_o/dR o = ITFs, in
which ﬁ'l\:s is an estimation of the ITFs.

Assuming €g is any RTF-SV in the form ¢y = aR + eR, in which |leg|| < ¢g, its
entries can be defined as:

ar,0 + €R,0
ar,1 t€R1

AR V1 + €R 1/ —
R;M 1 THeRM-1 | (139)
ar,M + eR.M
AR M+1 T €R,M+1

ol
X
I

| GR2M -1 T €R2M -1 |

It is important to recognize that the Interaural Level Difference (ILD) is related
to the absolute value of the first element of cg. The ILD is a binaural cue that permits
humans to localize, separate, and track sound sources (STERN; BROWN; WANG,
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2006). Amplitude stereo panning techniques have demonstrated that ILD carries
enough information to create complex artificial auditory scenes (BLUM; VAN ROOYEN;
ENGELBRECHT, 2010).

In the present context, the ILD is defined as the quadratic absolute value of ITF
(DOCLO; GANNOT, et al., 2009; MARQUARDT; HOHMANN; DOCLO, 2015). Some
authors prefer its logarithmic version, such as Kayser et al. (2009), Marquardt, Hadad,
et al. (2015), and Hadad, Doclo, and Gannot (2016):

ILD = [ITF|?, (140)
ILDgg = 201logyq [ITF|. (141)

By employing (140), the ILD(k) associated to each steering vector in the chosen
set of uncertainties is given by:

ILD¢ = |q] cg|?. (142)

The ILD provides information about the physical azimuth of the acoustic source.
For ILD = 1, the acoustic source is supposed to be directly ahead (or behind) the
hearing aid user. ILD > 1 means the speech source is at the left side, while, ILD < 1
means the source is at the right side of the user.

Assuming the speech source is in front of the hearing aid user, small variations
of its position lead to a range of ILD around 1. In this way, we propose to use the ILD to
parameterize the uncertainty parameter. Considering Cg = aR + eg, where |eg| < ¢,
then (142) turns to:

1/2 — 2
LD = |a[er| = lalar + ol er| (143)
By using the triangle inequality stated in Meyer (2000):

~ 1/2 ~
alag| — laferl| < ILDY/* < |a] ag| + |af e - (144)

This inequality defines bounds for ILDé/Q. Assuming the error norm is smaller
than the speech steering vector norm, |q[5R| > ]q[eR|, (144) turns to:

N 1/2 a
alar| - aleq| < ILDS/* < |alag| + [a]en]. (145)

Applying the Holder’s inequality as |q[éR| < |la.ll llerll, according to Allard
(2009), (145) is expressed as:

A 1/2 2
aag| — [lac lerll < ILDY* < |afag| + [laLll llerl - (146)
Substituting ||q || = 1 in (146) leads to:

S 1/2 ~
9l ar| — |lerl| < ILDY/* < |qlag| + el - (147)
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Using [leq|| < ¢ in (147):

I 2 ~
alap| - ¢r < ILDg” < |af ag| + ¢a. (148)
Using |q] ag| = LDy~ in (148):
iDL — ¢q < ILDY2 < DY + ¢5. (149)

Equation (149) defines the uncertainty region as the set of points in space
characterized by a range of ILDs, which is a function of the estimated speech ILD
and parameter ¢R. In this sense, R can be considered as defining an azimuth range
around the estimated speech azimuth. In this way, {R can be defined as a percentage
of the estimated speech ILD:

—1/2 ~
¢r = niDy =l g (150)

in which 0 < n < mmax is a percentage of the estimated ILDé/2. Using (150) in (121)

leads to:

nlalag| [wr| < wRag — 1. (151)
Using (150) in (149):
ILDy? — yitby/” < ILDY? < ItDy/* + iDL ? (152)
(1= pIDy? < ILDY2 < (1 + )LDV, (153)
(1 —1)2ILDs < ILD¢ < (1 + 7)?ILDs . (154)

In the logarithmic scale, (154) is expressed as:

—dB —dB
ILDg~ + 201ogyo(1 — ) < ILDIB < ILDg~ + 201ogyo(1 + 1) . (155)

3.4.2.3 Design of §_

A similar procedure is performed for the left hearing aid for designing & . Equation
(36) can be alternatively defined as:

. T
aL:[dL,O aLy - GLp-1 Gy ALl - aL,2M—1} : (156)

in which a|_ o = 1, and @lj\/[ = aLo/aRr,0 = ITFs. The estimated a|_is defined as:
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in which a_ = 1 (due to the normalization process), and aﬁw = aL /iRy = ITFs.
Assuming ¢ is any RTF-SV in the form ¢, = a| + e, in which ||e_ || < ¢, its entries
can be defined as:

aoteLp
a1 +eLq

ay v +e v
_ L,iw 1teL -1 _ (158)
ap pr +eLy
aL p+1 1T €L M+1

| LM -1t eLan—1 |

The same approach used for (g can be applied. Considering ¢, = éL +eL,in
which |le || < ¢, then (142) turns to:

—1/2 _ N
ILD; /% = |akeL| = [aRaL + ageL|. (159)

By using the triangle inequality stated in Meyer (2000) and assuming that
lakaL| > [ake, |, (159) turns to:

~ —1/2 ~
lakaL| — laker| < ILD "% < afaL| + lakey |- (160)

Applying the Holder’s inequality as |q£e|_! < |lagrll lleLll, according to Allard
(2009), (160) is expressed as:

akaL| — larll lecl| < ILD; "/ < jakaL| + agll e, | - (161)
Substituting ||qr|| = 1 in (161) leads to:
akay| — llecl| < ILD;"/* < [akay| + ey - (162)
Using [le, || < & in (162):
qRay| — & < ILDg* < |aka | + ¢ . (163)

Using |qLay | = ILD; "/ in (163):

D, * — g <2 <id, 7”4+ ¢, (164)

In the same way as in (150):

——1/2 N
& =~ILDg '~ =~|qkay |, (165)
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in which 0 < v < ymax IS a percentage of the estimated ILDS_1/2. Using (165) in (121)
leads to:
Tz Hz
vlaRay| [lwp || < wi'a —1. (166)
Using (165) in (164):
ILD, "/* — /I, /* < ILog /2 < itp, V* + 4D, /2, (167)
(1—)IDg /% < ILDZ Y% < (1 + 7)ILDg /2, (168)
and then:
(14++) 1Dy < ILDY? < (1 — ) 1D (169)
(14 ) 2ILDs < ILD < (1 — )~ 2ILDs. (170)
In the logarithmic scale, (170) may be expressed as:
—dB —dB
ILD2° — 201ogy0(1 + ) < ILDIB < ILD2° — 20 1og1o(1 — 7). (171)

Finally, assuming n = v = ¢ for simplification, mismatch between (154) and (170)
rises with increasing d, but does not exceed 2% for § < 0.1. Under this assumption, and
using (151) and (166) in (121), results in:

( ~ ~
slagac | [w || < wita -1

. . slqlag| |wg| < wHag —1
min WE@WWL—FWHCI’WWR subject to acarl [WRll < Wrar
WL,WR

. . (172)
Im{w{'a } =0

klm{wHég} =0

in which 0 < § < 1. As a result, the minimization problem in (172) represents the
binaural form of the WCO-MVDR beamformer presented in Vorobyov, Gershman, and
Luo (2003). Here, it is named as WCO-BMVDR beamformer. This beamformer can be
solved through interior point methods.

3.4.3 Stacked form of the WCO-BMVDR beamformer
The stacked form of the WCO-BMVDR beamformer in (172) is defined as:

(WHEW15,1)/2 < (AW — 1y0) 10,
~H
Im{A" " W1y,1} =09,

mvivn 1;X1WH&>WW12X1 subject to {

(173)
in which:

w0 Tagll 0
W— B 9 arlloarxom Datxan R
Oonrx1 WR 0207 <2 ldgaL(loarxon
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in which §(k) is the robustness parameter, defined for each frequency bin k. Note that,
for 6(k) = 0, and constraints satisfied on the equality, (173) turns to the E-BMVDR
beamformer in (91).

3.4.4 Designing the robustness parameter

According to (150) and (165), parameters ¢g and ¢ were defined as percentages
of the estimated speech ILD. For this reason, the WCO-BMVDR beamformer proposed
in (172) requires the design of a set of K robustness parameters §(k). The optimal set is
the one that maximizes speech quality, acoustic comfort, and intelligibility. Unfortunately,
there is no theoretical solution for such problem. In this way, we propose an experimental
approach for designing the robustness parameter.

According to the literature, speech ILD estimations may be modeled as a
Gaussian or a t-student random variable (DELEFORGE; FORBES, 2016). Expectation-
Maximization (EM) procedures can be applied for obtaining estimations of its variance
(DELEFORGE; FORBES, 2016). According to Nix and Hohmann (2006), the speech
ILD Probability Density Function (PDF) is influenced by many factors, such as: input
SINR, azimuth angle, elevation angle, frequency bin, and noise characteristics. ILD
estimators can be found in Raspaud, Viste, and Evangelista (2010), May, Van De Par,
and Kohlrausch (2011), and Woodruff and Wang (2012).

In order to obtain a set of robustness parameters §(k), a set of six phonetically
balanced speech sentences (see Annex A) was selected from IEEE (1969), and Hu
and Loizou (2007). These sentences were spoken by three male and three female
speakers.

The following experimental setup for computational simulations was considered:
a microphone array with M = 3 microphones at each ear, a single-point speech source
located in front of the user, at 0°, a single-point interference ICRA-1 noise at 45° and
iSIRg = {20dB, 15 dB, 10 dB, 5 dB}°-8. Figure 21 exemplifies the estimated speech
ILD histograms obtained from simulation experiments for frequency bins associated to
1 kHz, 2 kHz, and 4 kHz. It can be seen that mean and (at some extent) variance vary
with frequency. It can also be noted that variances increase with the decrease of iSIRR,
corroborating observations in Nix and Hohmann (2006).

Assuming a conservative approach with relation to speech distortion, the
uncertainty set for the WCO-BMVDR beamformer is designed from speech ILD
estimates. In this way, a conservative dcon (k) can be obtained by equating 201og;o(1 +
dcon(k)) = 3o p(k), in which o) p(k) is an estimation of the standard deviation of the

5 Input SIR is related to the ear closest to the interference noise (right ear).
6 |n addition, iISNRg — oo was considered.
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ILDiS“ probability density function”, for the bin &, resulting in:

36y p(k)

Scon(k) =10~ 5% — 1. (175)

Table 1 shows dcon values obtained from the histograms presented in Figure 21,

for frequencies 1 kHz, 2 kHz, and 4 kHz. Four iSIRR levels were considered: 20 dB, 15
dB, 10 dB, and 5 dB.

Figure 21 — Histogram for EBSB obtained from 6 speech signals contaminated with
ICRA-1 noise with iSIR: (a) 20 dB (blue); (b) 15 dB (red); (c) 10 dB (green);
and (d) 5 dB (magenta). Three frequencies were considered: 1 kHz (dashed
lines); 2 kHz (solid lines); and 4 kHz (dotted lines).

12

10

T

Ocurrences

Source: Author.

7 Assuming Gaussianity, 3o1_p includes approximately 97% of all samples.
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Table 1 — Conservative design of §(k) according to (175) for frequencies 1 kHz, 2 kHz,
and 4 kHz; with iSIRR: 20 dB, 15 dB, 10 dB, and 5 dB.

Frequency iSIRR 30ILD dcon
1 kHz 20 dB 0.03 dB 0.004
15 dB 0.09 dB 0.010
10 dB 0.22dB 0.026
5dB 0.66 dB 0.078
2 kHz 20 dB 0.02 dB 0.003
15 dB 0.04 dB 0.005
10 dB 0.10dB 0.011
5dB 0.20 dB 0.024
4 kHz 20 dB 0.03 dB 0.004
15 dB 0.06 dB 0.007
10 dB 0.12dB 0.014
5dB 0.24 dB 0.028

Source: Author.

Figure 22 provides a global view on d¢on for all frequency bins, which suggests
that accurate results would be obtained only for iISIRg > 10 dB, since for lower iSIR
some (k) exceed a priori assumptions. In addition, a conservative parameter approach
for avoiding attenuation of the desired speech signal may degrade the noise reduction
performance, since these features constitute a known trade-off, due to the high speech
ILD variability along the frequency domain. In this way, we propose the use of a
restrained robust parameter dres defined as:

(sres = a X median {5C°n(k)|0§k:§[(—1} ; (176)

in which « is the restraining factor; and median{-} is the median of the set comprised of
the conservative parameters dcon (k) for all analyzed bins 0 < & < K — 1. The value of a
may be empirically set during the fitting process of the hearing aid (TAYLOR; MUELLER,
2011), as well as adjusted by machine learning (LAAR; VRIES, 2016) or by ear-EEG
psychoacoustic characterization techniques (CHRISTENSEN et al., 2018).

Equation (176) is an approximation based on the fact that ILD variance shows
small dependence on frequency for iISIRgR > 10 dB (see Figure 22). Such heuristic
approach permits not only to obtain a desired trade-off between speech quality and
noise reduction but also to obtain a unique parameter to be applied to all bins.
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Figure 22 — Conservative design of §, obtained from 6 speech signals contaminated
with ICRA-1 noise, as a function of the frequency bin, and iSIRR: (a) 20 dB
(blue); (b) 15 dB (red); (c) 10 dB (green); and (d) 5 dB (magenta).
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Source: Author.

3.5 CONCLUSION

In this chapter, we presented some methods to estimate the parameters
that govern the classical BMVDR beamformer. This implementation is sensitive to
performance degradation due to estimation errors. In order to compensate this
degradation, the robust MVDR beamformer presented in Vorobyov, Gershman, and Luo
(2003) was adequate to the binaural hearing aids context. As a result, it is necessary to
estimate two parameters (for each frequency bin) for controlling the robustness of the
WCO-BMVDR beamformer.

In this way, a methodology based on the interaural-level-difference physical
measure was proposed in order to calculate these parameters. For this purpose, two
heuristic methods were proposed: the conservative and the restrained approaches.
The conservative approach aims to design a robust parameter for each frequency bin.
The second approach aims to define a single robust parameter for all frequency bins.
This approach reduces memory requirements, and is of special interest for embedded
systems with limited resources, such as in hearing aid applications.
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4 ROBUST BMVDR BEAMFORMER WITH EQUALITY CONSTRAINTS

In the previous chapter, the worst-case performance optimization method was
applied to binaural hearing aids, resulting in the WCO-BMVDR beamformer in (172).
Despite the efficiency in solving the WCO-BMVDR beamformer through interior point
methods, its main drawback is the lack of parametric analysis in order to optimize its
objective performance measures explained in Section 2.7.1, e.g. the output BSINR.

In this way, the objective of this chapter is to find a closed solution to the WCO-
BMVDR beamformer by solving an equivalent formulation with equality constraints.
In addition, we consider the particular case for a single-point speech and a single-
point noise sources in binaural hearing aid applications. Finally, the full algorithm
for its implementation is presented. Along this chapter, we use the same framework,
definitions and variables presented in Chapter 3.

41 THE WCO-MVDR BEAMFORMER WITH EQUALITY CONSTRAINTS

In Vorobyov, Gershman, and Luo (2003) it was proved that the minimization
problem in (117) is optimally solved by considering the first constraint as an equality
rather than an inequality. The proof is performed by contradiction.

If the minimization problem can not be solved in equality, it must satisfy the
constraint wHa > 1 + ¢||w]|, expressed as wHa — ¢[|w| = & > 1. In this way, it is
obtained the following minimization problem (VOROBYOV; GERSHMAN; LUO, 2003):

wHa —¢|w| = k

min wHd, w subject to . (177)
w Im{wHa} =0

Now, we divide the first constraint by &, obtaining:

y
R g =1

(178)
Im{wHal =0

min wha,,w subject to {
Replacing w/k by wy, and after some manipulations, we obtain the following
minimization problem (VOROBYOV; GERSHMAN; LUO, 2003):

wha — ¢w; || = 1

min k2 <W1H<i>ww1) subject to { (179)
Wy

Im{wha} =0

Note that the cost function of the new minimization problem is k;Q(w'l"{I?le).
Assuming w1H<i>Ww1 is not zero, the condition k£ > 1 contradicts the fact that the cost
function will be minimized.

In conclusion, the proof of contradiction demonstrates that the inequality
constraint wHa > 1 + ¢||w|| has infinite constraint hyperplanes, in which the constraint
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hyperplane wHa = 1 + ¢||w|| is the only one that guarantees the minimization of the

cost function (VOROBYOV; GERSHMAN; LUO, 2003). Using the proof of contradiction,
the minimization problem is now given by:
. Has . WHé_fHWH =1
min w''®,,w subject to ) (180)
w Im{wHa} =0
Note that, due to the fact that the first equality constraint in (180) also satisfies
the constraint Im{w"a} = 0, this last constraint becomes unnecessary (VOROBYOV;
GERSHMAN; LUO, 2003). In this way, the minimization problem yields:

min wHd,,w subject to wHa — ¢||w|| = 1. (181)

The resulting minimization problem in (181) was solved in Zarifi et al. (2004),
Zarifi et al. (2005), and Gershman, Luo, and Shahbazpanahi (2006) through the
Lagrange multiplier method. Along the derivation presented in Zarifi et al. (2005), the
Lagrange multiplier was omitted, using the fact that any scalar does not affect the output
SINR. After this step, Zarifi et al. (2005) expressed the solution vector as a function of
its norm ||w||, and further solved by iterative zero-finding methods.

These formulations have the same limitation: speech quality and intelligibility
may be degraded by ignoring the value of the Lagrange multiplier.

4.2 THE SOLUTION VECTOR OF THE BEAMFORMER

This section aims to find the closed solution of (181) by using the Lagrange
multiplier method and some mathematical operations.
4.2.1 Lagrange multiplier method

According to Vorobyov, Gershman, and Luo (2003), the worst-case performance
optimization problem of the MVDR beamformer can be solved using the quadratic
constraint £2[|w||2 = (wHa — 1)2. In this way, (181) turns into:

min wHd, w subject to £2wHw = (wHa — 1)2. (182)

The Lagrangian function .Z(-) is denoted as .Z(w,w*, \), in which X is the
Lagrange multiplier (VOROBYOV; GERSHMAN; LUO, 2003):

2w, w* ) = wHa,w + A(Ewhw — (wha - 1)?) (183)
= wHd,w+ A(2wHw — (wHa — 1)@"w - 1)), (184)
= wHa,w + A whw — (wHaaw — wHa - a w1+ 1)), (185)
= wHd,w -+ A(2wHw — wHaaw + wHa + atw — 1), (186)
— wha, w + 2e2wHiw — awHaatw + awHa + aaw — ) (187)
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In order to find w, we minimize the gradient of .Z(w, w*  \) with respect to w*.
According to Hjerungnes (2011), and Vorobyov, Gershman, and Luo (2003), we have:

0L (W, W* \)

OW* = WT‘i);/rv + )\€2WT| - )‘WT(ééH)T + /\éT + Ongl = 0-2|-M><1 , (188)

wl(@), + a2l —a@a™ Ty =-xa",  (189)
(Byy + 22— Naahw = —)a. (190)

As a result, (VOROBYOV; GERSHMAN; LUO, 2003):
W= \dyw + 21— raa")la. (191)
In addition, (191) can be factorized as in Vorobyov, Gershman, and Luo (2003):
W = (yy + A2+ a(=Aha)La-an). (192)

Using the Sherman-Morrison-Woodbury identities for matrix inversion (MEYER,
2000), in the form (A + BCD)"!BC = A~!B(C~! + DA!B)!, considering: A =
Sy + A2, B = a,C = —)\l,and D = a", equation (191) can be expressed as in
Vorobyov, Gershman, and Luo (2003):

w— (Dyw + X2~ a | (193)

a(dy + Ae2-la— 1

In a simplified way, the vector w in (193) has the form:
w = 3(dy + A a, (194)

in which 8 = [a" (dyy + Ac21)~1a — (1/))] ! is a scalar which does not affect the output
SINR, similarly to the Capon’s beamformer in Liu and Weiss (2010). Note that the
vector w defined in (194) corresponds to the diagonal loading robust beamformer with
loading factor \¢2 (LI; STOICA; WANG, 2003), in which ¢ is design parameter, such as
in Section 3.4.4. However, (193) can not be used directly, due to the unknown value of
the Lagrange multiplier A (VOROBYQOV; GERSHMAN; LUO, 2003; VOROBYOV, 2013;
LORENZ; BOYD, 2005).

The Lagrange multiplier A may be obtained in two steps: diagonalizing the closed
solution in (193), and substituing the diagonalized solution into the quadratic constraint
in (182), resulting in the characteristic equation to be solved to find .

4.2.2 Diagonalization of the closed solution

This section aims to diagonalize the closed solution of the WCO-MVDR
beamformer using the Singular Value Decomposition (SVD). From (193), we denote
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P= (<i>vv + X211, Using the SVD technique, the estimated noise coherence matrix
can be decomposed as by — USS0™. In this way, matrix P is expressed as:

P— (US0" 4221, (195)

Using an alternative lemma for matrix inversion given by (BCD + A)~1 = A=1 —
A-'B(C' + DA"!'B)"'DA!, considering A = A2, B =U,C = 3, and D = o,
matrix P can be re-written as:

P le 2t o Ze i lgs 4 e 20t o™ (19g)
Q

From (197), we denote @ = (IX~ ' + A~1¢21)~1, and applying the matrix
inversion lemma, we obtain:

Q= 2 - 2l ey (198)
= 22 = 22D+ A2 (199)

Applying (199) into (197), we obtain:
P= 12— A 210 A - 2N + ¢ o (200)
e 2200 + oS a2yt (201)
Al e O a2y, (202)
— (s 4+ 210" (203)

Using (203) into the solution vector, (193) can be expressed as:

0+ Ae2)-10"a

— - . (204)
alue +ae2n-10"a - 1

W =

Equation (204) is an alternative solution to (193), presented in Zhang and Liu
(2012). This beamformer is named as the Equality constrained version of the Worst-
Case performance Optimization of the Minimum Variance Distortionless Response
(EQ-WCO-MVDR) beamformer, whose A value is computed in the next sections. From
here, in the remainder of this chapter, we will correct the mathematical derivations
presented in Zhang and Liu (2012).

4.2.3 Obtaining the characteristic equation

Firstly, we obtain the gradient of .Z(w, w*, \) with respect to )\, equating it to zero
(which represents the constraint in (182)), given by:
0L (W, W* \)

S =& w)? — wha - 1)* = 0. (205)
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Substituting the solution vector w of (204) into (205), results in:

Ucs 2105 2 1 2

E - =

( + A ) _ T A — ] (206)
a'uz+a2n-lua- 1

a"us +aen-10Ma - L

52

By simplifying, we have:

N

] =¢2 H)\l:l(ﬁ] +ae2n! , (207)
— 2200 1100 110, (208)
— 22aM0(s 4+ 220" (209)
Denoting 2 = 0Ma, (209) turns to:
N2z ey 22 =1, (210)

Furthermore, the elements left hand side of equation (210) can be expressed as:

i . i A
W 0 P 0 ZO
0 D S 0 2
=X\ o 2 (\&+61)? Lol
| g L 0 0 0
3" 0 0 NI — M1
L g T (A+6-1)? A_ ,
(Z4AE21)~2 z
(211)
_ 222 [0/ ETs Zaral? (212)
(A2 +60)2 (A2 +61)2 A2 +0op-1)? |
M-1 ~
_ ( AE|2m)] )2 (213)
m=0 A2+ om)
IS
m
— O @ . (214)
m=

Substituting (214) into (210), we obtain the characteristic equation which satisfies
the minimization problem in (182), through a function f(\) = 0, given by:

)
f(A)Z( m ) —1=0/. (215)

Om
m=0 \& T pY3

The value of )\ is calculated by solving (215), and finally replacing it in (193)
to obtain the solution vector w. This methodology was applied in similar problems in
Lorenz and Boyd (2005), Zarifi et al. (2005), and Zhang and Liu (2012).
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However, note that (215) has not, necessarily, a real and positive solution. In this
way, in the next section we prove that the characteristic equation in (215) has a unique
real and positive solution, in a similar way as in Zarifi et al. (2005), and Gershman, Luo,
and Shahbazpanahi (2006).

4.3 PROOF OF THE EXISTENCE OF A UNIQUE POSITIVE SOLUTION

To perform the proof, the behavior of f(\) along X is analyzed by using theory of
limits only for real and positive values of A. First, lim)_,, f()) is obtained:

SN 2
li ) = li m —1=-1. 216
lim F(0) = Jim > (216)

m=0 5+(§\_?

From (216), note that A = 0 does not solve the characteristic equation in (215).
Second, we obtain lim)_,, f(\) as follows:

: A& 1zl 2
)\hm f\) = )\hm Z -1, (217)

—00 =% ) §+%
o 12m/?
= SmE (218)
112 sHoo s 5112
—HZQ =2 l‘;;’ a_l_—@ 1. (219)

From (219), note that if ¢ = ||a]|, the solution of the characteristic equation is
given only for A — oo, which is impractical. Therefore, the condition £ < ||a|| is necessary
to guarantee a real and positive solution for the characteristic equation in (215):2.

In addition, we analyze the behavior of f(\) along the interval A € ]0, +o0],
through its derivative. By computing the derivative of f(\) with respect to A, we have:

YO _ N DL oL 220)
a0 (A om)

Note that &, 6., and ||, are real and positive. As a consequence, (220) is also
real and positive valued for \ € ]0, +o00[. Considering this fact, in addition to (216) and
(219) (considering ¢ < ||a||), it is concluded that f(\) is monotonically increasing along
this interval, according to the theory of calculus in Stewart (2010).

In summary, this proof demonstrates that the characteristic equation in (215) has
a unique solution for A real and positive.

1

According to Vorobyov, Gershman, and Luo (2003), parameter £ must be small enough to guarantee
|wHa| > ¢||w||. By applying the Holder’s inequality: ||a||||w|| > &||w/||, resulting in ¢ < ||a].
2 ¢ <||a|| is also assumed in related works as in Li, Stoica, and Wang (2003).
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4.4 |ITERATIVE SOLUTION BY NEWTON-RAPHSON METHOD

Because the characteristic equation in (215) has a single real and positive root
), it is possible to apply a numerical method to find A, such as in Zarifi et al. (2005).

Note that, from the characteristic equation in (215), an upper bound for f()) is
achieved for 6, = 67_1, denoted as fup(A):

2
oy < 2 U’m’Q L, (221)
(e+52)
5112
_ ||f|| -1, (222)
(6 75¢)
A
= ~ 5 — 1= fup(N). (223)
(e+552)
Equating fup(A) = 0, we obtain A\yp = ﬁ in which 0 < A < Ayp.

The value of A can be found by using a hybrid numerical method (with a preset
precision ¢), consisting of a binary search and the Newton-Raphson method, such
as in Ye (1994) and Gershman, Luo, and Shahbazpanahi (2006). In this procedure,
an initial solution Xy € |0, Aup[ is previously known or obtained by the binary search
method proposed in Ye (1994). This initial solution is tuned by the Newton-Raphson
method (see pseudocode in Figure 23), by including more information such as f/()\),
the derivative of f()\).

Figure 23 — Pseudocode of the Newton-Raphson method

1: procedure NEWTON(f, 1/, \o)
2 root < \g
3 while |f()\g)| > ¢ do
A
4 root < \g — }f,(( A(;))
5: Ao < root
6 end while
7 return root
8: end procedure

Source: Adapted from Gershman, Luo, and Shahbazpanahi (2006).

This hybrid methodology to solve the characteristic equation was also applied in
Lorenz and Boyd (2005), Zarifi et al. (2005), and Zhang and Liu (2012).
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4.5 CLOSED SOLUTION FOR TWO-POINT SOURCES

Consider an acoustic scenario in which the sensor array receives two single-
point acoustic sources: a speech source and an interference source. Background noise
is neglected, i.e. iISNR — oc. To compute the solution vector of the robust beamformer
n (204), we firstly estimate the noise coherence matrix &y and the steering vector
a. After that, the matrix ®y is decomposed through the singular value decomposition
as &y — U730, in which the diagonal matrix 3 contains the eigenvalues of ®y in a

decreasing order.

In this way, by considering only two-single-point sources into the characteristic
equation in (215), we can take only the two largest estimated eigenvalues, i.e. 5 and

513. As a result, we obtain an approximated function g(A\) = f(X) given by:

|A 2 R 2 M—1 || 2
FO) m g = | 22+ [ B ml ),
%) (s—) (%

2

B TR W (R PTIR DD wve  71
§+ 8 cog) TTe
TR Al s
(L) (B (Y ) e
—_——
ZA’res

in which the term Zzes in (226) can be expressed as:

M-1
Zres = Z ENEE (Z e ) 20 — 141,

=121 120l — |21)°.

Using (232) into (226), we obtain:

2 2
|20 |21] 2 . L2 2
g(A) = = +l|a]|2 — 22— |52 -2 =0.

Applying the least common multiple in (233):

N2tz 4 61)2 + 226212 (N2 + 60) + 102 + 60)2 (02 + 61)2 = 0.

3 The remaining eigenvalues are ideally zero.

(224)

(225)

(226)

(233)

(234)
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After some manipulations, the following fourth-order polynomial is obtained:
A\t + d3\3 + doX® + diA +dy =0, (235)

in which dy, ds, ds, d1, € dy are the coefficients of the polynomial:

dy = (|al” - €)%, (236)
ds =2 [(|1a* — €)(50 + 61) — G0l — 6111 | €F (237)
dy = [(1811% = €)(53 + 46051 + 67) — (1202 + 1212) (46061) — 63 20/ — 63120 2] €.
(238)
di = 2(|a|* — [20]” = |21” — €3)(6067 + 5561)€%, (239)
dy = (|1al* = 120f* - |21* - €%)5567 - (240)

From (235), four roots can be found, of which only one is real and positive, as
demonstrated in Section 4.3.

4.6 BINAURAL FORM OF THE EQ-WCO-MVDR BEAMFORMER

The binaural extension of the beamformer proposed by Vorobyov, Gershman,
and Luo (2003), by considering equality constraints shown in (182), results in the
following minimization problem:

2 2 Hs 2
. R w || = (wa —1
Jmin WE(I)VVWL—FWH(I)VVWR subject to 5'5” L ) ( '-H AL ) , (241)
TR (RlIWR|* = (wgag — 1)
whose solution vectors w; and wg are given by:
w, — (‘i)vv + /\Lfﬁl)_léL Wg — (‘i)vv + )\ng{l)_léR (242)
al (®y + MDA — & aR(®w + Mpéal) lag — &

The stacked version of the Equality constrained version of the Worst-Case
performance Optimization of the Binaural Minimum Variance Distortionless Response
(EQ-WCO-BMVDR) beamformer can be obtained as follows. The quadratic constraint
in the left ear in (241) is expressed as:

&llwy|* — (wita, - 1)* =0, (243)
cwhw — (wia, — 1y@lw, —1)=o, (244)
cewhw —wha al'w, +aj'w +wa, =1, (245)
wh(c2hw, — wia af'w, +2altw = 1. (246)
So, the left and right constraints are re-written as follows:
whet—a alyw, +2af'w =1, (247)

wH (el — apaR)wg + 2aRwg = 1. (248)
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The pair of constraints (247) and (248) can be arranged in the matrix form as:

we 0 hal-a 0 | fw| o, al Q™ =], (oa9)
0 wpg 0 ¢&pl-ag || wg 0 ag || wR 1
d . N Ly L

AN

w = AR" w A W

Note that w = W14, ;. Furthermore, (249) can be expressed as:

WH(E - AAw + 28w = 15, ; . (250)
- H ~H
WH(E — AA")W15,1 + 28 Wiay g = 15,1, (251)
. H “H
(WH(E—AA )W -+ 2A w)12X1:(|2x2)12X1. (252)

Finally, the stacked version of the EQ-WCO-BMVDR beamformer is given by*:

_AAYW AW o1, |. (253

(11

mvivn 1;X1WH&>WW12X1 subject to WH(

4.7 SUMMARY OF THE PROPOSED ALGORITHM

In this work, the EQ-WCO-BMVDR beamformer is implemented according to the
following steps:

+ Estimation of the number of sound sources, using the method presented in Pavlidi
et al. (2013).

+ Estimation of the beamformer parameters: Dy, a|, aR, and dyes.

— Estimation of noisy speech and overall noise coherence matrices, ®yy, and
&y, respectively. For this purpose, a voice activity detector (VAD) presented
in Sohn, Kim, and Sung (1999) and the sample coherence matrix estimation
presented in Cauchi et al. (2015) may be applied.

— Estimation of the speech coherence matrix b using the covariance
subtraction method in Habets and Benesty (2012).

— Estimation of the relative transfer functions related to the left and right ears,
a| and aR, respectively, using the minimum distortion method presented in
Taseska and Habets (2015).

— Estimation of the robustness parameter dres, through the methodology
presented in Section 3.4.4.

- Diagonalization of ®yy to obtain U and .

4 Vector 1,5, in (252) can be ignored without affecting the stacked constraint.
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» Determine the Lagrange multipliers: A\ and AR

— For two-point sources: Apply the real and positive roots obtained from the
fourth-order polynomial in Equation (235) for both left and right ears.

— For more sources: Apply the Newton-Raphson algorithm used in Gershman,
Luo, and Shahbazpanahi (2006) depicted in Figure 23, for both left and right
ears.

« Finally, compute w| and wg using Equation (242).

4.8 ANALITICAL EXPRESSIONS FOR THE OUTPUT BSINR

In this section, we obtain analytical expressions of the output BSINR for: the
[-BMVDR (Equation (40)), the E-BMVDR (Equation (91)), and the EQ-WCO-BMVDR
(Equation (242)) beamformers.

4.8.1 Output BSINR for the I-BMVDR beamformer

Assuming that the noise coherence matrix ®yy and the desired steering vector
a are perfectly estimated, the optimal filters w;_ and wg are given by:

—1 —1
B ai,O@VV a B GE,O(I)VV a

W =-——3- WR= g7 (254)
aHo ja alo /a

According to Hadad, Marquardt, et al. (2015), the binaural signal to overall noise
ratio of the beamformer is given by the division between the average output power
related to the speech and overall noise signals, i.e. ¢34t and ¢QUt, respectively, given
by:

out  WH®sswi +WHEsswg o wleyw + wHawwg 055
ss = 5 , dw = 5 : (255)

Specifically, we compute ¢4t

WE¢33WL + WH@ssWR

S = 5 , (256)
HoaH HaaH
w'aa"'w| + pssWrpaa 'w
_ ¢SS L L 2 ¢SS R R7 (257)
Ha2 Ha2
w'al* + |wpa
_ dss(wlal® + [wHal?) 258)

2

The ideal constraints are wi'a = q|_ o and wHa = aR o, in this way ¢24! is given by:

dss(laL ol? + lagol?)
&= 5 . (259)
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Specifically, we calculate p9Ut:

WE <I>VVW|_ -+ WH@WWR

W = 5 , (260)
|aL,0|2aH‘§\X/1 w a + |04FK,O|Qqu)\;/1 w a
(aH®,.'a)? (aH®,'a)?
= 261
> , (261)
|aL,0|2 \GR,O‘Z
_ a"p,/a + a"®e,.'a _ ’CLL70’2 + ’@R,O‘Q (262)
2 2(aH®}a)
The output BSINR is given by:
out  SssllaelHomal®]
BSINRPB\VDR = —out = s % T - dss(@"Pyya). (263)
vV ? >
2(@"®, a)
Finally, the output BSINR of the I-BMVDR beamformer is given by:
BSINROY o = dss(@a®yia)|. (264)

Equation (264) was firstly presented in Hadad, Marquardt, et al. (2015).

4.8.2 Output BSINR for the E-BMVDR beamformer

In real applications, the noise coherence matrix and the desired steering vector
are not perfectly estimated due to several factors, resulting in ®yy # ®,y and a # a. In
this way, the resulting filters w; and wg are given by:

o dla i dla
W= g = (265)
a'®,a a'o,a

The same procedure to calculate the output BSINR may be applied. Firstly, the
average binaural output power of the speech signal is obtained:

~H ~ ~H ~
out _ Wi PssW| + WRPssWR

ss 5 ) (266)

_ dssW aa ; dssWHaa g | (267)

_ ¢ss<\WEa122+ Wgal) 268)
e (8

_ oy @y ) (269)

. . JHa 1
sl of? + lipo P8 d5 al?
2a" b la)2

(270)
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In the same way, we obtain ¢oUt:

~ H ~ ~ H ~
“out WL (I)VVWL + WR(I)VVWR

W= 5 ) (271)
jiLol2a"®n ! @wdn'a | Jinol’d" ®un' Pudy'a
(8" dy'a)” . @ena? (272)
_ lacol + lapo ) (@" @) by a) 273)
2a"d, la)2 '

The output BSINR is given by:
dsslavoP+imp7)[a" u'al’
~H 2

Tout AHE— 1412
BSlNREUtBMVDR __¥ss W o ¢Ss|a (I)Vva|

- = = = - N “Ha_ - 1. H=x - .
\%Jt i o2 Hamol?) (8 Py PPy @) aH<I>\7V1<I>W<I>\7V1a
2(a"&3a)°

(274)

Note that, if &,y = ®yy and a = a, we obtain the output BSINR for the I-BMVDR
beamformer presented in Eq. (264). Denoting g = <i>\7\,1é, (274) can be expressed as:

H
¢ss|@ al?

BSINRQUL —
E-BMVDR N .
gH‘I’vvg

(275)

4.8.3 Output BSINR for the EQ-WCO-BMVDR beamformer

In order to design a robust beamformer against uncertainties on the steering
vector estimation, with the prior knowledge of the maximum value of the quadratic error
norm for the binaural case, i.e. £, and ¢R, the EQ-WCO-BMVDR beamformer design
for the robust filters w|_ and wg are given by:

WL = o (dw + A D) 1A, W = ag(Pw + ApéRD) a: (276)

in which o and ag are scalar values. The average output power related to speech of
the EQ-WCO-BMVDR beamformer is denoted as ¢33t and is given by:

W sy + WHEsswy

s = ; , (277)
dssWaaw + gsswHaawg
- , , (278)
~Ho (2 ~yHo (2
w,'a|” + |wra
_ dss(iwl'al + wia?) 279)
2
dss (oL 8" (@w + AL 1al? + Jag 21" (@w + AreRD) ~al?)
_ . (280)

2

To simplify the derivation, consider \g = A\ = AR, and &, = | = £R. It is justified
by assuming that vectors w|_ e wg are parallel, differing only in the power given by the
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corresponding scalar, similar to the I-BMVDR and E-BMVDR beamformers. So, qugt is
expressed as:

out __ ¢SS(|aL|2 + |aR|2)|éH(éVV + Aoggl)ilap 281

Similarly, we calculate $OUt:

wlo,w +whoe,wg

' = 5 , (282)
_ (o |* + |aR|2)(éH(‘i’vv + Ao&3l) T Rw (v + o3 ') (283)
5 :
The output BSINR is expressed as:
A28 _ ¢ss|éH(‘i>vv + o3l tal?

BSINR2u. (Mo, &o) = = = .
EQ-WCO-BMVDR\"05 50 ~H/,x ¥ A
Q M aH (Byy + A2 1Dy (Byy + Aoc2N)1a

(284)

Note that, for & = 0, then BSINRZL \\ o0 smvor = BSINRRE\voR- Applying
the singular value decomposition of the noise coherence matrix, in the form ®,, =
00" itis possible to determine that:

- ~ o~ H RN ~H
(Byy + X271 = (USU + 202) 1 = U(Z + 202D 10 (285)

In this way, the output BSINR for the EQ-WCO-BMVDR beamformer can be
expressed as:

Hey e ~H
gssla™U(3 + Xo€21) 10 a2
aH0(E 1 202107 0y (S + ro2)-10"a
(286

t _
BSINREG weo-smyvDR (Mo: o) =

)

Note again that, for o = 0, we obtain a new analytical expression for the output
BSINR of the E-BMVDR beamformer in (274) and (275), given by:

~Hire — 11 H 2
t ¢ssjla UX U a|
BSINRCE)I:‘BMVDR - AH R ~ H A R HA . (287)
a UE_IU <I>WUZ_1U a
Returning to the EQ-WCO-BMVDR beamformer in (286), we may write:
(Z+ X&) ! = (= 1(=ro&gh) . (288)

Using the Sherman-Morrison-Woodbury identities for matrix inversion (MEYER,
2000), in the form (A +BCD)~! = A~ — A='B(C~! + DA~'B)"!DA~!, considering
A=3,B=1C=1and D! = (—)&2l), we can re-write (288) as:

DI [CESYNCZ1)] | IR YRt >y [ ey S I ) >y ity SR (289)
S agteg iy it (290)
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In this way, (2 + Ao&2l)~1 = =1 + M()\o, &). And then, the analytic expression
of the output BSINR yields:

JHiprs ~H
dss|alU[Z 1+ M()o, )]0 af?

aMU[E 1+ M(ho, &)U @ UE 1 + M(Xo.&0)0a
(291)

t
BSINREQ.weo-BMyvDR(A0: S0) =

Recalling that g — &4 — US1-10"a, and denoting d(\o, o) = UM(Xo, £)U" 4,
then the output BSINR for the EQ-WCO-BMVDR beamformer turns to:

dss|(0 +d()\o,fo)]Ha|2
[@+d(Ao, &) ]H@w(g + d(Xo, &0)] |

BSINR2S weo-smvor(Mos So) = (292)

In conclusion, the EQ-WCO-BMVDR beamformer is based on the design of the
vector d(\o, £o) Which corrects the weight vector of the E-BMVDR beamformer, aiming
to improve the output BSINR.

4.9 CONCLUSION

In this chapter, it was presented a semi-closed-form solution for the WCO-MVDR
beamformer originally proposed in Vorobyov, Gershman, and Luo (2003) (see Equation
(242)). Along Section 4.1 we showed an equivalent minimization problem by considering
equality constraints. Then, in Section 4.2 the Lagrange method was applied, correcting
the work of Zhang and Liu (2012) (Subsection 4.2.3).

The formulation presented in Zhang and Liu (2012) was adapted into the binaural
hearing aids context, by using the values of | and {gr previously estimated in Chapter
3. This beamformer was named as EQ-WCO-BMVDR. After that, a closed-solution
in Section 4.5 was obtained for the special case of two single-point sources (speech
and interference) by solving a fourth-order polynomial, Finally, in Section 4.8, some
mathematical expressions for the BSINR were derived for the I-BMVDR, E-BMVDR,
and EQ-WCO-BMVDR beamformers.

The proposed EQ-WCO-BMVDR beamformer has two important advantages: a)
it provides analytical formulas for objective performance measures (i.e. the BSINR); and
b) it provides shorter latency (CPU times) in comparison with the SOCP-WCO-BMVDR
solved through interior-point methods.
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5 COMPUTER SIMULATIONS

Along Chapter 4, an equivalent formulation of the SOCP-WCO-BMVDR in
(172) was obtained, known as EQ-WCO-BMVDR beamformer and presented in (241),
resulting into an equivalent vector solution. In this way, along this chapter, the WCO-
BMVDR beamformer refers to the proposed formulation in EQ-WCO-BMVDR. Objective
criteria were applied for comparing the proposed method with the conventional I-
BMVDR beamformer and its practical implementation (E-BMVDR beamformer). In
addition, the robust beamformer presented in Shen, Chen, and Song (2015) was
assessed as reference.

5.1 EXPERIMENTAL SETUP

The simulated experiments were performed using a set of measured acoustical
transfer functions obtained from Kayser et al. (2009), which consider two behind-the-
ear (BTE) hearing aids coupled to an artificial human head and torso. It has M = 3
microphones at each gadget, which operate under binaural configuration. Two single-
point acoustic sources were considered: a speech source located at 0° azimuth (in
front of the user) and an interference source located at +45° azimuth (in the right
hemisphere), both with radial distances of 0.8 m and elevation angles of 0°. The acoustic
environment considered was an anechoic chamber, with reverberation time (Rt) lower
than 50 ms (KAYSER et al., 2009). Simulations were also performed in a reverberant
room ('Office I’ in Kayser et al. (2009)) with Rt = 300 ms.

A set of thirty sentences spoken by three male and three female speakers were
obtained from Hu and Loizou (2007), and IEEE (1969). Sentences are 3.8 s long, on
average. Three types of interferences were applied: ICRA-1 (artificial speech-like noise)
(DRESCHLER et al., 2000), car engine, and cafeteria babble. Speech and interference
signals were convolved with head related impulse responses obtained from Kayser
et al. (2009). Noisy-speech was obtained by artificially summing both interference and
speech for —10 dB < iSIRR < 30 dB in steps of 5dB. Thirty runs, with distinct noise
epochs, were performed for statistical analysis. Gaussian white noise was applied for
investigating the influence of background noise.

5.2 SIGNAL PROCESSING

Speech and interference signals were sampled at f; = 16 kHz. Short-time
Fourier transform was applied with K = 256 frequency bins, 128 points Hanning window,
and 50% of overlap. Under these parameters, frames 16 ms long were processed and
updated at each 4 ms, totaling 950 frames on average.

The VAD described in Sohn, Kim, and Sung (1999) was applied for estimation of
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the noise coherence matrix, using the sample covariance method presented in Cauchi
et al. (2015). The speech coherence matrix was estimated by the covariance subtraction
method described in Habets and Benesty (2012). The left and right SVs were computed
by the minimum distortion-based RTF method presented in Taseska and Habets (2015).

Simulation results are presented for: a) the I-BMVDR beamformer, according to
Equation (40), and considering that speech and interference signals are individually
known for calculation of the coherence matrices (for obtaining an upper performance
bound); b) the E-BMVDR beamformer, according to Equation (91), considering
estimated versions of the coherence matrices (with a real VAD); c) the WCO-BMVDR
beamformer, according to Equation (241), subject to the same estimations used by the
E-BMVDR; and d) the stereo implementation of the robust beamformer presented in
Shen, Chen, and Song (2015), named here as Steering-vector robust-based Binaural
Minimum Variance Distortionless Response (S-BMVDR).

Finally, the frequency domain processed signals were reconstructed to the time
domain by using the WOLA method (CROCHIERE, 1980).

5.3 EFFECTS OF § IN THE ARRAY RESPONSE

This first simulation aims to illustrate the effect of the robustness parameter 6(k)
on the array response. Magnitude array responses are presented in Figure 24 for the |-
BMVDR and the E-BMVDR as compared to the WCO-BMVDR for two arbitrary choices
of the robustness parameter: §(k) = 0.02 (small), and §(k) = 0.50 (large). The value of §
is constant for all bins. For this experiment, a single speech signal was considered. The
interference was one epoch from ICRA-1, iSIRgR = {—10dB, 10 dB}, and neglecting
the noise source, i.e. iISNRR — oc.

The insets in both Figures 24a and 24b show that the I-BMVDR beamformer
presents similar array responses for both iSIRR. It steers a unitary gain (0 dB) at 0°,
and a depth null of —50 dB at 45°. Figure 24 also shows that the E-BMVDR presents
a significant performance loss, as compared to the I-BMVDR, for both iSIRR. For
iISIRR = 10 dB the gain in the steered azimuth angle decays 1 dB, while the null
depth is decreased by 23 dB; for iISIRg = —10 dB the steered direction is additionally
decreased by 2 dB. These results indicate a performance degradation of the ideal
performance when using practical estimations, which may affect speech quality, and
acoustic comfort.

Figure 24a shows that for the small robustness parameter (6(k) = 0.02) the WCO-
BMVDR produces approximately the same null as the E-BMVDR, but with a wider flat
(> 0 dB) region for the gain around the SV direction of arrival. As the robustness
parameter is increased (0(k) = 0.50), the null loses depth and the advantages of the
proposed method vanish. For iISIRg = —10 dB similar observations are also verified.



Figure 24 — Magnitude of the array response for the -BMVDR beamformer in blue (i); E-BMVDR beamformer in red (ii); and WCO-
BMVDR beamformer, with §(k) = § = 0.02 in green (iii), and 6(k) = § = 0.50 in magenta (iv). The speech source was located
at 0°, while an ICRA-1 noise source was located at 45°, with iISNRr — oo and: a) iSIRR = 10 dB; b) iSIRg = —10 dB.
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5.4 EFFECTS OF § IN THE OBJECTIVE CRITERIA

This second experiment illustrates the performance impact of a range of
fixed 6(k) = o in the WCO-BMVDR performance, by considering the same speech
signal used in Section 5.3. The speech quality was measured through the wideband
perceptual evaluation of speech quality (WPESQ) (LOIZOU, 2013); the acoustic comfort
was evaluated by the global output signal to overall noise ratio (GOLMOHAMMADI;
ALIABADI; NEZAMI, 2017); and the intelligibility was estimated by the Short-Time
Objective Intelligibility (STOI) metric (TAAL et al., 2011). All metrics were calculated in
the right ear.

Figure 25 shows WPESQR and SINRR performance improvements of the WCO-
BMVDR as compared to the E-BMVDR, AWPESQ and ASINR, given by:

AWPESQ = WPESQwco-eBmvDr — WPESQE_gMmvDR
ASINR = SINRywco-BmvDR — SINRE.BMVDR 5 (293)

as a function of the robustness parameter 9§, assuming ICRA-1 noise, and iSIRR =
{0 dB, 5 dB, 10 dB}. The area above the dashed black line represents psychoacoustic
relevant improvements, since speech quality differences greater than 0.2 WPESQ are
considered significant for acoustic perception (SERVETTI; DE MARTIN, 2005a), while
SINR improvements greater than 3 dB are perceptible for listeners (MCSHEFFERTY;
WHITMER; AKEROYD, 2016). It is clearly noted in Figure 25 that as the iSIRR
decreases the perceptual improvement range of ¢ is reduced.

The WCO-BMVDR beamformer achieved numerical improvements up to 0.06
STOI, as compared to the E-BMVDR. As a result, no practical intelligibility gains are
obtained with the proposed method, since increases of at least 0.1 STOI are required
for improving the human comprehension of the information (LOIZOU, 2013).

5.5 OBJECTIVE MEASURES VERSUS INPUT SIR

In this experiment, output WPESQR and SINRR were calculated as a function of
the iSIRR, from —10 dB to 30 dB in steps of 5 dB. For this experiment, six speech signals
were considered for calculating dcon (k) in (175)1. The contamination noise was ICRA-
1 and the WCO-BMVDR beamformer applied the restrained robustness parameter,
proposed in (176) for « = {0.10,0.75,1.00}. Figure 26 shows a comparison among
the I-BMVDR (blue), E-BMVDR (red), and WCO-BMVDR beamformers for o = 0.10
(magenta), a = 0.75 (cyan), and « = 1.00 (green) beamformers. It also presents results
for the unprocessed signal (black) as a benchmark.

' These signals were also used in Section 3.4.4 and listed in Annex A.



Figure 25 — Plots of AWPESQ (a), and ASINR (b) at the right ear, considering iISNRR — oo, as a function of the robustness parameter
d(k) = ¢ for iSIRR = 10 dB in blue (i); iISIRg = 5 dB in red (ii); and iSIRg = 0 dB in yellow (iii). The area above the dashed
black line (iv) represents psychoacoustic relevant improvements.
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Figure 26 indicates that the -BMVDR beamformer exceptionally increases both
objective criteria, resulting in an improvement of up to 3.3 WPESQ and 43 dB as
compared to unprocessed signals. On the other hand, its practical implementation
(E-BMVDR beamformer) results in improvements of up to 2.0 WPESQ and 25 dB.
It also demonstrates that, despite estimation errors, the E-BMVDR beamformer is
valuable for a wide range of iSIRR, resulting in benefits for listeners. For large a(>
0.75), the WCO-BMVDR beamformer may provide additional improvements up to 1.1
WPESQR and up to 6.2 dB SINRR as compared to the E-BMVDR beamformer. These
improvements are psychoacoustically relevant for listeners (SERVETTI; DE MARTIN,
2005a; MCSHEFFERTY; WHITMER; AKEROYD, 2016). For a« = 0.10, numerical
improvements over the objective criteria were still obtained, but in an insufficient
way for psychoacoustic perception (LOIZOU, 2013; MCSHEFFERTY; WHITMER,;
AKEROQOYD, 2016). The evaluation of different values for o allows to validate the
strategy for designing the robustness parameters explained in Section 3.4.4. Hereinafter,
simulations for WCO-BMVDR beamformer consider o = 1. In addition, it was also
verified that SINRR and BSINR performance measures are very similar, in this sense,
only BSINR metric is used.

In order to provide a second standard for performance comparison, we
implemented the binaural version of the robust beamformer presented in Shen, Chen,
and Song (2015), which was named here as S-BMVDR beamformer. The S-BMVDR
beamformer was derived as a general-purpose robust beamforming for dealing with
uncertainties in the steering vector estimation. Comparison results for speech quality
(WPESQ) and acoustic comfort (BSINR) are presented in Figure 27. It can be observed
that the proposed method (with a = 1) presents higher performance than S-BMVDR
beamformer in the 5 dB < iSIRR < 15 dB range, specially for speech quality, achieving
psychoacoustic improvements close to 0.5 WPESQ, according to Servetti and De Martin
(2005a).

Figure 28 depicts the binaural speech and interference distortion, in dB, for the
I-BMVDR (blue), E-BMVDR (red), and WCO-BMVDR (green). Figure 28a indicates
that speech signal is slightly distorted (around 0.7 dB BSD) for E-BMVDR and WCO-
BMVDR beamformers. On the other hand, Figure 28b show improvements up to 6 dB
BID of the proposed WCO-BMVDR in comparison to the E-BMVDR beamformer, along
the 5 dB <iSIRR < 15 dB range.



Figure 26 —

4.5

WPESQR

Plots of WPESQR (a) and SINRR (b), considering —10 dB < iSIRR < 30 dB, and iSNRR — oo, for the I-BMVDR in blue
(); E-BMVDR in red (ii); WCO-BMVDR for o« = 0.10 in magenta (iii); « = 0.75 in cyan (iv); and a = 1.00 in green (v).
Unprocessed signal in black (vi). The robustness parameter §(k) = dres is calculated according to (176).
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Figure 27 — Plots of WPESQR (a) and BSINR (b), considering —10 dB < iSIRR < 30 dB, and iSNRRr — oo, for the I-BMVDR in blue (i);
E-BMVDR in red (ii); S-BMVDR in magenta (iii); and WCO-BMVDR for a = 1 in green (iv). Unprocessed signal in black (v).
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Figure 28 — Plots of BSD (a) and BID (b), considering —10 dB < iSIRR < 30 dB, and iSNRr — oo, for the I-BMVDR in blue (i);
E-BMVDR in red (ii); and WCO-BMVDR for « = 1 in green (iii).
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5.6 PRESERVATION OF BINAURAL CUES

As explained in Section 3.4, the most recent and relevant studies about
robust beamformers for hearing aid applications such as Koutrouvelis et al. (2017),
Koutrouvelis et al. (2019), and As’ad, Bouchard, and Kamkar-Parsi (2019a) are mainly
focused on the preservation of the binaural cues, by assuming that the required
beamforming parameters are perfectly known, i.e. -BMVDR beamformer.

According to Koutrouvelis et al. (2017), the BMVDR beamformer naturally
preserves the binaural cues of the speech source, but may distort the interference-noise
binaural cues, perceived as incoming from the direction of the speech source 2. For
preserving the spatial characteristics of both speech and interference, additional spatial
constraints must be included into the minimization problems (see Costa and Naylor
(2014), Marquardt (2015), and ltturriet and Costa (2019)), but this issue is outside the
scope of this work. However, just for illustration, some results about the effects of the
proposed method into the inherent binaural characteristics of the conventional BMVDR
beamformer are presented.

Although the Interaural Time Difference (ITD) (computed in Equation (63))
is considered the primary binaural cue, amplitude stereo panning techniques have
demonstrated that ILD carries enough information for creating complex artificial auditory
scenes even in headphones (BLUM; VAN ROOYEN; ENGELBRECHT, 2010). It
was also recently demonstrated that ITD is sometimes tricky and should be used
(as an azimuth localization measure) only for large interaural coherence conditions
(ITTURRIET; COSTA, 2019). Moreover, in this work, the ILD is not used as a
psychoacoustic information for preservation of the acoustic scenario, but only as a
metric for setting up the parameters and improving the robustness of the beamformer.
In this way, the use of the ILD is valid for all frequency bins, and not only above 1.5 kHz.

Figure 29a shows that the speech ILD binaural cue preservation of the proposed
WCO-BMVDR beamformer is approximately the same as for the E-BMVDR beamformer.
For iSIRR > 0 dB, it approximates the performance of the I-BMVDR beamformer.
In addition, Figure 29b shows that there are approximately no differences among
interference ILD for I-BMVDR, E-BMVDR, and WCO-BMVDR beamformers for iSIRR >
—5dB. In this way, it is concluded that the proposed method does not change the original
binaural characteristics of the BMVDR approach, in which the spatial perception of the
original azimuth of the speech source is preserved, while the azimuth of the processed
interference noise changes in the direction of the speech azimuth (with the increase of
iSIR), as theoretically demonstrated in Cornelis et al. (2010).

2 In fact, this situation is commonly considered when the beamforming parameters are perfectly known.
When errors on the estimation parameter occur for extreme low input SIRs, the binaural cues of
speech can be also distorted.



Figure 29 — Plots of the ILD error (dB) according to Equation (62), considering —10 dB < iSIRR < 30 dB, and iSNRR — oo, for: (i)
[-BMVDR in blue; (ii) E-BMVDR in red; and (iii) WCO-BMVDR in green. The ILD error is computed for: (a) speech signal
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5.7 BACKGROUND NOISE

In this section, the influence of background noise in the performance of the
proposed method is investigated. Computational simulations were performed according
to the parameter setup described in Section 5.5: speech source located at 0° azimuth,
and ICRA-1 interference noise located at 45° azimuth, for —10 dB < iSIRR < 30 dB,
and 24 runs. It was assumed contamination of the speech signal by (additive Gaussian)
white background noise for two different input Signal-to-Noise Ratio (SNR) levels: (a)
iISNRR = 50 dB; and (b) iISNRR = 20 dB. According to Braun et al. (2014), an iSNRR =
50 dB is considered a high SNR condition, while an iSNRr = 20 dB is a low SNR
condition.

Three performance measures are presented: the wideband PESQ at the right
ear (WPESQR) in Figure 30; the binaural signal to interference-plus-noise ratio (BSINR)
in Figure 31 (HADAD; MARQUARDT, et al., 2015), according to Equation (68); and
the binaural speech distortion (BSD) in Figure 32 (MARQUARDT, 2015), according
to Equation (69). Plots were presented for the following beamforming techniques: I-
BMVDR (blue); E-BMVDR (red); S-BMVDR (magenta); WCO-BMVDR for o = 1 (green);
and unprocessed signal (black).

Note that, with the decrease of the input SNR, the E-BMVDR and WCO-BMVDR
beamformers tend to the I-BMVDR performance (which presents lower performance as
compared to the iSNRR = 50 dB). In addition, for iSNRR = 50 dB, all methods behave
approximately as foriSNRR — oo. ForiSNRR = 20 dB, there are no advantages in using
the proposed method, as compared to the E-BMVDR beamformer. Finally, the WCO-
BMVDR beamformer presents a higher performance than the S-BMVDR beamformer,
which results in smaller WPESQ and BSINR, and higher BSD, indicating limitations for
this kind of application.



Figure 30 — Plots of WPESQR for the I-BMVDR in blue (i); E-BMVDR in red (ii); S-BMVDR in magenta (iii); WCO-BMVDR in green (iv);
and unprocessed noisy-speech in black (v). The robustness parameter (k) = dres is calculated according to (176). The
background noise power was controlled for iSNRg = 50 dB in (a) and iSNRR = 20 dB in (b).
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Figure 31 — Plots of BSINR for the I-BMVDR in blue (i); E-BMVDR in red (ii); S-BMVDR in magenta (iii); WCO-BMVDR in green (iv);
and unprocessed noisy-speech in black (v). The robustness parameter (k) = dres is calculated according to (176). The
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Figure 32 — Plots of the binaural speech distortion (BSD) for the I-BMVDR in blue (i); E-BMVDR in red (ii); S-BMVDR in magenta (iii);
and WCO-BMVDR in green (iv). The robustness parameter §(k) = dres is calculated according to (176). The background

BSD [dB]

1.5

0.5

-0.5

-1.5

noise power was controlled for iISNRr = 50 dB in (a) and iSNRR = 20 dB in (b).
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5.8 DIFFERENT SPEECH LOCALIZATION

The assumption of 0° speech azimuth (target speech in front of the hearing aid
user) is commonly applied in many works in the area of noise reduction methods for
binaural hearing aids (AS’AD; BOUCHARD; KAMKAR-PARSI, 2019b, 2019a; FALK
et al., 2015). To illustrate the performance of the proposed method for different speech
azimuths, the following scenario was considered: speech source arriving from 20° and
interference source arriving from 65°. Results for WPESQR and BSINR (according
to Equation (68)) are presented in Figure 33. It is possible to verify that, assuming
the same 45° azimuth difference between speech and interference-noise sources,
approximately the same performance was obtained regardless the arriving azimuth.

5.9 REVERBERANT ENVIRONMENTS

To illustrate the performance of the proposed method in reverberant conditions
we performed new simulations for the Office | acoustic scenario, described in Kayser
et al. (2009). It has a reverberation time of approximately 300 ms. Figure 34 shows
the results obtained for two performance measures: (a) the wideband PESQ at the
right (worst) ear (WPESQR); (b) the binaural signal to interference plus noise ratio
(BSINR), according to Equation (68). Plots are presented for the: -BMVDR (blue); E-
BMVDR (red); S-BMVDR (magenta); WCO-BMVDR (green); and unprocessed signal
(black). Note that the marginal difference between the E-BMVDR and WCO-BMVDR
performance is not perceptually relevant, since differences smaller than 0.2 WPESQ are
not clearly noticeable by volunteers (SERVETTI; DE MARTIN, 2005b), and the BSINR
did not exceed the just-noticeable difference of 3 dB (MCSHEFFERTY; WHITMER,;
AKERQYD, 2016). In this way, note that the E-BMVDR and WCO-BMVDR beamformers
present approximately the same performance, which is very close to the I-BMVDR
beamformer. On the other hand, the performance of the S-BMVDR is severely degraded
by reverberation as compared to the WCO-BMVDR beamformer.



Figure 33 — Plots of WPESQR (a) and BSINR (b), considering speech source located at 20° and interference noise source located at
65°, with —10 dB < iSIRR < 30 dB, and iSNRR — oo, for the I-BMVDR in blue (i); E-BMVDR in red (ii); and WCO-BMVDR
for « = 1 in green (iii). Unprocessed signal in black (iv).
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Figure 34 — Plots of WPESQR (a) and BSINR (b), considering Office | environment (reverberation time of 300 ms), with —10 dB <
iISIRR < 30dB, and iISNRR — oo, for the I-BMVDR in blue (i); E-BMVDR in red (ii); S-BMVDR in magenta (iii); and
WCO-BMVDR for o = 1 in green (iv). Unprocessed signal in black (v).
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5.10 SIR AND INTERFERENCE NOISE DIVERSITY

For this experiment, it was considered a set of 24 speech signals that were not
applied for calculating 6(k) in Section 3.4.4. Three different types of interference sources
were employed: ICRA-1 (synthetic and unmodulated noise); car engine, and cafeteria
babble (real-world noise). This experiment aims to assess the performance of the
proposed technique under noises with different temporal and spectral characteristics.
Artificial additive contamination of speech signals was performed for obtaining iSIRR
from 0 dB to 15 dB in steps of 5 dB, which correspond to common real-world situations
for older patients with mild-to-moderate hearing loss (WU et al., 2018).

Figure 35 shows bi-dimensional boxplots, in terms of WPESQR and SINRR.
This representation permits joint assessment of both quality and acoustic comfort
performance (CHIEA; COSTA; BARRAULT, 2019). Results for the E-BMVDR as well
as the WCO-BMVDR beamformers, using the conservative robustness parameter
d(k) = dcon(k) in (175), and the restrained one §(k) = dres in (176) for a« = 1.25 are
presented®. A number of 30 realizations was performed for allowing statistical analysis.
Plots in the first row of Figure 35 have iSIRg = 15 dB, while those in the second row
have iSIRR = 10 dB. Results for ICRA-1, car engine noise and cafeteria babble are
respectively presented in the first, second and third columns.

All simulations indicate that the conservative robustness parameter deteriorates
the beamformer performance as compared to the E-BMVDR. On the other hand,
for iISIRR = 15 dB (Figure 35a, 35b, and 35c) the restrained parameter resulted
in significant improvements for WPESQ. These improvements reduce as the iSIRR
decrease (Figure 35d, 35e, and 35f).

According to McShefferty, Whitmer, and Akeroyd (2016), improvements below 3
dB in the output SINR are not easily perceived by listeners. In this way, the SINR gains
obtained in Figure 35 may be considered psychoacoustically irrelevant.

Table 2 presents a comparison between the E-BMVDR and the WCO-BMVDR
beamformers with 6(k) = dres for @ = {0.25,1.00,1.25,2.00} in terms of WPESQ mean
value and standard deviation.

3 An explanation for using this « value (slightly different from 1.0) is the use of a median value operation
in Equation (176) instead of rejecting all outliers dcon(k), which is later confirmed in Table 2.



Figure 35 — Bi-dimensional box-plots using WPESQR and SINRR for the E-BMVDR beamformer in red (i); and the WCO-BMVDR
beamformer, with: the conservative robustness parameter dcon(k) in green (ii); and the restrained parameter dres for
a = 1.25 in blue (iii). Interference level: iSIR = 15 dB in (a), (b) and (c); and iSIR = 10 dB in (d), (e), and (f). Noise: ICRA-1
in (a) and (d); car engine in (b) and (e); and cafeteria babble noise in (c) and (f).
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5.11 STATISTICAL ANALYSIS

Hypothesis tests were applied to verify the statistical significance of the obtained
results. Comparisons between the E-BMVDR and WCO-BMVDR beamformers with
dres With o = {0.25,1.00, 1.25,2.00} were performed considering a sample space of
24 speech signals contaminated by the three types of interference noise (ICRA-1, car
engine, and cafeteria babble). Thirty different epochs of each noise were applied for
iISIRR of 15 dB, 10 dB and 5 dB, resulting in a total of 1040 signals.

Firstly, normality was verified through the Shapiro Wilk test, which was applied to
the residuals of the sample space (H: the sample space has a Gaussian distribution,
at significance level of 1%) (KOZAK; PIEPHO, 2018). Due to the rejection of the null
hypothesis, the Shapiro Wilk test was applied to the samples processed by the boxcox
transformation (OSBORNE, 2010). Since the normal hypothesis was rejected again, the
Friedman test was employed, followed by multiple comparisons through the Bonferroni
test (ELLIOTT; WOODWARD, 2007).

The highest values for each row in Table 2 are presented in bold. Two or more
bold numbers in the same row means they are not statistically different.

Table 2 — WPESQR overall performance for the E-BMVDR beamformer, and the WCO-
BMVDR beamformer with the restrained robustness parameter dres for a =
{0.25,1.00, 1.25,2.00}: mean and standard deviation (i £ o).

Noise type | iSIR; | E-BMVDR WCO-BMVDR WCO-BMVDR WCO-BMVDR WCO-BMVDR
Sres(00 = 0.25)  Sres(a = 1.00)  res(c = 1.25)  Sres(cx = 2.00)
15dB | 3.24+0.58  3.60+0.54 3.92 + 0.42 4.07+0.37 4.01+0.35
ICRA-1 10dB | 3.114+0.56  3.45+0.56 3.69 £ 0.48 3.78 £ 0.50 3.63 & 0.54
5dB | 2.944+0.51  3.17+0.59 3.23 £ 0.60 3.23 £ 0.60 3.06 % 0.59
15dB | 3.37+£0.62  3.69 +0.60 3.99 + 0.44 4.10 + 0.40 4.04 £ 0.46
Carengine | 10dB | 3.22+£0.52  3.50 + 0.57 3.74 £ 0.52 3.80 £ 0.54 3.69 £ 0.55
5dB | 2.934+0.54 3.12+0.63 3.20 £ 0.63 3.16 £ 0.65 3.00 £ 0.64
15dB | 3.35+0.65  3.62+0.61 3.92+0.43 4.06 +0.37 4.03 £043
Cafeteria | 10dB | 3.23+0.69  3.47+0.63 3.67 +0.58 3.76 £ 0.53 3.68 £ 0.54
5dB | 2.92+0.70 3.06+£0.71 3.15 £ 0.70 3.13 £0.70 3.02 £ 0.67

Source: Author.
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5.12 COMPUTATIONAL COMPLEXITY

The assessment of computational complexity is crucial for real-time systems
such as hearing aids (PUDER, 2009). The complexity of the conventional MVDR
beamformer is O((2M)3) (VOROBYOV; GERSHMAN; LUO, 2003; VOROBYOV, 2013).
In addition, numerical solutions such as SOCP for MVDR bemformer (WCO-BMVDR)
in Chapter 3 have complexity of O((2M1)%%) (VOROBYOQV, 2013).

In Chapter 4, a semi-closed version of the WCO-BMVDR beamformer was
derived. This formulation, named EQ-WCO-BMVDR, is obtained by computing A
through numerical methods for zero function problems. In Table 3, we show the average
CPU time by considering 48 runs for the following beamformers: E-BMVDR, SOCP-
WCO-BMVDR, and EQ-WCO-BMVDR, considering M = 3 microphones at each
gadget, K = 256 frequency bins, and the acoustic scenario applied in Section 5.3.
Simulations were performed in a personal desktop computer and Matlab (using non
customized routines).

Table 3 — Average processing time (considering 48 runs) for the E-BMVDR, SOCP-
WCO-BMVDR, and EQ-WCO-BMVDR beamformers, using Matlab (using
standard non-customized routines), in a desktop personal computer with an
Intel Xeon ES-2420 processor, running at 1.90 GHz, for M = 3 microphones
at each gadget, and K = 256 frequency bins.

Parameter | E-BMVDR SOCP-WCO-BMVDR EQ-WCO-BMVDR
CPU time 0.45s 9.80 s 0.64s
Source: Author.

From Table 3, simulations indicated that the EQ-WCO-BMVDR has a low
computational cost (up to 15.3 times) as compared to the SOCP-WCO-BMVDR,
associated to a lower CPU time, achieving the same performance in terms of WPESQ,
and BSINR.

In fact, the high computational cost of the SOCP-WCO-BMVDR beamformer is
related with the presence of an Euclidian norm ||w|| into the constraint. Finally, it is
important to mention that for real-time applications, adaptive implementations should
be considered (CARMO; COSTA, 2018).
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6 EPILOGUE

The proposed WCO-BMVDR beamformer aims to improve the performance of
the conventional (estimated) BMVDR by including a pair of inequality constraints in its
original minimization problem. This is achieved by setting two control parameters (for
each frequency bin), from estimates of the probability density function of the speech
ILD, obtained through the reference microphones of the hearing aids. Such procedure
is supported by the fact that ILD curves obtained from BTE hearing aids are similar to
those measured in the ear (JONES; KAN; LITOVSKY, 2016).

Figure 24 contrasts the effect of large and small values of the robustness
parameter (9) on the magnitude of the array response. It represents a trade-off between
the width of the main lobe on the steered direction and the depth of the null (as ¢
increases, the main lobe width also increases, while the null depth is decreased). For
iISIRR < 5dB, the WCO-BMVDR beamformer was not capable of significantly improving
the array response of the E-BMVDR beamformer. In this case, the WCO-BMVDR might
degrade speech quality and acoustic comfort.

Figure 25 depicts the behavior of WPESQR and SINRR as a function of 4,
for iSIRR = {0dB,5dB,10dB} and iSNRR — oc. It indicates that the robustness
parameter range that provides WPESQR improvements over the E-BMVDR is wider
than for the SINRR. However, it can be observed that there is a considerable range of
values that may provide perceptual gains of quality and acoustic comfort, especially
for higher iSIRR. Figure 26 corroborates the observed findings in Figure 25, indicating
that the WCO-BMVDR beamformer is a promising technique for binaural hearing aids,
which may provide improved WPESQ for iSIRg > 0 dB, as well as output SINR for
the 0 dB < iSIRR < 15 dB range, which is crucial for speech applications (DOCLO;
GANNQOT, et al., 2009). Figure 26 indicates the possibility of obtaining improvements
of upto 1.1 WPESQ and 6.2 dB SINR.

Further experiments extended the preliminary results for three types of noises
with different temporal and spectral characteristics. Bi-dimensional boxplots, relating
both WPESQ and SINR, are presented in Figure 35. It can be verified that the WCO-
BMVDR provides significant WPESQR increase in the 10 dB < iSIRRr < 15 dB range.

It is important to note that the conservative robustness parameter, as expected,
leads to worse performance in all studied scenarios. This occurs because large values
of the robust parameters obtained for high frequencies (see Figure 22) degrade the null
depth in the array magnitude response. For this reason, the restrained parameter was
proposed as a percentage of the median value of the constrained parameter.

Table 2 presents statistical results for WPESQ for all studied scenarios.
Statistically significant differences between the E-BMVDR and WCO-BMVDR mean
WPESQ were observed. The mean WPESQR was improved up to 0.76 WPESQ for
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iSIRR = 15 dB.

The WCO-BMVDR beamformer loses performance with both the increase of
background noise and reverberation time of the acoustic scenario. However, this is not
a major limitation, since in these situations it presents a performance similar to the
E-BMVDR, which is very close to the upper performance bound given by the I-BMVDR.
Furthermore, comparisons with a stereo version of the robust beamformer presented
in Shen, Chen, and Song (2015) shows that the proposed method provides a superior
performance.

Additional simulations have shown that the WCO-BMVDR beamformer
keeps approximately the same speech binaural-cue preservation of the E-BMVDR
beamformer. Results for non-stationary interference signals (ICRA-7 in Dreschler et al.
(2000)) are similar to those obtained with ICRA-1. From the obtained results we may
conclude that the proposed WCO-BMVDR has a significant potential for improving the
BMVDR performance in practical implementations. Hereafter, new designing methods
for its control parameters should be investigated.

6.1 CONCLUSION

This work proposed a robust minimum variance distortionless response
beamformer for binaural hearing aid applications. It is based on the worst-case
optimization method, aiming robustness against parameter estimation inaccuracies.
This is desirable since the conventional BMVDR is sensitive to estimation errors in both
noise coherence matrix and steering vector. These mismatches result in speech quality
and acoustic comfort degradation, avoiding the continuous use of the hearing aids by
the user.

The proposed framework includes a physical-based method for designing the
control parameters, as a function of estimates of the ILD probability density function
of the noisy-speech. These parameters establish a trade-off between the width of the
main beam lobe against the null depth, helping the hearing aid designer to define the
optimum setup with respect to speech quality and acoustic comfort.

Statistical experiments with synthetic and real-world noises, indicated the
possibility of psychoacoustic significant WPESQ improvements in the SIR > 10 dB
range.
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6.2 PUBLICATIONS

During this work, the following papers were produced:

« LOBATO, Wilmer; COSTA, Mércio. Worst-Case-Optimization Robust-MVDR
Beamformer for Stereo Noise Reduction in Hearing Aids. IEEE Transactions
on Audio, Speech, and Language Processing, v. 28, p. 2224-2237, 2020.

« LOBATO, Wilmer; COSTA, Marcio. Conformador de feixe robusto MVDR baseado
na otimizagao de desempenho do pior caso para aparelhos auditivos binaurais.
In: XXXVIII Simpdsio Brasileiro de Telecomunicagcdes e Processamento de
Sinais (SBrT 2020), Florianépolis, 2020. Accepted for presentation.
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ANNEX A — LIST OF SPEECH SENTENCES

For simulations, a set of thirty speech sentences obtained from IEEE (1969) and
Hu and Loizou (2007) are listed in Table 4. These sentences were produced by three
male speakers (labeled as CH, DE, and Sl); and three female speakers (labeled as JE,
Kl, and TI).

Table 4 — List of speech sentences used for designing the robustness parameter

dcon (k).
Filename | Speaker | Gender Sentence
sp01.wav "The birch canoe slid on the smooth planks".
sp02.wav "He knew the skill of the great young actress".
sp03.wav CH Male "Her purse was full of useless trash".
sp04.wav "Read verse out loud for pleasure”.
sp05.wav "Wipe the grease off his dirty face".
sp06.wav "Men strive but seldom get rich”.
sp07.wav "We find joy in the simplest things".
sp08.wav DE Male "Hedge apples may stain your hands green".
sp09.wav "Hurdle the pit with the aid of a long pole”.
sp10.wav "The sky that morning was clear and bright blue".
sp11.wav "He wrote down a long list of items".
spi2.wav "The drip of the rain made a pleasant sound".
sp13.wav JE Female | "Smoke poured out of every crack”.
spi14.wav "Hats are worn to tea and not to dinner".
spi15.wav "The clothes dried on a thin wooden rack”.
spi16.wav "The stray cat gave birth to kittens".
spi17.wav "The lazy cow lay in the cool grass”.
sp18.wav Ki Female | "The friendly gang left the drug store".
sp19.wav "We talked of the sideshow in the circus".
sp20.wav "The set of china hit the floor with a crash”.
sp21.wav "Clams are small, round, soft and tasty".
sp22.wav "The line where the edges join was clean".
sp23.wav Sl Male "Stop whistling and watch the boys march".
sp24.wav "A cruise in warm waters in a sleek yacht is fun”.
sp25.wav "A good book informs of what we ought to know".
sp26.wav "She has a smart way of wearing clothes".
sp27.wav "Bring your best compass to the third class”.
sp28.wav Tl Female | "The club rented the rink for the fifth night".
sp29.wav "The flint sputtered and lit a pine torch".
sp30.wav "Let us all join as we sing the last chorus”".
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ANNEX B - THE BINAURAL VERSION OF THE S-MVDR BEAMFORMER

The contaminated coherence matrix can be expressed through the singular value
decomposition (SVD) method in the form (SHEN; CHEN; SONG, 2015):

N-1
by, = Z reell = E;AGET + E A, EN (294)

i=0
inwhichE; = [ey ... e;;En=1[es.; ... ey ) As = diag()g,...,)\s); and
A, = o2l ;1. Furthermore, the ortogonality principle ensures the following property

E!}'a =0.
In this way, two constraints C; and Cy are imposed on the steering vector a
(SHEN; CHEN; SONG, 2015):

C1={a:a=E;agp} (295)
Cy={a:a=Vay} (296)

The projection operations are written as P¢, = EsEf and P, = V,VH (SHEN;
CHEN; SONG, 2015):

Qes = VN - P{PCl PC’Q} (297)

in which P{-} denotes the eigenvector associated with the largest eigenvalue.
The covariance matrix can be reconstructed as (SHEN; CHEN; SONG, 2015):

&,. = ESE (298)

According to (SHEN; CHEN; SONG, 2015), the weight vector of the proposed
approach is computed as:

K
WSBMVDR = 5~ 1.

(299)
aeHS (PT(E aes
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