

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS JOINVILLE CENTRO TECNOLÓGICO DE JOINVILLE DEPARTAMENTO DE ENGENHARIAS DA MOBILIDADE ENGENHARIA AUTOMOTIVA SEMESTRE 2020.2

I. IDENTIFICAÇÃO DA DISCIPLINA

Código: EMB 5304 **Nome:** Motores de Combustão Interna I

Carga horária: 72 horas-aula Créditos: 04

Turma(s): 07603

Professor: Leonel R Cancino.

II. CONDIÇÕES DE OFERTA EM ENSINO REMOTO (Resolução 140/2020/CUN)

Quesito	RESPOSTA
Marque ao lado os horários alocados para a disciplina exatamente como está no CAGR (formato 2.1010-3 => dia.início-ha)	Horário 1: 2.1330-2 Horário 2: 3.1330-2
Qual o horário ⁽¹⁾ será reservado para as <u>atividades</u> <u>síncronas da disciplina</u> ⁽²⁾ ? (1) este horário deve estar de acordo com o horário do CAGR do item anterior; (2) o estudante não deve prever nenhuma outra atividade concomitante no mesmo horário.	Atividades Síncronas: Segundas, 13:30h às 15:10h Terças, 13:30h às 15:10h
Observado o item anterior, qual a periodicidade prevista para ocorrerem as atividades síncronas de ensino e atendimento aos estudantes, excetuando-se eventuais avaliações síncronas?	As atividades síncronas de <u>ensino</u> e <u>atendimento</u> aos estudantes ocorrerão: (X) em todos os horários do item anterior () semanalmente () quinzenalmente
Quais as plataformas digitais a serem utilizadas nos encontros síncronos?	Plataforma: BBB-Moodle
Como o docente planeja realizar a aferição de frequência por parte dos estudantes na disciplina?	Chamada, em cada aula via ferramenta do BBB-Moodle
O docente disponibilizará o material gravado das atividades síncronas para que os alunos possam acessá-lo de forma assíncrona posteriormente?	() SIM (X) NÃO Plataforma:
Que tipo de material de apoio pedagógico o docente disponibilizará aos alunos para estudo assíncrono?	Slides das aulas, materiais de referência para leitura (artigos científicos, TCC's, dissertações e teses de doutorado)
Como o docente pretende realizar a avaliação e aproveitamento dos estudantes na disciplina? (o docente deve especificar claramente os instrumentos, plataformas e	Três trabalhos a serem entregues em data previamente informada no cronograma da disciplina. Dois destes trabalhos deverão ser

metodologias de avaliação)	entregues no mesmo dia (e horário da disciplina no Moodle) de lançamento no Moodle, e o terceiro trabalho será lançado com no mínimo duas semanas de antecedência à data de entrega indicada no plano de ensino
O docente solicitará dos estudantes a instalação de software(s) para o desenvolvimento da disciplina que não esteja(m) disponível(eis) no Terminal de Softwares da UFSC?	() SIM (X) NÃO Quais:

Bibliografia de Acesso Digital para esta disciplina.

- Internal Combustion Engines Fundamentals John B Heywood, disponível em: https://gctbooks.files.wordpress.com/2016/02/internal-combustion-engine-fundamentals-by-j-b-heywood.pdf
- Introduction to Internal Combustion Engines Richard Stone, disponível em: http://160592857366.free.fr/joe/ebooks/Automative%20engineering%20books/Introduction-to_Internal_Combustion_Engines.pdf

Abaixo, o docente deve apresentar informações adicionais relacionadas à forma de oferta da disciplina, avaliação e aferição de frequência e utilização de materiais em outros idiomas.

- A avaliação será feita via média ponderada de três trabalhos (Trabalho 1, Trabalho 2, e Trabalho 3), dois dos quais serão lançados no Moodle para entrega no mesmo dia (Trabalho 1 e Trabalho 2, datas sinalizadas no cronograma), e mais um trabalho (Trabalho 3) para entrega com data especificada no cronograma da disciplina e lançado no Moodle com no mínimo 15 dias de antecedência.
- A aferição da frequência será realizada da seguinte forma: 75% da presença individual, chamada em todos os eventos síncronos, e 25% presença avaliada de acordo com o aproveitamento do estudante.
- A maioria do material de referência para esta disciplina encontra-se em língua inglesa. Somente os slides das aulas, disponibilizados no Moodle estarão em língua portuguesa.

III. PRÉ-REQUISITO(S):

- EMB5103 Transmissão de Calor I
- EMB5431 Fundamentos de Combustão

IV. EMENTA

- Conceitos fundamentais, definição, classificação e aplicações típicas de MCI.
- Ciclos termodinâmicos ideais e reais (teóricos e indicados).
- Parâmetros e curvas características de MCI (Desempenho de motores).
- Sistemas de dosagem de combustível e sistemas de distribuição.
- Carga e movimentação de gases no cilindro Sobrealimentação.
- Combustão típica de motores de ignição por faísca.
- Combustão típica de motores de ignição por compressão.
- Sistemas de lubrificação e refrigeração em motores.
- Combustíveis de origem fóssil e combustíveis alternativos.
- Produção e mitigação de emissões poluentes.

V. OBJETIVOS

No final do curso, o aluno deverá ser capaz de:

- ✓ Conceituar, classificar e identificar as aplicações de motores de combustão interna.
- ✓ Analisar os ciclos operacionais (ideais e reais) para motores Otto e Diesel.
- ✓ Definir e identificar e calcular os principais parâmetros de operação e desempenho de MCI.
- ✓ Analisar o funcionamento dos sistemas de alimentação em motores Otto e Diesel.
- ✓ Identificar e analisar as diferenças entre os processos de ignição e combustão nos motores Otto e Diesel.
- ✓ Identificar, conceituar e analisar sistemas de sobrealimentação e a sua influência na carga e movimentação de gases no cilindro.
- ✓ Identificar e analisar sistemas de lubrificação e arrefecimento em MCI
- ✓ Identificar, conceituar e analisar as os principais mecanismos de produção de poluentes e as diferentes formas para a mitigação dos mesmos nos MCI.
- ✓ Conceituar propriedades físico-químicas dos combustíveis (de origem fóssil e alternativos) e analisar suas influências na operação dos motores.

VI. CONTEÚDO PROGRAMÁTICO

UNIDADE 1 – CONCEITOS FUNDAMENTAIS, DEFINIÇÃO, CLASSIFICAÇÃO E APLICAÇÕES TÍPICAS DE MCI

- 1.1 Generalidades.
- 1.2 Perspectiva histórica.
- 1.3 Motores alternativos e rotativos.
- 1.4 Funcionamento dos motores de ignição por faísca elétrica.
- 1.5 Funcionamento dos motores de ignição por compressão.
- 1.6 Motores de 2T e 4T.
- 1.7 Motores híbridos (Estratificação de injeção e Motores multicombustível).
- 1.8 Aplicações de MCI.

UNIDADE 2 – CICLOS TERMODINÂMICOS IDEAIS E REAIS

- 2.1 Ciclo a volume constante (Otto).
- 2.2 Ciclo a pressão constante (Diesel).
- 2.3 Ciclo com pressão limitada (Dual).
- 2.4 Comparação entre ciclos.
- 2.5 Análise do ciclo a ar.
- 2.6 Combustão de hidrocarbonetos Termoquímica de misturas.
- 2.7 Análise do ciclo ar–combustível.

UNIDADE 3 – PARÂMETROS E CURVAS CARACTERÍSTICAS DE MCI

- 3.1 Características principais em MCI.
- 3.2 Parâmetros/relações geométricas em MCI.
- 3.3 Potência, Torque, Pressão média efetiva e Rendimentos.
- 3.4 Consumo específico, Rendimento volumétrico, Cilindrada, Velocidade de rotação.
- 3.5 Densidade do ar, influência das condições atmosféricas.
- 3.6 Análise de curvas características (potência, torque e consumo específico de combustível).

UNIDADE 4 – SISTEMAS DE DOSAGEM DE COMBUSTÍVEL

- 4.1 Carburação e sistemas de injeção (Otto e Diesel).
- 4.2 Sistemas de distribuição.
- 4.3 Diagrama de comando de válvulas.

UNIDADE 5 – CARGA E MOVIMENTAÇÃO DE GASES NO CILINDRO - SOBREALIMENTAÇÃO

- 5.1 Processos de carga e descarga de gases em motores de 4T
- 5.2 Escoamento através de válvulas.
- 5.3 Fração residual de gases.
- 5.4 Sobrealimentação em motores.

UNIDADE 6 – COMBUSTÃO EM MOTORES DE IGNIÇÃO POR FAÍSCA

- 6.1 Características.
- 6.2 Análise termodinâmica.
- 6.3 Estrutura e propagação de chamas pré-misturadas.
- 6.4 Variação de ciclos em MIC de ignição por faísca.
- 6.5 Ignição por faísca.
- 6.6 Combustão normal e anormal (detonação).

UNIDADE 7 – COMBUSTÃO EM MOTORES DE IGNIÇÃO POR COMPRESSÃO

- 7.1 Características e diferenças em relação aos motores Otto.
- 7.2 Tipos de sistemas Diesel.
- 7.3 Estrutura da chama e geometria de câmaras de combustão.
- 7.4 Análises de dados de pressão em cilindros.
- 7.5 Atomização (spray) de combustíveis em motores Diesel.
- 7.6 Atraso de ignição e ocorrência de detonação.

UNIDADE 8 – SISTEMAS DE LUBRIFICAÇÃO E ARREFECIMENTO EM MOTORES

- 8.1 Caraterísticas e generalidades.
- 8.2 Tipos de sistemas de lubrificação.
- 8.3 Óleos lubrificantes, propriedades, aditivos e classificação.
- 8.4 Sistemas de arrefecimento em MCI.
- 8.5 Limites de temperatura.
- 8.6 Introdução ao balance de fluxos de calor em MCI.

UNIDADE 9 – COMBUSTÍVEIS DE ORIGEM FÓSSIL E COMBUSTÍVEIS ALTERNATIVOS

- 9.1 Combustíveis de origem fóssil.
- 9.2 Combustíveis alternativos.
- 9.3 Aplicações em MCI.

UNIDADE 10 – PRODUÇÃO E MITIGAÇÃO DE EMISSÕES POLUENTES

- 10.1 Natureza e extensão do problema Legislação.
- 10.2 Óxidos de Nitrogênio.
- 10.3 Monóxido de carbono e HC não queimados.
- 10.4 Fuligem e particulados.
- 10.5 Controle de emissões pré e pós-tratamento.

VII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Os diferentes conteúdos da disciplina serão discutidos em forma de palestras / aulas expositivas, no entanto, alguns conteúdos e material (slides) de cada aula serão disponibilizados no Moodle, com antecedência a cada aula, no intuito de usar o modelo de "sala de aula invertida", buscando o melhor aproveitamento da disciplina.

Adicionalmente, ao longo do curso será introduzido o programa AVL (https://www.avl.com/web/guest/simulation) para processos de simulação em motores de combustão interna. O aluno terá a opção de fazer download do programa e fazer a instalação do mesmo no seu computador pessoal (desktop / laptop).

Não será cobrado nada associado ao AVL nos trabalhos da disciplina, o processo de introdução e utilização do AVL será escolha do aluno, sem ter inferência na nota de aproveitamento final da disciplina.

VIII. METODOLOGIA DE AVALIAÇÃO

Será realizada por intermédio de avaliação individual (três trabalhos) ao longo do desenvolvimento do curso, da seguinte forma e ponderação:

- Trabalho 1, correspondente a 35 % da nota,
- Trabalho 2, correspondente a 35 % da nota,
- Trabalho 3, correspondente a 30% da nota,

A data e o lançamento dos trabalhos no Moodle da turma estão marcados no item CRONOGRAMA. Os trabalhos 1 e 2 serão lançados no Moodle no mesmo dia que deverão ser entregues pelo aluno, via Moodle, em formato de apresentação livre. O trabalho 3 será lançado no Moode da turma duas semanas antes da data de entrega. O aluno deverá entregar o Trabalho 3, usando as normas de apresentação de trabalhos ABNT disponível no site da Biblioteca Universitária - http://www.bu.ufsc.br/design/Estrutura.html, contendo a análise dos resultados obtidos. Será considerado aprovado o estudante que alcançar a média igual ou superior a 5,75 (cinco vírgula setenta e cinco) ao final do semestre letivo.

IX. AVALIAÇÃO FINAL

O(a) aluno(a) com média das notas entre três (3,0) e cinco vírgula cinco (5,5) terá direito a uma nova avaliação (Recuperação) no final do semestre que versará sobre todo o conteúdo da disciplina, conforme o que dispõe o § 2º do Art. 70 e § 3º do Art. 71 da Resolução nº 17/Cun/97. Neste caso, a média final será calculada através da média aritmética simples entre a média das notas das avaliações feitas durante o semestre e a nota obtida na nova avaliação (Recuperação). A nota mínima de aprovação é seis (6,0). A nova avaliação (Recuperação) supracitada consistirá em um trabalho, a ser realizado num período de tempo máximo de 2 horas após o lançamento do mesmo no Moodle da disciplina, na data (e horário da aula cadastrado no CAGR) marcado no Cronograma.

X. CRONOGRAMA

Semana	Data	Dia de aula, na semana correspondente	Aula#	Conteúdo	
	01/02/2021	Segunda-feira	1	Apresentação do plano de ensino	
S 1			2	1.1 - 1.2 - 1.3 - 1.4	
31	02/02/2021	Terça-feira	3	1.5 - 1.6 - 1.7 - 1.8	
			4	1.5 - 1.6 - 1.7 - 1.8	
S2	08/02/2021	Segunda-feira	5	2.1 - 2.2 - 2.3	
			6		
	09/02/2021	Terça-feira	7	2.4 - 2.5	
			8	2.4 - 2.3	
S 3		15/02/2021	5/02/2021 Segunda-feira —		Dia não letivo
	13/02/2021	Segunda-terra			Dia nao leuvo
	16/02/2021 Terça-feira		Dia não letivo		
		rerça-rerra		Dia nau leuvu	
S4	22/02/2021 Seg	Cogundo foiro	22/02/2021 Sagunda faire	9	2.6 - 2.7 - Lançamento do
		Segunda-feira	Segunda-terra 10	Trabalho 3 no Moodle	

	23/02/2021	Terça-feira	11	3.1 - 3.2
	01/03/2021	Segunda-feira	13 14	3.3 - 3.4
S5 02/03/202	02/03/2021	Terça-feira	15 16	3.5 - 3.6
S6	08/03/2021	Segunda-feira	17 18	4.1 - 4.2
	09/03/2021	Terça-feira		Dia não letivo
	15/03/2021	Segunda-feira	19 20	4.3 - 5.1 - 5.2
S7	16/03/2021	Terça-feira	21 22	Entrega Trabalho 3 5.3 - 5.4
go	22/03/2021	Segunda-feira	23 24	Lançamento do Trabalho 1 no Moodle / Entrega do Trabalho 1
S 8	23/03/2021	Terça-feira	25 26	6.1 - 6.2
G 0	29/03/2021	Segunda-feira	27 28	6.3 - 6.4
S 9	30/03/2021	Terça-feira	29 30	6.5
010	05/04/2021	Segunda-feira	31 32	6.6
S10	06/04/2021	Terça-feira	33 34	7.1 - 7.2
011	12/04/2021	Segunda-feira	35 36	7.3 - 7.4
S11	13/04/2021	Terça-feira	37 38	7.5 - 7.6
010	19/04/2021	Segunda-feira	39 40	8.1 - 8.2
S12	20/04/2021	Terça-feira	41 42	8.3 - 8.4
012	26/04/2021	Segunda-feira	43 44	8.5 - 8.6
S13	27/04/2021	Terça-feira	45 46	9.1 - 9.2(a)
014	03/05/2021	Segunda-feira	47 48	9.2(b) - 9.3
S14	04/05/2021	Terça-feira	49 50	10.1 - 10.2 - 10.3
015	10/05/2021	Segunda-feira	51 52	10.4 - 10.5
S15	11/05/2021	Terça-feira	53 54	Lançamento do Trabalho 2 no Moodle / Entrega do Trabalho 2

		Cagunda faina	55	Dogwood
C16		17/03/2021 Segunda	Segunda-feira	56
S16 18/05/2021	18/05/2021 Terça-feira -	Terça-feira	57	A tondimente alunes
			58	Atendimento alunos

Observações:

- O cronograma está sujeito a alterações.
- O aluno precisará de 14 horas-aula de estudo em casa para realização dos trabalhos da disciplina, completando de esta forma a carga horaria de 72 horas-aula.
- Quintas-feiras, no horário das 08:00 às 12:00 horas, sob agendamento prévio via e-mail, o professor da disciplina estará disponível para **atendimento a alunos** em sala virtual do Google Meet / Conferência web RNP.

XI. BIBLIOGRAFIA BÁSICA

- HEYWOOD, J.B. Internal Combustion Engines Fundamentals. New York: McGraw-Hill, 1988. ISBN: 978-0-07-028637-5
- MARTINS, J. Motores de Combustão Interna. 3ª Edição. Editora Publindústria. ISBN: 9789728953850. 2011.
- CHOLLET, H.M. Curso Prático Profissional para Mecânica de Automóveis: O Motor. Editora: Hemus. ISBN-10: 8528900363, 2002.

XII. BIBLIOGRAFIA COMPLEMENTAR

- CHOLLET, H.M. Curso Prático Profissional para Mecânica de Automóveis: O Veículo. Editora: Hemus. 2002.
- JOHNSON, J.H. SI Engine Emissions. SAE International. 2005.
- STONE, R. Introduction to Internal Combustion Engines. Third Edition. SAE International and Macmillan Press. 1999.
- BOSCH: Automotive Handbook. 25ª Edição. Alemanha. Editora SAE.

XIII. OBSERVAÇÕES

1) SOBRE O CALENDÁRIO

O calendário poderá sofrer alterações.

2) SOBRE A BIBLIOGRAFIA

Adicionalmente, recomendam-se os seguintes livros para consulta:

- TAYLOR, Charles F. Análise dos motores de combustão interna. Tradução de Mauro Ormeu Cardoso Amorelli. São Paulo: Edgard Blucher, 1995. v.1.
- TAYLOR, Charles F. Análise dos motores de combustão interna. Tradução de Mauro Ormeu Cardoso Amorelli. São Paulo: Edgard Blucher, 1995. v.2.

Atualizado em:

Joinville, 07 de Dezembro de 2020.