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RESUMO

Vídeos digitais demandam bastante espaço para armazenamento e largura de banda
para transmissão, o que pode ser tratado codificando os dados de maneira a comprimi-
los. A solução do estado da arte para codificação de vídeos é conhecida como High

Efficiency Video Coding (HEVC). O HEVC incorpora várias ferramentas que o tornam
altamente adaptável a diferentes tipos de conteúdo de vídeo. Porém, tais ferramentas
requerem a tomada de diversas decisões durante o processo de codificação. Por
exemplo, o HEVC Model (HM), que é o software de referência do HEVC, toma tais
decisões considerando os impactos tanto em distorção quanto em taxa de bits através
do algoritmo de Otimização de Taxa-Distorção (RDO). No RDO, um Multiplicador de
Lagrange (λ) é aplicado sobre os valores de taxa a fim de definir a importância (peso)
da taxa de bits em relação à distorção. Todavia, ainda há a necessidade de definir um
λ de forma a dar um peso adequado à taxa de bits em relação à distorção. Pode-se
encontrar diversos trabalhos da literatura fornecendo um embasamento de como definir
valores de λ considerando duas das métricas usadas no HM, Soma das Diferenças
Quadráticas (SSD) e Soma das Diferenças Absolutas (SAD). Porém, na literatura há
uma lacuna de trabalhos avaliando valores para λ considerando a métrica de Soma das
Diferenças Absolutas Transformadas (SATD). Tal lacuna na literatura é especialmente
significativa pois a SATD é a métrica padrão de cálculo de distorção para o RDO na
etapa de Estimação de Movimentos Fracionária (FME) do HEVC. Neste trabalho, foram
realizados dois conjuntos de experimentos com fatores multiplicativos constantes (m)
aplicados sobre os valores de λ padrões a fim de avaliar os impactos em eficiência
do HM ao mudar λ. O primeiro conjunto (Cenário-I) consistiu em multiplicar por m

os valores de λ usados na ME, tanto com a SAD quanto com a SATD. No segundo
conjunto apenas os valores de λ usados na etapa de FME (portanto, usando a SATD)
foram multiplicados por m no (Cenário-II). No caso do Cenário-I, percebeu-se que
multiplicadores com valores na faixa 0.9 ≤ m ≤ 1.2 produziram resultados similares
(incluindo a referência com m = 1). Por outro lado, o Cenário-II apresentou ganhos
em eficiência de codificação do HM ao aumentar os valores de λ na FME por um
fator de m = 1.3. Nós também amostramos a distorção e a taxa a partir da função de
FME durante a execução dos testes descritos. A partir dos dados amostrados, nós
buscamos correlações entre distorção ou taxa com o melhor valor de m para cada
vídeo testado. Porém, nenhuma das métricas avaliadas apresentou correlação com os
melhores valores de m, contradizendo assim as afirmações feitas em um dos trabalhos
correlatos mais relevantes.

Palavras-chave: HEVC 1. Estimação de Movimento 2. Otimização de Taxa Distorção
3. Multiplicadores de Lagrange 4. SAD 5. SATD 6.



RESUMO EXPANDIDO

Introdução
Vídeos digitais demandam bastante espaço para armazenamento e largura de banda
para transmissão, o que pode ser tratado codificando os dados de maneira a comprimi-
los. A solução do estado da arte para codificação de vídeos é conhecida como High

Efficiency Video Coding (HEVC). Tal padrão de codificação usa uma arquitetura co-
nhecida como arquitetura híbrida de codificação, a qual é composta por quatro etapas
básicas: predição, transformada, quantização e codificação de entropia. A primeira
etapa busca, dentre um conjunto de blocos candidatos, aquele que resulta em melhor
substituição do candidato original. Assim, o candidato escolhido passa a ser deno-
minado “bloco de referência”. A substituição de um bloco original é feita usando a
diferença entre tal bloco e o respectivo bloco de referência (a diferença é chamada de
resíduo), juntamente com informações necessárias para a obtenção do bloco de refe-
rência. A etapa de transformada tem o papel de transformar os resíduos do domínio
espacial para o domínio de frequências, melhorando a eficácia das etapas subsequen-
tes. A terceira etapa (quantização) aplica divisões sobre as amostras de acordo com
um Parâmetro de Quantização (QP), o que introduz erros pois tais divisões possuem
precisão finita. Porém, a quantização potencialmente acarreta dois efeitos importantes:
(I) redução do número de bits necessários para representar um resíduo e (II) redução
do número de símbolos diferentes representando os resíduos a serem codificados. A
última etapa é a codificação de entropia, a qual opera sobre todos os dados a serem
codificados (ao contrário das etapas de estimação e transformada). Esta etapa final
reduz o número de bits resultantes de codificações ao substituir os símbolos mais
comuns por códigos que usam menos bits enquanto atribui códigos com mais bits para
representar símbolos menos usados. Além disso, a etapa de predição é dividida em
dois modos, intra e inter, sendo que uma decisão de modo posteriormente escolhe
entre a referência da intra e da inter. No caso da predição intra, os candidatos são ge-
rados a partir do mesmo quadro do bloco original. A predição inter, por sua vez, obtém
os candidatos a partir de quadros previamente codificados e é subdividida em duas
etapas: IME e FME. Considerando todas essas etapas, muitas decisões que afetam
a eficiência de codificação precisam ser tomadas durante o processo de codificação.
Uma solução clásica para este problema consiste em considerar os impactos tanto em
distorção (D) quanto em taxa de bits (R) através do algoritmo de Otimização de Taxa-
Distorção (RDO), de acordo com um custo J = D +λ×R. No RDO, um Multiplicador de
Lagrange (λ) é aplicado sobre os valores de taxa a fim de definir a importância (peso)
da taxa de bits em relação à distorção. Todavia, ainda há a necessidade de definir
como os valores compondo o custo J são obtidos. No caso do HEVC Model (HM),
que é o software de referência do HEVC, os valores de distorção e taxa são obtidos
diferentemente, conforme a etapa de predição. Desta forma, também são necessários
diferentes valores para λ de forma a manter relações adequadas de peso entre a taxa
de bits e a distorção. Por isso, neste trabalho é adotada uma notação para representar
a métrica de distorção e a etapa em que um determinado Multiplicador de Lagrange é
usado. No caso da decisão de modo usando a métrica chamada de Soma das Diferen-
ças Quadradas (SSD), a notação usada é λmode,SSD. Durante a IME, por sua vez, a
decisão usa a métrica de Soma das Diferenças Absolutas (SAD), e assim, a notação
usada é λmotion,SAD. No caso da FME, a métrica utilizada é a Soma das Diferenças
Transformadas Absolutas (SATD) e por isso, a notação usada é λmotion,SATD. Pode-se



encontrar diversos trabalhos da literatura fornecendo um embasamento de como definir
valores para λmode,SSD e λmotion,SAD. Porém, há uma lacuna de trabalhos avaliando
valores para λmotion,SATD. Considerando os problemas mencionados na literatura a
respeito de ajustes de Multiplicadores de Lagrange, há a necessidade de mais informa-
ção nos impactos de tais valores. Portanto, este trabalho busca clarificar os impactos
de se variar o peso da componente R no cálculo de custo do RDO. Além disso, foi
realizada uma análise aprofundada do caso de usar a métrica de SATD, por se tratar
da maior lacuna na literatura. Por isso, este trabalho tem como escopo os valores
usados na predição inter, λmotion,SAD e λmotion,SATD, especialmente com respeito ao
Multiplicador de Lagrange a ser usado em conjunto com a SATD.

Objetivos
O objetivo geral deste trabalho é analisar as repercuções, em termos de eficiência de
codificação, de se variar os Multiplicadores de Lagrange a serem usados com o RDO,
considerando a SATD como métrica de distorção. A fim de atingir o objetivo geral, foram
realizadas análises mais específicas avaliando os seguintes aspectos: (I) a equação
para λ considerando a SATD de maneira análoga à definição da equação para o caso
da SSD; (II) quais valores de λ resultam em melhor eficiência de codificação; (III)
correlações entre características como o conteúdo do vídeo, a taxa ou a distorção e os
valores de λ que resultam em melhor eficiência.

Metodologia
Primeiramente, foram consideradas tanto abordagens analíticas quanto empíricas. Um
dos principais trabalhos analíticos foi apresentado por Gish e Pierce (1968) e propôs
um modelo de distorção em função de quantização, sendo genérico quanto à medida
de erro. T. Wiegand e Girod (2001) adaptaram o modelo de Gish e Pierce (1968) para
o caso da SSD e, com base nisso, desenvolveram um modelo para λmode,SSD em
função do quadrado da quantização. Além disso, T. Wiegand e Girod (2001) também
propuseram um ajuste para λmotion,SAD usando a raiz quadrada de λmode,SSD. Tal
ajuste pode ser justificado pela diferença do cálculo entre as métricas de SSD e SAD
aonde a primeira faz o quadrado das diferenças, enquanto que a segunda calcula o
absoluto. Por conta dos trabalhos de Gish e Pierce (1968) e T. Wiegand e Girod (2001)
parece natural a possibilidade de adaptar tais formulações para o caso da SATD. Porém,
não há um ajuste trivial, como a aplicação de uma raiz quadrada, para modelar a etapa
extra de transformada. Além disso, pode-se considerar adaptar a SATD no modelo de T.
Wiegand e Girod (2001) calculando uma integral pixel a pixel sobre os erros, conforme
o modelo de Gish e Pierce (1968). Esta segunda alternativa analítica tem por problema
o fato de que a transformada da SATD é aplicada aos erros como um todo e gera uma
dependência espacial entre todos os pixels de um bloco sendo processado. Por isso,
não foi possível calcular a integral da modelagem original e optou-se por buscar uma
solução empírica. Desta forma, é preciso definir os experimentos a serem realizados
para a obtenção de dados empíricos. Neste trabalho, foram realizados dois conjuntos
de experimentos com fatores multiplicativos constantes (m) aplicados sobre os valores
de λ padrões a fim de avaliar os impactos em eficiência do HM (versão 16.15) ao mudar
λ. O primeiro conjunto (Cenário-I) consistiu em multiplicar por m os valores de λ usados
na predição inter, ou seja, tanto λmotion,SAD quanto λmotion,SATD. No segundo conjunto
(Cenário-II), apenas os valores de λ usados na etapa de FME (portanto, λmotion,SATD)
foram multiplicados por m. Para cada cenário foram executados testes com as mesmas



configurações, considerando um conjunto de 22 valores para m e 4 QPs para codificar
47 sequências de vídeo. Desta forma, cada cenário foi avaliado considerando 4136
execuções do HM, totalizando 8272 execuções ao todo.

Resultados e Discussão
No caso do Cenário-I, percebeu-se que os multiplicadores no intervalo 0.9 ≤ m ≤ 1.2
produziram resultados similares (incluindo a referência com m = 1). Por outro lado, o
Cenário-II apresentou ganhos em eficiência de codificação do HM ao aumentar os
valores de λ na FME por um fator de m = 1.3. Durante a execução dos testes, a distor-
ção e a taxa foram amostradas a partir da função de FME do HM. A partir dos dados
amostrados, foram buscadas correlações entre distorção ou taxa com o melhor valor
de m para cada vídeo testado. Porém, nenhuma das métricas avaliadas apresentou
correlação com os melhores valores de m, contradizendo assim as afirmações feitas
em um dos trabalhos correlatos mais relevantes.

Considerações Finais
Este trabalho proporcionou um melhor entendimento a respeito do comportamento da
eficiência de compressão no HM com diferentes Multiplicadores de Lagrange, além
de indicar uma possível melhoria ao aumentar o multiplicador por um fator de m = 1.3.
Além disso, pode-se identificar pelo menos três possibilidades de trabalhos futuros a
partir deste trabalho. Primeiramente, pode-se realizar testes similares com resoluções
mais altas para avaliar se as conclusões obtidas a partir de vídeos de baixa resolução
se confirmam em contextos de alta resolução. Outra possibilidade de trabalho futuro
está em avaliar possíveis interações entre diferentes combinações de multiplicadores
para os λs usados com a SAD e a com a SATD na ME. Finalmente, existe a possi-
bilidade de que, ao combinar mais variáveis, obtenha-se informação suficiente para
encontrar correlações entre as variáveis e os melhores multiplicadores de Lagrange.

Palavras-chave: HEVC 1. Estimação de Movimento 2. Otimização de Taxa Distorção
3. Multiplicadores de Lagrange 4. SAD 5. SATD 6.



ABSTRACT

Digital videos demand large storage space and high bandwidth to be transmitted, which
can be addressed by coding the data in a compressing manner. The state-of-the-art
solution to video coding is the standard dubbed High Efficiency Video Coding (HEVC).
HEVC incorporates various tools making it very adaptable to different kinds of video
content but also requiring several choices to be made during the coding process. For
instance, the HEVC Model (HM), which is HEVC’s reference software, makes such
choices by considering the impacts to both distortion and bit rate through what is known
as Rate-Distortion Optimization (RDO). In RDO, a Lagrange Multiplier (λ) is applied to
the rate values in order to define the importance (weight) of the bit rate in the trade off
with the distortion. Nevertheless, the necessity remains for defining λ such that it weighs
adequately the relationship between rate and distortion. We can find in the literature a
number of works providing some background on how to define the values of λ when
considering the Sum of Squared Differences (SSD) and Sum of Absolute Differences
(SAD) distortion metrics, two of the used metrics in HM. However, there is a lack of
works evaluating λ values considering the Sum of Absolute Transformed Differences
(SATD). Such a gap in the literature is especially significant because the SATD is the
default distortion measure for the RDO in the HEVC step known as Fractional Motion
Estimation (FME). In this work we conducted two sets of experiments with constant
multiplicative factors (m) applied to the default values of λ in order to evaluate the
impacts of changing λ in the performance of HM. The first set (Scenario-I) consisted
in multiplying the λs employed with both SAD and SATD in ME by m. Meanwhile, in
Scenario-II only the λs used in the FME step (i.e., with the SATD) are multiplied by
m. The obtained results show that λs between 0.9 and 1.2 produce similar results
(including the baseline with m = 1) under Scenario-I. On the other hand, Scenario-II
demonstrated coding efficiency gains on HM when increasing λ by a factor of 1.3 for
the FME computation. During the execution of the described tests we also sampled
distortion and rate data from the FME computation function. With the sampled data we
searched for correlations between distortion or rate to the best m value for each tested
video sequence. However, none of the tested metrics showed correlation to the best
ms, which contradicts the claims made by one of the most relevant related works.

Keywords: HEVC 1. Motion Estimation 2. Rate-Distortion Optimization 3. Lagrange
Multipliers 4. SAD 5. SATD 6.
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1 INTRODUCTION

Videos in their raw state (i.e., devoid of any compression) demand massive

storage and/or bandwidth. Equation 1 exemplifies the bit rate for raw Full-HD videos at

30 frames per second (fps) and 24 bits per pixel.

Bit rate =

Resolution
︷ ︸︸ ︷

Height×Width×Bits per Pixel× fps

= 1080×1920×24×30

≈ 1,5Gbits/s

(1)

Such situation can be alleviated by coding the video deploying a set of tools able

to compress the amount of data needed to represent it. By compressing a video without

distorting the image (i.e., lossless coding), the coding efficiency is improved. This idea

can be extended by allowing lossy coding and accounting for bit rate as well as the

amount of distortion inserted. The concept of coding efficiency allows for comparing

the results between different compression solutions (e.g. comparing implementations

of a coding standard).

Currently, the state-of-the-art video coding standard is the so-called High Effi-

ciency Video Coding (HEVC) (SULLIVAN, G. J.; OHM, et al., 2012). Such standard

was developed by a joint team with experts from International Standardization Orga-

nization (ISO) and International Telecommunication Union (ITU) aiming at improving

coding efficiency by 50% compared to its predecessor, the Advanced Video Coding

(AVC)1 (SULLIVAN, Gary J., 2005). Rather than defining an implementation, the HEVC

standard only specifies the bit stream (i.e., the way information has to be coded). Con-

sequently, there is a degree of flexibility to the development of video coders for such

standard. Another characteristic of HEVC is its high adaptability to both bit rate con-

straints and video content. Accordingly, compliant coders can be very adaptable to

coding requirements and video characteristics, which is exemplified by HEVC’s refer-

ence coder, HEVC Model (HM)2 (JCT-VC, 2013). Meanwhile, the reference coder for

AVC is known as Joint Model (JM) (JVT, 2011).

The way HM adapts itself to different situations is by making several coding

decisions at execution time, while still producing video codings in accordance with

the HEVC standard. However, there is the matter of how to make good decisions at

execution time. This problem can be tackled by using the idea of coding efficiency in the

form of Rate-Distortion Optimization (RDO). The classical formulation for RDO is as a

constrained problem, presented in the following equation (SULLIVAN, G. J.; WIEGAND,

T., 1998):

min{D}, subject to R < Rc (2)
1 The AVC and HEVC standards are also known as H.264 and H.265, respectively.
2 Henceforth, this work uses HM as the base video coder.
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where, D and R correspond to, respectively, the calculated distortion3 and bit rate, while

Rc is a rate constraint.

Formulating RDO as a constrained problem has some limitations and may not

be very practical. An alternative is to incorporate the constraint from Equation 2 in the

minimization using a Lagrange Multiplier (λ) as in the following equation (SULLIVAN,

G. J.; WIEGAND, T., 1998):

min{J}, where J = D +λ×R (3)

therefore, in this formulation J is a cost to be minimized. Section 2.2 further discusses

particularities about the RDO and how it fits in different steps of the coding process.

With the latter formulation, each λ value is guaranteed to provide the optimal

solution for an unknown rate constraint. Still, it is necessary to decide which λ value

should be used in a given situation.

The HM implementation of Equation 3 optimizes constants to be adopted in

various scenarios which will be discussed in Section 3.2. Unfortunately, to the best

of our knowledge, such optimization process has not been detailed in the literature.

This problem persists for more specific adjustments as, for instance, when the Sum of

Absolute Transformed Differences (SATD) is to be used as distortion metric (subsec-

tion 2.3.4). In such case, the HM documentation defines an adjustment factor of 0.95

multiplying the corresponding values employed for the Sum of Absolute Differences

(SAD) (subsection 2.3.1) distortion metric, once again with scarce explanation as to

why.

Such problems also occur in some of the classical works that defined the basics

of λ adjustment. For instance, T. Wiegand and Girod (2001) claimed that, when using

SAD as distortion metric, the values should be the square root of those obtained for

the Sum of Squared Differences (SSD) (subsection 2.3.2) distortion metric. However,

the authors’ claim was based on unrevealed empirical data, thus proposing a certain

adjustment without disclosing what led to that.

Fortunately, there are works providing solid reasoning behind their proposals

for λ computation. However, they may arrive into opposing conclusions. Such was the

case with (ZHANG, J. et al., 2010) and (ZHANG, F.; BULL, 2018). The former claimed

λ values should be increased with larger motion, whereas the latter defended that

they should be smaller with dynamic content. Furthermore, another issue pertains to

the values to be used in conjunction with the SATD. Apart from the aforementioned

adjustment applied by HM, there is limited discussion on this matter.

Considering the mentioned issues with the literature regarding Lagrange Multi-

plier adjustments, there is a need for more information on the impacts of such values.

Therefore, we aim to shed more light into the impacts of varying the weight over the R

3 Section 2.3 presents a discussion on a few distortion metrics.
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term from Equation 3. Furthermore, we went into more details on the case of using the

SATD metric, since the largest gap in this area surrounds such scenario.

1.1 GOALS

1.1.1 Main Goal

This work’s main goal is to analyze the coding efficiency repercussions from vary-

ing the Lagrange multipliers to be used in RDO when SATD is employed as distortion

metric.

1.1.2 Specific Goals

Aiming to achieve the main goal, we have to perform more specific analyses by

evaluating the following aspects:

• The Equation for λ considering the SATD in an analoguos way as defined for the

SSD;

• Which λ values result in better coding efficiency;

• Correlations between video content, rate, or distortion characteristics with the λ

values that result in better efficiency.

1.2 CONTRIBUTIONS

The analyses performed in this work improve the understanding of RDO in the

context of Motion Estimation (ME), especially considering the Fractional Motion Estima-

tion (FME) using SATD. Moreover, the results showed that the coding efficiency can

be improved by changing the Lagrange multiplier employed with the SATD. Finally, by

better understanding the problem of λ optimization, we identified inconsistencies in the

state-of-the-art literature.

1.3 ORGANIZATION

The remainder of this work is organized by, firstly, elaborating on the essential

concepts in Chapter 2. Subsequently, Chapter 3 expands on the brief overview of the

works regarding λ optimization while presenting a rough flow of λ formulations over the

years. Next, Chapter 4 details the method employed for our experimentations allowing

the analyses featured in Chapter 5. Finally, the conclusions we arrived at are drawn in

Chapter 6.
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2 BASIC CONCEPTS

This chapter is aimed at providing the basic concepts necessary to better un-

derstand the environment to which this work pertains. For a deeper discussion on the

basic concepts of video coding we suggest the textbook (RICHARDSON, 2002). Also,

for more details specifically to the HEVC we point out the textbook from Sze, Budagavi,

and Gary J Sullivan (2014). The remainder of this chapter is organized starting with a

discussion of the hybrid coding architecture used by modern video coders in Section

2.1. Afterwards, Section 2.2 further elaborates on RDO and how it works in HM. Then,

Section 2.3 presents definitions for the distortion metrics mentioned in Chapter 1. Sec-

tion 2.4 discusses the different types of frames considered through the coding process.

Finally, Section 2.5 features an overview of common coding configurations employed

for the HM.

2.1 HYBRID VIDEO CODING

Both, AVC and HEVC coders follow the hybrid coding architecture, incorporating

prediction and transform techniques. As can be seen in Figure 1, such architecture is

comprised of four basic steps: prediction, transform, quantization and entropy coding.

The first step searches among a set of candidate blocks, the one providing the best

substitution to an original block to become a reference block. The candidate blocks

may be obtained directly from previously coded pixels or through predetermined modes

of generating blocks (mostly through interpolations) Such substitution is performed by

using the difference between the reference and original blocks (residue) along with

the information necessary to obtain the reference block. The transform step has the

role of transforming the residues from the spatial domain to the frequency domain,

improving the efficacy of the subsequent steps. The third step (quantization) applies

divisions according to a Quantization Parameter (QP) so as to reduce the magnitudes

of the transformed residues. Because the divisions in the quantization step have finite

precision, such step ends up by introducing errors to the encoded video. However, by

performing such divisions the quantization potentially leads to two important features:

(I) reduction of number of bits necessary to represent a given residue and (II) reduction

of number of different symbols representing the residues to be coded. The final step

is the entropy coding, e.g., arithmetic coding (RICHARDSON, 2002). Entropy coding

operates on all the data to be encoded, unlike the transform and the quantization steps,

which are applied only to the residues. This final step reduces the overall number of bits

for the resulting coding by substituting the more commonly present symbols by codes

that use few bits and choosing codes that use more bits to represent symbols that are

rarely used.
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to the computation of rate and distortion, the RDO is based on accurate measures for

its components. The drawback of performing all those steps for computing rate and dis-

tortion lies on the significant computational effort required. Because the mode decision

considers fewer candidates this approach still is feasible.

Unfortunately, it is not viable to adopt the same level of thoroughness during inter

prediction due to the many candidates that have to be evaluated, thus, requiring a few

simplifications. Firstly, both the distortion and rate are estimated without applying the

subsequent coding steps to the candidates. In the case of the distortion, it is computed

directly between the candidate and original blocks using the SATD (Subsection 2.3.4,

for FME) or even the SAD (Subsection 2.3.1, for IME) metrics, both of which are easier

to compute. As for the rate, it is estimated from the size of the motion vector for the

candidate being tested. Such simplifications greatly reduce the computational effort per

candidate at the expense of worse estimations on the coding efficiency implications for

the evaluated choices.

Because of the differences to the way the components from Equation 3 are cal-

culated the λs also have to be different. Therefore, henceforth we address the specific

λ for mode decision as λmode while using λmotion for the inter prediction. Furthermore,

because the HM adopts different metrics for IME and FME their corresponding λs are

going to be referred to as λmotion,SAD and λmotion,SATD, respectively. The various λ

designations for the implementations of Equation 3 at the corresponding coding steps

are also depicted in Figure 2.

2.3 DISTORTION AND AVERAGE ERROR METRICS

This section is aimed at providing a brief overview of the distortion metrics

employed in HM for RDO computation (i.e. SAD, SSD and SATD), as discussed in the

previous section. Furthermore, we also present two metrics for average error per pixel,

the Mean Squared Error (MSE) and the Mean Absolute Transformed Error (MATE),

which are going to be used in Chapter 5.

2.3.1 Sum of Absolute Differences (SAD)

SAD is a very simple metric. The first step (shown in Equation 4) is to calculate

the differences between the pixels of an original block (Bori
N×O

) and a candidate block

(Bcan
N×O

). Meanwhile, henceforth, N and O respectively represent the number of rows

and columns in pixel matrices being processed.

Bdiff
N×O = Bcan

N×O –Bori
N×O (4)

Afterwards, the absolute of each difference is computed and added up according
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to the following equation:

sad =
N∑

i=1

O∑

j=1

|di ,j | (5)

, with di ,j being the element in the i-th row and j-th column from a Bdiff
N×O

differences

matrix.

2.3.2 Sum of Squared Differences (SSD)

The SSD is quite similar to the SAD except that the differences are squared

instead of taken the absolute. With that, small homogeneous changes in the blocks

are favored over big discrepancies and, therefore, the perceptual quality2 tends to

be improved. However, the downside is that square operations demand considerably

more computational resources than absolute operations. The equation for the SSD

computation is as follows:

ssd =
N∑

i=1

O∑

j=1

d2
i ,j (6)

2.3.3 Mean Squared Error (MSE)

The MSE corresponds to the average squared difference per pixel and, therefore,

corresponds to the SSD for a pair of blocks divided by the number of pixels per block,

as shown in Equation 7.

mse =

∑N
i=1

∑O
j=1 d2

i ,j

N ×O
=

ssd

N ×O
(7)

2.3.4 Sum of Absolute Transformed Differences (SATD)

Equation 8 shows the SATD computation. The SATD works very similarly to the

SAD, but with an extra transform step before the absolute computation. This metric

is expected to provide better quality than the SAD (AKRAMULLAH, 2014). A possible

explanation for the improved quality of the SATD over the SAD is that it may improve

the correlation to the coded video by approximating the transform step from the coding

process with its own transform.

satd = c

N∑

i=1

N∑

j=1

|tdi ,j | (8)

2 Here, perceptual quality concerns the quality perceived by the human visual system.
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, where c is a scaling factor (according to the size of the transform matrix) and the

elements tdi ,j belong to the matrix obtained according to the following equation:

TDN×N = TN×N ×Bdiff
N×N ×TT

N×N (9)

, with T being a transformation matrix. Using the HM as example, it adopts the Hadamard

matrix as transform for SATD computation. Such matrix can be defined according to var-

ious orders for 2k ×2k sizes with k ∈N+. Equation 10 exemplifies with a 4×4 Hadamard.









1 1 1 1

1 –1 1 –1

1 1 –1 –1

1 –1 –1 1









(10)

2.3.5 Mean Absolute Transformed Error (MATE)

Similarly to the relation between the MSE and SSD, it can be drawn the MATE3

as the SATD for a pair of blocks divided by the number of pixels per block, as shown in

Equation 11.

mate =
c
∑N

i=1
∑N

j=1 |tdi ,j |

N ×N
=

satd

N ×N
(11)

2.4 FRAME TYPES

The HEVC defines three frame types (I, P and B) with a type being assigned for

each frame in a video sequence according to the coding configurations (Section 2.5).

I-frames are the most elementary ones because they predetermine the predic-

tion mode to only intra-frame. In fact, primitive digital video coding was performed by

processing frames as if they were a sequence of unrelated pictures. At first, using I-

frames seem to be a limitation to coding efficiency optimization, yet this type of frame

is necessary for a couple of reasons. The first and main reason is for coding the first

frame. In fact, the coding execution is constrained to intra prediction because there is

no other frame to be referenced in inter prediction. Therefore, such situations require

the use of I-frames. Another reason for using I-frames is to improve robustness when

decoding. Such reason would not be a factor in an ideal world where no frames are ever

lost and the decoding always starts at the beginning of the coded stream. However,

by adding I-frames the length of data dependency chains is capped by the interval

between I-frames, hence limiting reconstruction errors due to data losses only to the

interval containing such losses.
3 The MATE metric is not widely adopted (in fact, to the best of our knowledge, this metric has not been

previously defined in the literature). However, it was employed in this work to better evaluate distortion
results across blocks of different sizes in Chapter 5.
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The P-frames allow both intra and inter predictions with the latter having a single

list of reference frames for the reconstruction of inter-predicted blocks. By allowing

the choice of inter-prediction during the coding process, these frames can provide

significant coding efficiency gains. The drawbacks from using this kind of frame are

reduced robustness and more coding computational effort due to the extra prediction

mode to be processed as well as the subsequent mode decision for each block.

B-frames are very similar to P-frames but use two lists of references which

potentially improves coding efficiency at the cost of more computational effort from con-

sidering more references. Additionally, F. Zhang and Bull (2018) classified B-frames as

Bp when a B-frame references only temporally preceding frames and Bb for instances

referencing both temporally preceding and succeeding frames. Though, such classifica-

tion was only used to aid in the development and implementation of their method and

did not affect the HM behavior in itself.

2.5 CODING CONFIGURATIONS

The configurations for the HM define several important parameters for each

frame to be encoded, including the types of frames, QP offsets and frame hierarchic

levels, which are encompassed in Group of Pictures (GOP) structures. This section is

going to provide a background on such parameters exemplifying with the Common Test

Conditions (CTC) (BOSSEN, 2012) configurations for the HM. The CTC configurations

are divided into three groups: (I) Intra, (II) Low-delay (LD) and (III) Random-access

(RA). Regarding the CTC, they propose a set of configurations and video sequences

to be used with HM testing, which facilitates the commonality between works with such

software.

2.5.1 Intra

With the intra configuration, as its name suggests, all frames are of I type and

each frame is contained in its own single-frame-sized GOP. Such characteristics also

eliminate the possibility of having QP offsets or different frame levels. Figure 3 shows

a diagram of a sequence of nine frames using the intra configuration, where each

vertex indicates the coding order along the video sequence time axis, while the dashed

rectangles indicate the GOPs.

2.5.2 Low-delay

The Low-delay (LD) configuration consists in having the mandatory initial intra

frame and all of the remaining frames as either P-frames (Low-delay P) or B-frames

(Low-delay B). With this configuration, the frames can only reference preceding frames

in display order and the two reference lists on B-frames are identical. Therefore, using
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Figure 3 – Intra configuration example.
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the classification from F. Zhang and Bull (2018) all B-frames in Low-delay B end up

being Bp frames. Furthermore, frames are distributed into three levels according to

the number of referencing frames pointing to them. Therefore, frames contained in

higher levels are less oftenly reference by other frames and, because of the reduced

importance to the overall coding efficiency, they are coded with higher QP offsets.

Figure 4 shows a diagram considering nine frames to be encoded divided in three

GOPs using LD configuration based on the example in (JCT-VC, 2013). In such figure,

the vertices indicate the frames in coding order along the time axis. Furthermore, each

vertex contains the type of frame it represents as well as its position in coding order.

Meanwhile, the edges indicate the references (from referencing frames pointing to

frames being referenced). Finally, the dashed rectangles indicate the frames contained

in a same GOP.

Figure 4 – Example of Low-delay (LD) configuration using B-frames.
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2.5.3 Random-access

The Random-access (RA) configuration is centered around a hierarchical struc-

ture with B-frames and I-frames. Such hierarchy allows for better coverage of temporally

near frames as reference frames, including temporally succeeding frames. Furthermore,

because the information coded on higher hierarchical frames are referenced by fewer

frames (up to the point where they are not referenced at all on the highest hierarchical

level), they use higher QPs through QP offsets. In the case of the CTC configuration

employed in this work, the GOP size is 16 frames with intra period of 32 frames (i.e.

one I-frame at every 32 frames). Since a full RA GOP would require representing a

structure with 16 frames, Figure 5 presents a simplified version with 9 frames based on

the example in (JCT-VC, 2013). Similarly to Figure 4, the vertices in Figure 5 represent

the frames along the sequence time, with each vertex containing the frame type and

coding order position of the frame it represents. Furthermore, the edges in Figure 5

point from referencing frames to frames being referenced.

Figure 5 – Example of Random-access (RA) configuration with a simplified GOP.
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3 REFERENCE SOFTWARE AND RELATED WORKS

This chapter presents a few of the main works regarding RDO using Lagrange

multipliers. Firstly, in Section 3.1, we present the early works developing the basis for

state-of-the-art models. Afterwards, we discuss the values adopted by the JM and by

the HM in Section 3.2. Then, Section 3.3 concerns proposals for adjustments to the

λ choices in the reference software. Finally, Section 3.4 covers the development of

alternative models to the ones in Section 3.2.

3.1 EARLY WORKS

G. J. Sullivan and T. Wiegand (1998) provided an in-depth view of the theory

behind RDO and the arguments for using a Lagrange multiplier (λ) formulation. Such

work analyzed the application of RDO at different parts of the coding process. The

authors also addressed the determination of a cost function to be used in RDO that

uses SSD as distortion metric. Said cost function determines the relation of importance

between rate and SSD distortion with λ defined as a function of the quantization level.

Finally, they proposed applying a square root over the default SSD λ to account for the

metric change when using the SAD.

T. Wiegand and Girod (2001) further detailed how to get to similar formulations

as the ones proposed by G. J. Sullivan and T. Wiegand (1998). The presented logic

is based on the idea that the Lagrange multiplier corresponds to the slope of the rate-

distortion function. Then, they showed that if the distortion function D(R) is strictly

convex, then Jmode(R) = D(R)+λmode ×R is strictly convex, with the mode designation

indicating that the cost function is being used for mode decision. From that, assuming

D(R) to be differentiable and equating the cost to 0 as to get the function minimum, the

following equation was obtained:

λmode = –
dD

dR
(12)

Still, remained the need for determining D and R functions with the latter being

defined as a function of the former in the following equation:

R(D) = a log2

(
b

D

)

(13)

where, a and b are parameters which should be determined.

As for the distortion function, it was used the model from Gish and Pierce (1968).

In such work, the authors presented a generic method considering an error measure L

(e.g. squared difference) that satisfies the following restrictions:

1. L(0) = 0;
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2. L is an increasing function of the magnitude of its argument;

3. The function M(v ) =
(1/v

)∫ v/2
–v/2

L(u) du satisfies: xM ′(x) is monotone.

The error measure is a way of calculating distortions to be accumulated in an

M function. It can be seen that the described M is an average distortion function (e.g.

MSE, MATE) rather than a sum of all distortions (e.g. SSD, SATD). In fact, the authors

presented the process of obtaining the distortion function by using the MSE as an

example. An issue with the presented method is that Gish and Pierce (1968) considered

their own assumptions for the density function of the variable being quantized to be

“rather weak”.

When T. Wiegand and Girod (2001) adapted M from the MSE to the SSD, they

arrived at:

D =
(2Q)2

12
=

Q2

3
(14)

, with Q corresponding to the quantization step size and its relationship to the QP is

defined in Equation 16.

Then, by getting the derivatives for D and R and substituting them into dD and

dR from Equation 12, the following equation was obtained:

λmode(Q) = –
dD(Q)
dR(Q)

=
ln 2
3a

×Q2 = c×Q2 (15)

Still, there is the need to find out what is the best value for c. It is important to

notice that the constant c in Equation 15 has nothing to do with the scaling factor used

in SATD (Equation 8) and, henceforth, c is going to represent the constant in the λ

function. According to T. Wiegand and Girod (2001), the best experimental results use

0.85, though they did not present the process used to obtain such value.

In summary, for the model derived by T. Wiegand and Girod (2001), the following

assumptions were made:

1. Distortion function D(R) is strictly convex and differentiable;

2. Uniform distribution within each quantization interval.

It is important to notice that the use of such assumptions was criticized by Syu

(2005) as discussed in Section 3.4.

In the context of AVC and HEVC, the quantization is configured through the QP

which has the following relation to Q (SZE; BUDAGAVI; SULLIVAN, Gary J, 2014):

Q = 2
(QP–4)

6 (16)
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Because of that, the original formulation can be adapted to λ as a function of QP

as specified in Equation 17.

λmode(QP) = c×2
(QP–12)

3 (17)

3.2 REFERENCE SOFTWARE

Equation 17 shows how the base λ function is computed during FME on a P-

frame in JM1, according to (LIM; SULLIVAN, G.; WIEGAND, Thomas, 2006). JM’s roots

in the work from T. Wiegand and Girod (2001) are clear in Equation 18, including the

use of a square root for λmotion to compensate for the fact that the SAD does not have

the square operation from the SSD.

λmotion,P(QP) =

√
√
√
√0.85

︸︷︷︸
c

×2
(QP–12)

3
︸ ︷︷ ︸

Q2

(18)

A further multiplication is then made for FME computation on B-frames (LIM;

SULLIVAN, G.; WIEGAND, Thomas, 2006):

λmotion,B(QP) =

√

max

(

2,min

(

4,
(QP –12)

6

))

×λmode,I,P (19)

The min and max functions are effectively limiting the left hand multiplication

factor to the range [2,4]. Thus, it only varies the multiplication in the QP interval [24,36],

while clipping the other cases. Such adjustment means that the priority for the rate

component of the cost (Equation 3) is increased two to four times.

Revisiting λ functions employed by HM, it bases the calculation on the following

equation:

λmode(QP) =α×Wk
︸ ︷︷ ︸

c

×2
(QP–12)

3
︸ ︷︷ ︸

Q2

(20)

With α being (MCCANN et al., 2014):

α=







1–Clip3(0,0.5,0.5×#B_frames) for referenced pictures

1 for non-referenced pictures
(21)

While α assumes the multiplication identity for non-referenced frames, it can vary

from 1 to 0.5 within referenced pictures. Table 1 presents how the values for Wk are

employed.

1 As it was commented in Chapter 1, the JM is the reference software for the AVC standard, analogously
to the HM for the HEVC.
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Table 1 – Wk values. Clip corresponds to the Clip3
(

2,4, (QP–12)
6

)

operation. Adapted

from (MCCANN et al., 2014).

k
QP offset

hierarchy level
Slice
Type

Referenced Wk W range

0 0 I – 0.57 0.57

1 0 P or B 1
RA: 0.442 0.442
LD: 0.578 0.578

2 1, 2 P or B 1
RA: 0.3536×Clip [0.7072, 1.4144]
LD: 0.4624×Clip [0.9248, 1.8496]

4 3 B 0 RA: 0.68×Clip [1.36, 2.72]

There is a clear influence from HM’s predecessor (JM) through the common

clippings between Table 1 (when k ≥ 2) and Equation 19. In HM, such clipping actually

changes the function from Equation 15 since the c component becomes proportional to

QP instead of being a constant. Furthermore, both JM and HM adopted the proposed

square-root adjustment when using SAD for distortion estimation. However, de-

spite the similarities, HM clearly is more complex in regards to adjusting λ to different

scenarios. Such adjustments take into account the frame level within its respective

GOP, the number of B frames and the general coding configuration (either RA or LD).

In HM, the range of values to form the c portion of Equation 20 is quite significant.

By computing such terms, it can be seen that λmode may be as low as 0.2221 with α

clipped to 0.5 and using W1 = 0.442 at RA configuration. With similar reasoning, c may

be as high as 2.72 with W4 and QP ≥ 36 (so that Clip = 4). Besides having a higher

amplitude, the magnitude of the values is also quite different to JM, with the latter having

c in the interval between [1.7, 3.4].

Still, on top of all that, HM employs an adjustment when using the SATD in

relation to the default λ used with SAD prediction. The λs to be used according to

distortion metric are shown in Table 2 (MCCANN et al., 2014).

Table 2 – HM’s λ values according to distortion metric.

SSD SAD SATD
λmode λmotion,SAD =

√

λmode λmotion,SATD =
√

0.95×λmode

There are a couple of reasons for all the differences between the adopted λs for

JM and HM. The first simply being that those are different coding standards and coding

process distinctions impact the rate-distortion results. Furthermore, there has clearly

been an effort to optimize the λ to be adopted by HM in different scenarios, whereas

JM only took the QP and type of frame into account.
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3.3 ADJUSTING THE λ MODEL

This section discusses the works from J. Zhang et al. (2010), González de Suso

Molinero (2016) and F. Zhang and Bull (2018). Such works proposed adjustments to

reference software’s λ values and, while (ZHANG, J. et al., 2010) was based on JM,

the other two performed analyses with both JM and HM.

3.3.1 CALM Method

J. Zhang et al. (2010) started by performing two rounds of tests. The first round

consisted on multiplying the default λmotion,SAD values by a constant belonging to

{0.5,0.8,1,1.5,2}. Such tests were performed for only two frames from 3 sequences

with the first frame being an I frame and the second a P-frame. The second round of

experiments used a similar setup but coding 30 frames and varying QP values. As a

result, the authors made the following statements:

1. The original λ function produces near optimum rate-distortion curves when the

motions are small across a frame or sequence.

2. When the motion vectors either have a more random behavior or are larger, in-

creasing λ leads to a better rate-distortion curve.

Having those two statements as guidelines, the authors developed what was

dubbed the Context Adaptive Lagrange Multiplier (CALM) method. The aim was to dy-

namically adjust λ values at the macroblock level. For that, the authors defined a thresh-

old where, while the cost estimate is below such threshold (Jthreshold )2, no change is

made. However, when the cost estimate is above the threshold, a multiplicative factor

(FCALM ) defined in Equation 22 is applied on the default λ.

FCALM =

√

Jneighborhood

Jthreshold × (0.3×QP –6)
(22)

Where Jneighborhood is derived from the cost estimates from left and above

neighboring macroblocks. If none of those blocks are available, Jneighborhood = Jthreshold .

The CALM method was tested in the context of ME and using the default estimators

for distortion (i.e. SAD) and rate. Then, the authors performed a final round of tests

to compare results with and without the proposed method. Such round considered 12

sequences at 30 fps with up to 100 frames and QPs in the set {24,28,32,36}. The

authors reported results within [–0.64%,0.05%] Bjøntegaard Delta Bitrate (BD-Rate)

and averaging –0.25% BD-Rate (i.e., reduced bit rate compared to the baseline), both

on the luma channel.

2 The authors suggested using Jthreshold = 512.
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The results obtained showed slight improvements in coding efficiency based

on neighboring prediction data. Furthermore, by using the cost from Equation 3 they

accounted for both distortion and rate changes. However, such approach may lead

to efficiency losses over time because of the feedback loop from previously set λs

affecting newer λs through the cost equation. Moreover, an important limitation from

(ZHANG, J. et al., 2010) is the lack of test data. In such work, the authors relied on at

most 30 frames from each of 3 sequences amounting to a total of 90 frames tested

before making the guiding statements.

3.3.2 Background Adaptive and Multiple Estimation Methods

González de Suso Molinero (2016) performed analyses with constant multiplying

factors on both JM and HM. For each software they applied separately the factors to

the default λmodes and λmotion,SADs, amounting to four separate sets of tests. Each set

of experiments considered four QP values and five multiplying factors between 0.5 and

2.1 and six sequences at CIF (352×288) resolution.

Concerning JM, the author found out that the bigger potential for improvements

was to change the λmotion,SAD. He also proposed performing the ME with three λ

conditions: (I) the default values, (II) distortion based cost (λmotion,SAD = 0) and (III)

rate based cost (λmotion,SAD →∞). The choice between which λ (i.e. candidate) to be

used at each case was left to the mode decision, which means using the more complex

RDO from such step to finalize the motion decision. The proposed method achieved

2.2% reduction (improvement) to the BD-Rate while increasing the coding time by

approximately 3%. The same experiment setup for evaluation of his own proposal was

also used to evaluate the CALM method through which the author found out that the

CALM method did not improve the coding efficiency while increasing the coding time

by 0.24%.

In the case of the HM testing, an issue is that the author did not address the

matter of the SATD and the HadamardME employed by default in HM’s FME. There-

fore it is unclear if the experiments affected both the λmotion,SAD and λmotion,SATD or

only the former. Regardless of that, the author concluded that the bigger potential for

improvements lied in changing the λmode. Furthermore, the author claimed that there

is a correlation between the results varying the λmode and the presence of static back-

grounds in the video content being coded. Because of that, González de Suso Molinero

(2016) proposed a background adaptive method. In such method, he implemented a

detection of static backgrounds and when such type of background was identified the

coder used an adapted λ through a regression function used to determine a multiplier. In

practice, the proposed method increases the λ values when coding more static scenes,

giving higher importance to the rate estimates. The proposed method resulted in lower

coding efficiency with the sequences classified as containing dynamic background but
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higher efficiency in the cases classified as containing static backgrounds. Furthermore,

the author showed that when using higher values for λmode, the HM execution time was

reduced. Therefore, the proposed method also reduced coding time. Finally, the author

compared his proposal to the one in (ZHAO et al., 2013) and showed that his proposal

resulted in better coding efficiency.

3.3.3 Scene Adaptive Method

The adopted scope in the work of F. Zhang and Bull (2018), was the λmotion,SAD

from Table 2. They started by comparing rate-distortion figures from various tested λs

(λtest ) to the original ones (λorig) so that 0.2 ≤
λtest

λorig
≤ 5. This preliminary test involved

9 sequences at CIF (352×288) resolution, with 4:2:0 YUV chroma sampling, QPs in

{27,32,37,42} and QP offset disabled3. The authors also classified the video sequences

in three groups according to how dynamic the videos are. Furthermore, they performed

the experiments with five different configurations to evaluate the results for different

GOP structures and I, P and B-frames. Additionally, they separated B-frames into Bp

(predicting from temporally past frames) and Bb (predicting from temporally past and

future frames).

Considering the test results, the authors were able to select λ values yielding the

best overall rate-distortion performance for all frames, though such selection process

was not disclosed. Nevertheless, the authors drew the following conclusions:

1. The original λ values perform well when coding I, P and Bp frames.

2. The original λs are inadequate when coding Bb frames, particularly for either

static or highly dynamic videos (contrarily to the mixed content class). The former

kind of video requires higher values while the opposite yields better results in the

latter situation.

Therefore, F. Zhang and Bull (2018) opted to develop a method to address the

second observation. Further investigating the causes for bad performance with Bb

frames, they defined the following ratios:

rMSE =
MSEp

MSEB
(23)

rλ =
λopt

λorig
(24)

3 By disabling the QP offset, all frames in a given coder execution use the same QP, instead of varying
QP according to each frame’s hierarchy in its GOP.
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Where MSEp corresponds to the MSE of P and Bp frames, while MSEb corre-

sponds to the MSE of Bb frames. Both λs in Equation 24 regarded Bb frames. Then,

they used the rMSE to fit a function to the best results from previous tests:

rλ,fit = f (rMSE ) = a(rMSE +d)b +c (25)

With a,b,c,d being constants dependent on the coding software (either JM

or HM) and GOP size. Moreover, because rMSE is dependent on previously coded

data, the rλ,fit is updated with each coded frame. The application of such constants is

exemplified in Equation 26, considering HM execution with a GOP size of eight.

rλ,fit = 2.197(rMSE +0.04)5.196 +0.308 (26)

F. Zhang and Bull (2018) proposed an algorithm using the model from Equation

25. Such algorithm assumes that, provided that there is no scene cut, the characteristics

between neighboring frames remain similar, including the previously defined ratios.

Because of that, the authors used a scene cut detection logic to choose between

using the standard λ and one obtained from Equation 25. Aside from scene cuts, the

standard values are also employed while coding non Bb frames as well as when there is

not enough previous frame information. Finally, the results confirmed the effectiveness

for the proposed approach by achieving average BD-Rate reductions between 1% and

1.2% with the HM using the CTC and RA configuration.

Despite the work from F. Zhang and Bull (2018) clearly achieving improvements

in coding efficiency, it is important to point out to a few gray areas in their work. Firstly,

the way by which the best results were picked from the initial tests and then used as

basis for the proposed model. Reportedly, the work considered the optimality within

each tested QP, which rules out the use of BD-Rate. Therefore, by not using a metric

that accounts for both rate and distortion they had to directly use rate and distortion

data. Consequently, it became a multi-objective optimization problem. However, the

paper does not discuss such issue and thus, it is not clear how it was addressed.

Another issue concerns the claim that rMSE is able to detect how dynamic a

scene is. However, such ratio is based on a distortion metric which is tied to how good a

prediction is. Therefore, a relatively highly dynamic scene may still be coded adequately

and result in relatively low distortions. Furthermore, changing λ shifts the importance

between distortion and rate, hence, affecting the distortion values. Consequently, using

such ratio as basis for λ computation may result in changes trickling down to frames

yet to be coded.

Finally, there is also the question of diverging conclusions between the work from

J. Zhang et al. (2010) and F. Zhang and Bull (2018). While the former proposed increas-

ing λ values when the vectors are random or large (which can be caused by highly
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dynamic contexts), the latter concluded that λ should be reduced in highly dynamic

scenes.

3.4 CHANGING THE λ MODEL

Sangi, Heikkila, and Silven (2004) set out to provide better λ choices by chang-

ing the underlying model altogether. They created an alternative to Equation 12 through

linear approximation and a few simplifications to the problem. Regarding the distortion

metric, both SSD and SAD were taken into account. The proposed method performed

similarly in comparison to the standard model, with the authors claiming that the results

depended on the content of the sequence. However, despite such claim, they evaluated

the performance with only one test sequence (Foreman). Furthermore, the authors

stated that a wide range of λ values can be safely used in practice due to the inconclu-

siveness of their tests. Still, there was no analysis of the λ values coverage throughout

the tested approaches. Therefore, it is not possible to draw such conclusions about the

coding efficiency across a wide range of λ values.

Syu (2005) developed new functions to model the distortion and rate estimates

when using the SAD as well as the λ in a similar way to (WIEGAND, T.; GIROD, 2001)

in Equation 3. However, the authors experimentally identified issues both with the SAD

correlation to the distortion as well as with the λ function from T. Wiegand and Girod

(2001). For the distortion function it was claimed that there are “unkwnown” factors

(besides the SAD and QP) affecting the results. Regarding the function for λ, it was

observed that a few of the assumptions made in (WIEGAND, T.; GIROD, 2001) do not

hold. Furthermore, the authors attempted to obtain a better λ function based on their

own rate and distortion functions. Unfortunately, new issues arrived as having to obtain

the correct values (or functions) for parameters in the derived functions. Finally, they

ran a simulation for their new λ function with a few approximations. The authors did not

disclose the results from such simulations, however they considered the results to be

unsatisfactory.

Deng et al. (2013) proposed an alternative rate-distortion function. Their proposal

was to have a base model and to define a set of function parameters with pre-coding

data. Such pre-coding meant coding frames with up-to 5 QP values while gathering the

rate, SSD and SATD distortion measures. This approach achieved average BD-Rate

reduction (improved coding efficiency) by 2.59% however it also doubled the already

long coding time from the default HM.

3.5 LITERATURE LIMITATIONS

The main limitation in the literature for λ values determination lies on the lack

of works addressing the λs to be used with the SATD metric. Furthermore, a few
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methodological issues were noticed during the exploration of the works aiming at better

values for the cost equation with SSD and SAD, including the limited number of video

sequences considered. Finally, such works have arrived at seemingly contradictory

conclusions reinforcing the need for further exploration on the matter.

Table 3 summarizes the discussed related works. The first column shows ei-

ther which kind of λ in the reference software was addressed or (in the analytical

works) for which distortion metric were the alternative functions proposed. The column

“Approaches” characterizes the works by the adopted approach wherein analytical ap-

proaches are the ones proposing changes to λ by means of mathematical analyses

whereas empirical approaches propose alterations based on experiments collecting

data from software executions. In the latter cases, it is also important to know how the

experiments were set up. Therefore, we summarized the experiments by the numbers of

constant multiplying factors, sequences and QPs. Finally, various works proposed adap-

tive adjustments suggesting that m should be either increased or decreased according

to how dynamic was the video content. In Table 3, we represent with ↓ a relatively low

quantity (i.e., lower movements or lower m values), meanwhile, ↑ represents relatively

higher quantities and finally, = is used to represent the use of unchanged λ values (i.e.,

m = 1).

Table 3 – Related works summary.

Scope Approaches
Reference
software

Empirical testing (#)
Adaptive

adjustment
JM HM m sequences QPs movement m

SANGI; HEIKKILA;
SILVEN (2004)

SSD | SAD Analytical ✓ — — — — — —

SYU (2005) SAD Analytical ✓ — — — — — —

DENG et al. (2013) SSD | SATD Analytical — ✓ — — — — —

ZHANG, J. et al. (2010) λmotion,SAD Empirical ✓ — 5 3 4
↓ =
↑ ↑

GONZÁLEZ DE SUSO
MOLINERO (2016)

λmode,SSD |
λmotion,SAD

Empirical ✓ ✓ 5 6 4
↓ ↑

↑ =

ZHANG, F.; BULL (2018) λmotion,SAD Empirical ✓ ✓ ? 9 4
↓ ↑

↑ ↓

Firstly, we brought up a broad combination of scopes and approaches and

the only case that is not featured in the previous table is an empirical analysis of

λmotion,SATD which, to the best of our knowledge, has not been done before. Further-

more, there are a few works that only considered the JM and, thus, might change in

the context of HM, especially in the empirically approached case (ZHANG, J. et al.,

2010). Regarding the empirical testing, all of the discussed works lack in the number

of experiment cases. Firstly, such works considered few constant multipliers, therefore,

painting a vague picture of the coding efficiency over different λ values. The number of

considered video sequences was low as well with the most being nine and even getting

to the extreme of just three sequences being considered to draw correlations between
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video content and λ optimality4. All works used four QP values, possibly because it is

the minimum required to calculate the BD-Rate. Finally, it is clear that various works

claim the existence of correlations between the movements in the video content and

the optimal values for λ. However, such works are far from reaching a consensus on the

correlation itself. In fact, the only combination (movement, m) that was not claimed to re-

sult in λ optimality was (↓, ↓), evidencing the lack of reproducibility for those correlations.

Furthermore, the lack of consensus coupled with the lack of video date considered to

evaluate those relationships, casts doubts to the very existence of such relationships in

the first place.

4 All of the related works used low resolution video sequences (e.g., CIF).
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4 METHOD

Initially, we are going to evaluate the possible approaches for choosing the λ

values to be used with the SATD distortion estimation. Figure 6 presents the considered

approaches for solving such problem.

Figure 6 – Evaluated approaches for the problem of λ determination.

λ determina-

tion problem

Analytical
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Transform

integral
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Source: the author.

There are two paths for solving the problem at hand, the analytical and the

empirical. The primary example of analytical approach to such problem comes from

the work from Gish and Pierce (1968). Such path seems to be very promising at

first, especially because the original formulation already considered a generic average

distortion function. A limitation for the method presented in such work is that the cost

function was calculated at an element-by-element level (in this context the elements

are pixels) before being integrated. This can also be interpreted as the overall distortion

being calculated by composing the distortions of individual pixels. However, transforms

like the Hadamard cannot be broken down as compositions of smaller transforms

as each transformed element depends on all initial elements. Such limitation for the

Hadamard is even more evident on the case of transforming a single isolated pixel

because the smallest defined Hadamard matrix is of size 2×2. For those reasons, we

were not able to further pursue an analytical solution by adapting the method adopted by

T. Wiegand and Girod (2001) and diverted to an empirical approach. Still, the empirical
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approach required defining the following experimental aspects: (I) the base software to

be used (Section 4.1), (II) different scenarios for λ adjustment (Section 4.2) and (III) the

set of video sequences to be tested (Section 4.3).

4.1 BASE SOFTWARE

We elected to use the HM (version 16.15) as the basis for the tests featured in

this work. The main reason for such decision was that the HM is the reference software

for HEVC. Furthermore, all implemented variations were tested with RA configuration

from the CTC (BOSSEN, 2012). For the QP, we used the four in {22,27,32,37} with

QP offset set to “0”, i.e., all frames in an encoder execution used the same QP value1.

The main reason for removing the offset was to have more consistent results for each

execution, particularly considering that λ values are a function of QP. Additionally, the

CTC configurations use the HadamardME flag set to “1” by default. Such flag value

means that the SATD is used as distortion metric during FME computation. Meanwhile,

the IME employs the SAD regardless of the HadamardME flag value.

The BD-Rate (SULLIVAN, G.; BJONTEGAARD, 2001) metric was chosen for

quantifying the resulting efficiency differences since it accounts for both distortion (mea-

sured in Peak signal-to-noise ratio (PSNR)) and bit rate. The BD-Rate results were

gathered by first computing the PSNR for each tested QP. Each PSNR value was de-

rived from the average MSE for the luma channel results from each frame. Such a way

of computing the PSNR contrasts to the default HM behavior that computes the PSNR

averages directly. The problem with the default implementation in HM is that the PSNR

cannot be averaged accurately with a standard arithmetic mean computation because

it is a logarithmic metric.

4.2 EXPERIMENTATION SCENARIOS

We performed two sets of experiments evaluating coding efficiency with different

scenarios in mind for each set. The first one (Scenario-I) consisted in changing the

λmotion for both SAD (λmotion,SAD) and SATD (λmotion,SATD). Meanwhile, the second

set (Scenario-II) was to evaluate the impact of only changing the λmotion,SATD.

For Scenario-I, the motion cost equation (Equation 3) was modified, arriving at

Equation 27. Those modifications were performed by applying a term (m) multiplying

the default λmotion values, as presented in the following equation:

J = D(SAD|SATD) +m×λmotion,(SAD|SATD)×R (27)

By making such modification, the cost calculation for both IME and FME are

changed with the former using the SAD while the latter employs the SATD. A practical
1 The removal of QP offsets was also adopted in the empirical set up from F. Zhang and Bull (2018).
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way to implement such change is by altering the function denominated setLambda(),

inside the HM class named TComRdCost, as presented in the following code snippet:

Void TComRdCost : : setLambda ( Double dLambda , const Bi tDepths &bi tDepths )
{

m_dLambda = dLambda ;
m_sqrtLambda = s q r t (m_dLambda ) ;
m_dLambdaMotionSAD [ 0 ] = 65536.0 * m_sqrtLambda * lambda_mu l t i p l i e r ;
m_dLambdaMotionSSE [ 0 ] = 65536.0 * m_dLambda ;

/ / FULL_NBIT l o g i c omi t ted here

m_dLambdaMotionSAD [ 1 ] = 65536.0 * s q r t ( dLambda ) * lambda_mu l t i p l i e r ;
m_dLambdaMotionSSE [ 1 ] = 65536.0 * dLambda ;

}

In the above code snippet, lambda_multiplier2 corresponds to m from Equation

27. Such function was chosen because it sets the λmotion value to be used during ME

computation. Furthermore, such function separates the λ setting between the higher

precision computations using SSD and the one to be used with either SAD or SATD.

The values set in setLambda() are then selected and assigned to m_motionLambda

in the following function:

Void selectMotionLambda ( Bool bSad , I n t iAdd , Bool bIsTransquantBypass ) {
m_motionLambda = ( bSad ? m_dLambdaMotionSAD [ ( bIsTransquantBypass

&& m_costMode==COST_MIXED_LOSSLESS_LOSSY_CODING) ? 1 : 0 ]
+ iAdd : m_dLambdaMotionSSE [ ( bIsTransquantBypass
&& m_costMode==COST_MIXED_LOSSLESS_LOSSY_CODING) ? 1 : 0 ]
+ iAdd ) ;

}

At first, such one-line function with nested ternary operators may seem con-

fusing. However, the selectMotionLambda() function becomes clearer once it is bro-

ken down into smaller parts. The first part consists of using bSad to select either

m_dLambdaMotionSAD[] if bSad was set to true or m_dLambdaMotionSSE[] other-

wise. In spite of that, by analyzing the calls for selectMotionLambda(), bSad is always

set to true, therefore always choosing the m_dLambdaMotionSAD[]. Then, remains

the expression for which position of m_dLambdaMotionSAD[] is selected. In this case,

both possibilities were previously covered in setLambda(), therefore guaranteeing the

use of the modified λ values for m_motionLambda. Finally, m_motionLambda may be

accessed through the getCost() and getCostOfVectorWithPredictor() functions. Such

is the case with the xTZSearchHelp() for IME with SAD and xPatternRefinement() for

FME with SATD. Furthermore, this implementation makes sure that all cost evaluations

in ME use the same λ setting logic and multiplication by m. Table 4 shows the λ values

(from Table 2) that were affected by the described changes for Scenario-I testing as

well as the functions that use such values.

2 The lambda_multiplier was added to the base HM allowing us to pass m as an execution parameter.
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Table 4 – Affected λ values and HM functions for Scenario-I.

λ Function

λmotion,SATD xPatternRefinement

λmotion,SAD

xTZSearchHelp
xPatternSearch
xTZSearch
xTZSearchSelective
xMergeEstimation
predInterSearch
xCheckBestMVP
xMotionEstimation

Similarly to Scenario-I, the cost equation in 3 was altered for Scenario-II which

lead to Equation 28.

J = DSATD +m×λmotion,SATD ×R (28)

Despite the similarities between equations 27 and 28 the latter is contained in the

former and represents a smaller scope of change to the original HM. That is, Scenario-

II consists in varying the Lagrange Multiplier only for the SATD (affecting exclusively

the FME) while maintaining the default HM behavior with the SAD. With this test we

can verify the adequacy of the standard Lagrange Multiplier for FME as well as draw

comparisons to the more generic approach from Scenario-I.

Since this was a smaller change, we simply created a copy of getCostOfVector-

WithPredictor(), called getCostOfVectorWithPredictor_Modified(). Therefore, changing

directly the λ×R estimation function with m_motionLambda corresponding to m as

presented in the following code snippet:

D i s t o r t i o n getCostOfVectorWi thPred ic tor_Modi f ied ( const I n t x , const I n t y )
{

r e t u r n D i s t o r t i o n ( ( m_motionLambda * lambda_mu l t i p l i e r

* ge tB i t sOfVec to rWi thPred ic to r ( x , y ) ) / 65536.0) ;
}

Then, the new function replaced the old one only inside the FME computation

function, xPatternRefinement(). Since, the FME is set to be performed with the SATD

distortion estimation, the described implementation achieves the goal of strictly chang-

ing the Lagrange Multiplier values for FME coupled with the SATD.

Both scenarios used the same multiplication values, therefore, having better

consistency as well as allowing comparisons between results from different scenar-

ios. We opted to use constant values for m to identify the current λ behavior through

different ranges without distorting it with another function3. Furthermore, by having

constant adjustments through different QPs, it is still possible to identify if the re-

sults are demanding a different rate weight to QP distribution. Initially we adopted
3 Because λ is defined in HM as a function of the frame QP, defining m as another function would imply

having the rate weight as a multiplication of functions λ(QP)×m(x).
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m values ranging from 0.2 up to 5.0 by steps of 0.4. Thus, the initial set was: M =

{0.2,0.6,1.0,1.4,1.8,2.2,2.6,3.0,3.4,3.8,4.2,4.6,5.0}. Through analyses of the initial

results it was concluded that further refinement was required between 0.2 and 1

by using 0.1 for the step size. Hence, the refinement tests used the following set:

{0.3,0.4,0.5,0.7,0.8,0.9}. Furthermore, since we adopted such granularity at values

smaller than one, we decided to also add the values in {1.1,1.2,1.3}. It is important to

notice that the HM’s default behavior was included by adopting m = 1. Therefore, the

final set M was comprised of 22 values as presented in Equation 29.

M = {0.2,0.3, . . . ,1.3,1.4,1.8,2.2,2.6,3.0,3.4,3.8,4.2,4.6,5.0} (29)

Finally, it is also important to notice that, although it is a small change in itself,

altering the Lagrange Multiplier in either of the discussed scenarios may have significant

implications to the coding process through different mechanisms. Firstly, changing

the chosen candidates (references) may affect mode decision choices. Affecting the

references can also further impact other blocks through the candidates in inter coding,

potentially further changing other references in a snowball effect. Furthermore, in cases

with early terminations, changing the λ×R component of the cost may affect how early

the computations of candidates are terminated. Therefore, changes to the Lagrange

Multiplier may affect (positively or negatively) both the coding time and coding efficiency.

We have not addressed the implications to coding time, opting to focus the scope of

this work on the coding efficiency implications.

4.3 TEST SEQUENCES

Regarding the video content used for the described tests, we elected to process

sequences of lower resolution (when compared to most cases in the CTC). That choice

was made so as to maximize the amount of data available and improve the understand-

ing of how the different λ values impact the coding efficiency. Furthermore, we still

made sure to vary the resolutions (from QCIF up to 4CIF ), fps (from 25 up to 60) and

number of frames to be tested (from 112 up to 2101). Therefore, although we lacked in

high resolutions tests, we were able to provide a wide range of conditions and a large

test data set. Table 5 presents the set of sequences used during the tests4.

In summary, we considered 47 different sequences, 22 multipliers and 4 QPs,

which amounted to 4136 different combinations for each scenario. Hence, all the exper-

iments totaled 8272 HM executions.

We can now add our work to the related works in Table 3, yielding the following

table:

4 All sequences had 4:2:0 chroma sampling.
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Table 5 – Tested sequences.

Resolution Sequence Name Frame Count fps

704×576 (4CIF)

city 600

60
crew 600
harbour 600
ice 480
soccer 600

352×288 (CIF)

bus 150

30

city 300
crew 300
football_b 260
harbour 300
ice 240
soccer 300
akiyo 300

29.97

bowing 300
bridge_close 2000
bridge_far 2101
coastguard 300
container 300
deadline 1374
flower 250
foreman 300
hall_monitor 300
highway 2000
husky 250
mad900 900
mobile 300
mother_daughter 300
news 300
pamphlet 300
paris 1065
silent 300
students 1007
tempete 260
waterfall 260
sign_irene 540 25

352×240 (SIF)

garden 115

29.97stefan 300
tennis 150
tt 112

176×144 (QCIF)

carphone 382

29.97

claire 494
grandma 870
hall_objects 330
miss_am 150
salesman 449
suzie 150
trevor 150

As previously discussed, our work adopted an empirical approach to the problem

of Lagrange multiplier optimization considering the scope of the SAD and the SATD on

the HM. We took into consideration 22 different constant multiplying factors (more than



Chapter 4. Method 43

Table 6 – Related works summary (including this work).

Scope Approaches
Reference
software

Empirical testing (#)
Adaptive

adjustment
JM HM m sequences QPs movement m

SANGI; HEIKKILA;
SILVEN (2004)

SSD | SAD Analytical ✓ — — — — — —

SYU (2005) SAD Analytical ✓ — — — — — —

DENG et al. (2013) SSD | SATD Analytical — ✓ — — — — —

ZHANG, J. et al. (2010) λmotion,SAD Empirical ✓ — 5 3 4
↓ =
↑ ↑

GONZÁLEZ DE SUSO
MOLINERO (2016)

λmode,SSD |
λmotion,SAD

Empirical ✓ ✓ 5 6 4
↓ ↑

↑ =

ZHANG, F.; BULL (2018) λmotion,SAD Empirical ✓ ✓ ? 9 4
↓ ↑

↑ ↓

This work
λmotion,SAD |
λmotion,SATD

Empirical — ✓ 22 47 4 — —

4 times as much as the numbers adopted in the related works) giving a much more

complete picture for the λ behavior. Furthermore, the experiments were done with 47

video sequences (more than 5 times as much as the numbers adopted in the related

works) to try and have significantly more video data aiming for better representativeness

of video content in overall. Such set of video sequences also provides a better chance

of evaluating the relationships between video content and λ optimality. Similarly to the

other works, ours took into account four QP values, allowing for the computation of the

BD-Rate to evaluate coding efficiency. Finally, as it will be further discussed in Chapter

5, there was no correlation found between video sequence movement and λ optimality,

once again evidencing that such relationship might not exist.
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5 ANALYSES

In this chapter, we evaluate the results obtained from encoding the 47 video

sequences in Table 5 under the two scenarios and four QPs defined in Chapter 4.

Figures 7 and 8 present the BD-Rate results for Scenario-I and Scenario-II, respectively.

Figure 7 – Boxplot chart with the BD-Rate results when adopting the several multiplica-
tion parameters in the ME context (Scenario-I).
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In box plots, the boxes represent the first (Q1 = 25%) and third (Q3 = 75%)

quartiles. Meanwhile, the second quartile (Q2 = 50%) is the median which is indicated

by a crossing line inside the boxes. The slanted portions of such boxes represent

the confidence intervals. Then, out of the boxes, there are whiskers representing the

two data points that are furthest away from the median (at each side) but still within
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Figure 8 – Boxplot chart with the BD-Rate results when adopting the several multiplica-
tion parameters in the FME context (Scenario-II).
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1.5×(Q3–Q1). The remaining data points are technically considered discrepancies and

are shown as isolated circles.

Each data point in Figures 7 and 8 represents the BD-Rate calculated for a

sequence using the four tested QPs (as defined in Section 4.1). Additionally, the results

for m = 1.0 are implicitly in the charts since they constitute the baseline to which the

other multipliers are compared when computing the BD-Rate. Because of that, the

results below zero indicate improvements to the base HM and results above zero

indicate that the default λs (by using m = 1) are a better choice for a given sequence.

For instance, with m ≥ 2.6 in Scenario-I and m ≥ 4.4 in Scenario-II resulted in worse

coding efficiency for all tested sequences. There is also evidence of a sweet spot for
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m with values from 0.9 to 1.2 producing similar results in both scenarios. The only

multiplier value that produced a noticeably better result within that region of operation

was m = 1.3 in Scenario-II. Another point that requires evaluation is in regards to the

homogeneity of the results. Firstly, the chart for Scenario-I exhibits a wider range for

the y-axis because such scenario had a bigger impact on efficiency. Such finding was

to be expected since a bigger part of the default coder has been changed. However,

there was also a higher amount of discrepancies in Scenario-II with m < 1, which was

not expected.

To further investigate the initial findings from Figures 7 and 8 it is necessary

to break down the boxes and analyze efficiency from a sequence-by-sequence point

of view. However, it is not practical to evaluate every multiplier for every sequence

especially considering that we are only concerned with the cases yielding the best

efficiency results. Because of that we used the BD-Rate figures to select which multiplier

produced the best result for each sequence, shown in Figures 9 (Scenario-I) and 10

(Scenario-II). Both figures present in the x-axis the evaluated video sequences sorted

by increasing Best M with the shaded area corresponding to the cases that were best

coded with the baseline version (m = 1). Therefore, all sequences shown to the left

of the shaded areas were best coded with m < 1 and, similarly, HM provided the best

efficiency results with m > 1 for the sequences to the right of the shaded portion. The

y-axis was split into two for Figures 9 and 10, with the left y-axis presenting the BD-Rate,

while the right y-axis shows the Best M values.

The Best M data reinforce the initial evaluation from Figures 7 and 8. In Scenario-

I, the best values for m were roughly split between m < 1 and m > 1 with a few cases

being best coded with the baseline multiplier (m = 1). Therefore, there is further indi-

cation that the baseline multiplier provides the better overall results for Scenario-I. In

Scenario-II, there is a clear shift in the Best M regions with m > 1 resulting in higher

incidence of optimally coded video sequences. Furthermore, Scenario-II can provide

optimal coding with higher m values (the highest being m = 2.2) in comparison to

Scenario-I with an upper bound at m = 1.4.

We also sampled the distortion and rates per pixel for each block being pro-

cessed with the baseline FME. The adoption of average per pixel measures is justified

because the blocks being processed vary in size and such averages allowed us to

gather data from blocks of different sizes together. The goal for the described sampling

was to get a better understanding of each sequence’s rate-distortion characteristics at

the FME level. It is worth noting that J. Zhang et al. (2010) and F. Zhang and Bull (2018)

based their methods on such characteristics. The MSE results were sampled at each

8×8 and 4×4 processed block, including the ones used for composing the distortion

of larger or non-square blocks. The rate per pixel estimates were sampled from whole-

composed blocks which is the smallest granularity possible for such estimate. Moreover,
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6 CONCLUSIONS

Firstly, we were able to relate works from different perspectives starting with the

initial proposals for λ multiplier functions. Such works ultimately became the basis of

what is implemented in HM (version 16.15). We also identified works that challenged the

adopted λ values, with the adaptive adjustment solutions gaining prominence among

them. However, there were a few recurrent issues with the related works. The first

was the lack of works properly addressing the λ values in the context of the SATD.

Furthermore, the works which used empirical data to tune the λ values relied on smaller

data sets with few video sequences. Finally, specifically to the work from F. Zhang and

Bull (2018), the authors claimed that λ adjustments should be based on how dynamic

the video content is.

We considered two approaches for the problem at hand: the analytical and the

empirical. The former lead up to the problem of integrating transformed differences,

which we were not able to solve.

Then, we followed the investigations through the analytical path, by applying

constant multiplicative factors (m) to default λ values. Such investigation was divided in

two scenarios:

• Scenario-I where the constant multiplications were performed on an ME level,

consequently affecting both RDO computations with SATD in FME and with SAD

in other functions using λmotion during ME;

• Scenario-II where the constant multiplications affected solely the FME (which

uses the SATD as distortion metric).

With Scenario-I we were able to identify a considerable region where changing

m did not produce significantly different coding efficiency. More specifically, multipliers

between 0.9 and 1.2 are expected to have similar and satisfactory efficiency results.

However, Scenario-II evidenced that using 30% larger λs (m = 1.3) during the FME

computation improves the coding efficiency. That is, the default values for FME are

biased towards reducing distortion in detriment of the bit-rate to a point where it is

negatively affecting the overall coding efficiency. We found further evidence of such

bias when analyzing the best λ for each video sequence where 57.4% of the tested

video sequences were best coded with an m > 1.

Another important aspect of the empirical testing was to try to find a correlation

explaining the best λs for each video sequence. By finding such correlation we would

be to adapt the λ to the video sequence and get results closer to the Best M conditions.

For that end, we sampled rate and distortion per pixel for blocks being processed in

FME. We also computed the TI for each of the tested video sequences. Nevertheless,

despite the amount of sampled data and the different metrics considered, we were not
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able to find a correlation. Such lack of correlations was not expected especially because

F. Zhang and Bull (2018) based their solution on the MSE results. Furthermore, the

absence of correlation between TI and Best M questions the claim that the ideal λ

values for each video sequence are correlated to how dynamic a sequence is.

One of the limitations from this work regards the resolutions of the tested video

sequences. Therefore, further works are needed to investigate if larger resolution videos

also lead to similar conclusions. The time necessary for such task may be reduced by

using fewer possibilities for m based on our findings. Another limitation is that we do

not account for interactions between the λs used with the SAD and the ones for SATD.

Hence, a possible future work would be to combine the use of different multipliers for

each case, greatly increasing the amount of test cases. Finally, there is the possibility

that combining more variables together could provide enough information to find a

correlation between the variables and the Best M.
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