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RESUMO 
 
Os pesquisadores na área de desenvolvimento de células solares fotovoltaicos devem ter o 
conhecimento teórico que indica quais ideais propriedades uma célula solar deve apresentar, 
sendo que estes resultem na sua máxima possível eficiência. Tal conhecimento orienta no 
aperfeiçoamento de cada uma das propriedades, a partir do uso de apropriados (i) materiais e 
(ii) processos de manipulação na fabricação das células. Nesse sentido (i) o objetivo 
intermediário é de aperfeiçoar cada uma das propriedades consideradas de material, sendo (ii) 
o objetivo final de obter um aumento significante da eficiência da célula, a partir do 
melhoramento multidimensional das propriedades numa célula fabricada. A informação sobre 
as propriedades ideais pode ser obtida por meio da simulação do modelo matemático de uma 
célula solar, e especialmente sob otimização numérica desse modelo em espaço 
multidimensional das suas propriedades. Apresentamos a otimização multidimensional da 
eficiência usando um modelo analítico de uma célula solar perovskita, do tipo pin e 
analisamos diferentes desenhos de aperfeiçoamento da célula. A partir de uma análise de 
sensibilidade mostramos que a eficiência é função de diferentes propriedades configuradas de 
material, e também da espessura da camada de absorção dessa célula. A presente otimização 
numérica melhora a eficiência dessa célula do valor inicial de 15,7% para o valor máximo de 
27.8%, considerando-se a sensitividade de sete variáveis num espaço de nove dimensões 
analisadas pelo algoritmo. Propomos diferentes desenhos de célula que analisamos em detalhe 
para obter um maior conhecimento sobre o processo de otimização. Sob o uso de armadilhas 
de luz na camada absorção a espessura dessa camada pode ser reduzida de 400 nm para 160 
nm, perdendo apenas 0.2% de eficiência. Essa configuração resulta em uma redução 
significante da camada de absorção e assim do uso de Pb. A partir de análises de sensitividade 
da célula otimizada, mostramos o melhoramento mínimo necessário para cada propriedade, e 
a partir de uma análise combinatória das propriedades ideais, propomos uma sequencial ideal 
de inclusão de variáveis para o seu aprimoramento. 
 
 
Palavras-chave: Célula solar perovskita. Modelo analítico de eficiência. Otimização 
Numérica Multidimensional. 
 
 
 
 

 
 



 
 

RESUMO EXPANDIDO 
 
 
Introdução  
 
A otimização de células solares é realizada no estado da arte em função de uma ou duas 
variáveis por vez, tanto nos modelos de simulação, como também em células fabricadas, já 
que o resultado de tais otimizações é facilmente acompanhável, plotando a eficiência em 
função dessas variáveis em um gráfico. No entanto, a partir do modelo que simula os 
processos de deriva e difusão de elétrons e lacunas, sabe-se que a eficiência de uma célula 
solar é função de múltiplas propriedades de material. A partir da inerente aleatoriedade do 
processo de otimização no espaço uni- ou bidimensional, obtém se teoricamente um tempo de 
otimização infinito para se otimizar uma célula solar. Por exemplo, no caso das células de 
silício monocristalino esse processo pode demorar várias décadas (NREL, 2020). Tal 
morosidade existe também, porque o melhoramento de uma das propriedades, pode ser parcial 
ou plenamente compensada a partir da decadência de uma, ou das demais propriedades não 
analisadas. De forma adicional, os melhoramentos em baixa dimensionalidade não mostram o 
aumento da eficiência a partir da característica da não linearidade em espaço 
multidimensional. Essa não linearidade resulta em um efeito sinergético do aumento da 
eficiência, que apenas aparece na otimização em espaço multidimensional como mostrado 
nessa tese. A partir da modelagem matemática do modelo de deriva e difusão de elétrons e 
lacunas poder-se-ia prever um aumento da eficiência sob consideradas propriedades ideais de 
material. No entanto, não sabendo as propriedades ideais, os métodos de análise uni- e 
bidimensionais presentemente usados na avaliação dessas simulações não conferem a 
modelagem multidimensional. Desta forma serão também necessárias infinitas simulações 
para obter a máxima eficiência da célula. Portanto, para conhecer-se melhor uma célula solar, 
principalmente no que tange à otimização da sua eficiência, são necessários métodos de 
otimização multidimensionais, sob uso de restrições do espaço de variáveis. Estes métodos 
resultam na configuração ótima de propriedades de material para dadas restrições de faixa das 
variáveis envolvidas, viabilizando assim a extração de um maior conhecimento sobre a célula 
e em especial a sua otimização. 
 
 
Objetivos  
 
A multidimensionalidade das propriedades de material inviabiliza uma análise mais profunda 
de uma célula solar, sob métodos convencionais de plotagem gráfica. Sendo assim, as 
pesquisas no estado da arte não analisam uma célula solar de forma adequada e resulta assim 
em um longo tempo para otimizar a sua eficiência de forma que se aproxima ao valor teórico 
máximo. O objetivo desse trabalho de tese é de propor um novo método multidimensional 
utilizado para obter um maior conhecimento sobre a otimização da célula solar perovskita. O 
proposto método resulta, a partir da variação das restrições das variáveis da otimização, em 
vários desenhos otimizados da célula, cuja análise comparativa resulta no maior 
conhecimento sobre a maximização da eficiência da célula perovskita. Propomos métodos de 
fabricação de células solares a partir de uma resenha, para obter-se um melhoramento das 
variáveis no sentido como foi obtido pela otimização multidimensional. O conhecimento 
adquirido também envolve uma metodologia, elaborada a partir de uma análise de 
sensibilidade e de uma análise combinatória de variáveis envolvidas, que resulta em 

 
 



 
 
recomendações para o pesquisador que fabrica células, mostrando em qual ideal sequencia de 
inclusão de variáveis se deve melhorar as propriedades para obter-se um maior aumento da 
eficiência da célula. Os resultados podem ser usado na otimização da eficiência de células 
fabricadas, já que indicam ao pesquisador quais propriedades apresentam uma maior 
sensitividade, e portanto, devem ser melhoradas em primeiro lugar. 
 
 
Metodologia  
 
Partimos do modelo de deriva e difusão de elétrons e lacunas, e usamos também um método 
numérico multidimensional de otimização. Usamos um modelo analítico da célula perovskita, 
que foi derivado do modelo de deriva e difusão em (SUN; ASADPOUR; NIE; MOHITE et 
al., 2015). Sendo analítico, esse tem a vantagem de apresentar um reduzido tempo de 
processamento computacional na simulação dos pontos da curva J-V, ou seja, a curva da 
densidade de corrente em função da tensão de terminal. Configuramos o algoritmo de 
otimização multidimensional para repetir muitas otimizações, cada uma sob diferentes 
restrições das propriedades de material e da camada de absorção da célula perovskita. Essas 
diferentes configurações resultam em diferentes desenhos da célula que apresentam diferentes 
eficiências otimizadas, embasados em diferentes propriedades de material em espaço 
multidimensional. A análise comparativa dos parâmetros de desempenho destes desenhos 
resulta em um maior conhecimento sobre a célula analisada, e especialmente sobre a sua 
otimização. Revisamos os métodos de manipulação das propriedades de material de uma 
célula perovskita para o fim do melhoramento da eficiência. Usamos o modelo analítico de 
uma célula perovskita, derivados da modelagem da deriva e difusão de elétrons e lacunas, e 
realizamos uma análise de sensitividade uni- e bidimensional das propriedades de material, 
para validar o potencial de sucesso com métodos tradicionais de otimização. Usamos um 
algoritmo de otimização multidimensional que inclua o uso de restrições de faixa 
individualizada no espaço multidimensional de propriedades de material para otimizar a 
eficiência do modelo analítico da célula. Sob a modificação das restrições individualizadas no 
espaço multidimensional das propriedades de material, propomos diferentes desenhos futuros 
da célula, mostrando o aumento da eficiência a partir do melhoramento das propriedades de 
material. Mostramos também diferentes desenhos com eficiências iguais, baseados em 
propriedades variadas, especialmente a partir das armadilhas de luz inseridas na camada de 
absorção. Extraímos detalhes importantes desses desenhos hipotéticos, que resulta no maior 
conhecimento sobre a célula e especialmente sob a sua otimização. Por exemplo, registramos 
um aumento da tensão em circuito aberto e no ponto máximo de potência, que permite reduzir 
a espessura da camada de absorção da célula para 160 nm, limitando assim a perda de 
eficiência para 0,2% em comparação com uma camada de 400 nm. Análises de sensitividade 
mostram a importância de cada uma das variáveis para sustentar uma alta eficiência 
otimizada. Uma análise combinatória de (i) variáveis ideais, e (ii) não ideais, onde as 
primeiras foram obtidas da melhor celula modelada, e as últimas de uma célula medida resulta 
em uma ideal sequência na inclusão dessas variáveis na otimização de células fabricadas. 
Nessa otimização são sucessivamente incluídas aquelas variáveis que apresentam a maior 
sensitividade. O método sugere um ideal roteiro para implementar melhoramentos nas (i) 
propriedades de material da célula, e (ii) na espessura de sua camada de absorção. 
  

 
 



 
 
Resultados e discussões 
 
Sob o uso de um assumido alto fator de melhoramento das propriedades de fB = 160, a 
eficiência da célula analisada, de 15,7%, pode ser aumentada sob uso de diferentes métodos 
para se atingir a eficiência do estado da arte de 24,2% (25.2% em 2020). Por exemplo, tal 
aumento pode ser obtido sob (i) melhoramento das propriedades de material, em combinação 
com o uso de armadilhas de luz, sendo essas armadilhas nanopartículas plasmônicas inseridas 
na camada de absorção da célula. (ii) Em outra configuração tal aumento de eficiência é 
obtido apenas sob o melhoramento das propriedades de matérias. No segundo caso há maior 
exigência em relação ao fator melhoramento das propriedades de material (fB). Na 
configuração (i) pode se obter o maior aumento da eficiência com o valor máximo de 27,8% 
para fB = 160 em uma célula com camada de absorção de 400 nm. Se a camada de absorção é 
reduzida para 160 nm obtivemos apenas 0,2% de perda de eficiência que cai para 27,6%, já 
que há um aumento da tensão no ponto da máxima eficiência nessa configuração de camada 
de espessura menor. Mostramos que o melhoramento multidimensional das propriedades de 
material da célula apresenta uma grande vantagem no incremento da eficiência da célula 
perovskita se comparado com o melhoramento das propriedades em uma ou duas dimensões. 
Esta vantagem é evidente a partir da comparação de dois diferentes casos. No primeiro 
considera-se o somatório dos aumentos de eficiência por melhoramento unidimensional de 
propriedade. Esse somatório resulta num aumento de apenas 4,5%. No segundo caso 
considera se um melhoramento das propriedades na mesma magnitude, mas na forma 
multidimensional, e este caso resulta no aumento da eficiência de 11,9%, ou seja, a eficiência 
aumenta de 15.7% para 27,6%. Identificamos que a diferença desses dois casos decorre a 
partir das não linearidades no modelo da deriva e difusão de elétrons e lacunas. Como 
resultado recomendamos fortemente a introdução e a adoção de um protocolo de otimização, 
que considera melhoramentos multidimensionais das propriedades na pesquisa relacionada a 
otimização de células fabricadas. Evidentemente tal protocolo irá também melhorar a 
otimização de outras células solares. O protocolo deve incluir a medição e o melhoramento 
multidimensional das propriedades de material. A partir de análises de sensitividade nos 
verificamos a importância de cada uma das variáveis na obtenção da máxima eficiência. 
Chegamos a conclusão que uma sintonização adequada deve priorizar o mantimento da 
relação entre a espessura da camada de absorção (t0) e o comprimento do decaimento ótico 
médio (λave) para assegurar o valor máximo de uma célula otimizada. As duas variáveis 
formam um vértice, que resulta em pontos de máxima eficiência, tanto numa célula otimizada 
como em uma célula não otimizada. O método combinatório de melhoramento de variáveis 
mostra que a redução das velocidades de recombinação de elétrons (sf) e lacunas (sb) resulta 
no maior aumento da eficiência de uma célula não otimizada. Valores ideais dessas variáveis 
resultam em um aumento da eficiência por 2,37% e 1,94%, respectivamente. Uma vez tendo 
melhorados essas variáveis a tensão inerente (Vbi) resulta num aumento ainda maior de 3,03%. 
Além disso, as variáveis de coeficiente de difusão de elétron (Dn), e de lacunas (Dp) são 
também de alta importância nessa mesma sequência de prioridade. Os valores otimizados 
dessas variáveis resultam num aumento adicional da eficiência de 1,17% e 1,75%, 
respectivamente. 
 

  

 
 



 
 
Considerações Finais 

Métodos de otimização multidimensional devem ser usados com maior vigor nas pesquisas 
relacionadas ao aumento da eficiência de células solares. Estes viabilizam a extração de 
conhecimento adicional relacionado a esse processo, a qual não pode ser obtido com outros 
métodos. O objetivo é obter protocolos úteis na fabricação de células solares em laboratório, 
ou em escala industrial, que encurtam consideravelmente o seu tempo de desenvolvimento. 
Será interessante experimentar a utilidade deste método em outros dispositivos, como células 
de múltiplas junções, baterias, supercapacitores, por exemplo. Uma vez tendo um modelo 
matemático do dispositivo disponível, pode se usar outras funções objetivas, como por 
exemplo, a capacidade de carga de uma bateria, ou um supercapacitor. Principalmente nos 
dias de hoje, em que há uma rápida transição para novas tecnologias limpas de energia, 
métodos de adequação mais velozes dos dispositivos considerados, acrescenta grande valor 
nessa transição. 

 
Palavras-chave: Célula solar perovskita. Modelo analítico de eficiência. Otimização 
Numérica Multidimensional. 
 

  

 
 



 
 

ABSTRACT 
 
To obtain significant improvements in the Power Conversion Efficiency (PCE) of solar cells, 
researchers should know which material properties and cell design constitute cells with the 
highest possible cell efficiency. Such knowledge can orient in the improvement of each of the 
cell’s material properties, and in the selection of appropriate manufacturing methods to 
improve these material properties obtaining a higher PCE. We postulate that such knowledge 
is obtainable by simulation and numerical optimization of the cell’s PCE, which we present 
for the considered pin-type Perovskite Solar Cell (PSC) in a multidimensional variable space. 
Our analyses and review show and compare, which material properties lead to the highest cell 
efficiency. By utilization of a sensibility analysis, which uses the analytical model of the pin-
type PSC, we show that its efficiency is a nonlinear function of several material properties 
and the absorber layer thickness in a multidimensional function space of variables. The 
presented numerical optimizations improve the PSC’s efficiency from an initial 15.7% up to 
27.8%. We consider variable improvements at different scales in a nine-dimensional 
hypercube space of cell properties and the absorber layer thickness. We thus show the high 
development potential of this solar cell. We present the combined variable specification 
necessary to obtain such high efficiency, and we found that seven of the nine analyzed 
variables show efficiency sensitivity. We also preset further model optimizations that consider 
limited variable improvements and lead to a lower PCE, which leads to additional knowledge 
concerning the optimization of the cell with and without light trapping for different absorber 
layer thicknesses and improvement scales. We found that the Pb content of the optimized PSC 
can be reduced significantly with a small PCE loss of only 0.2% if light trapping is used in 
thin absorber layers. Our sensitivity analyses show the minimal necessary variable 
improvement for each of the considered variables, and our presented combinatorial approach 
validates 91 possible variable combinations, suggesting an ideal sequence of variable tunings. 
 
Keywords: Perovskite Solar Cell. Analytic solar cell model. Multidimensional Numerical 
Efficiency Optimization.   
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1. INTRODUCTION 

Climate change is the 800-pound gorilla 27 in the living room that the media dances 
around.  But in the scientific community, it’s a settled question: 95 percent of scientists 
believe this is happening with 100 percent confidence temperatures are rising. With 90 
percent confidence, we believe it’s human activity and not natural cycles that is driving the 
increase in temperature on the Earth. 

Michio Kaku, Physicist, 23. February 2014 

 

Solar energy is the only ready-to-mass-deployable resource that is both: (i) large 

enough and (ii) acceptable enough to be exploited in a long term time frame as discussed in 

(PEREZ; ZWEIBEL; HOFF, 2011) and (PEREZ; PEREZ, 2009). The authors validate this 

affirmation comparing the recoverable energy from finite and renewable energy global energy 

reserves. They estimate the total recoverable energy potential, in the unit of [TW years], as 

related to (i) finite sources (Coal, 900; Uranium, 90…300; Petroleum, 240; and Natural Gas, 

215) and renewable energy sources (ex. Solar 23000; Wind, 25…70; Hydropower 3…4), 

estimated on an annual generation base. It comes to attention that the potential of solely the 

solar energy resources on a yearly base is much higher than the sum of the finite energy 

resources. If compared to the estimated total energy consumption on a global level in 2050, 

which is 28 TWyears, especially the yearly available solar energy potential of 2300 TWyears 

is large. Therefore, considering the exploitation of only a tiny fraction of this available solar 

energy resource could meet the demand with a nearly infinite room of growth.  

The cost of a photovoltaic system is constituted by the expenditures of (i) the 

photovoltaic generator and (ii) the balance of the system (BOS), where the latter encompasses 

all system components excluding the photovoltaic modules. The BOS of a grid-connected 

system is typically constituted by the costs of the (i) inverter, (ii) electric metering unit, (iii) 

the cabling, and (iv) the mounting system of the photovoltaic (PV) modules. While the BOS 

costs showed a continuous decrease, recently, in 2014, the costs of the solar generator of a PV 

system showed to be lower than the BOS (LOUWEN; VAN SARK, 2020). However, 

presently the PV generator is still the system component with the highest cost. Therefore, it is 

expected that the future commercially available PV – modules, as based on the third 

generation perovskite solar cell technology for the conversion of solar energy, enables large-

scale electric energy production at still lower manufacturing costs (CAI; WU; CHEN; YANG 
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et al., 2017). A consideration which implies some future developments as discussed in the 

reference section.   

Third-generation solar cells are conceived for extra thin and flexible coatings, which 

can be coated with simple ink deposition methods. The first conceived third-generation solar 

cells were dye-sensitized and organic solar cells, which are already used in building integrated 

photovoltaic (BIPV) systems creating attractive design elements, as shown in (SHUKLA; 

SUDHAKAR; BAREDAR, 2016) and (MORITZ, 2019). PSCs are third-generation solar cells 

that present the highest state-of-the-art efficiency, and they are classified as hybrid cells, 

being constituted of an absorber layer made of organic and inorganic materials. As detailed in 

section 2.4, page 45, the Methylammonium (CH3NH3PbX3), is presently the most analyzed 

PSC cell type, but recent work also analyzed Formamidinium (CH3(NH2)2PbX3) cell types, 

because of its higher absorption behaviors. Furthermore, the introduction of Cesium in a 

(Cs0.17FA0.83Pb(Br0.17I0.83)) cell type results in higher long term stabilities and efficiencies. 

The substitution of the X3 term with the halides (I3-), (Br3-), and (Cl3-) provides an adjustable 

bandgap, a characteristic which is essential in the development of PSC-based multiple 

junction solar cells.  

State-of-the-art research related to the efficiency increase of PSCs focuses on cell 

prototyping, in which authors try to optimize solar cells by reasoning and hypothesis testing 

of inherent physical principles. In this context, efficiency increases are typically shown as a 

function of the improvement of one- or two variables. Such one and two-dimensional 

optimizations are adopted since the efficiency, in such a restricted variable space, can be 

optimized by the simple two- and three-dimensional plots, which show the PCE values as a 

function of these variables.  

However, the benefits of analytical or numerical models, as derived from a solar 

cell’s drift-diffusion equations, can give more useful information. In using such models, the 

cell’s current density – voltage (J-V) curve can be simulated as a function of multiple material 

properties. Therefore, we assumed that it is especially useful if the whole set of material 

properties is improved rather than only one or two properties, a behavior that we analyzed in 

this thesis. Our objective is to provide more knowledge and insights about the optimization 

process of perovskite solar cells and propose high-efficiency low-cost designs for future PSC 

developments. Additionally, we suggest several high-efficiency designs, as obtained by light 

trapping in combination with absorber layer thickness reductions, and we discuss how the 
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PCE of state-of-the-art cells can be increased by different methods. To access this knowledge 

and design proposals, we postulate a multidimensional numerical optimization of a solar 

cell’s drift-diffusion model, and our analyses of the optimized solar cell results to a 

comprehensive, in-depth understanding of the optimization of a PSC.   

Having a multidimensional mathematical model at hand, it is of fundamental 

importance to answer the following questions to obtain the highest possible cell efficiency: (i) 

which model variables or material properties should be concomitantly improved, to achieve 

the highest efficiency values, (ii) should the value of the considered variables be increased or 

decreased, (iii) to which specific value each one of these model variables has to be improved, 

(iv) which one of the taken variables account for the most significant PCE increase. Our 

research focus is to provide answers to these research questions providing knowledge to 

accelerate the future development of perovskite solar cells. The general concept of our 

research, simulations, and optimization can be transferred straightforwardly to further solar 

cell types.  

 

1.1 HYPOTHESIS 

 

We validate the following hypothesis: The multidimensional optimization of the 

perovskite solar cell model, using as optimization variables (i) the cell’s material properties, 

and (ii) its absorber layer thickness, results in a much higher efficiency increase, in 

comparison to any of the possible one- and tow-dimensional optimizations.  

 

1.2 OBJECTIVES 

 

To obtain significant increases in the optimization of solar cells, we argue in this 

thesis that the substitution of the state-of-the-art one- and two-dimensional cell optimizations, 

by the simultaneous improvement of multiple material properties, is novel and of substantial 

advantage. In this context, researchers should know, which combined material properties and 

cell design parameters result in the highest efficiency increase. For the same objective, it is 

also of importance to know which ideal relationships in-between these variables must be 

adjusted. Such knowledge becomes available by numerical optimizations and simulations, 

which we present for a Perovskite Solar Cell (PSC) in a hypercube space of model variables.   
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The main objectives of this work are: 

 

• The optimization of the variables of an analytical model of a PSC by utilization of a 

multidimensional numerical optimization algorithm to obtain a significant increase in 

the cell’s efficiency,  

• Compare the results of the multidimensional efficiency optimization with the results 

of the state-of-the-art one and two-dimensional optimizations in analyzing any 

possible variable combinations in the latter case,  

• The complete specification of the necessary material properties and the absorber layer 

thickness defined as a precondition so that cells with such an improved state-of-the-art 

efficiency can be manufactured, based on adequate material property improvements,  

• Proposing several different PSC design concepts, which consider ideal and quasi-ideal 

material properties for different absorber layer thicknesses and short-circuit currents, 

as obtained by light trapping, in order to access new knowledge related to a PSC’s 

optimization, 

• Use sensitivity analyzes of the optimized PSC to show the minimal necessary material 

property improvement for each of the considered model variables to enable the 

maximum model efficiency,  

• Providing detailed information to display, which combination of improved material 

properties, leads to the highest PCE increases, leading to a ranking of the most to the 

least efficiency-sensitive material properties,    

• Analyzing why a multidimensional optimization is much more effective as in 

comparison to the one- and two-dimensional optimizations, 

• Showing by a review, based on the obtained optimization results, how state-of-the-art 

manufacturing processes can manipulate material properties and the absorber layer 

thickness most effectively for high solar cell efficiencies. 
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2. BIBLIOGRAPHY REVIEW  
 
 

When something is important enough, you do it even if the odds are not in your favor. 
 

Elon Musk, CEO of Tesla Motors and Space X, 2017 
 

We present a short general introduction to the perovskite solar cells highlighting 

especially the distinctive flexibility of this solar cell platform, which is unique in the concept 

that allows a continuous band gap tuning ability in single and multiple band gap cells. We 

review the advantage of perovskite solar cells, especially its low-cost concepts, as combined 

with high efficiencies, and a necessary low long-term degradation of its efficiency. Such 

characters will possibly enable the use of perovskite solar cells for the generation of electrical 

energy at a large-scale and extra low-cost. Especially the use of (i) low-cost materials, (ii) its 

low manufacturing cost, and (iii) its high efficiency in single and multiple junction cells will 

probably leave its mark in the future of the generation of electrical energy. A precondition for 

such a large impact is that its presently high long-term degradation must be reduced. We show 

that degradation mechanisms are still being discovered in PSCs. Again, the flexibility of this 

solar cell platform allows for several chemical modifications of the absorber material, leading 

in higher long-term stability, which is, in some cases, paired with high efficiencies. This large 

possibility of chemical manipulations enables a multitude of functions to be included in the 

platform, which allowed for each degradation mechanism an action, which counteracts the 

related effects. A future combination of these measures gives a positive outlook for a future 

PSC, which presents long term stability and a long lifespan. 

We review the state-of-the-art modeling approaches, as used for the simulation of 

PSCs. Simplified models do only consider radiative recombination losses and are typically 

used to calculate the upper-efficiency limit of different perovskite solar cell types. More 

detailed simulation models also consider further recombination losses, which are usually 

related to the material properties of the perovskite solar cells. Such approaches are typically 

based on the drift-diffusion equations of electrons and holes. These multidimensional models 

are separated into two different groups: (i) the most used numerical simulation models, which 

can also be found in several simulation programs; and (ii) the analytical models, which 

considering some simplifications, and are based on an extensive derivation process involving 

the solution of five second-order differential equations (APPENDIX A.1, page 156).  
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A multidimensional model also needs a multidimensional approach to improve the 

cell’s several material properties. We review multidimensional methods as used in the 

optimization of several technological devices, and introduce the here used optimization 

algorithm in Section 2.9, page 66. Once knowing the necessary material properties of a high-

efficiency PSC, it is quintessential to understand how to improve these properties best to 

obtain values that are close to the optimized solar cell properties. Such methods of 

improvement we review in sections 2.10.2 to 2.10.8, page 72. 

  

2.1 GENERAL SCOPE  

 

Photovoltaic (PV) power plants based on the widely used silicon solar cells were 

already cost-competitive without subsidies in several countries seven years ago (BREYER; 

GERLACH, 2013), an affirmation, which is based principally on the calculus of the local cost 

of electric energy and the annual solar irradiance. Meanwhile, climate-change problems 

(Section 2.2, page 36) demand the large-scale implementation of non-CO2 emitting power 

plants (EDENHOFER; PICHS-MADRUGA; SOKONA; SEYBOTH et al., 2011), which 

stresses substantial investments because of the higher initial cost of photovoltaic power plants 

if compared to thermal power plants. E.g., considering the comparison of an arbitrary 

renewable power plant with a non-renewable coal or gas firing thermoelectric power plant, for 

the specific case that both plants do present a similar levelized cost of electric energy 

(LCOE), the renewable plant has a higher initial investment cost, but as it shows a nearly zero 

fuel consumption, it has depreciable operation costs.  

The LCOE is a method, which allows the comparison of different power generation 

plants by the validation of a whole set of different expenses within the plant’s lifetime, which 

are: (i) investment, (ii) interests, (iii) maintenance and (iv) fuel costs. The method levels these 

costs to the present date, which allows a direct comparison of the energy price of power plants 

that own different cost structures in investment and operation. Therefore, if  (i) manufacturing 

cost reductions and (ii) higher efficiencies of photovoltaic modules may permit a significant 

further cost reduction in the generation of electrical energy, more utility PV generation plants 

can be implemented with the same investment, because of the reduced initial investment cost. 

The manufacturing cost is also an essential aspect as PSC solar cell technologies allow a 

printing alike coating of the cell’s semiconductors at low temperatures and out of vacuum 
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conditions (RONG; HOU; HU; MEI et al., 2017). A high solar cell efficiency is one of the 

essential issues to convert solar energy at low generation costs. This affirmation can be 

understood, as by doubling of the module efficiency, only half of the module area is necessary 

to generate a similar energy. In such a case, the costs related to following items reduce by 

approximately 50%, for the same project power: (i) the module encapsulation, (ii) the 

mounting rack and the installation material of modules, (iii) the workforce necessary for the 

installation of the solar panels, and finally (iv) the land use of the considered photovoltaic 

project.  

 

2.1.1 The birth of photovoltaics and first-generation solar cell technologies 

 

The photovoltaic effect was discovered by occasion during experiments made by the 

physicist Alexandre Edmond Becquerel in 1839 (PV-RESOURCES, 2015). Later in 1905, 

Albert Einstein laid out the most comprehensive theoretical work about the photoelectric 

effect (KLASSEN, 2011) and won the Nobel Prize for his work. Einstein provided, parallel to 

the wave theory of light, a quantum theory of the electromagnetic radiation, as based on the 

flux of photons (BARANOV, 2016) . In 1915 the chemist Jan Czochralski invented the 

process in which a large single crystal, called ingot, is grown slowly from a silicon melt. It 

took a long time until the first irradiance-proof solar cells were manufactured in 1958, from 

wafers, sawn from those ingots, which result in monocrystalline silicon solar cells. Those 

cells were used as independent photovoltaic power supplies for the first launched satellites. 

The first cells, as utilized in terrestrial applications, were initially produced from the same 

ingots, as used in the manufacturing process of microchip. The resulting bottlenecks of the 

waver supplies were later circumvented by the introduction of a silicon material especially 

provided for crystalline silicon solar cells. While this material contains somewhat higher 

impurities, if compared to microchip grade silicon, it has the advantage of a lower cost per 

unit weight. The bottleneck of the slow crystal-growing process was avoided by the casting of 

silicon in forms, which results in the multi-crystalline wafers. However, there are further 

bottlenecks in manufacturing. E.g.: (i) the monocrystalline and multi-crystalline ingots need 

several days to cool down to a temperature necessary for the additional manufacturing steps; 

(ii) the wavers have to be sawn from the ingots which need time; (iii) each small cell has to be 

subjected to several processes such as etching, doping, passivation, and the coating of its 
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electrodes; (iv) most of these processes have to be accomplished under vacuum conditions; 

(v) the cells have to be interconnected by the soldering of an electrical bus bar (GOODRICH; 

HACKE; WANG; SOPORI et al., 2013; MCEVOY; CASTANER; MARKVART, 2012). 

While automatization can reduce the cost of these processes, it cannot reduce the time lag and 

the necessary energy as related to these processes, which increases the footprint of the 

manufacturing plant, and therefore, the related cost.  

 

2.1.2  First, second and third-generation solar cell technologies  

 

First-generation solar cells are monocrystalline and polycrystalline silicon solar cells, 

which were introduced historically as the first commercially available photovoltaic modules. 

Such cells are indirect band gap cells, needing, therefore, a momentum as provided by a 

phonon to convert a photon in free charge carriers. As a result, these cells need to have a 

considerable thickness of generally 200 µm to be able to absorb the sun’s irradiance.  

The later introduced second-generation solar cells, also called thin-film solar cells, 

such as (i) Copper Indium Gallium Selene (CIGS), (ii) Cadmium-Telluride (Cd-Te) and (iii) 

amorphous silicon solar cells (a-Si), use lower quantities of the necessary, highly purified 

materials, because of its thinner active layers. Therefore, it was initially expected that 

photovoltaic modules with cells made of these materials become available at a lower price per 

Watt peak. This character showed not up initially, principally because of its lower efficiency 

in comparison with crystalline silicon solar cells (GREEN, 2001). The third-generation solar 

cells, such as organic and perovskite solar cells are extra thin printable cells. Especially 

perovskite solar cells (PSCs) are of interest because of its high efficiency, and it is expected 

that future PV modules made of single-junction PSCs convert solar energy at the lowest costs 

(CAI; WU; CHEN; YANG et al., 2017). This lower cost is associated to (i) its composition, 

using lower-cost materials; (ii) its lower material use, because of its extra thin absorber layers; 

(iii) a much lower coating temperature, which results in lower energy consumption, (iv) the 

out-of-vacuum manufacturing process; (v) a manufacturing process using low-cost printing 

and roll-to-roll methods; (vi) the high PCE of a single-junction PSC; and finally (viii) its band 

gap flexibility which enables a manufacturing of high efficiency multiple-junction solar cells.   
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2.1.3  Advantages of second-generation cell technologies 

 

The time- and energy-demanding processes as necessary for the manufacturing of 

silicon photovoltaic modules are not required for the manufacturing of second-generation 

thin-film Cd-Te, CIGS and a-Si modules,  as its layers are coatable in a conveyor belt 

assembly (MCEVOY; CASTANER; MARKVART, 2012). While these modules use 

semiconductor materials that are not as abundantly available as silicon, there are much 

thinner, resulting thus in lower material use. However, second-generation modules must still 

be coated under vacuum conditions and at relatively high temperatures, which increase the 

manufacturing’s energy consumption and cost.   

 

2.1.4  Advantages of third-generation cell technologies  

 

The earliest third-generation organic photovoltaic cell (OPV) cell, with a reasonable 

efficiency of 1%, was conceived as a two-layer design by (TANG, 1986), apud (SUN; 

SARICIFTCI, 2017). Then, in 1991, Michael Grätzel created the first dye-sensitized solar cell 

(O’REGAN; GRÄTZEL, 1991), and  in (KOJIMA; TESHIMA; SHIRAI; MIYASAKA, 

2009), the first hybrid solar cells was discovered. In comparison to first- and second-

generation modules, the manufacturing process of third-generation dye-sensitized, organic, 

and perovskite solar modules is more advantageous, as it involves (i) much lower process 

temperatures; and (ii) simple, low-cost manufacturing processes, such as printing processes 

(RONG; HOU; HU; MEI et al., 2017). Furthermore, the third generation PSCs present 

recently also a higher state-of-the-art PCE that second-generation cells (NREL, 2020). The 

manufacturing of third-generation cell technologies needs less sophisticated machinery, as the 

coating of its layer can be accomplished by low-cost methods, i.e., under low temperatures, 

and ambient conditions, as known in the coating of inks. The extra thin films of such cells 

lead not only to low material use and cost but also present high adaptability of the resulting 

photovoltaic modules, which lead to its easy use in building-integrated photovoltaics (BIPV).      

One of the first buildings, which use third-generation BIPVs is the Swiss Tech 

Convention Center, shown in (JACOBY, 2016), using dye-sensitized solar cells as 

manufactured by the company Solaronix. Furthermore, the color-rich surfaces as of printed 

organic cells on flexible membranes create new design possibilities of buildings and facades, 
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as shown in (ARCHITEKTUR; DER TECHNIK; LA ARQUITECTURA, 2017) and 

(MORITZ, 2019). Recently, the charge conduction layers of organic photovoltaic cells are 

made from fullerene-free materials, which present smaller molecule sizes. The use of such 

materials leads to both, (i) distinguished efficiencies up to 17 %, for a cell, in which both 

charge conduction layers are made of fullerene-free materials (ZHAN; LI; LAU; CUI et al., 

2020); and reasonable long-term stabilities of its efficiency, with an expected T80 lifetimei 

larger than 20 years (XU; XIAO; ZHANG; WEI et al., 2020).   

As a result, of its highest cell efficiency in-between the third-generation solar cells, 

the perovskite solar cells are most promising to be used in BIPV but also in photovoltaic 

power plants.  Perovskite photovoltaic modules present the lowest energy amortization time, 

which is only 2…3 months if compared to further solar cell manufacturing technologies 

(GONG; DARLING; YOU, 2015). As the ambient moisture influences positively the 

crystallization process of the PSC’s absorber layer, the manufacturing of PSCs has not to be 

accomplished under vacuum conditions, leading, therefore, to a pore-free absorber layer 

coating at low costs (RONG; HOU; HU; MEI et al., 2017). After its deposition, the humidity 

of this layer is evaporated by a thermal annealing process. The PSC manufacturing is divided 

principally into two different techniques; (i) vapor phase techniques and (ii) solution-based 

methods, which are presented in (BRITTMAN; ADHYAKSA; GARNETT, 2015) and 

(ZHOU; YANG; WU; VASILIEV et al., 2015). Highest efficiencies of 22.7% and 23.2% 

perovskite solar cells are obtained with the combination of different materials in a  

(FAPbI3)0.95(MAPBr3)0.05 PSC as shown in (JUNG; JEON; PARK; MOON et al., 2019) and 

in (JEON; NA; JUNG; YANG et al., 2018) while manufacturing methods of the state-of-the-

art efficiency of 25.2% (NREL, 2020) is presently unknown. The former authors present a 

complete review and classification of the different manufacturing methods used for the 

fabrication of single-junction PSCs. Another advantage of thin-film third-generation PSC-

junctions is that they are stackable, and its cell bandgaps are adjustable. This characteristic 

results in multijunction PSCs to extra high cell efficiencies.  

 

2.2 OUTREACHING IMPACT  

 

While electric energy generated from fossil fuels is conceived as to have a positive 

carbon dioxide balance effect, because of its related CO2 emissions, renewable energy 
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generators based biofuels present a nearly neutral CO2 balance effect, because of the 

sequestration of the atmosphere’s CO2 by the growing vegetation, used as biofuel. Systems 

which have a negative balance effect of CO2 are most favorable in this comparison, as they 

can provide the electrical energy, which enables a reduction of CO2 by its absorption in the 

earth’s intact vegetation (BALDWIN, 2006). Systems with a negative balance effect are (i) 

wind turbines; (ii) photovoltaic systems; and (iii) solar thermal systems, such as power 

towers, parabolic trough, and dish-engine systems. Because of its thermal insulation property, 

the gas CO2 is one of the responsible actors to maintain the earth’s temperature about the 

temperature of space. However, the increase in the atmosphere’s CO2 content results in the 

so-named radiative forcing effect. The increased thermal insulation, as related to the higher 

CO2 content, results in an increased blocking of the upward infrared radiation to space. As a 

result, the total upward energy flow is lower than the downward energy flow, being the latter 

defined by the incoming solar irradiance. Such a radiative imbalance, or forcing effect, results 

in the global warming of the atmosphere and the oceans, originating climate change, as 

discussed, e.g., in (BUTLER; MONTZKA, 2016). In-depth scientific evidence was first 

provided by NASA researcher Hansen (HANSEN; SATO; RUEDY, 1997), based on a global 

3D-simulation of the earth’s atmosphere and oceans, over several years. Consequently, in the 

past, the main argument for the substitution of the most polluting coal-fired power plants with 

renewable power plants was its contribution to the decrease in CO2 emission. 

 However, the recent cost-competitiveness of renewable power plants, and its 

tendency to sinking generation costs, presently provides another argument for renewable 

power plants providing a lower-cost alternative of the generation of electric energy. 

Therefore, in the future (i) not only a reduction in the CO2 emission but also (ii) a reduction of 

the total CO2 content, as stored in the atmosphere, can e expected, because of the expected 

increase in the generation of electrical energy by renewable power plants. As an outcome not 

only (i) the non-renewable energy resources are conserved, avoiding, therefore, a future 

exposition to high energy prices, because of increased resource scarcity; but also (ii) electric 

energy can be converted at lower costs by renewable power plants, and as a complementary 

function; (iii) the risks and costs as related to climate change can be mitigated. 
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2.2.1 A proposal of a future with fully renewable energy generation  

 

Solely the use of those renewable energy systems, which energy generation is related 

to wind-, water-, and solar energy sources (WWS), is expected to generate the energy for all 

sectors in a future scenario in 2050 (DELUCCHI; JACOBSON, 2011; JACOBSON; 

DELUCCHI, 2011), i.e. (i) electric energy generation, (ii) transportation, (iii) heating, (iv) 

cooling, and (v) industrial use. Such a configuration mitigates, therefore, the risks and costs 

related to (i) local pollution mainly generated by the transport sector, and (ii) CO2 pollution, 

as associated with the current energy production and consumption. The authors estimate that 

the amount of wind plus solar energy available in likely developable locations exceeds the 

projected worldwide energy demand for all purposes in 2050 by more than an order of 

magnitude. Based on simulations with (i) different energy storage capacities in a 30 s interval; 

and (ii) a global 3D atmospheric circulation model, used to simulate the supply of renewable 

resources, (DELUCCHI; JACOBSON, 2011; JACOBSON; DELUCCHI, 2011) conclude that 

the main barriers for such a transition of a fully renewable energy generation matrix are 

primarily of social and political origin, but not of technological or economic nature.  

As contrary to the concept that the firm energy of thermal and nuclear power plants 

can supply energy when renewable sources are not available, the concept of (JACOBSON; 

DELUCCHI, 2011) is based on several different energy storages inbound in a smart power 

grid. In their simulations, they use: (i) seasonal heat storage units, which provide district heat 

at costs less than 1 US dollar per kWh; (ii) insulated ice storage units for air condition 

systems of buildings; (iii) thermally insulated reservoirs of cold and warm water, for air 

conditioning systems of building complexes such as, e.g., universities; (vi) heat pumps for 

heating and cooling of rooms, and the production of warm water in residents; (v) demand 

response to control the heating and cooling of these systems, as well as further non-priority 

consumer equipment; (vi) hydrogen storage units; (viii) concentrated thermal solar power 

plants with low-cost rock heat storages, which enable the generation of electrical energy for 

nearly 24 hours per day; (ix) the storage capacities of pumped hydropower plants; and finally 

(x) the storage of conventional hydropower plants, where (a) the lower, and the upper limits 

of its storage unit, as well as, (b) its minimal dispatch to maintain the related river bed, have 

to be respected. 
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While the current LCOE of Nuclear power plants is 91...112 USD/MWh, coal power 

plants is 90...120 USD/MWh, and natural gas plants is 75...90 USD/MWh (CAI; WU; CHEN; 

YANG et al., 2017), state-of-the-art utility PV power plants, already present a lower cost 

range of LCOE of ~ 42...75 USD/MWh (KOST; SHAMMUGAM; JÜLCH; NGUYEN et al., 

2018). A cost which should decrease additionally in the future, because of larger-scale 

manufacturing of silicon cells, and low-cost manufacturing of high efficiency photovoltaic 

technologies, such as perovskite solar cells. As discussed by the Stanford University Professor 

in one of its lectures (JACOBSON, 2018), on an economical line of thought the lower costs in 

the WWS scenario (DELUCCHI; JACOBSON, 2011; JACOBSON; DELUCCHI, 2011) are 

also associated to a 59% reduction of the global energy demand, as a result of (i) the 

avoidance of low-efficiency combustion processes, which results in a 23% reduction on 

average; (ii) the stopping of mining and transport of fossil fuels and uranium (13% reduction); 

(iii) the efficiency of heat pumps (16%); and general measures to improve the efficiency of 

electric energy use (7%).   

The main reason for the exclusion of the Nuclear fission generators are (i) its risk 

related to power station accidents; (ii) the large half-time of the irradiation of nuclear waste; 

(iii) the large time from project to operation of nuclear power plants up to 20 years, and its 

uncertainty in social acceptance, which translates to an investment risk; and finally (iv) to 

avoid risks as related to nuclear weapon proliferation in a large scale. While the expected 

business costs of such a WWS energy supply are very similar in comparison to the cost of an 

energy supply using state-of-the-art power supply systems, because of the needed storage 

units, the social costs, related to the lower local air pollution and climate change effects, 

favorize the WWS supply presenting a 40% lower cost in comparison to the conventional 

energy supply (JACOBSON; DELUCCHI; CAMERON; FREW, 2015).   

For such a solution, the electrical power grid must be validated, and its capacities 

must be actualized to some small extent. Energy transport, because of the variability in the 

generation, down to the range of some seconds, must be enabled. However, the cost of such 

an actualization should be relatively low because of the generation of large parts of the energy 

close to the consumer side, because of the distributed generation character of the renewable 

energy sources and especially the building-integrated PV systems. A further benefit of 

reduced energy transport is also obtained as, e.g., the photovoltaic conversion profile 
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coincides at a daily and seasonal base for most of the time with the demand of the cooling 

power, especially in tropical and subtropical areas.  

Additionally, the renewable energy generation presents a generation 

complementarity at different time scales, from some seconds to the seasonal time scale. These 

complementarities are related (i) to different renewable power sources, as also installed in (ii) 

different locations, which present different supply profiles. The storage density of the 

commercially available graphite-based lithium-ion batteries (LIB) presents at the state-of-the-

art 377 mAhg-1; and, an increase in this capacity can be expected by further developments 

towards the theoretical maximum limit of 5268 mAhg-1, for a LIB with a monolayer h-

borophene anode (LI; TRITSARIS; ZHANG; SHI et al., 2020). Such an increase will result in 

a further rise in the range of electric cars, which is already 603 km for the long-range sport 

utility vehicle (SUV) Tesla, Model S, which inclusively presents a front- and an extendable 

back-luggage space. 

 Because of such long ranges, the particular case that too many cars are needed to be 

charged at a unique charging point can be avoided charging vehicles mostly over-night at low 

current consumption and low effective energy prices. Even better, many charging stations can 

be installed close to high voltage transmission lines, at lower logistic costs as in comparison 

to gasoline fuel stations, which typically need a larger infrastructure, and need to be 

replenishment by tanker trucks. Supercharging units obligate the driver for a rest of 15 

minutes, while a Tesla Model 3, e.g., is partly charged for a range of 277 km. Therefore, the 

recharge with electric charging stations can potentially lead to lower bottlenecks, for the same 

investment, and a securer transport, as in comparison to the refueling of the present vehicle 

fleet.  

While in 2016 the LIBs presented half of the cost of an EV for personal transport,  

electric vehicles will become cost competitive in 2030…2035, as in comparison to 

conventional vehicles, because of its lower battery costs in the future, as evaluated in 

(KAPUSTIN; GRUSHEVENKO, 2020), based on different forecast models. Some of the 

mentioned refueling stations can be extended with hydrogen fuel for longer distance vehicles. 

Such an extended concept presents also low logistic and fuel-costs, as DR-generated hydrogen 

can be locally produced, being stored by electrolysis and hydrogen tanks, needing again, no 

replenishment with pipeline or tanker trucks.  
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2.2.2  The actual penetration of photovoltaic conversion in power grids 

 

Presently the total conversion of the worldwide installed PV-systems does only cover 

a tiny fraction of 2% of the words consumption of electric energy (IRENA, 2019). While the 

PV conversion of solar energy showed a large increase in recent years, the 2 % generation is 

still low, considering that solely the annual increase of the electric energy consumption is 4% 

(IRENA, 2019). Furthermore, higher annual growth rates can be expected because of (i) the 

increased use of electric vehicles; (ii) the rapid improvement of living standards in developing 

countries and growing economies; and (iii) the global population growth. 

However, the growth of the PV energy conversion is expected, as its energy is 

already cost-competitive in some countries if compared with the price of the consumption of 

electric power, attaining the so-called grid parity. These countries present (i) high energy 

prices and (ii) a sufficiently high enough annual average of the solar irradiance (KAMRAN; 

FAZAL; MUDASSAR; AHMED et al., 2019). E.g., based on the LCOE calculations PV-

systems in Germany, Australia, Italy, Denmark, and Spain have attained grid parity even 

before 2012, where its high costs of electric energy present the main reason for the cost 

competitiveness of solar energy. In Brazil, Turkey, France, and Japan, grid parity was attained 

since 2015. Even with the low generation cost as related to PV systems, the withdrawal of 

subsidies as introduced in some of these countries has resulted in a significant reduction of 

new PV-system installations. Therefore, even lower costs are interesting to scale up the 

production of solar energy systems.  

 

2.2.3 The need for extra low-cost photovoltaic systems 

 

If compared to wind power plants, photovoltaic power plants are the most promising 

resource for CO2 reduction, as capacity targets are better archivable in most countries (AL 

IRSYAD; HALOG; NEPAL, 2019). Furthermore, solar energy costs have been fallen 

remarkably, and especially the investments in PV plants have low investment risks because of 

relatively simple resource assessment, social acceptability, and a short construction period. 

However, PV plants present a higher initial investment cost for the same generation of energy 

as in comparison to power plants with the use of fossil-fuel. Therefore, it is essential to 

develop with urgency extra low cost and high-efficiency solar cell technologies, as can 
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become available with optimized single- and multiple junction PSCs, if the long-term stability 

of its efficiency can be improved.   

 

2.2.4  Cost of photovoltaic technologies 

 

In the last 40 years, the cost per Watt peak of photovoltaic modules decreased  ~ 300 

times, resulting in a low current price of approximately US$ 0.25/Wp (THE FREEING 

ENERGY PROJECT, 2019) apud Bloomberg New Energy Finance. However, even with this 

low cost, the extensive conversion to electric energy, and its contribution to the reduction of 

climate gas emissions, is still not significant, as discussed in Section 2.2.2. As presented in 

(CAI; WU; CHEN; YANG et al., 2017), the LCOE generated by systems based on crystalline 

silicon PV modules is in the range of  95…195 USD/MWh and is decreasing continuously. 

They show that the lower value of this range is already cost-competitive with the upper LCOE 

of (i) nuclear power, (ii) hydropower, and (iii) coal-fired power plants, and as a result grid 

parity is obtained in some countries. While the cost per watt peak of photovoltaic modules, 

made of multicrystalline silicon cells, is rapidly decreasing following the Swanson’s law 

(KOBOS; ERICKSON; DRENNEN, 2006), this reduction appears to be still insufficient to 

explore the sun’s energy in a significantly large scale, if compared to the global energy 

consumption (section 2.2.2). The Swanson’s law defines by its so-called learning curve that 

every doubling of manufactured solar modules reduces the module price by approximately 

20%.  

If the fraction of the PV generation increases in a power grid, the cost of its injected 

energy will rise in the future because of the necessary adaptions, as required, to mitigate the 

related variability of its solar energy conversion as discussed in (HIRTH; UECKERDT; 

EDENHOFER, 2015). As a result, it will be more fruitful to use advanced low-cost 

manufacturing technologies in the future for a needed large-scale upscaling of the globally 

installed PV systems, keeping the total investment costs low. In this context, it is expected 

that breakthrough solar cell technologies, such as perovskite solar cells, lead in the future to 

the lowest-cost electric energy production at all, if compared to any further renewable or non-

renewable energy technologies (CAI; WU; CHEN; YANG et al., 2017). The low cost is 

obtained as its layers are coatable by low-cost roll-to-roll printing technologies, such as screen 

printing or gravature printing methods, where the latter already leads to efficiencies of 17.2% 
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(KIM; YANG; SUHONEN; VÄLIMÄKI et al., 2019). Blade coating is another low-cost 

manufacturing method in the laboratory, which can be easily converted to the slot-dye coating 

process, as applicable in roll-to-roll manufacturing. The blade coating presents already a high 

PCE of 17.3% (YANG; LI; REESE; REID et al., 2017).  

 As estimated in (CAI; WU; CHEN; YANG et al., 2017), the lower and upper range 

of the LCOE of a PV-system, of 30 and 60 USD/MWh, based on modules with single-

junction perovskite solar cells will be lower than the lowest LCOE of any other power plant. 

However, (CAI; WU; CHEN; YANG et al., 2017) based its cost estimations on a T80 lifetime 

of 15 years, where T80 defines a 20 % PCE degradation in this lifetime under realistic 

operation conditions. Such a lifetime does presently not correspond to the state-of-the-art of 

perovskite solar cells. At present, tested PSCs under simulated realistic operation conditions 

in a climate chamber, show degradation of approximately 10 % per year, which results 

therefore in an expected T80 lifetime of only two years (TRESS; DOMANSKI; CARLSEN; 

AGARWALLA et al., 2019). As a result, the PSC’s degradation under realistic operation 

conditions must be decreased by the factor 7.5, before its converted energy presents a lower 

LCOE than the energy generated by any other power plant. 

 

2.2.5  Long development times of solar cells 

 

As many costs of a photovoltaic system are related to the area of the installed 

photovoltaic generator, the optimization of a solar cell’s efficiency is one of the most valuable 

methods to decrease the costs of its converted energy. The essential character of single-

junction solar cells is that its PCE is a function of multiple material properties, as defined by 

the models derived from its drift-diffusion equations. As a result, the fundamental nature of its 

efficiency optimization is that such a process needs presently a very long time, which takes in 

some cell types up to several decades until its optimized efficiency proximate to a cell’s 

theoretical upper efficiency limit. E.g., it took more than 40 years to optimize monocrystalline 

silicon solar cells form a PCE of 13% to 26.1% (NREL, 2020). Such a long time is needed, as 

presently authors still optimize cells in the lower dimensional space, where solely one or two 

of the cell’s material properties are improved at a time, ignoring, therefore, the improvement 

or the worsening of the remaining material properties. Because of the possible random 
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variation of the non-measured properties, such a process needs nearly infinite material 

optimizations to attain the cell’s maximal possible efficiency. 

Because of the required solutions for high-efficiency low-cost photovoltaic modules, 

we consider state-of-the-art lower-dimensional optimizations and its related long development 

times, as not being ideal to be used in the future for the developments of solar cells. 

Optimization of manufactured cells should work out much quicker, because of the high 

demand in generated electric energy at a low cost, which can be provided to a large extent by 

solar energy. This thesis aims to provide supportive information for the future optimization 

processes of perovskite solar cells, based on the proposed multidimensional improvement of 

its material properties. The general formulation, as presented here, is transferrable to optimize 

further solar cells, using an analytical or a numerical model, as elaborated from its drift-

diffusion equations of electrons and holes. Therefore, the here proposed multidimensional 

optimizations have a large application field in different solar cell technologies.  

 

2.3 PEROVSKITE SOLAR CELLS 

 

 The perovskite material was first discovered in the Ural Mountains of Russia by 

Gustav Rose in 1839; and was later named after the Russian mineralogist Lev Perovski, who 

founded the Russian Geographical Society in 1845 (OLALERU; KIRUI; WAMWANGI; 

RORO et al., 2020). Rose discovered that perovskite materials are organized in a typical 

general material structure, defined as ABX3 (Figure 2.1, page 46). This structure was later 

confirmed in a work relating to tolerance factors (GOLDSCHMIDT, 1926), being 

representative concerning the stability and the distortion of crystal structures (UBIC; 

SUBODH, 2009). In this context, values of the tolerance factor most proximate to the unity 

indicate the most stable perovskite molecules.  

Early research in hybrid solar cells (WONG; WANG; HE; DJURIŠIĆ et al., 2007) 

led to the concept of the so-known PSC (KOJIMA; TESHIMA; SHIRAI; MIYASAKA, 

2009), a third generation hybrid thin-film cell, with an absorber constituted of an organic-

inorganic compound of semiconductor materials. Second- and third-generation thin-film solar 

cells provide potentially a viable alternative to the most used mono and multicrystalline 

silicon solar cells in photovoltaic modules, because of its lower material use and 

manufacturing cost. Especially perovskite thin-film solar cells are advantageous, once its 
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degradation problems are solved, as discussed in section 2.6, page 52, because of its (i) high 

efficiency, (ii) lower material use, (iii) lower coating temperatures, and its (iii) direct band 

gap, which enables the coating of extra thin absorber layers if compared to silicon solar cells, 

where the cell’s thickness has to be higher because of its inherent indirect band gap. In the 

case of the manufacturing of perovskite photovoltaic modules, PSCs with highly reproducible 

efficiency curves have to be manufactured (AHN; SON; JANG; KANG et al., 2015), 

resulting, therefore, in low cell mismatch losses in those modules. Considering solely 

radiative recombination losses, the theoretical maximal efficiency of this cell is 30% (YIN; 

SHI; YAN, 2014), disregarding in this estimation further recombination losses, e.g., as related 

to trap states, limiting diffusion lengths, pinholes, undesired conduction effects, and further 

recombination effects. Because of its outstanding material properties, and its relatively easy 

manufacturing, the organic-metal-halide PSC showed a rapid evolution of its record 

efficiency values, which increased from 3.8% to 25.2% in only one decade, showing the 

steepest efficiency increase in comparison to further solar cells (NREL, 2020). 

 

2.4 FLEXIBLE PLATFORM OF PEROVSKITE ABSORBER LAYERS  

 

The general expression ABX3 (Figure 2.1) stands for (i) a large organic cation A, (ii) 

a small inorganic cation B, and (iii) a halide anion X3, resulting, therefore, in the organic-

metal-halide constitution of the perovskite material. 

 

Halide anion: For the halide anion (X3) authors use iodide (I3-), chlorine (Cl3-), and 

bromine (Br3-), in this exact sequence of most frequent use (SALIBA; MATSUI; SEO; 

DOMANSKI et al., 2016). In some configurations, the anion is constituted by the 

combination of two halide species, e.g., Cl and I, or Cl and Br, which results in an absorber 

layer made of MAPbI3-xClx or MAPbBr3-xClx , where the x defines the relative material 

constitution of these halides. If x = 0, the absorber layer composition is MAPbI3 for the first, 

and MAPbBr3 for the second absorber layer configuration. However, if x = 3, the constitution 

of both absorber layer formulations is MAPbCl3. The continuous variation of X in these 

formulations enables a precise band gap tuning of PSCs, obtaining the fixed material band 

gaps of 3.1, 2.3 and 1.6 eV for PSCs with pure halides (I3-), (Br3-) and (Cl3-). For the variation 

between x = 0…3, intermediate material band gaps are obtained in the range of 1.6…3.1 eV 

 
 



46 
 

for the MAPbI3-xClx and 1.6…2.3 eV for the MAPbBr3-xClx cell. This band gap tuning is 

allowed, because of the crystal lattice expansion of the perovskite molecule. Therefore, the 

tuning results in a remarkable advantage of PSCs, being especially useful in the design of 

low-cost multiple band gap cells. However, the MAPbCl3 cell and MAPbBr3 cell are not only 

of value in the engineering of a multiple junction PSC, but they can also be used for a fine-

tuning of a PSC to the solar spectrum for a specific location, obtaining, therefore, some small 

additional efficiency gains.  

 

Figure 2.1- Organic-inorganic hybrid perovskite compound, based on metal halides 
adopting the general perovskite structure ABX3 in 3D PSC, where (i) A is the large 
organic cation, as constituted e.g. by Cs, or CH3NH3+ ; (ii) B is the small inorganic 
cation, as constituted by Pb or Sn ; and (iii) X represents the anion from the halide 
series as constituted by Cl, Br-, or I+.  
  

  
 
  
 
  
 
 
 
 
 
  
Source: (CHANG, without date). 

 
Inorganic cation: The most used materials for the inorganic cation (B) are lead 

(Pb2+), and tin (Sn2+). Recently, the Pb was also substituted with Bismuth leading to an 

absorber layer of (CH3NH3)3Bi2I9, which presents an efficiency of 1.62% (JAIN; 

EDVINSSON; DURRANT, 2019). However, presently most research articles are available 

about Pb-based perovskite solar cells, because of its higher state-of-the-art efficiency, which 

might change in the future.  

Finally, we like to mention that 2D-PSC structures also present the advantage that 

the distance between its two or more, so-called 2D perovskite layers, can be manipulated. 

This manipulation results in an additional band gap tuning and additionally makes further new 

material properties available (GRANCINI; ROLDÁN-CARMONA; ZIMMERMANN; 
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MOSCONI et al., 2017). As to see from this short review, and as also will be seen from the 

short review about the PSC’s degradation mitigation in section 2.6, page 52, the possibilities 

of the manipulations of (i) the band gap and (ii) the further material properties seem to be 

nearly endless in the perovskite platform, which is of great advantage for the future 

development of highly efficient and stable PSCs. 

We note that a single-junction Methylammonium lead iodide cell (MAPbI3), as here 

optimized, is a cell that should result in the highest single-junction cell efficiency because of 

the nearly ideal cell band gap. In the optimization of the present cell, the effective cell band 

gap is 1.2 eV, a value that leads to a theoretical efficiency limit of 32.57%, which is only 

0.34% lower than the highest Shockley-Queisser thermodynamic efficiency limit for single-

junction solar cells, which demands an ideal band gap of 1.4 eV (RÜHLE, 2016). 

We note that (i) the band gap of the perovskite material and (ii) the PSC’s band gap are 

different items that present, therefore, different values. Whereas the material band gap of the 

absorber layer material is 1.5 eV (- 3.9 eV - (-5.4 eV)), the cell’s band gap is 1.2 eV (Figure 

3.1a, page 81). The cell’s band gap is defined as the difference between the tilted lines of the 

absorber layer in this figure, outlined as the difference between the highest occupied 

molecular orbit (HOMO) and lowest unoccupied molecular orbit (LUMO)  (e.g. - 4.2 eV - ( - 

5.4 eV) = 1.2 eV). 

 

2.5 ADVANTAGES OF PEROVSKITE SOLAR CELLS  
 

 

The remarkable advantages of perovskite solar cells in comparison to the similar 

organic solar cells, and the dominating silicon photovoltaic technology, is discussed here. 

Unique material properties make PSCs especially valuable for its use in solar energy 

conversion, and another of its attractive features is its potential viability for the manufacturing 

of low-cost, high-efficiency, flexible thin-film photovoltaic modules, as based on low material 

costs. Third generation hybrid perovskite solar cells are often compared to the third 

generation OPV cells, as they share similar low-cost manufacturing methods for the coating 

of its layers using ink coating technologies. However, PSCs are most different, because of its 

significant higher state-of-the-art efficiency (25.2%), which is similar in comparison to the 

first generation monocrystalline (26.1%), but higher than the first generation multicrystalline 

(22.8%), the second generation Copper Indium Gallium Selen (CIGS) (23.4%) and Cadmium 
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Telluride (CdTe) (22.1%), and much higher than the further third-generation solar cells, such 

as OPV (17.4%), quantum dot (16.6%), and dye-sensitized solar cells (12.3%), as visualized 

in (NREL, 2020).  

In order to attain cost competitiveness in comparison with non-renewable power 

plans, the long term degradation of the PSC’s efficiency should be validated under realistic 

operation conditions, resulting in a lifetime of at least 15 years (CAI; WU; CHEN; YANG et 

al., 2017).  Here we have to remark that the third-generation organic solar cells, already 

present very low PCE degradation under realistic operation conditions, which leads in an 

expected lifetime of over 20 years, if its fullerene type charge conduction layers are 

substituted with non-fullerene containing materials (XU; XIAO; ZHANG; WEI et al., 2020). 

However, OPV cells present a lower state-of-the-art efficiency, which reduces its cost-

competitiveness, considering its use in utility power plants, connected to the grid, which 

restrings its use in the application of, e.g., Building integrated photovoltaic systems (BIPV), 

where rater design than PCE plays an important role.  

Such cost competitiveness with conventional power plants is essential in the future, 

when the fraction of the generation by photovoltaic and wind power systems raise, to mitigate 

the costs as related to the PV plant’s variable generation profile (HIRTH; UECKERDT; 

EDENHOFER, 2015). In a future of high penetration of the renewable energy generators in 

the power grid, the total generation cost of wind and photovoltaic systems will increase. This 

because of the needed energy storage, or otherwise, because of power plants that present an 

adjustable firm energy, as necessary to mitigate the variability of the generated power by 

renewable plants. Consequently, it is of advantage to decrease the cost of the photovoltaic 

generator further, as being presently still the highest cost component of a PV system.  
 

2.5.1  Low-cost materials  

 
Perovskite solar cell absorber layers consist of a mixture of abundant and low-cost 

raw materials, such as lead (Pb), tin (Sn), carbon (C), hydrogen (H), and nitrogen (N). The 

indium (I), used in single-junction PSC, can be substituted in future perovskite-based 

multijunction solar cells by the non-rare halides bromide (Br) and chloride (Cl). This 

substitution is advantageous as Br and Cl result in the higher demanded band gap for its upper 

junctions. Therefore, such materials are useful and lead to the absorption of a broader solar 

spectrum, which results in higher efficiencies.  In low-cost PSCs, these non-rare materials can 
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be combined with inexpensive materials used for the coating of the charge conduction layers, 

made of metal oxides (YOU; MENG; SONG; GUO et al., 2016). The authors composed the 

p-type and the n-type charge conduction layers with NiOx and ZnO. As a result, they 

inclusively obtained an improved long-term-stability for the measured efficiency, as these 

charge conduction layers do provide a better barrier to avoid the diffusion of materials from 

the adjacent layers through the charge conduction layers.  

 

2.5.2  Low-cost manufacturing techniques 

 

As the manufacturing process of third-generation thin-film solar cells is much 

simpler, in comparison to the known monocrystalline, and multicrystalline silicon solar cells, 

they are manufacturable at a low-cost and in a large-scale. The monocrystalline cells are made 

from a grown unique crystal, called ingot in a slow-growing process. In contrast, in 

multicrystalline cell manufacturing, this ingot is substituted with a molten block of silicon. 

After the cooling of these blocks, which need several days, they are sawn to silicon wafers 

using diamond wire saws. Then, solar cells are obtained, after doping passivation of each of 

the wafers, which still need to be interconnected electrically and laminated to a photovoltaic 

module (GOODRICH; HACKE; WANG; SOPORI et al., 2013; MCEVOY; CASTANER; 

MARKVART, 2012). Such demanding processes are not necessary for the manufacturing of 

thin-film solar cells, such as Copper Indium Gallium Selenium (CIGS), or the Cadmium 

Telluride (CdTe) solar cells, as they are coatable in a conveyor belt production line 

(MCEVOY; CASTANER; MARKVART, 2012). However, these thin-film cells must be 

coated and treated under high temperatures and vacuum conditions.  

In comparison, the manufacturing process of the third generation organic, and 

perovskite solar cells, is more advantageous as it involves: (i) much lower process 

temperatures, and (ii) simple and known, low-cost manufacturing processes, such as printing 

processes as discussed in (RONG; HOU; HU; MEI et al., 2017), (YANG; LI; REESE; REID 

et al., 2017) and (KIM; YANG; SUHONEN; VÄLIMÄKI et al., 2019). A complete review of 

the different manufacturing methods used for the fabrication of single-junction PSCs, as 

categorized in (i) vapor-phase; and (ii) solution-based methods, such as, e.g., printing 

methods; are presented in (BRITTMAN; ADHYAKSA; GARNETT, 2015) and (ZHOU; 

YANG; WU; VASILIEV et al., 2015). Another interesting manufacturing method, also 
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usable for large-scale coating, is the solvent-solvent manufacturing method (ZHOU; YANG; 

WU; VASILIEV et al., 2015), which already results in PCE of 15.2 %. In this method, a 

precursor solution, constituted by components of PbI2 and MAI, is printed on a substrate, 

already pre-coated with a transparent conductive and a charge conduction layer. The obtained 

dispositive is then immersed in a Diethyl ether (C2H5)2O bath, which forms by a chemical 

reaction to built-up the perovskite absorber layer. One of the advantages of this manufacturing 

process is that the perovskite layer thickness can be adjusted accurately by variation of the 

immersion time.  

 

2.5.3  Low-cost devices based on single-junction cells 

 

The combination of the use of (i) low-cost materials, (ii) a low-cost manufacturing 

process, in the manufacturing of a cell which results in a (iii) relatively high efficiency,  

results together in the pre-evaluation that electric energy converted by PSC modules leads to 

the lowest LCOE, of only 30…60 US$/MWh. The lower and the upper value of this range is 

lower than the LCOE of any further state-of-the-art renewable and non-renewable energy 

generation technologies (CAI; WU; CHEN; YANG et al., 2017). 

 Therefore, in a single-junction solar cell configuration, PV-modules based on PSCs 

have the potential for most-far reaching cost reductions in the generation of electrical energy 

(CAI; WU; CHEN; YANG et al., 2017), considering however that the cell’s long term 

stability under realistic operation conditions can be increased (Section 2.2.4, page 42). The 

authors estimate that PV modules, based on single-junction PSCs, can generate electric 

energy at the lowest LCOE. Even the upper value of 60 US$/MWh, as projected by the 

authors, is lower in comparison to any further state-of-the-art renewable and non-renewable 

energy generation technologies. The costs are estimated assuming two different module types, 

with efficiencies in the range of 10-12% and 15-20%, and a lifetime under realistic operation 

conditions of 15 years, which is, however, presently not the state-of-the-art for perovskite 

solar cells. In both configurations, the materials of the active layers are responsible for only 

12…14% of the module’s material cost. The costs of the manufacturing plant were estimated 

on a 100 MW/year plant capacity, considering its overhead, and depreciation costs.  

The plant costs of the lower efficiency PV-module were estimated based on the 

production of existing plants of dye-sensitized solar modules. For the plant with the higher 
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module efficiency, plant costs are estimated based on the manufacturing cost of a second-

generation module manufacturing. Both cases consider a correction factor based on the 

efficiencies of the manufactured modules. The generation cost of electric energy is calculated 

based on the total costs of a grid-connected PV-system, which includes (i) its mounting rack, 

(ii) wiring, (iii) power conditioning, (iv) installation, (v) operation & maintenance, (vi) capital 

recovery, and (vii) land use, and where only the module costs are substituted, with the 

estimated module price for the considered manufacturing plant.   

 

2.5.4  Extra low-cost devices based on multiple-junction cells 

 

Multiple-junction solar cells do present the inherent advantage that the energy of a 

broader spectrum of the solar irradiance can be converted to electric power, which results in 

higher efficiencies. E.g., four junction solar cells present a state-of-the-art PCE of 47.1% and 

39.2% for concentrated and non-concentrated solar irradiance (NREL, 2020). However, the 

state-of-the-art III-V multiple-junction solar cells are presently only used (i) in space 

applications or (ii) terrestrial projects with concentrated solar irradiance, because of its high 

manufacturing cost per area. Such cells are based the higher-cost materials, such as Gallium, 

Arsenide, and Indium (LIN, 2020), and very slow-growing coating techniques, such as 

epitaxial growth (TANABE, 2009), which result in a very high cost per Watt peak if 

compared to silicon photovoltaic modules. 

The band gap tuneability, as related to the combination of different perovskite 

materials, makes a simple band gap tuning available, which is advantageous in the tuning of 

the used junctions in a multiple-junction PSC. Coating two of two in-series connected PSC 

junctions results in multiple-junction perovskite solar cell. The first research activities with 

all-perovskite multiple junction cells resulted in PCE values of 6.7% and 15.2% for triple and 

tandem junctions (MCMEEKIN; MAHESH; NOEL; KLUG et al., 2019). The author’s triple-

junction cell presents inclusively two tunnel junctions to reduce the contact resistance 

between the three different perovskite junctions. In the comparison to state-of-the-art 

multijunction cells (DIMROTH; GRAVE; BEUTEL; FIEDELER et al., 2014), PSCs are of 

particular interest, because high-efficient multijunction PSCs are manufacturable from low-

cost materials and by low-cost manufacturing processes, which can be up-scaled to large areas 

via, e.g., an all-gravure printing process (KIM; YANG; SUHONEN; VÄLIMÄKI et al., 
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2019). The property of continuous band gap tuning provides a further opportunity space for 

the optimization of multiple-junction PSCs, if compared to the present III-V multiple band 

gap tuning.   

 

Furthermore, they are also usable in multijunction cells, being this in combination 

with (i) silicon, (ii) further second-generation solar cells, or (iii) in a concept solely built-up 

with perovskite layers. The latter has the advantage of overcoming the slow-growing rates as 

related to the state-of-the-art second-generation multiple-junction solar cells (PALMSTROM; 

EPERON; LEIJTENS; PRASANNA et al., 2019), enabling, therefore, a higher velocity mass-

production of extra low-cost photovoltaic modules. The authors already obtained a PCE of 

23.1% with a proposed all-perovskite tandem solar cell. The mechanical flexibility of third-

generation solar cells allows the fabrication in a multiple-junction roll-to-roll manufacturing 

process, e.g., using the all-gravure printing process. In single-junction PSCs, such a printing 

already results in a high efficiency of 17.2% (KIM; YANG; SUHONEN; VÄLIMÄKI et al., 

2019). 

 

2.6 MITIGATION OF THE CELL’S LONG-TERM DEGRADATION  

 

Under realistic operation conditions, the present lifetime of a PSC photovoltaic 

module is estimated to be only two years by extrapolation, based on an annual degradation of 

10% per year (TRESS; DOMANSKI; CARLSEN; AGARWALLA et al., 2019), which 

restricts the scope of its practical applications considerably. Therefore, future developments 

must reduce the long term degradation of cell’s PCE (KALTENBRUNNER; ADAM; 

GŁOWACKI; DRACK et al., 2015; PARK; GRÄTZEL; MIYASAKA; ZHU et al., 2016; 

YANG; WANG; LIU; CHENG et al., 2016; YOU; MENG; SONG; GUO et al., 2016) to 

make PSC’s commercially useful. Such a behavior can be obtained by (i) the substitution of 

methylammonium cation; (ii) the use of improved inorganic charge conduction layers, which 

also present a lower cost than in comparison to the most used organic charge conduction 

layers; and (iii) the cell’s encapsulation (BUSH et al. (2017) - figure 3b), or lamination of the 

perovskite photovoltaic module in between other methods.  
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While the degradation of perovskite solar cells was initially thought only to be a 

function of the (i) the higher energy ultraviolet irradiance; (ii) temperature cycles during 

operation; and (iii) small amount of humidity, which penetrates through the cell’s 

encapsulation protection; more recent findings showed that there are further problems which 

have to be resolved too. These are (iv) small amounts of oxygen, which also can penetrate the 

lamination of a photovoltaic module and then migrate through the charge conduction layer. 

Then, by bonding with an absorber layer’s hydrogen, this O2 converts into moisture within the 

absorber layer, which starts a degradation process. Furthermore, (v) the electric field, as built 

up under MPP operation, or under the open-circuit condition of the PSC, leads to the further 

migration of ions. Some of such degradation effects, e.g., as related to the electric field, also 

appeared at its initial development with second-generation solar cells and were then later 

resolved (KHENKIN; ANOOP; KATZ; VISOLY-FISHER, 2019).  

From the following short review, we conclude that there is at least one solution 

available to avoid each of these multidimensional degradation issues. Furthermore, some of 

the measures, which increase the cell’s PCE, as discussed in Section 2.10.1, page 70, do 

simultaneously provide improved long term stability of the cell’s efficiency. These details, 

and the fitness of the perovskite platform for chemical modifications, in general, give a 

thorough outlook that a combination of the different measures might be able to mitigate the 

present degradation problems of PSCs.  
 

Degradation and self-healing: Recent research revealed that some of the 

degradation effects as associated with UV-irradiance and temperature cycles are of no 

permanent character. E.g., degradation as a function of UV-light exposure can be partially 

self-healed by the cells temporary displacement in the dark (NIE; BLANCON; NEUKIRCH; 

APPAVOO et al., 2016). Therefore, it can be considered that some of the previews UV 

degradation tests, which did not analyze these self-healing effects, overestimate the PSC’s 

degradation presenting, therefore, a too high degradation effect because of the continuous 

light exposure. Such degradation tests should be accomplished under simulated under realistic 

conditions with day-night irradiance and temperature cycles.   
 

Improved self-healing property under exposition to UV-light: The most 

challenging aspect of PSCs is its degradation and efficiency loss under light-exposition. 

Under this condition, and also during the manufacturing of a PSC, are produced Pb0 and I0 
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defects, which represent (i) recombination sites of charge carriers and (ii) deteriorate PSCs 

efficiency over time (WANG; ZHOU; HU; HUANG et al., 2019). However, the authors 

inactivate such states is by its oxidations, using a tiny quantity of the rare earth metal 

Europium (Eu), which is used as a so-named redox shuttle. The advantage of these redox 

shuttles is that its ion pairs Eu3+ and Eu2+ can be regenerated in a closed cycle, converting the 

Pb0 and I0 trap states in Pb2+ and I- ions as specified by the following two equations 

 

 2Eu3+   +   Pb0    →   2Eu2+  +  Pb2+ (2.1) 

 

Eu2+   +   I0    →    Eu3+   +  I-  (2.2) 

 

As to see from the first passivation in equation (2.1), the Pb0 trap state is converted in Pb2+, 

while the 2Eu3+ is transformed in 2Eu2+. In the following passivation, as presented in equation 

(2.2), the I0 trap state, is converted in I-, while the Eu2+ is back-transformed in Eu3+. 

Theoretically, such a transformation of temporary trap states can, therefore, work forever, 

avoiding thus the cell’s efficiency loss and degradation under exposition to light. Initial 

research activities with such a closed trap regeneration cycle resulted in UV-light stability, 

which retained 92% of the cells PCE of 21.52% in 1500 hours of light exposure. As the 

electric field does also reduces the PCE, an MPP tracked exposure retained 91% of the cell’s 

PCE after 500 hours of continuous operation.  
 

Degradation under permanent exposition to UV-light: One of the most 

challenging aspects of PSCs is its permanent degradation and efficiency loss under light-

exposition. The authors (SHI; CHEN; WU; CAI et al., 2020) simulated quasi-vacuum 

conditions, as appearing in near-space applications, avoiding, therefore, almost wholly the 

degradations related to ambient oxygen and humidity. They examined the absorber layer’s 

surface visually and measured the cell’s efficiency, showing that PSCs present a permanent 

degradation as a function of its exposition to simulated and uninterrupted irradiance. This 

permanent degradation results in the effect that some small spots of the absorber layer 

degrade, especially under exposure to green and blue light spectrums, where the latter 

presents the highest photon energy. However, it is not understood why only some small areas 

degrade, while approximately 99 % of the cell’s absorber layer surface is visually intact. 

Furthermore, it is also not known if, in the case of a day-night exposure profile, such a 
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localized degradation can be avoided, as related to a recovery effect discussed in (NIE; 

BLANCON; NEUKIRCH; APPAVOO et al., 2016). 
 

Light degradation under ambient temperature: One of the most promising 

configurations is presented in (TURREN-CRUZ; HAGFELDT; SALIBA, 2018), proposing 

an inorganic PSC made of Cs10Rb5FAPbI3. In a 1000 h continuous exposition under MPP-

tracking, this cell shows a small initial degradation of approximately 2%, in the first 500 

hours, which then stabilizes, showing visually no further degradation. An effect that presents 

similarity with the known initial degradation of crystalline silicon solar cells, showing a 3% 

degradation typically within the first year of operation (GREEN, 2005). Because of the 

discussed self-healing effect, this initial degradation can even be lower than 2% under 

exposition to cycling irradiance. However, as the experiment in (TURREN-CRUZ; 

HAGFELDT; SALIBA, 2018) was set-up under ambient temperature conditions, it is not 

known if a further degradation under temperature cycling, as appears under realistic operation 

conditions, can deteriorate the cell’s efficiency further.   
 

Degradation under temperature stress cycles: In power plants, photovoltaic 

modules and its solar cells are exposed to temperature stress cycles. E.g., during the day in 

low latitude locations, it is usual that the PV modules heat up till 70…80 oC while cooling 

down in the night to around 20oC, or even to colder temperatures in deserts or locations with 

high altitudes. Such a temperature profile leads in perovskite solar cells to thermal stresses, as 

its internal perovskite material changes its crystal lattice from the orthogonal phase, as present 

in low temperatures, to the tetragonal and the cubic phases, as related to high operating 

temperatures (WANG; WRIGHT; ELUMALAI; UDDIN, 2016). The resulting crystal 

structure changes lead to the deterioration of the cell’s efficiency over time. Temperature 

cycle-dependent deterioration can be avoided by partial or the complete substitution of the A-

cation, and the X-anion, which results in a tuning of (i) the crystallographic tolerance factor 

(t), and (ii) the octahedral factor (µ) (WANG; WRIGHT; ELUMALAI; UDDIN, 2016). This 

classification is essential as µ determines the stability of the octahedral phase in perovskite 

solar cells. In an example the authors manufactured such a cell, by the incorporation of a 

thiocyanate anion (SCN-) into the absorber layer, adding a small amount of Pb(SCN)2 to the 

PbI2 solution in the cell manufacturing, which results in a composed MAPbI3-x(SCN)x 

absorber layer that presents enhanced stability. The authors also revised several further 
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chemical modifications, which do not only reduce the degradation as a function of 

temperature cycles, but also take account to further PCE degradation effects.  
 

Degradation by penetration of oxygen: Further studies indicate that degeneration 

also happens as a function of the penetration of oxygen, which diffuses through the charge 

conduction layer. This oxygen is thought of as building up a light-induced generation of H2O 

in the absorber layer, using a hydrogen atom of the methylammonium. Such an effect results 

in a moisture-related degradation process of this layer (YU, 2019). The recent discovery of 

tight oxygen resistant charge transport layers, as obtained by the deposition of atomic layer 

deposition (ALD) of a metal- oxide charge conduction layer (YU, 2019), shows one way to 

avoid such an O2 penetration. However, such metal-oxide layers can also result in additional 

trap states at its interface with the perovskite layer, presenting typically defects of oxygen, 

and metal cations of different valences such as, e.g., Ti3+ or Ti4+ (SINGH; SINGH; 

MIYASAKA, 2016). Meanwhile, a promising method to passivate these trap states is the 

contact passivation of the metal oxide layer (TAN; JAIN; VOZNYY; LAN et al., 2017). The 

authors present excellent stability, showing that its attained PCE of 20% is retained by (i) 

97% after 500 hours of light exposure and (ii) by 90% after 500 hours MPP tracking under 

AM 1.5 conditions. These values the authors measured only after dark recovery. The 

underlying self-healing effect of perovskite solar cells suggests that its degradation should be 

accessed under more realistic situations, exposing the cell to a simulated day/night 

illumination profile with a 24 h full cycle, which should, therefore, result in even lower 

degradation effects.  
 

Degradation by humidity: Another promising approach to obtain a long term 

stabilization is the manufacturing of 2D-PSCs (SMITH; HOKE; SOLIS‐IBARRA; 

MCGEHEE et al., 2014). A 2D-PSC is defined by a perovskite absorber layer which has 

several interleaved layers of organic cell material. In this context, especially the combination 

of a conventional PSC, which is conceived as a 3D perovskite solar cell, with the 2D-PSC 

results in lower long term degradations (GRANCINI; ROLDÁN-CARMONA; 

ZIMMERMANN; MOSCONI et al., 2017). Under one sun testing irradiance, the author 

obtained no PCE degradation during 1 ¼ year of storage in a closed chamber with controlled 

humidity, and without exposition to light. Basically, in these mixed 2D/3D PSC, the 

hydrophilicity inherent to the 3D perovskite solar cell is reduced to a large extent by the 
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introduction of the hydrophobic spacing cations, which are placed in-between the 2D-PSC 

plates (CHEN; SUN; PENG; ZHANG et al., 2017).  
 

Degradation under exposition to the internal electric field: The electric field of a 

solar cell, as generated under MPP operation conditions, leads to the internal migration of 

organic and halide ions, leading, therefore, to local trap-states, which degrade the efficiency 

and result also to a hysteresis of the cells J-V curve (WEI; MA; WANG; DOU et al., 2018). 

Furthermore, if these ions migrate through the charge conduction layers, they can result in the 

deterioration of the electrodes. The authors show that the fixation of these ions can avoid such 

migration effects by a ubiquitous cation interaction based on introduced Rubrene. The 

calculated interaction energy with Rubrene is with 1.5 eV, which is much higher than the low 

activation energy of MA+ ions is, avoiding, therefore, an escape from its lattice structure. The 

avoided migration of ions improved the long-term stability of the PSC’s efficiency 

considerably.  
 

Degradation by the migration of electrode parts: Similarly, the metal particles of 

the electrodes can migrate through the charge conduction layers at operating temperatures of 

80 oC, which also results in the deterioration of the PSC’s efficiency. E.g., gold from the top 

electrode of a PSC can migrate through the hole transport layer (DOMANSKI; CORREA-

BAENA; MINE; NAZEERUDDIN et al., 2016). Such migration can be avoided using a Cr 

metal interlayer between the electrode and the hole transport layer.  

 

2.7 RESIDUALS IN PEROVSKITE SOLAR CELLS 

 
Rather than the third-generation organic solar cells, PSCs contain a small amount of 

Pb in its absorber layer, and several authors attempted to reduce the toxicity inherent to this 

heavy-metal. Such methods consider the complete (DEVI; MEHRA, 2019; DIXIT; 

PUNETHA; PANDEY, 2019), or partial substitution of this element (LIU; LI; FAN; MAI, 

2018). While initially, such methods lead to much lower efficiencies in manufactured cells, if 

compared with the high state-of-the-art efficiency, more recent research shows that the partial 

substitution of Pb with Sn in a cell with a (FASnI3)0.6(MAPbI3)0.4 absorber layer can result in 

high efficiencies of 20% (TONG; SONG; KIM; CHEN et al., 2019). If compared to the Pb 

based perovskite solar cells, the Sn-based PSCs present a lower band gap and the higher 
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diffusion coefficients, which are advantageous and might result in high efficiencies in the 

future as obtained by simulations (section 2.8.1, page 60).  

State-of-the-art Pb based PSCs with an absorber layer of 450 nm do already contain a 

low quantity of heavy-metal residuals, which is similar to state-of-the-art photovoltaic 

modules  (GREEN; HO-BAILLIE; SNAITH, 2014; STASIULIONIS, 2015). Additionally, Pb 

based PSCs present by its own, a 90-300 times lower heavy-metal content in its life cycle 

analysis,  if compared to coal-fired power plants for the similar energy production 

(FTHENAKIS; KIM; ALSEMA, 2008). The advantage of solar cells is that the encapsulation 

of the photovoltaic module contains its heavy-metal content and, therefore, it can be recycled, 

not exposing the environment as a result. Interestingly, the thickness reduction of the absorber 

layer, as here proposed for high-efficiency PSCs, reduces the use of the perovskite material in 

a PSC, resulting in 2.8 times lower quantity of lead (Pb) residuals in a photovoltaic module. 

This lower residual content places PSC’s in a favorable position by the reduction of its 

toxicity, in comparison to silicon solar cells. However, the absorber layer in PSCs is 

dissolvable in water, and therefore, they should ideally have an improved encapsulation, or 

hydrophobic character, as inherent to, e.g., a 2D-PSC absorber layer (CHEN; SUN; PENG; 

ZHANG et al., 2017), which avoids or reduces leakage in the case of a module break. 

Furthermore, in the future, adequate recycling policies should enable the option of 

recycling for all photovoltaic modules, improving the presently implemented routine of 

voluntary recycling, as adopted by some manufacturers (MCDONALD; PEARCE, 2010). 

Presently the price of the recycled materials of silicon modules is approximately 0.17 US 

dollar / kg, being lower than its recycling cost, which currently is 0.62 US dollar / kg (HSU; 

KUO, 2020). However, it is thought that in the future, the economic benefit from large-scale 

recycling even helps to expand the PV sector, as discussed in (TAMAS VEKONY, 2020), 

apud (HSU; KUO, 2020), if its recycling cost becomes lower than 0.17 US dollar / kg. 

 

2.8 MODELING OF PEROVSKITE SOLAR CELLS 

 

State-of-the-art PSCs are mostly optimized based on cell prototyping, where the 

cell’s efficiency is increased in small steps as a function of one or two different measured 

variables, as permitted by graphical visualization in one- or two-dimensional function spaces. 

Such an optimization has the inherent disadvantage that variations in the not measured 
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material properties are unknown. Therefore, efficiency gains because of the improvement of 

one or more of the material properties can be entirely or partially nullified by the worsening 

of one or more other, not controlled properties, without even being noticed. This situation 

should be controlled better in future cell manufacturing.  

The benefits of mathematical modeling of the PSC’s efficiency, by use of an 

analytical model, a numerical model, or a combination of such models (AGARWAL; NAIR, 

2014; 2015) can result in valuable understanding, and accelerate potentially the cell’s 

development process. These models are derived (i) from the PSC’s drift-diffusion equations 

of electrons and holes, (ii) the Poisson equations, which simulates the electrical field, and (iii) 

a method which calculates the short circuit current density. The model's drift-diffusion 

equations do simulate the cell’s current-voltage curve typically as a function of multiple 

material properties and the absorber layer thickness. The highest PCE at the state-of-the-art, 

based on such simulation studies, results in 25% for a single-junction PSCs (AGARWAL; 

NAIR, 2014; 2015). 
 

Short circuit current density: The cell’s Jsc is simulated independently, using a 

simplified Beer-Lambert model (SUN; ASADPOUR; NIE; MOHITE et al., 2015), or the 

higher resolution transfer matrix method (TMM), also named as optical transfer matrix 

method (OTM), which do typically not include light-trapping schemes. Both modeling 

methods are used in the program Scolore, an in Python-written open-source software 

(ALONSO-ÁLVAREZ; WILSON; PEARCE; FÜHRER et al., 2018), which inclusively 

enables the simulation of multiple-junction solar cells. A Jsc modeling that also includes light 

trapping, is accomplished with finite difference time domain modeling (FDTD) scheme (CAI; 

PENG; CHENG; GU, 2015), which simulation is based on a spatial resolution. It enables a Jsc 

simulation as a function of (i) the use of plasmonic light-trapping nanoparticles, in different 

light-trapping schemes; (ii) the absorber layer thickness; (iii) providing also a simulation for 

the case without light trapping. Some authors also present an efficiency optimization in a one-

dimensional optimization of the cells charge conduction layer thickness (PHILLIPS; 

RASHED; TREHARNE; KAY et al., 2016; ZHAO; LIU; LIN; CHEN et al., 2018), using the 

Optical Transfer Matrix (OTM) scheme for its modeling.   
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2.8.1 Numerical perovskite solar cell models and their optimization 

 

Most simple solar cell models are based on the one diode or the two diode model, 

where the solar cell’s behavior and its IV-curves are simulated by a circuit of discrete 

electronic elements, such as diodes, resistors, and current sources (KRATZENBERG; 

MOYA; ROMERO, 2014). As the resulting equation is implicit, its solution has to be 

obtained numerically. More sophisticated model simulations are based on the Poisson and the 

drift-diffusion equations. In this concept, an independent simulation of the short circuit 

current density, as based on the generation of charge carriers, while the drift-diffusion 

equations and the Poisson model its transport. A complete representation of these equations 

includes the (i) solar irradiance absorption, (ii) the resulting charge carrier generation, (iii) the 

drift and diffusion of these carriers, and (iv) finally also considers several recombination 

effects within the solar cell. These models consider Dirichlet-type boundary conditions to find 

a solution to these differential equations numerically, and the boundary conditions are used to 

solve the second-order drift-diffusion equations by an iterative process. Its solution results in 

the solar cell’s current densities of electrons and holes as a function of its terminal voltage 

under the cell’s exposition to a reference light source, and when it is localized in the dark 

(LIU; ZHU; WEI; LI et al., 2014).  

A very detailed numerical model is presented in Foster et al. (2014), where the 

author divides the PSC in a total of seven different regions, which are modeled separately: (i) 

the bulk of the perovskite absorber layer, (ii) the boundary region at the interface between the 

electron acceptor and the adjacent absorber layer, (iii) the bulk of the electron acceptor layer, 

(iv) the boundary region between the acceptor of electrons and its adjacent electrode, (v) the 

boundary region at the interface between the donor of electrons and its adjacent absorber 

layer, (vi) the bulk of the donor layer, and finally (iv) the boundary region between the donor 

and its adjoining electrode. The model allows calculating the cell’s HOMO and LUMO 

potentials as a function of the irradiance penetration depth.  
 

MAPI: The authors (IFTIQUAR; YI, 2016) used the AFORS-HET program, another 

numerical 1D-solar cell simulator and observed by numerical simulations that a MAPI cell 

lead to a PCE > 20 % if the absorber layer’s defect density is lower than 4 x 1014 cm-3 and the 

cell’s thickness is at least 400 nm. The observed that the principally the open-circuit voltage, 

and therefore the PCE, is a function defect density. (LIU; ZHU; WEI; LI et al., 2014) used the 
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1D-program named as analysis of microelectronic and photonic structures (AMPS), for the 

simulation of a MAPI cell. They found high PCE values of 22.2% for low trap densities at the 

absorber layer interface of 109 cm-2, and defect densities in the absorber layer lower than, or 

equal to 1012 cm-3. Using the 1D solar cell capacitance simulator (SCAPS), an open-source 

code simulation program, the authors (DEVI; PARREY; AZIZ; DATTA, 2018) found that for 

a pin-type MAPI cell with a 500 nm thick absorber layer a maximal PCE of 23.83%. In this 

cell, the most used TiO2 electron conduction layer must be substituted by CdS layer, which 

results in a high built-in voltage of 1.37 V. For a 1000 nm thick absorber layer, the cell’s PCE 

increase to 24.5%. Using the same simulator in simulations with an nip-type MAPI cell 

(AZRI; MEFTAH; SENGOUGA; MEFTAH, 2019) found the ideal bandgap alignment is 

obtained by the selection ZnO and TiO2 for the p-type charge conduction layer, because of the 

nearly ideal alignment of its conduction band with the PSC’s LUMO layer resulting in a 

simulated efficiency of 25.02%. In a similar form, they obtained an excellent band alignment 

of HOMO levels, between the CuSCN n-type layer and the perovskite layer.  
 

MAGeI3: Using the SCAPS simulated the authors in (HIMA; LAKHDAR, 2020) 

found that a substitution of the Pb with Ge in a nip-type MAGeI3 cell can result to an 

efficiency of 23.8%, using a 1 µm thick absorber layer. The authors analyzed four different 

hole transport layers of the pin-type cell  (PEDOT:PSS CuSCN, CUSbS2 and NiO) and found 

this high PCE because of an adequate energy alignment between the copper (I) thiocyanate 

(CuSCN) and the perovskite material, leading to the highest built-in potential (∆φbi) (see ∆φbi 

in  Figure 3.1a, page 81). The authors (KANOUN; KANOUN; MERAD; GOUMRI-SAID, 

2019) used SCAPS to investigate the absorber layer thickness, the material of the hole 

transport layer, the defect density, the hole mobility, and the metal electrode work function. 

They find the highest PCE of 21%, for a 600 nm thick absorber layer, using CU2O hole 

transport material. This efficiency reduced to 11% if the defect density increases from 1 x 

1014 to 1 x 1018 cm-1. Furthermore, a mobility of at least 100 cm2 V-1 s-1 is necessary to enable 

this highest PCE. 
 

MASnI3: In (HOSSAIN; DAIF; AMIN; ALHARBI et al., 2015) the authors used a 

one-dimensional solar cell capacitance simulator (SCAPS) to optimize a MASnI3, obtaining a 

PCE of 15.64%. The author (AMU, 2014) used the numerical SCAPS model to optimize a Sn-

based MASnI3 and suggest device efficiencies > 18% as based on the variation of the tuning 
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of the perovskite doping concentration. As shown in (ANWAR; MAHBUB; SATTER; 

ULLAH, 2017), the highest PCE of 20.23% is obtained with a Cu2O hole transport layer and 

ZnO-nanorod electron transport layer. They found this PCE for an ideal thickness of the 

absorber layer of 600 nm, and a defect density at both interfaces with the value of  ≤ 1 x 1010 

cm-3.  
 

FASnI3: The authors (DIXIT; PUNETHA; PANDEY, 2019) used SCAPS and 

simulated a FASnI3 cell obtaining a maximal simulated and measured efficiency of 9.99%. 

They also showed that the V0C and the FF are functions of the doping concentration and the 

defect density. This low maximum efficiency is obtained for (i) low operation temperatures, 

(ii) a 450 nm thick absorber layer and (iii) a band gap between 1 and 1.4 eV.  

In general, the solution of a numeric model is very time demanding and leading, e.g., 

to an optimization time of approximately 60 min for a singular numerical optimization 

process of a planar organic solar cell  (KRATZENBERG, 2015b). The time demanding 

process in the simulation of such a model occurs as the whole solar irradiance spectrum is 

subdivided into several sub-band spectra, where for each of these sub-band spectra, a set of 

differential equations must be solved by a numeric method. We have to comment here that the 

modeling methods as cited in this section improve the efficiency as a function of one, or two 

material properties at a time, but do not consider a simultaneous improvement of multiple 

material properties as proposed in this thesis.  

 

2.8.2 Analytical solar cell models 

 
The authors (DORN; SOUKUP, 1994) show the first derivation of an analytical solar 

cell model, using the drift-diffusion equations of electrons and holes of a silicon solar cell. 

For an organic bulk heterojunction solar cell, an analytical model was also presented in 

(CHOWDHURY; ALAM, 2014), discussing the benefit of its reduced computational cost. Its 

model shows a separate analytical solution for each sub-band spectrum of the sun’s 

irradiance. The same research group introduced later the analytical models of four different 

types of single-junction perovskite solar cells in (SUN, 2018; SUN; ASADPOUR; NIE; 

MOHITE et al., 2015): (i) the pin-type, (ii) the nip-type, (iii) the ppn-type and (iv) the npp-

type. The authors show that in a one-dimensional optimization of the absorber layer thickness, 
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the pin-type and the nip-type PSC presented the highest measured and modeled efficiency of 

15.7% and 15.4%. 

In comparison, the ppn-type and the npp-type cells resulted in the lower PCEs of 

11.2% and 8.6%. This analytical model is obtained by the solutions of five second order 

differential equations (DE): (i) the four drift-diffusion equations and (ii) the Poisson equation. 

The drift-diffusion equations are modeling the transport of electrons and holes for the cases 

when the solar cell is exposed to a reference solar irradiance, and when it is localized in the 

complete dark, while the Poisson equation simulates the electric field in the solar cell. The 

solution for these five second order DEs the authors obtained by the specification of two 

Dirichlet-type boundary equations for each DE (section APPENDIX A.1, page 155).  

Additionally, the absorption of light and the generation of charge carriers the authors modeled 

by a general Beer-Lambert exponential decay curve. Usually, the absorption of light in a 

material is a function of the considered wavelength, resulting in a wavelength-dependent 

absorption length, and, therefore, an individual Beer-Lambert exponential decay curve. 

However, the approximation by a general Beer-Lambert curve model the absorption of light 

for the whole spectrum in which the PSC shows light sensitivity. This approximation 

considers a general solution for (i) the generation of charge carriers G(x) and (ii) the average 

absorption length, also called as average optical decay length λave. As a result, the cell’s short 

circuit current density is simulated by a unique exponential decay curve (Figure 3.1b, page 

81). This approach leads to small, but a depreciable deviation of only 0.1% absolute error in 

comparison to the measured efficiency with a manufactured PSC as shown in (SUN; 

ASADPOUR; NIE; MOHITE et al., 2015).  

The complete formulation of the analytical pin-type model of the here analyzed 

planar heterojunction PSC and its derivation scheme we presented in section APPENDIX A.1, 

page 155. Apart from the measurements with the manufactured solar cells, (NIE; TSAI; 

ASADPOUR; BLANCON et al., 2015), apud (SUN; ASADPOUR; NIE; MOHITE et al., 

2015), accomplished extensive numerical simulations, involving the solution of the Maxwell 

current density equations, the Poisson equation, and the drift-diffusion equations. The results 

from these simulations were used in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) to 

validate the behavior of the derived analytical models. Because of its simplifications as 

discussed in section APPENDIX A.1, page 156, this analytical model is of advantage, as it 

presents several orders of magnitude lower computational cost in a single optimization, as in 
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comparison to the numerical simulation model. The authors (TARETTO; SOLDERA; 

KOFFMAN-FRISCHKNECHT, 2017) proposed an analytical model for a MAPI cell, which 

present a low FF and concluded that for this cell both recombination losses at the interface 

and in the bulk of the cell have to be considered.  

This fast simulation is of benefit in arbitrary applications, where the model 

simulations have to be accomplished multiple times. E.g., in the access of the cells’ mismatch 

losses in a photovoltaic module, which performance is based on the simulation of the 

complete set of single solar cells, each presenting a small variation of its J-V curve 

performance parameters. Another example is the maximization or optimization of the model's 

efficiency as a function of multiple model variables as presented here.  

 

2.8.3 Recombination and further losses 

 

One disadvantage of the model presented in (SUN; ASADPOUR; NIE; MOHITE et 

al., 2015) might be, that it does not consider recombination losses in the bulk of the absorber 

layer (equations (A.27) and (A.28), page 168). While the depreciation of bulk recombination 

might be correct, for the cell’s short circuit current, it is possibly not valid for its open-circuit 

voltage, as well as its MPP voltage, as discussed in (TARETTO; SOLDERA; KOFFMAN-

FRISCHKNECHT, 2017). However, strictly speaking, some of the recombination processes 

in the bulk of the perovskite absorber layer are already contemplated in (SUN; ASADPOUR; 

NIE; MOHITE et al., 2015), as taking place by the formulation of the front and back surface 

recombination velocities of electrons and holes, sf and sb. These recombination velocities are 

not only related to recombination effects at the transition surfaces between the charge 

conduction layer and the absorber layer but are also existent at the transition surfaces between 

the single perovskite crystals in the bulk of the absorber layer. Such effects are especially 

accentuated in non-passivated surfaces with crystal grain sizes lower than 5 µm (YANG; 

YAN; YANG; CHOI et al., 2015).  

The limited diffusion length defines another recombination process, as simulated in 

the model of (SUN; ASADPOUR; NIE; MOHITE et al., 2015). If a diffusing electron or hole 

charge carrier did not pass its charge conduction layer, in its predetermined diffusion paths 

length (Ln, Lp), as specified by equations (A.33) and (A.34), page 169, for a fixed lifetime, 

recombination happens, which reduces the diffusion coefficient, and therefore the cell’s 
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efficiency. Furthermore, presuming that for a fixed Ln, and Lp the electrons and holes diffusion 

velocities are to slow, then the connected limited lifetimes (τn, τp) are not sufficient enough to 

transport these charge carriers behind its charge conduction layer, and recombination happens, 

which also reduces the cell’s Dn and its efficiency. To thick absorber layers lead, therefore, 

even in an increased recombination of charge carriers. On the other hand, too thin absorber 

layers, for a given absorption rate, as defined by the average optical decay length (λave), do 

result in losses as too much of the solar irradiance is reflected at the back reflector and escape 

from the solar cells absorber layer back to the sky. However, such an effect can be reduced by 

light trapping, which not only increases the Jsc, and therefore the PCE, but also allows an 

absorber layer reduction while maintaining almost the same high efficiency in thin absorber 

layers, down to a certain thickness. 

Another recombination process is defined by a too low built-in voltage (Vbi). As in 

PSCs the transport of charge carries is defined in a dominant form by the drift, rather than the 

diffusion force of charge carriers, a too low Vbi, leads to the effect that the internal electrical 

field is not strong enough to transport the charge carriers behind its inherent charge 

conduction layer, therefore, leading to recombination effects at the transition surface from the 

absorber to the charge conduction layer.  

While the present solar cell model considers these recombination effects and losses, 

further influences can lead to additional recombination effects in the absorber layer of 

manufactured solar cells, which can, however, be avoided by adequate manufacturing. E.g., 

nanoscale-pinholes in the absorber layer, which can lead to parasitic charge carrier 

conduction. The use of, e.g., the diethyl ether dripping during spin coating, avoid pinholes in 

suitable manufacturing (AHN; SON; JANG; KANG et al., 2015). High-resolution imaging 

techniques, such as the Scanning Electron Microscopy (SEM), can be used to identify 

pinholes (AHN; SON; JANG; KANG et al., 2015) and provide, thus, a manufacturing quality 

control, concerning such effects. 

 

2.8.4 The theoretical upper limit of the efficiency  

 

While the highest state-of-the-art PCE of a manufactured PSC is already 25.2%  

(NREL, 2020), perovskite solar cells show still a high improvement potential. Considering in 

a simplified PSC model, only optical recombination losses, the maximal efficiencies of 30% 
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(YIN; SHI; YAN, 2014), 30.88% (SHA; REN; CHEN; CHOY, 2015) and 31.3% 

(MARTYNOV; NAZMITDINOV; MOIÀ-POL; GLADYSHEV et al., 2017) can be obtained 

theoretically in single-junction MAPI cells. Furthermore, using zero surface recombination 

velocities and ideal light trapping in a drift-diffusion model, a PCE of 29.9% can be obtained 

(REN; WANG; SHA; CHOY, 2017). These upper limits are, as expected, below the highest 

attainable PCE of single-junction cells with the thermodynamic limit of 33.7% for the black-

body irradiance spectrum (SHOCKLEY; QUEISSER, 1961), and 33% for a measured 

irradiance spectrum (RÜHLE, 2016). With our used analytical solar cell model such high 

efficiencies are only approximated, obtaining a high maximal efficiency of 27.8% for an 

arbitrary selected maxima improvement of the material properties with an improvement factor 

of fB = 160 (Figure 4.3, page 106), and 32.1% for extreme high property improvements 

considering material properties improvement of fB = 1000 (Figure B.1, page 193) material 

properties improvements.  

 

2.9 MULTIDIMENSIONAL OPTIMIZATIONS  

 
Multidimensional optimizations are state-of-the-art to solve many engineering 

problems to find, e.g. (i) the optimal power flow in electric power grids (CROW, 2009), (ii) 

the lowest cost design of a wind turbine synchronous generator (BAZZO; KÖLZER; 

CARLSON; WURTZ et al., 2017), or the minimal series resistance in a GaAs solar cell 

(ALGORA; DÍAZ, 2000).  

 

2.9.1 Multidimensional optimization of solar cell models 

 

In the analyses of a cell’s drift-diffusion model, a multidimensional optimization is 

useful to demonstrate that the simultaneous variable improvement results in much higher 

efficiency increases than in state-of-the-art one- and two-dimensional optimization 

techniques. Additionally, the multidimensional optimization can lead (i) to a better 

understanding of the optimization process and (ii) to the proposal of advanced solutions for 

future high-efficient solar cell design concepts as proposed in this thesis.  
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However, in the area of perovskite solar cells, most of the authors use only one-

dimensional (TARETTO; SOLDERA; KOFFMAN-FRISCHKNECHT, 2017) or two-

dimensional model optimizations (SUN; ASADPOUR; NIE; MOHITE et al., 2015), as 

similar as used in the research of manufactured solar cells. In the area of amorphous silicon 

solar cells  (a-Si) (VICENTE; WOJCIK; MENDES; ÁGUAS et al., 2017) use simple 

heuristic search methods, to improve the cell’s efficiency. Its optimization is based on 

statistical modeling using the multivariate analyses. The method is based on the random 

variation of model variables, with the following statistic evaluation of observed tendencies. 

As a result, the method estimates an area where the global maximum is localized. The authors 

(VICENTE; WOJCIK; MENDES; ÁGUAS et al., 2017) improved the efficiency by 24%, 

resulting in an optimized PCE of 8.85%.  

The use of the Nonlinear Programming (NLP) optimization algorithm for the 

efficiency maximization of an analytical solar cell model, as here proposed, is of importance 

as it not only leads to the exact solution of the global maximum but also reduces the number 

of necessary repetitive simulations of the cell’s J-V curve, to obtain this optimal PCE. Rather 

than indicating an area where the maximum efficiency can be localized, it results in the exact 

location of the optimal efficiency value, which shows no variation in two decimal cases by 

repeated optimizations. The low computational cost and the exact solution allows the use of 

the model for a large number of optimizations under variable boundary conditions or 

restrictions, whose results we use in this thesis to elaborate design proposals of the PSC, and 

in-deep analysis of the optimized solar cell, especially concerning the specification of its ideal 

material properties, as here presented. The use of an NPL optimization for solar cells was first 

introduced for a planar organic solar cell (KRATZENBERG, 2015a) and a pin-type 

perovskite solar cell (KRATZENBERG, 2015b) and also appeared in the poster presentation 

of (KRATZENBERG; RAMBO; RÜTHER; BEYER, 2015). Furthermore, it was used to 

elaborate several optimal solar cell designs (KRATZENBERG; RAMBO; RÜTHER, 2019). 

 

2.9.2 Optimization algorithms 

 
Optimization techniques work in a multidimensional variable space and come 

historically for the first time available in the area of linear programming techniques (LP) and 

were then generalized to nonlinear programming techniques (NLP) (YE, 2011). The linear or 
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nonlinear specifications refer to the improvement of linear and nonlinear continuous 

functions, which are locally differentiable, and for which a global minimum or maximum has 

to be localized. The LP and NLP techniques do have a considerable speed advantage in 

comparison to (i) the population-based meta-heuristic methods (NAZARI-HERIS; 

MOHAMMADI-IVATLOO; GHAREHPETIAN, 2017) or (ii) the statistical optimization 

methods (VICENTE; WOJCIK; MENDES; ÁGUAS et al., 2017), as they advance in the 

direction of the global minimum or maximum by the calculation of a combined 

multidimensional gradient in hypercube function space. 

 Evolution based search methods, such as the particle swarm optimization, advance a 

whole population of points, which has the unique advantage, in comparison to the NLP that 

its algorithm has a better ability to avoid local maximums, which is of particular interest in 

the optimization of complicated functions, which have several local maximums. However, the 

resulting lower computational cost with the LP and NLP techniques is of particular benefit for 

the optimization of models, which have to be maximized or minimized in a multidimensional 

function space, where each optimization step considers a single simulation of the analyzed 

function or model to find the global PCE maximum, as in the case of the present optimization 

of a PSC model. Furthermore, the low computational cost allows the repetition of many 

separate optimizations, which are here used for the detailed analysis of the perovskite solar 

cell model.  

The first iterative optimization techniques in the area of LP techniques were used in 

the optimization of continuous functions and came available with the Newton and Simplex 

methods. The latter approach was successfully used for approximately 50 years (LESAJA, 

2009). For each one of the model variables of an analyzed function, the upper and lower 

limits represent the simplest delimitation of the considered function space. In the case of two-

dimensional function spaces, such restrictions result in a rectangular search space, and in 

multidimensional optimizations, these limits result in a hypercube space of model variables. 

Additionally, to these range constraints, further equality and inequality constraints can be 

specified, which can define specific relations between the model variables and can restrict the 

optimization to sections or areas of particular formats or shapes within the function space. 

Convex or concave functions, in a hypercube space, can be optimized by the identification of 

a stationary point by setting the first derivative to zero, using Fermat’s theorem. A stationary 

point is a location, which shows no gradient in the considered function. While the global or 
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local maximums in a maximization are also stationary points, many of the identified 

stationary points are not related to such maximums, as they can represent simple locations 

with no gradients in the multidimensional space. In these cases, the introduction of Lagrange 

multipliers gives a better solution to the global maximum within such a function space (YE, 

2011). Whereas the Lagrangian multipliers are only usable with equality constraint equations, 

the Karush–Kuhn–Tucker (KKT) conditions present first-order conditions, which generalize 

the Lagrangian multiplier constraints in the sense that also inequality constraints are 

imposable to the LP and NLP problems. The KKT conditions give, therefore, a hypothesis to 

the global maximum in a concave function space, which is additionally delimitated to specific 

areas by the determined inequality constraints (ARORA, 2004). 

The here used routine fmincon of the MatlabTM program is based on the state-of-the-

art NLP techniques using inclusively Interior Point Methods (IPM), which do reduce the 

computational effort by a factor of 40, if compared to the SM method (YE, 2011). While in 

the SM, the main idea is to walk from vertex to vertex to find in iterative steps the global 

maximum of a function, the IPM optimization is conducted in a way that it walks from point-

to-point within the interior of a feasible region, localized in the proximity of an optimum 

vertex line as illustrated in (LESAJA, 2009). The optimization algorithm restraints 

progressively the area of this feasible region while it advances along an identified vertex line 

in the course of the search process. This process leads, therefore, to a successive 

approximation to the global optimal point. Furthermore, the interior-point methods do 

incorporate two powerful tools (BYRD; HRIBAR; NOCEDAL, 1999): (i) the sequential 

quadratic programming (SQP) techniques, which can additionally handle nonlinearities, 

within the inherent constraint equations and (ii) trust region strategies (TRS), which allows 

the algorithm to treat concave and non-concave regions in a unique treatment. 

Additionally, the IPM incorporated in fmincon also includes a line search method 

(LSM) (BYRD; HRIBAR; NOCEDAL, 1999), which presents a modification strategy in the 

KKT system. Whereas the KKT, of an IPM, solely defines the direction in which the search 

algorithm must advance, the LSM extends this specification by the calculation of an adequate 

step-width for advances in this search direction. This correct step-width ensures that, in a 

single optimization step, a crescent merit function is obtained, which means that in such a step 

the modeled solar cell efficiency can only increase but not decrease. The basic idea of the 

working principle of the LSM is that it advances in orthogonal steps and identifies by use of a 
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step width estimation in the multiple function space the specific point at which the stepping 

trajectory forms a tangent to one of the isopleths of the function to be optimized (CMU (2000) 

- figure 22) in a hypercube space of variables. Isopleths are height lines of unique energy level 

or, in the present case, a unique efficiency level in a concave function space. The correct 

working principles of how the LSM controls by matrix calculus the correct step-wide in a 

multidimensional function are presented, e.g., in (LUCAS; KIM; CHIN; GUO, 2008). 

 

2.10   HOW TO INCREASE THE CELL’S EFFICIENCY  

 

In this thesis, we present design proposals of high-efficiency perovskite solar cells 

based on the improvement of its material properties. However, only from this research, it is 

not known which manufacturing methods can be used to manipulate the manufacturing 

process to configure a manufactured PSC that presents the specified properties, and therefore, 

a high PCE. Only with such information, the knowledge obtained from the multidimensional 

optimization returns in know-how, as essential for the development of perovskite solar cells. 

In the following sections, we (i) review several high-efficiency cell designs, and (ii) present 

references, which showed nearly ideal material properties, if compared to the ideal properties 

obtained in our multidimensional optimizations in section 4.2, page 105.         

 

2.10.1 High-efficiency single-junction perovskite concepts 

 
If compared to other solar cell types, the single-junction PSC presents the highest 

gradient of the record efficiency values of manufactured cells in (NREL, 2020), because of its 

excellent material properties. Furthermore, there is a large variety of perovskite materials that 

can be used for the constitution of PSCs (GANOSE; SAVORY; SCANLON, 2017). One 

favorite PSC is the CH3NH3PbI3, also abbreviated as MAPI (ROLDAN-CARMONA; 

GRATIA; ZIMMERMANN; GRANCINI et al., 2015). The authors observed that the use of 

stochiometric excess of the PbI2 precursor solution, concerning the MAI precursor, results in 

an improved crystallinity, and therefore, electron transport from the absorber layer to the 

electron conduction layer, which leads to measured efficiency of 19.1%. The authors (AHN; 

SON; JANG; KANG et al., 2015) developed a perovskite solar cell with a highly reproducible 

PCE via Lewis Base Adduct of Lead (II) Iodide. The authors demonstrated how the treatment 
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with diethyl ether during the spin coating process avoids pinholes in the absorber layer. Its 

manufactured cells lead to an efficiency of (18.7 ± 0.7) %, with the maximal certified value of 

19.7%.  

The authors (YANG; NOH; JEON; KIM et al., 2015) developed a PCE with a PCE 

of 20.2% using as absorber layer material formamidinium lead iodide CH(NH2)2PbI3, also 

abbreviated with FAPI, which presents a broader absorption spectrum. The authors (SALIBA; 

MATSUI; SEO; DOMANSKI et al., 2016) show that a triple cation cell made of 

(MA,FA,Cs)PbI3 results in a high PCE of 21.1%. They demonstrate that large uniform 

crystals, extending from the electron to the hole conduction layer, are produced by seed-

assisted crystal growth. This cell also presents a low long-term degradation and high 

reproducibility of the PCE values in manufactured prototypes.   

The authors (YANG; PARK; JUNG; JEON et al., 2017) present an introduction of 

additional iodide ions in the organic cation solution, as used for the coating of a mixed 

(FAPbI3)0.95(MAPBr3)0.05 absorber layer. These additional iodide ions reduced the 

concentration of deep-level material defects. The fine-tuning concerning the energy level of 

its absorber layer results in a band gap of 1.51 eV. The resulting cell presents reduced 

interstitial, and antisite crystallographic defects, obtaining an efficiency of 22.1%. While the 

former defect present atoms in a crystalline structure where there is usually no atom, the latter 

happens when atoms of different materials exchange positions in an ordered alloy or 

compound. The authors (JUNG; JEON; PARK; MOON et al., 2019) propose a device with a 

special concept including two absorber layers in a single-junction PSC. They combined a 

wide- with a narrow-band gap absorber layer, which results in a PCE of 22.7%, and a Jsc of 

24.88 mA/cm2.  

As in the previously presented cell, the wide band gap absorber layer is constituted 

by (FAPbI3)0.95(MAPBr3)0.05, and this layer is coated on the top of a narrow band gap absorber 

layer, as made by an in situ reaction of n-hexyl trimethyl ammonium bromide. This concept 

not only results in an efficiency increase but also presents improved long-term stability of its 

PCE. In a 1400 h test run under 1-Sun illumination, the device’s PCE degraded by only 10%. 

The authors (JEON; NA; JUNG; YANG et al., 2018) used a fluorene-terminated spiro-

OMeTAD alike hole transport layer (9,9 -dimethyl-9H-fluoren-2-yl), abbreviated as DM-

HTL, which allowed a fine-tuning of its energy level. The cell resulted in an efficiency of 

23.2%, with a short circuit current density of Jsc = 24.9 mA/cm2, an open-circuit voltage of 
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V0C = 1.14 V, and a fill factor of FF = 81%. The developed absorber layer made of 

(FAPbI3)0.95(MAPBr3)0.05 also resulted in a higher long-term stability of the PCE. 

 

2.10.2 The surface recombination velocities 

 
As identified by the combination of s = 91 possible variable combinations in section 

0, page 95, the reduction of the surface recombination velocities sf and sb leads to the highest 

independent PCE improvement, if compared to the improvement of the further variables. 

Therefore, we recommend that a suitable optimization of manufactured PSCs should start 

with and mainly focus on the reduction of the surface recombination velocities. Principally sf 

must be reduced, as close to the front charge conduction layer, most of the free charge carriers 

are converted form photons in excitons and the resulting electrons and holes, by the division 

of the excitons. The lowest measured values of these variables were obtained in (WANG; FU; 

JARIWALA; SINHA et al., 2018), which reduced the surface recombination velocities to the 

values of 10 cm/s and 20 cm/s (Appendix Table B.5, page 197) using the materials TiO2, and 

PVK, for the coating of the electron, and the hole transport layers. Considering the sf and sb as 

obtained in (SUN; ASADPOUR; NIE; MOHITE et al., 2015), the use of such charge 

conduction layers reduced the surface recombination velocities by 1/fB = 1.92 and 10 times 

(19.2 m/s / 10 m/s = 1.92 and 200 m/s / 20 m/s = 10). The authors used a time-resolved 

photoluminescence method to experimentally analyze the surface recombination velocities of 

14 different electron- and hole-extracting layers, including TiO2, SnO2, ZnO, PCBM, ITIC, 

ICBA, TPBi, PEDOT:PSS, PTAA, PVK, NiO, MoO3, WO3, and spiro-OMeTAD. 
 

2.10.3 The built-in voltage 

 
In perovskite solar cells the charge carrier transport is dominated by the drift force, 

as produced by the built-in electrical filed (ZHANG; WANG; YUAN; WANG et al., 2019). 

Earlier PSCs showed a to low value of the built-in electrical field, providing an insufficient 

drift force to separate charge carriers and sustain its transport, which therefore results in the 

nonradiative recombination of charge carriers (CHUNG; KIM; KIM; KIM, 2009; YUAN; 

REECE; SHARMA; PODDAR et al., 2011). As discussed by the authors, small Vbi will make 

the charge carriers be either (i) captured in trap states or (ii) accumulated at the transport layer 

interfaces, because of the insufficient drift force provided.  
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The authors in (ZHANG; WANG; YUAN; WANG et al., 2019) developed a method 

to increase the PSC’s performance via the combination of (i) internal doping of the intrinsic 

layer using a polarized ferroelectric polymer (PFE) and (ii) the external control by an electric 

field during the annealing process, where the coated cell is positioned between two plates with 

different voltage potentials (ZHANG; WANG; LI; LIU et al., 2018). A group of PFE 

materials is used for the doping of a small part of the MAPbI3 layer, being localized between 

the perovskite and the hole transport layers, to enhance the built-in electric field. As the 

authors found out, this additional PFE layer also improves the crystallization of the MAPbI3 

absorber layer and reduces the nonradiative recombination in PSCs. This combined effect 

leads to a substantial reduction in the Vbi losses of 0.14 V, as measure by electroluminescence, 

resulting in the high Vbi of 1.36 V. However, too high built-in fields, obtained as a result of a 

too high doping of the charge conduction layers, not only result in high built-in voltages but 

can also lead to PCE losses, as carrier lifetimes are an inverse function of doping density, as 

discussed in (GREEN, 2009).  

 

2.10.4 The diffusion coefficients 

 

Considering the lifetime and diffusion length as dependent properties, many authors 

measured an efficiency increase, because of a higher and not shorter measured lifetime. 

However, we consider that the lifetimes and the diffusion lengths as independent properties, 

which specify in its conjunction the diffusion coefficient, also defined as the diffusivity.  

Our multidimensional optimization shows that the cell’s efficiency increases as a function of 

increased diffusion coefficients. The diffusion of electrons and holes defines the spreading of 

these charge carriers in random directions and is defined by the Fick’s law (KITAI, 2011). As 

the diffusion coefficients of electrons and holes are determined by the expression (4.1), they 

can be increased by either, (i) the augmentation of the electron or hole diffusion lengths Ln 

and Lp, or (ii) the reduction of its lifetimes τn  and τp, whereas the manipulation of Ln and Lp is 

more advantageous, because of its quadratic formulation in these equations.  

 

Diffusion length: Perovskite solar cells present a high upper bound of the diffusion 

length of charge carriers. For example, in a solar cell based on a single perovskite crystal, 

large diffusion lengths of 175 µm and 3 mm were measured under one sun and weak light 
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conditions (DONG; FANG; SHAO; MULLIGAN et al., 2015). The authors measured a 

lifetime of (82 ± 5) µs using a separate method, as defined by the transient photovoltaic and 

impedance spectroscopy. However, in the manufacturing of perovskite solar cells, as 

accomplished with a solution-based process, results in much lower diffusion lengths. A 

reduction of recombination sites by a Lewis Base passivation resulted in a decreased number 

of trap states at the perovskite crystal terminations and enabled a relatively high diffusion 

length of charge carriers with values higher than 3 µm (NOEL; ABATE; STRANKS; 

PARROTT et al., 2014). High diffusion lengths of electrons and holes, of approximately 1.9 

µm and 1.5 µm, were observed for CH3NH3PbI3-xClx perovskite pin-type cells, as measured 

by electron beam-induced current (EDRI; KIRMAYER; MUKHOPADHYAY; GARTSMAN 

et al., 2014). High diffusion length of electrons and holes of 1.7 µm and 6.3 µm, were also 

observed by (LI; YAN; LI; WANG et al., 2015) for a pin-type MAPI cell. The authors 

measure a lifetime of superior to 100 ns using the photoluminescence method, where the 

fluorescent lifetime of a spin-coated MAPI absorber layer depends on the film thickness and 

increases with the thickness increase of the absorber layer up to approximately 250 nm.  

While many authors determine the diffusion length indirectly, by (i) the 

measurement of the electron and hole lifetimes, (ii) an estimated diffusion coefficient from 

former references, and (iii) the use of equations (A.33) and (A.34), page 169, we think that 

such a procedure is not correct, as these properties should be determined by direct 

measurements. For the diffusion lengths, such measurement can be accomplished by the 

scanning photocurrent microscopy (SPCM), as used in (XIAO, 2019).  

 

Lifetime: The electron and the hole lifetimes are the limited times in which these 

charge carriers can diffuse in the absorber layer, and therefore, they might also be defined as 

the transport time before its recombination happens. These times are related to the fast decay 

of a cell’s photoluminescence, which is used as a measurement method for the determination 

of the lifetime. Whereas it is usually conceived that the higher lifetime increases the 

efficiency, the authors (SONG; CUI; WANG; WEI et al., 2015) show that if a post-annealing 

process treats the coated PSCs with a temperature of 160 oC, (i) an n-type doping of the 

absorber layer, and (ii) a lifetime reduction of electrons and holes from 44 ns to 22.6 ns are 

obtained. Such a treatment increases the cell’s efficiency from 6% to 16.4%, not only as a 

function of the lifetime reduction, but also as a function of the increase of the short circuit 

 
 



75 
 

current density, as the post-annealing process does also improve the absorption of this solar 

cell. 

 

2.10.5 The average optical decay length 

 

The process of cell’s light absorption and its conversion in free charge carriers is 

defined in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) using the average optical decay 

length (λave), as based on the Beer-Lambert law (equation (A.18), page 164).  Lower λave 

values increase the absorption of light, which results in a growth of the short circuit current 

density (Jsc). Another measure to specify the light absorption is given by the absorption 

coefficient, which can be measured as a function of the wavelength. Absorption coefficients 

of MAPI, as used (SUN; ASADPOUR; NIE; MOHITE et al., 2015), are still higher than 

highest-efficient single-junction GaAs cells, basically over the whole wavelength range (YIN; 

SHI; YAN, 2014). Such a high absorption of PSC is remarkable, because the GaAs cells are 

among the highest-efficiency single-junction state-of-the-art solar cells, presenting a PCE of 

28% (NREL, 2020). As a result of its higher light absorption, the theoretical efficiency limit 

of an ideal MAPI cell is 30% (YIN; SHI; YAN, 2014).  

Furthermore, the absorbance figures published elsewhere show that the absorbance 

values of a formamidinium lead trihalide (FAPI) PSCs are still significantly higher than the 

corresponding values of the MAPI cells (EPERON; STRANKS; MENELAOU; JOHNSTON 

et al., 2014; GREEN; JIANG; SOUFIANI; HO-BAILLIE, 2015).  The authors observed this 

behavior over almost the whole analyzed spectrum range up to 800 nm, which should, 

therefore, lead to a theoretical upper limit superior to 30% for the FAPI cells. In fact, a mixed 

absorber layer PSC made of (FAPbI3)0.95(MAPBr3)0.05, lead to the highest state-of-the-art 

efficiencies based on the reports in several scientific publications (section 2.10.1, page 70).   

The correct selection of the post-annealing temperature and time leads to a further increase in 

the absorbance values of perovskite solar cells (FEDELI; GAZZA; CALESTANI; FERRO et 

al., 2015; KHATIWADA; VENKATESAN; ADHIKARI; DUBEY et al., 2015). The latter 

authors obtained the highest absorption coefficients for annealing temperatures of 120 oC, and 

110 oC; for a MAPI, and a mixed MAPbI3-xClx (x = 0.19) PSC, while the highest efficiencies 

they obtained for 120 oC and 80 oC. The MAPI presents a PCE increase by factor 1.04 if this 

temperature is increased from 80 oC to 120 oC, indicating that higher post-annealing 
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temperatures lead to ta slight advantage only for MAPI, but not for the mixed halide PSCs. 

Post-annealing also has an ideal time of 10 min, which leads to the highest absorption 

coefficients of MAPI cells annealed at 80 oC (KUMAR; SOLEIMANIOUN; SINGH; SINGH 

et al., 2020), as longer times lead to the cell’s degradation. 

 

Light trapping: Different light-trapping techniques (TANG; TRESS; INGANÄS, 

2014) also lead to a considerable improvement of the light absorption in PSCs. If, e.g., 

spherical metal NPs of distributed size are inserted into the absorber layer, a collective 

oscillation of the electrons’ conduction band happens because of the NP’s optical excitation 

with light waves. These oscillations present a frequencies, which are similar to the NP’s 

inherent resonance frequency and provokes a strong spherical scattering of light partitioning 

from each of the NP’s center, which leads then to the plasmonic light-trapping effect (HSU; 

JUANG; CHEN; HSIEH et al., 2015), (CAI; PENG; CHENG; GU, 2015). The spherical light 

scattering increases the total optical path length of the irradiances’ rays within the absorber 

layer, which increases, therefore, its absorption (CAI; PENG; CHENG; GU, 2015). As this 

resonance frequency is a function of the NP’s size, a carefully engineered and tuned 

distribution of the particle sizes, added to the solar cell’s absorber layer do increase the 

absorption of ultraviolet and visible light. Such sizable spherical NPs can be cost-effectively 

synthesized and deposited by Nanosphere Lithography (NSL) (LUCAS; KIM; CHIN; GUO, 

2008; SALEEM; TILAKARATNE; LI; BAO et al., 2016). 

The light-trapping effect inherent to plasmonic NPs can be modeled by the finite 

difference time domain method (FDTD) method (CAI; PENG; CHENG; GU, 2015), and the 

numerical simulations, using this method of high spatial resolution, predict highest  Jsc 

increases for lumpy Ag particles inserted into the backside of the PSC’s absorber layer. 

Results with manufactured PSC show a Jsc increase by 1.2 and, while the PCE increases 1.22 

times on average (LIU, 2017). The author used a 130 nm thick absorber layer and added 

distributed size NPs with an average diameter of 11 nm. However, simulations in (CAI; 

PENG; CHENG; GU, 2015) show in the best case, a Jsc increase by the factor 1.5 rather than 

1.2 for the same absorber layer thickness. The lower Jsc increase in manufactured cells may be 

ascribed to (i) undesired conduction effects, as related to a high volume density of NPs, (ii) 

pinholes, in thin absorber layers, but might also be related to a (iii) a different sizing of the 

NPs or (iv) its location within the cells absorber layer.  
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2.10.6 The absorber layer thickness 

 

In our optimizations, we obtained the highest efficiencies for two ideal absorber layer 

thicknesses, which both consider light trapping (Section 4.2, page 105). In the first, the 

absorber layer thickness of 400 nm is the same as without light trapping, and light trapping 

increases the cell's current density considerably, therefore, also increasing the cell’s 

efficiency. In the second case, the absorber layer is reduced to 160 mm, which results in a 

something lower short circuit current density, but because of the higher MPP voltage, the 

efficiency is only 0.2 % lower as in the former case. We consider both cases as ideal concepts, 

the first case because of its slightly higher PSC, and the second case, because of the lower 

absorber layer thickness, and therefore, the more moderate Pb use.  

Meanwhile, in both cases, the absorber layer thickness hast to stand in a close 

relationship to the average optical decay length (λave) for high efficiencies. Therefore, an 

adequate tuning of the absorber layer thickness as a function of λave is necessary in any case 

(Figure 4.2e and Figure 4.2f, page 102). Techniques that allow an adjustment of the absorber 

layers are specified, e.g., in (ZHOU; YANG; WU; VASILIEV et al., 2015) using the solvent-

solvent extraction method, which results in a maximal efficiency of 15.2%. Furthermore, for 

the spin-coating process the absorber layer thickness can be tuned independently by the 

manipulation of (i) the PbI2 : CH3NH3I precursor concentration, of a MAPI cell; and (ii) the 

rotation speed of the spin coater as shown in (ZHANG; ZHANG; PANG; HUANG et al., 

2016). The authors obtained a maximal PCE of 9% for a MAPI cell with a 300 nm thick 

absorber layer, showing at this thickness the largest grain size, which results in the largest 

charge carrier mobility.  

 

2.10.7 Quantity of excess holes and electrons 

 

The number of excess holes and electrons that participate in the recombination 

process, ∆p = p – p0 , and ∆n = n – n0 , as used for the modeling in equations (A.6) and (A.7), 

page 160, are already located within the region of the highest efficiency (Figure 4.2d, page 

102). Furthermore, it can be seen that ∆p and ∆n are not improved by the optimization 

algorithm (Table 4.1, page 103; Figure 4.2d, page 102). Because of its registered irrelevance 

in the optimization process, we do not analyze how these properties can be improved further.  
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2.10.8 The thicknesses of the electron and hole conduction layers 

 

As shown by measurements in (MARINOVA; TRESS; HUMPHRY-BAKER; DAR 

et al., 2015), the thickness variation of the charge conduction layers modifies the PCE 

minimally. E.g., for a thickness reduction of the spiro-OMeOTAD hole conduction layer, 

from 600 nm to an ideal value of 200 nm, the measured PCE increased from (12.3 ± 1.2) % to 

the value of (13.5 ± 0.4) %. For this thickness reduction, the measured series resistance 

decreased from 40.2 Ω/cm2 to the value of 21.8 Ω/cm2. (KIM; OHKITA, 2017) analyzed the 

influence of the thickness of the hole transport layer and found an efficiency increase from 

18% for a 310 nm thick spiro-OMeTAD layer to a value of  19.2% for an ideal thickness of 

130 nm. The measured series resistance reduced from 9 Ω/cm2 to the value of 6 Ω/cm2 for 

this thickness reduction. 

The authors (ZHAO; LIU; LIN; CHEN et al., 2018)  analyzed the thickness of a NiO 

hole conduction layer and found an ideal thickness of approximately 30 nm by simulation, 

which lead to the highest PCE of 21.5%. This NiO thickness reduction leads to a significant 

efficiency increase, which raises from initially 17%, for a thickness of 220 nm, to the 

maximum value of 21.5%  from a 30 nm thickness, an effect mainly related to the increased 

FF in the case of a thin NiO layer, because of its lower series resistance. For the measured 

efficiency values, they obtained an efficiency rise from 14.19%, for a 76 nm thick NiO layer, 

to the value of 17.03%, for a 40 nm thick NiO hole conduction layer. They also analyzed the 

thickness-dependent efficiency of the PCBM electron conduction layer and found a measured 

efficiency increase from 14.07%, for a 78 nm thick electron conduction layer, to 16.86% for 

an ideal thickness of 55 nm.  

In analyzing the materials TiO2, WO3, ZnO Nb2O5, CdS and Cd0.4Zn0.6S (PHILLIPS; 

RASHED; TREHARNE; KAY et al., 2016) found that the short circuit current density 

depends mostly on the used material of the electron conduction layer in a nip-type perovskite 

cell, rather than on its thickness. The authors found by simulation with the OTM method that 

the Trioxide de tungsten (WO3) results in a superior Jsc basically for all n-type layer 

thicknesses, if compared to the further materials, resulting in the highest Jsc of 22.5 mA/cm2 

for a ~ 65 nm thick electron conduction layer, which leads to a 3.4% increase of Jsc if 

compared to a 170 nm thick layer.    
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3. METHODOLOGY AND MODELING  

 
A theory can be proved by experiment; but no path leads from experiment to the birth 

of a theory.    

Albert Einstein, Physicist 

 

Some fundamental questions should be answered to develop a PSC, which presents 

the highest possible PCE. These are: (i) which multiple material properties and cell design 

parameters are necessary to be improved simultaneously; (ii) should the value, of each 

considered variable, be increased or decreased; (iii) to which exact value each variable must 

be ideally tuned; and (iv) which of the variables presents the highest sensitivity in respect to 

the increase of the cell’s efficiency, and should, therefore, prioritized in its variable tuning. 

We answered these questions here using a drift-diffusion model, as proposed in (SUN; 

ASADPOUR; NIE; MOHITE et al., 2015), and (SUN, 2018), by searching the maximum 

efficiency in a multidimensional function space of material properties and manufacturing 

parameters, using a numerical optimization algorithm. The answers to these questions we 

obtained by the adequate setup of the optimization algorithm and analyses of the optimized 

results, as coming available using the multidimensional optimization algorithm.  

 

3.1 OPTIMIZATION IN A HYPERCUBE SPACE OF VARIABLES 

 

We selected the analytical solar cell model, as introduced in (SUN; ASADPOUR; 

NIE; MOHITE et al., 2015), as it allows a modeling as a function of several measurable 

material properties, and results in a short simulation time of its JV-curve, which allows 

extensive analyses of considered MAPI perovskite solar cell. The (i) complete model 

formulation, (ii) its assumed simplifications, and (ii) its derivation method we present in  , 

page 155. The selected NLP optimization model as shown in section 2.9.2, page 67, we 

choose because of (i) its multidimensional character, (ii) allowing equality and non-equality 

constraints, and (iii) its short simulation time, (iv) combining several advanced methods. 

Compared to the use of (i) a numerical PSC model, and (ii) random search methods, the 

selected model and optimization method reduce the computational optimization cost 

significantly. This reduced cost enabled us to accomplish a large set of optimizations, using in 

each of these optimizations, different constraints for the model’s variable set.  
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The approximations made in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) for 

the selected analytical model result in a low fitting deviation of only 0.1%, between the 

measured and the simulated PCE values. This small deviation is insignificant, considering that 

outdoor-spectral variations can lead to PCE uncertainties up to 3% in thin-film cells 

(RÜTHER; KLEISS; REICHE, 2002). The used model defines the cell’s electron and hole 

transport schemes in the dark and under light exposure, as obtained from a set of four second-

order drift-diffusion differential equations, and its boundary equations in (SUN; 

ASADPOUR; NIE; MOHITE et al., 2015). A fifth second-order differential expression, as 

defined by the Poisson equation, and its two boundary equations, the authors used for the 

simulation of the electric field. In Figure 3.1a, page 81, we present a detailed charge transport 

scheme of the used pin-type PSC, while Figure 3.1b illustrates the charge generation of this 

cell as a function of different average optical decay lengths (λave), which corresponds to 

different absorption properties.  

The proposed numerical optimization of this analytical PSC model uses a nested 

optimization scheme to improve the cell’s efficiency. This scheme considers the modification 

of the cell’s material properties and its absorber layer thickness at various improvement scales 

via equations (3.1) to (3.11), pages 83 to 88. The proposed general scale of the variable 

improvements, as here adopted for the most of the considered variables, we define by the 

concept of a hypothetical boundary-expansion factor (fB), as given in equation (3.5), which 

defines the positive and negative range of variation of an analyzed variable or material 

property. The utilization of a considered fixed short circuit current density (Jsc), as used for 

the one-dimensional thickness optimization in (SUN; ASADPOUR; NIE; MOHITE et al., 

2015), is here improved by considering of an absorber layer thickness-dependent current 

density, connected to the use of light trapping with plasmonic silver (Ag) nanoparticles as 

presented in (CAI; PENG; CHENG; GU, 2015). In this context, equation (3.11) specifies a 

correction of the constant Jsc under consideration of light-trapping effects in a manufactured 

PSC.  

Based on Finite Difference Time Domain (FDTD) simulations in (CAI; PENG; 

CHENG; GU, 2015), our optimized solar cell architectures present spherical light-trapping 

nanoparticles in thin absorber layers. These nanoparticles can increase the short circuit current 
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density of a pin-type PSC without light trapping Jsc = 23 mA/cm2), for a broad range of 

absorber layer thicknesses between 50 and 400 nm. 

 

Figure 3.1 - Energy band diagram and diagram of the normalized charge generation 
G(x) by the Beer-Lambert law 

 
(a) Energy potential diagram and charge carrier trajectories of a planar pin-type 
heterojunction perovskite solar cell, as modeled in (SUN; ASADPOUR; NIE; MOHITE 
et al., 2015), presenting from left to right side the: (i) transparent top cover (not 
visualized here); (ii) cathode layer made of a Transparent Conductive Oxide (TCO); (iii) 
p-type hole conduction and electron blocking layer, made of organic material 
PEDOT:PSS; (iv) i-type intrinsic charge generation layer, or absorber layer, with 
thickness t0 = 450 nm made of the hybrid MAPI perovskite material; (v) n-type electron 
conduction and hole blocking layer, made of organic material PCBM; and (vi) anode 
layer made of aluminum. The figure was adapted from figure S1.1a in (SUN; 
ASADPOUR; NIE; MOHITE et al., 2015). (b) Approximation of the normalized charge 
generation profiles G(x) as a function of the penetration depth (x = 0…450 nm) on the 
abscissa, calculated for several average optical decay lengths of λave = 1 to 100 nm 
using the Beer-Lambert formulation considering cells with (λave < 100) and without 
light trapping (λave = 100 nm). 
 

 

3.2 INDEPENDENT AND DEPENDENT OPTIMIZATION VARIABLES  

 

We intend to provide supporting knowledge, and know-how, for research 

laboratories and the manufacturing industry of PSCs to enable the manufacturing of cells with 

higher and highest efficiencies. Our used analytical model makes use of the following 

independent model variables: the surface recombination velocities of the cell’s front and back 

a b
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charge conduction layers (sf, sb), the diffusion coefficients of electrons and holes (Dn, Dp) the 

built-in voltage (Vbi), the average optical decay length (λave), the number of excess electrons 

and holes (∆n, ∆p), and the absorber layer thickness (t0). Apart from these independent 

variables, we remark that the present optimization improves involuntarily also the model's 

dependent variables, which are: (i) the mobilities of electrons and holes (µn , µn), (ii) its 

diffusion lengths (Ln, Lp), and (iii) its lifetimes (τn, τp). These variables are not necessary to be 

used as optimization variables as, (i) µn and µn are a function of the independent diffusion 

coefficients (Dn and Dn), because of the Einstein relation (equations (A.40) to (A.44) , page 

172), and (ii) as the diffusion coefficient Dn and Dp, also named as diffusivities, are calculated 

from the diffusion lengths of electrons and holes (Ln, Lp) and its lifetimes (τn, τp), as presented 

in equation (4.1), page 108, which are measurable with independent methods.  

 

3.3 THE MULTIDIMENSIONAL OPTIMIZATION 

 
The analytical model results in the shape of two J-V curves of the PSC cell, (i) its 

photogeneration curve for irradiance considering an air mass of 1.5 (AM1.5), and (ii) its curve 

under exposition to the complete dark. While the former curve models the current density, 

without considering recombination effects, the latter curve accounts for the different 

recombination effects within the solar cell. The superposition of both curves results in the 

measurable J-V curve under AM1.5 irradiance (Figure 4.4, page 111). Its current density 

(Jlight) interprets, therefore, recombination effects under standard operating conditions. The 

multiplication of the current density Jsc with the terminal voltage (V) of this curve leads to the 

cell’s power curve.  

The present work considers nested optimization scheme, where (i) the first 

optimization maximize the cell’s efficiency, as a function of its material properties and the 

absorber layer thickness; and (ii) a nested optimization maximize the cell’s output power, 

using its power curve as a function of its terminal voltage, which results in the cell’s current 

density (JMPP), its voltage (Vmpp), and the power density (Pmpp), as all defined for the 

maximum power point (MPP). Based on the optimization results and further references, we 

discuss in section 2.10, page 70, how the PSC’s efficiency can be increased for a 

manufactured PSC, by the combination of several intentional manufacturing methods, which 
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should result in a cell, which presents a set of ideal material properties, and its related ideal 

absorber layer thickness. 

 

3.3.1  Modeling 

 
 In this work, we propose the numerical efficiency optimizations the PSC’s analytical 

model in a multidimensional function space, which is specified by the following objective 

function 

 

where the efficiency ηi in the i-th iteration is a function of the model’s nine model variables 

(X1,i…X9,i), building up a nine-dimensional hypercube space, in which the variables have to be 

optimized. The maximum efficiency (ηmax) in this space is obtained after i = 1…N model 

simulations. In searching for the optimal variable values, the optimization algorithm sets up 

each of the nine model variables to a different value, in every single iteration i, if compared to 

the step (i-1), using a combination of advanced search methods (Section 2.9.2, page 67). 

Therefore, each iteration i results in a separate model simulation, using the variable values as 

obtained by the tunings of the model variables by the optimization algorithm. For the setup of 

the optimization problem or initial condition of the variables X1…X9, we considered the values 

as obtained by the one-dimensional optimization in (SUN; ASADPOUR; NIE; MOHITE et 

al., 2015), which we resume in Section 3.3.2, page 88. In each of the N steps, the used 

MatlabTM optimization algorithm, named as fmincon improves the values of the whole set of 

model variables. This algorithm uses Nonlinear Programming (NLP) optimization technique 

(BYRD; HRIBAR; NOCEDAL, 1999), based on (i) interior point search (IPM), and (ii) line-

search (LSM) optimization methods, to find the maximum possible model efficiency in the 

hypercube optimization space. When the cell’s relative efficiency increase is below a 

specified threshold value, the optimization algorithm identifies the maximum cell efficiency 

and stops the optimization process. In each of the i = 1…N model simulations, a new 

calculation of (i) the J-V curves, (ii) the maximum power point (MPP) power density, and (iii) 

the cell’s efficiency (ηi) are accomplished, using equation (3.2). This efficiency we calculate 

as a function of the nine used model variables X1,i to X9,i, representing eight quantum physical 

ηmax → max [ ηi (X1,i…X9,i) ]   ;   i =  1…N  , (3.1) 
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material properties and the absorber layer thickness. 
 

ηMPP,i     =     ( UMPP,i  JMPP,i (X1,i…X9,i)  ) / GAM1.5  =   PMPP,i  / GAM1.5 (3.2) 
 
 

In equation (3.2) GAM1.5 = 100 mW/cm² is the standardized solar irradiance at Air Mass 1.5. 

We obtained the PSC’s maximum output power density PMPP,i [mW/m2] in the i-th 

optimization step and model simulation by another objective function as follows 
 

 

PMPP,i →  max (Pk ( Jlight,1 (GAM1.5 ,Vk, X1,i…X9,i)… Jlight,M (GAM1.5 , Vk) )  ;   k = 1…M , (3.3) 
 

 

where each PMPP,i is obtained by maximization of cell’s power density curve in k = 1…M 

iteration steps, and where the optimized PMPP,i is related to the PSC’s material properties in 

the i-th optimization step. The cell’s analytical model calculates Jlight,k as a function of the 

whole set of model variables (X1,i…X9,i), its terminal voltage (Vk), and its temperature. In this 

second optimization, we do not modify the device’s material properties and remark that we 

nested the power density optimization of the equation (3.3) in the efficiency optimization of 

equation (3.1). This nested optimization process (Appendix Figure B.2, page 196) we subject 

to the following specific boundary conditions 

 

Xj,min   ≤   Xj   ≤  Xj,max       ;    j = 1…9 ,  (3.4) 

 

where Xj-max and Xj-min are the maximal and minimal constraints for each one of the nine 

model variables Xj to be optimized. A single optimization process considers a variable-

specific range (Xj-min …Xj,max) for each of the nine model variables, allowing the optimization 

algorithm to modify the associated variables in its specified ranges. By equation (3.5), we 

define these variable-specific constraints for arbitrary variable range expansions, which 

provide the precondition to configure a large set of optimizations, each under different 

boundary conditions. Since we cannot know in advance, which property improvements will 

be configurable in future cell developments, we set up arbitrary-defined and adjustable range 

constraints, by a proposed boundary-expansion factor (fB), which we also named as variable 

improvement factor, in equation (3.5), where the terms fB and 1/fB define specific 

amplification and reduction factors for a model variable in a single optimization process, 
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which enables the optimization algorithm to search for higher and lower values at different 

scales for each of the considered material properties within the range of Xj-min and Xj-ma 
 

 

Xj-min = (1/fB) Xj,me  ≤ Xj  ≤  Xj,me (fB) = Xj,max       ;       j = 1…9  ,                       (3.5) 

 

x. In each singular efficiency optimization, the application of fB results in the values of the 

upper and lower boundary limits of the model variables (Xj-min and Xjmin). In equation (3.5) 

Xj,me represents the variable values of the setup configuration of the optimization process, and   

Xj-min and Xj-max are the minima and the maxima limits for each of the j = 1…9 model variables, 

as specified in equation (3.4). Our optimizations we accomplish for different absorber layer 

thicknesses and light trapping effects using fB = 1…fB-max optimizations, at an increment of the 

unity, where fB-max = 160 is the considered maximal boundary amplification factor. Therefore, 

in the best case, the optimization algorithm can increase or decrease a property by the factor 

of 160. With the improvement factors in the range of fB = 1…fB-max, we analyze arbitrary 

material property improvements as defined by the 160 optimizations for fB = 1…fB-max. While 

we judge this range as most probable, for the interested reader, we show higher PCE increases 

in Appendix Figure B.1, page 193, considering arbitrary material improvements up to an fB = 

1000. For the built-in voltage (Vbi), the absorber layer thickness (t0), and the average optical 

decay length (λave), we configured variable-specific constraints as defined by equations (3.6) 

to (3.10). Built-in voltages with values (Vbi > 1.4 V) do not lead to any further increases in the 

cell's efficiency (Figure 4.2b, page 102). Hence, we additionally imposed the inequality 

constraint of equation (3.6) to the optimization, avoiding, therefore, unrealistic high values of 

this variable.  
 

 

Vbi-min  ≤  Vbi ≤ Vbi-max (3.6) 

 

Furthermore, we provide by equation s (3.7) a modification gradient for the built-in 

voltage, with the objective that 160 different Vbi’s are calculated, as similar as accomplished 

for the remaining material properties in equation (3.5). In this case, we use the fB factor to 

increase Vbi in a sequence of (fB-max – 1) small steps of ∆Vbi,, which increase the Vbi from its 

lower limit of Vbi-min = 0.76 V to its defined upper limit of Vbi-max = 1.4 V. 
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∆Vbi = (Vbi-max – Vbi-min )  / (fB-max – 1) (3.7) 

 

Where Vbi-min is the setup value of the built-in voltage, as specified in section 3.3.2, page 88. 

Therefore, we consider a total of 160 optimizations in which we increase Vbi-min we iteratively 

by the value ∆Vbi from one to the next optimization as follows 
 

 

Vbi = Vbi-min + (fB -1) ∆Vbi (3.8) 

 

As specified by this equation, for fB = 1 the value of Vbi is Vbi-min, while for fB = 160, this 

concept results in the last of 160 optimizations with Vbi = Vbi-max. Thinner absorber layer with 

light trapping techniques can result in lower Pb contents of the PSC’s absorber layer. In this 

case, we suppose that each of the different available coating techniques of the absorber layer 

presents a specific minimum thickness (t0-min) to avoid losses related to, e.g., pinholes (QIU; 

MERCKX; JAYSANKAR; DE LA HUERTA et al., 2016); and conduction effects, in the 

case of light trapping (ATWATER; POLMAN, 2010). E.g., techniques that result in very 

smooth absorber layers such as the solvent-solvent coating technique (ZHOU; YANG; WU; 

VASILIEV et al., 2015), allow a coating of extremely thin absorber layers without presenting 

pinholes. We set up an additional constraint for t0, which considers an adjustable minimum 

thickness (t0-min) as the lower boundary in an optimization process. For the upper limit (t0-max) 

we assumed a maximal possible t0 of 1 µm, obtaining the following inequality constraint. 
 

t0-min ≤ t0 ≤ 1 µm                            (3.9) 
 

In the Beer-Lambert law, the average optical decay length (λave) stands in a defined 

relationship with the absorber layer thickness (t0), which is expressed by equation (A.17), 

page 164, resulting in low reflection losses of approximately 1%. This small reflection losses 

at the cell’s back reflector, are visible from Figure 3.1b, page 81, which we configured using 

the equation of the Beer-Lambert law. Considering an λave of 100 nm, as calculated in (SUN; 

ASADPOUR; NIE; MOHITE et al., 2015) for the case without light trapping, a 450 nm thick 

absorber layer results is a value of 0.01 Geff , where this value defines the effective generation 

of charge carriers in [s-1cm-3] close to the back-reflector. The setup configuration for t0 and 

λave (Section 3.3.2, page 88) results in the value of m = t0 /λave = 450 nm / 100 nm = 4.5, for 

the case without light trapping, which should also be considered for cells with light trapping, 
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assuming a similar relation of the absorption to the reflection losses. Light trapping increases 

the Jsc (CAI; PENG; CHENG; GU, 2015) and reduces the average optical decay length (λave), 

simultaneously. We used the calculated m = 4.5 to specify an additional equality constraint for 

λave with equation (3.10), defined here as the m-constrained value of λave. We defined the 

constraint of λave(t0) for light trapping as a function of t0, solving equation (A.17), page 164, 

for λave, as follows 

  λave(t0) = t0 / m = t0 / 4.5 . (3.10) 

 

If λave is, instead, in the same form constrained as the remaining model variables, by use of 

the fB factor, a relationship arises, as defined by the vertex lines in Figure 4.2f, page 102. This 

relationship results, with an relationship of m = 5.5, as derived from this figure, in lower λave 

values, and a somewhat higher optimized efficiency because of the improved absorption 

(Table 4.2 to Table 4.4, page 107 – last two columns).  

          However, improved absorption properties, as obtained by light trapping, and the 

resulting higher short circuit current density, should ideally result in a PCE improvement, 

while presenting a similar relationship of the absorption to the reflection as in a cell without 

light trapping. In the Beer-Lambert formulation (Figure 3.1b, page 81), this means a similar m 

has to be considered. Therefore, we calculated an m – constrained λave in equation (3.10), as a 

function of a considered absorber layer thickness, which results in a lower PCE, presenting, 

consequently, a more conservative formulation. In the presented m – constrained 

optimizations, we constraint the remaining material properties by the fB – factor, as specified 

in equations (3.5) to (3.9), pages 85 to 86, adding, however, an additional equality constraint, 

as defined by equation (3.10).  

Using, however, the values of λave and t0 of Figure 4.2f, as obtained from a fB 

constrained optimization, a calculated m = 5.5 is obtained, considering ideal material 

properties of a PSC, which corresponds to lower reflection losses and higher PCEs. Therefore, 

the selection of m = 4.5 is a conservative estimation of the simulated reflection losses. In our 

optimizations, we consider spherical Ag nanoparticles localized in the absorber layer, close to 

its backside (CAI; PENG; CHENG; GU, 2015). Whereas higher efficient light-trapping 

schemes by shape-optimized plasmonic nanoparticles are possible (KAKAVELAKIS; 

PETRIDIS; KYMAKIS, 2017), we only adopt the case with spherical nanoparticles, because 
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of the available, and here adopted current densities, as specified by FDTD simulations in 

(CAI; PENG; CHENG; GU, 2015). Under the simulated light-trapping configuration, the 

short circuit current densities are for a large range of t0 higher than the Jsc values obtained in 

(SUN; ASADPOUR; NIE; MOHITE et al., 2015). Therefore, we specify in equation (3.11) a 

correction factor for the short circuit current density in the case of light trapping, which value 

is a function of the absorber layer thicknesses as follows 
 
 

CFlt(t0) = Jsc-Cai(t0) / Jsc-Sun .                     (3.11) 
 

Fortunately, in the configuration without light trapping, both authors present a similar short 

circuit current density for the used MAPI absorber layer, if considering an absorber layer 

thickness of 450 nm. Therefore, we adopted in the setup of our simulations directly the short 

circuit current densities and absorber layer thicknesses as obtained by FDTD simulations in 

(CAI; PENG; CHENG; GU, 2015) for different absorber layer thicknesses.  

 

3.3.2  Setup conditions 

 

We used the cell properties and the absorber layer thickness (t0), as obtained in 

(SUN; ASADPOUR; NIE; MOHITE et al., 2015), as setup-conditions, or initial condition in 

our multidimensional optimizations. Using the OTM method, the authors calculated the 

fundamental optical parameters, which are (i) the effective generation of charge carriers, Geff  

= 1.4356 x 1013 cm-3s-1, and (ii) the average optical decay length (λave = 100 nm). Both 

parameters represent material-specific properties that are independent of the absorber layer 

thickness. By the derived equation for the total generation of free charge carriers (equations 

(A.1) and (A.2), page 157), a total charge carrier generation of Gmax = 1.4356 x 1017 cm-2s-1 is 

calculated, which the authors validated with the measured short circuit current density of 

qGmax = 23 mA/cm², where q is the electric charge. The built-in voltage is Vbi = 0.78 V, and 

the diffusion coefficients are Dn = Dp  = 0.05 cm2/s. The authors obtained an ideal t0 of 450 

nm by a one-dimensional optimization of this variable. After the manufacturing of the PSC 

with the optimized absorber layer thickness, the authors obtained by a curve fitting (i) an 

electron surface recombination velocity (SRV) at the transition from the absorber layer to the 

frontside charge transport layer, with sf = sn = 200 cm/s, (ii) a hole SRV at the transition to 

the backside charge transport layer, with sp = sb =  19.2 cm/s, and (iii) the number of the 
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excess minority carrier concentrations of electrons and holes (∆n=8.426 x 106 cm-3, 

∆p=1.3003 x 108 cm-3). They obtained an optimized PCE of 15.7%, in a cell with an open-

circuit voltage of V0C = 0.87 V. The measured semiconductor temperature was 300.56 K, 

which results in a thermal voltage of Vt = kBT/q = 25.9 mV. These setup values result in the 

cell design as specified in Table 4.5, page 113 - design 6. In our optimizations, we used a 

short circuit current density qGmax = 23 mA/cm2 for a 450 nm thick absorber of a MAPI-PSC, 

as calculated in (SUN; ASADPOUR; NIE; MOHITE et al., 2015), for a simulation without 

light trapping. 

For light trapping with spherical nanoparticles, we adopted the values as obtained by 

the FDTD simulations in (CAI; PENG; CHENG; GU, 2015), using short circuit current 

densities qGmax, for absorber layer thickness in the range of t0 = 50…400 nm, as specified by 

equation (3.11). For several different absorber layer thicknesses (t0), we used the following 

short circuit current densities (q Gmax), in units of [mA/cm2], as obtained for light-trapping 

conditions in (CAI; PENG; CHENG; GU, 2015): 22.5 (t0= 50 nm), 23.05 (80 nm), 23.9 (160 

nm), 24.18 (320 nm), 24.5 (400 nm). 

 

3.4 SENSITIVITY ANALYSES 

 

In our previous work, we numerically optimized a PSC’s efficiency as a function of 

seven efficiency-sensitive model variables using the analytical model, which resulted in the 

high maximal PCE of 27.5% (KRATZENBERG; RAMBO; RÜTHER, 2019), as also detailed 

in section 4.2, page 105. Knowing the ideal material properties is an essential aspect 

concerning the optimization of PSCs, as the measurements of the values of these properties 

can validate if a manufacturing method improves or worsens a necessary property for high 

cell efficiencies. It is state-of-the-art knowledge that the Jsc increases as a function of light 

trapping in cells over a large range of t0, leading, however, to a Jsc decrease for very thin 

absorber layers (CAI; PENG; CHENG; GU, 2015). 

However, the improvement of the material properties, combined with light trapping 

in thin absorber layers, can lead to a considerable increase in the PSC’s state-of-the-art 

efficiency. E.g., we showed in section 4.2, page 105 that a 160 nm thick absorber layer results 

in only 0.1…0.2% lower PCE if compared to another optimized design with t0 = 400 nm, 

because of the VMPP increase in thin absorber layers. Furthermore, this cell design, with 
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specified material properties, shows a 2.5-fold reduction of the cell’s Pb content, 

demonstrating, therefore, that high-efficiency PSCs can be manufactured with relatively low 

residual content.  

However, we do not specify how a material property tuning should be ideally 

accomplished in the development of high-efficiency cells with low Pb content. In this context, 

a solar cell researcher should know in which best sequence the seven PCE-sensitive variables 

should be selected ideally for its improvement tunings in cell manufacturing. To find out 

more details about each of the variables, and its importance, we accomplish a complete set of 

one-dimensional sensitivity analyses, validating the sensitivity of a whole set of performance 

parameters as a function of each of the considered material properties. We compare these 

sensitivity analyses for (i) a non-optimized and (ii) a fully optimized solar cell design.  

 

3.4.1 Methods 

 

In the sensitivity analyses of the non-optimized and optimize solar cells, we 

improved one model variable at a time with arbitrary sensitivity factors in the range of fs = 

1…160, using equations (3.12) to (3.17), page 92, and compare the improvement of several 

performance parameters in section 4.3, page 120.  

 

Non-optimized perovskite solar cell: The authors in (SUN; ASADPOUR; NIE; 

MOHITE et al., 2015), obtained an optimized PSC cell configuration tested in model and 

experiment by use of a one-dimensional optimization of t0. We used that cell configuration as 

setup design in a multidimensional material property optimization, and we labeled it as the 

cell configuration of a non-optimized PSC design in the following text. In our one-

dimensional sensitive analyses, we define a variable as being most important or sensitive; if 

starting from the non-optimized design, the improvement of the value of a considered material 

property results in the steepest efficiency increase as a function of this variable improvement.  

 

Optimized perovskite solar cell: As more interesting to know is the variables’ 

importance, as specified by the most efficiency-sensitive variables, of an optimized solar cell, 

principally as the state-of-the-art PCE of 25.2% is already proximate to the here proposed 

optimized solar cell design. As in the non-optimized solar cell, we analyze a variable range 
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between the non-optimal till the optimal variable values. For one-dimensional sensitivity 

analyses of the optimized cell design, we define the variable as being most important, which 

shows the highest efficiency-sensitivity, or drop in PCE, when leaving its optimal variable 

value, in the direction of the non-optimal variable value. We defined the improvement range 

of a considered variable by its model variable and a sensitivity factor fs, which we determined 

in a similar form as in section 3.3, page 82. However, the resulting model variables are 

different as we use here specific signs of the analyzed variables and not ranges as used in a 

multidimensional optimization to specify the variables as a function of fs. Because of the 

cell’s strong non-linearity, as discussed in sections 4.1, page 98, and 4.2, page 105, it is not 

known if the material properties of a non-optimized cell present the same rank of efficiency-

sensitivity as in comparison to a non-optimized PSC. Therefore, we analyze this question here 

in more detail. 

 

3.4.2 Modeling 

 
In two different sensitivity analyses, we modify the material properties and the 

absorber layer thickness by a sensitivity factor (fs), which values correspond to the used 

values of the boundary amplification factor (fB), as proposed in section 3.3, page 82. We 

solely introduce the new formulation of a sensitivity factor fs to underline the clear distinction 

of the formulation of the sensitivity formulation. While the optimization algorithm identifies 

automatically if a variable should be increased or decreased within a range of lower and 

higher material properties, as defined by fB, in a sensitivity analysis, the sign of the variable 

modification must be known beforehand, to adopt a correction with fs, which either increases 

or decreases, the value of a model variable. In the present sensitivity analyses, we adopt the 

obtained signs of the model variables as already obtained by the multidimensional 

optimization in section 4.2, page 105, to increase or decrease the material properties in the 

same direction as selected by the optimization algorithm. Our sensitivity analysis analyzes 

each of the model variables in the ranges between the non-optimized and the optimized solar 

cell configuration, as specified, considering fB  = 1…160, as used in section 3.3. We know 

from the optimizations in section 4.2 that the cell’s efficiency rises as a function of higher Dn 

and Dp values. Therefore, the increase of these variables is determined as follows 
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Xopt = Xnopt fs , (3.12) 

 

where fs is the sensitivity factor (fs = 1…160 ∈ ℕ ), as chosen for an arbitrary variable 

improvement. This equation defines that the optimized values of Dn and Dp can be found by 

gradually increasing the non-optimized values by the sensitivity factor fs from 2 to 160. The 

variable Xnopt (fs = 1) stands for the non-optimal initial values of Dn or Dp, and Xopt stands for 

its optimized values, as found by the multidimensional optimization. We adopt here the initial 

and optimal values as obtained in (KRATZENBERG; RAMBO; RÜTHER, 2019), also 

defined in Table 3.1, page 94. Furthermore, we know from our multidimensional 

optimizations, that the surface recombination velocities of electrons and holes, as related to 

the front and the back layer of the PSC (sf and sb) must decrease as much as possible. 

Therefore, equation (3.13) determines the decrease in sf and sb as follows 
 
 

Xopt = Xnopt / fs , (3.13) 

       

where fs = 1…160; Xnopt stands for the initial values of sf and sb, as used for the setup in the 

optimizations in section 3.3; and Xopt stands for the improved or optimized surface 

recombination velocities. For the Vbi and t0 we considered a reduced variable improvement 

range in sections 3.3 and 4.2, which we specify in a resumed form in Table 3.1, page 94. For 

these two variables, we define a variable modification gradient by the following equation 
 
 

∆Xi = ( |Xopt – Xnopt| )  / (fs-max – 1) , (3.14) 

 

Where ∆Xi stands for the gradual variable improvements, representing ∆Vbi , ∆t0 and ∆λave and 

fs-max = 160 is the maximal sensitivity factor. The improved t0, Vbi, and t0 values we calculate 

by equations (3.15) to (3.17). 
 
 

Vbi = Vbi-nopt + (fs -1) ∆Vbi (3.15) 
 
 

t0 = t0-nopt  -  (fs -1) ∆t0                                                                        (3.16) 
 

 

 

λave = λave-nopt  - (fs -1) ∆λave                                                                        (3.17) 
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While for fs = 1 this sensitivity analysis uses the values of the non-optimized setup conditions 

with Vbi = Vbi-nopt, t0 = t0-nopt and λave = λave-nopt, the values of the optimized model are 

calculated with the maximal sensitivity factor fs = fs-max = 160, resulting in the values Vbi-opt, t0-

opt λave-opt. As a result, the whole set of variables vary in the range between Xnopt and Xopt as 

specified in Table 3.1.  

In this sensitivity analysis, we consider dependent and independent variables. The 

independently modified model variables as here analyzed are the absorber layer thickness (t0) 

and material properties λave, Vbi, Dn, Dp, sf, sf are the s, which present a PCE-sensitivity in one- 

and two-dimensional sensitivity analyses. Our dependent variables are constituted as a 

function of the variation of each of these independent variables, using the analytical solar cell 

model, as presented in (SUN; ASADPOUR; NIE; MOHITE et al., 2015). The dependent 

variables are the performance parameters of PSC’s J-V curve, which are the: (i) maximum 

power point voltage (VMPP), and current density (JMPP); (ii) open-circuit voltage (Voc); (iii) 

short circuit current density (Jsc); and (iv) fill factor (FF). Our numerical design of 

experiments is planned under the criteria as provided in (MONTGOMERY, 2017), setting up 

a systematic set of numerical analysis and simulations to identify the different effects and 

sensitivities, while the actual model variables are set up by the equations (3.12) to (3.17), 

showing the modulations of the cell’s material properties and its t0, as a function of fs. 

 

Increased m-factor in a non-optimized and fully optimized solar cell: The m-

factor in equation (A.17), page 164, defines the relationship between t0 and λave. Based on the 

absorber layer thickness of 450 nm and an average optical decay length of 100 nm, 

considering the setup of the model as presented in (SUN; ASADPOUR; NIE; MOHITE et al., 

2015), an m of 4.5 is obtained. However, analyzing the gradients of the straight maximal 

efficiency vertex line in Figure 4.2f, on page 102, an m of 5.5 is obtained, as tuned by the 

optimization algorithm for the optimized solar cell model in the multidimensional space, 

using an fB - constrained optimization, instead of an m-constrained optimization. The m-factor 

can be considered as a measure for the reflection losses, and in this sense, a something higher 

m means that something lower reflection losses at the back reflector do appear. Looking, e.g., 

to  Figure 3.1b, on page 81, it can be seen that our setup conditions or the conditions of the 

non-optimized solar cell correspond to reflection losses of approximately 1 %, with λave = 100 

nm and X = t0 = 450 nm. As also to see from the same figure, if λave is decreased, or t0 is 
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increased, as related to a higher m, then this reflection losses decrease. By an additional 

simulation, we analyzed the PCE as a function of the tow different m’s, which result in 

efficiencies of 27.6% and 27.8% for the m-values of 4.5 a 5.5. Therefore, for the fully 

optimized solar cell, our simulation leads to a small deviation with a 0.2% lower PCE as we 

adopted a general m of 4.5 in the present sensitivity analyses.   

 

3.4.3  Setup conditions 

 
Whereas the section 3.4.1, page 90 specified the on-dimensional improvement 

ranges, as a function of the presented sensitivity factor fs, which are identical for the 

considered non-optimized and the optimized solar cell, here we specify with Table 3.1 the 

utilized set-up conditions or range limitations for these improvements. The variables Xnopt 

specifies the model variables for the non-optimized setup of the model, and the variables Xnopt 

define the model variables for the optimized configuration of the model variables. Then, in a 

one-dimensional variable improvement of λave, e.g., this variable is modified in the range of 

λave = 100…35.6 nm, a range at which the sensitives of a whole set of performance parameters 

are validated, for both cell configurations, for a non-optimized PSC, and a fully optimized 

cell. 
 
 

Table 3.1 - Setup of the sensitivity analyses, as defined by the optimal and non-
optimal variables, used for the definition of the variable modification range in the 
present sensitivity analyses. Variable value changes, in the range, between the non-
optimized (Xnopt), and the optimized variable (Xopt). Sensitive variables are the 
absorber layer thickness (t0); average optical decay length (λave); surface 
recombination velocity of the front (sf), and the back interface (sf) of the perovskite 
absorber layer; and diffusion coefficients of electrons (Dn), and holes (Dp).  
 

Variable sf sb Vbi Dn Dp t0 λave 

Unit [cm/s] [cm/s] [V] [cm2/s] [cm2/s] [nm] [nm] 

Xnopt 200 19.2 0.76 0.05 0.05 450 100 

Xopt 1.25 0.12 1.4 8 8 160 35.56 

  

  

 
 



95 
 

3.5 VARIABLE RANKING  

 
Another promising method for the specification of a sequence of the most efficiency-

sensitivity, or most essential variables, we propose in this section, as based on the equation of 

the binomial coefficient in equation (3.18), which we use for the combination of model 

variables. We used this equation to obtain suggestions for the variable tuning, or property 

tuning, in future cell research with manufactured solar cells in the laboratory, and at industrial 

scale.  Our objective is to specify how the efficiency of a manufactured PSC can be increased 

best, ranking its material properties in the order from the highest to the lowest efficiency-

sensitive variable. This ranking we based on the analysis of a total of 91 possible variable 

combinations using the optimized and non-optimized material properties of seven efficiency 

sensitive variables. The results of the obtained simulations we combine with additional 

information from the results of the sensitivity analyses using an optimized cell design to 

create a more qualified decision in the variable tuning of manufactured PSCs. 

 

3.5.1 Modeling  
 

Apart from the sensitivity analyses, we analyze, which ideal combinations of k 

optimized model variables (k = 1…n; n = 7), leads to the highest optimized efficiencies, in a 

multidimensional space of n-1 material properties, and t0, saying in the space of n model 

variables. Such knowledge can also be used to decide which variables should be manipulated 

first in a manufactured solar cell, subjected to an optimization process. Because of the PSC 

model’s nonlinearities, it is crucial to evaluate the PCE values as obtained of a whole set of 

possible variable combinations, using the seven sensitive model variables. Here we rank the 

efficiency as obtained by 91 possible combinations of two sets of variables, which are the 

non-optimized (Xnopt) and the optimized (Xopt) model variables in Table 3.1, page 94. The 

objective is to advise the manufacturers of perovskite solar cells, which like to tune its 

variables one-by-one in a stepwise optimization. In such a tuning, the most efficiency-

sensitive, and therefore, most the most promising variables or material properties should be 

improved first, in a sequential selection. As a result, the most effective manufacturing 

methods are used first to increase the PSC’s efficiency. 

Conversely, the least sensitive variables and property improvement methods are 

selected at last. In this sequential selection, we used the combinatorial approach as specified 
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by equation (3.18), to set up the variables as selected by this method to its optimized value 

(Xopt), while the non-selected variables we set up to its non-optimal values (Xnopt). With n = 7 

sensitive variables, and k = 1…7 specifying the number of a variable set, we obtain seven 

variable sets, each with s variable combinations (Table 4.8, page 130). The possible variable 

combinations, as related to each variable set, we configure by the equation of the binomial 

coefficient (1994), as follows 
 

( )!!
!

knk
n

k
n

−
=








   ;   1  ≥  k  ≥  7  ;   k ˄ n ∈ ℕ .                                     (3.18) 

 

 

This equation defines the total number of s possible combinations in each of the seven 

variables sets, where each set is based on the combination of the number of k arbitrary 

selected model variables, taken out of our variable set of n = 7 sensitive variables, resulting in 

a total of 91 possible variable combinations. We configure the combinations of the different 

model variables to be tested, using the MatlabTM function nchoosek, using equation (3.18). 

And at last, we evaluate the optimized efficiencies for each of the possible variable 

combinations, to find for each of the seven sets a unique combination, which results in the 

highest PCEs, as presented in section 4.4.1, page 129. 

 

Observation: In the current model setup further optimizations are not necessary for 

the here presented simulations, as the simplification by equation (3.10), page 87 interprets 

correctly the relation of the bi-dimensional linear vertex line, which only appears in-between 

t0 and λave in the multidimensional function space (KRATZENBERG; RAMBO; RÜTHER, 

2019). As such, a maximal-efficiency vertex line was not found in the relationship between 

the further model variables, and as model restrictions are not found for additional model 

variables, simulations can be considered as being sufficiently able to substitute the model 

optimizations. However, considering the case that light trapping is used before the 

improvement of the further model variables, then small uncertainties can be introduced 

because of the variation of the m-factor between the values of m = 4.5, as obtained by (SUN; 

ASADPOUR; NIE; MOHITE et al., 2015) and mc =  5.52, as derived from Figure 4.2, page 

102.     
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3.5.2  Setup conditions 

 
For the setup conditions, we used the same samples as presented in Table 3.1, page 

94. However, the combinatorial approach results in a specific selection criterion, which select 

the model variables with the highest efficiency-sensitivity first in a sequence of variable 

inclusions. E.g., to validate the s = 7 combinations with k = 1 variable taken out of a set of n = 

7 variables, the prepared software based on the selection algorithm sets up all model variables 

with the values of Xnopt, excluding only one variable, which is set up with the value of Xopt at a 

time. The selection by the highest efficiency resulted in the favorite variable sf. For the case of 

k = 2 variables are taken out of a set of n = 7 variables, we used the general setup of Xnopt 

again for the whole set of variables excluding only two variables, which are set up with the 

value of Xopt, at a time. In this second variable selection, we obtained the highest PCE with the 

combination of the variables sb and sf, including, therefore sb to the selected group of 

variables. In the whole sequence of variable selections, we fortunately obtained for a clear 

series, where the algorithm of the binomial coefficient included only one new variable, for 

each increase of k, to the group of selected variables. 

  

 
 



98 
 

4. RESULTS  
 

Some people don't like change, but you need to embrace change if the alternative is 

disaster. 

Elon Musk, CEO of Tesla Motors and SpaceX 

 

State-of-the-art one- and two-dimensional optimizations can over a long time, in 

repeated research efforts, lead to a cell’s maximal efficiency limit, as shown for several 

different cells in (NREL, 2020), which usually need several decades. Therefore it is 

interesting to know the maximal efficiency increase in the combination of all possible variable 

combinations, which we explore in section 4.1 for the considered MAPI cell. We present a 

complete set of the accomplishable one- and two-dimensional sensitivity analyses, as obtained 

by the possible variable combinations, to identify the potential or the maximal efficiency 

increase by state-of-the-art methods. This sensitivity analyzes we simplify by on- and two-

dimensional optimizations. However, the results of the proposed multidimensional 

optimization of a solar cell’s efficiency, as based on its drift-diffusion model, is much more 

effective (Section 4.2, page 105). Based on our results, and principally the multidimensional 

optimizations, we propose different cell designs, which increase the state-of-the-art efficiency 

of the simulated and manufactured PSCs significantly.  

 

4.1  ONE- AND TWO-DIMENSIONAL OPTIMIZATIONS 

 
One- and two-dimensional optimizations are the state-of-the-art of the optimizations 

in cell manufacturing and modeling, as the cell’s efficiency can be easily plotted as a function 

of one or two considered variables. Hence, we analyze in more detail such an optimization 

process to obtain information about the expected efficiency increase and non-linearities, as 

related to the used PSC model. 

  

4.1.1 Results 

 

As shown by the proposed combinatorial approach (section 4.4, page 128), the 

material properties which are most-efficiency sensitive are: (i) the front surface recombination 

velocity (sf), (ii) the back surface recombination velocity (sb), (iii) the built-in voltage (Vbi), 
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and the diffusion coefficient of electrons (Dn) in the analyzed pin-type MAPI cell. Being the 

most promising variables, we examine its behavior in more detail in Figure 4.1a-b. 
 

 

Figure 4.1- Efficiency growth as function of two model variables (a) as a function of the 
built-in voltage (Vbi) and the diffusion coefficient of electrons (Dn); and (b) as a function 
of the front and back surface recombination velocities (sf and sb). The efficiency as 
obtained in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) is presented by a white 
cross. 
 

Source: (WRUCK, 2018) 

 

 

 Figure 4.2a-e, page 102, shows some further typical one- and two-dimensional 

sensitivity analyses, where we calculate the PCE as a function of the improvement of the 

cell’s model variables. The figure was configured in (WRUCK, 2018), which inclusively 

shows a set of further one- and two-dimensional dependencies of the PSC’s efficiency. 

However, for the visualization of the efficiency gains, as obtained by the possible 

combinations of nine analyzed model variables, a large set of 45 such figures would be 

necessary. Therefore, we propose a substitution of these sensitivity analyses, by use of two-

dimensional numerical optimizations in Table 4.1, page 103, using the NLP optimization 

algorithm fmincon of the MATLABTM program. In this table ∆n is the number of excess 

electrons per unit volume that are available for the recombination process within the p-type 

layer, ∆p is the number of excess holes per unit volume that are available for the 

recombination process within the n-type layer, Dp is diffusion coefficient of holes and the 

remaining variables were already introduced. The table shows the optimized efficiency values 

and the used model variables, as obtained from 90 optimizations in the one-dimensional space 

and 280 optimizations in the two-dimensional optimization space, considering 10 different 

a b 
PCE [%] 

 
PCE [%] 
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boundary- extensions factors fB and considering as setup configuration, the variable values 

obtained in (Sun et al., 2015) presenting the initial efficiency of 15.7%. Table 4.1 presents 

only the highest attainable PCE values of those sensitivity analyses, as a function of different 

boundary-expansion factors fB, from which the corresponding variable values can be 

calculated back, using the boundary amplification factor fB. For this back-calculation, it must 

be known if an efficiency increase is obtained by the increase or the decrease of the 

considered model variable, as identified by an fB constrained optimization presented in 

Appendix Table B.1, page 189. We obtained in this two-dimensional efficiency optimization 

the same signs as identified for the multidimensional optimization in Appendix Table B.1, 

showing that the variables sf, sb, and λave, must decrease for high efficiencies, while the 

variables Dn, Dp, and Vbi must increase. The variable t0 is unique as it presents in all cell 

designs an ideal value.  

 

Figure 4.2a-d shows some further one- and two-dimensional efficiency 

optimizations, analyzing some particular behaviors, and Figure 4.2e-f examines the sensitivity 

of t0 and λave, comparing two different setups of this two-dimensional sensitivity analyses. 

While in Figure 4.2e, the remaining variables confer to our setup condition, in Figure 4.2f, 

these variables are configured with the ideal values, as obtained by a multidimensional, fB – 

constrained optimization, using fB = 160. Both figures consider light trapping with 

independently adjustable t0 and λave, but the multidimensional optimizations (Figure 4.2f) 

result in much higher efficiency values for low values of t0 and λave. 

 

The slight right shift of the grey vertex lines in Fig 2f indicates that improved 

material properties demand an improved light trapping for arbitrary t0 values, because of its 

lower optimal λave for the same t0. Based on the results of our fB – constrained 

multidimensional optimization (Appendix Table B.1, page 189), and based on the figures 

presented in (WRUCK, 2018), we conclude that a variable relationship, which results in 

maximum efficiency vertex lines, only appears in-between the variables t0 and λave, and not 

in-between the further model variables. 
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4.1.2 Discussion 

 
While nearly two orders of magnitude reduction of sf can increase the efficiency 

from 15.7% to almost 17%, more than two orders of magnitude improvement of the sb lead 

interestingly in nearly zero increase of the PCE (Figure 4.1a). However, the simultaneous 

reduction of sf, and sb shows a more significant efficiency increase to the value of 19.5%. 

The improvement of the Vbi to 1.4 V alone results in an efficiency increase to 

approximately 16.5%. In contrast, a rise in Dn alone by two orders of magnitudes results in a 

something higher PCE of ~ 17.2%, as to see from the darkest area in Figure 4.1b. Meanwhile, 

the simultaneous improvement of Vbi and Dn results in a similar value of ~ 17.2%. 

Considering that the Dn improvement can only be obtained on a limited range, e.g., much less 

than an order of magnitude, then the combined improvement with Vbi still enables this small 

improvement from 15.7% to 17.2%.  

The reduction of the average optical decay length from λ = 100 nm to the value of 80 

nm, as, e.g., obtainable by a weak light trapping, leads in a tiny PCE increase of only 0.05 % 

(Figure 4.2b), showing that (SUN; ASADPOUR; NIE; MOHITE et al., 2015) already 

accomplished nearly ideal  optimization of the relationship between λave and t0 by its one-

dimensional thickness optimization. While the rise in Dp, from initially 0.05 to the values of 1 

and 2.5 m2/s leads to PCEs of 16.5% and 17.5%, the increase of Dn, from initially 0.05 to 1 

m2/s leads on its own to no improvement of the PCE at all in Figure 4.2c. The maximal PCE 

increase we obtained by the rise of both Dp and Dn to the values of 2.5 and 1 m2/s, leading to a 

meager PCE increase to the value of 18.3%. The setup conditions do present excess 

concentration of electrons and holes ∆n, and ∆p, which are both already ideal, and therefore, 

the optimization algorithm is not able to find improvements for these variables (Figure 4.2d). 

As seen in (SUN; ASADPOUR; NIE; MOHITE et al., 2015), the MAPI cell presents 

an ideal absorber layer thickness of t0 = 450 nm in a one-dimensional optimization. This 

finding is also reflected in Figure 4.2e and Figure 4.2f. The former shows a very slight PCE 

increase can be obtained for lower absorber layer thicknesses if the average optical decay 

length is reduced simultaneously. In Figure 4.2f, the whole set of material properties are 

improved, using a multidimensional optimization, which enables a more significant efficiency 

increase.   
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Figure 4.2 - One- and two-dimensional sensitivity analyses, showing the model efficiency as 
a function of different model variables. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

(a) the average optical decay length λave; (b) the built-in voltage Vbi; (c) the diffusion coefficients of electrons 
and holes Dn and Dp; (d) the excess concentration of electrons and holes ∆n and ∆p; and finally, in (e) and (f), 
the absorber layer thickness t0, and the average optical decay length λave, where the grey vertex lines show the 
maximum attainable efficiency values in these two-dimensional presentations. (a) – (e) the remaining model 
variables are set up to the values as obtained in (SUN; ASADPOUR; NIE; MOHITE et al., 2015); (f) the 
remaining model variables are set up by our fB – constrained multidimensional optimization for fB = 160; the 
measured efficiency values of 15.7% in (a) – (e) appear as a star within a surrounded circle.  
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Table 4.1 – Efficiency as function of material properties and absoraber layer 
thickness in one- and two-dimensional optimizations. 
 
  

 

fB = 1.1                   fB = 1.5               
  sf sb ∆n ∆p Vbi Dn Dp t0 λave     sf sb ∆n ∆p Vbi Dn Dp t0 λave 

sf 15.8 15.9 15.8 15.8 16.8 15.9 15.9 15.9 15.9   sf 16.2 16.2 16.2 16.2 17.6 16.5 16.2 16.2 16.2 
sb   15.8 15.8 15.8 16.7 15.8 15.8 15.8 15.8   sb   15.8 15.8 15.8 17.2 16.1 15.8 15.8 15.8 

 ∆n     15.7 15.7 16.7 15.8 15.8 15.8 15.8    ∆n     15.7 15.7 17.2 16.1 15.8 15.8 15.8 
∆p       15.7 16.7 15.8 15.8 15.8 15.8   ∆p       15.7 17.2 16.1 15.8 15.8 15.8 
Vbi         16.7 16.8 16.7 16.7 16.8   Vbi         17.2 17.4 17.2 17.2 17.3 
Dn           15.8 15.8 15.9 15.9   Dn           16.1 16.1 16.1 16.2 
Dp             15.8 15.8 15.8   Dp             15.8 15.8 15.8 
t0               15.8 15.8   t0               15.8 16.1 

λave                 15.8   λave                 15.8 
                                          

  fB = 5 
                    fB = 20               

  sf sb ∆n ∆p Vbi Dn Dp t0 λave     sf sb ∆n ∆p Vbi Dn Dp t0 λave 
sf 17.1 17.3 17.1 17.1 18.3 17.8 17.3 17.1 17.3   sf 17.8 18.5 17.8 17.8 18.4 18.1 18.4 17.8 18.1 
sb  15.8 15.8 15.8 17.3 17.2 15.8 15.8 15.8   sb   15.8 15.8 15.8 17.3 18.3 15.8 15.8 15.8 

 ∆n   15.7 15.7 17.2 17.0 15.8 15.8 15.8    ∆n     15.7 15.7 17.2 17.7 15.8 15.8 15.8 
∆p    15.7 17.2 17.0 15.8 15.8 15.8   ∆p       15.7 17.2 17.7 15.8 15.8 15.8 
Vbi     17.2 17.9 17.3 17.2 17.4   Vbi         17.2 18.2 17.3 17.2 17.4 
Dn      17.0 17.2 17.0 17.2   Dn           17.7 18.2 17.7 18.0 
Dp       15.8 15.8 15.8   Dp             15.8 15.8 15.8 
t0        15.8 17.2   t0               15.8 18.2 

λave         15.8   λave                 15.8 
                                          
  fB = 40                   fB = 60               
  sf sb ∆n ∆p Vbi Dn Dp t0 λave     sf sb ∆n ∆p Vbi Dn Dp t0 λave 

sf 17.9 19.0 17.9 17.9 18.4 18.1 19.0 18.0 18.4   sf 18.0 19.3 18.0 18.0 18.4 18.1 19.3 18.0 18.5 
sb   15.8 15.8 15.8 17.3 18.7 15.8 15.8 15.8   sb   15.8 15.8 15.8 17.3 19.0 15.8 15.8 15.8 

 ∆n     15.7 15.7 17.2 17.9 15.8 15.8 15.8    ∆n     15.7 15.7 17.2 18.0 15.8 15.8 15.8 
∆p       15.7 17.2 17.9 15.8 15.8 15.8   ∆p       15.7 17.2 18.0 15.8 15.8 15.8 
Vbi         17.2 18.3 17.3 17.2 17.4   Vbi         17.2 18.3 17.3 17.2 17.4 
Dn           17.9 18.7 17.9 18.3   Dn           18.0 19.0 18.0 18.4 
Dp             15.8 15.8 15.8   Dp             15.8 15.8 15.8 
t0               15.8 18.7   t0               15.8 19.0 

λave                 15.8   λave                 15.8 
                                          
  fB= 80                   fB = 100               
  sf sb ∆n ∆p Vbi Dn Dp t0 λave     sf sb ∆n ∆p Vbi Dn Dp t0 λave 

sf 18.0 19.5 18.0 18.0 18.4 18.1 19.5 18.1 18.5   sf 18.0 19.7 18.0 18.0 18.4 18.1 19.6 18.1 18.5 
sb   15.8 15.8 15.8 17.3 19.2 15.8 15.8 15.8   sb   15.8 15.8 15.8 17.3 19.4 15.8 15.8 15.8 

 ∆n     15.7 15.7 17.2 18.0 15.8 15.8 15.8    ∆n     15.7 15.7 17.2 18.0 15.8 15.8 15.8 
∆p       15.7 17.2 18.0 15.8 15.8 15.8   ∆p       15.7 17.2 18.0 15.8 15.8 15.8 
Vbi         17.2 18.4 17.3 17.2 17.4   Vbi         17.2 18.4 17.3 17.2 17.4 
Dn           18.0 19.2 18.0 18.5   Dn           18.0 19.3 18.1 18.5 
Dp             15.8 15.8 15.8   Dp             15.8 15.8 15.8 
t0               15.8 19.2   t0               15.8 19.3 

λave                 15.8   λave                 15.8 
                                          
  fB = 120                   fB = 160               
  sf sb ∆n ∆p Vbi Dn Dp t0 λave     sf sb ∆n ∆p Vbi Dn Dp t0 λave 

sf 18.1 19.8 18.1 18.1 18.4 18.1 19.7 18.1 18.6   sf 18.1 20.0 18.1 18.1 18.4 18.1 19.9 18.1 18.6 
sb   15.8 15.8 15.8 17.3 19.5 15.8 15.8 15.8   sb   15.8 15.8 15.8 17.3 19.7 15.8 15.8 15.8 

 ∆n     15.7 15.7 17.2 18.0 15.8 15.8 15.8    ∆n     15.7 15.7 17.2 18.1 15.8 15.8 15.8 
∆p       15.7 17.2 18.0 15.8 15.8 15.8   ∆p       15.7 17.2 18.1 15.8 15.8 15.8 
Vbi         17.2 18.4 17.3 17.2 17.4   Vbi         17.2 18.4 17.3 17.2 17.4 
Dn           18.0 19.4 18.1 18.5   Dn           18.1 19.6 18.1 18.6 
Dp             15.8 15.8 15.8   Dp             15.8 15.8 15.8 
t0               15.8 19.5   t0               15.8 19.6 

λave                 15.8   λave                 15.8 
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Considering a 160 nm thick absorber layer and light trapping by spherical NPs, the 

efficiency increases to the value of 27.61% (corresponds to Figure 4.3, page 106, Table 4.4, 

page 110). If nearly ideal light-trapping conditions are considered, as eventually obtained by 

shape-optimized NPs, the PCE increases to 29% (Appendix Table B.1, page 189). The 

maximal efficiency grey vertex lines Figure 4.2e-f, show that in any cell design configuration, 

the absorber layer must be tuned as a function of the average optical decay length. In the 

comparison of a geographical topology, such vertex lines can be thought of as rising mountain 

ridges, or better hill ridges, which lead to the top of the hill that corresponds to the point of 

the maximal cell efficiency.  

Table 4.1, page 103, shows that the most efficiency-sensitive variables in a one-

dimensional improvement are Dn and sf, which both increase the PCE value from 15.7% to 

18.1% for a fB = 160. Therefore, it is expected that two-dimensional efficiency optimizations, 

which involve these two variables, also leads to the highest efficiency increase. Interestingly, 

the highest two-dimensional efficiency increase with 20% is obtained by a 160-time reduction 

of the surface recombination velocities sb and sf. In comparison, the second-highest PCE of 

19.9% we attained by the improvement of the variables Dp and sf. Similar behavior also 

appears for lower improvements of the related variables, showing a lower PCE increase, 

however, as to see, e.g., for fB = 20 in Table 4.1, page 103. We consider that such unexpected 

behavior, of changes of the variable sensitivities, appears because of the related nonlinear 

behavior in the two-dimensional space, which also should appear in the multidimensional 

space. For a two-dimensional space, such non-linearities appear in Figure 4.1 and Figure 4.2. 

The aggregation in two-dimensional spaces can result in a much higher PCE 

increases, as in comparison to the gains as obtained by one-dimensional property 

improvements using the considered variables. This higher increase still happens if one of 

these variables leads, in a one-dimensional improvement, to nearly zero PCE increase (Table 

4.1, page 103, and Figure 4.1, page 99). In the manufacturing of cells, this makes the PCE 

optimization a most challenging process leading; therefore, to a long development process as 

many of these variable spaces must be analyzed in a combination. If more variables are 

analyzed, the number of two-dimensional plots increases significantly because of the 

increasing number of possible combinations. Therefore, our proposed two-dimensional 

numerical optimization, (Table 4.1, page 103), simplifies the related work in a sense that 

variable-combinations that result in the highest PCE are identifiable, without the otherwise 
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necessary plots. However, in principle, maximal efficiency vertex lines are only possible to 

verify if figures of all possible variable combinations are plotted. Such vertex lines are 

important to validate, as otherwise, an undesired efficiency reduction can be obtained. 

However, such abundant analyses can be avoided by the use of multidimensional 

optimizations, which also result in much higher cell efficiencies, as shown in the next section. 

 

4.2  MULTIDIMENSIONAL PROPERTY OPTIMIZATIONS 

 
To avoid the disadvantages of the one- and two-dimensional optimizations, as 

principally defined by the tiny efficiency increases, future cell manufacturing should be 

oriented by the concepts of multidimensional optimization. Therefore, we elaborate on several 

different high- and highest-efficiency concepts in the following subsections. Rather than 

considering ideal light trapping as presented in Table B.1, page 189, we based our 

optimizations at more realistic concepts, as obtained by the plasmonic light-trapping effect, 

related to nanoparticles, which current densities were simulated by the high spatial resolution 

finite difference time domain (FDTD) method in (CAI; PENG; CHENG; GU, 2015). 

 

4.2.1 Results 

 
We present six sets of optimization results in Figure 4.3, on page 106, considering 

six different absorber layer thicknesses, each with a total of 160 different multidimensional 

optimizations (fB = 1…160, ∈ ℕ). For these m – constrained optimizations, the variable λave is 

constrained by the equation (3.10), while the remaining variables are fB – constrained as 

specified by equation (3.4) to (3.10), and set up by equation (3.11). As defined in equation 

(3.9), we consider that each coating technique of the absorber layer presents its associated 

minimum thickness (t0-min) for the deposition of perfect absorber layers, and therefore, we 

elaborate optimized cell designs for different absorber layer thicknesses. Light trapping with 

spherical nanoparticles (solid curves in Figure 4.3) shows a significant efficiency advantage in 

comparison to the case without light trapping (dotted curve) in almost all development-states 

as expressed by the fB – factor. In a 160 nm thick absorber layer, such a light trapping shows 

only a 0.1...0.2% lower efficiencies, in comparison to the configuration with the highest PCE, 

as obtained for t0 = 400 nm, which presents the highest PCE in this figure.  
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Figure 4.3 - Optimized efficiency as a function of the 160 boundary-expansion factors 
(fB = 1…160, for all fB ∈ ℕ) for six absorber layer thicknesses from t0 = 50…450 nm, 
optimization variables (Dn , Dp ,Vbi , sf , sb ), while λave(t0) = t0 /4.5 is the calculated 
average optical decay length: (i) without light trapping, t0-min = 450 nm, λave  = 100 nm; 
(ii) light trapping with spherical plasmonic nanoparticles, t0 = 50….400 nm, with 
corrected short circuit current densities. Used qGmax values, in units of [mA/cm2], as 
obtained in (Cai et al. 2015 and Sun et al. 2015), which are: 22.5 (t0 = 50 nm), 23.05 (80 
nm), 23.9 (160 nm), 24.18 (320 nm), 24.5 (400 nm), and 23 (450 nm, without light 
trapping). 
  

 

Meanwhile, a PSC with t0 = 160 offers the advantage of containing a 2.5-fold lower 

Pb content. Therefore, we give the most emphasis to two different cell designs in our 

discussions, a fully optimized design with a 160 absorber layer, and a similar cell design with 

a 400 nm thick absorber layers. Because of the ascendant character of the curves in Figure 

4.3, we present in Appendix Figure B.1, page 193, the PCE for arbitrary material 

improvements up to an improvement factor of fB = 1000. In Table 4.2 to Table 4.4, we show 

alternative representations for some optimizations in Figure 4.3, presenting in these tables 

also the values of the optimized material properties. Table 4.2 considers the state-of-the-art 

absorber layer thickness of 450 nm without light trapping. 

 
 

fB

t0
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Figure 4.3 and Figure 4.4 present the results for thinner absorber layers of 400 nm 

and 160 nm, using a short circuit current density values, as obtained by light trapping with 

spherical nanoparticles (CAI; PENG; CHENG; GU, 2015), and considering an m – 

constrained specification of λave, as defined in equation (3.10). For the interested reader, we 

additionally present the PCE and λave values, which consider fB – constrained λave constraints 

setups as presented by equation (3.5). However, we advise that these values should be 

observed with caution because of the related low reflection losses, which might be unrealistic. 

Lower λave values lead to a higher absorption, which results in higher decay of G(x), as a 

function of x, (Figure 3.1b, page 81), leading, as a result to lower reflection losses for a fixed 

absorber layer thickness.  

 

The J-V curves, and the power density curves, of nine high-efficiency design 

proposals we present in Figure 4.4a-b. Some of these schemes visualize in more detail the 

simulated design proposals of Figure 4.3, page 106. Highest-efficiency designs (1) to (5) use 

light trapping for t0 = 50…400 nm, with fB = 160, while design concept (6) presents the J-V 

curve as measured and modeled in (SUN; ASADPOUR; NIE; MOHITE et al., 2015). Cell 

design concept (7) confers to the cell with the former state-of-the-art efficiency of 24.2% (the 

present state-of-the-art PCE is 25.2%), considering improved material properties, but no light 

Table 4.2 – Optimized model variables (boldface symbols), as obtained from eleven 
optimizations in the nine-dimensional function space with specific boundary-expansion 
factors fB, presenting the best PCE of 25.96%, for t0 = 450 nm, without light trapping (λave 
= 100 nm); qGmax = 23 mA/cm2. 
 

fB  sf sb ∆n ∆p Vbi Dn Dp µn µp t0 λave η λave
* η* 

[-] [cm/s] [cm/s] [1/cm3] [1/cm 3] [V] [cm²/s] [cm²/s] [cm²/Vs] [cm²/Vs] [nm]  [nm] [%] [nm] [%] 

5.00 40.00 3.84 8.43E+06 1.30E+08 0.80 0.25 0.25 9.65 9.65 450.00 100.00 18.96 48.13 19.15 

10.00 20.00 1.92 8.43E+06 1.30E+08 0.82 0.50 0.50 19.30 19.30 450.00 100.00 20.34 10.00 20.57 

20.00 10.00 0.96 8.43E+06 1.30E+08 0.86 1.00 1.00 38.61 38.61 450.00 100.00 21.92 5.00 22.17 

30.00 6.67 0.64 8.43E+06 1.30E+08 0.90 1.50 1.50 57.91 57.91 450.00 100.00 22.88 3.33 23.14 

40.00 5.00 0.48 8.43E+06 1.30E+08 0.94 2.00 2.00 77.22 77.22 450.00 100.00 23.49 2.50 23.76 

60.00 3.33 0.32 8.43E+06 1.30E+08 1.01 3.00 3.00 115.82 115.82 450.00 100.00 24.26 1.67 24.53 

80.00 2.50 0.24 8.43E+06 1.30E+08 1.09 4.00 4.00 154.43 154.43 450.00 100.00 24.76 27.89 25.04 

100.00 2.00 0.19 8.43E+06 1.30E+08 1.17 5.00 5.00 193.04 193.04 450.00 100.00 25.14 26.85 25.43 

120.00 1.67 0.16 8.43E+06 1.30E+08 1.25 6.00 6.00 231.65 231.65 450.00 100.00 25.46 25.85 25.75 

140.00 1.43 0.14 8.43E+06 1.30E+08 1.32 7.00 7.00 270.26 270.26 450.00 100.00 25.73 25.01 26.02 

160.00 1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 450.00 100.00 25.96 0.63 26.26 
 

Observations: (i) The values in italic formatted numbers correspond to the values of the lower curve in 
Figure 4.3, page 106; (ii) optimizations consider the m-constrained specification of λave ; the values in the 
columns as marked with *, we obtained in fB – constrained setup of λave . 
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trapping. Design (8) shows how (7) can be improved by light trapping, and concept (9) shows 

a similar efficiency as (7), with less ideal properties, but with light trapping. Table 4.5 

presents the J-V performance parameters of these design proposals, and Table 4.6, page 114, 

visualizes the relative improvements of these parameters, comparing in each row two different 

design proposals, as selected from Table 4.5. 
 

 

 

In our simulation, we optimize the efficiency in a general form, as a function of the 

improved diffusivities (Dn and Dp), not considering the modeling of (i) the diffusion length, or 

(ii) the lifetime of charge carriers separately. However, using the relationship  

 

Dn,p = Ln,p2 / τn,p  , (4.1) 
 

as obtained by solving equation (A.33) and (A.34), page 169, for the diffusion coefficient, the 

efficiency can also be expressed as a function of the diffusion length, or the lifetime of the 

minority charge carriers. We use our optimized diffusivity Dn = Dp in the range of 0…8 cm2/s, 

where the higher value is specified for the design with the highest PCE, and calculate the 

necessary improvements of the (i) lifetime, (ii) diffusion length, or (iii) the simultaneous 

improvement of both of these variables, specifying the values of these properties for the 

Table 4.3 –  Optimized model variables (boldface symbols), as obtained from eleven 
optimizations in the nine-dimensional function space with specific boundary-expansion 
factors fB for a PSC with t0 = 400 nm, where light trapping with spherical nanoparticles 
compensates the reduced absorption in this absorber layer; qGmax = 24.5 mA/cm2. 
 

fB  sf sb ∆n ∆p Vbi Dn Dp µn µp t0 λave η λave
* η* 

[-] [cm/s] [cm/s] [1/cm3] [1/cm 3] [V] [cm²/s] [cm²/s] [cm²/Vs] [cm²/Vs] [nm]  [nm] [%] [nm] [%] 

5.00 40.00 3.84 8.43E+06 1.30E+08 0.80 0.25 0.25 9.65 9.65 400.00 88.89 20.29 41.76 20.50 

10.00 20.00 1.92 8.43E+06 1.30E+08 0.82 0.50 0.50 19.30 19.30 400.00 88.89 21.76 8.89 22.01 

20.00 10.00 0.96 8.43E+06 1.30E+08 0.86 1.00 1.00 38.61 38.61 400.00 88.89 23.45 4.44 23.72 

30.00 6.67 0.64 8.43E+06 1.30E+08 0.90 1.50 1.50 57.91 57.91 400.00 88.89 24.47 2.96 24.76 

40.00 5.00 0.48 8.43E+06 1.30E+08 0.94 2.00 2.00 77.22 77.22 400.00 88.89 25.13 2.22 25.42 

60.00 3.33 0.32 8.43E+06 1.30E+08 1.01 3.00 3.00 115.82 115.82 400.00 88.89 25.95 1.48 26.25 

80.00 2.50 0.24 8.43E+06 1.30E+08 1.09 4.00 4.00 154.43 154.43 400.00 88.89 26.48 24.56 26.79 

100.00 2.00 0.19 8.43E+06 1.30E+08 1.17 5.00 5.00 193.04 193.04 400.00 88.89 26.90 23.71 27.17 

120.00 1.67 0.16 8.43E+06 1.30E+08 1.25 6.00 6.00 231.65 231.65 400.00 88.89 27.23 22.83 27.54 

140.00 1.43 0.14 8.43E+06 1.30E+08 1.32 7.00 7.00 270.26 270.26 400.00 88.89 27.52 22.15 27.83 

160.00 1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 400.00 88.89 27.76 21.50 28.08 
 

Observations: (i) The values in italic formatted numbers correspond to the cell with t0 = 400 nm in Figure 
4.3, page 106; (ii) optimizations consider the m-constrained specification of λave ;  the values in the columns 
as marked with *, we obtained in fB – constrained setup of λave . 
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optimized diffusivity. For the setup condition, we consider the state-of-the-art values of 

diffusion lengths of Ln = Lp = 1 µm (STRANKS; EPERON; GRANCINI; MENELAOU et al., 

2013), the diffusivities of Dn = Dp = 0.05 cm2/s ((SUN; ASADPOUR; NIE; MOHITE et al., 

2015) apud (STRANKS; EPERON; GRANCINI; MENELAOU et al., 2013)), which result in 

a calculated lifetimes of τn,p = 200 ns. To calculate this lifetime, we use equations (A.33) and 

(A.34), page 169, and solving them for its lifetimes as follows 

 

τn,p = Ln,p2 / Dn,p . (4.2) 
 

 

Considering a fixed value of τn = τp = 200 ns, as used for the setup conditions, and the 

optimized Dn = Dp = 8 cm2/s, then the diffusion length is calculated with 12.65 µm by 

equations (A.33) and (A.34), page 169. Therefore, the initial diffusion length of 1 µm must be 

increased by the adequate manipulation of the material properties, resulting in a 12.65-fold 

increase of this diffusion length, configuring Dn = Dp = 8 cm2/s. As a result, the demanded 

diffusion coefficient improvement in the range of 0.05…8 cm2/s can be configured by a 

demanded diffusion length improvement in the range of  1…12.65  µm, for a fixed τn = τp = 

200 ns. 

Considering instead a fixed diffusion length of Ln = Lp = 1 µm, and the optimized Dn 

= Dp = 8 cm2/s, then the τn = τp is calculated with 1.25 ns, using equation (4.2). Therefore, the 

initial lifetime of 200 ns must be reduced by adequate manipulation of the material properties, 

resulting in a 160-fold lifetime reduction in order to configure the optimized diffusion 

coefficients of 8 cm2/s. As a result, the demanded diffusion coefficient improvement in the 

range of 0.05…8 cm2/s can be configured by a demanded lifetime decrease from the initial 

lifetime of 200 ns down to the value of 1.25 ns, for a fixed Ln = Lp = 1 µm. 

We conclude that the manipulation of the diffusion length is much more effective 

because of its 160/12.65 = 12.8 fold increased sensitivity as defined by the quadratic 

formulation in equation (4.2). In a combined improvement of the lifetime and the diffusion 

length we consider, e.g., only a 40-fold lifetime reduction, which leads to the value of 5 ns. 

Applying again the relationship as defined by equation (A.33) and (A.34), page 169, the 

diffusion lengths must be doubled to the value of Ln = Lp = 2 µm, resulting in a combination 

of improved (i) lifetimes, and (ii) diffusion lengths, which lead to the optimized diffusivities 
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of Dn = Dp = 8 cm2/s. As to see from the exemplary calculi using equation (4.2), the reduced 

lifetime in a highly efficient PSC can only appear if it is compensated by a higher transport 

velocity of charge carriers, saying a higher diffusion coefficient, not reducing, therefore, the 

diffusion length of 1 µm. An effect which is also to see from the equations (A.33) and (A.34), 

page 169, which specify that the same diffusion lengths can be obtained by (i) shorter 

lifetimes if these shorter lifetimes are compensated by higher diffusion coefficients. As to see 

from these exemplary calculi, the excellent diffusion lengths of PSCs are in any case longer 

than 1 µm, which is much larger than the considered absorber layer thickness in our 

simulations. Therefore, recombination effects because of a limited diffusion length have not 

to be considered in modeled cases. 

 

4.2.2 Discussions  

 
Cell designs: Figure 4.3, and Figure 4.4, pages 106 and 111; as well as Table 4.2 to 

Table 4.6, pages 107 to 114; visualize how different measures can optimize the efficiency of a 

PSC in different development states by (i) the improvement of the material properties, as 

expressed by the fB – factor; (ii) light trapping for a constant fB – factor, as used for t0 < 450 

Table 4.4 – Optimized model variables (boldface symbols) and efficiencies from eleven 
nine-dimensional optimizations as a function of several boundary-expansion factors (fB) 
for a PSC with t0 = 160 nm, where light trapping by spherical nanoparticles compensates 
the reduced absorption in this thin absorber layer; qGmax = 23.9 mA/cm2. 

fB  sf sb ∆n ∆p Vbi Dn Dp µn µp t0 λave η λave
* η* 

[-] [cm/s] [cm/s] [1/cm3] [1/cm 3] [V] [cm²/s] [cm²/s] [cm²/Vs] [cm²/Vs] [nm]  [nm] [%] [nm] [%] 

5.00 40.00 3.84 8.43E+06 1.30E+08 0.80 0.25 0.25 9.65 9.65 160.00 35.56 20.46 7.11 21.20 

10.00 20.00 1.92 8.43E+06 1.30E+08 0.82 0.50 0.50 19.30 19.30 160.00 35.56 21.85 3.56 22.67 

20.00 10.00 0.96 8.43E+06 1.30E+08 0.86 1.00 1.00 38.61 38.61 160.00 35.56 23.46 1.78 24.34 

30.00 6.67 0.64 8.43E+06 1.30E+08 0.90 1.50 1.50 57.91 57.91 160.00 35.56 24.43 1.19 25.35 

40.00 5.00 0.48 8.43E+06 1.30E+08 0.94 2.00 2.00 77.22 77.22 160.00 35.56 25.06 0.89 26.00 

60.00 3.33 0.32 8.43E+06 1.30E+08 1.01 3.00 3.00 115.82 115.82 160.00 35.56 25.84 0.59 26.82 

80.00 2.50 0.24 8.43E+06 1.30E+08 1.09 4.00 4.00 154.43 154.43 160.00 35.56 26.37 9.08 27.36 

100.00 2.00 0.19 8.43E+06 1.30E+08 1.17 5.00 5.00 193.04 193.04 160.00 35.56 26.77 0.60 27.77 

120.00 1.67 0.16 8.43E+06 1.30E+08 1.25 6.00 6.00 231.65 231.65 160.00 35.56 27.10 0.90 28.11 

140.00 1.43 0.14 8.43E+06 1.30E+08 1.32 7.00 7.00 270.26 270.26 160.00 35.56 27.37 8.44 28.40 

160.00 1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 160.00 35.56 27.61 0.71 28.65 
 

Observations: (i) The values in boldface formatted numbers correspond to cell design (3) in Figure 4.3, page 
106, and Figure 4.4, page 111, and the highest-efficiency cell in Figure 4.4 and Figure 4.5, page 115; (ii) the 
values in italic formatted numbers correspond to the PSC with t0 = 160 nm in Figure 4.3; (iii) optimizations 
consider the m-constrained specification of λave; the values in the columns as marked with *, we obtained in 
fB – constrained setup of λave. 
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nm; and (iii) the combination of these methods. While the material property improvements 

mainly raise the VMPP, light trapping increases both parameters VMPP, and the JMPP. Such 

developments can be discussed, comparing the cell designs in Table 4.5, which results in cell 

comparisons of Table 4.6, page 114.  

 

Figure 4.4 – Current density – terminal voltage (J-V) curves and power density – 
voltage curves of the proposed cell designs. 
 

 

 

 

 

 

 

 

 

(a) J-V and (b) power density curves of ten solar cell designs, as obtained by nine multidimensional 
optimizations, specified here by different absorber layer thicknesses (t0) and boundary-expansion factors 
(fB): (1) t0 = 50 nm, fB = 160; (2) t0 = 80 nm, fB = 160; (3) t0 = 160 nm, fB = 160; (4) t0 = 320 nm, fB = 160; 
(5) t0 = 400 nm, fB = 160; (6) t0 = 450 nm, fB = 1 (SUN; ASADPOUR; NIE; MOHITE et al., 2015); (7) t0 
= 450 nm, fB = 58; (8) t0 = 160 nm, fB = 58; (9) t0 = 160 nm, fB = 26, (10) t0 = 450, fB = 160. 
 
 

Considering that the cell with the former state-of-the-art efficiency of 24.2%, is 

based on light trapping (Table 4.5, design 9), an improvement of the further material 

properties results in cell design (3) and raises the PCE by a relative increase of 14.6% (Table 

4.6 - row 13). This increase is mostly based on a 14.1% rise in VMPP. However, assuming that 

the state-of-the-art cell uses no light-trapping scheme (Figure 4.3 and Table 4.5, design 7); its 

PCE can be increased by 6.6% using light trapping with spherical nanoparticles, obtaining 

design (8). This increase is a function of a 4% rise in JMPP and a 2.5% increase in VMPP (Table 

4.6 - row 6). 

Figure 4.4, on page 111, compares the J-V curves and the power curves of (i) the 

setup cell design concept and (ii) the most ideal cell design concept as considered here with a 

160 nm thick absorber layer (Table 4.4 - design 3). The dash-dotted curves represent the cell 
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as optimized in (SUN; ASADPOUR; NIE; MOHITE et al., 2015), and the continuous curves 

characterize the ideal cell design. This design concept is a result of a multidimensional 

material property improvement of a cell with spherical plasmonic nanoparticles localized in a 

160 nm thick absorber layer. The PCE of this cell is only 0.2% lower in comparison to the 

highest obtained efficiency in a cell with t0 = 400 nm (Table 4.3, Figure 4.3 and Table 4.5 – 

cell design 5). Light trapping with spherical nanoparticles and the improvement of the 

device’s material properties result in a significant PCE increase, rising the PSC’s efficiency 

from initially 15.7% (design 6), to 27.6% as obtained by cell design (3), and to 27.5%, as 

obtained by cell design (5). 

 
The nonlinear advantage in higher-dimensional optimizations: Summing up the 

nine one-dimensional efficiency increases in Table 4.1, page 103, we registered a total 

contribution of 4.5% for a boundary-expansion factor of fB = 160. However, the combined 

contribution of these variables, in a multidimensional optimization, results with the maximum 

value of 27.6% (Table 4.4, page 110) in a much higher efficiency rise of 27.6% - 15.7% = 

13.4%, considering the same fB – factor. Consequently, the summed single contributions of 

the one-dimensional PCE growths result in a 4.5% efficiency increase, and because of further 

effects, we obtained an additional efficiency increase, with a value of 13.4% – 4.5% = 8.9%. 

We registered a similar behavior also in the comparison of the one- and the two-dimensional 

optimizations in section 4.1, page 98, and assign this additional PCE increase to the 

nonlinearities, as inherent to the analyzed PSC’s drift-diffusion model. As an outcome, 

higher-dimensional optimizations are much more effective, in comparison to the state-of-the-

art one- and two-dimensional optimizations.  

A further nonlinear behavior we observed for the proper efficiency increases in 

Figure 4.3, page 106, since the highest PCE gradients appear for low fB values, which 

correspond to small material property improvements in the hypercube space. Therefore, the 

multidimensional efficiency optimizations are most effective for cells, which efficiency is 

close and principally lower, than the state-of-the-art PCE. The light-trapping characteristics 

enhance this effectiveness in the multidimensional optimizations because of the resulting 

higher efficiency gradients of the related curves in Figure 4.3, page 106. 
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Table 4.5 - Optimization setup configurations (fB, t0, λave, qGmax, Jsc) 
and perovskite performance parameters (V0C, VMPP, FF, PCE), as 
calculated from the J-V curve characteristics, including also cell 
designs as presented Figure 4.3, page 106, and Figure 4.4, page 111. 
 

Cell 
designs  

fB t0 λave q Gmax (#) JSC V0C JMPP VMPP FF PCE 

  [ - ] [nm] [nm] [mA/cm2] [mA/cm2] [V] [mA/cm2] [V] [ - ] [%]  

(1)  160 50 11.1 22.5 22.3 1.32 21.8 1.22 0.905 26.6 

(2)  160 80 17.8 23.1 22.8 1.31 22.3 1.21 0.904 27.0 

(3)  160 160 35.6 23.9 23.6 1.29 23.1 1.19 0.903 27.6 

(4)  160 320 71.1 24.2 23.9 1.28 23.4 1.18 0.902 27.5 

(5)  160 400 88.9 24.5 24.2 1.27 23.7 1.17 0.902 27.8 

(6)  1 450 100.0 23.0 22.7 0.87 21.3 0.74 0.799 15.7 

(7)  58 450 100.0 23.0 22.7 1.19 22.2 1.09 0.896 24.2 

(8)  58 160 35.6 23.9 23.6 1.21 23.1 1.12 0.898 25.8 

(9)  26 160 35.6 23.9 23.6 1.15 23.0 1.05 0.886 24.1 

(10)  160 450 100.0 23.0 22.7 1.27 22.3 1.17 0.902 26.0 
 

(#) Adopted short circuit current densities as obtained in (Cai et al. 2015 and Sun 
et al. 2015). Observation: In the Beer-Lambert model simulations as presented in 
(SUN; ASADPOUR; NIE; MOHITE et al., 2015) and section APPENDIX A.1, 
page 156 the Jsc is to some minute extent lower than qGmax, as used in the setup 
of this model (see MatlabTM program in Supplementary Material). An effect, 
which disappears for large values (m > 10) in equation (A.14), page 163. In the 
modeling presented, we used m = 4.5, which results in a feeble reduction of the Jsc, 
in comparison to qGmax. A meliorated model of the short circuit current density 
would, therefore, present slightly higher maximum efficiencies than those obtained 
in this section and table, because of the corrected Jsc values, which result, e.g., to a  
0.2 mA/cm2 higher short circuit current density in cell design (1).  
 

 
 

High efficiencies with thin absorber layers: The highest and second highest values 

of Jsc and JMPP we obtained with the light-trapping cell designs (5) and (4) in Table 4.5, page 

113. These designs present the thickest absorber layers of t0 = 400 and 320 nm. Meanwhile, 

the highest and second highest PCE values we obtained with cell designs (5) and (3), which 

present a t0 of 400 and 160 nm. In the case of V0C and VMPP, the highest value appears, for the 

cell with the thinnest absorber layer, as presented in cell design (1). This cell also presents the 

highest fill factor (FF). The relatively high efficiency in the cell with an absorber layer 

thickness of only 160 nm (design 3) can be explained as a result of the increased JMPP, as 

related to light trapping, in combination with the high VMPP in thin absorber layers. Such a 

combination leads to the second-highest efficiency, being only 0.2% lower in comparison to 

the design with the highest efficiency of 27.8% (design 5), with a t0 of 400 nm.  
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Table 4.6 – Relative increase or decrease of six 
performance parameters in fourteen comparisons of 
the ten discussed cell designs of Table 4.5. 
 
 
Row Design improvements  

JSC V0C JMPP VMPP FF PCE 

[%] [%] [%] [%] [%] [%]  

1 Sun – Design (9) 4.0 32.8 8.3 41.2 10.8 53.0 

2 Sun - Design (7) 0.1 36.9 4.5 47.0 12.1 53.6 

3 Sun - Design (10) 0.1 46.0 4.7 57.5 12.8 64.8 

4 Sun - Design (3) 4.0 49.2 8.8 61.2 13.0 75.3 

5 Sun - Design (8) 4.0 40.1 8.6 50.7 12.3 63.7 

6 Design (7) - Design (8) 3.9 2.3 4.0 2.5 0.2 6.6 

7 Design (9) - Design (8) 0.0 5.5 0.3 6.7 1.4 7.0 

8 Design (9) - Design (7) -3.8 3.1 -3.5 4.1 1.2 0.4 

9 Design (7) - Design (10) 0.0 6.6 0.2 7.1 0.6 7.3 

10 Design (8) - Design (10) -3.8 4.2 -3.7 4.5 0.4 0.7 

11 Design (10) - Design (3) 3.9 2.2 4.0 2.3 0.2 6.4 

12 Design (8) - Design (3) 0.0 6.5 0.1 6.9 0.6 7.1 

13 Design (9) - Design (3) 0.0 12.4 0.4 14.1 2.0 14.6 

14 Design (7) - Design (3) 3.9 9.0 4.1 9.6 0.8 14.1 

 
 

The highest values of V0C and FF in the thinnest absorber layer we account for the 

simultaneous (i) reduction of t0, and (ii) the light-trapping effect. High V0C in PSC’s are 

obtained as a function of its inherent photon-recycling effect (PAZOS-OUTÓN; SZUMILO; 

LAMBOLL; RICHTER et al., 2016), which improves by light trapping (SHA; REN; CHEN; 

CHOY, 2015) that also increases the fill factor (FF) (SHA; REN; CHEN; CHOY, 2015). Thin 

absorber layers (i) allow for lower diffusion lengths of electrons and holes and (ii) increase 

the electrical field of the PSC, which can result in lower recombination of charge carriers.  

We say here which can result in lower recombination effects because if a certain 

level of built-in voltage, and therefore, built-in electrical field, is attained, further increase of 

Vbi leads to no efficiency increase as evident from section 4.3, page 120. Even without a light 

trapping, thin absorber layer increase the FF and the Voc, as also evaluated by numerical 

simulations in (DEVI; PARREY; AZIZ; DATTA, 2018). Therefore, we suggest to use 

coating techniques that allow the coating of extra thin absorber layers, and result in high 

efficiencies, using, e.g., the solvent-solvent extraction methods (ZHOU; YANG; WU; 

VASILIEV et al., 2015), or further available techniques (LIU, 2017).  

The former technique results in smooth, and thickness-adjustable absorber layers, in 

the range of t0 = 20…410 nm. However, for the light trapping with spherical nanoparticles, 

we do not recommend the coating of absorber layers thinner than 160 nm, as even light 

trapping cannot compensate for the reduced current density as related to thin absorber layers. 
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The more effective shape-optimized nanoparticles can improve such a scenario, providing 

higher efficiency even for thinner absorber layers.  

 

Figure 4.5 - J-V and power curves of the initial and optimized PSCs for AM 1.5 
reference solar irradiance of 100 mW/cm², with marked maximum power point (MPP) 
values: (i) Curves for the solar cell configuration of the manufactured and modeled 
PSC in (Sun et al. 2015) (Jlight, Jdark, P). And (ii) curves for the simulated solar cell 
model, as obtained by the multidimensional optimization, with a maximum PCE of 
27.6 % for fB = 160 and t0 = 160, (Jlight-max, Jdark-max, Pmax). Stars and circles show the 
MPP points of these curves presenting power densities of 15.7 mW/cm2 and 27.6  
mW/cm2, which correspond in this normalized presentation to efficiencies of ηMPP = 
15.7% and 27.6% (MatlabTM program for the configuration of these curves, as a 
function of the cell’s material properties, in Appendix section C.2). 

 

 

 

 

However, there are presently no simulated or measured short circuit densities 

available for such an improved scheme. We note that PSCs with t0 ≈  450 nm present already 

low Pb contents per cell area, which are similar to the total heavy-metal content of state-of-

the-art silicon photovoltaic modules (GREEN; HO-BAILLIE; SNAITH, 2014; 

STASIULIONIS, 2015). Fortunately, the thickness reduction of the absorber layer to t0 = 160 

nm, as enabled here by light trapping, leads to an additional decrease in the cell’s Pb residual.  

P
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Pmax

Jlight-max
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While the open-circuit voltage of the cell as measured and modeled in (SUN; 

ASADPOUR; NIE; MOHITE et al., 2015) present a high open-circuit voltage of 0.74 V, as 

similar to crystalline solar cells; its high fill factors of 0.8 is similar to the state-of-the-art FF 

of multicrystalline, CIGS, and CdTe cells, as measured by an independent laboratory 

(GREEN; DUNLOP; LEVI; HOHL‐EBINGER et al., 2019). The best of our analyzed or 

proposed cell designs do present, with an increase of the FF to the value of ~ 0.9, a slightly 

higher value in comparison to the highest efficient GaAs with FF = 0.87. The open-circuit 

voltage of our optimized cells is, with values of ~ 1.3 V, higher than the values of GaAs, and 

the perovskite cells as presented in (GREEN; DUNLOP; LEVI; HOHL‐EBINGER et al., 

2019), which show V0C’s of ~ 1.13 V. The highest Jsc for the here optimized cells, as 

considered for light trapping, is with 23.7 mA/cm2 still lower than the value of 24.9 mA/cm2, 

as measured for a PSC with an efficiency of only 20.9% in (GREEN; DUNLOP; LEVI; 

HOHL‐EBINGER et al., 2019).  Therefore, we think that by the selection of a better absorber 

material, the PCE of the presented optimized cell designs might still be improved to some 

extent. 
 

Accuracy and comparison of the obtained results: The modeling of the short 

circuit current density, as used in our simulations, presents high accuracies for the cases with 

and without light trapping. In both cases, we set up our simulations with values of the short 

circuit current density as obtained by high-resolution simulations. Without light trapping, we 

used the values as simulated by the OTM modeling (SUN; ASADPOUR; NIE; MOHITE et 

al., 2015), and in the light-trapping configurations, we used the values obtained by FDTD 

simulations in (CAI; PENG; CHENG; GU, 2015). More details about these methods we 

discuss in APPENDIX C.2, page 201. Furthermore, we consider reasonable low uncertainties 

in the Beer-Lambert modeling (sections APPENDIX C.2, page 201; APPENDIX C.3, page 

202). In this context, we remark that large deviations in the λave value result in only tiny 

efficiency deviations for the same fB value Table 4.2 to Table 4.4, page 107). Therefore, even 

assuming hypothetically high uncertainties in the Beer-Lambert law, and its related λave, this 

would result in only small deviations of the optimized efficiency values. 

The highest achieved efficiency for the single-junction PSCs of 27.76% (Table 4.3, 

page 106), is higher than (i) the state-of-the-art efficiency of 25.2%, and (ii) the highest 

simulated efficiency of 25% (AGARWAL; NAIR, 2014; 2015). Additionally, a large set of 

our optimized solar cell designs increase these state-of-the-art PCEs of manufactured and 
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simulated solar cells (Figure 4.3, page 106). As expected, all cell designs show a lower 

efficiency than the lowest value of the theoretical upper limit with the PCE = 29.9% (REN; 

WANG; SHA; CHOY, 2017). 
 

The contributions in this work: The material property improvements, as optimized 

by the multidimensional NLP optimization algorithm, are arbitrary, and we controlled these 

arbitrary variable improvements using a proposed improvement factor (fB). These 

improvements must not coincide with the property values of manufactured PSCs since the 

latter can arise at individual scales for each property. We used the presented concept of 

general property improvement to (i) illustrate the substantial efficiency increase in the case of 

multidimensional property improvements; (ii) present high- and highest-performance cell 

designs with low Pb contents and discuss, which techniques enable its manufacturing; (iii) 

estimate and discuss the percentual increases of several performance parameters at different 

development stages; (iv) identify dependencies in-between model variables, and (v) present a 

complete set of possible two-dimensional sensitivity analyses. Accordingly, we acquired a 

better understanding and provided useful knowledge for the efficiency optimization of 

manufactured PSCs. The presented results can be used as a roadmap, showing to which extent 

the PSC’s efficiency and curve parameters can be increased, by different measures, and at 

different developmental stages. Our proposed designs, consider one-, two- (Table 4.1, page 

103), and multidimensional improvements of the cell’s material properties (Figure 4.3, page 

106). We define the multidimensional improvement as the simultaneous improvement of (i) 

the whole set of material properties and (ii) the absorber layer thickness, as accomplished by a 

numerical optimization process.  
 

Diffusion coefficients of electrons and holes: It is generally conceived that longer 

diffusion length of electron and hole charge carriers lead to longer diffusion distances of these 

charge carriers without being subjected to a recombination process. As they recombine with a 

high probability at the end of its diffusion length, the Ln and Lp should be high enough that 

these charge carriers can reach its selective charge conduction layers, which is especially 

crucial for cells with thick absorber layers. A similar abstraction is also to conceive for the 

lifetime of electrons and holes,τn and τp, and it is generally assumed that with a long lifetime 

charge carriers can diffuse at longer distances in the absorber layer, therefore being less prone 

to recombine.  
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However, as an evident result of our multidimensional optimizations, we got to know 

that the so-called lifetime should be ideally as short as possible. In our optimization, we 

choose the diffusion coefficients of electrons and holes, Dn and Dp, also named as 

diffusivities, as optimization variables and, the multidimensional optimization shows that the 

diffusivities should be as large as possible. As a result of equation (4.1), page 108, we observe 

that shorter lifetimes and longer diffusion lengths result is higher diffusivities, as the lifetime 

stands in the denominator and the diffusion length stands in the nominator of this equation. As 

the diffusivity, with the units of [cm2/s], expresses a spatial expansion velocity of the 

electrons and holes, as higher as this velocity is in this expansion process, for fixed values of 

the diffusion length, as shorter is the transport time, usually conceived as lifetime. As a result, 

higher diffusivities also result in higher efficiencies, which can be based on shorter lifetimes, 

longer diffusion lengths, or a simultaneous improvement of both of these variables.  

Such a conclusion is supported with the findings in (SONG; CUI; WANG; WEI et 

al., 2015), which shows that the PCE increases from 6.4% to 16.4% as a function of a reduced 

monomolecular lifetime, which decrease from 44 ns to 27.6 ns, using a post-annealing process 

at 160 oC. However, the authors show that this annealing process also improves the cell’s 

absorption coefficient at a wavelength of 635 nm, which increases from the value of 2.9 x 10-4 

s-1 to 4.0 s-1. Thus, it is not fully evident if the higher PCE is obtained because of a shorter 

lifetime or a higher absorption coefficient. However, the authors registered an increase in both 

(i) the open-circuit voltage and (ii) the Jsc. Therefore, the higher PCE, as obtained by the post-

annealing process, is possibly related to both (i) a shorter lifetime and (ii) a higher absorption 

of the solar irradiance. Furthermore, the authors (CHIRVONY; SEKERBAYEV; PÉREZ-

DEL-REY; MARTÍNEZ-PASTOR et al., 2019) discuss that the very short 

photoluminescence lifetimes in MAPI films result in high diffusion coefficients and PCE 

values. However, as the efficiency is a multidimensional function of the cell’s material 

properties, only multidimensional efficiency analyses and optimizations, as accomplished in 

the present work, can give conclusive results concerning these dependencies.  

 
Recommendations for cell optimizations: Material property improvements lead to 

the highest relative efficiency increase in cells whose PCE is less or equal than state-of-the-art 

efficiency (Figure 4.3, Table 4.6, page 114 - row 2). Otherwise, light-trapping techniques are 

most efficient in cells, whose non-optimized PCE is already higher or equal than the state-of-
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the-art PCE (Figure 4.3, Table 4.6 - rows 6 and 11). While the material properties 

improvement does principally increase VMPP, light trapping results in the raise of both JMPP 

and VMPP. Being the state-of-the-art efficiency based on light trapping (design 9), or not 

(design 7), we increased this PCE by approximately 14%. This increase is a result of (i) 

additional material property improvements (Table 4.6 - row 13), and (ii) its combination with 

light trapping (Table 4.6 - row 14). In all cell configurations, λave should always be configured 

as a function of t0; being this in (i) an m-constraint relationship, or (ii) in a fB – constrained 

relationship.  

The former is easy to calculate, and the latter results in slightly higher efficiency 

values (last two columns at the right side of Table 4.2 to Table 4.4, page 107) if the low 

reflection losses are configurable in a manufactured cell. Since the remaining properties stand 

not in such a relationship to each other, the multidimensional optimizations, as presented here, 

can be substituted by simple model simulations, in cell manufacturing and research. These 

simulations are accomplishable using (i) the constraint condition in equation (9), and 

alternatively (ii) a two-dimensional sensitivity analysis of Figure 4.2f, page 102. We suggest 

that PSC manufacturing should be based on thickness-adjustable thin film coating techniques 

(LIU, 2017; ZHOU; YANG; WU; VASILIEV et al., 2015). Otherwise, adjustable light-

trapping techniques (CAI; PENG; CHENG; GU, 2015) can be used to set up an ideal λave, for 

a fixed absorber layer thickness. Such techniques enable the tuning of a perfect relationship 

between t0 and λave, which enables high efficiencies. Finally, we like to advise that some solar 

cell types have an ideal built-in electric field (GREEN, 2009), as related to an ideal built-in 

voltage. We observed, however, such an effect in our optimizations and simulations within 

the constraint of Vbi ≤ 1.4 V. 

With the presented multidimensional optimizations, we have demonstrated that the 

state-of-the-art efficiency of PSCs can be increased substantially and assign this effect chiefly 

to the nonlinear behavior of the drift-diffusion model of electrons and holes. We found that 

material property improvements raise the VMPP predominantly, while light trapping increases 

the JMPP mainly. Cell designs with plasmonic nanoparticles for light trapping show similar 

high efficiencies for a wide range of absorber layer thicknesses, because of the related 

increases of VMPP in thin absorber layers. Small material property improvements, as expressed 

by low fB values, result in the highest PCE gradients, and therefore, PCE sensitivity (Figure 

4.3, page 106). Light trapping raises the PCE and increases this sensitivity, especially for low 
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fB factors. For high fB values, light trapping is most effective, resulting in the highest PCE 

increases. Our proposed ideal cell, as obtained by light trapping, combined with the 

improvement of the device’s material properties, presents a high PCE value of 27.6% for the 

absorber layer thickness of only 160 nm, reducing, therefore, significantly cell’s Pb content. 

 

4.3  SENSITIVITY ANALYSES  

 
The presented sensitivity analyses are of importance to validate the significance of a 

variable in the improvement of a nonoptimized and optimized solar cell model. In the former 

case, it shows by which variable modification the efficiency can be most effectively 

increased, and, in the latter case, it shows which variable is most important to maintain a high 

optimized solar cell efficiency. By knowing the efficiency (PCE) and power density at the 

MPP point (PMPP), we also know the current density (JMPP), the voltage, as well as the short 

circuit current density (Jsc), and the open-circuit voltage (V0C) of the considered cell 

configuration. Knowing the behavior of these additional performance parameters is essential 

in elaborating better knowledge, especially related to the optimized cell. With this knowledge, 

we can respond to critical questions, why, or because of the degradation of which 

performance parameter, an optimized solar cell efficiency can reduce as a function of single 

non-ideal material properties.  

 

4.3.1  Results  
 

In Figure 4.6 to Figure 4.8, we present the results from a set of one-dimensional 

sensitivity analyses of the considered pin-type PSC, analyzing two different cell designs. In 

the left-side diagrams (Figure 4.6 a-c and Figure 4.7 a-c), we analyze the considered non-

optimized PSC. And in the right-side graphs (Figure 4.6 d-f and Figure 4.7 d-f), as well as in 

Figure 4.8, we validate the sensitivity of the cell design as obtained by the multidimensional 

numerical optimization in section 4.2, page 105. In both sensitivity analyses, we only 

improved one of the model variables at a time, scaling the variable modification with the 

sensitivity factor, as defined in the modeling section of the sensitivity analyses.  

In the abscissa scaling, we select for the optimized cell fs = 1…160 ∈ ℕ and the non-

optimized cell fs = 1…80, because of saturation of the improvement, as observable by the low 

gradients for values for fs > 80. While in Figure 4.6 and Figure 4.7, only the abscissa values 
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are normalized, in Figure 4.8, we also normalized the ordinate values, which allows us to 

compare the behavior of the whole set of performance parameters as a function of the 

variation of single material properties. The conversion of the abscissa scale is identical, as in 

Figure 4.6 and Figure 4.7. Table 4.7 presents the resulting sequence of the most- to the least 

efficiency sensitive model variables, as selected by the analyses in Figure 4.6 to Figure 4.8. 

While in the case of the non-optimized solar cell, we evaluate the sensitivity by the attained 

PCE for high values of fs; for the optimized PSC, we ranked these independent model 

variables, by the criterion of its highest PCE-gradient values, as appearing for the highest fs 

values. An identical validation cannot be implemented because of the saturation character of 

the PCE values for high fs values in the case of Figure 4.6a.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 

The properties sb and Dp do not present any importance in the one-dimensional 

optimization, because of its zero gradients in Figure 4.6a. In the case of the optimized model, 

an increased λave, as related to lower fB values (Figure 4.8f) leads to lower absorption of the 

solar irradiance, and because of its highest gradient, we rank λave as the most efficiency-

sensitive variable. Because of its high gradients in Figure 4.8 for the upper scale fs values, we 

rank the variables sf, Dn, sb, Dp, Vbi as the most important variables, in this sequence. The 

variable t0 is the least important, as a slightly increased absorber layer thickness does even 

lead to a small PCE increase. 

  

Table 4.7 – Variables presented by its selected importance, 
from the 1-th to the 7-th important variable, as selected by the 
efficiency gradients for high fs vales, comparing the non-
optimized and the optimized PSC design. 
 
 

 1-th  2-nd 3-th 4-th 5-th 6-th 7-th 

PCEnopt t0 sf Dn  Vbi λave   

PCEopt λave sf Dn sb Dp Vbi t0 
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Figure 4.6 - One-dimensional sensitivity analyses of two different solar cell designs: (a-c) 
perovskite solar cell with t0 = 450 nm as obtained in (SUN; ASADPOUR; NIE; MOHITE 
et al., 2015); (d-f) PSC with optimized efficiency and low absorber layer thickness, as 
proposed by a multidimensional optimization in (KRATZENBERG; RAMBO; RÜTHER, 
2019), presenting a 160 nm thick absorber layer. In the latter cell design, the cell’s 
absorption is improved by light trapping using spherical nanoparticles. Analyzed 
dependent variables or performance parameters: (a, c) the power conversion efficiency 
(PSC); (b, d) the fill factor (FF); and (c, f) the maximum power point voltage (VMPP). 
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Figure 4.7 - Additional analyzed dependent variables, or performance parameters, extending 
the presentations of Figure 4.6, and presenting in the additional figures (a, c) the open-circuit 
voltage (Voc); (b, d) the maximum power point current density (JMPP); and (c, f) the increased 
short circuit current density (Jsc), because of light trapping. 
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Figure 4.8 - Normalized presentation of the sensitivity analyses of the 
optimized PSC. (a-g) Normalized performance parameters of the J-V curve, in 
the ordinate, as a function of the variable improvements of different model 
variables, as expressed by the fs = fB factor, in the abscissa. The sensitivity 
factors of fs = 1…160 correspond to values Xnopt (fs =1) and Xopt (fs =160), 
using the values of Table 3.1, at page 94. 
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4.3.2  Discussions 
 

As to see from Figure 4.6a, the analyzed variables increase the PCE of a non-

optimized cell only to a shallow extent, resulting in a maximal PCE growth of only 2.3 %. We 

observe that solely in the sensitivity of the optimized PSC (Figure 4.6d) appear (i) high 

obtained PCE values, and (ii) high PCE gradients. For the non-optimized cell (Figure 4.6a), 

one-dimensional efficiency optimizations result in saturation of the PCE with nearly zero 

gradients, even for high sensitivity factors. These observations lead again to the conclusion 

that high and highest efficiencies can only be obtained if the whole set of material properties 

is improved. Some of the variables, e.g., t0 and λave, lead even to the decrease of the PCE with 

a considerable gradient. This decrease is evident as these two variables built-up a maximal 

efficiency vertex line (KRATZENBERG; RAMBO; RÜTHER, 2019) and must maintain, 

therefore, a demanded relationship, or at least, in the relationship of equation (A.17), page 

164, to enable high PCEs.  

Not complying with this relationship, they result in substantial PCE losses, as also 

visible in the sensitivity analysis of the non-optimized (Figure 4.6a) and optimized (Figure 

4.6d) PSC. Both types of sensitivity analyses give evidence that apart from λave and t0, the 

third and the fourth most essential variables are sf and Dn (Table 4.7, page 121), as noticeable 

the steep PCE reduction gradients, visible in both sensitivity analyses (Figure 4.61a and 

Figure 4.61d). If adequate passivation techniques reduce the number of electron 

recombination sites, as related to the transition interfaces of the front p-type layer to the 

absorber layer, the resulting reduction of sf will lead to a substantial decrease in the electron 

recombination, thus increasing the cell’s PCE. If the diffusion coefficient of electrons (Dn) is 

increased, e.g., by the longer diffusion length, then the cell’s efficiency increase as more 

electrons can reach the back- charge conduction layer. By the way, the high sensitivities 

related to sf and Dn are comprehensible, as most of the charge carriers are generated for low 

layer penetration depths of photons in the absorber layer (Figure 3.1b, page 81). 

(GREEN, 2009) suggests that an ideal built-in field and, therefore, built-in voltage 

might be present to enable the highest efficiencies in some solar cells. While, the 

multidimensional optimization in section (4.2, page 105) has given no additional information 

to this question, the here presented sensitivity analyses give a clear answer to the question of 

the ideal Vbi. In comparison to the rest of the model variables, the Vbi presents a specific 
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behavior, as values of fs > 80 (Vbi > 1.08 V) already enable the highest PCE values (Figure 

4.8c and Figure 4.6d). This behavior provides the insight that the optimization of Vbi is less 

critical in comparison to the other variables. Once attained a minimal necessary threshold 

value of Vbi ≈ 1.08 V, it is of no further importance to increase this variable further to enable 

the development of high- and highest-efficient PSCs. Therefore we recommend to tune the Vbi 

solely to the value of ~1.1 eV, but not higher, as very high built-in electrical fields can even 

reduce the cell’s efficiency, because of the necessary, excessive doping of the charge transport 

layers, as discussed in (GREEN, 2009).  

By calculus, the power and efficiency are a function of Vmpp and the Jmpp as being 

both used for the calculation of the cell’s power density PMPP. The PCE of an optimized PSC 

decreases at the same magnitude as the Vmpp in Figure 4.8d, being a function of higher sf 

values, which are represented by lower fB values. The origin of this decrease Voc, which also 

degrades at a very similar proportion as the PCE in the normalized representation of this 

figure. Meanwhile, the current density in the MPP point do degrade only very slightly, 

because of the lower FF, while the Jsc does not reduce at all as a function of higher sf values. 

If compared to the remaining representations of Figure 4.8, the variables sb (Figure 4.8b), Dn 

(Figure 4.8d), and Dp (Figure 4.8e) show similar patterns of performance parameter 

degradations, leading however to different degradation rates.  

The Figure 4.8c shows that the performance parameters VMPP, and FF show 

exceptionally high and similar normalized sensitivities as a function of a lower Vbi, as 

expressed by a lower fB, which also leads to a similar gradient of the PCE degradation. Vbi of 

the upper range of fB, and therefore Vbi, does not lead to any degradation at all, but lower 

range Vbi values lead to a significant reduction of the FF, VMPP, and PCE, especially 

pronounced for fs < 50. This more specific pattern of degradation does not appear with the 

degradation of sf, sb, Dn, and Dp. We also observe that only the Vbi degradations lead to an FF-

originated VMPP and, therefore, PCE decrease, while the degenerations of sf, sb, Dn, and Dp 

lead to a V0C originated degradation pattern of VMPP and, therefore, PCE. In general, the 

variable λave shows the highest-efficiency sensitivity (Figure 4.8f) as a function of a fs value 

decrease, and therefore, an increase in λave. Its PCE decrease is directly related to the lower 

Jsc, and thus, Jmpp values, being only to a very low extent related to lower Vmpp values.  

A cell without light trapping presents an ideal absorber layer thickness of 450 nm, as 

a function of an average optical decay length of λave of 100 nm, as inherent to the perovskite 
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material. The use of plasmonic nanoparticles results in a reduced λave of 35.6 nm and permits 

a t0 reduction to a here considered ideal absorber layer thickness of 160 nm (Table 3.1, page 

94). The optimized efficiency of such a configuration is very similar to a cell with light 

trapping in a 450 nm thick absorber layer (Table 4.5, page 113). As λave and t0 must stand in a 

closed relationship, the modification of only one of these variables results in a substantial 

decrease of the PCE (Figure 4.6a, and Figure 4.6d, page 122). For the second case of an 

optimized model, this is also visible in Figure 4.8f, and Figure 4.8g, on page 124. Figure 4.8f 

presents the highest PCE degradation gradient in comparison to the further figures in Figure 

4.8.  

This high degradation appears as in this figure the non-ideal λave, as presented fB = 1, 

corresponds to λave = 100 nm, and stands for a lower absorption, which needs a thicker 

absorber layer of 450 nm, or light trapping. Therefore, its light absorption is insufficient, with 

a thickness of 160 nm in the optimized cell configuration. In Figure 4.8g, fB = 1 represents a 

thicker absorber layer of 450 nm, and fB = 160 represents the lower t0 of 160 nm. As an 

optimized cell with 160 nm thick absorber layer shows a 0.2 % lower PCE, if compared to the 

same cell with 400 nm (Table 4.5, page 113), the short circuit current density of the former 

cell increase to some low extent (1 %) for higher t0. However, as thicker absorber layers 

present a lower V0C and Vmpp, this compensation behavior results in an effective PCE decrease 

in Figure 4.8g for thick absorber layers. This decrease is possibly the reason of the saddle-

point, as appearing in Figure 4.2, page 102, and as evident from the results for the fB 

constraint optimization with ideal light trapping in Appendix  Table B.1, page 189, which 

both show that an ideal t0 has to be adjusted, as a function of a considered arbitrary λave.  

 

Some curiosities: In Figure 4.6a and Figure 4.6d, the absorber layer thickness 

reduces from t0 = 450 nm (fs = 1) to the ideal 160 nm (fs = 160). Therefore, a PCE decrease is 

expected with the reduction of the t0 without light trapping because of its reduced absorption. 

The λave decrease from 100 nm (fs = 1), to the ideal value of 35.6 nm (fs = 160) in those 

figures, because of light trapping. Its PCE also decreases, as expected, as the demanded tuned 

relationship of m = t0 / λave is not holding anymore. This decrease is especially accentuated for 

the optimized solar cell (Figure 4.6d), as the lower absorption with λave = 100 nm is 

insufficient for the generation of enough free charge carriers.  
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Based on the result of the present sensitivity analyses, we advise again that 

optimizations, in which the complete set of efficiency-sensitive material properties are 

improved, are essential to obtain high PCE. As the most crucial measure, we recommend for 

any cell design, an adequate tuning of the relationship between t0 and λave, as otherwise 

substantial efficiency losses, are the result. These losses are explainable because of the unique 

relationship which these variables must comply, which leads to a maximal-efficiency vertex 

line. After these variables, we identified sf, and Dn as the most efficiency-sensitive variables. 

The remaining variables are different in the ranking of its importance for the non-optimized 

and the optimized PSC, because of the related non-linearities of its drift-diffusion model, 

which lead to different rankings in cells with different development states.  

This variable Vbi is unique, as its value must be increased at least only to its threshold 

value of approximately 1.08 V (fs = 80, Figure 4.8f), to enable the maximal cell efficiency, in 

an optimized solar cell, but not in a non-optimized cell. Therefore, the ranking of this variable 

is distinct in the non-optimized and optimized PSC. The normalized representation, as 

proposed in Figure 4.8, is useful to analyze the origin of the efficiency decreases in our 

sensitivity analyses, which shows up by the superposition and therefore correlation of the 

curves of its performance parameters. We found that a reduced Vbi decreases the PCE mainly 

as a function of a FF reduction, which results in a VMPP decrease, as these variables are highly 

correlated (Figure 4.8c). However, increased SRVs and reduced diffusion coefficients 

decrease the PCE mainly as a function of a V0C reduction, which also leads to a VMPP 

reduction, where these variables also present a high correlation because of its nearly complete 

superposition in Figure 4.8a, b, d and e.  

 

4.4 VARIABLE RANKING  

 
Comparing the ranking of the most important to the least essential model variables, 

as obtained by the sensitivity analyses of the non-optimized and optimized solar cell model 

(Table 4.7), we observed that this classification is distinct, principally for the least important 

variables. We consider that sensitivity analyses of a non-optimized PSC give only a rough 

estimation of the most sensitive or most essential variables to be included sequentially in the 

tuning of the PSC’s material properties of a highly efficient cell, as the ranking of a cell 

optimized in the multidimensional space is distinct. However, the sensitivity analyses of an 
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optimized cell might also not be representative, especially for cells with low efficiencies, 

where the non-optimized cell should be more representative.  

As a solution to this problem, we think that the combinatorial approach based on the 

equation of the binomial coefficient, as introduce in section 0, page 95, is the most assertive 

method. This method starts with the variable that is most efficiency-sensitive in the non-

optimized solar cell, and it ends with the least sensitive variable in the multidimensional 

optimization. Furthermore, it analyzes a large set of 91 possible variable combinations. 

Therefore, we consider that this method is most representative in the transition of a non-

optimized to an optimized solar cell, as it is characteristic for both cases for the non-optimized 

and the optimized solar cell. Furthermore, based on a large set of combinations, it selects only 

the variable combinations, which result in the highest efficiency increases. Therefore, the 

combinatorial approach proposes an ideal transition from a non-optimized to an optimized 

PSC design, selecting sequentially the variables which lead in the highest PCE increases, by 

the least improvements in the material properties.   

 
4.4.1 Results  

 
In this ranking, we select from a resulting set of s possible combinations for a 

considered variable number k, the specific variable combination, which results in the highest 

PCE. The variable k shows how many variables are selected from our set of seven variables.  

For the selected variables, we adopt the values of the optimized solar cell, and for the non-

chosen variables, we use the value of the non-optimized solar cell. E.g., for k = 2, we take out 

only two variables from a set of 7 variables, which result in s = 21 variable combinations. In 

this set, we obtained the highest efficiency for the combination of the material properties sf 

and sb. In taking out k = 3 variables at a time, we found the highest PCE of s = 35 possible 

variable combinations for the specific combination of sf, sb, and Vbi. As expected, we obtained 

a sequential inclusion of model variables in the group of optimized variables, which means 

that for an increment of k there appears one new additional variable in this selected set.  

Therefore, we suggest this obtained sequence of variable inclusion as variable importance or 

selection criterion in the tuning of the material properties of manufactured PSC cells.  We 

present in Table 4.8 the rank of variables, as obtained by the combinatorial selection scheme, 

from the least to the most important variable.  
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Table 4.8 - Results of the combinatorial approach, selecting from the total of n = 7 sensitive 
variables a total of seven subsets, where k defines the number of variables included in each 
subset, and s establishes the number of analyzed variable combinations. Each selected subset 
is composed of the variables, which appear at the left side of its column. E.g., for k = 4, the 
selected variables which result in the highest PCE are sf, sb, Vbi, and Dn. The correlation 
coefficient (R) shows the correlation of a J-V performance parameter with the PCE and shows 
here that the PCE is improved mostly as a function of higher VMPP values. 
 

k 1 2 3 4 5 6 7  

s 7 21 35 35 21 7 1  

Selected 

variable  
sf sb Vbi Dn Dp λave t0 R 

PCE 18.07 20.01 23.04 24.21 25.96 27.31   27.62  

∆PCE 2.37 1.94 3.03 1.17 1.75 1.62 0.31  

VMPP 0.823 0.911 1.038 1.090 1.167 1.168 1.194 0.992 

JMPP 21.97 21.96 22.19 22.22 22.25 23.38 23.13 0.813 

V0C 0.933 1.053 1.134 1.187 1.266 1.267 1.294 0.988 

Jsc 22.74 22.74 22.74 22.74 22.74 23.90 23.63 0.686 

FF 0.852 0.835 0.893 0.897 0.902 0.902 0.903 0.888 

 
 

4.4.2  Discussions 

 

The combinatorial approach is different in its constitution, because of the sequential 

inclusion of optimized model variables, where each new variable addition results in a new, 

most ideal set of variables, and ideal PCE. Therefore, this sequential variable inclusion results 

in several optimized cell designs, presenting different optimized efficiencies.  

The reduction of sf leads to an efficiency increase of ∆PCE = 2.37% (Table 4.8), raising the 

PCE from 15.7% to 18.8%, and the inclusion of sb results in an additional PCE rise of 1.94%. 

However, the highest efficiency growth of ∆PCE = 3.03%, is obtained by the inclusion of the 

Vbi, being this the third most outstanding variable. However, the increase of Vbi leads only to 

this highest PCE increase if beforehand sf and sb are reduced, as the improvement of these 

variables results in the highest one- and two-dimensional efficiency increases.  

A similar behavior also appears with Dp, which only results in a high ∆PCE of 

1.75%, if beforehand Dn is improved, which leads by its own in a lower ∆PCE of 1.17, as also 

being evident from Figure 4.2, page 102. We conclude that first and prioritizing optimization 

efforts must focus on the improvement of the three most important variables, which are sf, sb, 

and Vbi, being in its conjunction the quintessential in the efficiency optimization of 

manufactured PSCs. While such an optimization leads to an optimized PCE of 23.04%, the 
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state-of-the-art efficiency of a manufactured PSC is already 25.2% (NREL, 2020). To 

increase this state-of-the-art PCE, the further model variables, which are Dn, Dp, λave, and to 

need also be improved. They lead in its conjunction in an additional PCE increase of ∆PCE = 

4.58%, which raises the PCE beyond the state-of-the-art efficiency (Table 4.8). We conclude 

that it is crucial to improve the whole set of material properties to enable the increase in 

PSC’s state-of-the-art efficiency. However, the tuning of the absorber layer from 450 nm to 

160 nm hast the least impact with an increase of only 0.3 %, moving in an ideal point of 

maximal efficiency vertex line in this last optimization.   

From the correlation coefficient (R) in Table 4.8, we found the PCE values correlate 

mostly with the raising of values of VMPP, and VOC, in this sequence. The JMPP presents only a 

small correlation with the PCE, which is understandable because of the constant Jsc without 

light trapping in columns 1 to 5 in this table. Light trapping with tuned λave and t0 values 

results in a summed ∆PCE value of 1.62 + 0.31 = 1.93 % (Table 4.8). A tuned light trapping 

is only better than the improvement of Dn (∆PCE = 1.17 %) and Dp (∆PCE = 1.75 %), if these 

variables are improved beforehand the use of light trapping. The sum of the two ∆PCE values 

related to Dn and Dp, is with 2.92% circa 1% higher than the increase obtained by light 

trapping but is lower than the summed improvements of the SRV, which is 4.31%. 

We conclude that (i) passivation techniques in general, and (ii) the growth of the built-in 

electric field, as related to Vbi (Figure 4.8, page 124), are primordial for obtaining high-

efficiency PSCs. Such a ranking is reasonable as PSCs do present a dominant charge transport 

by the drift rather than the diffusion of charge carriers (JIANG; YANG; ZHOU; TO et al., 

2015). Because of the distinct variable importances, comparing Table 4.7, page 121 with 

Table 4.8, we also conclude that the sensitivity analyses, in general, are not representative in 

an adequate ranking of the most important variables, even if accomplished for a model 

optimized in the multidimensional space.  

Dp is a further lowest-ranked variable in Table 4.8, apart from the variables λave and 

t0. This low rank is reasonable, as most photons are converted in electrons and holes close to 

the front p-type layer. Therefore, a reduction of Dp is of minor importance because of the 

short flight distance between the location of the hole generation and its selective p-conduction 

layer. Thus, a short diffusion length of holes is already satisfactory to transport the holes to its 

transport layer. The rise of Dn is more important than the rise of Dp, as it enables the transport 

of the generated electrons, as appearing in a superior density close to the front p-type layer, to 
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the back n-type layer, because of the increased diffusion lengths. The sf is more critical than 

the sb as close to the front p-type layer, most of the photons are converted into electrons and 

holes, and therefore, the probability of recombination is also higher if a major number of 

defects are related to the front charge conduction layer.  

The least ranked variables in the combinatorial approach (Table 4.8) are the variables 

λave and t0, which. However, we like to remember that the relationship in-between these two 

variables must be maintained, by the tuning of t0, or the tuning of λave as obtainable by the 

configuration of the light trapping with plasmonic nanoparticles. Otherwise, substantial 

efficiency losses appear, as to see from in Figure 4.6a, page 122, for t0; and in Figure 4.6d, for 

λave. 

As light trapping is presently not used in manufactured high-efficiency solar cells, 

the state-of-the-art efficiency of 25.2% is already very close to the maximal attainable PCE 

without light trapping, which presents the value is 25.96% (Table 4.8), based on a Jsc of 22.74 

mA/cm2. Considering a higher Jsc of 24.9 mA/cm2 without light trapping in recently 

developed, high-efficiency solar cells (JEON; NA; JUNG; YANG et al., 2018; JUNG; JEON; 

PARK; MOON et al., 2019), this maximal attainable PCE should be, to some small extent, 

higher in simulations with such cells. 

As the ranking starts with one- and two-dimensional analyses (k = 1 and k = 2), our 

results for these k’s match with the results of the maximal efficiencies as obtained for the one- 

and two-dimensional sensitivity analyzes or optimizations in Table 4.1, page 103. Therefore, 

k = 3, leads to a similar way to the highest efficiency for three-dimensional sensitivity 

analysis, as would be obtained by a cubic matrix of PCE values, and k = 4…7 increases the 

dimensionality of these resulting matrices. Comparing the ranking of the most important to 

the least important model variable as obtained by (i) the sensitivity analyses of an optimized 

cell (Table 4.8) and (ii) the combinatorial approach (Table 4.7, page 121), we observed that 

these rankings lead to different results, because of the models non-linearity. However, it is 

obvious that the Vbi, once passing its threshold level, as found in the sensitivity analyses of an 

optimized cell, is placed in the upper ranking of at optimized cell (Table 4.7). Manly, because 

of the large set of 91 possible variable setups and simulations, we choose the results of Table 

4.8, as a reference method for the best selection of model variables.  

Based on a set of different sensitivity analyses, we recommend as the most crucial 

measure in the efficiency optimization the analyzed PSCs, an adequate tuning of the 
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relationship between t0 and λave, as otherwise are obtained substantial efficiency losses. These 

losses are explainable because of the variable’s necessary relationship, which leads to a 

maximal-efficiency vertex line. However, for a fixed λave = 100 nm, as related to a MAPI cell 

without light trapping, this is easy to accomplish, just by the tuning of the absorber layer to a 

fixed value of 450 nm (SUN; ASADPOUR; NIE; MOHITE et al., 2015). Apart from the 

tuning of this relationship, we consider the combinatorial approach as the most decisive 

approach for the identification of the variable importance, because of the validation with 91 

possible variable combinations. Based on this method, we identified sf and sb as the most 

efficiency-sensitive variables in the optimization of the pin-type PSCs.  

The third most crucial variable measure is the increase in Vbi, which leads to the 

highest efficiency growth of ∆PCE = 3.04% (Table 4.8, page 130), which is astounding, as the 

Vbi has only to be increased to at least 1.08 V (fs = 80, Figure 4.8, page 124), to enable this 

high growth. As to see from this figure for higher Vbi values there is no improvement of any 

performance parameter of the PSC. The fourth and last essential properties are the diffusion 

coefficients of electrons and holes (Dn and Dp). Light trapping is the least important measure, 

as its PCE growth depends on the improvement of the further material properties. It improves 

the maximal attainable efficiency from 26% to 27.6%, increasing the state-of-the-art 

efficiency significantly. We like to note that the state-of-the-art PCE is probably not obtained 

with a MAPI but with a FAPI alike cell because of the higher absorption of this material as 

evident from the resulting higher Jsc as discussed in section 2.10.1, page 70. Therefore, the 

maximal PCE, as obtained with an optimized cell that uses light trapping with this material, 

will lead to an even higher maximal PCE as presented here.  
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5. CONCLUSIONS AND FUTURE WORK 
 

The first step is to establish that something is possible; then – probability will occur.  
 

Elon Musk, CEO of Tesla Motors and SpaceX 

 
 
5.1 CONCLUSIONS 

 
 

We initiated this work as we found that the efficiency optimization of solar cells is a 

lagging process that needs too much time, up to several decades, using traditional one- and 

two-dimensional analysis and improvement methods. The main reason for this lengthy 

development time is that there was no theoretical concept available that demonstrates what is 

necessary to increase the efficiency of a solar cell as a function of a simultaneous 

improvement of the material properties. As a result, many research contributions are typically 

needed to increase a cell’s efficiency, which leads to slow-growing efficiency curves (NREL, 

2020). In this thesis, we show by the numerical optimization of an analytical solar cell model, 

how the efficiency of a pin-type PSC can be increased by the improvement of its material 

properties in a multidimensional function space. We present different optimized cell designs 

of this solar cell, which represent different development states, with and without light 

trapping and for different absorber layer thicknesses.  

 

Proof of the hypothesis: While the one and the two-dimensional optimizations with 

the most efficiency-sensitive variables resulted in the maximal efficiency improvement from 

15.7 % to only 18.1% and 20% (Table 4.1, page 102), the multidimensional optimization 

enables a much higher efficiency improvement to the maximum value of 27.8%. 

 

We obtained 27.8% and 27.6% for 450 and 160 nm thick absorber layers in m-

constrained optimizations (m = 4.5) (Table 4.4, Table 4.5, page 113 and Figure 4.3, page 

106). In fB constrained optimizations (m = 5.5) these efficiencies increase to 28.1% and 28.7% 

as to see from these tables, because of the lower reflection losses as related to a higher m – 

factor. For these highest efficiency optimizations, we adopted the same material property 

improvement factor of fB = 160. As a scientific method for this hypothesis-testing, we used an 
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analytical solar cell model of a PSC, as derived from the drift-diffusion model, and optimized 

the variable values of this model, using an NLP optimization algorithm. 

We emphasize that the multidimensional optimization presents a much higher 

efficiency increase than the highest efficiency rise using state-of-the-art one- and tow-

dimensional efficiency optimizations for any variable combinations. Such state-of-the-art 

optimizations lead in our optimizations to small efficiency increases of only ∆PCE = 2.4% 

and 4.3%, even if the most efficiency-sensitive variables are improved with a high material 

property improvement factor of fB = 160. If the whole set of possible one-dimensional 

efficiency optimizations is summed up, this weak scenario dos does not improve substantially, 

resulting in an efficiency increase of only ∆PCE 6.7%. However, with the presented 

multidimensional optimizations, we have demonstrated that the efficiency of a PSC can be 

increased significantly, with ∆PCE = 12.1%, raising its initial value of 15.7% to a PCE of 

27.6%. This is a significant increase, which we expected to find when starting this research. 

We assign the large difference in-between the tow-dimensional and the multidimensional 

optimization chiefly to the nonlinear behavior of the drift-diffusion model of electrons and 

holes.  

From our research with the optimized solar cell, we found specific knowledge as 

related to the importance of each of the material properties in the PCE optimization, being 

important in multidimensional efficiency optimizations: (i) The surface recombination 

velocities (SRV) are the most efficiency-sensitive variables. Furthermore, we found that it is 

most important to reduce the SRV related to the front - charge conduction layer (sf), rather 

than the back - charge conduction layer (sb). This comprehensible as most of the irradiance 

absorption happens close to the p-type front charge conduction layer, generating the highest 

density of charge carriers at this local. Close to the back n-type charge conduction layer 

appears the lowest density of generated charge carriers, and therefore, a reduced sb results in 

lower PCE improvements because of the lower probability that a charge carrier encounters a 

recombination site. The best two-dimensional improvement, as obtained by the combined 

reduction of sf and sb, lead alone not in a high efficiency improvement. Consequently, an 

optimization must always be accomplished in the context of the improvement of a whole set 

of material properties. While the PCE increases over the whole range as a function of 

improved material properties, the built-in voltage must be increased only to a maximal value 

of 1.08 V, which we found as the ideal value for Vbi, as higher values do not increase any of 
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the performance parameters of an PSC as optimized in a multidimensional space. For the 

diffusion coefficients, we found that it is most important to improve the Dn, because, again, 

the highest charge carrier densities appear close to the front p-type charge conduction layer. 

Therefore, a slight increase of the diffusion length of holes is effective in the PSC’s efficiency 

optimization, as most of the holes can be conducted to its electrode by its p-type layer needing 

only short diffusion paths. However, the diffusion length of electrons should be ideally much 

longer, because of the larger diffusion distances the generated holes are subjected to, to arrive 

at the back-electron conduction layer.  

For the highest efficiency cell, we obtained a significant PCE increase as a function 

of a rise in the maximal power point voltage, which rises from 0.74 V to 1.21 V (Table 4.5). 

A characteristic which was obtained principally as a function of the improved material 

properties, which resulted to an increase of the open-circuit voltage from 0.87 V to 1.31 V. If 

compared to further solar cell technologies, this V0C is higher than the open-circuit voltage of 

the highest-efficient GaAs cell, which state-of-the-art value is 1.13 V. The obtained fill factor 

of 0.904 is only to a small extent larger than the FF of this GaAs cell, showing a value of 

0.867.  

Spherical nanoparticles used for light trapping lead to an increase in the short circuit 

density, as based on a shorter average optical decay length, which is related to a higher 

absorption. Effective light trapping using spherical nanoparticles should not be used in cells 

with absorber layer thicknesses thinner than t0 = 160 nm, as otherwise, the short circuit 

current density reduces significantly. Furthermore, light trapping in thin absorber layers 

increases the maximal power point voltage, and as a result, we observed a high PCE over a 

large range of absorber layer thicknesses from 160 to 400 nm. If compared to a cell with a 400 

nm thick absorber layer, thin absorber layers of 160 nm result in only small efficiency losses 

of ∆PCE = 0.2%, as the lower short circuit current density is compensated by two VMPP 

increases, (i) as a function of the absorber layer’s thickness reduction and (ii) the use of light 

trapping. Therefore, we recommend as an ideal cell design a PSC with t0 = 160 nm, by reason 

of its lower Pb content. The use of light trapping, which reduces λave, should always be 

followed by the tuning of the absorber layer thickness, because λave and t0 stand in a close 

relationship which is defined by the m-factor. This factor relates the average optical decay 

length (λave) to the absorber layer thickness (t0), which stand in a close relationship. Our non-

optimized cell presents an m factor of 4.5, and, in our optimized cell with the highest 
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efficiency of 27.6%, uses the same m factor. Using instead of m-constrained optimizations 

variable ranges solely restrained by fB lead to higher efficiencies as corresponding to 

something lower reflection losses, as related to a higher absorption of the solar irradiance. 

As discussed at the end of section 4.2.1, page 105, we conclude that the efficiency 

can increase as a function of increased diffusion coefficients, which can be configured by 

increased diffusion length of charge carriers or a reduced lifetime. The lifetime can be 

considered as the transport time, starting from the point at which an electron is elevated from 

the valence to the conduction band, in the absorber layer, up to a point, at which it 

recombines, because of its limited diffusion length. As the here considered diffusion lengths 

are in any case longer than 1 µm, a value which is much larger than the considered absorber 

layer thicknesses, recombination because of the limited diffusion length need not be analyzed 

separately in the considered cell designs. 

In our optimizations, we maximize the PCE as a function of solely the diffusion 

coefficients, not considering the separate modeling of the lifetime of electrons and holes and 

its diffusion lengths. However, the equation of the diffusion length of electrons (A.33), page 

169, can be thought of as an equation for the calculation of a distance, using (i) a velocity, as 

defined by Dn and (ii) a transport time as defined by τn. Therefore, the same diffusion length 

can be obtained for a lower lifetime, saying a transport time, if the diffusion coefficient, 

saying the transport velocity, is increased. However, an increase of this diffusion length can 

be obtained by both, (i) a lifetime increase, or (ii) an increase of the diffusion coefficient.  

We conclude from our exemplary calculations in the last paragraph of section 4.2.1, 

page 105, that a rise in the diffusivity, and, therefore, an increase in the PCE, can be obtained 

from a longer diffusion length, or a lower lifetime. While most of the authors consider a PCE 

increase as a function of the diffusion length increase and a lifetime increase, only some 

authors measure higher efficiency values for shorter lifetimes, as e.g. in (SONG; CUI; 

WANG; WEI et al., 2015). It is actually more challenging to measure such an effect, as in 

comparison to the diffusion length, the lifetime presents a 12.8-fold lower sensitivity to the 

diffusion coefficient, and therefore, the PCE, as discussed in section 4.2.1. Furthermore, we 

must advise that a correct measurement of the lifetime and the diffusion length, using solely 

direct rather than indirect measurements can avoid misconceptions, e.g. to access the PCE 

sensitivity related to the lifetime (section APPENDIX B.8, page 198).   

 
 



138 
 

As the improvement of one material property might result in the worsening of 

another property, we show in a stepwise inclusion of properties the ideal sequence of variable 

selection for the tuning of improved material properties. In the presented lineup, the material 

properties with the highest sensitivities in relation to the PCE are prevailing (section 4.4, page 

128). In summary, we think that our contribution will accelerate the efficiency optimization of 

manufactured perovskite solar cells. The general character of the presented method allows its 

adoption for further solar cell types and even other devices. 

Our established objectives are fulfilled, proving not only that our hypothesis is 

correct, but we also show a significant efficiency increase as a function of the 

multidimensional property improvements, achieving our research objectives, as determined in 

section 1.2, page 29. We believe that our study paves the way for the implementation of a 

better, multidimensional protocol for the optimization of PSCs in research and module 

manufacturing in the near future. Our findings facilitate the publication of related research 

papers, as each material property can be used as a separate objective function, rather than the 

PCE, in manufactured solar cells. The combined use of excellent manufacturing techniques 

should result in the next step to a PSC with the highest cell efficiencies.  

 

5.2 FUTURE DIRECTIONS 

 

Our future research will focus on the multidimensional optimization of a nip-type 

PSC. Furthermore, the OTM method for the simulation of the short circuit current density 

allows the validation with charge transport layers of different materials and thicknesses in a 

multidimensional optimization. Such thickness optimizations are important, as it appears that 

each charge transport layer material seems to present its individual ideal thickness in one-

dimensional optimizations of these layers (section 2.10.8, on page 78).  

We encourage further FDTD simulations for (i) cells that use shape-optimized 

nanoparticles for light trapping, because of the higher effectiveness of these NPs in the 

context of light trapping. Approximated results for this case we present in section APPENDIX 

B.1, page 188.  

Furthermore, distinctive cell designs with extra high Jsc values (section APPENDIX 

B.2, page 191) are also interesting, especially if combined with light trapping, because of the 

expected higher optimized efficiencies. As a composed absorber layer of the material 
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(FAPbI3)0.95(MAPBr3)0.05 leads in a high measured Jsc of 24.9 mA/cm2 (section 2.10.1), the 

use of plasmonic light trapping in such a layer should lead to even higher efficiencies as the 

here presented 27.8% for a MAPI PSC. We did not accomplish such a simulation in this thesis 

as we do not know accurately to which extent the Jsc can increase in such a cell as a function 

of light trapping. A rough estimation of the efficiency of such a cell without light trapping, 

but with optimized material properties, we present in Appendix Table B.4, page 191.  

We must advise that we found no report of a state-of-the-art manufactured PSC with 

a high-efficiency as based on light-trapping techniques. Therefore, we consider that PSCs 

with thinner absorber layers and light trapping are more difficult to be manufactured, as in 

comparison, to cells with standard thicknesses in the range of approximately 400…450 nm, 

without light trapping. We recommend proving in the first step that high-efficiency cells with 

~450 nm can be manufactured based on the multidimensional material property improvement 

and effective light-trapping techniques. Additionally, it is also essential to show that high-

efficiency cells with low Pb content can be manufactured. Therefore, it is necessary to coat a 

cell with a 160 nm thick MAPI layer, which should result in a high short circuit current 

density of 11 mA/cm2 without light trapping (CAI; PENG; CHENG; GU, 2015). Then light 

trapping should improve this Jsc to the value of 23.9 mA/cm2 (CAI; PENG; CHENG; GU, 

2015), and further material property improvement should increase the PCE to 27.6%. The 

resulting cell must present a high efficiency because of its Jsc and VMPP increases in 

comparison to a cell with a 450 nm thick absorber layer without light trapping (Table 4.5, 

page 113– cell design 3).  

In the research with the manufactured prototypes, we urge for the development of a 

research protocol, which enables the measurement of the material properties by independent 

methods. Such measurements can then be used to validate the simultaneous improvement of 

multiple material properties in a PSC.  
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Here we introduce the derived model in (SUN; ASADPOUR; NIE; MOHITE et al., 

2015) and (SUN, 2018), discussing the different implementations in a detailed form in 

sections APPENDIX A.1 and APPENDIX A.2, page 178, we present the complete analytical 

model, as composed by these equations and used for the present simulations. In section 

APPENDIX A.3, page 181, we show in an exemplary form of how this model was derived 

from the normalized drift-diffusion equations. 

 
APPENDIX A.1 – DISCRETE REPRESENTATION 
 

This section provides a detailed understanding of the charge generation and 

recombination processes within a perovskite solar cell. The authors (SUN; ASADPOUR; 

NIE; MOHITE et al., 2015) elaborated an analytical model for four different types of PSCs 

considering a fixed band gap (SUN; ASADPOUR; NIE; MOHITE et al., 2015). Using a one-

dimensional optimization of the absorber layer’s thickness, the authors obtained the highest 

measured and modeled efficiencies of 15.7 % for the here optimized pin-type device. As the 

analytical model in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) considers some general 

simplifications, as discussed in SI-2, the authors validated its accuracy by comparison of the 

model value of the efficiency, with its measured value, using a manufactured solar cell, which 

show a depreciable dissimilarity of 0.1 %. In the present multidimensional optimizations, only 

the higher efficiency pin-type, as presented in (SUN; ASADPOUR; NIE; MOHITE et al., 

2015), is used. The modeled J-V curves of this cell exhibit a nearly perfect superposition with 

the measured J-V curves, for both conditions, in the dark and under reference illumination 

(SUN; ASADPOUR; NIE; MOHITE et al., 2015). This analytical model and the values of its 

model variables are configured here as initial conditions for the optimization of the PCE in a 

hypercube variable space of material properties and the absorber layer thickness. For 

simplicity of the modeling, only a fixed band gap, based on the configuration of fixed values 

of the valence- and conduction-bands of: (i) the electrodes, (ii) the charge conduction layers 

and (iii) the absorber layer is considered, which values can be read from Figure 3.1a, page 81. 

In our proposal, specific range restrictions of the absorber layer thickness and the material 

properties define ranges at which the values of these variables can vary in several individual 

optimizations. These range restrictions are individualized by different amplification factors fB, 

which are set up individually for each new optimization.  
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The analytical model is based on a self-consistent stationary quantum simulation of 

the charge carrier generation, which was derived from the drift-diffusion equations of 

electrons and holes, and the Poisson equation. Generally, the analytical model is a simplified 

version of the more accurate numerical model of the charge carrier generation, which can also 

be derived from the drift-and the Poisson equations (AGARWAL; NAIR, 2015; FOSTER; 

SNAITH; LEIJTENS; RICHARDSON, 2014; LIU; ZHU; WEI; LI et al., 2014; WANG; 

CHEN; HAN; ZHANG et al., 2016). With both the analytical and the numerical model, the 

total generation of charge carriers is obtained by the integration of the locally generated 

charges over the whole absorber layer thickness. Whereas the numerical model simulates in a 

very detailed procedure the charge carrier generation as function of the solar irradiance 

wavelength and its penetration depth, the present analytical model stands out because of its 

good approximation and its relatively low computational cost, which allows its use in a large 

number of numerical optimizations, or in further arbitrary analyses, which necessitate a large 

number of model simulations.  

 

APPENDIX A.1.1 - The J-V curve models  
 

In a manufactured solar cell, two different J-V curves can be measured: (i) the curve 

when the cell is exposed to a reference light source Jlight(G, V); and (ii) the curve when it is in 

the complete dark Jdark (V) (Figure 4.4, page 111). By the superposition of these two measured 

curves, the curve of the intern photo-generated current density Jphoto(G, V), in units of 

[A/cm3], can be specified (NIE; TSAI; ASADPOUR; BLANCON et al., 2015; SUN; 

ASADPOUR; NIE; MOHITE et al., 2015). This Jphoto(G, V) considers only radiative 

recombination losses and can be calculated by equation (A.1). 
 
 

Jphoto(G, V)  = Jlight(G, V)  -   Jdark(V)  (A.1) 
      
 

In this equation, G [s-1cm-2] is the charge generation rate per solar cell area, and V is the cell's 

external terminal voltage. This superposition considers an equal short-circuit current density 

Jsc = Jphoto (G, V) = Jlight (G, V), at V = 0, while for the remaining curve points, the intern 

photocurrent density Jphoto is larger than the measurable current density Jlight (Jphoto(G, V) > 

Jlight (G, V)). This leads to a higher open-circuit voltage (V0c-photo) of the internal and non-

measurable J-V curve in comparison to the cell’s measurable open-circuit voltage (Voc-light = 
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Voc). The open-circuit voltage of this internal J-V curve is reduced by reason of the non-

radiative recombination effects, which are modeled by use of the measured J-V curve when 

the solar cell is kept in the dark (Jdark), a simplification which can be adopted, considering the 

superposition principle, as adopted in (SUN; ASADPOUR; NIE; MOHITE et al., 2015), and 

(NIE; TSAI; ASADPOUR; BLANCON et al., 2015). As the present model is a simplification 

of the PSC, it depreciates very small parts of the solar irradiance, which are: (i) the absorption 

of light within the transparent conductive layer, the charge conduction layers, the back 

reflector; (ii) the light emitted by the solar cell’s top surface, where one part is due to front 

surface reflection; and the other part is light, which comes from the cell’s back reflector and is 

not absorbed by the absorber and the charge conduction layers. Furthermore, the transmission 

losses of the cell’s front glass cover are also depreciated by this model. These losses are very 

small and are present in a manufactured solar cell but do not appear in the mathematical 

model of the PSC considered here for the simplicity of modeling. Therefore, it has to be 

remembered that the measured short-circuit current density Jsc-med (G, V = 0), is to some 

minute extent smaller than the theoretically maximal attainable short-circuit current density 

Jsc-mod as expressed in the present model by equation (A.2).   
 
 

   Jsc-med (G, V = 0)    <    Jsc-mod  =  q Gmax    (A.2) 

    

Where q = -1.6021765 x 10-19 [C] is the electric charge and Gmax [s-1 m-2] is the maximal 

attainable charge carrier generation, for the considered specific cell’s band gap. In the present 

cell, the value of q Gmax is 23 mA/cm² was also obtained by the measurement of the short 

circuit density and by the optical transfer matrix method (SUN; ASADPOUR; NIE; MOHITE 

et al., 2015). Considering the superposition in equation (A.1) the total current density under 

light exposure of the cell (Figure 4.4, page 111 - Jlight) can be modeled by equation (A.3) 

(SUN; ASADPOUR; NIE; MOHITE et al., 2015), with the sum of (i) the measurable current 

density in the dark (equation (A.5)), which express the recombination current density and has 

a negative sign (Figure 4.4, page 111  - Jdark); and (ii) current density which is generated by 

the photons (Jphoto) (equation (A.14), page 163), having a positive sign. This current density 

can only be modelled and is therefore not visible in Figure 4.4.  

 
 

Jlight(G,V) = Jdark(V) + Jphoto(G,V)  (A.3) 
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Both the photocurrent density Jphoto and the current density in the dark Jdark are comprised of 

its electron (Jn-photo, Jn-dark) and hole current densities (Jp-photo, Jp-dark), which results in the 

following expression for the total current density of charge carriers (Jlight). 
 

Jlight = Jn-photo + Jp-photo  + Jn-dark + Jp-dark  = Jn + Jp  (A.4) 

 

Where each one of the current densities Jn and Jp does present one part, which interprets the 

injection of generated charge carriers (Jn-photo , Jp-photo) by the solar irradiance and a further part 

which stands for the recombination of the generated charge carriers (Jn-dark , Jp-dark).  

 

APPENDIX A.1.2 - The model of the recombination current densities  

 

In this model, a total of six types of different recombination effects are accounted 

for, which are categorized by the following effects: (i) electrons, which casually pass through 

the hole conduction and electron blocking layer; (ii) holes, which eventually pass through the 

electron conduction and hole blocking layer; (iii) charge carriers, which escape at the wrong 

contact; (vi) recombination because of interface defects at the transition between arbitrary 

perovskite crystals within the absorber layer; (v) recombination due to interface defects at the 

transition between the absorber layer and the transport layers of charge carriers; and finally 

(vi) recombination within the bulk of the p- and n-charge transport layers, which may appear 

e.g. due to pinholes in these layers, and which thus decrease the shunt resistance of the PSC 

(WU; YANG; CHEN; ZHANG et al., 2014). The exponential shape of the J-V curve density 

in the dark Jdark [mA/cm2] can be measured if a variable external voltage V is applied to the 

cell’s terminals in the absence of light (Figure 4.4, page 111). As derived in29 this current 

density can be modeled as follows. 

 
 

( ) ( )1/
00 −+= tVV

bbffdark eJJJ αα    (A.5) 
   

 

 

Where Jf0 [mA/cm2] and Jb0 [mA/cm2] are the current densities of the recombination effectsii 

related to the front and back charge conduction layers, which are calculated by equations 

(A.6) and (A.7). The dimensionless scaling coefficients of these recombination current 

densities, αf and αb, are calculated using equations (A.8) and (A.9), page 161. The variable V 
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in equation (A.5) is the solar cell’s variable terminal voltage and Vt [V] is the thermal voltage, 

which is calculated by Vt = kBT/q, where kB = 1.38064852 × 10-23 [J/K] is the Boltzmann 

constant and q = 1.60217662 × 10-19 [As] is the electric charge, which determines the energy 

of an electron or a hole; and T [K] is the operating temperature of the solar cell at the moment 

when the two J-V curves are measured. The recombination current density of electrons (Jf0) at 

the front hole conduction and electron-blocking layer (HC-EBL) appears by reason of the 

parasitic conduction of those electrons, which have a higher energy than the potential of the 

blocking barrier of the HC-EBL #(Figure 3.1a, page 81). Conversely, the recombination 

current density of holes (Jb0) at the back electron conduction and hole blocking layer (EC-

HBL) appears because of parasitic conduction of those holes, which have a lower energy than 

the blocking potential of the EC-HBL (Figure 3.1a, page 81). The second reason for the 

recombination of electrons occurs by occasional trapping of electrons because of positive 

trapping states at the perovskite crystal terminations. This effect appears especially in non-

passivated absorber the layers and it has to be noted that the electron recombination current 

density (Jf) is an order of magnitude higher as in comparison to the hole recombination current 

density (Jb) (#Table 2, line 1), which possibly may be present by reason of these positive trap 

statesiii. The recombination current densities are calculated as follows: 
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By assumption of the superposition principle (NIE; TSAI; ASADPOUR; BLANCON et al., 

2015; SUN; ASADPOUR; NIE; MOHITE et al., 2015), it is considered that the two 

recombination current densities in the dark (Jf0, Jb0), are equal to the recombination current 

densities under exposure to light (Jf, Jb), meaning that |Jf | = Jf0 and |Jb| = Jb0. This principle 

considers also that the cell’s recombination losses under its exposure to light are expressed by 

the J-V curve behavior in the dark (equation (A.5)). In equation (A.6) the variable ∆n [cm-3] 

presents the number of excess electrons per unit volume that are available for the 

recombination process within the p-type layer. This surplus of electrons occurs if the actual 
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number of electrons (n) in this layer is higher than the number of electrons under the thermal 

equilibrium condition (n0)iv,  where ∆n = n – n0. Conversely ∆p [cm-3] in equation (A.7) is the 

number of excess holes per unit volume that are available to recombine within the n-type 

semiconductor, where this surplus occurs if the actual number of holes within this p-type 

layer is higher than the number of holes in thermal equilibrium p0, where ∆p = p – p0 . The 

effective SRV sf [cm/s] in equation (A.6) represents the effective velocity or rate at which the 

minority electrons within the intrinsic layer recombine at the surface transition to the hole 

conduction layer. In contrast, sb [cm/s] is the effective velocity or rate at which the minority 

holes from the absorber layer recombine at the interface between the electron conduction 

layer and the absorber layer. As the units of sf and sb are [cm/s], they can also be thought of as 

the effective speeds at which electrons and holes move toward dangling bond positive and 

negative trap states at the perovskite crystal surfacev. The dimensionless coefficients αf and 

αb in equation (A.5) are used in order to reduce the large analytical expressions obtained from 

the derivation process of the analytical PSC model of the photocurrent (see equations (A.61) 

and (A.62), page 179) and the dark current (equation (A.64), page 180). They can be 

considered as scaling coefficients of the front and back components of the recombination 

current densities, which are calculated as follows. 
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Where the dimensionless coefficients βf and βb [-], used in (A.8) and (A.9), are calculated by 

equations (A.12) and (A.13), page 162. The unitless variable V’ [-] translates the resultant 

electric field in a dimensionless form which is calculated as follows. 
 
 

V’  =  ( V – Vbi ) / Vt    (A.10) 
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Where Vt = kBT/q [V] is the cell’s thermal voltage, V [V] is its terminal voltage, and T [K] is 

its assumed operation temperature. The terminal voltage V is an imposed and measurable 

voltage, which varies in the range 0…V0C , where V0C [V] is the cell’s open-circuit voltage. In 

the dark, the terminal voltage must be imposed on the solar cell’s electrodes by an external 

variable voltage supply. The built-in voltage (Vbi) in equation (A.10) is calculated by equation 

(A.11) and can be manipulated by the material selection of the charge conduction layers. 

Alternatively, Vbi can also be modified via additional doping of the selected charge 

conduction layers. Both manipulations result in the adjustment of the band gap energy of the 

transport layersvi. The built-in voltage of the pin-type cell is calculated as follows.  
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Where ND,eff [1/cm³] is the effective doping concentration of the donor molecules, which are 

able to donate additional electrons that are fixed into the crystal lattice of the n-type charge 

conduction layer, while NA,eff [1/cm³] is the effective doping concentration of acceptor 

molecules, which are able to accept electrons that are fixed into the crystal lattice of the p-

type charge conduction layer. The intrinsic carrier density ni [1/cm³] in equation (A.11) is the 

inherent carrier density to the undoped p- and n-type layers, and it is considered as being very 

small. In silicon solar cells the intrinsic carrier density is equal in both charge conduction 

layers. The dimensionless coefficients βf and βb in equations (A.8) and (A.9) determine 

mainly the PSC’s Fill Factor (SUN; ASADPOUR; NIE; MOHITE et al., 2015) and are 

calculated with the following two equations for the front and the back charge transport layers 

respectively. 

 

 βf  = Dn  / ( t0 sf )  (A.12) 

 

 βb  = Dp  / ( t0 sb )  (A.13) 

 
 

In equations (A.12) and (A.13), the variable t0 [nm] is the thickness of the intrinsic 

absorber layer and Dp and Dn are the diffusion coefficients of holes and electrons, both 
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measured in units of [cm2/s]. From the discussions resulting in equations (A.5) to (A.13), page 

159, it can be seen that the recombination current density in the dark (Jdark) of this solar cell is 

a function of the whole set of PSC model variables, excluding the average optical decay 

length. These variables are the following material properties and design parameter: the 

effective SRV of holes sb [m/s], mainly occurring at the surface of the back electron 

conduction layer; the effective SRV of electrons sf [m/s], principally present at the surface of 

the front hole conduction layer; the number of excess electrons available for the 

recombination process ∆ n [cm-3]; the number of excess holes that can participate at 

recombination process ∆ p [cm-3]; the diffusion coefficient of electrons Dn and diffusion 

coefficient of holes Dp; which specify the diffusion of these charge carriers in random 

directions [cm²/s]; the solar cell’s built-in voltage Vbi [V]; the absorber layer thickness t0 

[nm]; the cells temperature (T) [K]; and the terminal voltage V [V]. 

 

APPENDIX A.1.3 - The model of the photocurrent density 

 

Under light exposure of the solar cell, the photogeneration current density Jphoto (G,V) 

can be expressed by the following equation.  

 

 Jphoto (G, V) = q Gmax (A  –  B e - m )  (A.14) 

 
 

Where A and B are dimensionless parameters, which are used to replace some larger terms, as 

given by equations (A.15) and (A.16), and were obtained by the derivation of the analytical 

pin-type PSC model (SUN; ASADPOUR; NIE; MOHITE et al., 2015). 
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In equations (A.15) and (A.16) the following dimensionless coefficients were calculated: (i) 

αf and αb by use of equations (A.8) and (A.9), page 161; (ii) V’ by use of equation (A.10), 
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page 161; and (iii) βf and βb by use of equation (A.12) and (A.13), page 162 and 197. The 

dimensionless ratio (m) relates to the average optical decay length λave and the absorber 

thickness t0, both measured in [nm] as shown by the following equation  

 

 m = t0 / λave  .   (A.17) 
 

 

The generation of charge carriers G(x) [s-1cm-2], as appearing in equations (A.1) to (A.3), 

pages 157 to 158), and (equation (A.14), page 163), is calculated by equation (A.18), page 

164, and is a function of the photon penetration depth x in the absorber layer, modeling the 

exponential charge generation curves in Figure 3.1b, page 81, for x = 0…t0. It has to be 

remembered that the true charge generation curve in a solar cell has an oscillating decay, as 

specified by the superposition of the solar irradiance waves in top-down and bottom-up 

directions, where the photon flux in the bottom-up, or the backward direction, is the reflected 

photon flux at the back reflector and the layer interfaces. This effect occurs by reason of the 

superposition of light waves, which are not in phase, and it can be modeled using the optical 

transfer matrix method as cited in (SUN; ASADPOUR; NIE; MOHITE et al., 2015). 

However, in a simplification, this decay curve can also be modeled by the adoption of an 

exponential decay as detailed by the Beer-Lambert law, where each wavelength has a specific 

optical decay length and decay curve. In a second simplification, a unique exponential decay 

curve is given based on the specification of an average optical decay length (equation (A.18)), 

which is modeled using the average of the optical decay lengths λave.  

 

 avex
eff eGxG λ/)( −=    (A.18) 

 

    

In this simplification the average of a complete set of wavelength-dependent optical decay 

lengths (λy = λmin .... λmax), also sometimes referred to as the optical absorption lengths, leads to 

the present model to an approximation which is specified as average optical decay length 

(λave). Geff [s-1cm-3] in (A.18) is the effective generation of charge carriers, which is the 

highest charge generation at the top of the absorber layer at x = 0. In contrast, the lowest 

charge generation is present at the bottom of the cell at x = t0 (Figure 3.1b, page 81). λave is 

the penetration depth, as defined by the exponential decay in the Beer-Lambert law, at which 
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the charge carrier generation decays to the value of 36.8 % of Geff (Geff /e ≈ 0.368 Geff). This 

behavior is consistent with the number of available photons, which decays exponentially as a 

function of the solar irradiance penetration depth, reaching at λave a value of 0.368 Geff in the 

exponential curves in Figure 3.1b, page 81. 

 Both variables λave and Geff, are specific constants related to the absorber layer 

material, where each of these constants is an average value. However, this configuration is a 

simplification, because, in more detailed modeling, both constants are a function of the 

wavelength of the solar irradiance. While the average optical decay length λave can be 

improved by light trapping effects or the selection of the absorber layer material, Geff can be 

improved by band gap tunings of the considered solar cell. In order to understand equation 

(A.18) better, the charge generation characteristic of this equation is visualized for a set of 

different λave in Figure 3.1b, page 81. The range of the charge generation G(x), is normalized 

in this figure, and the value of Geff corresponds, therefore, to 100%. At zero penetration depth 

(x = 0), the penetration-dependent charge generation G(x) is equal to the effective charge 

generation (G(x) = Geff), and G(x) decays exponentially as a function of the penetration depth.  

The sum of the photons which are converted to free charges within the absorber layer 

(Gmax) is given by the integration of the generated charges G(x) over the absorber layer 

thickness at the depths x = 0…t0. The correct dimension of the absorber layer thickness t0 

determines the maximum absorption of photons Gmax [s-1cm-2] by equation (A.19). If the 

absorber layer is too thin, a significant number of photons might not be absorbed and 

converted by the absorber layer, as can be directly visualized by Figure 3.1b, page 81. In this 

equation, Gmax is obtained by the integration of G(x) over the whole absorber layer thickness 

t0 [nm] as follows. 
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In an approximation, which considers (t0 = ∞), the integration of equation (A.19) results in the 

following equation.  

 

 Gmax = Geff  λave  (A.20) 
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Such a simplification leads to a small uncertainty as it adds mathematically a minute part of 

the solar irradiance, the part from t0 to infinity, in the Beer-Lambert curve (not visible in 

Figure 3.1b, page 81), which is not supposed to be present in a manufactured PSC. 

Considering the cell configuration as used by (SUN; ASADPOUR; NIE; MOHITE et al., 

2015), with λave = 100 nm, the irradiance part related to (x = t0…∞) is only 1 %, as seen from 

its value of (0.01 Geff) for t0 = 450 nm in Figure 3.1b, page 81. However, the highest part this 

1 % is reflected by the back-reflector contact, and therefore, a large part of this back-reflected 

irradiance indeed generates free charges. Thus, at the end, some minute fractions, which are 

considered by the model and are not present in a manufactured PSC, are: (i) the small portion 

of solar irradiance, which is absorbed by the back reflector; and (ii) the part of the back-

reflected irradiance, which is not converted into free charges and is consequently emitted by 

the solar cell’s front surface. Due to these model simplifications, (SUN; ASADPOUR; NIE; 

MOHITE et al., 2015) obtained a small dissimilarity with an absolute error of 0.1 % between 

the modeled and measured PCE values. 

From the discussions resulting in equations (A.14) to (A.20), page 163, the modeling 

of the internal and not measurable photocurrent density is obtained as a function of the model 

variables which were already specified for calculating the solar cell current density in the 

dark. Additionally, the following two variables are included in the PSC model to simulate the 

photocurrent density: (i) the average optical decay length λave [nm], which defines the 

effective optical thickness of the absorber layer, and (ii) the effective generation of charge 

carriers Geff, which is proportional to the number of generated charge carriers considering the 

cells band gap.   

 

APPENDIX A.1.4 - Differential equations of the model 
 

The present model as derived in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) is 

based on the solutions of a total of five second-order differential equations. The assumed 

simplifications in this model result in limited uncertainties as validated by numerical 

simulations and measurements with a manufactured solar cell (SUN; ASADPOUR; NIE; 

MOHITE et al., 2015). The first differential equation is the second-order Poisson equation, 

which defines the relationship between the space charge and the electric field as follows:  
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Where φ(x) is the electrostatic potential at a specific penetration depth (x) of the solar 

irradiance in the absorber layer; ρ [m-3] is the density of charge carriers and ε [F/m] is the 

absolute permittivity of the intrinsic layer, which is the product of the relative permittivity εr 

and the vacuum permittivity ε0. As the intrinsic i-type absorber layer is undoped, its density of 

charges ρ is equal to zero (ρ = 0). Considering this detail, the integration of the Poisson 

equation results in the following general solution:  

 

 φ(x) = C1 x + C2   (A.22) 
      

 

Where C1 and C2 are arbitrary integration constants. The exact solution of this equation is 

obtained by consideration of two boundary conditions. The first boundary condition is given 

for zero penetration of the solar irradiance in the absorber layer (x = 0), where the electrostatic 

potential is defined as follows: 

 

 φ (x = 0)  =  φ (0) = 0  (A.23) 

  
 

The second boundary condition is specified for the maximal penetration depth of the solar 

irradiance in the absorber layer (x = t0), where the electrostatic potential is given as follows: 

 

 φ (x = t0)  =  φ (t0)  = (Vbi – V)  (A.24) 

 

Substituting these two Dirichlet-type boundary conditions separately in the general solution of 

the Poisson equation (A.22), page 167, and solving the obtained system of two equations, 

results in the following specific solution for the electrostatic potential φ (x) [V]:  
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Where the built-in voltage (Vbi), is specified by equation (A.11), page 162. Solving equation 

(A.25) for E results in the equation of the built-in electric field E [V/m] as follows: 

 

 E = (V – Vbi) / t0  (A.26) 

      

This electric field equation is used to calculate the charge carrier generation rate in a PSC by 

its substitution in the Schrödinger drift-diffusion model ((A.29), page 168, and (A.30)), which 

defines the charge transport of electrons and holes considering a self-consistent stationary 

quantum simulation. The self-consistent stationary quantum simulation defines that there is no 

variation in the density of electrons and holes over time (∂ n/∂ t = 0, ∂ p/∂ t = 0) and with this 

consideration, the continuity equations of a type pin perovskite solar cell under light exposure 

are defined by equations (A.27) and (A.28). 
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Where G(x), and R(x) are the penetration depth specific photogeneration, and the 

recombination rates of charge carriers in the bulk of the absorber layer. Jn and Jp are the 

generated current densities of electrons and holes, which are specified by the differential 

equations of the current densities in (A.29) and (A.30).  
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In these equations, the first terms (q µn E and q µp E ) describe the drift component of 
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electrons and holes, while the following terms translate the diffusion component. Substituting 

Jn in equation (A.27), page 168, with the expression in (A.29); and substituting Jp in (A.28) 

with the expression in (A.30) results in the Schrödinger drift-diffusion equations of electrons 

and holes as specified in (A.31) and (A.32). 
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These Schrödinger equations are based on the equilibrium of two opposing forces, which 

determine the charge carrier transport behavior in a semiconductor crystal: the drift force and 

the diffusion forcevii. While the diffusion current density of charge carriers is produced by 

concentration differences of charge carrier within the p-type and the n-type semiconductor, 

the drift current density is produced by the net electric fieldviii appearing across the pin-type 

junction of the solar cell. In equations (A.29) to (A.32), the diffusion coefficients of electrons 

and holes Dn and Dp [cm²/s] are material-specific constants, which determine the random 

diffusion or spread of charge carriers in arbitrary directions within the semiconductor layers. 

This random behavior is mainly limited to the depletion region, which thickness is increased 

in the present heterojunction pin-type solar cell, by the intrinsic i-layer, made of the hybrid 

perovskite material. The diffusion lengths for electrons and holes (Ln and Lp) are calculated as 

by equations (A.33) and (A.34) (PARK; KANG; KIM; SON et al., 2012). 

 

 n n nL D τ=   (A.33) 

      

 p p pL D τ=   (A.34) 

     
 

Where Dn [m], and Dp [m] are the diffusion lengths, or diffusivities, of electrons and holes; 

and τn [s] and τp [s] are its lifetimes, or times of the transport of these charge carriers, within 
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the charge generation layer. The diffusion lengths of electrons and holes define the pathways 

these charge carriers can diffuse until its recombination at the end of these pathways, and the 

lifetimes represent the time intervals in which the generated charge carrier can diffuse until its 

recombination does occur. Because of the extraordinarily long diffusion length, inherent to 

the perovskite layer material, the recombination effects in the intrinsic absorber layer resulting 

from a limited diffusion length can be neglected (SUN; ASADPOUR; NIE; MOHITE et al., 

2015), leading, therefore, to the simplification of R(x) = 0 in equations  (A.29) to (A.32). The 

mobility of electrons and holes µn and µp [m²/Vs] in equations (A.29) to (A.32), also called as 

motility (SUN; ASADPOUR; NIE; MOHITE et al., 2015), determines how quickly a charge 

carrier can be moved through the solar cell as a function of the drift force. This drift force is a 

function of the device’s internal electric field E(x) [V/m] as calculated by equation (A.26), 

page 168ix. To develop an analytical model that defines the shapes of the solar cell’s dark J-V 

curve, another set of Schrödinger drift-diffusion equations is necessary, as given by equations 

(A.35) and (A.36).  

 

 0)()()()(
2

2

=−
∂

∂
+

∂
∂ xR

x
xnxE

x
xnD nn µ   (A.35) 

 

 0)()()()(
2

2

=−
∂

∂
−

∂
∂ xR

x
xpxE

x
xpD pp µ   (A.36) 

     
 

The coefficients n(x) [cm-3] and p(x) [cm-3], in equations (A.31), (A.32), page 169, and 

equaitons (A.35) and (A.36) are the charge carrier densities of electrons and holes, which are 

a function of the penetration depth x.  

The first irradiance independent Dirichlet-type boundary conditions in equations 

(A.37) and (A.38) specify the equilibrium hole and electron concentrations within the electron 

and the hole conductor layers at x = t0 and x = 0, which are the locations of the injections of 

the generated electrons and holes (Figure 3.1, page 81).  
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 AeffNpxp === )0()0(   (A.38) 

      
At equilibrium, these electron- and hole-concentrations are equal to the effective doping 

concentrations of the acceptor molecules (NAeff) at x = 0 and donor molecules (NDeff) at x = t0, 

both measured in units of [m-3]. The second Dirichlet-type boundary conditions consider the 

undesired evasion of electrons and holes at the sites of the recombination current densities of 

electrons and holes at penetration depth x = 0 and x = t0 (Figure 3.1b, page 81). These 

irradiance-independent Dirichlet-type boundary conditions are specified by the front and back 

recombination current densities Jf and Jb in equations (A.39) and (A.40)x. 
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Where sn = sf is the SRV of electrons, as related to the front hole conduction layer, while sp = 

sb is the SRV of holes, as related to the back electron conduction layer. These denominations 

can be understood, as electrons recombine at the front p-type layer and holes recombine at the 

back n-type layer (Figure 3.1a, page 81).  

 

APPENDIX A.1.5 – Normalization of the drift-diffusion model 

 

In order to find a simplified drift-diffusion equation, the Einstein equation is used to 

eliminate some of the material properties by substitution. Additionally, a normalized charge 

carrier generation is considered to isolate and simplify the first- and second-order terms, 

obtaining simplified second-order differential equations as a result. 
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Variable reduction by substitutions with the Einstein expressions: The drift 

coefficients of electrons and holes, µn and µp, are not part of the multidimensional model 

variables in the hypercube space optimization, but they can rather be calculated as a function 

of these model variables. The drift coefficients express the mobilities of electrons and holes, 

and its substitution by use of the Einstein expression (equations (A.40) and (A.42)), results in 

a reduction of the total number of model variables in the multidimensional optimization 

space.  
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Considering that for a constant semiconductor temperature T [K] a fixed thermal voltage Vt 

[V] is obtained, the mobility µn can be substituted by expressions (A.43). 
 

 µn = Dn / Vt            (A.43) 
 

 

In a similar form, the mobility of holes can be substituted as follows, based on equation 

(A.42).  

 µp = Dp / Vt  (A.44) 
 

 

Using these reduced Einstein expressions (equations (A.43) and (A.44)), the mobilities µn and 

µp are substituted in the complete set of the non-normalized drift-diffusion (equations  (A.29) 

to (A.32), page 168; and equations (A.35) and (A.36), page 170). Such substitutions can be 

considered as the drift- and the diffusion forces are permanently in equilibrium. 

Consequently, the drift coefficients are in a specific fixed relationship to the diffusion 

coefficients, which means that knowing one of them, e.g., the diffusion coefficients of 

electrons and holes, the others (the drift coefficients) can be modeled by expressions (A.43) 

and (A.44). Therefore, to obtain a solution for the current densities, the reduced Einstein 

expressions are used for the substitution of the charge carrier mobilities µn and µp in the four 
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drift-diffusion equations ((A.31), page 169, as well as (A.32), (A.35), and (A.36)). The drift 

coefficients can then be recovered after the optimization using (A.43) and (A.44), page 172. 

Therefore, they are considered as model variables but do not appear as optimization variables 

in the multidimensional PSC model.   

 

Normalization of the drift-diffusion expressions: To simplify the derivation 

process of the drift-diffusion equations ((A.31), page 169, as well as (A.32), (A.35), and 

(A.36)) mathematically, it is of advantage to transform these four equations in normalized 

second-order differential equations. For the differential equations from which the 

photocurrent density is derived ((A.31) and (A.32), page 169), this normalization considers 

the following steps: (i) the charge carrier generation rates G(x) in equations (A.31) and (A.32), 

page 169, are substituted by the expression in (A.18), page 164, which results in the following 

expressions: 
 

 

 
2

/
2
( ) ( )( ) ( ) 0avex

n n eff
n x n xD E x G e R x
x x

λµ −∂ ∂
+ + − =

∂ ∂
  (A.45) 

 

 

 
2

/
2
( ) ( )( ) ( ) 0avex

p p eff
p x p xD E x G e R x
x x

λµ −∂ ∂
− + − =

∂ ∂
  (A.46) 

 

(ii) the generation rate of charge carriers at the top surface of the absorber layer (Geff) in 

(A.18), page 164, is substituted by the expressions of the normalized generation rates of 

electrons (Gn) and holes (Gp) in (A.47) and (A.48). 

 

nneff DGG =   (A.47) 

 

 ppeff DGG =    (A.48) 
 
 

Where the effective generation rate of charge carriers (Geff), is here substituted using Gn and 

Gp, both measured in units of [m-5]. These substitutions transform (A.45), and (A.46) in the 

following expressions: 
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(iii) the assumption of zero recombination rates in the perovskite layer (R(x) = 0) and the 

division by Dn and Dp on both sides of equations (A.49) and (A.50) result in the following 

expressions: 
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(iv) The substitution of the charge carrier mobilities µn and µp with the reduced Einstein 

expressions ((A.43), page 172, and (A.44)), results in the following expressions. 
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(v) the remaining expression (E / Vt ), as appearing in the second term of (A.53) and (A.54), is 

finally substituted by expression (A.55), where εn [1/m] is considered as to be a normalized 

electric field. 

 εn = E / Vt     (A.55) 
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This final manipulation does result in the normalized drift-diffusion equations as presented in 

(A.56) and (A.57). If compared to the non-normalized differential equations, ((A.31) and 

(A.32), page 169), these simplified second-order differential expressions are based on a lower 

number of variables in its first two terms. Furthermore, the normalized expressions also 

include the optical Beer-Lambert model.   
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An even more simplified set of normalized drift-diffusion equations is obtained for the state 

when the cell is localized in the dark. In this development, the non-normalized equations 

(A.35) and (A.36), page 170, are converted in a similar normalization process to the equations 

(A.58) and (A.59).   
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APPENDIX A.1.6 - Resulting analytical expression of current density  

 

To calculate the PCE, as detailed in equations (3.1) to (3.11), pages 83 to 88, by the 

use of the analytical solar cell model as derived in (SUN; ASADPOUR; NIE; MOHITE et al., 

2015); and, in order to optimize the PSC by the here proposed optimization process, we need 

a unique, complete analytical expression for the current density of the here considered pin-

type PSC.  
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Necessary Transformations: The whole process of transformations, as described in 

(SUN; ASADPOUR; NIE; MOHITE et al., 2015) involves the solution of several differential 

equations (DEs) to express the cell’s current density under light condition (Jlight) as 

measurable at its terminals. Therefore, we only describe these manipulations conceptually. 

The analytical model of Jlight is obtained by derivation of the cell’s fundamental DEs ((A.21), 

page 167; (A.31), page 169; (A.32), (A.35), and (A.36), pages 169 to 170), considering also: 

(i) the normalization of the drift-diffusion current density DEs, which result to the equations 

(A.56), page 175, to (A.59), (ii) the general solutions of (A.21), page 167 and the normalized 

DEs, which returns two unknown integration constants or factors for each DE, (iii) the 

application of its boundary expressions ((A.23) to (A.24), page 167, and (A.37) to (A.40), 

page 170) to obtain a system of equations from which the expressions of the unknown 

integration constants are obtained, (iv) the manipulation of the obtained expressions, 

obtaining first the electric field equation, which is substituted in the equations of the obtained 

current densities of electrons and holes for the illuminated and the dark state.  

 

Electric Field equation: The analytical model of the electric field is in (SUN; 

ASADPOUR; NIE; MOHITE et al., 2015) obtained by the (i) solution of the second-order 

Poisson differential equation (A.21), page 167, which returns to a general expression with two 

unknown integration constants or factors (A.22), page 167. Using the boundary expressions 

((A.23), page 167, and (A.24)) for the substitution in the general solution (A.22) builds up an 

equation system, which results in an expression (A.25), page 167, which manipulation results 

in the solution of the electric field (A.26), page 168.  

 

Charge carrier current densities: In a similar solution process, the expressions of 

the electron and hole current densities are obtained for the illuminated and the dark states. 

Basically, by the solution of the four normalized Schrödinger equations ((A.56) to (A.59), 

page 175) and its boundary equations ((A.37) to (A.40), page 170), the four charge carrier 

current densities as specified in equation (A.4), page 159, can be calculated.  

 

Photocurrent density of electrons (Jn-photo): In a similar form, as the electric field 

equation was derived from the second-order Poisson equation, the analytical model for the 

generated current density of electrons Jn-photo (as used in equation (A.4)) is obtained by the 
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following steps: (i) solving the normalized second-order drift-diffusion equation of electrons 

to achieve its general solution, which presents two unknown integration constants; (ii) 

substitution of the boundary conditions for electrons (equations (A.37) and (A.39), page 170) 

to create a system of two equations, which solution result to the expressions of the unknown 

integration constants (iii) substituting the integration constants in the general expression and 

solving this expression for Jn-photo.  

 

Photocurrent density of holes (Jp-photo): The analytical model of the generated 

current density of holes      (Jp-photo) is obtained by a similar procedure using the steps of (i) 

solving the normalized differential equation for the hole photocurrent density (A.57), page 

175, which results in its general solution, with two unknown integration constants; (ii) 

substitution of its boundary conditions (equations (A.38) and (A.40), page 171) in this general 

solution and (iii) solving the obtained equation system for the current density of holes Jp-photo. 

 

Total charge carrier density under exposition to light: The sum of the electron 

and hole current densities under exposition to light results in an equation that defines the total 

density of charge carriers for the illuminated state (Jphoto = Jn-photo +  Jp-photo), which is 

presented in equations (A.60) to (A.63), page 179.  

 

Electron current density in the dark state (Jn-dark): The equation of the current 

density of electrons under the privation of light (Jn-dark), is obtained by a similar pathway. In 

step one a general solution of the normalized differential equation (A.57), page 175, is found, 

which presents two unknown integration constants. The substitution with the boundary 

equations of holes (equations (A.37) and (A.39), page 170) results in an equation system, 

which solution results in the expressions of the unknown integration constants. The 

substitution of these integration constants results then in a general expression, which is then 

solved for the current density of electrons (Jn-dark).  

 

Hole current density in the dark state (Jp-dark): (i) using the normalized drift-

diffusion equation (A.59), page 175, the general solution to this second-order differential 

equation contains two unknown integration constants. The substitution with the boundary 

conditions (equations (A.38) and (A.40), page 171) result in an equation system, which 
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solution results in the expressions of the two unknown integration constants. The substitution 

of these integration constants, in the general expression, results in an equation, which is 

solved for the hole current density in the dark Jp-dark.  

 

Total charge carrier density in the dark state (Jdark): Similar as in the state under 

illumination the sum of the electron and hole current densities (Jdark = Jn-dark + Jp-dark) result in 

a large expression which is presented in equations equation (A.64) to (A.66), page 180. Here 

it has to be emphasized that only the substitution of the normalized electric field equation 

(A.55), page 174, and then the electric field equation (A.26), page 168, in the resulting current 

density equations, enables the modeling of the electron and hole current densities as a 

function of the terminal voltage V for both cases, for the equations of the illuminated state and 

the dark state of the solar cell.  

 

APPENDIX A.2 – COMPOSED REPRESENTATION 
 

The simplification of the resulting expressions of the photocurrent density (Jphoto = 

Jn-photo +Jp-photo) and the recombination current density (Jdark = Jn-dark + Jp-dark) results in the 

expressions (A.1) to (A.26), pages 157 to 168, in (SUN; ASADPOUR; NIE; MOHITE et al., 

2015), where the variable E [V/m] in the equations of Jn-dark, Jp-dark, Jn-photo, Jp-photo is 

substituted by the electric field equation (A.26), page 168. These are the equations by which a 

complete analytical expression of the J-V curve model is defined, where the current density of 

this curve is modeled by (Jlight) (equation (A.3), page 158) as a function of the terminal 

voltage V, and a here considered fixed generation rate of charge carriers G.  

 
 

 
 

 Expression of the current density under exposition to light: For the calculus of 

the measurable current density (Jlight) in equation (A.3), page 158, we need the internal, and 

not directly measurable photocurrent density Jphoto(G,V) = Jn-photo + Jp-photo, as defined in 

equation (A.14), page 163, which describes the solar cell internal injection of charge carriers 

under exposition to light and we need furthermore the recombination current density Jdark 

(G,V) = Jp-dark + Jn-dark as presented in equation (A.5), page 159. To calculate Jphoto(G,V) the 

terms A, B and m, which appear in equations (A.14), page 163, are substituted, with the terms 

as presented in equations (A.15) to (A.17), page 163, which leads to the following expression:  
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Furthermore, the terms βf and βb (equations (A.12) and (A.13), page 162) can be substituted 

in equation (A.60), which transforms this equation the following large analytical expression. 
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The further substitution of the terms αf and αb, as defined in equations (A.8) and (A.9), page 

161, lead the complete expression of the photocurrent of electrons and holes, as presented in 

equations (A.62).  
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 (A.62) 

 

 

Where the whole set of variables Dn, Dp, t0, sf, sb, and λave are six of the nine model variables. 

The remaining unknown term V’ (A.10), page 161, is calculated as a function of the terminal 

voltage V and by the substitution of Vbi (equation (A.11), page 162) and leads to equation 

(A.63). Where the variables NAeff, NDeff, and ni, which terminology was already described in 

equations (A.10) and (A.11), page 161, are as fixed values, which model the built-in voltage 
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Vbi. The thermal voltage Vt = kBT/q is also considered as a fixed value, giving a constant 

operating temperature (T). 
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Expression of the current density in the dark: In a similar form, the measurable 

current density when the cell is localized in the dark (Jdark), is calculated by the substitution of 

the terms αf and αb in equation (A.5), page 159, which leads to the following expression. 
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After the substitution of βf and βb in equation (A.64) we obtain the equation (A.65).  
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Additionally, the expressions of the current densities in the dark (equations (A.6) and (A.7), 

page 160), related to the front and back charge conduction layers, are substituted in equation 

(A.65), which leads to the following final expression for the recombination current densities. 
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Where the expression V’ was already defined in equation (A.63), page 180. We see that the 

dark current density, which describes the recombination effects, is calculated as a function of 
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eight model variables sb, sf, ∆p, ∆n, Dn, Dp, Vbi, t0, and the terminal voltage V, while the values 

of remaining variables are constants. These model variables are used in the present 

optimization which includes the modeling of the measurable Jlight (G,V) current density, where 

Jlight (G,V) is the sum of Jdark (V) and Jphoto (G,V), as defined by the equation (A.3), page 158. 

The only not considered model variable in this expression is λave, which only appears in the 

equation of the photogeneration (A.62), page 179. 

 

APPENDIX A.3 – DERIVATION OF THE MODEL 
 

General solutions: Here we are present the derivation of the equations of the current 

densities by the solution of the second-order normalized differential equations using its 

boundary equations. The integration of the normalized drift-diffusion (equations (A.56), and 

(A.57), page 175) lead to the general solution of these second-order differential equations as 

presented in (A.67) and (A.68). These equations determine the charge carrier densities of 

electrons and holes under the cell's exposition to light as a function of the light’s penetration 

depth (x).  
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In these equations, C1 to C4 are four unknown integration constants of these two general 

solutions. In the following text, we search for the inherent expressions of these variables using 

the equations of the boundary conditions for electrons (equations (A.37) and (A.39), page 

170) and holes (equations (A.38) and (A.40), page 171).  

If the PSC is localized in the dark, much simple general solutions are obtained by equations 

(A.69) and (A.70). 
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 7 8( ) n x
darkp x C C e ε= +   (A.70) 

 

Where C5 to C8, are additional unknown integration coefficients, which expressions also must 

be determined, using the same boundary equations ((A.37) to (A.40), page 170).  

 

Electron current density in the illuminated state: By the integration of equation 

(A.56), page 175, substitution with the first boundary condition (equation (A.37), page 170), 

the following expression is obtained 
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(A.71) 

 

 

Dissimilar to the solution (A.67), this equation only presents one integration constant as 

unknown (C2), while C1 was eliminated by substitution using the first boundary condition 

(A.37), page 170. Both, the charge carrier densities of electrons nphoto(x) (equation (A.71)), 

and its first order derivation ∂nphoto(x)/∂x, are essential for the elaboration of the equation 

which defines the current density as presented in equations (A.72) and (A.73). The equation 

of the current density is used for the application of the second boundary condition (A.39), 

page 171, to obtain a solution of the remaining unknown integration constant (C2). The first 

order derivation of equation (A.71) results in the following expression 
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The equation of the generated current density of electrons can be elaborated by the 

substitution of the expressions of nphoto(x) (equation (A.71)) and ∂nphoto(x)/∂x (equation 

(A.72)) in the current density differential equation as shown in equation (S66), being these 

variables highlighted in (A.73) by square brackets.   

 

 
 



183 
 

 ,

( )
( ) ( ) photo

n photo n photo n

n x
J x q E n x q D

x
µ

∂ 
 = +    ∂ 

  (A.73) 

 

 

The substitution of nphoto(x) and ∂nphoto(x)/∂x leads to the following expression 
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We note that the remaining unknown integration constant appears in the expressions of 

nphoto(x) and ∂nphoto(x)/∂x. The solution to the remaining unknown integration constant (C2), is 

obtained by substitution with boundary condition (A.39), page 171. In this substitution, the 

photocurrent for zero penetration depth, Jn,photo(x = 0), is determined, and the obtained the 

resulting expression (A.75) is solved for the still unknown integration variables C2 in equation 

(A.76). 
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The solution for the photocurrent density (Jphoto) is obtained by substitution of the term for C2 

in the current density equation (equation (A.74)). This equation specifies the current density 

as a function of the penetration depth (x) of the solar irradiance. To specify the current density 

of electrons at the injection location of the generated electrons at the n-type layer, we 

substitute x with t0. Therefore, the specific solution for the injection of electrons (Jn-photo) is 

obtained by calculating the electron current at x = t0 as follows  
 

 1 2
0

3

( )n photo n photo
A AJ J x t q

A− −
+

= = =   (A.77) 

 

 

Where the terms A1, A2, and A3 are defined by equations (A.78) to (A.80).  
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Observation: This equation was simplified by the substitution of x with ∞, instead of 

t0, in order to simplify the large expression obtained, as otherwise obtained with the 

substitution with t0. This simplification can be accomplished as the assumption of an infinite 

thick absorber layer shows an absorption which is only < 1 % lower in comparison to the case 

of a manufactured solar cell with thickness t0 as to see from Figure 3.1b, page 81.  

 

Electron current density in the dark state: The equations (A.67) to (A.71), page 

181, show how the equation of the photocurrent density of electrons in the illuminated state is 
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obtained. The electron current densities in the dark state, is calculated in a similar 

development, starting however, with the normalized differential equation for the dark state 

(A.58), page 175. This elaboration uses identical boundary expressions ((A.37), page 170 and 

(A.38)), to eliminate the unknown integration constants. As the dark curve expresses the cell’s 

non-radiative recombination of electrons, as present at the transition to the hole conduction 

layer, the electron current density at the recombination location at x = 0 (Figure 3.1a, page 81) 

is determined by equation (A.78). This electron recombination current density corresponds 

also to the electron current density at the front p-conduction layer at x = 0 (Jn-dark = Jf) in 

Figure 3.1a, page 81, and is calculated as follows 
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  (A.81) 

 

Hole current density in the illuminated state: To calculate the general solution of 

the generated and injected current density of holes, the normalized drift-diffusion differential 

equation (A.57), page 175, is used, which is integrated, and to which the boundary conditions 

of holes (equations (A.38) and (A.40), page 171) are applied, to solve for the injected hole 

current density. The injection of holes (Jp) appears at the boundary to the front hole 

conduction layer at x = 0. Therefore, the equation of the generated hole current density Jp-photo 

(x) = Jp-photo (x = 0) is calculated substituting in the resulting Jp-photo(x) the x with zero, which 

leads to the following equation (A.82), where the terms B1, B2, and B3 are defined by the 

equations (A.83) to (A.85).  
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Hole current density in the dark state: The expression of the current density, 

which expresses the recombination of holes is calculated in a similar form by (i) the 

integration of normalized differential equation  (A.58), page 175, (ii) using the substitution 

with the boundary expressions (equations (A.38) and (A.40), page 171). As the holes 

recombine at the transition to the back-electron conduction layer, the following equation is 

obtained for the hole recombination current density: 
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Simplifications in the combined expression of Jlight (equation (A.1), page 157), by use of the 

obtained expressions of the four current densities (Jn-photo, Jn-dark, Jp-photo, and Jp-dark) in 

equations (A.77) to (A.83), page 184, result in the formulation of the model as presented in 

sections ctions APPENDIX A.1 and APPENDIX A.2, pages 156 and 178. 
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APPENDIX B – ADDITIONAL RESULTS AND DISCUSSIONS 
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Here we present some additional results and discussions, considering ideal light 

trapping and PSC materials, which translates to a higher absorption of light. We also show the 

maximal obtainable efficiency, not considering any practical limitations as obtained by the 

multidimensional optimization, and we discuss phenomena not considered in the presented 

optimizations. Then we discuss the improvement of light trapping by shape-optimized NPs, 

and we present a flow chart of the programed optimization process. Finally, we estimate the 

efficiency attainable by the combination of the best state-of-the-art measured material 

properties. 

 
APPENDIX B.1 – IDEAL LIGHT TRAPPING  

 

In our presented optimizations, excluding, we adopted as initial conditions in a nine-

dimensional optimization scheme (i) the material properties and absorber layer thickness as 

obtained in (SUN; ASADPOUR; NIE; MOHITE et al., 2015). We constraint the short circuit 

current densities for different absorber layer thicknesses with an increased value as found in 

(CAI; PENG; CHENG; GU, 2015). We calculate the λave for different t0 with the m-value as 

adopted in (SUN; ASADPOUR; NIE; MOHITE et al., 2015), which results in different cell 

designs. In a more simplified example of optimizations, we constrain the whole set of 

variables with boundary amplification factors, using equation (3.5), up to the value of fB = 

160, inclusive t0 and λave, which leads to a nearly ideal thin absorber layer thicknesses. We 

consider that almost perfect light trapping, as eventually obtainable by advanced light-

trapping schemes (section APPENDIX B.5, page 194), results in a high qGmax of 23 mA/cm2, 

even in cells with extremely thin absorber layers. In this case, light trapping does not increase 

the Jsc but compensates for the lower absorption in very thin absorber layers. Such constraints 

consider ideal light trapping, and result in a higher efficiency of 29% (Table B.1, page 189). 

The table is also useful to understand better the behavior of the optimization in the 

multidimensional space.   

 

In Table B.1 the setup variables appear at line 1, and for a maximal boundary-

expansion factor of fB = 160, the optimization algorithm searches for the ideal properties and 

the ideal absorber layer thickness. These ideal values lead to the highest simulated efficiency, 

which we present at line 6. The actual modification factor shows to which definite extent the 
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optimization algorithm improves a variable. As to see, for most of the variables, the 

optimization algorithm explores the fully the available constraint range, as the ideal values 

correspond to an actual modification factor of 160 or 1/160. Only t0 is modified to a lower 

extent with an actual modification factor of fB factor of (1/127), which results in an ideal value 

of 3.54 nm, instead, while its lower constraint is t0 = 2.81 nm.  

 

 

 

Such a behavior appears, as t0 and λave, shows a dependency, which results in a 

maximal efficiency vertex line, as shown in Figure 4.2e-f, page 102, whereas the relationship 

of the further variables does not lead to such a saddle point. The identification of a saddle-

point curve or the maximal efficiency values vertex-line in the relationship of model variables 

is of importance, as only an adequate tuning of the involved variables enables high cell 

efficiencies. We consider that further vertex lines are not present as for the further variables 

the optimization algorithm does not identify any similar optimal variable value. These 

findings correspond to the findings in (WRUCK, 2018), which analyzed several combinations 

of the two-dimensional space graphically, studying all possible combinations that involve the 

 Table B.1 - Optimization data and results related to the nine-dimensional optimization 
(boldface symbols) by use of the maximal boundary expansion of the model variables (fB = 
160) for the whole set of nine optimization variables presenting a nearly ideal light-trapping 
scheme with shape-optimized nanoparticles; Jsc = 23 mA/cm2. 
Variable specification sf sb ∆   n ∆   p Vbi Dn Dp t0 λave η 

Units [cm / s] [cm / s] [1 / cm 3] [1 / cm 3] [V] [cm ² / s] [cm ² / s] [nm]  [nm] [%] 

1 - Values obtained in (Sun et 
al. 2015) 

2.00E+02 1.92E+01 8.43E+06 1.30E+08 0.78 5.00E-02 5.00E-02 450.0 100.0 15.7 

2 - Lower boundary values 1.25E+00 1.20E-01 5.27E+04 8.13E+05 0.00 3.13E-04 3.13E-04 2.81 0.63  -  

3 - Lower constraint factor   1 / 160  1 / 160  1 / 160  1 / 160  ∞  1 / 160  1 / 160  1 / 160  1 / 160  -  

4 - Upper boundary values 3.20E+04 3.07E+03 1.35E+09 2.08E+10 1.40 8.00 8.00 1000 1.60E+04  -  

5 - Upper constraint factor  160 160 160 160 1,8 160 160 2.22 160  -  

6 - Optimized values 1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 3.54 0.63 28. 98 

7 – Actual modification factors   1 / 160  1 / 160 n. m. n.m. 1.8 160,0 160  1 / 127  1 / 160 - 
 

Row 1, Configuration as obtained from the one-dimensional thickness optimization in (Sun et al. 2015), which 
represent the initial conditions; 
Row 2, The constraining lower boundary limits specified for the optimization and the related constraint 
multiplication factor (Line 3);   
Row 4, The constraining upper boundary limits specified for the optimization and the associated constraint 
multiplication factor (Line 5).   
Row 6, The ideal model variable values obtained from the multidimensional optimization process; 
Row 7, The actual modification factors as calculated with the values from Line 6 (n.m., not modified). 
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variables t0 and λave.In Table B.2 and Table B.3, we present the stepwise efficiency growths 

up to the efficiency of 29%, as obtained for several optimizations, each using a different 

boundary improvement factor.  

 

Table B.2 - Optimized model variables (boldface symbols), as obtained from 11 
optimizations in a nine-dimensional function space considering individual fB factors. 
We achieved an ideal PCE of 29% by considering nearly perfect light trapping with 
shape-optimized nanoparticles in an absorber layer with t0 =3.5 nm; qGmax = 23 
mA/cm2. 

fB  

 

sf sb ∆n ∆p Vbi Dn Dp µn µp t0 λave η 
[-]   [cm/s] [cm/s] [1/cm3] [1/cm 3] [V] [cm²/s] [cm²/s] [cm²/Vs] [cm²/Vs] [nm]  [nm] [%] 

5.00  40.00 3.84 8.43E+06 1.30E+08 0.80 0.25 0.25 9.65 9.65 99.63 20.00 20.09 

10.00  20.00 1.92 8.43E+06 1.30E+08 0.82 0.50 0.50 19.30 19.30 334.98 10.00 20.77 

20.00  10.00 0.96 8.43E+06 1.30E+08 0.86 1.00 1.00 38.61 38.61 351.59 5.00 22.33 

30.00  6.67 0.64 8.43E+06 1.30E+08 0.90 1.50 1.50 57.91 57.91 18.22 3.33 24.96 

40.00  5.00 0.48 8.43E+06 1.30E+08 0.94 2.00 2.00 77.22 77.22 13.79 2.50 25.71 

60.00  3.33 0.32 8.43E+06 1.30E+08 1.01 3.00 3.00 115.82 115.82 9.28 1.67 26.69 

80.00  2.50 0.24 8.43E+06 1.30E+08 1.09 4.00 4.00 154.43 154.43 7.00 1.25 27.37 

100.00  2.00 0.19 8.43E+06 1.30E+08 1.17 5.00 5.00 193.04 193.04 5.62 1.00 27.89 

120.00  1.67 0.16 8.43E+06 1.30E+08 1.25 6.00 6.00 231.65 231.65 4.70 0.83 28.31 

140.00  1.43 0.14 8.43E+06 1.30E+08 1.32 7.00 7.00 270.26 270.26 4.04 0.71 28.67 

160.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 3.54 0.63 28.98 

Observation: The values in italic formatted numbers correspond (i) to values of the vertex line in 
Figure 4.2f, page 102, and the upper dashed curve in Figure 4.3, page 106. The values in boldface 
formatted numbers correspond to the optimized values (row 6) in Table B.1, page 189. 

 

Table B.3 - Optimized model variables (boldface symbols) as obtained from 11 
multidimensional optimizations, which consider the boundary adjustments in a two-
dimensional in function space, as controlled by specific boundary-expansion factors 
fB, and nearly ideal light trapping based on shape-optimized nanoparticles; qGmax = 
23 mA/cm2.  

fB  

 

sf sb ∆n ∆p Vbi Dn Dp µn µp t0 λave η 
[-]   [cm/s] [cm/s] [1/cm3] [1/cm 3] [V] [cm²/s] [cm²/s] [cm²/Vs] [cm²/Vs] [nm]  [nm] [%] 

1.25  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 443.89 80.00 26.16 

1.50  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 370.22 66.67 26.26 

2.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 277.96 50.00 26.43 

5.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 111.67 20.00 26.96 

9.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 62.18 11.11 27.31 

20.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 28.07 5.00 27.77 

30.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 18.75 3.33 28.01 

40.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 14.08 2.50 28.17 

60.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 9.41 1.67 28.41 

80.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 7.06 1.25 28.58 

160.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 3.54 0.63 28.98 

Observation: The values in italic formatted numbers correspond to the values of the vertex line in 
Figure 4.2f, page 102. 
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In the first table, fB constrains the whole set of variables. In the second table, a 

variable constrained is only adopted for t0 and λave, while the remaining variables are set up 

with the highest values of the here considered boundary amplification factors, with fB = 160, 

similar as in Figure 4.2f, page 102.  

 

APPENDIX B.2 – INCREASED SHORT CIRCUIT DENSITY 

 

As the Jsc in our simulated PSCs is similar to the measured short circuit density in 

(SUN; ASADPOUR; NIE; MOHITE et al., 2015), and the simulated short circuit current 

densities in (CAI; PENG; CHENG; GU, 2015), in the case with light trapping, the highest 

optimized efficiency of 27.8% is obtained because of the cell’s higher (i) open-circuit voltage, 

(ii) fill factor, and (iii) short circuit current density. Some authors present cells with an even 

higher Jsc of, e.g., 24.88 mA/cm2 (JUNG; JEON; PARK; MOON et al., 2019) without light 

trapping, which is even higher than the highest value Jsc of  24.5 mA/cm2, as presented in 

(CAI; PENG; CHENG; GU, 2015) for a 400 thick absorber layer and light trapping. Using 

this higher Jsc as fixed setup configuration in an optimization without light trapping (λave = 

100 nm), and a t0 = 450 nm, we obtained a maximal efficiency of 28.13% (Table B.4, page 

191), because of the V0C and FF increase.  

 

Table B.4 - Optimized model variables (boldface symbols) as obtained from 
optimizations in the nine-dimensional function space, obtained from eleven 
optimizations considering specific boundary-expansion factors fB and an increased 
short circuit current density of Jsc = 24.88 mA/cm2, which resulted in an optimized 
PSC of 28.13% without light trapping.  
 

fB  

 

sf sb ∆n ∆p Vbi Dn Dp µn µp t0 λave η 
[-]   [cm/s] [cm/s] [1/cm3] [1/cm 3] [V] [cm²/s] [cm²/s] [cm²/Vs] [cm²/Vs] [nm]  [nm] [%] 

5.00  40.00 3.84 8.43E+06 1.30E+08 1.40 0.25 0.25 9.65 9.65 450.00 100.00 21.66 

10.00  20.00 1.92 8.43E+06 1.30E+08 1.40 0.50 0.50 19.30 19.30 450.00 100.00 22.95 

20.00  10.00 0.96 8.43E+06 1.30E+08 1.40 1.00 1.00 38.61 38.61 450.00 100.00 24.25 

30.00  6.67 0.64 8.43E+06 1.30E+08 1.40 1.50 1.50 57.91 57.91 450.00 100.00 25.00 

40.00  5.00 0.48 8.43E+06 1.30E+08 1.40 2.00 2.00 77.22 77.22 450.00 100.00 25.54 

60.00  3.33 0.32 8.43E+06 1.30E+08 1.40 3.00 3.00 115.82 115.82 450.00 100.00 26.30 

80.00  2.50 0.24 8.43E+06 1.30E+08 1.40 4.00 4.00 154.43 154.43 450.00 100.00 26.83 

100.00  2.00 0.19 8.43E+06 1.30E+08 1.40 5.00 5.00 193.04 193.04 450.00 100.00 27.25 

120.00  1.67 0.16 8.43E+06 1.30E+08 1.40 6.00 6.00 231.65 231.65 450.00 100.00 27.59 

140.00  1.43 0.14 6.02E+04 1.30E+08 1.40 7.00 7.00 270.26 270.26 450.00 100.00 29.15 

160.00  1.25 0.12 8.43E+06 1.30E+08 1.40 8.00 8.00 308.87 308.87 450.00 100.00 28.13 
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Light trapping should increase this simulated efficiency, but presently, there are no 

FDTD simulations available that show how the Jsc increase as a function of t0 for this cell 

type. Using a light-trapping scheme this PCE will even increase, but as we do not exactly 

know to which extent the Jsc increases based on a light-trapping scheme, we do not 

accomplish an optimization using a light-trapping scheme for this cell. This result must be 

considered as being only approximated, as the used cell in (JUNG; JEON; PARK; MOON et 

al., 2019) is a FAPI and not a MAPI PSC, and furthermore, as it is a nip-type, but not a pin-

type PSC. 

 

APPENDIX B.3 – INFINITE BOUNDARY AMPLIFICATION FACTOR 
 

It is of interest to know how the efficiency of the analyzed pin-type PSE increases if 

its material properties are nearly infinitely improved, and the absorber layer is reduced to an 

infinite thin absorber layer, as accomplished by using a fB = 1000. Such a simulation is of 

especial importance to identify if the optimization algorithm can eventually get stuck in a 

lower local maximum rather than the global maximum. In our optimizations, we obtained a 

high PCE of 32.1 % in Appendix Figure B.1, proving that either, (i) there is no local 

maximum in our optimization space; or otherwise, (ii) the optimization algorithm is not 

getting stuck by an eventually existing local maximum in the multidimensional hypercube 

space.  

While we think that the latter is true as the optimization algorithm explores the whole 

range of constraints for all variables, excluding the absorber layer thickness, as presented in 

section APPENDIX B.1, the essential conclusion is that it is highly unlikely that with an fB = 

160 our multidimensional optimizations got stuck in a local maximum.  

 

APPENDIX B.4 – EFFECTS NOT CONSIDERED OR SIMPLIFIED  

 

Here, we discuss only for completeness some effects which are not considered in the 

used simulation model and, therefore, in the present multidimensional optimizations.  

Effects related to the band tuning of the single-junction solar cell: The short circuit 

current density can be increased in many solar cells by use of a correct band gap tuning, 

which is not considered in the presented solar cell. Our cell presents a fixed effective band 
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gap of 1.1 eV. In arbitrary single-junction solar cells, this band gap value leads to a theoretical 

efficiency limit of 32.23 % (RÜHLE, 2016), which is only 0.68 % lower than the highest 

thermodynamic efficiency limit of 33 %, which demand an ideal band gap of 1.4 eV 

(RÜHLE, 2016). Therefore, an efficiency increase of 0.68 % might be obtained in future work 

because of an only slightly improved band gap tuning. 

 

Figure B.1 - Optimized cell efficiency varying the boundary-expansion factor fB from 1 
to 1000 for the whole set of model variables, showing a theoretical efficiency increase 
to the maximal value of maximal 32.1 % for fB = 1000.  
 

 

 

 

 

 

 

 

 

 

 

 
 

Effects related to the work functions of the front and back contacts: Under one 

aspect, a further efficiency increase might be obtained by a tuning, which leads to the exact 

matching of the values of the conduction band work function, of the (i) the back anode 

contact, and (ii) the electron conduction layer (Figure 3.1a, page 81). Furthermore, an even 

higher efficiency increase might be obtained by a tuning, which leads to the improved 

matching of the valence band work functions of the (iii) transparent front contact, and (vi) the 

hole conduction layer, as the potential difference between these layers is even higher than in 

the former case. Avoiding those potential losses in the electron and hole-conduction pathways 

by use of a better material selection of these layers results in a potential tuning that can 

potentially increase the modeled efficiency further, which is, however, not considered in the 

present work. 
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APPENDIX B.5 – IMPROVEMENT NANOPARTICLES  

 

Shape-optimized NPs and further related up-conversion effects of these nanoparticles 

lead to an improved light trapping effect in comparison to spherical nanoparticles. 

 

Light trapping by plasmonic nanoparticles: In light-trapping structures, 

nanoparticles (NPs) are utilized to confine resonant photons by an induced coherent 

oscillation of the electrons in the conduction band of the atoms. These coherent oscillations 

are localized at the outer surface of the NPs, defining the so-called localized surface plasmon 

resonance (LSPR). Furthermore, particular NPs can even produce an up-conversion effect of 

photons, transforming a part of the lower energy photons to photons with higher inherent 

energy, which match the band gap of the solar cell and lead to the generation of free charge 

carriers (KAKAVELAKIS; PETRIDIS; KYMAKIS, 2017). While the plasmonic effect leads 

to the increased absorption of the available photons and its conversion to free charge carriers, 

the up-conversion effect ensues, additionally, a larger number of convertible photons for the 

generation of free charges. As an outcome of these improvements, the NPs reduce the solar 

cell’s internal series resistance; and increase its internal shunt or parallel resistance, also 

known as recombination resistance.  

 

Shape-optimized nanoparticles: In such a purpose, the effectiveness of the 

plasmonic nanoparticles can be tuned by the NP’s constitution, size, shape, and its 

surrounding environment (KAKAVELAKIS; PETRIDIS; KYMAKIS, 2017) in which the 

NPs are inserted. For these reasons, we consider that the results as obtained in (CAI; PENG; 

CHENG; GU, 2015) can be improved further, which, therefore, leads to a higher absorption 

as a function of the average optical decay length.  

 

However, presently we do not know how the short circuit current density behaves 

with these improved nanoparticles. We set up in an optimistic simplification a constant short 

circuit current density of qGmax = 23 mA/cm2, even for very thin absorber layers in Table B.1 

to Table B.3, pages 189 to 190. This superior absorption property is obtained as we consider, 

e.g., that shape-optimized nanoparticles are more effective than spherical nanoparticles 
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(Kakavelakis et al., 2017). However, the effectiveness of shape-optimized nanoparticles in 

thiny absorber layers should be qualified by a correct quantification of the Jsc, e.g., using an 

FDTD simulation, as already presented for spherical nanoparticles in (Cai et al., 2015), which 

is used in the central part of this thesis. 
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APPENDIX B.6 – FLOWCHART OF THE OPTIMIZATION PROCESS 

 
Figure B.2 - Flowchart of the NLP optimization process, with (i) configuration of the 
considered boundary-expansion factor; (ii) inner loop, for the validation if the 
optimization process has the variable value increased, or decreased, beyond its upper or 
above its lower limits as defined by the boundary-expansion factor fB; (iii) outer loop,  
for the calculation of the J-V curve, the MPP-power; and validation of the convergence 
criterion, which specifies the minimal necessary efficiency gain as being ≥ 0.001%. 
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APPENDIX B.7 – STATE-OF-THE-ART MATERIAL PROPERTIES 

 

Considering state-of-the-art properties (section 2.10, page 70), we like to know what 

the maximal attainable efficiency is, considering a combination of the best measured state-of-

the-art material properties, as obtained by different references. In responding to this question, 

we achieved a simulated PCE of 22.1% (Table B.5), based on the measured short circuit 

current density and its modeling. We calculate the diffusion coefficients in the table based on 

the shortest lifetime and the longest diffusion length as measured by direct and, therefore, 

independent measurement methods. While this efficiency is much higher than the PCE 

obtained in (SUN; ASADPOUR; NIE; MOHITE et al., 2015), if compared to the state-of-the-

art efficiency of 25.2% this PCE is relatively low. We consider that the reason for this low 

efficiency is that the PCE obtained by authors in sections 2.10.2 to 2.10.8, pages 72 to 78, is 

much lower than the state-of-the-art efficiency. Furthermore, there is presently no research 

available, which considers a cell’s material properties improvement rather than the PCE as an 

objective function.  

 

  

Table B.5 - Measured material properties, as most similar to the ideal material properties, the short 
circuit current density, and the absorber layer thickness as found by different authors: (rows 1…6) 
measured properties; (row 7) simulated efficiency based on these measured properties; (row 
8)values as used in the simulation in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) (row 9); 
the optimal values as obtained in (KRATZENBERG; RAMBO; RÜTHER, 2019) (row 9). 
 

   
Variable specification sf sb ∆n ∆p Vbi Dn Dp qGmax t0 λave η   

  Units [cm / s] [cm / s] [1 / cm 3] [1 / cm 3] [V] [cm ² / s] [cm ² / s] [mA/cm²] [nm]  [nm] [%]   

  1 - (Perrakis et al., 2019)* - - - - - - - - 350 -  23.7    

  2 - (Wu et al., 2017)*  2.00E+03 2.00E+03  1.00E+16 1.00E+16  - 1.31  1.31  -  -  -  23.0    

  3 - (Tong et al., 2019)* 1.00E+02 1.00E+02 - - - 1.31 18.04 - - -  20.4    

  4 - (Green, Martin et al., 2015)* - - - - - - - - - 250 20.0    

  5 - (Zhang et al., 2019)* - - - - 1.36 - - - - - 21.4   

 6 - (Wang et al., 2018)* 1.00E+1 2.00E+1 - - - - - - - - 27.0  

  7 -  Combined simulation  1.00E+1 1.92E+01 8.43E+06 1.30E+08 1.36 9.47 9.47 23.9 350 100.0 22.1   

 8 - (Sun et al.,2015)* 2.00E+02 1.92E+01 8.43E+06 1.30E+08 0.78 5.00E-02 5.00E-02 23.0 450.0 100.0 15.7   

 9 - (Kratzenberg et al., 2019) 1.25 0.12 8.43E+06 1.30E+08 1.40 8 8 23.9 160 35.56 27.6  

  

  
 
 
 

Boldface reference shows simulated values, and the * indicates measured properties and efficiency values as obtained by different authors.  
 
Row  1, Values obtained in (PERRAKIS; KAKAVELAKIS; KENANAKIS; PETRIDIS et al., 2019); 
Row  2, Values obtained in (WU; ZHOU; XING; XU et al., 2017);  
Row  3, Based on the diffusion length in (LI; YAN; LI; WANG et al., 2015 and lifetime in (SONG; CUI; WANG; WEI et al., 2015); 
Row  4, Values obtained in (GREEN; JIANG; SOUFIANI; HO-BAILLIE, 2015) 
Row  5, Values obtained in ((ZHANG; WANG; YUAN; WANG et al., 2019); 
Row  6, Values obtained in (WANG; FU; JARIWALA; SINHA et al., 2018); 
Row  7, Best measured values used in a simulation which combines these variables; 
Row 8, As obtained from the one-dimensional thickness optimization in(SUN; ASADPOUR; NIE; MOHITE et al., 2015), representing the initial conditions; 
Row  9, As obtained from a multidimensional optimization for thin absorber layers in (KRATZENBERG; RAMBO; RÜTHER, 2019); 
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APPENDIX B.8 –DIFFUSION LENGTHS AND LIFETIMES 

 

The model of (SUN; ASADPOUR; NIE; MOHITE et al., 2015) considers the 

diffusion coefficients (Dn,p) in its drift-diffusion model (equations (A.31) and (A.32), page 

169), or its derived model of the current densities under exposure to light and in the dark, 

(equations (A.62), page 179; (A.65), page 180), as independent model variables. These 

variables can be substituted with the equation of the diffusion coefficients (equation (4.2)), 

and it can be seen that the diffusion coefficients can be increased by two different methods, (i) 

the increase of the diffusion lengths of charge carriers, or its lifetime reduction. Materials with 

high diffusion lengths are more interesting, as a doubling of its diffusion length leads to a 

four-fold increase in the diffusion coefficient. The lifetimes are less important, and they even 

behave contrarian, as a doubling in the lifetime halves the diffusion coefficients, because the 

lifetime is localized in the denominator of equation (4.2). 

One of the most illustrative presentations of the understanding of the drift-diffusion 

equation (equations (A.31) and (A.32), page 169) and the related equation of the diffusion 

length ((A.33) and (A.34), page 169), is presented in xi, introducing inclusively the derivation 

of the expression related to the diffusion coefficient. The authors define (i) the diffusion 

coefficient (equation (4.1), page 108) as the velocity at which charge carriers move, defining, 

therefore, the quality of the absorber material; (ii) while the minor carrier lifetime of a 

material (equation (4.2), page 109) is the average time that a charge carrier can spend in an 

excited state, after the generation of an electron-hole pair, before it recombines, and (iii) the 

diffusion length (equations (A.33) and (A.34), page 169) is the average distance a charge 

carrier moves between its generation and its recombination. If its velocity and its lifetime are 

large enough to move the generated charge carrier by its diffusion length to its charge 

conduction layer, then the charge carrier does not recombine and increase the PCE of the solar 

cell. 

As to see from equations of the diffusion coefficients (equation (4.1), page 108), the 

same diffusion coefficients can be obtained by different combinations of lifetimes and 

diffusion lengths. If, for example, the diffusion length is doubled, then the lifetime must be 

four times longer to obtain the same diffusion coefficient, and therefore, the same 

recombination rate. This relationship can be understood as the charge carrier needs a longer 
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time for its diffusion if a longer distance is to be traveled at the same velocity. Vice-verse if 

the diffusion length is halved, then the lifetime must be four times shorter. 

While e.g. the average diffusion length of electrons (Ln), and its average lifetimes 

(τn,), can be determined by direct measurements, as discussed in sections 2.10.4, page 73, its 

diffusion coefficient Dn, which determines the diffusion velocity, must be calculated by 

indirect measurement, using the measured Ln,p and τn,p. Therefore, the diffusivity (Dn,) is the 

unique variable of the equation of the diffusion length (A.33), page 169, which must be 

determined by indirect measurements.   

 

Misconceptions of the lifetime and diffusion length measurements: If, e.g., the 

measurements of the lifetime of electrons is accomplished by an indirect rather than a direct 

measurement method, then the lifetime increases as a function of a rise in the diffusion length. 

This misconception can be seen by the substitution of (i) a measured diffusion length, and (ii) 

a considered constant Dn in the equation of the lifetime (eq. (4.2), page 109). In order to avoid 

such an error, the lifetime should be determined independently of the measured diffusion 

length, saying by a direct measurement method, as, e.g., presented in (NAGPAL; GUPTA; 

SRIVASTAVA; JAIN et al., 1990), rather than by an indirect measurement method.  

 

Conversely, in an indirect measurement of the diffusion length, as obtained by (i) a 

lifetime measurement, and (ii) a considered fixed value of Dn, used in (equation (A.33), page 

169), an indirect measurement of the diffusion length by a lifetime measurement, considering 

constant diffusion coefficients, would also be misleading. In such a case the diffusion length 

increases as a function of the lifetime increase. Therefore, the diffusion length should also be 

measured by direct measurement methods, such as, e.g., the SPCM method, as used in 

(XIAO, 2019) in section 2.10.4, page 73.  
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APPENDIX C – ACCURACY AND APPLICABILITY  
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Here we discuss the applicability and the accuracies comparing different methods for 

the determination of the short circuit current density, such as (i) the simplest Beer-Lambert 

method, (ii) the optical transfer matrix method, and (iii) the finite difference time domain 

method.  

 
APPENDIX C.1  – BEER-LAMBERT LAW  

 

The Beer-Lambert modeling calculates the optical absorption of solar irradiance, and 

its conversion in free charge carriers, as a function of the absorber layer thickness and its 

related optical decay length, which is a function of the wavelength. Beer-Lambert optical 

modeling is used for PSC in (SUN; ASADPOUR; NIE; MOHITE et al., 2015), (ADINOLFI; 

PENG; WALTERS; BAKR et al., 2017), and (BALL; STRANKS; HÖRANTNER; 

HÜTTNER et al., 2015), in-between other references. The authors (REN; WANG; SHA; 

CHOY, 2017), use the Beer-Lambert law also to express an increase of the Jsc, for the case 

with ideal light trapping. For the model as proposed in (SUN; ASADPOUR; NIE; MOHITE 

et al., 2015), the elaborated simplification of the average optical decay length (λave) accounts 

for the optical decay lengths of the whole solar spectrum. In this formulation, the cell’s short 

circuit current density, of qGmax = 23 mA/cm2 (SUN; ASADPOUR; NIE; MOHITE et al., 

2015), is proportional to the total or maximal generation of charge carriers per cell area Gmax 

[m-2s-1], which is calculated as calculated with equation (A.19), page 165. In this equation, 

Geff [m-3s-1] is the effective generation of charge carriers per volume unit of the absorber layer, 

and λave [m] the average optical decay length. A simplified solution of equation (A.19), page 

165, is presented in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) by equation (A.20), 

page 165, as obtained by the integration of (A.19). 

For the case without light trapping, the material-specific properties, defined as Geff  = 

1.4356 x 1013 cm-3s-1, λave = 100 nm and Jsc were validated in (SUN; ASADPOUR; NIE; 

MOHITE et al., 2015) with the OTM modeling method. Additionally, the authors validated 

Jsc by measurements. The Beer-Lambert model considers that approximately 99% of the light 

is absorbed in the forward direction, while 1% is reflected on the back layer, as can be read 

from Figure 3.1, page 81. For example, if λave = 100 nm and t0 = 450 nm, this 1% corresponds 

to the part of the charge carrier generation curve, which appears for penetration depths beyond 

t0 (x > 450 nm) in this figure.  
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APPENDIX C.2  – OPTICAL TRANSFER MATRIX METHOD 

 

A simulation method that presents a higher resolution than the Beer-Lambert model 

in the modeling of the short circuit current density is the cavity-modeling based on the OTM 

modeling. In this method, the photocurrent density is calculated as a function of the (i) 

extinction coefficient, and (ii) the refractive index, which in its conjunction, are conceived as 

the complex refractive index. Both coefficients are functions of the wavelength of the solar 

irradiance. The modeling of the short circuit current density without light trapping, as used in 

our model, was validated in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) by (i) the OTM 

method and (ii) the measurements with a manufactured solar cell, which resulted to low 

deviations of only 0.1%.  Exact values of the extinction coefficient and the refractive index 

for the PSC as used in (SUN; ASADPOUR; NIE; MOHITE et al., 2015) are also validated in 

(JIANG; GREEN; SHENG; HO-BAILLIE, 2015).  

 

APPENDIX C.3  – FINITE-DIFFERENCE TIME-DOMAIN MODELING  

 
In comparison to the OTM model, an even higher-resolution simulation method for 

the determination of a correct Jsc is obtained with the finite-difference time-domain (FDTD) 

modeling (CAI; PENG; CHENG; GU, 2015). In comparison to the Beer-Lambert and OTM 

modeling, this third simulation method presents possibly the highest accuracy, for the 

modeling of the short circuit current density, because of its high spatial resolution using a 

finite-element method (FEM). The FDTD is a numerical method of computational 

electrodynamics, which uses time-dependent partial Maxwell differential equations in the 

discretization of a very small but finite-volume section of the absorber layer and the method 

pertains to the group of finite-difference modeling, as mostly known from the FEM. The 

objective of the FDTD is to model the cell’s absorption, and especially its increase, because of 

light trapping effects, which is accomplished over a wide frequency spectrum of the 

electromagnetic solar irradiance. In the case of light trapping with plasmonic nanoparticles, it 

simulates the omnidirectional scattering of light coming from a unidirectional light source, an 

effect inherent to the nanoparticles when inserted into the absorber layers of a PSC. (CAI; 

PENG; CHENG; GU, 2015) accomplished an FDTD modeling for a PSC, which presents the 

same absorber material (CH3NH3PBI3) as used in (SUN; ASADPOUR; NIE; MOHITE et al., 
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2015), and therefore, its simulation lead in a very similar short circuit current density 

considering a cell with t0 = 400 nm without light trapping. As a result, we consider a high 

accuracy for our optimizations, using the adopted current densities as simulated in (CAI; 

PENG; CHENG; GU, 2015) for the cases with and without light trapping.   

 

APPENDIX C.4  - IMPROVED ABSORBTION AND LIGHT TRAPPING  
 

In our optimizations in section 4.2, page 105, we use the same Jsc(t0) as a function of 

t0 as obtained in (CAI; PENG; CHENG; GU, 2015) for light trapping with spherical 

nanoparticles. The authors show that efficient light trapping using spherical nanoparticles 

increases the cell’s Jsc for a large range of absorber layer thicknesses of t0 ≈ 50…450 nm. For 

t0 = 50 nm, the Jsc decreases to 11 mA/cm2, and an almost complete restoration of the cell’s 

short circuit current density is obtained by light trapping. Considering that, because of 

improved light trapping, a full restoration of the Jsc can be obtained even for lower absorber 

layer thicknesses; higher efficiencies are the result as presented in (Appendix Table B.1 to 

Table B.3, pages 189 to 190). E.g., an efficiency of 28.4% can be obtained for a cell with an 

absorber layer thickness of ~ 10 nm with fB = 60 in Appendix Table B.3, page 190. These 

results are based on a fB constrained absorber layer thickness.  

In a more conservative setup of our optimizations, in section 4.2, page 105, we 

analyzed several absorber layer thicknesses. Our ideal cell design, which presents a high 

efficiency of 27.6% we obtained for a higher minimum value of t0 = 160 nm, using the 

corresponding Jsc as simulated in (CAI; PENG; CHENG; GU, 2015) for spherical plasmonic 

nanoparticles. The adopted λave, we obtained by the equality constraint in equation (3.10), 

page 87. As a result, we adopt in our modeling the same relationship in-between λave and t0 as 

presented in (SUN; ASADPOUR; NIE; MOHITE et al., 2015), while the short circuit current 

density (Jsc = q Gmax) is the same as obtained by FDTD simulations in (CAI; PENG; CHENG; 

GU, 2015), getting, consequently, carefully selected setup conditions in our multidimensional 

optimizations, which do not result in overestimations of the optimized PCE.  

In a fB constrained optimization, where the whole set of variables is improved with 

the considered maximal fB = 160, as defined by equations (3.1) to (3.9), page 83, we actually 

obtained an m – factor of  5.5, analyzing the gradient of the vertex line in Figure 4.2f, page 

102. This factor is higher than the defined m = 4.5 in (SUN; ASADPOUR; NIE; MOHITE et 
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al., 2015) for a low-efficiency PSC of 15.7%. However, this m factor difference results only 

in a very small efficiency difference in a fully optimized PSC. We obtained a maximal PCE of 

27.62% with m = 4.5, and 27.82 % with m = 5.5.  

 
 



205 
 

APPENDIX D – COMPUTER SIMULATION CODES   
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Here we present two different simulation examples using the MapleTM and the 

MatlabTM program, which result in the J-V curves of the considered non-optimized and 

optimized cell. The first example (section Appendix D.1) considers nearly ideal light trapping 

in an extra thin absorber layer, and the second example (section Appendix D.2, page 211) 

considers the optimized cell with a 160 nm thick absorber layer, which results in Figure 4.5, 

page 115.  

 

APPENDIX D.1 – MapleTM for ideal light-trapping 

 

Considering ideal light trapping in extreme thin absorber layers, the PSC’s efficiency 

increases from 15.7 % to 29 %, as also presented in Appendix Table B.1, page 189. We show 

in this section, by a simple simulation in the program MapleTM, that PSCs of such a high 

efficiency can be obtained if its absorber layer thickness is sufficiently reduced and its 

material properties are adequately improved. Especially its absorption by light-trapping is 

meliorated, showing nearly ideal light trapping. Such an improved light trapping can 

eventually be configured by the use of shape-optimized nanoparticles, which improves the 

light trapping character of as related to the use of spherical NPs, where the latter was adopted 

in sections 3 and 4, pages 79 and 98. The simulations are accomplished by Maple equations 

(D.1) to (D.7), pages 208 to 208, and the simulated curves are presented in Appendix Figure 

D.1, page 210. 

 

Non optimized solar cell with the set-up conditions: First, we specify the complete 

equation for the current densities under exposition to light, considering solely optical 

recombination Jphoto by equation (D.1). The J-V curve, when the solar cell is localized in the 

dark Jdark (D.7), page 208, is similar in comparison to the J-V curve of the forward-current of 

a diode. This curve is used to simulate the recombination effects of the solar cell. The 

superposition of Jphoto and Jdark (equation (D.7)) results in the J-V curve that characterizes a 

solar cell by the current Jlight. The terms defined in equation (D.4), we already introduced by 

equation (A.10), page 161, presenting a dimensionless form of the expression of the electric 

field. In (D.7), the used constants, saying (i) the electric charge and (ii) the Boltzmann 

constant, are defined. The maximal generation of charge carriers, as related to the absorption 

of the cell, and the cell’s temperature are defined as fixed values. The equation (D.12), page 
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209, sets up the nine model variables, saying the eight considered material properties and the 

absorber layer thickness for the solar cell as optimized in (SUN; ASADPOUR; NIE; 

MOHITE et al., 2015), which are here utilized as initial in a multidimensional optimization. 

As the different variables were specified in SI units, the current and power densities are 

converted in values of [mA/cm2], and [mW/cm2] by equation (D.13). The plotting of the two 

current density curves, and the power density curve is specified by (D.14) to plot Figure D.1, 

page 210. The non-optimized cell results in a power density of 15.7 W/cm2, an efficiency of 

15.7% 

 

Optimized solar cell: The equations (D.9) to (D.12) define the equation of the 

optimized solar cell configuration (Jlight-opti), using the same expressions as already specified 

in (D.1) to (D.7). The nine optimized variables, as obtained by the multidimensional 

optimization, are defined by equation (D.12). Finally, the normalization and the plotting of 

the optimized curves are specified by equations (D.13) and (D.14). The optimized cell results 

in a power density of 29 W/cm2, an efficiency of 29%.  
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Figure D.1 – J-V curves under exposition to light (dash-dotted curves), and in the dark 
(dashed curves); and power density curves (dotted curves) of a simulated cell with setup 
(curves with the lower voltage) and nearly ideal light trapping and improved material 
properties (curves with the higher voltage), as obtained with the MapleTM simulation, leading 
for the optimized cell to a PCE of 29 % (figure is similar as in Figure 4.5, on page 115). The 
abscissa specifies the terminal voltage, the left-side of the ordinate is the current density, 
while its right side shows the power density.   
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Observation: The simulation adopts almost the identical symbols as shown in the text, and 

only the variable V’, (equation (A.10), page 161) is here substituted by V”, and the variable V 

in this equation is substituted by v, because of MapleTM format convenience. Material 

properties are expressed in SI units, and the axis of the obtained curves are converted to the 

units as adopted in (SUN; ASADPOUR; NIE; MOHITE et al., 2015). 

 
 

APPENDIX D.2 – MATLAB SIMULATION OF BEST DESIGN 

 

This simulation program was adapted from the Supplementary Information presented 

in (SUN; ASADPOUR; NIE; MOHITE et al., 2015). The simulation uses an identical 

formulation, as presented in section , page 206. The setup conditions of the non-optimized 

solar cell are also the same. However, the variable setup conditions of the optimized solar cell 

are adopted as used obtained from the multidimensional optimizations presented in sections 3 

and  4, pages 79 and 98, using light trapping with spherical nanoparticles, as based on the 

results obtained in (CAI; PENG; CHENG; GU, 2015), which results in a slightly lower PCE. 
 
% ************************************************************** 
% Simulation of: 
% (i) the cell as optimized in (Sun et al., 2015),  
% and (ii) the selected PSC with t0 = 160 nm and light trapping  
% (Adapted from Supplementary Information in (Sun et al. 2015)) 
% ************************************************************** 
clear all, close all; 
  
qgmax      = 23; % mA/cm2 
  
VdataH     = 0:0.0001:1.5;  % terminal voltage 
vd_        = VdataH; 
  
%% ************************************************************************ 
% the values, equations and curves as obtained in Sun et al.(2015): 
% ************************************************************************ 
lambda  =  100;      % nm 
Dnp     =  0.05;     % cm2s-1 
kt      =  0.0259;  % Boltzmann constant x temperature; 
vbi     =  0.78;    % [V] Buitl in voltage, 
to      =  450;     % [nm] Cell thickness, 
sf      =  2e2;     % the front surface recombination velocity, 
sb      =  19.2;    % the back surface recombination velocity, 
jfo     =  2.7 * 10^-13; % recombining current at the front surface; 
jbo     =  4.0 * 10^-13; % recombining current at the back surface; 
m       =  to/lambda; 
bf      =  Dnp/to/1e-7/sf; 
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bb      =  Dnp/to/1e-7/sb; 
y       =  (vd_-vbi)./kt; % V'  
alphaf  =  1./((exp(y) -1)./y+bf); 
alphab  =  1./((exp(y) -1)./y+bb); 
B       =  alphab .* ((1-exp(y+m))./(y+m) -bb); 
A       =  alphaf .* ((1-exp(y-m))./(y-m) -bf); 
jphoto_  =  qgmax * (-B.*exp(-m)+A); 
  
 %1e10 here just make it easy to converge 
jdark_  = (exp(vd_/kt) -1).*(alphaf*jfo+alphab*jbo); % /1e10; 
jlight_ = jphoto_ + jdark_; 
Power__  = -jlight_.* vd_; 
Power_   = Power__(1:8668); 
vd_P     = vd_(1:8668); 
[Pmpp_,amostra_] = max(Power_); 
  
plot(vd_P, Power_,'r-.','linewidth',2); grid on, hold all, 
plot(vd_, -jlight_,'b-.','linewidth',2),  
plot(vd_, -jdark_,'k-.','linewidth',2), hold all, axis([0 1.4 -5 25]);% 
xlabel('Terminal Voltage [V]','fontsize',11), ylabel('Current [mA/cm^2], 
Efficiency [%]','fontsize',11),grid on 
Isc_sun = max(-jlight_) 
  
%%*********************************************************************** 
% The new U-I curve for the optimized model: 
% ************************************************************************* 
clear alphaf alphab jfo jbo vbi to sf sb delta_p delta_n B A jdark 
qgmax  = 23.9;    % [mA/cm2]; short circuit current density (q Gmax), as 
obtained by FDTD simulations in (Cai et al., 2015)  
m      = 5.5;     % [-] as used in (Sun et al., 2015) for ~ 1 % reflection 
losses at the back reflector,   
Dnp    = 8 ;      % [cm2s-1] diffusion coefficients, as obtained by the 
multidimensional optimization, 
to     = 160;     % [nm] Cell thickness, as obtained for high efficiency 
and low Pb content, 
lambda = to / m;  % [nm] as obtained by the constraints' setup, 
vbi    =  1.4;    % [V] Built in voltage, as obtained by the 
multidimensional optimization, 
sf     =  1.25;   % [cm/s] front surface recombination velocity, as 
obtained by the multidimensional optimization, 
sb     =  0.12;   % [cm/s] back surface recombination velocity, as obtained 
by the multidimensional optimization, 
  
% The terminal voltage: 
VdataH     = 0:0.0001:1.5; 
vd         = VdataH; 
kt      =  0.0259;      % Boltzmann constant x temperature; 
delta_n =  8.43 * 10^6; % [cm^-3], 
delta_p =  1.3 * 10^8;  % [cm^-3], 
q       =  1.60217662*10^-22; % [mA s] 
jfo     =  q * sf * delta_n;  % [mA/cm^2]  
jbo     =  q * sb * delta_p;  % [mA/cm^2] 
bf      =  Dnp/to/1e-7/sf; 
bb      =  Dnp/to/1e-7/sb; 
y       =  (vd-vbi)./kt; % named V' in (Sun et al., 2015) 
E       =  (vd-vbi)./to; 
alphaf  =  1./((exp(y) -1)./y+bf); 
alphab  =  1./((exp(y) -1)./y+bb); 

 
 



213 
 

B       =  alphab .* ((1-exp(y+m))./(y+m) -bb); 
A       =  alphaf .* ((1-exp(y-m))./(y-m) -bf); 
jphoto  =  qgmax * (-B.*exp(-m)+A); 
  
jdark  = (exp(vd/kt) -1).*(alphaf*jfo+alphab*jbo); % /1e10; 
jlight = jphoto + jdark; 
Power_c  = -jlight.* vd; 
Power    = Power_c(1:length(vd)); 
vd_r     = vd(1:length(vd)); 
plot(vd_r, Power,'r-','linewidth',2); 
 
[AX, s1h1, s1h2] = plotyy(vd, -jlight,vd, -jdark); 
set(get(AX(1), 'Ylabel'), 'String', 'Current density J 
[mA/cm^2]','fontsize',11); 
set(get(AX(2), 'Ylabel'), 'String', 'Power density P 
[mW/cm^2]','fontsize',11); 
  
%sig1 color blue 
sig1col = [0 0 1]; 
%sig1log color black 
sig1logcol = [0 0 0]; 
%style the plot 
set(s1h1,'Color',sig1col,'LineWidth',2); 
set(s1h2,'Color',sig1logcol,'LineWidth',2); 
set(AX(1),'YColor',sig1logcol); 
set(AX(2),'YColor',sig1logcol); 
set(AX(1),'YLim',[-30 30]) 
set(AX(1),'YTick',[-30:5:30]) 
set(AX(2),'YLim',[-30 30]) 
set(AX(2),'YTick',[-30:5:30]) 
xlabel('Terminal Voltage [V]','fontsize',11) 
  
[Pmpp,amostra] = max(Power); 
legend('P','J_l_i_g_h_t','J_d_a_r_k','P_m_a_x','J_l_i_g_h_t_-
_m_a_x','J_d_a_r_k_-_m_a_x','non optim.','optim.') 
  
plot(vd_(amostra_),Pmpp_,'k*'); 
plot(vd(amostra),Pmpp,'ko'); 
plot(vd(amostra),-jlight(amostra),'ko'); 
plot(vd(amostra),-jdark(amostra),'ko'); 
plot(vd_(amostra_),-jlight_(amostra_),'k*'); 
plot(vd_(amostra_),-jdark_(amostra_),'k*'); 
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ENDNOTES 

i The T80 time defines the lifetime in which a solar cell or photovoltaic module loses 20 % of its MPP power, as 
specified for a solar irradiance of 1000 W/m2 and air mass of AM 1.5.     
ii (a) In heterojunction solar cells a large number of recombination centers appear, as a consequence of the 
anisotropic crystal structure at the termination of the semiconductors crystals involved by reason of the use of 
distinct materials for the n-type, the p-type and the i-type layers, which own dissimilar crystal structures. These 
effects lead to recombination effects on the front and back transition surfaces between the perovskite absorber 
and it’s charge conduction layers and result to a significant impact on the behavior of the IV-curve of 
semiconductor devices. The dangling bonds at these transition surfaces introduce a large number of electrically 
active states, which result in higher defect densities, leading therefore, to a reduction of the open-circuit V0C and 
maximum power point voltages VMPP (ELUMALAI; UDDIN, 2016). Furthermore, these transition surfaces tend 
to contain more impurities and defects, which are acquired e.g. in silicon solar cells during the fabrication 
process, when devices are exposed to air and humidity(VAN ZEGHBROECK, 2004).  
(b) Electronically active states capture holes and electrons and are, likewise, existent at the transition surface 
between single perovskite crystals within the absorber layer.  
(c) Another recombination effect related to the transition between the charge conduction layers and the absorber 
layer occurs by reason of holes, which present a lower energy, and electrons, which present a higher energy than 
the blocking barriers, designed for the charge conduction layers in a PSC (Figure 3.1a, page 80), which lead also 
to the recombination current densities Jf and Jb.      
iii In PSC the loss of iodine at the perovskite CH3NH3PbI3-xClx crystal termination or crystal surface leads to 
vacancy sites, resulting in a local positive charge attached to the Pb-atom. This local inhomogeneity of the 
crystal structure, therefore, represents a positive coulomb trap of electrons, also called a trap state (NOEL; 
ABATE; STRANKS; PARROTT et al., 2014).  
iv Thermal equilibrium of a semiconductor is a state where no external energy is added to this semiconductor 
due to irradiance, voltage or temperature.  
v PV-Education, Surface Recombination velocity, http://www.pveducation.org/pvcdrom/surface-recombination. 
vi As the energy potentials and band gaps of the organic charge conduction layers have to be adjusted in 
accordance to the configured band gap of the perovskite absorber layer (Figure 3.1a, page 109), a correct 
matching of the band gap of these layers also increases the built-in voltage (SUN; ASADPOUR; NIE; MOHITE 
et al., 2015).  
vii Within the solar cell, both the drift and the diffusion current densities of charge carriers are always equal, 
determining therefore, different equilibrium conditions. In the dark the drift and the diffusion current densities 
are in a specific internal equilibrium, producing thus only the built-in electrical field, if no external voltage is 
applied to the cell’s terminals. Due to the production of additional charges under light exposure, the number of 
positive charges in the p-type layer and the number of negative charges in the n-type layer are further increased, 
and a new equilibrium of the drift diffusion current densities is produced. If under this condition, a load is 
connected to the cell’s terminals, an external drift current of electrons and holes defines, together with the 
internal drift current densities, another specific equilibrium. 
viii The net electric field represents, by reason of the superposition of the internal and the external electric fields, 
a barrier for the diffusion current density. Whereas the internal electric field depends on the equilibrium of 
charge carrier concentrations of the solar cell, the external field is defined by the value of the cell’s terminal 
voltage. If the cell is exposed to light, the external field is enhanced by the production of electrons within the n-
type and holes within the p-type semiconductor. 
ix The net electric field of a solar cell is defined by the superposition of its internal and external electric fields. 
However, numerical simulations show that the net electric field in PSC is mainly defined by its internal field, 
and therefore, the use of the internal field for the replacement of the net electric field represents a good 
approximation. This concludes that the external electric field, which is a function of the photo-generated carriers, 
does not significantly perturb the net electric filed as discussed in (SUN; ASADPOUR; NIE; MOHITE et al., 
2015), citing (NIE; TSAI; ASADPOUR; BLANCON et al., 2015). 
x Observation: The boundary equations of the Poisson equation ((A.23), page 196, and (A.24)) are both defined 
for the same variable, which is the electrostatic potential (φ), which facilitates therefore, the solution of this 
second-order differential equation. However, in the case of the drift diffusion differential equation, the first 
boundary equation specifies the electron density (n) ((A.37), page 200), while the second boundary equation 
specifies the current density of electrons (Jn) ((A.39), page 200). Thus, the solution of the general equation of Jn-

photo and Jn-dark = Jf with known integration constants is obtained differently, resulting in an extended equation 
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manipulation. The same consideration is also valid for drift diffusion equations for holes and its boundary 
conditions, finding the hole generation current densities Jp-photo and Jp-dark = Jb (Figure 3.1a, page 109). For the 
recombination current density, the derivation process is repeated under consideration of G(x) = 0, using the drift 
diffusion equation in (A.35), page 199, and (A.36), instead of (A.31), page 198, and (A.32). 
xi https://www.pveducation.org/pvcdrom/pn-junctions/diffusion accessed on 24.05. 2020.   
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