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RESUMO

Estamos vivendo a era do rastreamento do movimento de pessoas e de outros objetos móveis,
em que uma grande quantidade de informação sobre a rotina diária das nossas vidas é coletada
e armazenada em diferentes locais e formatos. Esses dados de movimento são chamados de
trajetórias, e consistem em um dado complexo que envolve as dimensões espaço (onde o objeto
está), tempo (quando), e em alguns casos semântica (o quê ou como faz). Mais recentemente,
trajetórias estão sendo representadas por múltiplos aspectos, os quais permitem analisar o mo-
vimento do objeto móvel sob diferentes pontos de vista, como as interações em redes sociais
ou a sequência de meios de transporte utilizados pelo objeto móvel. No entanto, analisar esse
novo tipo de dado para descobrir padrões de movimentação é ainda uma questão de pesquisa
em aberto. Uma das tarefas de descoberta de padrões mais importantes em Mineração de Dados
é a classificação, que consiste em criar modelos matemáticos preditivos a partir de dados e usar
esses modelos para predizer situações futuras. Classificação de Trajetórias é uma tarefa muito
complexa, pois esses modelos devem ser construídos a partir de dados sequenciais envolvendo
as dimensões de espaço, de tempo e, mais recentemente, semânticas. Nos últimos anos a classi-
ficação de trajetórias tem sido aplicada em problemas reais, considerando apenas as dimensões
espaço e tempo, ou atributos criados a partir dessas dimensões, como velocidade e aceleração.
No entanto, esses métodos não suportam trajetórias com dimensões além de espaço e tempo,
como as provenientes de redes sociais, que envolvem diversas informações semânticas do mo-
vimento de um indivíduo. Como consequência, novos métodos para classificação de trajetórias
são necessários para lidar com esse novo tipo de dado. Nesse sentido, o maior desafio consiste
em identificar as partes de uma trajetória, chamadas de subtrajetórias, que melhor representam
o movimento de indivíduos de uma classe em um problema de classificação. Nesta tese são
propostos dois novos métodos para encontrar automaticamente as subtrajetórias mais relevan-
tes de um conjunto de dados de trajetórias em um problema de classificação, sem a necessidade
de passagem de parâmetros. O primeiro método, MOVELETS, utiliza uma abordagem base-
ada em distância entre subtrajetórias que considera todas as dimensões da trajetória de forma
conjunta. Esse método é mais apropriado para problemas de classificação de trajetórias brutas,
representadas apenas pelas dimensões espaço e tempo. O segundo método, MASTERMOVE-
LETS, encontra as subtrajetórias mais relevantes e a melhor combinação de dimensões para
cada subtrajetória, o que torna o método robusto para classificação de trajetórias com múltiplos
aspectos. Os métodos propostos foram avaliados experimentalmente com conjuntos de dados
reais de trajetórias. Os modelos preditivos construídos usando MOVELETS apresentaram me-
lhor qualidade preditiva em relação aos métodos estado da arte, em quatro problemas clássicos
classificação de trajetórias brutas, são eles: classificação de animais, de furações, de caminhões
e de movimentação de pessoas (GeoLife). O método MASTERMOVELETS foi avaliado em pro-
blemas de classificação de trajetórias com múltiplos aspectos, provenientes de bases de dados
de check-ins de três redes sociais, Gowalla, Brightkite e Foursquare. Os modelos construídos
também apresentaram melhor qualidade preditiva em relação aos métodos existentes. Os resul-
tados alcançados indicam que os métodos propostos superaram o estado da arte e são eficientes
para classificação de trajetórias com múltiplos aspectos e promissores para a classificação de
dados sequenciais multidimensionais.
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subtrajetória relevante é aquela que trajetórias de uma classe passam perto e trajetórias de ou-
tras classes passam longe. A hipótese lançada neste trabalho é que a descoberta e extração das
subtrajetórias mais relevantes, em problemas de classificação de trajetórias representadas por
múltiplos aspectos, pode melhorar de forma significativa a acurácia de modelos preditivos para
classificação de trajetórias. Nesse contexto, nesta tese são propostos novos métodos para encon-
trar automaticamente as subtrajetórias mais relevantes de um conjunto de dados de trajetórias
em problemas de classificação.

Objetivos
O principal objetivo desta tese é propor novos métodos para classificação de trajetórias que
suportem trajetórias representadas por múltiplos aspectos. Para atingir esse objetivo geral foram
delineados os seguintes objetivos específicos:

- Propor novos métodos para extrair subtrajetórias relevantes sem realizar o particiona-
mento prévio da trajetória;

- Propor novos métodos para encontrar a combinação de dimensões de cada subtrajetória
que apresenta maior potencial de discriminação;

- Propor novos métodos para medir a relevância de subtrajetórias;

- Propor novos métodos para construir modelos de classificação usando as subtrajetórias
relevantes.

Metodologia
Esta tese consiste em uma pesquisa científica classificada de acordo com (SILVA; MENEZES,
2001) pela sua natureza, abordagem e procedimentos técnicos. Quanto à natureza de pesquisa
este trabalho é de pesquisa básica, pois consiste na criação de novos métodos para análise de
dados sequenciais multidimensionais, os quais podem ser úteis em diferentes domínios. Quando
à abordagem este trabalho é quantitativo, pois são utilizadas técnicas estatísticas para avaliar
o desempenho dos métodos propostos, em termos de capacidade preditiva, tempo de execução
e escalabilidade. Quantos aos procedimentos técnicos utilizados neste trabalho a pesquisa é
bibliográfica e experimental, pois foi realizada uma revisão da literatura para compreender o
estado da arte e encontrar o nicho de pesquisa e os novos métodos propostos foram avaliados
experimentalmente e comparados com outros métodos existentes na literatura. Para alcançar os
objetivos propostos nesta tese foram delineadas os seguintes tarefas.

1. Acompanhar as publicações sobre classificação de trajetórias nas conferências e periódi-
cos científicos mais importantes da área.

2. Definir novos métodos para extrair subtrajetórias relevantes e introduzir o conceito de
movelets, baseado no conceito de shapelets de séries temporais, para definir subtrajetórias
relevantes para a classificação de trajetórias;

3. Definir novos métodos para mensurar a relevância de trajetórias: a relevância de shapelets

em séries temporais é medida utilizando o ganho de informação, no entanto, medidas mais
apropriadas para dados de trajetória podem auxiliar a encontrar melhores subtrajetórias e
melhorar a acurácia dos classificadores;

4. Definir novos métodos para encontrar o alinhamento entre trajetórias e subtrajetórias con-
siderando múltiplas dimensões: o alinhamento proposto para shapelets leva em conta
apenas uma única dimensão, e novos métodos são necessários para encontrar esse alinha-
mento considerando múltiplas dimensões;

5. Definir os conjuntos de dados para experimentação;



6. Avaliar os métodos propostos experimentalmente com conjuntos de dados reais e compará-
los com os métodos existentes na literatura;

7. Escrever o documento da tese descrevendo o estado da arte, os temas de pesquisa em
aberto, as contribuições dos métodos propostos para esses temas de pesquisa e os avanços
produzidos em relação ao estado da arte.

Nesta tese são propostos dois novos métodos para encontrar automaticamente as subtraje-
tórias mais relevantes de um conjunto de dados de trajetórias em um problema de classificação.
O primeiro método é chamado de MOVELETS (FERRERO et al., 2018) e utiliza uma aborda-
gem baseada em distância entre subtrajetórias que considera todas as dimensões da trajetória de
forma conjunta. Esse método é mais apropriado para problemas de classificação de trajetórias
brutas, representadas pelas dimensões espaço e tempo. Nesse método também foi proposta uma
nova técnica para medir a relevância das subtrajetórias, denominada Left Side Pure (LSP), que
resolve um problema do uso do ganho de informação no contexto de dados de trajetórias.

O segundo método é chamado de MASTERMOVELETS e encontra as subtrajetórias mais
relevantes e a melhor combinação de dimensões para cada subtrajetória, o que torna o método
robusto para classificação de trajetórias com múltiplos aspectos (FERRERO et al., 2020). Nesse
método também foram propostos duas novas técnicas, denominadas MASTERALIGNMENT e
MASTERRELEVANCE, para encontrar o melhor alinhamento de trajetórias e subtrajetórias e
para medir a relevância de subtrajetórias, respectivamente, no contexto trajetórias representadas
por múltiplas dimensões com tipos de dados heterogêneos.

Resultados e Discussão
O métodos propostos nesta tese foram avaliados experimentalmente e comparados com

outros métodos da literatura. O método MOVELETS foi avaliado experimentalmente com con-
junto de dados reais de trajetórias brutas, envolvendo as dimensões espaço e tempo, para clas-
sificação de trajetórias de animais, de furações, de caminhões e de movimentação de pessoas
(conjunto de dados GeoLife), e foi comparado com outros métodos existentes para classificação
de trajetórias, como o TraClass (LEE et al., 2008), o TCPR (PATEL et al., 2012) e os propos-
tos em (DODGE; WEIBEL; FOROOTAN, 2009; ZHENG et al., 2010; XIAO et al., 2017).
Os resultados experimentais mostraram a eficiência de método proposto, em que MOVELETS

melhorou por ampla margem a qualidade preditiva dos modelos de classificação em relação às
abordagens existentes na literatura para todos os conjuntos de dados utilizados (FERRERO et
al., 2018).

O método MASTERMOVELETS foi avaliado em problemas de classificação de trajetó-
rias com múltiplos aspectos, provenientes de bases de dados de check-ins de três redes sociais,
Gowalla, Brightkite e Foursquare. A qualidade preditiva dos modelos construídos utilizando
MASTERMOVELETS foi comparada com outros métodos na literatura, como o BiTULER (GAO
et al., 2017), proposto para classificação de trajetórias provenientes de redes sociais, e a classifi-
cadores baseados no algoritmo dos vizinhos mais próximos utilizando diferentes medidas de si-
milaridade e distância para dados sequenciais multidimensionais: Longest Common Subsequen-

ces (LCSS) (VLACHOS; KOLLIOS; GUNOPULOS, 2002), Edit Distance for Real Sequences

(EDR) (CHEN; ÖZSU; ORIA, 2005), Dynamic Time Warping for Multidimensional Sequences

(MD-DTW) (HOLT; REINDERS; HENDRIKS, 2007), and Multidimensional Similarity Mea-

sure (MSM) (FURTADO et al., 2016). Os modelos construídos usando MASTERMOVELETS

também apresentaram melhor qualidade preditiva em relação aos métodos existentes, reduzindo
o erro de classificação entre 15% a 63%.

Apesar dos avanços alcançados na qualidade preditiva dos modelos utilizando os méto-
dos MOVELETS e MASTERMOVELETS, ambos os métodos possuem uma alta complexidade de



tempo de execução, o que pode limitar a escalabilidade desses métodos, ou seja, a sua aplica-
ção em cenários com grandes volumes de dados. Nesse sentido, foi realizada uma análise de
escalabilidade para verificar o comportamento de tempo de execução desses métodos ao variar
o número de trajetórias, o número de elementos das trajetórias e o número de dimensões que
compõem as trajetórias. Adicionalmente, foram propostas duas novas variações dos métodos
propostos que limitam o tamanho máximo das subtrajetórias a serem exploradas, chamados
MOVELETS-LOG e MASTERMOVELETS-LOG, os quais reduzem de maneira significativa o
tempo de execução dos métodos, mantendo a acurácia dos modelos preditivos.

Considerações Finais
Nesta tese foi abordado o problema de classificação de trajetórias, que é um tema importante
em mineração de dados de mobilidade, com diversas aplicações. O tema foi abordado do ponto
de vista de explorar e encontrar subtrajetórias relevantes para construir modelos de classifica-
ção. Foram propostos dois métodos que consideram diferentes cenários. O primeiro método,
MOVELETS, encontra subtrajetórias relevantes considerando todas as dimensões da trajetória
de forma conjunta. O segundo método, MASTERMOVELETS, procura pela melhor combinação
de dimensões para encontrar cada subtrajetória relevante. Os métodos propostos foram avalia-
dos experimentalmente com conjuntos de dados reais de trajetórias e comparados com outros
métodos existentes na literatura, apresentando melhor desempenho em todos os conjuntos de
dados utilizados. As subtrajetórias encontradas pelos métodos propostos são neutras em rela-
ção ao algoritmo de construção de modelos a ser utilizado, fáceis de visualizar, de descrever, de
entender e de procurar em novos conjuntos de dados de trajetórias. Os métodos não necessitam
que parâmetros sejam configurados e são independentes de domínio, o que significa que podem
ser usados em qualquer problemas de classificação de sequências multidimensionais.

Trabalhos futuros incluem propor novos métodos para melhorar complexidade de tempo
de MOVELETS e MASTERMOVELETS; usar técnicas de word embeddings para medir a dis-
tância entre elementos da trajetória baseado em contexto; e explorar a extração de atributos de
subtrajetórias para descobrir movelets.

Palavras-chave: Trajetórias Multiaspecto. Classificação de Trajetórias. Subtrajetórias Rele-

vantes. Movelets. Classificação de Sequências Multidimensionais.



ABSTRACT

We are witnessing the era of movement tracking and mining, where huge volumes of data about
our daily lives are being collected and stored in several sources and formats. These data are
stored in the form of trajectories, that consist of a complex data type that involves space and
time dimensions, and in some cases also semantic dimensions. More recently, trajectories can
be represented by multiple aspects, leading to the analysis of the object movement from differ-
ent points of view, such as the social network interactions, the sequence of transportation means
used by the object on his/her movement, etc. However, analyze this type of data for knowledge
discovery is an open research area. Classification is a Data Mining task that consists of learning
models from a dataset and use these models to classify new samples. Trajectory classification
is a very complex task, because the pattern discovery involves space, time, semantics, and se-
quences. In the last few years trajectory classification has been applied to many real problems,
basically considering the dimensions of space and time or attributes inferred from these dimen-
sions, like speed, acceleration, and turning angle. With the explosion of social media data and
the advances in the semantic enrichment of mobility data, a new type of trajectory data has
emerged, and the trajectory spatio-temporal points have now multiple and heterogeneous se-
mantic dimensions. By semantic dimensions we mean any type of information that is neither
spatial nor temporal. As a consequence, new classification methods are needed to deal with this
new type of data. The main challenge is how to automatically explore, combine, and select the
data dimensions and to discover the subtrajectories that better discriminate the class. In this
thesis we define the concept of multiple aspect trajectory and we propose two new parameter-
free methods for extracting the most relevant subtrajectories for trajectory classification. The
first method, called MOVELETS, uses a distance-based approach that considers all dimensions
together to find the most relevant subtrajectories. This method is very robust for classification of
raw trajectories, which include only space and time dimensions, although it also works for mul-
tiple aspect trajectories. The second method, called MASTERMOVELETS, also finds the most
relevant subtrajectories, but considering multiple and heterogeneous dimensions. This method
automatically explores trajectory dimensions and finds the best dimension combination of sub-
trajectories, which makes it robust for high dimensional trajectory data. Experimental results
show that MOVELETS outperforms state-of-the-art methods for raw trajectory classification and
MASTERMOVELETS outperforms existing methods to classify multiple aspect trajectories, in-
dicating that our proposals are effective and are very promising for multidimensional sequence
data classification.

Keywords: Multiple Aspect Trajectory. Trajectory Classification. Relevant Subtrajectories.

Movelets. Multidimensional Sequence Classification.
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In this work we define a relevant subtrajectory as a part of a trajectory with the capa-

bility for discriminating the classes of the classification problem. We claim that relevant subtra-

jectories for classification problems can include patterns that may not be discovered by methods

that perform trajectory partitioning with predefined criteria or discretization, as has been done

in the works of (LEE et al., 2008; PATEL et al., 2012; DODGE; WEIBEL; FOROOTAN, 2009;

XIAO et al., 2017; ZHENG et al., 2010) and by methods that ignore the sequence of data, as in

(ROSSI; MUSOLESI, 2014), or limit the sequential analysis to a single dimension, as in (GAO

et al., 2017). So, our main research question is:

How to discover relevant subtrajectories in trajectories represented by

multiple and heterogeneous dimensions and use these subtrajectories

to build trajectory classification models?

A concept applied with success on time series classification that allows the identi-

fication of relevant parts of time series without performing either partitioning with predefined

criteria or discretization is the shapelet analysis. This concept was introduced in (YE; KEOGH,

2011) and explored and improved in (MUEEN; KEOGH; YOUNG, 2011; HILLS et al., 2014;

ZALEWSKI et al., 2016). However, the shapelet analysis cannot be directly applied to raw

trajectory data, because it is defined for only one variable over time, and trajectory data have at

least two variables to represent the space over time (x and y), besides other movement features,

such as speed, acceleration, apart from semantic dimensions. In addition, this analysis cannot

be applied to trajectories represented by multiple and heterogeneous dimensions, like multiple

aspect trajectories, because for this kind of data the method would need to explore different

dimension combinations in order to find the best one for each subtrajectory.

To the best of our knowledge, there are no works in the literature for discovering and

exploring the relevant parts of trajectories, with support to multiple and heterogeneous dimen-

sions, for robust trajectory classification. In this thesis we propose new methods for discov-

ering relevant parts of trajectories for classification, without performing either partitioning or

discretization.

In order to answer our main research question we pose the hypothesis that the discov-

ery and extraction of the most relevant subtrajectories, from trajectories represented by multiple

and heterogeneous dimensions, can significantly improve the accuracy of trajectory classifica-

tion models.

1.1 OBJECTIVES

The main objective of this thesis is to propose new methods for trajectory classification

with support to multiple aspect trajectories. As specific objectives we have:

O1: Propose new methods to extract relevant subtrajectories without performing trajectory

partitioning;
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O2: Propose new methods to find the best dimension combination of subtrajectories;

O3: Propose new methods to measure the relevance of subtrajectories;

O4: Propose new methods to build trajectory classification models from relevant subtrajecto-

ries;

1.2 CONTRIBUTIONS

The main contributions of this thesis are:

C1: The definition of a new trajectory concept: multiple aspect trajectory (FERRERO; AL-

VARES; BOGORNY, 2016; MELLO et al., 2019) and its impact on mobility data analy-

sis over different points of view;

C2: A new method to discover relevant subtrajectories, without performing trajec-

tory partitioning with predefined criteria, for robust trajectory classification, called

MOVELETS (FERRERO et al., 2018). This method finds relevant subtrajectories in mul-

tiple aspect trajectories using a distance-based approach that considers all dimensions

together;

C3: A new method to discover relevant subtrajectories in multiple aspect trajectories, called

MASTERMOVELETS (FERRERO et al., 2020). This method finds relevant subtrajectories

using a ranking-based approach that allows discovering the best dimension combination

for subtrajectories, in order to improve trajectory classification accuracy;

C4: An extensive experimental evaluation and comparison to the state of the art over both raw

and multiple aspect trajectory datasets to demonstrate the potential of our methods.

1.3 METHODOLOGY, SCOPE AND STRUCTURE

To achieve the objectives we present the methodology as the following tasks:

1. Track the latest publications about trajectory classification, mainly using Google Scholar,

focusing on high-impact journals and conferences (such as KBS, DMKD, VLDB, ICDE,

IJCAI, ACMSAC, SIGKDD, SIGMOD, and others);

2. Define new methods to extract relevant subtrajectories for trajectory classification: we in-

troduce the concept of trajectory movelets, based on time series shapelets, to find relevant

subtrajectories and to perform trajectory classification;

3. Define new methods to measure the relevance of subtrajectories: the original relevance

measure for shapelets is the information gain, however new relevance measures for trajec-

tory movelets can help to find better subtrajectories and improve classification accuracy;
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4. Define new methods to find the best alignment between trajectories and subtrajectories

considering heterogeneous dimensions: the original algorithm for finding the best align-

ment in shapelets is limited to single dimension, but new methods can help to find the

best alignment considering multiple dimensions;

5. Define a number of datasets;

6. Experimentally evaluate the proposed methods in real datasets and compare with state-

of-the-art methods;

7. Write the thesis describing the state of the art, the research gaps, the contributions of our

proposals for these research gaps and the advances over the state-of-the-art methods.

The scope of this thesis is limited to the definition of new methods for discovering

and exploring relevant subtrajectories to improve trajectory classification over state of the art

methods.

The rest of this document is organized as follows:

Chapter 2 – describes the state of the art on trajectory classification. Several related works are

described and discussed in order to point the research gaps solved in thesis.

Chapter 3 – presents our proposal of a new method for discovering relevant subtrajectories

multiple aspect trajectory for classification. Section 3.1 introduces basic definitions, Sec-

tion 3.2 describes in details the method and the algorithms, and Section 3.3 presents the

experiments.

Chapter 4 – presents our proposal of a new method for discovering relevant subtrajectories

in multiple aspect trajectories for trajectory classification focusing on the discovery of

the best dimension combination. Section 4.1 extends previous definitions, Section 4.2

introduces the new method and the algorithms to explore subtrajectory dimension com-

binations, and Section 4.3 presents the experiments.

Chapter 5 – presents the performance evaluation of the proposed methods in terms of process-

ing time and scalability.

Chapter 6 – presents conclusions and future work for this thesis.
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2 BASIC DEFINITIONS AND STATE OF THE ART

In this chapter we present basic definitions and the state of the art in trajectory classi-

fication, describing the main characteristics of the related works and discuss their limitations.

Section 2.1 introduces the basic concepts, such as formal definitions of trajectory and trajec-

tory classification, and Section 2.2 presents the state of the art about trajectory classification

and trajectory distance and similarity measures.

2.1 BASIC CONCEPTS

A trajectory is represented as a sequence of points with multiple dimensions, including

space and time. For many years a trajectory was represented and called raw trajectory, having

a sequence of points 〈p1, p2, ..., pm〉, where each point p = (x,y, t) was a tuple with x and y

representing the spatial dimension and t representing time.

In 2007, Spaccapietra (SPACCAPIETRA et al., 2008) introduced the concept of se-

mantic trajectory, where a trajectory is represented as a sequence of stops and moves. A stop is

an important part of a trajectory where the moving object has stayed for a minimal amount of

time, while the moves are the trajectory points between stops. What basically differs from this

type of trajectory is that stops and moves are heterogeneous elements that represent trajectory

parts, and that stops have besides the space and time dimensions, a third dimension representing

the name of the stop. Since 2014, after the introduction of the CONSTANT model (BOGORNY

et al., 2014), and more recently with the definition of multiple aspect trajectory (FERRERO;

ALVARES; BOGORNY, 2016), semantic dimensions can be associated to each individual tra-

jectory point. This semantic enrichment is specially important for trajectories inferred from

social media data as Foursquare check-ins or Facebook.

A multiple aspect trajectory has besides space and time information, several semantic

dimensions, but with the difference that these semantic dimensions can be associated to each

trajectory point, and not to a subtrajectory as a stop or a move. All these dimensions are het-

erogeneous and may need different analysis functions when comparing trajectories. Therefore,

in this thesis we represent a multiple aspect trajectory as a sequence of elements, where each

element has a set of dimensions that include space, time, and semantics, according to the defi-

nition introduced by (FURTADO et al., 2016). For the sake of simplicity, in this thesis we call

a multiple aspect trajectory as trajectory:

Definition 2.1. Trajectory. A trajectory T is a multidimensional sequence of elements 〈e1,e2, . . . ,em〉,

where each element has a set of l dimensions D = {d1,d2, . . . ,dl}.

A dimension can be the latitude, the longitude, the time, the name of the visited place,

the temperature, the weather condition, etc.

In trajectory data mining, mainly in classification problems, we need to analyze parts

of a trajectory instead of the entire trajectory, because some patterns may hold only on a small
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portion of a trajectory. A part of a trajectory is called a subtrajectory.

Definition 2.2. Subtrajectory. Given a trajectory T = 〈e1,e2, . . . ,em〉 of length m, a subtrajectory s =

〈ea, . . . ,eb〉 is a contiguous subsequence of T starting at element ea and ending at element eb, where

1≤ a≤ m and a≤ b≤ m.

The length of the subtrajectory is defined as w = |s|. In addition, we also define the set

of all subtrajectories of length w in T as sw
T , and the subtrajectories of all lengths in T as s∗T .

The problem we address in this thesis is trajectory classification, that consists in pre-

dicting the class labels of the moving objects based on their trajectories (LEE et al., 2008).

Based on the concept of classification proposed by (TAN; STEINBACH; KUMAR, 2005), we

define trajectory classification as:

Definition 2.3. Trajectory Classification. Given a trajectory set defined by a set of pairs T =

{(T1,classT1),(T2,classT2), . . . ,(Tn,classTn
)}, where each pair contains a trajectory and its class label,

trajectory classification is the task of learning a prediction function f (T )→ classT that maps a sample

trajectory T to one of the predefined class labels.

There are two mechanisms to perform classification: eager and lazy (MITCHELL,

1997). The former consists of using supervised learning algorithms over training samples to

build a model (classifier), and then use this classifier to assign a class label to new samples.

Examples of this mechanism include Support Vector Machine (SVM) (CORTES; VAPNIK,

1995) and Decision Trees (DT) (QUINLAN, 1993). In contrast, lazy approaches do not involve

a model construction and consist of assigning a class label to new samples based on the most

similar samples into the training dataset. The most common algorithm used in this type of

classification is the k Nearest Neighbor (kNN), that uses a distance or similarity measure to

compute the similarity between a new sample and all the samples in the training set, and assign

the class label based on the k most similar training samples (AHA; KIBLER; ALBERT, 1991).

A classifier is a function to perform classification. The evaluation of a classifier is

very important to estimate how well the function classifies new instances of the problem, i.e.

new trajectories. To evaluate the classifier the most used techniques are: holdout and cross-

validation (WITTEN et al., 2016). Holdout consists of splitting the set of labelled samples

in two subsets, training and test, where the first is used by a learning algorithm for training

the classifier and the second for evaluating it. This technique allows to evaluate the classifier

using samples never seen by the learning algorithm. Cross-validation consists of splitting the

dataset into subsets (called folds), frequently 5 or 10, and generating a classifier for each of

these subsets. Each subset is used to test the classifier and the remaining subsets are used to

training it. This technique allows to evaluate the classifier by classifying all samples once.

Classification evaluation also needs a performance metric. The most common perfor-

mance metric used in the literature is accuracy, but other metrics, like precision, recall, and

F-measure, are also important to evaluate classifiers (SOKOLOVA; LAPALME, 2009)„ which

are very frequent in trajectory classification. These measures are calculated based on the con-



35

cepts of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN),

defined for each class ci of the classification problem, which are presented as follows:

– T Pi is the number of samples of class ci classified as ci;

– FPi is the number of samples of class different from ci classified as ci;

– T Ni is the number of samples of class different from ci non classified as ci;

– FNi is the number of samples of class ci non classified as ci;

Based on these concepts we define and calculate the performance measures, accuracy,

precision, recall, and F-measure. The accuracy is the overall effectiveness of a classifier and

it is calculated as the number of correctly classified samples divided by the total number of

samples, as in Equation 2.1.

acc =
T P

T P+T N
(2.1)

Classification problems involving many classes also use the acc top5, which considers

a sample as true positive if the true class is one of the five most probably classes predicted by

the classifier.

Precision consists of the number of correctly classified samples of a class divided by

the total number of samples classified as the class, as in Equation 2.2.

Precision =
T P

T P+FP
(2.2)

Recall consists of the number of samples of a class correctly classified divided by the

total number of samples of the class in the dataset. This measure is defined by Equation 2.3.

Recall =
T P

T P+FN
(2.3)

F-measure, also called F1 score, consists of the combination of precision and recall

and it is calculated as the harmonic mean between them, as in Equation 2.4.

F-measure = 2×
Precision×Recall

Precision+Recall
(2.4)

In many classification problems the number of samples of each class is not different.

When the difference in the number of examples among classes is expressive, it is important

to consider the class frequency to calculate the performance measure, in order to reduce the

effect of class imbalance. The weighted F-measure takes into account the class frequencies to

calculate the F-measure and consists of the sum of the F-measure of each class weighted by the

class frequency in the dataset, as in Equation 2.5,

wF-measure = ∑
i

Ni

N
×F-measurei (2.5)
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where Ni is the number samples of class ci, N the total number of samples, and F-measurei the

F-measure of class ci.

The main problem addressed in this thesis is related to how to discover the class label

of the moving object based on its trajectories, including both mechanisms: eager and lazy. In

the following section, we present the state of the art in this issue.

2.2 STATE OF THE ART

In this thesis we deal with both mechanisms for trajectory classification: eager and

lazy. As previously mentioned, the lazy mechanism needs a distance or similarity measure to

perform the classification task. For that reason, besides presenting the related work about trajec-

tory classification, we also include a section to present distance and similarity measures, that can

be used to perform trajectory lazy classification (nearest neighbor). Section 2.2.1 presents the

state of the art on trajectory classification and shows the main characteristics of related works

and discusses their limitations. Then, Section 2.2.2 presents the state of the art of trajectory

distance and similarity analysis.

2.2.1 Trajectory Classification

Trajectory classification is pointed by several surveys on trajectory data mining as

one of the most important tasks (ZHENG, 2015; FENG; ZHU, 2016; MAZIMPAKA; TIMPF,

2016), because learning to classify the movement of objects can be a very complex task. Clas-

sify if an object is stopped or moving (SPACCAPIETRA et al., 2008) can be solved by analyzing

only the movement speed, but classify an object by how he/she is moving is more difficult. For

instance, how to discriminate private car drivers and taxi drivers based only on their movement,

or how to discriminate individuals based on their check-ins in social media.

To find and organize related works we perform a systematic review on Google Scholar

searching the following query: “trajectory classification” OR “movement classification” OR

“spatio-temporal classification”. From the results we selected the first 100 papers to evaluate

their relevance (because the others had very low relevance). We selected the most relevant

papers and described them by the following characteristics:

1. Dimensions: which dimensions they support: space, time, and/or semantics;

2. Features: which global and/or local features are extracted from trajectories. Local fea-

tures are extracted from trajectory points or subtrajectories, while global features are

extracted from the entire trajectory;

3. Classification algorithm: which strategies were used to perform the classification task,

such as Nearest Neighbor algorithm, Support Vector Machines, Decision Trees, etc;

4. Datasets: which datasets were used in the classification task;
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5. Evaluation method: which methods are used to evaluate the quality of the classification

tasks in the experiments.

Table 2.1 presents the comparison of related works, considering global and local fea-

tures based on space, time, semantics, speed, acceleration, and direction, in addition to the

extraction of relevant subtrajectories.

Table 2.1 – Comparative of features extracted on related work.

Paper Global
Features

Local
Features

Relevant
Subtrajectories Space Time Semantics

(LEE et al., 2008) X X X

(DODGE; WEIBEL; FOROOTAN, 2009) X X

(ZHENG et al., 2010) X X

(SHARMA et al., 2010) X X

(LEE et al., 2011) X X X

(SANTOS, 2011) X X

(BOLBOL et al., 2012) X

(PATEL et al., 2012) X X X X X

(SOLEYMANI et al., 2014) X X

(SOLEYMANI et al., 2015) X X

(VARLAMIS, 2015) X

(ENDO et al., 2016) X

(XIAO et al., 2017) X X

(GAO et al., 2017) X X

(ZHOU et al., 2018) X X

(ETEMAD; JÚNIOR; MATWIN, 2018) X X

(FERRERO et al., 2018) X X X X X X

(SILVA; PETRY; BOGORNY, 2019) X X X X X X

(FERRERO et al., 2020) X X X X X

Most works in the literature perform trajectory classification using the eager mech-

anism, that consists of building classification models from a feature vector representation of

trajectories. The feature vector is a set of global and local features extracted from trajectories,

as mentioned in Table 2.1.

It is important to emphasize that trajectory classification methods do not propose new

classification functions or models, but novelty relies on how and which features to extract from

trajectories for classification problems.



38

Lee (LEE et al., 2008) proposed the first attempt of exploring subtrajectories as fea-

tures for trajectory classification. The method consists of initially segment trajectories into sub-

trajectories when the movement direction changes rapidly. In a second step, this work groups

similar subtrajectories (subtrajectories are similar when they are close in space), where each

group has subtrajectories that can belong to different class labels. Then, the subtrajectories are

divided in order to create subtrajectory groups of only one class label. After that, the groups are

evaluated according to the relevance, which is measured by the average distance from a group

to other groups of different classes, where the larger the distance is, the higher is the relevance.

Thus, only those groups with a value greater than the median relevance are selected. Indeed,

close groups with the same class can be merged, and only a representative subtrajectory of each

group is considered as a local feature. Finally, each original trajectory is represented by a fea-

ture vector, where each entry of a feature vector is the frequency that each relevant subtrajectory

happens in the trajectory (frequency approach for local features).

Dodge in (DODGE; WEIBEL; FOROOTAN, 2009) proposes a method to extract global

and local features. Global features are minimum, maximum, mean, median, standard deviation,

variance, and skewness of speed, acceleration, straightness, and direction. To extract local

features it proposes the profile decomposition of trajectories, that consists of transforming a

trajectory into a sequence of discrete values, as for instance, high or low speed. With that,

statistics like mean, standard deviation, number of changes, and proportion, are extracted from

the discrete sequence as local features. The profile decomposition is built also using acceler-

ation, straightness, and turning angle, in addition to speed. Both global and local features are

used to classify transportation means.

Zheng (ZHENG et al., 2010) considered only global features, as mean, variance, and

maximum trajectory traveled distance, average speed, acceleration, and proposes three new

features: heading change rate, stop rate, and velocity change rate. These features are also used

to classify trajectories over transportation means.

Sharma (SHARMA et al., 2010) presented an alternative approach to the use of local

and global features, using the mechanism of lazy classification, more specifically, the Nearest

Neighbor (NN) classifier. This algorithm consists of assigning to an unlabeled new trajec-

tory the label of the most similar trajectory in the training set. The similarity measure used

to compare trajectories was the route similarity, proposed by Andrienko in (ANDRIENKO;

ANDRIENKO; WROBEL, 2007), and the strategy was evaluated to classify vehicles.

Lee (LEE et al., 2011) proposed a method to extract relevant subtrajectories from tra-

jectories represented by a sequence of roads followed by the object. First, the method transforms

a trajectory into a sequence of roads, called edges. In this work, a subtrajectory is a subsequence

of edges. Second, the authors select all subtrajectories that satisfied a maximum length and a

minimum support. Third, using the F-score1 to measure the subtrajectory relevance, the method

selects the most relevant subtrajectories using a threshold for F-score. Finally, trajectories are

1 F-score measures the discrimination of two sets of real numbers and it is commonly used for feature selec-
tion (CHEN; LIN, 2006).
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represented using the frequency approach for local features, as in (LEE; HAN; LI, 2008). The

method was evaluated using Support Vector Machines (SVM) to build models to classify tra-

jectories of two taxi routes.

Santos (SANTOS, 2011) proposed a method that uses global and local features. To

extract local features it transforms trajectory data into time series and applies a technique of time

series analysis, called motifs discovery. The proposed method, first transforms trajectory data

into a set of independent time series of speed, acceleration, direction, among others. Second, it

uses the technique Symbolic Aggregate Approximation (SAX) (LIN et al., 2007) to transform

each time series into a sequence of symbols, as for instance a,a,a,b,b,a, ...,b. After that, all

combinations of symbol subsequences with specific size are considered as local features. For

example, for symbols a and b, the combinations of size 2 are (aa), (ab), (ba), and (bb). Finally,

trajectories are represented using the frequency approach for each combination. The proposed

method, in combination with global features, was evaluated using several algorithms, such as

SVM, Bayesian, Logistic, and Decision Trees, to classify hurricanes, vessels, and animals, as

in (LEE et al., 2008), reporting betters results.

Patel (PATEL et al., 2012) extends the proposal of Lee (LEE et al., 2008) to consider, in

addition to the space dimension, the time duration and the speed to find relevant subtrajectories.

The method consists of two steps. First, a directed graph is built, where the vertices are micro-

clusters of sample points and the directed edges represent the sequence of points. Initially, the

vertices contain only a point. Then, the vertices can be merged with others according to their

classes, and the edges as well. The merging process uses the Minimum Description Length

(MDL)2. Second, many depth first searches in the graph are performed in order to recall the

most relevant subtrajectories, to constitute the feature vector. The relevant subtrajectories are

also combined with relevant regions and global features.

Bolbol (BOLBOL et al., 2012) proposed a method to perform feature selection on

global features using statistical tests based on correlation and analysis of variance. This work

used the features speed, acceleration, distance, and heading change rate, for transportation

means classification.

Reumers (REUMERS et al., 2013) proposed a method to extract local features using

only the time dimension. The proposal consists of extracting the start time of the trajectory and

the time duration to build a Decision Tree. The method was evaluated for activity classification.

Li in (LI, 2014) proposes new global features to measure the complexity of the movement:

fractal dimension and entropy approximation. This work evaluates the effects of considering

the complexity features, in addition to other features to classify transportation means.

Soleymani (SOLEYMANI et al., 2014) analyzes trajectory data into multiple scales

of time and space. The method first finds the best scale on time and space to analyze trajec-

2 The main idea of the MDL Principle proposed in (RISSANEN, 1978) is that “any regularity in a given set
of data can be used to compress the data, i.e. to describe it using fewer symbols than needed to describe the
data literally” (GRÜNWALD, 2000). In trajectory segmentation, the MDL is used to find the optimal trade-
off between preciseness and conciseness, where conciseness is the number of segments used to represent the
trajectory, and preciseness is how closely these segments are to the original trajectory.



40

tories, and then extracts statistics from duration, speed, as local features. This method was

evaluated only on a classification problem of fish datasets by building SVM classifiers. In a

later work, Soleymani in (SOLEYMANI et al., 2015) integrates several global features, such

as speed, acceleration, and direction, with entropy approximation and the wavelet coefficients3

extracted from traveled distance, and demonstrates that the integration of these new features can

improve classification accuracy. Global features were evaluated on biology datasets, building

classification models based on SVM and Decision Trees.

Varlamis (VARLAMIS, 2015) uses global features based on time, space, and seman-

tics, and proposes evolutionary algorithms to reduce the number of samples required for training

a classifier. The author claims that this approach reduces the effect of the class unbalance, and

the approach is evaluated on transportation means classification.

Macdonald (MACDONALD; ELLEN, 2015) introduced two new global features for

trajectory classification based on coefficients of Zernike Moments4 and coefficients of Hu Mo-

ments5. These features are well used for image classification problems. In the case of trajecto-

ries, only spatial points are used to extract these coefficients. These new features are evaluated

on transportation means classification over the GeoLife dataset. Endo (ENDO et al., 2016)

introduces the use of deep learning techniques for feature extraction from images generated

from raw trajectories. The weak point of the previous approaches is that the features are not

interpretable, and can only be explored visually.

Xiao (XIAO et al., 2017) integrates the global and local features proposed by Dodge

in (DODGE; WEIBEL; LAUBE, 2009) with other global features as the mode, interval between

maximum and minimum, interquartile range, kurtosis, coefficient of variation, and autocorre-

lation coefficient of speed, acceleration, straightness, and direction. Local and global features

were used to build ensemble classifiers and compare them with traditional classification meth-

ods (SVM, Decision Trees, and NN), achieving better results on the task of transportation means

classification than previous works.

Gao in (GAO et al., 2017) and Zhou in (ZHOU et al., 2018) represent user trajectories

by a sequence of check-in identifiers and represent each check-in by an embedding vector, like

in text mining (MIKOLOV et al., 2013). These works generated models based on Recurrent

Neural Networks to find local and global relationships among check-ins for classification prob-

lems. These works differ mainly on the features extracted to perform the classification task:

global and/or local. Global features are in general easier and cheaper to extract, but they have

3 Wavelet analysis is a technique to modeling a signal using both time domain and frequency domain. It differs
from Fourier analysis that uses only the frequency domain. According to Soleymani in (SOLEYMANI et al.,
2014) wavelet coefficients of trajectories can reveal temporal and periodicity patterns.

4 Zernike Moments come from modeling a signal as a set of orthogonal polynomials, called Zernike Polyinomi-
als, as basis functions. Basis functions are used to transform a signal to a function space, for instance, in Fourier
analysis a signal is transformed as a set of sines and cosines as basis functions. Zernike Moments are rotation
invariant (do not change for values of rotation) and are useful in image pattern recognition (ARVACHEH;
TIZHOOSH, 2005).

5 Hu Moments are similar to Zernike Moments, but with other basis functions that achieve rotation, scale, and
translation invariance, and also very useful for image patterns recognition (HUANG; LENG, 2010).
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the limitation of considering only a uniform movement in the entire trajectory. Many problems

can have good solutions using only global features, such as to discriminate walking trajecto-

ries and car trajectories, where in general, only the mean of the speed is enough. However, to

discriminate private cars and taxis, both global and local features are necessary (XIAO et al.,

2017).

Most of the works focus on transportation modes classification (DODGE; WEIBEL;

FOROOTAN, 2009; ZHENG et al., 2010; REUMERS et al., 2013; VARLAMIS, 2015; MAC-

DONALD; ELLEN, 2015; XIAO et al., 2017), others focus on animals, vessels, and hurri-

canes (LEE et al., 2008; SANTOS, 2011; PATEL et al., 2012), and a few works on very specific

applications (SHARMA et al., 2010; SOLEYMANI et al., 2014; SOLEYMANI et al., 2015;

ETEMAD; JÚNIOR; MATWIN, 2018).

Local features provide more detailed information about the movement related to sub-

trajectories. The works of (DODGE; WEIBEL; FOROOTAN, 2009) and (SANTOS, 2011)

transform the trajectories into a sequence of discrete values, such as low and high speed, and

describe trajectories by how many times predefined parts (e.g. 〈low,high, low〉) occur into tra-

jectories. However, by transforming a trajectory into a sequence of discrete values, details of

movement (e.g. of speed) can be lost. For instance, Lee (LEE; HAN; LI, 2008) partitions tra-

jectories by direction change, loosing information about the speed variation into the partition,

and (PATEL et al., 2012) partitions trajectories by homogeneous regions, loosing information

about the real location of each trajectory point. In addition, these methods are limited to only

considering the dimensions space and time, without consider semantics, which makes these

methods inappropriate for analyzing trajectories represented by multiple and heterogeneous di-

mensions, like multiple aspect trajectories.

In the last years, trajectories based on check-ins are becoming more common, be-

cause of the exploration of social media and location based services, like Foursquare. These

trajectories are more sparse with a low sampling of spatio-temporal points in comparison to

raw trajectories generated using the GPS (Global Positioning System), so global and local geo-

metrical features such as speed and acceleration, used in previous works to build classification

models, cannot be extracted because the path between check-ins is normally not recorded. In

addition, check-ins provide more semantic and textual information beyond the spatial location

and the place name, such as the place category, the price, the rating, the review, etc., which

allows trajectories to be analyzed under multiple aspects or semantic dimensions.

Rossi in (ROSSI; MUSOLESI, 2014), Gao in (GAO et al., 2017), and Zhou in (ZHOU

et al., 2018) addressed the problem of training a classification model for discovering the user

(class) from the user’ check-ins. In (ROSSI; MUSOLESI, 2014) the author proposed an hybrid

model that considers the check-ins’ spatial distance and the frequency for identifying users.

This approach is limited to identify users based on a set of check-ins (without any time order),

i.e., it does not consider the sequence of check-ins. In (GAO et al., 2017) the author proposed a

model based approach, called BiTULER, that uses word embeddings from check-in data and a

Bidirectional Recurrent Neural Network (RNN) to build the classifier. In (ZHOU et al., 2018)
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the authors proposed the method TULVAE, that also uses word embeddings from check-in data

and a Bidireccional RNN, but unlike BiTULER, it uses the technique Variational Autoencoder,

which is designed for using both labeled and unlabelled data to help with the model training.

However, this approach is limited to trajectories represented only by a sequence of check-in

identifiers and it does not support other dimensions, such as time, space, rating, and review, as

in multiple aspect trajectories. Other works only study the relation between check-ins visitation

and user characteristics, such as gender, age, education background (ZHONG et al., 2015),

friendship (CHO; MYERS; LESKOVEC, 2011), and motivations (BILOGREVIC et al., 2015),

without considering the sequence of check-ins for user classification.

Until 2018 only the works of Lee in (LEE et al., 2008) and (LEE et al., 2011), and

Patel in (PATEL et al., 2012) explored relevant subtrajectories as features to build classification

models. However, these methods do not have support to more dimensions beyond the space and

time. Only from the methods proposed in (FERRERO et al., 2018; FERRERO et al., 2020) it

was possible to discover relevant subtrajectories considering multiple dimensions for trajectory

classification. Silva in (SILVA; PETRY; BOGORNY, 2019) presented a survey on trajectory

classification based on feature extraction.

Another way to perform trajectory classification consists of classifying new trajectories

according to the most similar trajectory in the trajectory training set, based on a specific dis-

tance or similarity measure. In this case, the classification model is formed by a set of labeled

trajectories and the distance or similarity measure, as explained in the following section.

2.2.2 Trajectory Distance and Similarity Analysis

Similarity Analysis is the other important topic of this thesis, as similarity or distance

functions can be used for Nearest Neighbor classification. Similarity is a numeric value of

the degree of how much two objects are alike, usually non-negative and often between 0 and

1, where 0 indicates no similarity and 1 complete similarity (TAN; STEINBACH; KUMAR,

2005). In many cases, distance functions are used to measure object similarity, where the closer

two objects are, the higher is their similarity. Thus, similarity measures are functions to quan-

tify the similarity degree between two objects. Similarity measures are very useful in several

trajectory data mining tasks, such as clustering (VRIES; SOMEREN, 2010; ATEV; MILLER;

PAPANIKOLOPOULOS, 2010; GAO et al., 2016; CAI; LEE; LEE, 2016), prediction (YING

et al., 2010; YING et al., 2011), and classification (REUMERS et al., 2013; GAO et al., 2017).

Trajectory distance and similarity measures can be divided in two groups. The first

group consists of measures proposed specifically for trajectories represented by dimensions

time, space, and/or semantics, as in (YING et al., 2010; YING et al., 2011; LIU; SCHNEI-

DER, 2012; XIAO et al., 2014; RANU et al., 2015; FURTADO et al., 2018). The second

group consists of distance and similarity measures for general purpose, that can be applied for

trajectories with any number of dimensions, as in (BERNDT; CLIFFORD, 1994; VLACHOS;

KOLLIOS; GUNOPULOS, 2002; HOLT; REINDERS; HENDRIKS, 2007; FURTADO et al.,
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2016; SHOKOOHI-YEKTA et al., 2017; LEHMANN; ALVARES; BOGORNY, 2019; PETRY

et al., 2019).

In the first group of distance and similarity measures Ying (YING et al., 2010) pro-

posed the Maximal Semantic Trajectory Pattern (MSTP) similarity. In this work, a semantic

trajectory is a sequence of places visited by a moving object, and MSTP consists of finding

the major common subsequence of visited places between two trajectories, using the Longest

Common Subsequence (LCS) algorithm (BERGROTH; HAKONEN; RAITA, 2000), and then

calculate the similarity by dividing the length of the longest common subsequence by the mean

length of two trajectories. The limitation of the MSTP is to calculate the similarity between se-

mantic trajectories considering only the semantic dimension (name of visited places), without

considering other dimensions. To support space, this work was extended in (YING et al., 2011).

The authors propose to first perform a clustering task using the MSTP as similarity measure,

and then calculate the spatial distance between visited places to predict the possible next loca-

tion. Despite the fact that the authors include the space dimension, it is used after the similarity

computation as a clustering refinement to predict the next location.

Liu (LIU; SCHNEIDER, 2012) proposed a distance measure that combines both space

and semantics. The difference with the measure proposed by Ying in (YING et al., 2011) is

that the spatial and semantic dimensions are both considered to calculate the distance between

trajectories, not only as a clustering refinement step. On the one hand, for the space dimension

the measure combines spatial information of visited places, the length of trajectories, and the

cosine distance. On the other hand, for the semantic dimension, the measure calculates the

similarity as the length of the LCS divided by the minimum length of the two trajectories.

Xiao (XIAO et al., 2014) proposed a similarity measure that also considers the

time and semantic dimensions. This measure combines the following dimensions of tra-

jectories: the visited places, the travelled time between visited places, and the popularity

of these places. The idea of this approach is that if two trajectories visit the same places

〈School,Cinema,Restaurant〉 in the same order, the similarity between them must be greater

than between other two trajectories that visit the same places but at different time or in different

order. Additionally, two trajectories that visit less popular places must have a similarity value

greater than other two that visit more popular places. The authors propose an algorithm to find a

set of common subsequences of places, called Maximal Travel Matches (MTM), that considers

the travel time between places. Different from the LCS technique, that returns only the longest

common subsequence, in this approach more than one sequence can be found, what is interest-

ing for long trajectories. The similarity between trajectories is given by the set of local common

subsequences and the popularity of visited places. The main drawback of MTM is that space is

not considered.

One of the objectives of this thesis is to classify multiple aspect trajectories by consid-

ering time, space, and semantics, taking into account the sequence of trajectory points. Table 2.2

summarizes the similarity/distance measures according to the capability to be applied over raw

trajectories and multiple aspect trajectories, and the supported dimensions.
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Table 2.2 – Comparative of trajectory similarity measures and distance functions.

Trajectory Type Dimensions

Measure Raw Semantic Time Space Semantics

DTW Distance
(VLACHOS; KOLLIOS;
GUNOPULOS, 2002)

X X X

LCSS Ratio
(VLACHOS; KOLLIOS;
GUNOPULOS, 2002)

X X X

EDR Ratio
(CHEN; ÖZSU; ORIA, 2005)

X X X

MSTP
(YING et al., 2010)

X X X

(LIU; SCHNEIDER,
2012)

X X X X

(LV; CHEN; CHEN,
2013)

X X X

MTM
(XIAO et al., 2014)

X X X

MSM
(FURTADO et al., 2016)

X X X X

UMS
(FURTADO et al., 2018)

X X X

SMSM
(LEHMANN; ALVARES; BOGORNY,
2019)

X X X

MUITAS
(PETRY et al., 2019)

X X X X

In the second group of distance and similarity measures, which are for general pur-

pose, the most common trajectory distance and similarity measures are Dynamic Time Warping

(DTW) (BERNDT; CLIFFORD, 1994), Longest Common Subsequences (LCSS) (VLACHOS;

KOLLIOS; GUNOPULOS, 2002), Edit Distance for Real Sequences (EDR) (CHEN; ÖZSU;

ORIA, 2005), Multidimensional Similarity Measure (MSM) (FURTADO et al., 2016), Stops

and Moves Similarity Measure (SMSM) (LEHMANN; ALVARES; BOGORNY, 2019), and

Multiply Aspect Trajectory Similarity Measure (MUITAS) (PETRY et al., 2019).

DTW finds an optimal alignment between two sequences, which are warped in a

nonlinear manner to match each other (BERNDT; CLIFFORD, 1994). Ten Holt in (HOLT;

REINDERS; HENDRIKS, 2007) adapted DTW for multidimensional sequences, called MD-

DTW, by transforming the distance values of all dimensions in only a distance value. Re-

cently, Shokoohi-Yekta in (SHOKOOHI-YEKTA et al., 2017) proposed the DTWa, an adap-

tive approach of DTW for multidimensional sequence classification. However, DTW-based
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distance measures are designed for numerical dimensions only. LCSS consists of finding the

longest common subsequence between two trajectories (VLACHOS; KOLLIOS; GUNOPU-

LOS, 2002). EDR consists of seeking the minimum number of edit operations (insert, delete,

change) to transform one trajectory in another (CHEN; ÖZSU; ORIA, 2005).

MSM is a multidimensional similarity measure to be applied over trajectories repre-

sented by multiple dimensions, ignoring the order. This measure considers all dimensions to-

gether and also allows partial matching (FURTADO et al., 2016). MSM was initially proposed

to measure the distance between trajectories represented by a sequence of stops, although it can

be applied over social media check-ins. Lehmann in (LEHMANN; ALVARES; BOGORNY,

2019) proposed an extension of MSM, called SMSM, that considers both stop and moves to

measure the similarity between semantic trajectories. The main problem related to these dis-

tances and similarity measures for classification is that, in the context of multiple and hetero-

geneous dimensions, we need to define weights and/or thresholds for each dimension. The

measure DTW needs weights, the measures LCSS and EDR need thresholds, and MSM and

SMSM need both thresholds and weights. These parameters are domain dependent and very

difficult to estimate, even more in the presence of heterogeneous dimensions, because each di-

mension has its own way of measuring distance (e.g. the space dimension in meters, time in

minutes, and price in price units).

Furtado in (FURTADO et al., 2018) proposed the similarity measure called UMS (Un-

certain Movement Similarity) to analyze the physical movement of objects and retrieve which

trajectories follow similar routes in space. UMS is limited to the spatial dimension, so focusing

on spatial similarity, not being appropriate for multiple aspect trajectories.

MUITAS is the first attempt in the literature to measure the similarity between multiple

aspect trajectories (PETRY et al., 2019). LCSS and EDR assume all dimensions as dependents,

considering all dimensions together, while MSM assumes all dimensions as independent among

dimensions, considering partial matchings. MUITAS supports both independent and dependent

trajectory dimensions, allowing user-defined relationships of dimensions dependency, distance

functions for each dimension and weights that represents the importance degree of each dimen-

sion. The main drawback of this method is the need of an expert to define the weights and

relationships between dimensions.

Another drawback of distance based classifiers is that in general they do not perform

any learning process to build a model. Therefore, they need to compare new test trajectories

with all trajectories in the training set, and do not allow the extraction of the most relevant parts

of trajectories, i.e., the discriminant subtrajectories.

Few works in the literature proposed methods for discovering relevant subtrajectories

for classification, as in (LEE et al., 2008; PATEL et al., 2012), and these works perform trajec-

tory partitioning with a predefined criterion, loosing important information. Only the work of

Patel (PATEL et al., 2012) uses dimensions space and time, but it does not have support to other

trajectory dimensions. In Chapters 3 and 4 we present our proposal for discovering relevant

subtrajectories in trajectories represented by multiple and heterogeneous dimensions.
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3 DISCOVERING RELEVANT SUBTRAJECTORIES FOR TRAJECTORY CLASSI-

FICATION

In this chapter we present the first contribution of this thesis: a new method to discover

relevant subtrajectories for robust trajectory classification, called MOVELETS. Our method ex-

plores all subtrajectories from a set of trajectories and evaluates the relevance of each subtrajec-

tory for selecting the most relevant ones. The method is parameter free and domain independent.

MOVELETS is based on a concept applied with success on time series classification,

shapelet analysis. It allows the identification of relevant parts of time series, called shapelets,

without performing either partitioning with predefined criteria or discretization. A shapelet is

subsequence of a time series with the capability to discriminate classes in a time series classifi-

cation problem, which can be used to build classification models (YE; KEOGH, 2011; HILLS

et al., 2014). This concept was introduced in (YE; KEOGH, 2011) and was explored and im-

proved in (MUEEN; KEOGH; YOUNG, 2011; HILLS et al., 2014; ZALEWSKI et al., 2016).

However, shapelet analysis cannot be directly applied to trajectory data, because it is defined

for only one variable over time, and trajectory data have two variables to represent the space

over time (x and y) and other variables to represent other semantic dimensions.

The scope of this chapter is limited to explore trajectories represented by multiple di-

mensions over time, such as spatial location and/or semantics. In Section 3.1, we introduce

basic definitions. In Section 3.2, we describe the method MOVELETS, the algorithms for dis-

covering trajectory movelets and the complexity analysis. Section 3.3 presents the experimental

evaluation of our method over six raw trajectory datasets. In Section 3.4, we present the final

considerations of this chapter, including drawbacks and limitations of our proposal.

3.1 BASIC DEFINITIONS

The MOVELETS method is based on the distance between subtrajectories. The general

idea is to find subtrajectories of a class that are very close to a large number of trajectories of

the same class and far from trajectories of other classes, characterizing a representative pattern

of a given class. So, the key issue is to find these subtrajectories and their distances from other

trajectories. To compute these distances, we need first to define how to measure the distance

between two trajectory elements. This distance may consider one or more dimensions, since

an element may have several information, such as spatial location, time, speed, acceleration,

direction, etc. For that reason, we formally define the concept of distance between elements.

Definition 3.1. Distance between two trajectory elements. Given two trajectory elements ei and e j

represented by D dimensions, the distance between these trajectory elements diste(ei,e j) must consider

their distance in each dimension, and combine them into a non-negative value that respects the property

of symmetry, diste(ei,e j) = diste(e j,ei).

The idea behind Definition 3.1 is to allow the use of a distance function for each

element dimension (such as spatial location, time, speed, acceleration, direction, and so on)
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measure this relevance, but in this work we use the information gain, as described in Equation

3.3, where probci is the probability of class ci from the classification problem, and Gle f t and

Gright are the subset of G where distance values are less or equal than the split point, G|gTi ≤ sp

and grater than the split point,G|gTi > sp, respectively.

In f ormationGain(G,sp) = Entropy(G)−Entropy(G|sp)

Entropy(G) =−∑
ci

probci ∗ log2 probci

Entropy(G|sp) =
|Gle f t |

|G|
Entropy(Gle f t)+

|Gright |

|G|
Entropy(Gright)

(3.3)

In real scenarios with many trajectories, in general, there is not a single subtrajectory

and split point that solves the problem. So the movelet candidate relevance is related to find

a split point that better separates the classes and maximizes the number of distances of a class

on the left side of the orderline. Based on the concept of relevance we define a movelet as in

definition 3.5.

Definition 3.5. Movelet. Given a trajectory T and a movelet candidate Ms from s ∈ T , the candidate

Ms is a movelet if for each candidate Mr from r ∈ T that overlaps s in at least one element, the Ms has

greater relevance score than Mr, i.e., Ms.score > Mr.score.

In other words, a candidate is a movelet if there is no other candidate overlapping it

with more relevance. In addition, a movelet is a subtrajectory which trajectories of the same

class pass near to the subtrajectory and trajectories of the other classes pass far to the subtra-

jectory. Based on the previous definitions, in the following section we present the proposed

method to discover movelets for trajectory classification.

3.2 THE MOVELET METHOD

We propose a three step method, called MOVELETS, for discovering relevant subtra-

jectories: (1) movelet discovery; (2) movelet pruning; and (3) movelet transformation. Hereafter

we refer to MOVELETS as the method and movelets as the relevant subtrajectories.

3.2.1 Step 1 – Movelet Discovery

The movelet discovery step consists of exploring all subtrajectories (movelet candi-

dates) from a trajectory training set and selecting only the most relevant, i.e., the movelets. This

step is detailed in Algorithm 1, that has as the unique input the trajectory training set T, without

any parameter. The output is the set of movelets.

Algorithm 1 finds for each trajectory in the training set T the movelets (lines 2 to 23).

The function ComputeElementDistanceArray() computes all distances between each trajec-

tory element in T and all elements in the training set T, according to Equation 3.1, and stores
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Algorithm 1: MOVELETDISCOVERY

Input : T // trajectory training set
Output: movelets // set of relevant subtrajectories

1 movelets← /0 ;
2 for each trajectory T in T do
3 candidates← /0;
4 A1←ComputeElementDistanceArray (T,T) ;
5 for subtrajectory length w from 2 to T.length do
6 Aw←ComputeSubtra jectoryDistanceArray (T,T,Aw−1,A1,w) ;
7 for position j from 1 to (T.length−w+1) do
8 for trajectory i from 1 to |T| do
9 minDistance← minvalue(A[i, j, ..]) ;

10 gTi ←
√

minDistance/w ;
11 G[i]← (gTi ,classTi) ;
12 end
13 relevance← AssessRelevance(G) ;
14 score← relevance.score ;
15 sp← relevance.splitPoint ;
16 M←MoveletCandidate(T, j,w,G,score,sp) ;
17 candidates← candidates∪M ;
18 end
19 end
20 SortByRelevance (candidates) ;
21 RemoveSel f Similar (candidates) ;
22 movelets← movelets∪ candidates ;
23 end
24 return movelets

them into a 3-dimensional array of distances A1 (line 4). Each value in A1[i, j,k] is the distance

between the trajectory element of T at position j and the trajectory element of Ti at position

k. The array A1 is precomputed in order to perform this computation only once. After that,

the algorithm explores all subtrajectory lengths, one by one (lines 5 to 19). For a subtrajectory

length w, the function ComputeSubtra jectoryDistanceArray() computes the distance array Aw

using the distance array computed for subtrajectory lengths (w−1) and 1, represented by Aw−1

and A1, respectively (line 6). This function is detailed in Section 3.2.1.1. The array Aw con-

tains the sums of the squares of element distances between all subtrajectories of equal length.

Once Aw is calculated, for each subtrajectory in T of length w, the algorithm discovers the best

alignment between the subtrajectory and trajectories in T, assesses the relevance, and adds the

subtrajectory into the movelet candidate set (lines 7 to 18). In this loop the algorithm finds in

each trajectory Ti ∈ T the best alignment of each subtrajectory in T of size w (lines 8 to 12).

The best alignment is calculated based on Aw and consists of the minimum value of the 1-

dimensional array Aw[i, j, ..], that contains the sums of the squares of element distances of all

possible alignments between the subtrajectory and trajectory Ti (line 9). Once the minimum

distance value is performed, it is normalized (line 10) and stored into the distance vector G
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along the class of Ti (line 11). After computing the distance vector G, the algorithm assesses

the relevance of the subtrajectory by the function AssessRelevance (line 13) and calculates both

the score and the split point (lines 14 and 15). This function is detailed in Section 3.2.1.2. Then,

it defines the movelet candidate M and adds it into the candidate set (line 17). Following the

external loop, it sorts the trajectory movelet candidates by their relevance and removes those

self similar (lines 20 to 21). Two candidates are self similar if they are overlapping on at least

one element and the algorithm preserves the highest relevance candidate. Finally, it adds the

remaining candidates to the movelets set.

In the following sections we detail the functions ComputeSubtra jectoryDistance-

Array() and AssessRelevance(), implemented using a dynamic programming strategy.

3.2.1.1 Computing Subtrajectory Distances

The function ComputeSubtra jectoryDistanceArray() consists of computing the dis-

tance between all subtrajectories of length w in T and all subtrajectories in the set T with the

same length. To perform that efficiently the algorithm uses the subtrajectory distance array

Aw−1, calculated for length (w−1), and the element distance values in A1, to compute the sub-

trajectory distance values for length w. This function is detailed in Algorithm 2, that has as

inputs the trajectories T and Ti, the arrays Aw−1 and A1, and the subtrajectory length w. The

output of this algorithm is a new array Aw containing the subtrajectory distance values for length

w.

Algorithm 2: ComputeSubtra jectoyDistanceArray

input : T , // a trajectory
T, // the set of trajectories
Aw−1, // array of subtrajectory distances for length w−1
A1, // array of element distances
w // subtrajectory length

output: Aw // array of subtrajectory distances for length w

1 Aw← /0 ;
2 for each trajectory i in (1,n) do
3 for position j from 1 to (T.length−w+1) do
4 for position k from 1 to (Ti.length−w+1) do
5 distancew−1← Aw−1[i, j,k] ;
6 elementDistance← A1[i,( j+w−1),(k+w−1)] ;
7 distancew← distancew−1 + elementDistance ;
8 Aw[i, j,k]← distancew ;
9 end

10 end
11 end
12 return Aw

Algorithm 2 calculates for each trajectory Ti ∈T the distance between all subtrajectory
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distances of length w between all subtrajectories in Ti and all subtrajectories in T and stores the

distance values in a 3-dimensional array, called Aw (lines 2 to 11). The algorithm explores each

subtrajectory at starting position j of trajectory T (lines 3 to 10). For each subtrajectory in

T it explores all the subtrajectories in Ti of the same length, from starting position k (lines 4

to 9). In the internal loop the algorithm gets the previously calculated distance value between

the subtrajectory of T started at position j of length (w−1) and the subtrajectory of Ti started at

position k of the same length (line 5). After that, it gets the element distance between the next

trajectory elements of those subtrajectories (line 6). Once the previous subtrajectory distance

and the element distance are gotten, it adds both the distance values for calculating subtrajectory

distance value of length w (line 7). This distance value corresponds to the distance between the

subtrajectory of T started at position j of length w and the subtrajectory of Ti started at position

k of the same length and is stored in Aw[i, j,k] (line 8).

Once the subtrajectory distance is computed for a subtrajectory of length w we can

find the best alignment of a subtrajectory starting at the j-th position of T in trajectory T1.

Therefore, from the array Aw between T and each trajectory Ti ∈ T we can obtain the best

alignment between any subtrajectory of length w in T and each trajectory Ti ∈ T. Based on

these best alignments the method assess the relevance of subtrajectories.

3.2.1.2 Computing Subtrajectory Relevance

The function AssessRelevance() in main MOVELETS Algorithm 1 has the objective

to compute the relevance score of a subtrajectory s for the classification problem, and the split

point distance for the subtrajectory s to decide which trajectories are close to the subtrajectory s.

The classical approach to measure the relevance of a shapelet in time series consists

of the maximum information gain (YE; KEOGH, 2011; HILLS et al., 2014). However, this

approach can return high split point values in order to achieve the maximum information gain,

increasing the movelet variability. To avoid this problem, we propose a function that consists

of the maximum information gain keeping the left side of the distance orderline pure, that we

called Left Side Pure (LSP). The term pure indicates that all distances in the left side are of the

same class. Algorithm 3 describes this process. This algorithm has as input the set of pairs G

of a subtrajectory, that contains the distance value gTi of the best alignment of the subtrajectory

in each trajectory Ti in T and the class of Ti, in the form (gTi ,classTi).

Algorithm 3 starts sorting the set of pairs G in ascending order of distance values and

stores the result in a vector, called orderline (line 1). In the orderline the j-th element contains

the distance and the class of the j-th nearest trajectory in the set T to the subtrajectory, repre-

sented by orderline[ j].v and orderline[ j].class, respectively. The first element of the orderline

corresponds to the trajectory that origins the subtrajectory, because the best alignment between

them has distance value equal to zero. The class of the trajectory that origins the subtrajectory

is called targetClass (line 2). From the second element of the orderline the algorithm increases

i while the ith element has the same class of the targetClass (lines 3-6). Once the loop ends, the
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Algorithm 3: AssessRelevance

Input : G // the set of pairs (gTi ,classTi)
Output: relevance // the relevance of the subtrajectory

1 orderline← sort G in ascending order o f g′s ;
2 targetClass← orderline[1].class ;
3 j = 2 ;
4 while orderline[ j].class = targetClass do
5 j← j+1 ;
6 end

7 sp←
orderline[ j].v+orderline[ j−1].v

2
;

8 in f ogain← In f ormationGain (orderline,sp);
9 relevance.splitPoint← sp ;

10 relevance.score← in f ogain ;
11 return relevance

algorithm calculates the split point and the respective information gain (lines 7 to 8). Finally, it

stores the split point and the information gain value as the score into relevance (lines 9 to 10).

3.2.1.3 Movelet Discovery Demonstration

Figure 3.4 shows a demonstration of movelets discovery for a Hurricanes dataset with

REDtwo classes: scale 2 in color red and scale 3 in color green. Figure 3.4(a) shows the movelets

found for each class. Figure 3.4(b) shows an example of movelet of class green and focuses in

the subtrajectory area (rectangle in Figure 3.4(b), where the relevant subtrajectory is in blue

and the green trajectories are those passing near the movelet. Figure 3.4(c) shows the distance

orderline for the movelet, where the vertical line is the split point that separates the closer

trajectories on the left side and the more distant trajectories on the right side. Note that by

assessing the relevance using LSP the algorithm keeps on the left side of the ordeline only

distances to trajectories of the same class. Thus, hurricane trajectories that passing near to the

movelet tends to be of scale 3 (green) and trajectories passing far to movelet tends to be of class

2 (red). Figure 3.4(d) shows the subtrajectories at the left side of the orderline in green and

the movelet in blue. The black points in Figure 3.4(b) indicate the trajectory element where the

trajectory starts and in Figure 3.4(d) the trajectory element where the subtrajectories start.
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Algorithm 4 starts initializing the set of non-redundant movelets M′ and the set of

covered trajectories CoveredT (lines 1 and 2). It analyzes all movelet M∈M one by one in

descending order of relevance score (lines 3 to 9). Then, it finds the trajectories on the left

side of the distance orderline of moveletM and stores them into CoveredByMovelet (line 4).

Only if the movelet M covered at least one new trajectory, not present in the set CoveredT ,

the algorithm adds the moveletM to the set of non-redundant movelets M′, and also adds the

new covered trajectories into CoveredT (lines 5 to 8). By considering only the non-redundant

movelets we reduce their number to O(n), because each movelet in M′ covered at least one new

trajectory not covered by other movelets with greater relevance score in M′.

3.2.3 Step 3 – Movelet Transformation

The third step of our method consists in representing a trajectory set in a matrix using

the trajectories as rows, the movelets as attributes, and the distance of each trajectory to each

movelet as the attribute values. Our approach is based on the time series shapelets transforma-

tion proposed by Hills in (HILLS et al., 2014). Algorithm 5 describes this step.

Algorithm 5: Movelet Trans f ormation

Input : T // the trajectory set
M′ // the movelet set

Output: dataset // an attribute-value representation
1 dataset← /0 ;
2 for trajectory i from 1 to |T| do
3 for movelet j from 1 to |M′| do
4 distance← BestAlignment(M′[ j],T[i]) ;
5 maxDistance←MaxDistance(M′[ j].G) ;
6 splitPoint←M′[ j].sp ;
7 if distance≤ splitPoint then

8 normDistance←
distance

splitPoint
;

9 else

10 normDistance← 1+
distance

maxDistance
;

11 end
12 dataset[i, j]← normDistance ;
13 end
14 end
15 return dataset

The input of Algorithm 5 is a set of trajectories T and a set of movelets M′. For

each trajectory and each movelet it finds the best alignment of the movelet over the trajectory,

according to Definition 3.3 (line 4). It normalizes the distance value to keep the values between

0 and 2, where the values in the interval [0,1] are lower or equal than the movelet split point

and in the interval (1,2] are greater than the split point (lines 6 to 11). After that, it stores the
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normalized distance value into the dataset (line 12). It finalizes by returning a dataset in the

attribute-value format.

The idea behind the distance value transformation between 0 and 2 is to reduce the

large variation among attribute values. For instance, suppose two moveletsM1 andM2, where

the distance values from a set of trajectories for M1 are between 0.00 and 0.01 and for M2

are between 0.00 and 1.00. Note that the interval of distance values for M2 is one hundred

times greater than forM1. By performing normalization the algorithm keeps the values of both

movelets in the same interval, where the values in the interval [0,1] corresponds to distance

values lower or equal than the split point and the values in the interval (1,2] to distance values

greater than the split point. For example, a normalized distance value equal to 0.20 indicates

that the distance represents 20% of the split point value.

Table 3.1 shows the attribute-value visual representation of the dataset, where vi, j is

the distance from trajectory Ti to movelet M[ j], dataset[i, j], and the attribute class represents

the class classTi of the trajectory Ti.

Trajectory M[1] M[2] . . . M[|M|] class

T1 v1,1 v1,2 . . . v1,|M| classT1

T2 v2,1 v2,2 . . . v2,|M| classT2

...
...

...
. . .

...
...

Tn vn,1 vn,2 . . . vn,|M| classTn

Table 3.1 – Attribute-value representation of movelet transformation matrix.

From the attribute-value representation of trajectories we can build classifiers using

several techniques, such as SVM, Decision Trees, Bayesian, Neural Networks. We can also

combine the movelet transformation matrix with other global and local features. For instance,

Table 3.2 shows the combination of movelets transformation with three global features: time

duration (Z1), traveled distance (Z2), and average speed (Z3). In this table the value zi,k corre-

sponds to the value of the feature Zk for the i-th trajectory.

Trajectory
Time

duration
Distance
traveled

Average
speed

M[1] M[2] . . . M[|M|] class

T1 z1,1 z1,2 z1,3 v1,1 v1,2 . . . v1,|M| classT1

T2 z2,1 z2,2 z2,3 v2,1 v2,2 . . . v2,|M| classT2

...
...

...
...

...
...

. . .
...

...

Tn zn,1 zn,2 zn,3 vn,1 vn,2 . . . vn,|M| classTn

Table 3.2 – Attribute-value representation of movelet transformation.

The datasets created in this step are neutral for classification methods, so we can use

this step to create first a trajectory training dataset in order to build a classification model, and

then a trajectory test dataset to evaluate the classification model.
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3.2.4 Complexity Analysis

The complexity of our method is dominated by Algorithm 1. In terms of mem-

ory space, it keeps storing three matrices A1, Aw−1, and Aw simultaneously for calcu-

lating the set distances for subtrajectories of length w, using O(n× m2), where n is the

number of trajectories and m is the length of the longest trajectory. Indeed, its stores

O(m× log m) candidates for each trajectory. Therefore, the space complexity is O(n×

m2). In terms of time, the most costly methods are ComputeElementDistanceArray and

ComputeSubtra jectoryDistanceArray, that are O(n×m2). While the first is performed only

n times, the methods ComputeSubtra jectoryDistanceArray is performed O(n×m) times. So

the overall movelet discovering process requires O(n2×m3) of time complexity, which is the

same complexity of time series shapelets.

The process of movelet discovering needs to be performed only once, to train the

classification model. The time complexity to classify a new trajectory consist of finding the

distances of the best alignment of the movelets in the trajectory and use these distances to

run the classifier. To find the best alignment of nM movelets with length at most mM in a new

trajectory of length m′ the time complexity is O(nM×mM×m′) and to run the classifier depends

on the classification model trained.

3.3 MOVELET EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation of the method MOVELETS. We

performed two experiments. The first experiment consists of comparing the classification accu-

racy of MOVELETS over five datasets, among which three are of different trajectory categories

(hurricanes, animals, and vehicles). These datasets were used in the experimental evaluation

of previous works, so we compare our results with the same datasets in order to make a fair

comparison. This experiment is presented Section 3.3.2 and shows that MOVELETS statisti-

cally outperforms the state of the art and that it is a promising strategy for domain independent

trajectory classification problems.

The second experiment is an evaluation for transportation mode classification, that is

one of the most common problems in trajectory classification. As several works for trajectory

classification were specifically developed for the transportation mode problem, we show that

MOVELETS is general enough to improve trajectory classification in specific domains. This

experiment is detailed in Section 3.3.3.

All the algorithms and datasets used in the experimental evaluations are publicity avail-

able at the author website1. In the next section we detail the datasets used in these experiments.

1 https://bitbucket.org/anfer86/acmsac2018_movelets/
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3.3.1 Datasets

The first experiment is performed ov: scale 2 (red) and scale 3ergfives of three different

trajectory categories: hurricanes, animals, and vehicles. These datasets were used in (PATEL et

al., 2012) and are described in TaREDble 3.3 by dataset name, number of trajectories, average

length, and class proportion.
Table 3.3 – Datasets description.

Dataset # Traj Length avg (sd) Classes

D1 Hurricane2,3 135 42.11 (17.21)
Scale 2
Scale 3

(46%)
(64%)

D2 Hurricane1,4 210 34.84 (17.33)
Scale 1
Scale 4

(71%)
(29%)

D3 Hurricane0,45 354 27.44 (17.03)
Scale 0
Scale 4,5

(76%)
(24%)

D4 Animals 102 146.96 (62.51)
Elk
Deer
Cattle

(37%)
(30%)
(33%)

D5 Vehicle 421 467.98 (250.53)
Bus
Truck

(34%)
(66%)

Datasets D1, D2, and D3 are related to Atlantic Hurricanes Database collected between

1950 and 20082, classified using the Saffir-Simpson scale from 0 to 5, where 0 is the weakest

and 5 is the strongest. The problem of classifying the scale (from 0 to 5) of a hurricane based

on its trajectory is very complex, because there are 6 classes to predict. So, from the entire

dataset, Patel in (PATEL et al., 2012) generates three dataset for binary classification, that are

less complex problems. In this thesis we used the same dataset used in (PATEL et al., 2012).

Dataset D1 contains the trajectories of scale 2 and 3 hurricanes, D2 contains the trajectories of

scale 1 and 4, and D3 trajectories of scale 0, 4 and 5.

The dataset D4 is related to animals movement generated during the Starkey project3,

and contains trajectories of three species observed in June 1995: elk, deer, and cattle. The num-

ber of trajectories for each specie is 38 (7,117 points), 30 (4,333 points), and 34 (3,540 points),

respectively.

The dataset D5 contains two categories of vehicles moving around the Athens

metropolitan area4. The trajectories were collected by school buses and trucks, and the number

of trajectories for each class is 145 (66,096 points) and 276 (112,203 points), respectively.

The second experiment was performed over the GeoLife dataset (ZHENG et al., 2010)

for transportation mode classification. As the original dataset used in (XIAO et al., 2017) was

not provided by the authors, we generate a similar size dataset to perform the comparison. From

the total of 14,718 labeled trajectories, only 9,606 have at least a record. We first took the same

six classes used by (XIAO et al., 2017). Then we removed trajectories with less than 100 points

and we split trajectories with time gaps grater than 300 seconds. Finally, we selected 20% of
2 http://weather.unisys.com/hurricane/atlantic/
3 http://www.fs.fed.us/pnw/starkey/data/tables/
4 http://www.chorochronos.org/
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trajectories from each class, 1,763, with the following class distribution walk (38%), bus (22%),

bike (17%), car (9%), subway (6%), taxi (5%), and train (3%).

3.3.2 Experimental Evaluation

This experiment consists of comparing MOVELETS with state-of-the-art methods. We

compare MOVELETS with (i) the results reported in (PATEL et al., 2012) for the methods

RB-TB (LEE et al., 2008) and TCPR (PATEL et al., 2012); and (ii) the feature sets pro-

posed by Dodge (DODGE; WEIBEL; FOROOTAN, 2009), Zheng (ZHENG et al., 2010), and

Xiao (XIAO et al., 2017), reimplemented for this comparison and publicly available.

To generate the Profile Decomposition proposed by Dodge (DODGE; WEIBEL; FO-

ROOTAN, 2009), the threshold value for sinuosity was defined as the mean between minimum

and maximum sinuosity values. To fit the best threshold values for the features proposed by

Zheng (heading change rate, stop rate and velocity change rate), we generated decision tree

models for each feature, as suggested in (ZHENG et al., 2010). For MOVELETS we only use

the spatial dimension, which has demonstrated to be the best dimension, and we add the same

global features used in (PATEL et al., 2012): traveled distance, time duration, and average

speed.

To build the models we use the algorithms Naive Bayes, C4.5, and SVM, implemented

in Weka (WITTEN et al., 2016) with default parameters. To evaluate the models we use the

weighted average of F-measure (wF), as in (PATEL et al., 2012). This average consists of the

F-measure per class weighted by the class proportion, over a 5-fold cross-validation evaluation.

In this experiment we performed two evaluations. The first evaluation is a cross-

validation evaluation, where we compare MOVELETS with the results reported by (PATEL et

al., 2012) and the methods proposed by (DODGE; WEIBEL; FOROOTAN, 2009; ZHENG et

al., 2010; XIAO et al., 2017), that we reimplemented. This experiment is shown in section

3.3.2.1. The second evaluation, detailed in section 3.3.2.2, is a holdout evaluation, where we

compared MOVELETS with the methods (DODGE; WEIBEL; FOROOTAN, 2009; ZHENG et

al., 2010; XIAO et al., 2017). This experiment is important for the future reproduction of the

results reported.

3.3.2.1 Cross-validation Evaluation Results

Tables 3.4, 3.5, and 3.6 show the results of cross-validation evaluation for each clas-

sifier SVM, C4.5, and Bayes, respectively. The best results for each dataset are highlighted in

bold.

As can be seen in the three tables, independently of the classifier (SVM, C4.5, and

Bayes), MOVELETS outperformed almost all existing works in all datasets, loosing only

marginally of 0.01 to the method TCPR (PATEL et al., 2012) with SVM and ending in a tie

with TCPR for the classifier C4.5 over the vehicle dataset. An overall evaluation indicates
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Table 3.4 – Cross-validation evaluation for SVM.

SVM

Dataset TB-RB TCPR Dodge Zheng Xiao MOVELETSMOVELETS

Hurricane2,3 0.46 0.55 0.50 0.50 0.52 0.75

Hurricane1,4 0.72 0.78 0.72 0.77 0.78 0.86

Hurricane0,45 0.71 0.87 0.85 0.85 0.86 0.90

Animals 0.79 0.89 0.74 0.79 0.87 0.97

Vehicle 0.94 0.99 0.94 0.84 0.98 0.98

Table 3.5 – Cross-validation evaluation for C4.5.

C4.5

Dataset TB-RB TCPR Dodge Zheng Xiao MOVELETSMOVELETS

Hurricane2,3 0.53 0.56 0.47 0.49 0.60 0.62

Hurricane1,4 0.69 0.73 0.72 0.76 0.74 0.78

Hurricane0,45 0.71 0.83 0.83 0.83 0.81 0.85

Animals 0.80 0.89 0.74 0.83 0.81 0.96

Vehicle 0.94 0.98 0.85 0.94 0.92 0.98

Table 3.6 – Cross-validation evaluation for Bayes.

Bayes

Dataset TB-RB TCPR Dodge Zheng Xiao MOVELETSMOVELETS

Hurricane2,3 0.35 0.45 0.53 0.55 0.48 0.76

Hurricane1,4 0.74 0.79 0.70 0.70 0.66 0.86

Hurricane0,45 0.71 0.85 0.80 0.82 0.78 0.87

Animals 0.70 0.77 0.51 0.70 0.77 0.91

Vehicle 0.92 0.97 0.71 0.60 0.74 0.99

that from the 15 cases (3 classifiers × 5 datasets) MOVELETS wins or ties in 14 (93.3%) and

looses marginally in only 1 (6.7%). We perform a statistical analysis using the Friedman’s

Aligned Rank Test (GARCÍA et al., 2010), with level of significance α = 0.05, that results in

a p-value < 0.05. Then, we perform the post hoc test (control vs. all) with MOVELETS as

the control and we obtain all p-values < 0.05. This result indicates that the probability of the

performance differences between MOVELETS and the other methods has occurred by chance is

less than 5%. Therefore, in this experiment our method significantly outperforms the state of

the art approaches.

3.3.2.2 Holdout Evaluation Results

The second evaluation consists in comparing MOVELETS with features used

in (DODGE; WEIBEL; FOROOTAN, 2009; ZHENG et al., 2010; XIAO et al., 2017), per-

forming a holdout evaluation, dividing each dataset into training (60%) and test (40%) sets. We

also use the weighted average of F-measure over the test set as the performance metric. Ta-

bles 3.7, 3.8, and 3.9, show the results of holdout evaluation for each classifier SVM, C4.5, and
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Bayes, respectively. The best results for each dataset are highlighted in bold.

For the SVM classifier our method outperforms all state-of-the-art methods in all

datasets. For the C4.5 classifier our method outperforms or ties existing works in all datasets,

loosing only to the work of Zheng in one dataset. MOVELETS improves the results for dataset

D2 from 0.81 (Dodge) to 0.85, D4 from 0.76 (Zheng) to 0.93, and D5 from 0.94 (Xiao) to

0.96. For the Bayes classifier our method significantly outperformed existing approaches in 4

datasets (for D1 MOVELETS improves the performance from 0.56 (Zheng) to 0.60, for D2 from

0.72 (Dodge) to 0.80, for D4 from 0.76 (Xiao) to 0.93, and for D5 from 0.81 (Xiao) to 0.97).

Only for D3 Zheng achieves 0.86 and MOVELETS 0.84.

An overall evaluation indicates that from the 15 cases (3 classifiers × 5 datasets)

MOVELETS wins or ties 13 (86.7%) and marginally looses in 0.02 over 2 datasets (13.3%).

We also perform a statistical analysis that results in a p-value < 0.05. The post hoc test (control

vs. all) results in all the p-values < 0.05, showing that MOVELETS outperforms the state-of-

the-art methods.

Table 3.7 – Holdout evaluation for SVM.

SVM

Dataset Dodge Zheng Xiao MOVELETSMOVELETS

Hurricane2,3 0.56 0.59 0.53 0.60

Hurricane1,4 0.79 0.75 0.77 0.85

Hurricane0,45 0.87 0.87 0.86 0.88

Animals 0.67 0.68 0.81 0.90

Vehicle 0.89 0.78 0.98 0.99

Table 3.8 – Holdout evaluation for C4.5.

C4.5

Dataset Dodge Zheng Xiao MOVELETSMOVELETS

Hurricane2,3 0.39 0.62 0.51 0.62

Hurricane1,4 0.81 0.71 0.76 0.85

Hurricane0,45 0.84 0.85 0.82 0.83

Animals 0.67 0.76 0.74 0.93

Vehicle 0.73 0.90 0.94 0.96

Table 3.9 – Holdout evaluation for Bayes.

Bayes

Dataset Dodge Zheng Xiao MOVELETSMOVELETS

Hurricane2,3 0.54 0.56 0.54 0.60

Hurricane1,4 0.72 0.68 0.68 0.80

Hurricane0,45 0.76 0.86 0.81 0.84

Animals 0.63 0.64 0.76 0.93

Vehicle 0.76 0.47 0.81 0.97
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3.3.3 Transportation Mode Classification

The works of (ZHENG et al., 2010; XIAO et al., 2017) were specifically developed for

transportation mode classification, so the features used in these works solve a specific problem.

We compare MOVELETS to these works using also the global features mean and standard de-

viation of speed and acceleration with movelets, since they are basic common features in trans-

portation mode classification. We perform the experiments over the GeoLife database (ZHENG

et al., 2010), the same used by state-of-the-art methods.

From the total of 1,763 transportation mode trajectories, we separate 70% for training

Random Forest models and 30% to test, to perform a holdout evaluation. We used the same

train and test sets proportion used in (XIAO et al., 2017). Table 3.10 shows the classification

results of F-measure for each class over the testing set for the approaches MOVELETS, Dodge,

Zheng, and Xiao. The results show that Zheng features wins for transportation mode train, Xiao

features wins for train, walk, car and bike, and MOVELETS wins for taxi, bus, and subway.

Table 3.10 – Transportation mode classification results.

Class Dodge Zheng Xiao MOVELETSMOVELETS

Train 0.85 0.94 0.94 0.72

Walk 0.90 0.90 0.92 0.88

Taxi 0.15 0.24 0.31 0.61

Bus 0.76 0.75 0.79 0.80

Subway 0.67 0.72 0.73 0.85

Car 0.64 0.77 0.78 0.71

Bike 0.84 0.79 0.88 0.83

For a further evaluation, we combine MOVELETS with the features of Dodge, Zheng,

and Xiao, as shown in Table 3.11. As can be seen, the use of MOVELETS improved the results

over methods Dodge and Xiao for all cases, except the ties for method Dodge to predict class

walk and for method Xiao to predict classes train and walk. Using MOVELETS over Zheng

method improved the result for classes taxi, bus, subway and bike, but present worst results

for classes train, walk and car. The results indicate that the best F-measure values for this

problem is achieved by the combination of MOVELETS with the global features used by Xiao,

as it obtains the best F-measure values for all transportation modes.

We conclude that even though MOVELETS was not developed for this specific classi-

fication problem, it has demonstrated to be very robust as a new general solution for finding

relevant subtrajectories for trajectory classification.

3.4 CONSIDERATIONS

In this chapter we proposed a new method for extracting relevant subtrajectories for

trajectory classification, called MOVELETS. Our method does neither perform trajectory dis-

cretization nor partition, so not loosing important information for class discrimination. The
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Table 3.11 – Using Movelets with other features.

Class Dodge
Dodge +

MOVELETSMOVELETS
Zheng

Zheng +
MOVELETSMOVELETS

Xiao
Xiao +

MOVELETSMOVELETS

Train 0.85 0.89 0.94 0.83 0.94 0.94

Walk 0.90 0.90 0.90 0.88 0.92 0.92

Taxi 0.15 0.68 0.24 0.62 0.31 0.71

Bus 0.76 0.81 0.75 0.79 0.79 0.84

Subway 0.67 0.86 0.72 0.84 0.73 0.86

Car 0.64 0.73 0.77 0.76 0.78 0.84

Bike 0.84 0.86 0.79 0.84 0.88 0.89

proposed approach is parameter-free and domain independent, what is very important since the

parameter definition is a well known problem in data mining, being difficult to estimate and

directly affecting the data mining results. Movelets are very flexible, since they can be com-

bined with any trajectory global or local features without any need of extending or changing

the method, so new trajectory features may improve even further movelet based classification.

In addition, movelets are neutral to classification methods, are easy to visualize, to describe, to

understand, and to find them in new trajectory datasets.

We presented an experimental evaluation of MOVELETS demonstrating the effective-

ness of the proposed method, that largely outperformed most existing approaches for trajectory

classification in almost all datasets. We also demonstrate the effectiveness of our proposal for

assessing subtrajectory relevance and finding the split point orderline, called Left Side Pure

(LSP).

Although the proposed method does not repeat distance computations to find the

movelets for each trajectory, the number of distance computations is very high. Therefore,

the time complexity is the main drawback of our proposal. Besides, MOVELETS also has other

limitations. The first limitation is that it uses a distance function between subtrajectories that

supports only subtrajectories of equal length, in order to compute the distance in linear time,

O(w), where w is the subtrajectory length. This limitation can be solved by using a time-warp

distance, such as Dynamic Time Warping (DTW), increasing this time complexity from linear

to quadratic time. The second limitation is that the method uses only one distance function be-

tween trajectory elements, that encapsulates the distances of all dimensions in a single distance

value. As a consequence, besides the difficulty of balancing the importance of each dimension

to build this function, it may include non-discriminant dimensions in the element distance, re-

ducing the chance to find discriminant subtrajectories as the number of dimensions increase.

In this limitation we have found a new issue for studying with a great potential of exploring

and discovering new relevant subtrajectories in multidimensional sequences, which is the main

subject of the next chapter.

During the development of MOVELETS we also tried to use other strategies for movelet

pruning, such as using correlation. In this approach we implemented Pearson and Spearman

correlation to detect if two movelets have high correlation. We considered two movelets highly
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correlated when their distances to trajectories are correlated. If two movelets are very correlated

we only preserve the one with the highest quality. Although removing redundant movelets is

an important issue, this process can result in a class of individuals represented by only one

relevant subtrajectory, indicating only one point of view about the instances of this class. For

that reason, we also implemented a technique to control the redundancy of the relation between

trajectories and movelets, i.e., to control the minimum number of times that a trajectory needs

to be covered by movelets. With that we obtain many points of view to build the classification

model. For instance, a trajectory can be covered by the movelets M1, M2, and M4, instead of

only one of them. However, this approach can only be used for methods to build classifiers that

deal better with redundant attributes, such as ensemble of decision trees, like Random Forest,

and Neural Networks. This approach did not improve the classification accuracy of MOVELETS

models.
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4 EXPLORING DIMENSIONS FOR DISCOVERING RELEVANT SUBTRAJECTO-

RIES

The method MOVELETS, proposed in the previous chapter, is a parameter-free method

and supports multiple dimensions, such as space, time, and semantics. This method uses a

distance measure between trajectory elements and considers all dimensions together for dis-

covering the subtrajectories that discriminate the class. However, for analyzing trajectories

represented by multiple dimensions, this method has two limitations. The first limitation is that

the distance measure needs to encapsulate the distances of all dimensions in a single distance

value, which requires the design of a transformation function. This situation is even more com-

plicated in multiple aspect trajectory data, because the dimensions are heterogeneous, e.g., time,

space, and semantics, where each dimension needs a specific distance measure, and designing

the transformation function is very complex. This is substantially different than the analysis

of other sequential multidimensional data, like time series, where all dimensions are merely

numeric and, in general, the use of normalization techniques is enough for encapsulating the

distances in a single value by using only one distance measure. The second limitation is that en-

capsulating all dimensions to measure the distance between trajectory elements makes it more

difficult to find discriminant subtrajectories as the number of dimensions increase, because an

individual must perform the same movement with respect to all dimensions.

In this chapter, we propose a new method for finding relevant subtrajectories consid-

ering multiple and heterogeneous dimensions without encapsulating all dimensions in a single

distance value. The new method covers both mentioned limitations by using a distance measure

for each dimension, for preserving the distance information of each dimension, and exploring

the subtrajectory dimension combinations in order to find the best dimension combination to

represent each subtrajectory.

Section 4.1 introduces basic definitions. Section 4.2 describes the proposed method

MASTERMOVELETS for exploring movelet dimension and its complexity analysis. Sec-

tion 4.3 presents the experimental evaluation of our method over three multiple aspect trajectory

datasets. Section 4.4 presents the final considerations of this chapter, mentioning drawbacks and

limitations of our proposal.

4.1 BASIC DEFINITIONS

Let us consider the definition of multidimensional trajectory and subtrajectory as in

Definition 2.1 and Definition 2.2 of Section 2.1. Figure 4.1 shows an example of a mul-

tidimensional trajectory T1, like generated by Foursquare users, represented by dimensions

Venue, Time, and Price. The trajectory is denoted by a sequence of seven elements (check-

ins) considering the three dimensions, as T1 = 〈e1,e2, . . . ,e7〉, where the first element e1 is

〈Home,07:00, /0〉, the second element e2 is 〈Café,08:00,$〉, and the last element e7 is 〈Home,18 :

30, /0〉, where the empty set symbol ( /0) means that the information of Price is not available.
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present a new definition of movelet candidate, called multidimensional movelet candidate, in

Definition 4.4.

Definition 4.4. Multidimensional Movelet Candidate. A multidimensional movelet candidate▼ from

a subtrajectory s is represented by a tuple▼= (T,start, length,C,W,score,P), where T is the trajectory

that origins the candidate; start is the position in T where the subtrajectory s begins; length is the

subtrajectory length; C contains the candidate dimensions; W is a set of pairs (WTi
,classTi

), where WTi
is

the distance vector of the best alignment of s into a trajectory Ti and classTi
is the class label of Ti; score

is a relevance score; and P is a set of distance values (called split points), one per dimension, used to

measure the candidate relevance.

We call this movelet candidate as multidimensional movelet candidate because we

keep for each trajectory Ti the distance vector of the best alignment of s with Ti, while in the

method presented in the previous chapter these distances of all dimensions were encapsulated

in a single value.

Evaluating the relevance of each candidate is fundamental to discover movelets. In

classification problems this relevance is given by the capability to differentiate trajectories of

one class (target class) from trajectories of other classes. In other words, it is expected that a

relevant subtrajectory appears in trajectories of the target class and does not appear in trajecto-

ries of other classes. This defines a movelet candidate as discriminant. Based on the concept of

relevance score, that is detailed in Section 4.2.3, we define a multidimensional movelet as given

in Definition 4.5.

Definition 4.5. Multidimensional Movelet. Given a trajectory T and a multidimensional movelet candi-

date▼s from s∈ T , the candidate▼s is a multidimensional movelet if for each candidate▼r from r ∈ T

that overlaps s in at least one element, the▼s has greater relevance score than▼r,▼s.score>▼r.score.

In other words, a candidate is considered as a movelet if there is no other candidate

overlapping it with more relevance on any dimension combination. This strategy selects the

dimension combination of the candidate with highest relevance score.

4.2 MASTERMOVELETS: A METHOD FOR DISCOVERING RELEVANT MULTIPLE

ASPECT SUBTRAJECTORIES

In this section we present the algorithm for discovering heterogenous movelets, called

MASTERMOVELETS (Multiple ASpect TrajEctoRy Movelets). Our proposal is an extension

of MOVELETS, proposed in (FERRERO et al., 2018), to explore the multiple dimensions for

movelet discovering. In the remaining of this chapter, we use the terms movelet and movelet

candidate in the context of multidimensional movelet and candidate, respectively. MASTER-

MOVELETS consists of exploring all the movelet candidates from a trajectory dataset and se-

lecting only the movelets. It explores each movelet candidate by finding the best alignment of

the subtrajectory to all trajectories in the dataset (process detailed in Section 4.2.2) and then

computes the relevance score (detailed in Section 4.2.3).
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Algorithm 6: MASTERMOVELETS

Input : T // trajectory training set
Output: movelets // set of relevant subtrajectories

1 movelets← /0 ;
2 for each trajectory T in T do
3 candidates← /0;
4 ❆1←ComputeElementDistanceVectors (T,T) ;
5 for subtrajectory length w from 1 to T.length do
6 if w > 1 then
7 ❆w←ComputeSubtra jectoryDistanceVectors (T,T,❆w−1,❆1,w) ;
8 end
9 for position j from 1 to (T.length−w+1) do

10 R← /0 ;
11 for trajectory i from 1 to |T| do
12 for dimension d from 1 to |D| do
13 R[i,d, ..]← Rank(❆w[i, j,d, ..]) ;
14 end
15 end
16 bestScore← 0 ;
17 for each dimension combination C in C∗d do
18 W← /0;
19 for trajectory i from 1 to |T| do
20 Wi← min MASTERALIGNMENT(❆w[i, j,C, ..],R[i,C, ..]) ;

21 W←W∪ (Wi,T[i].class) ;
22 end
23 relevance← assess MASTERRELEVANCE(W,classT ) ;
24 if relevance.score > bestScore then
25 bestScore← relevance.score ;
26 bestP← relevance.P ;
27 bestW←W ;
28 bestC←C ;
29 end
30 end
31 ▼←MoveletCandidate(T, j,w,bestC,bestW,bestScore,bestP) ;
32 candidates← candidates∪▼ ;
33 end
34 end
35 SortByRelevance (candidates) ;
36 RemoveSel f Similar (candidates) ;
37 movelets← movelets∪ candidates ;
38 end
39 return movelets
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Algorithm 6 details the method MASTERMOVELETS, that has as the unique input

the trajectory training set T, without any parameter. The output is the set of movelets. It

starts by exploring each trajectory T in the training set T (lines 2 to 38). The function

ComputeElementDistanceVectors(), detailled in Section 4.2.1, computes the distance between

all trajectory elements in T and all trajectories in T, and stores them into a 4-dimensional ar-

ray, ❆1 (line 4). Each value ❆1[i, j,d,k] is the distance between the element of T at position

j and the element of Ti ∈ T at position k, considering dimension d. The next step consists of

exploring all subtrajectory lengths, one by one (lines 5 to 34). For a length w, the function

ComputeSubtra jectoryDistanceVectors(), detailed in Section 4.2.1, computes the distance be-

tween the subtrajectories in T and the subtrajectories in each Ti ∈ T by just adding the values

of ❆w−1 and ❆1, and stores them into Aw (line 7).

In the loop of lines 9 to 33, for each subtrajectory in T of size w, the algorithm uses

❆w to discover its best dimension combination, and adds it into the movelet candidates set. In

this loop, the algorithm first computes for each subtrajectory in T the distance ranking R among

all subtrajectories in the ith trajectory, at dimension k (lines 10 to 15). Once R is computed,

the algorithm explores each dimension combination C (lines 17 to 30). In this loop, it finds

the distance vector of the best alignment between each subtrajectory in T to each trajectory

Ti, using a specific method for multidimensional alignment, called MASTERALIGNMENT (de-

tailed in Section 4.2.2), and stores the distance vector into W (lines 18 to 22). After computing

W, the algorithm measures the relevance of each subtrajectory based on W by using a spe-

cific function called MASTERRELEVANCE (detailed in Section 4.2.3). Finding the dimension

combination with the highest relevance score the algorithm also preserves the split points, the

distance vectors, and the dimension combination (lines 23 to 29). Then, it defines the subtra-

jectory candidate as the subtrajectory with the most relevant dimension combination and stores

it into the set candidates (lines 31 and 32).

Following the external loop, it sorts the trajectory candidates by their relevance and re-

moves those self similar (lines 35 to 36). Two candidates are self similar if they are overlapping

on at least one trajectory element and the algorithm preserves the highest relevance candidate.

Finally, it adds the remaining candidates to the movelets set.

4.2.1 Computing Element and Subtrajectory Distance Vectors

Computing distance between trajectory elements and subtrajectories taking into ac-

count multiple dimensions in an efficient way requires using a dynamic programming strategy,

to avoid repeating distance computation. The function ComputeElementDistanceVectors()

computes the distance between all dimensions of trajectory elements in T and all elements in

T, and is detailed in Algorithm 7. This algorithm has as input the trajectory T and the training

set T, and as the output a 4-dimensional array ❆1 containing all element distance values.

Algorithm 7 computes for each trajectory Ti ∈ T the distance between all trajectory

elements in Ti and all trajectory points in T and stores the distance values in a 4-dimensional
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Algorithm 7: ComputeElementDistanceVectors

input : T , // a trajectory
T // the set of trajectories

output: ❆1 // array of element distances
1 ❆1← /0 ;
2 for trajectory i from 1 to |T| do
3 Ti← T[i] ;
4 for position j from 1 to T.length do
5 for dimension d from 1 to |D| do
6 for position k from 1 to Ti.length do
7 distance← ElementDistance(T [ j],Ti[k],d) ;
8 ❆1[i, j,d,k]← distance×distance ;
9 end

10 end
11 end
12 end
13 return ❆1

array, called ❆1 (lines 2 to 12). In other words, it computes the distance between all subtrajec-

tories of size 1 for all dimensions. This is one of the most time consuming step in the whole

process. The algorithm explores each trajectory point in T at position j (lines 4 to 11) and for

the j-th trajectory point in T it explores, for each dimension d, each trajectory point in Ti at

position k (lines 5 to 10). In the most internal loop it performs the function ElementDistance()

between the j-th trajectory point in T and the k-th trajectory point in Ti, represented by T [ j] and

Ti[k], respectively, at dimension d (line 7). After computing the distance value, it calculates and

stores the square of the distance value into ❆. The 4-dimensional array ❆ is indexed by i, j, d,

and k, in order to store for the i-th trajectory the distance values between all pairs T [ j] and Ti[k],

at dimension d.

To exemplify, we present a running example of element distance vectors computation

between two trajectories. Let us consider the trajectories T1 and T2 in Figure 4.2 both containing

7 elements, represented by dimensions Time, Venue, and Price. These trajectories belong to a

trajectory training set T. For calculating the part of the array A1 containing the element distances

between T1 and T2, we calculate the distance between each pair of trajectory elements T1[ j] and

T2[k], as in Figure 4.5. Figures 4.5(a-c) show the distance values for dimensions Time, Venue,

and Price, individually, and Figure 4.5(d) shows the 3-dimensional array ❆1[2, .., .., ..] with 7

rows and 7 columns, where ❆1[2, j,d,k] is the distance between the j-th trajectory element of

T1 and the k-th trajectory element of T2 at dimension d.

For instance, for the first element of trajectory T1, represented by (Home,09 : 00, /0),

and the second element of trajectory T2, represented by (Café,08 : 00,$), the distance between

these points at dimension Time is 60 minutes, that corresponds to the distance value at row

j = 1 and column k = 2 in Figure 4.5(a). For dimensions Venue and Price the distances are 1

venue and 1 price unit, as in Figures 4.5(b) and (c). Therefore, the element distance vector is
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array ❆w containing the distance values for subtrajectory of length w.

Algorithm 8: ComputeSubtra jectoryDistanceVectors

input : T , // a trajectory
T, // the set of trajectories
❆w−1, // array of subtrajectory distances for length w−1
❆1, // array of element distances
w // subtrajectory length

output: ❆w // array of subtrajectory distances for length w

1 ❆w← /0 ;
2 for trajectory i from 1 to |T| do
3 Ti← T[i] ;
4 for position j from 1 to (T.length−w+1) do
5 for dimension d from 1 to |D| do
6 for position k from 1 to (Ti.length−w+1) do
7 distancew−1←❆w−1[i, j,d,k] ;
8 distance1←❆1[i,( j+w−1),d,(k+w−1)] ;
9 distancew← distancew−1 +distance1 ;

10 ❆w[i, j,d,k]← distancew ;
11 end
12 end
13 end
14 end
15 return ❆w

Algorithm 8 explores each subtrajectory at starting position j of trajectory T (lines

4 to 13). For each subtrajectory in T and dimension d, it explores all the subtrajectories in

Ti of the same length (lines 6 to 11). In the internal loop the algorithm gets the previously

calculated distance value between the subtrajectory of T started at position j of length (w−1)

and the subtrajectory of Ti started at position k of the same length, considering the dimension

d (line 7). After that, it gets the element distance between the next trajectory elements of those

subtrajectories (line 8). Once the previous subtrajectory distance and the element distance are

gotten, it adds both the distance values for calculating subtrajectory distance value of length w

(line 9). This distance value corresponds to the distance between the subtrajectory of T started

at position j of length w and the subtrajectory of Ti started at position k of the same length at

dimension d and is stored in ❆w[i, j,d,k] (line 10).

Two key points to perform movelets discovery in trajectories represented by multiple

and heterogeneous dimensions are: finding the best alignment of the subtrajectory into a tra-

jectory, performed by the method MASTERALIGNMENT, and measuring the relevance of sub-

trajectories, performed by the method MASTERRELEVANCE. These key points substantially

change the way to discover movelets and are detailed in the next sections.
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4.2.2 Multidimensional Alignment of a Subtrajectory in a Trajectory

The problem of movelet alignment is defined as follows: given a subtrajectory and a

trajectory, the best alignment of the subtrajectory in relation to the trajectory consists of finding

the most similar (closest) part of the trajectory to the subtrajectory. The function min_vector()

in Definition 4.3 performs the best alignment and returns the distance. In the case of one-

dimensional alignment (|D|= 1) the function returns only the minimum distance value, but in

the case of |D|> 1 all distance values of the dimensions D must be considered, in the form

of a distance vector. A naive solution consists of transforming each distance vector in only

a distance value by applying a function, but this solution brings two major drawbacks. The

first is the designing of a transformation function to encapsulate the distances, which is domain

dependent, and the second is the loss of distance information in each dimension. To exemplify

this scenario, Figure 4.6(a) shows an example of a subtrajectory s and Figure 4.6(b) a trajectory

T . The subtrajectory s we want to align in T is: “Users that visit a Café of price $$$ around

12:30am and after go to work around 13:30am”.

(a) Subtrajectory s.

12:30 13:30

Café Work

$$$Price

Time

Venue

1 2
Checkin number

(b) Trajectory T .

7:00 08:00 08:30 12:30 13:30 14:00 18:30

Home Café Work Restaurant Café Work Home

$ $$$ $$$$Price

Time

Venue

1 2 3 4 5 6 7
Checkin number

Figure 4.6 – Example of a subtrajectory s (left) and a trajectory T (right).

Note in Figure 4.6 that the user of T does not perform the exact sequence of s, con-

sidering all dimensions. But, he/she goes to the venue Café and then to Work twice, at starting

position 2 (check-in number 2) and 5 (check-in number 5). In addition, at starting position 4

(check-in number 4) the user of T performs check-ins at 12:30am and 13:30am. Considering

this situation, which of these starting positions (2, 4, and 5) represent the best alignment? We

claim that the best alignment is represented by the sequence of check-ins starting at position 5,

as highlighted in Figure 4.7, because besides the venues sequence being the same 〈Café,Work〉,

the dimensions Time and Price are also quite similar.

13:30 14:00

Café Work

$$$$

7:00 08:00 08:30 12:30 13:30 14:00 18:30

Home Café Work Restaurant Café Work Home

$ $$$ $$$$Price

Time

Venue

1 2 3 4 5 6 7
Checkin number

Figure 4.7 – Best subtrajectory alignment of s in T highlighted in the trajectory.

To find the best alignment between a subtrajectory and a trajectory, we propose the
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method MASTERALIGNMENT (Multiple Apect SubTrajEctoRy Alignment), that consists in

ranking the distances of each dimension individually and getting the position of the minimum

average rank to determine the position of the best alignment. Let us consider V1, . . . ,V6 as the

distance vectors of all the alignments, where Vi corresponds to the alignment between s and

the subtrajectory in T starting at the ith-position. Table 4.2 presents the values of the distance

vectors for the example in Figure 4.6. The column at starting position 1, shows the distance

vector V1 between the sequence s = 〈(Café,12:30,$$$),(Work,13:30,)〉 and the sequence of

T at starting position 1, represented by r1 = 〈(Home,07:00, /0),(Café,08:00,$)〉. For Venue

dimension the distance is 2, because 〈Café,Work〉 differs from the sequence 〈Home,Café〉 in

both check-ins. On Time dimension the distance is 660, because the sum of the time differences

in minutes is: |(12:30− 07:00)|= 330 minutes and |(13:30− 08:00)|= 330 minutes, totaling

660. And, on Price dimension the distance is 4 price units, because the sum of the difference

between price values is: |($$$− /0)|= 3 price units and |( /0−$)|= 1 price unit, totaling 4 price

units. The method performs the same distance calculation for the next starting positions in an

sliding way.

Table 4.1 – Finding the best alignments from the distance vectors.

Table 4.2 – Distance values.

Starting position

Distance 1 2 3 4 5 6

Venue 2 0 2 2 0 2

Time 660 570 300 0 90 390

Price 4 2 6 4 1 3

Vector V1 V2 V3 V4 V5 V6

Table 4.3 – Distance rankings.

Starting position

Ranking 1 2 3 4 5 6

Venue 4.5 1.5 4.5 4.5 1.5 4.5

Time 6 5 3 1 2 4

Price 4.5 2 6 4.5 1 3

Avg. rank 5.0 2.8 4.5 3.3 1.5 3.8

After that, we rank the distance values for each dimension. Table 4.3 shows the ranking

values. For instance, for Time dimension the distance values are (660,570,300,0,90,390) and

the ranking values are (6,5,3,1,2,4). This ranking indicates the distance 660 has the worst

ranking value, 6, and the distance 0 has the best ranking value, 1. Note on the Venue dimension

that the method also supports fractional ranks in case of tie, such as 1.5 at starting positions

2 and 5. Then, the method computes the average rank at each starting position (last row in

Table 4.3), resulting in (5.0,2.8,4.5,3.3,1.5,3.8). So, MASTERALIGNMENT considers the

best alignment as the lowest average rank, that is 1.5 (underlined in Table 4.3) and corresponds

to the 5th starting position. Finally, the method returns the distance vector v5 = (0,90,1), that

represents the distances (of the best alignment) between the subtrajectory s and the trajectory

T , which is denoted by W s
T .

The function MASTERALIGNMENT is detailed in Algorithm 9, that has as input two

2-dimensional arrays, V and R, containing the distance values and the distance rankings, re-

spectively.

Algorithm 9 starts initializing the set to store the average rank values Y , the number of

dimensions l, and the initial position of the minimum average rank, posMinAvgRank (lines 1
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Algorithm 9: MASTERALIGNMENT

input : V , // distance values of subtrajectory alignments
R // distance rankings of subtrajectory alignments

output: W // distance values of the best subtrajectory alignment
1 Y ← /0 ;
2 l← |R[..,1]| ;
3 posMinAvgRank = 1 ;
4 for position j from 1 to |R[1, ..]| do
5 sumRank =← /0 ;
6 for dimension d from 1 to l do
7 sumRank = sumRank+R[d, j] ;
8 end

9 avgRank =
sumRank

l
;

10 Y [ j] = avgRank ;
11 if Y [ j]< Y [posMinAvgRank] then
12 posMinAvgRank← j ;
13 end
14 end
15 W ←V [.., posMinAvgRank] ;
16 return W

to 3). Then, it computes the average rank along dimensions (lines 4 to 14). In this loop it sums

the rank values along dimensions and then performs the average rank, storing the result in the

set Y (lines 5 to 10). After computing the average rank, it compares the current average rank and

the minimum average rank found. If the current average rank is lower, it updates the position

of the minimum average rank (lines 11 to 13). Finally, the algorithm gets the distance vector of

the best multidimensional alignment based on that position and stores the vector in W (line 15).

This is the distance vector between the subtrajectory s and trajectory T .

Since we can measure the distance of a subtrajectory to any trajectory considering

multiple and heterogeneous dimensions, we can measure the relevance of the subtrajectory, that

is detailed in the following section.

4.2.3 Relevance Measuring for Multidimensional Subtrajectory Candidates

The relevance of a subtrajectory is related to the number of trajectories of the same

class that performs similar movement. To do that we analyze the distances of the best alignment

between a subtrajectory and all trajectories in the dataset, in order to define which trajectories

of the same class perform similar movement. The most common approach consists of putting

the distances of the best alignments in an orderline and finding a split point to separate the

distances into two groups: the nearest (left side) and the farthest (right side), where the nearest

perform similar movement and the farthest not. Several techniques have been proposed to find

the split point, such as the maximum information gain (YE; KEOGH, 2011), the Kruskal-Wallis







82

Algorithm 10: MASTERRELEVANCE

input : W, // set of distance vectors of the best alignments
targetClass // the target class, i.e. the movelet candidate class

output: relevance // subtrajectory relevance
1 // Step 1: pruning points with greater distance values
2 Wtrain← selectHal f ForTraining(W) ;
3 nonTargetWtrain← /0 ;
4 for pair (Wi,classi) of Wtrain do
5 if not classi = targetClass then
6 nonTargetWtrain← nonTargetWtrain∪{Wi} ;
7 end
8 end
9 // Step 2: evaluating split points

10 for Wi in nonTargetWtrain do
11 for Wj in nonTargetWtrain do
12 if Wj isCoveredBy Wi then
13 nonTargetW← nonTargetW−{Wj} ;
14 end
15 end
16 end
17 // Step: choosing the best split point
18 Pcandidates← nonTargetWtrain ;
19 statistics← /0
20 for Wi in Pcandidates do
21 for pair (Wk,classk) in W do
22 if Wk isCoveredBy Wi then
23 if classk = targetClass then
24 statistics[i].TruePositive += 1 ;
25 else
26 statistics[i].FalsePositive += 1 ;
27 else
28 if classk = targetClass then
29 statistics[i].FalseNegative += 1 ;
30 else
31 statistics[i].TrueNegative += 1 ;
32 end
33 statistics[i].Fscore← calculateFscore(statistics[i]) ;
34 end
35 indexBestFscore← argmaxi(statistics) ;
36 relevance.score← statistics[indexBestFscore].Fscore ;
37 relevance.P←Pcandidates[indexBestFscore] ;
38 return relevance
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4.2.4 Trajectory Attribute-value Representation

Algorithm 6 extracts from a trajectory training set T the set of movelets M of size |M|.

Then, these movelets are used to set up an attribute-value representation for the trajectory set,

where the movelets are the attributes and the distances from each trajectory to each movelet are

the attribute values. This representation can be used to build classification models (HILLS et

al., 2014). Table 4.4 shows the attribute-value visual representation, where zi, j is the distance

from trajectory Ti to movelet M[ j], and the attribute class represents the class of trajectory Ti.

In this work each value zi, j is a binary value, that is 0 if the movelet M[ j] covers the trajectory

Ti (considering the split points and dimensions of M[ j]), and 1 otherwise.

Trajectory M[1] M[2] . . . M[|M|] class

T1 z1,1 z1,2 . . . z1,|M| classT1

T2 z2,1 z2,2 . . . z2,|M| classT2

...
...

...
. . .

...
...

Tn zn,1 zn,2 . . . zn,|M| classTn

Table 4.4 – Attribute-value representation of trajectories.

So we first use this representation for the trajectory training set T in order to build

the classification model, and then we use the same representation for the trajectory test set to

evaluate the classification model.

4.2.5 Complexity Analysis

In terms of memory space, MASTERMOVELETS (Algorithm 6) keeps storing the arrays

❆1, ❆w−1, and ❆w simultaneously, using O(n×m2× l), where n is the number of trajectories,

m is the length of the longest trajectory, and l the number of dimensions. Also, it stores at most

m2 candidates for each trajectory. Therefore, the space complexity is O(n×m2× l).

In terms of time, the algorithm MASTERMOVELETS repeats the function Rank by

(n2×(m+m2)/2× l) times and MASTERRELEVANCE by (n×(m+m2)/2×2l) times. The for-

mer costs O(m log m) and the latter O(n2× l). So, the overall complexity is O(n3×m3 log m×

2l). The number of movelets extracted by MASTERMOVELETS is O(n×m). So, the cost to

build the classification model depends on the complexity of the algorithm chose to build the

classifier, considering as input n trajectories as samples and O(n×m) movelets as attributes.

Note the process of discovering movelets needs to be performed only once, to train

the classification model. Then, to classify a new trajectory we need to find the distances of the

best alignment of the movelets in the trajectory and use these distances to run the classifier.

Considering nM movelets with at most mM trajectory elements and lM movelet dimensions in

a new trajectory of length m′, to perform the algorithm MASTERALIGNMENT to find the best
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alignment between the movelets and the trajectory the time complexity is O(nM×mM× lM×

m′ log m′) and to run the classifier depends on the model trained for classification.

4.3 CLASSIFYING MULTIPLE ASPECT TRAJECTORIES USING MASTERMOVELETS

We begin by noting that the MASTERMOVELETS source code, the datasets and the

results of the experiments are available at Ferrero (2019).

We evaluate MASTERMOVELETS with three real trajectory datasets, the

Gowalla (CHO; MYERS; LESKOVEC, 2011) and Brightkite (CHO; MYERS; LESKOVEC,

2011), used by Gao et al. (2017) to evaluate the method BiTULER, and a third dataset

of Foursquare (YANG et al., 2015) check-ins, with more data dimensions. We compare

MASTERMOVELETS to the state-of-the-art method BiTULER (GAO et al., 2017) because it

was developed for social media data, and to nearest neighbor classifiers using the following

distance and similarity measures: LCSS (VLACHOS; KOLLIOS; GUNOPULOS, 2002),

EDR (CHEN; ÖZSU; ORIA, 2005), MD-DTW (HOLT; REINDERS; HENDRIKS, 2007), and

MSM (FURTADO et al., 2016). We do not compare MASTERMOVELETS with the methods

developed for raw trajectory classification (LEE et al., 2008; DODGE; WEIBEL; FOROOTAN,

2009; ZHENG et al., 2010; PATEL et al., 2012; XIAO et al., 2017) because these works do

not support semantic dimensions, and because they were outperformed by MOVELETS for raw

trajectories in Ferrero et al. (2018) over four classical datasets (animals, hurricanes, trucks, and

Geolife).

In the following sections we present the experimental results for each dataset. In each

section we include an introduction of the dataset, the description of its dimensions, and the

presentation and discussion of experimental results.

4.3.1 Evaluation with the Gowalla dataset

The first experiment uses the dataset from Gowalla (CHO; MYERS; LESKOVEC,

2011), that is a location-based social network, where users share their locations by checking-in.

Each check-in contains the anonymized user id, the timestamp, the spatial location (latitude

and longitude), and the check-in venue (place). This dataset was used in Gao et al. (2017) to

classify users based on their check-in identifiers. From the original dataset containing more

than 6 million check-ins, collected between 2009 and 2010, we selected places with at least

10 check-ins. We segmented trajectories in weekly trajectories with at least 10 check-ins and

users with at least 10 trajectories, resulting in 33,816 weekly trajectories of 1,952 users. We

randomly selected 300 users for experimental evaluation obtaining 5,329 trajectories. The class

labels are the 300 user identifiers. Table 4.5 shows details about each dimension, such as data

type, value range, and the distance measure used to compare two dimension values.

4 The weekday distance between two values returns 0 if both are weekdays or weekends, and 1, otherwise.
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Table 4.5 – Gowalla trajectory dimension description.

Dimension Type Range or examples Distance measure

Space Spatial 40.82651 -73.95039 Euclidean Distance

Time Temporal [00:00,23:59] Difference in minutes

Weekday Ordinal {Mon, Tue, . . . , Sun} Weekday Distance4 (0 or 1)

Place identifier Nominal Any nominal value Binary Distance (0 or 1)

We evaluate the methods performing a 5-fold cross-validation. It is not possible to run

a traditional cross-validation since for each training set we need to generate new features for

MOVELETS and MASTERMOVELETS, and define the thresholds for similarity/distance mea-

sures. Therefore, we manually performed a 5-fold cross-validation, generating, in a stratified

way, five files for each dataset, and executed 5 times the experiments using four files for training

and one for testing, changing each time the test file. We reported the average precision of these

5 executions for each measure in each dataset.

For evaluating MASTERMOVELETS we limit the maximum size of the movelets to the

size of the smallest trajectory of the dataset, and we build classification models using Neural

Networks (NN) and Random Forests Decision Trees (RF). The former is a Single-hidden layer

Neural Network with 100 units and to train it we used the same parameters used in Gao et al.

(2017), a dropout rate of 0.5, and an Adam optimizer with the following values of learning rate

10−4 (number of epochs): 9.5(80), 7.5(50), 5.5(50), 2.5(30), and 1.5(20). The latter consists

of an ensemble of 300 decision trees. For MOVELETS we also used a RF classifier with 300

decision trees.

For BiTULER (GAO et al., 2017) we built a Bidirectional Neural Network from word

embeddings extracted from the entire dataset. BiTULER is limited to consider only one dimen-

sion, the place identifier.

For the distance and similarity measures LCSS, EDR, and MSM we define three

threshold values for each dimension with non-binary distance: 30, 60, and 120 minutes for

the Time dimension, and 100, 300, and 500 meters for the spatial dimension. We kept all

dimensions with the same weights. For the distance measure MD-DTW we normalize the non-

binary distances, using the threshold values mentioned above, dividing the distance value by

the threshold value. For distance and similarity measures we performed 5× 2-fold cross vali-

dation on the training set to find the best parameter configuration and use this configuration to

calculate the classification accuracy on the test set.

For MOVELETS and the similarity/distance measures we used all available dimensions.

As the objective of the experimental evaluation is to compare our work to approaches that deal

with multiple dimensions we did not manually explore individual dimensions or combinations

of only some dimensions in the experiments, although we know that in many cases better results

are obtained with less dimensions.

Table 4.6 shows the classification accuracy (acc) and the accuracy on the top 5 most
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probable classes (acc top5) on the test set. The best result is highlighted in bold and the second

best result is underlined.

Table 4.6 – Cross-validation evaluation results on Gowalla dataset.

MASTER

MOVELETS

Measure MD-DTW LCSS EDR MSM BiTULER MOVELETS NN RF

acc 75.8 90.0 87.2 92.1 63.0 52.2 95.2 93.3

acc top5 88.8 95.7 93.4 96.2 74.1 77.3 98.2 97.9

The results show that MASTERMOVELETS (NN) achieves the best accuracy, 95.2%

(4.8% of error). MASTERMOVELETS (RF) achieves the second best accuracy, 93.3% (6.7%

of error). Among the state of the art methods, the similarity measure MSM achieves the best

results, 92.1% of accuracy (7.9% of error). MASTERMOVELETS (NN) and (RF) reduce the

classification error in comparison to MSM in 39.2% (1−4.8/7.9) and 15.2% (1−6.7/7.9), re-

spectively. As expected, because of the number of dimensions, the worst results were achieved

by MOVELETS, that encapsulates the distances of all dimensions in a single value; and BiT-

ULER, because it supports only a single dimension, which is not the best solution for classifying

semantically rich trajectories.

4.3.2 Evaluation with the Brightkite dataset

The second experiment uses the dataset from Brightkite (CHO; MYERS; LESKOVEC,

2011). This dataset was also used in Gao et al. (2017) to classify users based on their check-in

identifiers. Each check-in contains the anonymized user id, the timestamp, the spatial location

(latitude and longitude), and the check-in venue, without any other information about checking-

in. From the original dataset containing more than 4.5 million check-ins, collected between

2008 and 2010, we selected places with at least 10 check-ins. We segmented trajectories in

weekly trajectories with at least 10 check-ins and users with at least 10 trajectories, resulting

in 54,247 weekly trajectories of 2,042 users. We randomly selected 300 users for experimen-

tal evaluation obtaining 7,911 trajectories. The class labels are the 300 user identifiers. The

trajectory dimension description is the same as the Gowalla dataset (shown in Table 4.5).

The experimental setup is the same of the previous dataset.

Table 4.7 shows the results, where MASTERMOVELETS (NN) achieves the best ac-

curacy, 96.6% (3.4% of error). MASTERMOVELETS (RF) achieves the second best accuracy,

96.3% (3.7% of error). Among the state of the art methods, the similarity measure MSM

achieves the best results, 95.2% of accuracy (4.8% of error). The results indicate that in com-

parison to MSM, MASTERMOVELETS reduces the classification error in 29.2% and 22.9%

with NN and RF models, respectively. The worst results were also achieved by MOVELETS and

BiTULER.
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Table 4.7 – Cross-validation evaluation results on Brightkite dataset.

MASTER

MOVELETS

Measure MD-DTW LCSS EDR MSM BiTULER MOVELETS NN RF

acc 91.2 94.2 94.0 95.2 90.8 64.5 96.6 96.3

acc top5 97.1 97.7 97.3 98.2 95.4 89.3 99.1 99.1

4.3.3 Evaluation with the Foursquare dataset

For the experiment with the Foursquare Yang et al. (2015) dataset we considered

check-ins (mostly in New York city) between 2012 and 2013. The original dataset has 227,428

check-ins of 1,083 distinct users. Each check-in is composed of the anonymized user id,

the timestamp of the check-in, and the corresponding Foursquare venue id. We extract the

weekdays from time and enriched the check-ins with venue information collected from the

Foursquare API5 and with historical weather data (the weather condition) collected via the

Weather Wunderground API6, in order to explore the relation between user mobility and weather

information. In this experiment we removed the spatial dimension, and used only the most gen-

eral venue category instead of the venue identifier, to make the problem more difficult. Table 4.8

presents the six dimensions used in this dataset, the description of each dimension, and the re-

spective distance function.

We preprocessed the dataset by applying the following steps: we removed check-ins

belonging to broad categories such as roads, rivers, cities, neighborhoods, etc, and duplicated

check-ins (considering a 10-minutes threshold); we segmented the trajectories into weekly tra-

jectories and selected those with at least 10 check-ins and users with at least 10 trajectories,

resulting in 3,079 weekly trajectories of 193 users. The class label is the user identifier.

Table 4.8 – Foursquare trajectory dimension description.

Dimension Type Range or examples Distance measure

Time Temporal [00:00,23:59] Difference in minutes

Weekday Ordinal {Mon, Tue, . . . , Sun} Weekday Distance (0 or 1)

Venue Category Nominal Foursquare categories7 Binary Distance (0 or 1)

Price Numeric {1,2,3,4} Manhattan Distance

Rating Numeric [0.0,9.9] Manhattan Distance

Weather condition Nominal
{Clear, Cloudy, Fog,
Haze, Rainy, Snow}

Binary Distance (0 or 1)

5 https://developer.foursquare.com/
6 https://www.wunderground.com/weather/api/
7 Foursquare categories are Shop & Service, Professional & Other Places, Food, Travel & Transport, Outdoors

& Recreation, Arts & Entertainment, Residence, Nightlife Spot, Event, College & University.
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The experimental configuration was the same used with the previous datasets. For the

similarity measures we use the thresholds: 30, 60, and 120 minutes for Time; 0, 1, and 2 price

units for Price; and 0.5, 1.0, and 1.5 rating values for the Rating.

Table 4.9 shows the classification accuracy (acc) and the accuracy on the top 5 most

probable classes (acc top5) on the test set. The best result is highlighted in bold and the second

best result is underlined.

Table 4.9 – Cross-validation evaluation results on Foursquare dataset.

MASTER

MOVELETS

Measure MD-DTW LCSS EDR MSM BiTULER MOVELETS NN RF

acc 20.9 29.3 32.0 47.8 30.9 29.0 80.7 72.3

acc top5 40.1 54.2 56.3 71.4 58.1 49.5 92.5 89.1

As in the previous experiments, MASTERMOVELETS with both NN and RF achieves

the best results, with 80.7% of accuracy (19.3% of error) and 72.3% (27.7% of error), re-

spectively. We notice that in all three experiments, the best results were achieved with MAS-

TERMOVELETS NN. Indeed, as in the previous datasets, apart from MASTERMOVELETS, the

second best method was MSM, that achieved 47.8% of accuracy (52.2% of error). The clas-

sification error improvement of MASTERMOVELETS in relation to MSM is 63.0% (NN) and

46.9% (RF).

The worst results on this dataset were achieved with MD-DTW, MOVELETS and

LCSS. MD-DTW and MOVELETS have the same problem: they depend on a transformation

function to encapsulate the distances of all multiple and heterogeneous dimensions in a single

distance value. BiTULER is limited to the place identifier (place category in this experiment),

what shows that this dimension is not sufficient to characterize the class label. LCSS and EDR

do not present good classification accuracy because the number of matchings decrease as the

number of dimensions increase. MSM presents better results than LCSS and EDR because it

allows partial matching among dimensions.

In relation to the Neural Network and Random Forest models, the NN models capture

the relation between the movelets and the classes better than RF models. In general, Neural

Network models deal better with high dimensional spaces than symbolic models as decision

trees, in detriment of interpretability.

4.3.4 General Analysis over all datasets

In this section we analyze the capability of the models to best discriminate classes. For

this comparison we considered only MASTERMOVELETS NN, that was better than MASTER-

MOVELETS RF. Figure 4.10 shows a bar plot for each dataset, indicating for how many classes
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each classifier presents the best F-measure score8.
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(a) Gowalla dataset.
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(b) Brightkite dataset.
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(c) Foursquare dataset.

Figure 4.10 – Bar plots indicating for how many classes each classifier presents the best F-measure.

In Figure 4.10(a), for the Gowalla dataset, the best model is MASTERMOVELETS, that

achieves the best F-measure score in 206 (of 300) classes, followed by MSM, that achieves 133

classes. Figure 4.10(b) shows the bar plot for Brightkite. In this dataset, MASTERMOVELETS,

LCSS, MSM and EDR were very similar achieving the best F-measure score in between 188 and

178 (of 300) classes. On the other hand, the bar plot for the Foursquare dataset in Figure 4.10(c)

shows that MASTERMOVELETS is significantly better than state of the art methods. MASTER-

MOVELETS achieves the best F-measure in 186 (of 193) classes, and the other methods in less

than 5 classes.

We performed an statistical analysis over the capability of these classifiers to discrimi-

nate classes, using the Friedman’s Aligned Rank Test (GARCÍA et al., 2010), with level of sig-

8 A classifier presents the best F-measure performance for a class if there is no other classifier with better F-
measure score and there are at least a classifier with lower score. In addition, the sum of the bars in bar plot
exceed the number of classes, because of ties.
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nificance α = 0.05, resulting in p-values < 0.05 for all three datasets, Gowalla, Brightkite, and

Foursquare, indicating statistical difference among classifiers. Then, we performed the post hoc

test to find out the significant statistical difference between MASTERMOVELETS and the other

classifiers. Table 4.10 shows the result of the post hoc test, considering MASTERMOVELETS

NN as control.

Table 4.10 – p-values of the Friedman’s Aligned Rank Statistical Test using MASTERMOVELETS NN as
control.

MASTER

MOVELETS

Dataset MD-DTW LCSS EDR MSM BiTULER MOVELETS NN

Gowalla < 0.01 < 0.01 < 0.01 0.08 < 0.01 < 0.01 -

Brightkite < 0.01 0.04 0.01 0.28 < 0.01 < 0.01 -

Foursqaure < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 -

4.3.5 Movelet Interpretation and Dimension Analysis

One of the most interesting aspects related to MASTERMOVELETS, but which has not

been explored in this paper, is its capability to provide subtrajectories of different lengths and

with different dimension combinations that can be used to understand what distinguishes one

moving object behavior from another one. This information represents knowledge about the

trajectories of the same class (same moving object), i.e., the behaviour pattern of a single indi-

vidual, and it can be used for other types of analysis as, for instance, trajectory anonymization

or pattern interpretation.

The capability of MASTERMOVELETS to automatically capture the best dimension

combination and element sequence length makes it very robust for trajectory classification prob-

lems of a variety of datasets with a high number of dimensions, which is a tendency nowadays.

In order to understand a little more about the dimensions that are among relevant

movelets, we show two movelets of three different classes in Table 4.11, extracted from the

Foursquare dataset. In this table, -1 means that the dimension has no value for that trajectory

point. We may notice that the movelets are heterogeneous, i.e., contain different dimensions.

For instance, the class label 12 has two movelets of the same length (2), and the first movelet

has the dimensions Rating, Time, and Venue Category, while the second movelet has the dimen-

sions Price and Time. The movelets of class 25 have different lengths (1 and 3). The first one

has the dimensions Rating, Time and Venue Category, and the second one has the dimensions

Rating, Venue Category and Weekday. For the class 50, the first movelet has length one and

five dimensions (Rating, Time, Weather, Venue Category and Weekday). The second movelet

has length four with four dimensions (Price, Time, Venue Category and Weekday).
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Table 4.11 – Examples of movelets extracted from the Foursquare dataset.

class movelet Venue

label length Price Rating Time Weather Category Weekday

12 2 -1 06:50 Food

12 2 5.3 19:09 Shop & Service

12 2 1 07:05

12 2 -1 18:43

25 1 9 07:55 Arts & Entertainment Wednesday

25 3 9.2 06:30 Outdoors & Recreation

25 3 -1 08:07 Outdoors & Recreation

25 3 9.6 08:11 Outdoors & Recreation

50 1 7.9 21:13 Clear Shop & Service Tuesday

50 4 -1 21:46 Travel & Transport Friday

50 4 -1 21:50 Outdoors & Recreation Friday

50 4 1 00:04 Food Saturday

50 4 1 09:44 Nightlife Spot Saturday

With the few examples shown in the figure we observe that in the Foursquare dataset,

that does not have the spatial dimension and the POI instance, the movelets of the same class

are characterized by many dimension combinations.

4.4 CONSIDERATIONS

In this chapter we proposed a new method for extracting relevant subtrajectories for

multiple aspect trajectory classification, called MASTERMOVELETS. The proposed method is

parameter-free and domain independent, which is very important since parameter values are

difficult to estimate in many problems and directly affect the data mining results. We described

in details how MASTERMOVELETS explores different dimension combinations in order to find

the best combination for a movelet candidate. Despite exploring dimension combination, our

method generates a number of movelets of the same order of the previous proposal MOVELETS.

The movelets extracted from MASTERMOVELETS are also neutral to classification methods, are

easy to visualize, to describe, to understand, and to find them in new trajectory datasets.

We evaluate our method using three datasets to classify trajectories and compare it with

methods in the literature that support multiple data dimensions with different characteristics,

including space, time, and semantics. Experiments demonstrated that MASTERMOVELETS

outperformed existing approaches by reducing the classification error between 10% and 58%.

The main drawback of our method is the time complexity, although it is performed

only once, before the classification task. Preliminary experiments have shown that the movelets

that best characterize the class label are short movelets, i.e., subtrajectories with a few elements.

Therefore, one simple way to reduce the processing time is to search for movelets until a limited

length (e.g. loge m, where m is the length of each trajectory).
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When working on MASTERMOVELETS we also tried other approaches to improve the

classification results, but without success. We present and discuss these approaches:

New Distance Measures for Point of Interest: in this thesis we compute distance between

point of interests (POIs), like check-in venues, using a binary function, where two POIs

have distance zero if they are the same POI and one otherwise. We tried to use other

two approaches to measure the distance between POIs. The first approach consisted

of using a hierarchy of POI types as additional information to perform distance cal-

culation. We used the algorithm Lowest Common Antecessor (LCA), that finds the

first common hierarchy path between two POIs. Suppose a POI Brazilian Restaurant

represented on the hierarchy by the sequence γ1 =(Food, Latin American Restaurant,

South American Restaurant, Brazilian Restaurant) and another POI Argentinian Restau-

rant represented by the sequence γ2 =(Food, Latin American Restaurant, South Amer-

ican Restaurant, Argentinian Restaurant). The LCA of both sequences is (Food, Latin

American Restaurant, South American Restaurant). So the distance is calculated as

1− length(LCA(γ1,γ2)/(length(γ1)+ length(γ2)). In our example the distance is 0.25,

so the distance between Brazilian Restaurant and Argentinian Restaurant is 0.25, instead

of 1 provided by the binary distance measure used in the experiments. Despite the coher-

ence of the distance value with respect to the semantics of POIs, does this approach not

improve the classification results.

The second approach was using as distance between POIs a distance based on a Word

Embeddings of the POIs. Word Embeddings are very useful in text mining applications.

Using Word Embeddings we can represent each POI as a vector in a theta-dimensional

space. The vector values for each POI are fitted according to the context, i.e., the POIs

visited before and after by an individual, such that minimizing the distance between POIs

with the same context in the theta-dimensional space. The most common distance func-

tion between embedding vectors is the cosine distance that we used to measure the dis-

tance between POIs to movelet discovery. However, using this approach has also not

improved the classification results. One reason for that is that the classical approach of

Word Embeddings is a no supervised learning, so the method does not use the class to

fit the embeddings as part of the context. For instance, suppose that it is very common

people go to a Bar or a Cafe after Work, then the embedding vectors of Bar and Cafe are

very similar because they happen in similar contexts, i.e., after Work. But this rule may

not be true for all the users. Maybe, training embeddings using the class as part of the

context can improve the classification results.

Exploring the Multidimensional Orderline: in this thesis we find the split point for each di-

mension by using half of the points in the multidimensional orderline and the other half

of points for evaluation. During this thesis, we also tried other approaches to explore

the multidimensional orderline. The first approach consisted of calculating a confidence
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interval for the split points. To do that, we sampled the orderline in a stratified way many

times, commonly 10, and then we calculated the mean, the standard deviation and the

confidence interval of the mean, for each dimension split point. From this approach we

divided the multidimensional orderline in three decision regions: closely (lower than the

lower bounds of the confidence interval in all dimensions), middle (into the confidence

interval in some dimension) and far (upper than the upper bounds of the confidence in-

terval in all dimensions). This approach has also not improved the classification results.

Another approach not explored yet consist of building fuzzy rules to define membership

functions based on the multidimensional orderline points distribution to define a degree

of membership of a trajectory to the movelet.
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5 PROCESSING TIME EVALUATION

The main drawback of MOVELETS and MASTERMOVELETS is their processing times.

In this chapter we make some analysis considering this point. In Section 5.1 we evaluate these

methods by limiting the maximum movelet length. In Section 5.2 we present a scalability

evaluation.

5.1 MAXIMUM MOVELET LENGTH EVALUATION

A simple way to reduce the processing time of MOVELETS and MASTERMOVELETS

is to avoid exploring all possible subtrajectory lengths, limiting the maximum length of the

movelets. This strategy is used in the time series domain for the method shapelets. The prob-

lem is that finding the appropriate maximum length is sometimes challenging. Therefore, we

evaluate the accuracy of MOVELETS and MASTERMOVELETS by exploring the movelet maxi-

mum length.

In this experiment we explored the maximum length of the movelets by limiting its

length to 2, 4, 6, loge and without limit. For MOVELETS and MASTERMOVELETS we used the

spatial dimension for the datasets Animals and Vehicles, and we used all available dimensions

for Gowalla and Foursquare datasets (see Tables 4.5 and 4.8). We build classification models

using Random Forest considering 300 as the number of trees and we evaluate them with a hold-

out strategy, 70% for training e 30% to test. For MOVELETS we used only the movelets as

attributes1, and have not considered global trajectory features. The experiment was performed

using 16 cores in two sockets Intel Xeon E5-4627 v2 @ 3.30GHz, 8 cores per socket, and 256

GB RAM.

Table 5.1 presents the results of the experiment for the method MOVELETS in terms

of classification accuracy, processing time in seconds (secs) and number of movelets extracted.

The results show that in general we can limit the movelet length without expressive loss of ac-

curacy, significantly reducing the processing time and in some cases keeping the same accuracy

as exploring all movelet lengths. In addition, in all datasets, the number of movelets is reduced

as the maximum movelet length increases. This happens because our proposal selects only the

best non-overlapping movelets, and by limiting the movelets length the number of movelets is

at most (n×m/m′), where n is the number of trajectories, m the maximum trajectory length and

m′ is the maximum movelet length.

For the Animals dataset the best accuracy value was 95.2% and was achieved by both

without limiting movelet length and by limiting it using loge. In addition, the processing time

was significantly reduced. Note that the approach without limit takes 14.1 secs and by limiting

movelet length the processing time was reduced at least 7 times, to 2.0 secs.

1 Different from the experiments presented in Chapter 3 when we combine the movelets with other global features
to build classifiers.
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Table 5.1 – MOVELETS performance evaluation.

Dataset Measure
Max

length 2
Max

length 4
Max

length 6
Max

length loge

Without
limit

Animals Accuracy (%) 92.7 92.9 92.9 95.2 95.2

Processing time (secs) 1.4 1.5 1.7 2.0 14.1

Number of movelets 3,099 2,890 2,783 2,760 2,440

Vehicles Accuracy (%) 98.1 98.1 98.1 98.1 98.1

Processing time (secs) 169.6 197.6 207.8 233,3 2,480.7

Number of movelets 62,675 57,565 55,257 54,023 45,393

Gowalla Accuracy (%) 48.8 48.9 50.1 49.0 49.0

Processing time (secs) 166.1 176.6 187.7 183.0 493.0

Number of movelets 5,259 5,323 5,339 5,329 5,366

Foursquare Accuracy (%) 23.5 26.0 25.8 25.9 26.9

Processing time (secs) 108.5 116.2 119.9 117.6 139.3

Number of movelets 1,174 1,320 1,333 1,327 1,383

For the Vehicles dataset the accuracy was the same for all the movelet length ap-

proaches. One more time, the processing time was significantly reduced by limiting the movelet

length. Extracting movelets without limiting the length takes 2,480.7 secs and by limiting the

movelet length using loge, the processing time was reduced more than 10 times, to 233.3 secs.

For the Gowalla dataset the best accuracy was achieved for maximum movelet length 6,

50.1%, with a difference of 1.1% to the second best accuracy. And for the Foursquare dataset the

best accuracy was achieved without limiting movelet length (26,9), with a difference of 1.0%

to the second best accuracy. These results show that depending on the dataset the results may

vary. Nevertheless, all accuracy results for both datasets were quite low due to the limitation of

the method MOVELETS for dealing with multiple and heterogeneous dimensions.

We considered that loge is a good approach to balance the accuracy and the processing

time for extracting movelets. Depending on the length of trajectories in a classification problem

the use of a constant movelet length, e.g. 2 trajectory elements to compose the movelet, can be

insignificant in terms of trajectory movement, representing a very small part of movement. So,

the proposal of using loge MOVELETS is more independent to the length of trajectories.

Table 5.2 presents the results of the experiment for the method MASTERMOVELETS

in terms of classification accuracy, processing time in seconds (secs) and number of movelets.

We observe that the classification accuracy does not have a high variation when the maximum

length of the movelets increases. The behaviour changes according to the dataset. By limiting

the maximum movelet length to the loge of the trajectory, the accuracy does not change sig-

nificantly, because in general the movement patterns that distinguish users are characterized by

short subtrajectories. In practice this means that human routines are given by sequences of a few

visited places. Therefore, limiting the maximal length of the movelet to the loge of the trajectory
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length is a good strategy to reduce the processing time of the method without expressive loss of

accuracy and without depending on a user defined parameter. By limiting the maximal length

of the movelet to loge we reduced the number of candidates evaluated by MASTERMOVELETS

from (n×m2×2l) to (n×m loge m×2l) and consequently the overall complexity of movelet

discovering decreased from O(n3×m3 log m×2l) to O(n3×m2 log2 m×2l).

Table 5.2 – MASTERMOVELETS performance evaluation.

Dataset Measure
Max

length 2
Max

length 4
Max

length 6
Max

length loge

Without
limit

Animals Accuracy (%) 71.4 71.4 69.0 69.0 66.7

Processing time (secs) 5.9 7.9 11.6 13.7 69.5

Number of movelets 4,736 4,030 3,654 3,630 2,511

Vehicles Accuracy (%) 98.7 98.7 98.7 98.7 98.7

Processing time (secs) 484.0 790.1 1,025.7 1,535.4 22,275.2

Number of movelets 69,863 58,204 52,781 50,156 35,071

Gowalla Accuracy (%) 91.8 92.2 92.0 91.0 92.4

Processing time (secs) 4,370.7 8,237.3 11,403.9 9,751.4 21,399.1

Number of movelets 56,037 51,720 50,435 51,252 49,397

Foursquare Accuracy (%) 67.9 67.8 68.9 68.0 67.3

Processing time (secs) 3,947.9 7,507.0 10,522.4 9,313.4 25,169.3

Number of movelets 28,560 21,532 19,889 20,718 18,123

For the Animals dataset the best accuracy was achieved by using maximum movelet

length 2 and 4, 71.4%, and the lowest accuracy without limiting the movelet length, 66%. These

accuracy values were around 20% lower than the results reported in Table 5.1 for the method

Movelets. The method MOVELETS compose the attribute-value table using the distance value

between trajectories and movelets (as detailed in 3.2.3), leaving for the classifier (Random

Forest in these experiments) to decide how to use distance values to predict the class label.

However, because MASTERMOVELETS deals with multiple and heterogeneous dimensions we

cannot use a single distance value to compose the attribute-value table, and we only use a binary

value, 0 if the distances between each trajectory and each movelet is lower than the movelet

split points for all dimensions, and 1 otherwise. This situation can influence the accuracy of the

classification models depending on the problem. An interesting research topic is how to build a

membership probability function based on the distances of dimensions and use the probability

values to build the attribute-value table.

For the Vehicles dataset the accuracy was the same for all the approaches, 98.7. The

processing time was significantly reduced from 22,275.2 secs without limiting movelet length

to 1,535.4 secs, more than 14 times, using loge as maximum movelet length.

For the Gowalla dataset the best accuracy was achieved without limiting the movelet

length, i.e. 92.4%, with a difference of 1.4% to the worst accuracy, 91.0%. For the Foursquare
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dataset the best accuracy was achieved limiting the movelet length to 6 (68.9), with a differ-

ence of 1.6% to the second best accuracy, 67.3%. These results show that the accuracy values

are quite similar for each dataset and the decreasing of the processing time is significant, con-

sidering that for these datasets we need to explore all the trajectory dimensions. The order of

processing time reduction is at least 2.3 times, between without limiting movelet length and

limiting by loge.

5.2 SCALABILITY ANALYSIS

Social media trajectories normally have less points when compared to raw trajectories

generated using the GPS (Global Positioning System), because the number of places daily vis-

ited and/or checked-in by users in general is not high. The points are sparse in space. This is

important to define the length of the trajectories in the scalability analysis. We evaluate Mas-

terMovelets when increasing the length of the trajectories, i.e., the number of trajectory points,

the amount of trajectories, and the number of dimensions.

In this experiment we compare the processing time of MOVELETS and MASTER-

MOVELETS to MOVELETS-LOG and MASTERMOVELETS-LOG, that limit the maximal length

of the movelets to loge(mα), where mα is the length of each trajectory in the dataset.

Figure 5.1 presents the results of this experiment. In Figure 5.1 (a) we generated 200

trajectories of 1 dimension, and varied the length of the trajectories from 10 points to 400

points. In Figure 5.1 (b) we generated trajectories with 50 points and 1 dimension, and varied

the number of trajectories from 100 to 4.000 trajectories. For the experiment in Figure 5.1 (c)

we generated 200 trajectories with 50 points each, and varied the number of dimensions from 1

dimension to 5. The scalability experiments were performed using an Intel Core i7-6700 CPU

@ 3.40GHz with 4 cores, and 32GB of memory.

We may observe in the figure that the running time of MASTERMOVELETS grows in

all scenarios, but limiting the maximum length of the movelets as in MASTERMOVELETS-

LOG, we notice that the running time significantly decreases. The best scenario for

MASTERMOVELETS-LOG is in Figure 5.1(a) where the length of the trajectories increase, i.e.,

their number elements increase, and in Figure 5.1(c) where the number of dimensions increases.

The results of MASTERMOVELETS-LOG are less impacting in the experiment in Figure 5.1 (b)

where the number of trajectories increase, because in that scenario the number of points of the

trajectories is not so high, and by consequence the gain of limiting the maximum length of the

movelets to loge of the length of the trajectories are not so expressive.







101

6 CONCLUSIONS

We are witnessing the era of movement tracking and mining, where huge volumes of

data about our daily lives are being collected and stored in several sources and formats. These

data are stored in the form of trajectories, that is a complex data type represented as a sequence

of points, where each point has a spatial dimension, commonly represented by latitude and

longitude; a time dimension, described by a timestamp; and more recently semantic dimensions.

In this context, the movement of an individual can be enriched with multiple and heterogeneous

dimensions, beyond space and time, like weather condition, transportation modes, checking-in

information, among others. This new type of data was introduced in this thesis as Multiple

Aspect Trajectories. Because it is a new data type, there are no methods in the literature for

mining this kind of data.

Trajectory classification is an important issue in mobility data mining, since it is used

for discovering movement patterns for many applications. In the last few years trajectory classi-

fication has been applied to many real problems, basically considering the dimensions of space

and time or attributes inferred from these dimensions. For trajectories represented by these two

dimensions the classification task consists of extracting global and local features from trajecto-

ries, like average speed, acceleration, turning angle, among others, and build a classifier using

these features to describe each trajectory sample. With the explosion of social media data and

the advances in the semantic enrichment of mobility data, a new type of trajectory has emerged,

and the trajectory spatio-temporal points have now multiple and heterogeneous semantic dimen-

sions. There are no classification methods in the literature to perform trajectory classification

for this type of data. As a consequence, new classification methods are needed.

In this thesis we addressed the problem of trajectory classification by exploring rele-

vant subtrajectories for building classification models. We proposed two methods considering

different scenarios. In the first scenario finding relevant subtrajectories considering all trajec-

tory dimensions together. In the second scenario we consider relevant subtrajectories finding

the best trajectory dimension combination for each relevant subtrajectory. Both methods are

parameter-free and domain independent, and do neither perform trajectory discretization nor

partition. The relevant subtrajectories extracted by both methods are neutral to classification

methods, are easy to visualize, to describe, to understand, and to find them in new trajectory

datasets.

The first method, called MOVELETS, discovers relevant subtrajectories for trajectory

classification. MOVELETS supports multiple dimensions and considers all dimensions together.

We presented an experimental evaluation of MOVELETS demonstrating the effectiveness of

the proposed method in comparison with the state-of-the-art methods. Our proposal largely

outperformed existing approaches for trajectory classification in almost all datasets. The main

limitation of this method related to discovering relevant subtrajectories is that it uses only one

distance function between trajectory elements, that encapsulates the distances of all dimensions

in a single distance value. As a consequence, besides the difficulty of balancing the importance
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of each dimension to build this function, it may include non-discriminant dimensions in the

element distance, reducing the chance to find discriminant subtrajectories as the number of

dimensions increase.

The second method, called MASTERMOVELETS, discovers relevant subtrajectories for

multiple aspect trajectory classification. MASTERMOVELETS was designed to handle multiple

and heterogeneous trajectory dimensions, by finding the best dimension combination for repre-

senting subtrajectories. We evaluate this method using three datasets to classify multiple aspect

trajectories and compare it with methods in the literature that support multiple data dimensions

with different characteristics, including space, time, and semantics. Our proposal outperformed

most existing approaches by reducing the classification error from 10% to 58%. The main lim-

itation of this method is the time complexity, that is O(n3×m3 log m× 2l), where n is the

number of trajectories, m is the length of the longest trajectory, and l the number of dimen-

sions. This complexity is very high and thus unscalable. We also propose an adaptation of

this proposal called MASTERMOVELETS-LOG to reduce the length of the longest movelet to

loge mi, where mi is the length of each trajectory, to reduce the time complexity keeping the

classification accuracy. However, the time complexity is still a problem.

According to the experimental results we recommend the use of MOVELETS in raw

trajectory classification problems, mainly when trajectories with only a few dimensions and

the user knows the relation among them. We recommend the use of MASTERMOVELETS in

trajectory classification problems with multiple and heterogeneous dimensions, when it is dif-

ficult to know and learn the relation among dimensions. In addition, MOVELETS is faster than

MASTERMOVELETS, so for longest trajectories we also recommend the MOVELETS.

It is important to highlight that so far, MOVELETS and MASTERMOVELETS are the

only methods that can deal with the spatial dimension, represented by latitude and longitude, as

they must be considered together. Other works extract numerical features from this dimension.

In order to solve the limitation of our methods we propose the following future work:

Improving MASTERMOVELETS time complexity: one of the major challenges related to the

algorithm MASTERMOVELETS is reducing the time complexity, that is O(n3×m3 log m×

2l), where n is the number of trajectories, m is the length of the longest trajectory, and

l the number of dimensions. This complexity is very high and thus unscalable. To re-

duce the theoretical complexity of the algorithm we identified the following three issues

to research: optimization methods for finding the split points in multidimensional order-

lines, methods to avoid exploring all dimensions combination of each subtrajectory, and

methods to reduce the number of movelet candidates to explore.

The first issue consists of reducing the complexity of the MASTERRELEVANCE algo-

rithm that finds the dimension split points of a movelet candidate and its relevance. The

problem of finding the dimension split points is quite similar to the problem of finding

the maximals of a set of vectors (KUNG; LUCCIO; PREPARATA, 1975) and our cur-

rent algorithm is an exact solution for this problem that has time complexity O(n2× l),
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where n is the number of trajectories and l the number of dimensions. New exact and

approximated solutions for this problem can significantly reduce the time complexity of

the average-case to O(n× l) (GODFREY; SHIPLEY; GRYZ, 2005).

The second issue consists of avoiding to explore all dimension combinations of each

subtrajectory. In fact, the only way to discover which of all dimension combination is

the best for a movelet candidate is by exploring all of them, that requires exponential

time complexity, O(2l), like the attribute selection problem in machine learning (LIU;

MOTODA, 2012). A simple solution is to limit the maximum number of dimensions in a

subtrajectory like we limited the maximal length of the movelets in MASTERMOVELETS-

LOG. Other strategies can be used to avoid exploring all dimension combinations, like

best-first search. Best first is a search algorithm which explores the space of feature

combinations by expanding the most promising feature combination chosen according to

its relevance. Using searching algorithms, like best-first, the time complexity of finding

the best dimension combination can be reduced to O(l2).

The third issue consists of reducing the number of movelet candidates to be generated

and explored. The number of movelet candidates generated for each trajectory is O(m2).

One way to reduce the amount of movelet candidates generated is to use a decay rate,

such as selecting half the best candidates for each subtrajectory length to explore in the

next length. By applying this strategy on a trajectory, the algorithm starts exploring m

candidates of length 1, then it explores m/2 candidate of length 2 and finally it explores 1

candidate of length log2 m, which sums less than 2×m explored candidates. This strategy

reduces the number of candidates for a trajectory from O(m2) to O(m).

Improving all the three issues by applying the proposed approaches the time complexity

of the MASTERMOVELETS algorithm can be theoretically reduced from O(n3×m3 log m×

2l) to O(n2×m2 log m× l2).

Using Embedding-Distances for Movelet Discovering: Word embeddings is a hot topic in

Machine Learning research . This approach is useful for dimensions which have many

possible values, like the check-in POI type dimension. Using word embeddings we can

better represent the relation of distance between POIs, instead of using the binary dis-

tance (two POIs have distance zero if they are the same POI type and one otherwise).

During this thesis we tried to use an unsupervised learning approach to find the POI type

embeddings without success. However, we believe that by designing a new method us-

ing supervised learning to find the POI type embeddings MASTERMOVELETS could find

better movelets.

Explore Subtrajectory Features: the scope of this thesis was exploring element trajectory

features for movelets discovering, i.e., a function that computes the distance between the

subtrajectory elements (points). An additional way to compare subtrajectories is by ex-

tracting global subtrajectory features, like the traveled distance, the duration, the average
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speed on a subtrajectory. We believe that by combining element and subtrajectory fea-

tures we can find new subtrajectory patterns. For instance, using the spatial and time

element features our algorithms can find subtrajectory patterns of moving objects that

perform similar movement at similar day times, but if the movement happens in different

times of the day, it would not possible to find it even if the subtrajectories duration were

similar. Combining element and subtrajectory features, like the subtrajectory duration,

we can move forward a new set of pattern never explored until now.

Reducing the Number of Movelets: the proposed methods, MOVELETS and MASTER-

MOVELETS, generate large number of movelets. For MOVELETS we proposed a pruning

algorithm which performs pruning after movelet discovery and significantly reduce the

number of movelets. However, this pruning could be made during the movelet discovery

process. An interesting research work is to propose new methods for pruning movelets

during movelet discovering.

Learning Distance Measures for Movelets: the method MOVELETS needs the definition of a

distance function between trajectory elements, which can be a difficult task in domains

with dimensions in different units. An interesting research topic is to automatically learn

the distance function between trajectory elements considering all trajectory dimensions.

Missing Values Evaluation: the methods MOVELETS and MASTERMOVELETS assume that

trajectory data do not have missing values. However, in real world applications of mul-

tiple aspect trajectory analysis missing values are possible. An interesting research work

is to evaluate the influence of missing values in proposed methods and to propose new

approaches to deal with them, such as new methods for imputing data in multiple aspect

trajectories or new similarity and distance measures robust to missing values.

Class Imbalance Evaluation: in classification problems it is very common the classes have

different frequencies and this is an open issue in data mining yet. An interesting research

topic is to evaluate the influence of class imbalance to find relevant subtrajectories using

MOVELETS and MASTERMOVELETS, mainly in relation to the function that measures

the subtrajectory relevance.

Ranking Method for MASTERALIGNMENT: the proposed method for finding the best align-

ment between a trajectory and a subtrajectory uses a ranking method to find the position

of the best alignment considering all trajectory dimensions. We used the average rank

among dimensions, but other methods to combine ranking can be used to perform this

task. An interesting work is to research rank composition methods to use in MASTER-

ALIGNMENT and to evaluate them for movelet discovering.

During this thesis, other papers were published in collaboration related to multiple

aspect trajectory definition (MELLO et al., 2019), multiple aspect trajectory similarity mea-

sures (PETRY et al., 2019), and data mining classification (ZALEWSKI et al., 2016; MALET-

ZKE et al., 2017; BITENCOURT; FERRERO, 2019).
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7 APPENDIX 1

7.1 COMPUTING THE DISTANCE BETEWEEN TRAJECTORY ELEMENTS

To exemplify how we compute the distance between two trajectory elements, i.e., two

trajectory points with l dimensions, we present a running example. Let us consider a trajectory

T containing 5 elements (T.length = 5) and a trajectory T1 of a set T, containing 4 elements

(T1.length = 4). In this example, for the sake of simplicity, we only consider the dimension

space. Figure 7.1 shows T and T1, where each point indicates the trajectory element dimensions,

x and y.
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Figura 7.1 – Example of two trajectories T and T1.

For calculating the part of the array A1 containing the element distances between T

and T1, we calculate the distance between each pair of trajectory elements T [ j] and T1[k]. Figu-

res 7.2(a-e) show the distance values between each pair of trajectory elements for j-th element

in T and Figure 7.2(f) shows A1[1, .., ..] is a 2-dimensional array with 5 rows and 4 columns,

where A1[1, j,k] is the distance between the j-th trajectory element of T and the k-th trajectory

element of T1.

Suppose that each element distance computation is performed as the Euclidean Dis-

tance of the dimension space, i.e., diste(ei,e j)=
√

(ei.x− e j.x)2 +(ei.y− e j.y)2. In Figure 7.2(a)

the distance between the first element of each trajectory, T [1] and T1[1], is 0.05 because besides

the Euclidean Distance in the dimension space is ≃ 0.22 (
√

(1−1.1)2 +(5.3−5.1)2 ≃ 0.22)

the square distance is ≃ 0.05, that is equivalent to directly perform (1−1.1)2 +(5.3−5.1)2 ≃

0.05. The distances between T [1] and all elements in T1 are 0.05, 0.09, 0.25, and 0.36, corres-

ponding to the first row in Figure 7.2(f).

7.2 COMPUTING THE DISTANCE BETWEEN SUBTRAJECTORIES

Following the previous running example, Figures 7.3 and 7.4 show the subtrajectory

distance calculation between T and T1 for subtrajectory lengths 2 and 3, respectively. Figure 7.3

demonstrates how the subtrajectory distance calculation happens for subtrajectory length 2,

w = 2. As mentioned, the algorithm calculates Aw based on Aw−1 and A1. Note that for w = 2
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