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ABSTRACT

The Modular Multilevel Converter (MMC) is a topology that has been increasingly at-
tracting interest in research. It is applied in High Voltage Direct Current systems (HVDC),
Medium Voltage Drives (MVD), and integration of renewable power sources to a grid.
Some advantages of this topology are its modular design, based on the connection of
submodules (SMs), which facilitates its manufacturing and maintenance, and possibility
of operating without bulky transformers and output filters. It is advantageous that each
SM local signal electronics circuits is self-powered by means of a power supply fed from
the respective SM capacitor. This configuration, however, can lead to unbalanced and
even unstable voltages during the precharge process. The balancing of the MMC’s ca-
pacitor voltages during its precharge stage is crucial to its correct operation. A passive
balancing strategy consisting in adding a balancing resistance in parallel with each SM
is analyzed in this work. An instantaneous piecewise smooth (PWS) nonlinear model
is proposed. The system nonlinear dynamics are analyzed for a system with two SMs.
Conditions for local stability of the operating point are obtained, and the results are
extended for a system with an arbitrary number of SMs. The effects of variation of
the balance resistance in the dynamics of the system are studied. Also, conditions for
global stability are obtained for a system with two SMs, and some guidelines for the
design of the balancing resistance are proposed.

Keywords: Modular Multilevel Converter. Voltage Balancing. Stability. Nonlinear Dy-
namics. Piecewise Smooth Systems.





RESUMO

O Conversor Modular Multinível (MMC) é uma topologia que vem atraindo muito in-
teresse em pesquisa. Suas aplicações incluem sistemas de Alta Tensão em Corrente
Contínua, acionamentos em médias tensões e integração de fontes renováveis a uma
rede. Algumas vantagens desta topologia são seu design modular baseado na conexão
de submódulos, que facilita sua fabricação e manutenção, e possibilidade de operação
sem transformadores e filtros de saída. É vantajoso que cada circuito eletrônico local
de sinais de cada submódulo seja alimentado por uma fonte auxiliar conectada ao
respectivo capacitor deste submódulo, e que todos sejam alimentados por uma fonte
conectada à porta de corrente contínua do conversor. Entretanto, durante a etapa de
pré-carga este arranjo pode não levar a tensões balanceadas ou mesmo estáveis nos
capacitores dos submódulos. O balanço das tensões nos capacitores do MMC durante
sua précarga é crucial para sua operação correta. Uma estratégia passiva de balancea-
mento que consiste em adicionar uma resistência de balanço em paralelo com cada
um dos submódulos é analisada neste trabalho. É proposto um modelo instantâneo e
suave por partes levando em conta as dinâmicas não lineares deste sistema. Estas
são analisadas para um sistema com dois submódulos. São obtidas condições para
estabilidade local do ponto de operação do sistema, e o resultado é estendido para
um sistema com número arbitrário de submódulos. É estudado o efeito da variação
da resistência de balanço nas dinâmicas do sistema. Também se obtém condições de
estabilidade global para um sistema com dois submódulos, e se propõe algumas dire-
trizes para o projeto da resistência de balanço. Experimentos confirmam os resultados
analíticos e de simulação.

Palavras-chave: Conversor Modular Multinível. Balanceamento de Tensões. Estabili-
dade. Dinâmicas Não Lineares. Sistemas Suaves por Partes.





RESUMO EXPANDIDO

Introdução

O Conversor Modular Multinível (MMC) é uma topologia que vem atraindo muito in-
teresse em pesquisa. Suas aplicações incluem sistemas de Alta Tensão em Corrente
Contínua, acionamentos em médias tensões e integração de fontes renováveis a uma
rede. Algumas vantagens desta topologia são seu design modular baseado na conexão
de submódulos (SM), que facilita sua fabricação e manutenção, e possibilidade de op-
eração sem transformadores e filtros de saída, que podem ser bastante pesados ou
volumosos.

Um dos aspectos do funcionamento do MMC é a sua operação de précarga. Embora
menos reportada na literatura do que temas como sua modelagem, projeto, sistemas
de controle ou técnicas de modulação empregadas, é um problema que deve ser
considerado em aplicações práticas. A précarga consiste em carregar os capacitores
dos SM até um nível mínimo antes de conectar o conversor com a rede para evitar a
entrada de correntes de grande magnitude, que podem danificar o conversor.

Diversas soluções existem na literatura para tentar resolver este problema. Uma delas
é adequada para se usar no caso em que conectado a cada SM há uma fonte auxiliar,
usada para alimentar circuitos de comunicação, controle, e sensores nos SM, entre
outros. Nesta configuração ainda, a fonte auxiliar é alimentada pelo capacitor de cada
submódulo - Isso é vantajoso pois nessa configuração seu projeto acaba se tornando
mais simples. Entretanto, as fontes introduzem instabilidade, desbalanceando as ten-
sões nos capacitores. Os próprios controladores são alimentados por essas fontes e
precisam de uma tensão mínima para funcionar, o que justifica o emprego de uma
solução passiva. Esta consiste em conectar uma resistência de balanceamento em
paralelo com cada SM, o que causa o balanceamento das tensões.

Embora seja uma estratégia pertinente, foram identificadas limitações na forma em
que é exposta na literatura. O cálculo das resistências para obter a estabilidade foi feito
em um sistema considerando apenas um SM, e a rigor seu resultado não pode ser
estendido para sistemas maiores. Além disso, foram identificadas situações em que
o valor teórico proposto não é suficiente para balancear as tensões nos capacitores.
Também observou-se que a medida em que se os valores das capacitâncias dos SMs
se desviam dos valores nominais, um valor da resistência de balanceamento que era
a priori suficiente, o deixa de ser. Desvios dos valores das capacitâncias ocorrem na
prática, devido ao envelhecimento dos componentes ou mesmo devido à tolerâncias
de fabricação.

Estas limitações e questões motivaram o presente trabalho. Este tem o intuito de
realizar uma análise de estabilidade em profundidade da solução proposta, e propor
orientações para o projeto da resistência de balanceamento, tendo em vista que um
projeto adequado do conversor deveria levar em conta a estabilidade e comportamento
dinâmico durante o processo de précarga. Os objetivos do trabalho estão descritos a
seguir.



Objetivos

OBJETIVO GERAL

Modelar e analisar as dinâmicas da operação de précarga com a resistência de balanço,
para analisar sua estabilidade levando em consideração variações paramétricas na
resistência de balanço e capacitâncias dos SM, e adequadamente projetar a resistência
de balanço.

OBJETIVOS ESPECÍFICOS

1. Modelar as dinâmicas instantâneas da operação de précarga do MMC durante o
estágio não controlado.

2. Analisar as dinâmicas não lineares de um sistema simplificado com apenas dois
SM em toda faixa de operação do sistema, não apenas no ponto de operação.

3. Investigar sobre a estabilidade do ponto de operação.

4. Investigar a influência da variação paramétrica nas dinâmicas do sistema, es-
pecificamente a variação da resistência de balanceamento e capacitâncias dos
SM.

5. Propor orientações para ajudar no projeto da resistência de balanço.

Metodologia

A dissertação foi realizada seguindo-se os passos e ferramentas abaixo:

• Uma revisão da literatura foi realizada a fim de confirmar a relevância científica e
de aplicação do problema estudado. O problema foi inicialmente proposto por cole-
gas do Departamento de Engenharia Elétrica da Universidade Federal de Santa
Catarina. Com base em um conhecimento inicial proveniente de discussões a ar-
tigos, fez-se uma busca exploratória inicial para se levantar palavras chave sobre
o tema. Com base nisso, foram buscados artigos nas principais bases de dados
e selecionados os mais relevantes. Através de uma leitura inicial mais rápida,
pode-se identificar diferentes abordagens e linhas de pesquisa. Uma destas lin-
has era coerente com o problema e algumas das propostas de solução discutidas
inicialmente, e esta foi estudada mais a fundo.

• Ferramentas de análise de sistemas não lineares foram escolhidas para analisar
o problema, como análise qualitativa e de sistemas suaves por partes. Este tipo
de ferramenta foi escolhida pois o orientador já possuía experiência com estas
técnicas e o autor já possuía alguma experiência prévia. Também por que elas já
foram utilizadas com sucesso na análise de sistemas não lineares, o qual o sis-
tema estudado se enquadra, e em particular em problemas na área da eletrônica
de potência (CRISTIANO et al., 2018; CESAR et al., 2017).

• Foi feita a modelagem de uma versão simplificada do problema em um modelo
instantâneo, suave por partes e não linearizado, fenomenológico, adequado para
se tratar o problema em questão.



• Análises qualitativas feitas com o auxílio de ferramentas de computação simbólica
foram realizadas.

• Também foram empregadas ferramentas de computação numérica e de simu-
lação. Estas facilitaram o entendimento e também auxiliaram o direcionamento
das análises simbólicas ao longo do trabalho. Estas foram especialmente úteis
para se investigar a efeitos das variações paramétricas no modelo proposto.

• Experimentos foram realizados afim de se testar a efetividade da solução pro-
posta.

É importante ressaltar que nem todas estas etapas foram realizadas de forma ex-
clusivamente sequencial. As ferramentas de simulação, por exemplo, auxiliaram na
investigação e direcionamento das análises simbólicas e vice-versa. O escopo do tra-
balho também mudou ao longo do processo conforme se verificava sua viabilidade e
se amadureceu o entendimento sobre o problema estudado.

Resultados e Discussão

Esta dissertação resultou nas seguintes contribuições:

• Um modelo instantâneo considerando as não linearidades do sistema estudado,
modelado como um sistema suave por partes.

• Para o método de balanceamento passivo estudado, condições analíticas para
estabilidade local do ponto de operação são derivadas para um sistema com
número arbitrário de SMs.

• Análises qualitativas de uma versão simplificada do problema, um sistema com
apenas dois SMs, para investigação do comportamento dinâmico do sistema.

• Simulações numéricas ilustram os resultados da análise para o caso nominal e
também a influência de variações paramétricas nas dinâmicas do sistema.

• Um resultado experimental no qual a solução proposta funciona.

• Condições para estabilidade global do sistema foram determinadas para um sis-
tema simplificado com dois SM por fase.

• Orientações que auxiliam no projeto da resistência de balanceamento são pro-
postas.

Os objetivos foram alcançados de forma satisfatória. Algumas das análises feitas po-
dem ser aprofundadas ou pode-se tentar expandi-las para casos mais gerais. O prob-
lema da précarga é de relevância para aplicação prática do conversor, embora receba
menos atenção que outros temas como modelagem, técnicas de controle ou modu-
lação. Também não é comum o emprego de técnicas de análises de sistemas não
lineares para este problema específico. Os resultados obtidos mostram que essas téc-
nicas podem ser empregadas de forma promissora, e o entendimento das dinâmicas
do sistema pode até mesmo direcionar a busca de soluções de caráter mais heurís-
tico, como ocorre em problemas de engenharia e aqui em particular considerando
aplicações da eletrônica de potência.



Considerações Finais

Trabalhos futuros podem ser conduzidos com base no conteúdo abordado nesta disser-
tação. A operação de précarga pode ser estudada para um sistema trifásico, a partir do
estudo simplificado de um SM por fase. Os mesmos métodos e ferramentas podem ser
utilizados para estudo de um sistema ativo de balanceamento, por exemplo comutando
as resistências de balanceamento. As mesmas técnicas e métodos utilizados podem
ser empregados no estudo de um sistema tridimensional, o que pode ajudar a verificar
a generalidade de alguns resultados obtidos para o sistema simplificado. Ferramentas
de cálculo numérico podem auxiliar na abordagem do problema considerando o sis-
tema geral com mais dimensões do que duas ou três. Modelos normalizados também
podem ser utilizados para diminuir a complexidade do sistema estudado reduzindo
o seu número de parâmetros, e também porque podem ser usados para se obter
resultados mais gerais.

Palavras-chave: Conversor Modular Multinível. Balançeamento de Tensões. Estabili-
dade. Dinâmicas Não Lineares. Sistemas Suaves por Partes.
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1 INTRODUCTION

This introduction is composed of six sections. In section 1.1, we briefly present

modular multilevel converter topology. In section 1.2, the problem of the precharge

operation is defined. Also, we present a literature review and the state of the art in this

subject, that motivated us to do this thesis. The thesis objectives are stated in section

1.3. In section 1.4 and 1.5 we show respectively the main contributions and further

publication resulted from this research. In section 1.6 we present the structure of the

present thesis.

1.1 THE MMC

The multilevel converters have a widespread usage in the industry and in power

systems, since they allow the design of high and medium voltage system, with excellent

output voltage quality (KOURO; RODRIGUEZ, et al., 2012) (KOURO; MALINOWSKI,

et al., 2010) and also because semiconductors’ maximum voltage ratings are usually

lower than the system’s input or output voltage, and the connection in series of many

semiconductor devices can be challenging (KNAAK, 2011). One of these is the modular

multilevel converter (MMC). This topology was first proposed by professor R. Marquardt

(2001). The MMC was originally intended for applications in High Voltage Direct Cur-

rent (HVDC) systems. The main advantages of using this converter are its modularity,

scalability, high efficiency, transformer-less operation and direct current (DC) bus with-

out capacitor (LESNICAR; MARQUARDT, 2003). The modular design also reduces

manufacturing costs (DEBNATH et al., 2015). Among its disadvantages, are the ele-

vated number of semiconductors and passive necessary components, and the high

complexity of modulation and control schemes (SOUZA, 2014).

The MMC is used in several applications. For example in HVDC systems, in

which it has become the most promising voltage source inverter (VSI), but also in

variable speed drives, with advantages in relation to other converters like the Neutral

Point Clamped (NPC) converter and the Cascaded-HBridge (CHB) in respect to the

installed area and energy in DC port (FLOURENTZOU; AGELIDIS; DEMETRIADES,

2009). These capabilities have allowed manufacturers to develop MMC based machine

drives (SIEMENS AG, 2017), and researchers to propose new MMC topologies and

applications in medium voltage DC/DC conversion (ADAM et al., 2016), wind power

(LYU; CAI; MOLINAS, 2018), energy storage systems (LACHICHI, 2014), static com-

pensation, among others (GEYER; DARIVIANAKIS; VAN DER MERWE, 2015). Other

applications are cited in (DEBNATH et al., 2015). Examples of applications can be seen

in Figure 1.
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Figure 2 – MMC converter.
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In Figure 2 we can see this topology is in one of its most common configurations,

a three phase Alternate Current (AC) to DC1. This converter is bidirectional, that means

it can work as a rectifier or as an inverter. The voltages in the AC and DC ports are

respectively vAC and VDC. The MMC is composed of fundamental units called submod-

ules (SM). A set with series connected submodules is called an arm, and two arms,

one superior and one inferior, compose one phase leg of the MMC. The topology used

within the SMs may vary, being the most common the half-bridge (HB), and full-bridge

(FB) converters, connected to a capacitor (PEREZ et al., 2015). Summing up the output

voltages of several SMs it is possible to have different levels of voltage in each phase. It

is also possible to work with redundant SMs to provide fault tolerance capabilities. Also

arm and filter inductors, represented by La and Lf respectively in Figure 2, compose

the MMC. These are used to limit high frequency currents resulting from the differences

between the arm generated voltages. Besides, they limit the growing-rate of DC cur-

rent in case of a fault (SOUZA, 2014). It is also depicted in Figure 2 the parts that

1 Alternative configurations are presented in (PEREZ et al., 2015).
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constitute a SM. Besides the main components, the switching cell (S1 and S2) and the

energy storage element C, a real converter submodule, to properly operate, needs

other components including transistor’s gate drivers, sensors, communication networks

to transmit sensor readings and switching commands between between own SM and

main command circuits (TOH; NORUM, 2013; ZHU et al., 2014). An auxiliary power

supply is needed in each SM to power these components.

Each APS can be powered from its own submodule capacitor or externally

through a high voltage isolated power supply system, with each approach having ad-

vantages and disadvantages. The latter allows the submodule controllers to perform

test routines before the main power is connected, enabling early detection of failures

in the control and communication systems. The always-on controller also simplifies the

challenges of hot swapping submodules (COTTET et al., 2015). The APS cost and

complexity, however, are high, since its insulation has to withstand medium/high work-

ing voltages. An APS designed to be powered from its own submodule has to insulate

only the much lower SM capacitor voltage. On the other hand, the controllers can only

perform test routines after the main power connection, decreasing chances of early

detecting failures that could potentially lead to damage.

The connection of the converter to the grid can only be performed after precharg-

ing all capacitors to minimum voltage levels, that prevents inrush currents (SCHMIDT

et al., 2019). The precharge operation can be done in different ways and it is better

covered in the next session2.

1.2 THE PRECHARGE

One often overlooked aspect of the MMC operation is the precharge operation.

Though not so often reported in current literature as aspects of normal operation, it is

a problem that must be considered in practical applications. All the capacitors need to

be precharged to their nominal values before the MMC gets into operation. Otherwise,

a large inrush current may occur at the system start, risking the integrity of the SMs

or even the whole MMC (LI et al., 2015). These currents occur because if the MMC

is connected to a nominal AC or DC bus with all capacitors discharged, the only thing

opposing the growth of the current are the arm inductances, which use to be relatively

small. The precharge operation can be made either via the AC or the DC port, via AC

being used usually in HVDC systems and via DC in drive applications (ZHANG et al.,

2017).

During the precharge, also, the SMs have three possible working states in gen-

2 The complete operation of the MMC is a complex subject and out of scope of this work. There is
a vast literature about its modeling, design, modulation techniques and control systems employed,
among other topics. These are addressed in the literature review papers by Dekka et al. (2017) and
Debnath et al. (2015).
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eral. Either they are blocked, with both S1 and S2 closed, or they are bypassed, with

S2 turned on and S1 turned off, disconnecting the capacitor from the arm, or yet they

are inserted, with S1 turned on and S2 turned off (Figure 2). When the SM are blocked,

they can be charged if the current flows through the freewheeling diode of S1. Note

that if the capacitor is paralleled with a bleeder resistor or an APS, used to discharge

the capacitors when the MMC is turned off, and is disconnected from the arm for a

long time (e.g., a few seconds), then it will still get discharged. We consider here the

half-bridge topology for the SM, but other topologies can have the same behavior (LI

et al., 2015).

Considering the case where the APS is fed internally, the precharge procedure

can be divided into three stages, namely:

1. Uncontrolled and inactive – In this stage, the IGBTs of the SM are blocked. The

precharge happens in all capacitors at the same time, with current flowing through

the antiparallel diode of S1. If the current goes in the oposite direction, the diodes

do not conduct and the capacitor voltage is kept constant, or discharge if there is

a parallel bleeding resistance connected to it.

2. Uncontrolled and active – This stage starts when all APSs are on. We can model

the APS as a constant power load, which is associated with the system instability

(LUO, 2018). In this stage, all the capacitor voltages can be measured and the

IGBT S1 and S2 can just be manipulated. That usually follows a control law, and

defines the third stage.

3. Controlled – In this stage the control system commands the switches S1 and S2 of

each submodule according to an appropriate control strategy that targets bringing

all capacitor voltages to their nominal values.

Several strategies have been proposed in order to realize the precharge. The

first solution was proposed together with the MMC topology. It employs a low voltage

DC source to charge the SMs one by one (LESNICAR; MARQUARDT, 2003). Some

years later, a topology that includes four anti-parallel thyristors for each SM and the

connection to external DC bus bars to accelerate the precharge process was proposed.

However, the latter solution can increase complexity and costs by adding a significant

number of extra semiconductor devices per SM (XU et al., 2011). Another alternative,

tested for a specific topology, the clamp double submodule MMC (C-MMC), connects

a C-MMC to the AC grid using a current limiting resistor and a breaker to bypass it

after the precharge is over. It proposes that SM are charged in groups during a closed

loop controlled precharge, and later, charges another C-MMC connected to the first in

a back-to-back configuration, via its DC port (XUE; XU; TANG, 2014).

Some strategies are more recent. The one proposed in (TIAN et al., 2016) em-

ploys a low voltage DC source, and connects and disconnects the SM turning the
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equivalent circuit in a boost converter. Its advantages are that there is no need for a

current limiting resistor and breaker, and is also flexible due to the boost topology used.

However, it was tested by only charging SM one by one or two by two, which can be

time consuming specially in MMC with an elevated number of SMs. Another closed-

loop controlled precharge scheme is presented in (LI et al., 2015). This makes use of

the current limiting resistor and circuit breaker, and can be used in both ports, AC or

DC. Also, it charges all the SMs at the same time ensuring a reduced charging time.

Even further, Zhang et al. (2017) propose a generalized precharging strategy, based on

the adjustment of inserted and bypassed SMs and propose a sorting algorithm. This

last can be used to precharge MMC with SM of diverse topologies, including the HB,

full-bridge (FB), CD and three-level cross connected (3LCC).

Most of these strategies deal with the controlled stage of the precharge process.

However, there is a problem that may happen during the uncontrolled stages. If the

APSs are fed internally, tolerances in the capacitances or in the power consumed by

the APSs may cause the system voltages to diverge during the uncontrolled stages. If

they diverge largely enough, one of them may reach a lower or upper threshold and

the whole MMC may be turned off for safety reasons. The solution in (LUO; CAO,

et al., 2016) is a precharge through the DC port, using a current-limiting resistor Rl

and a circuit breaker, and also propose the connection of a parallel resistor in order to

stabilize the system during the uncontrolled stage. This solution is further developed in

(LUO, 2018), where in controlled stage, the APS input current is manipulated in order

to balance the capacitor voltages. Until the date of the present work completion, the

present author has not found another work dealing with the problem of instability in the

uncontrolled precharge stage.

Regarding the uncontrolled precharge stage, there are some limitations in cur-

rent research, though. The stability proof in (LUO; CAO, et al., 2016) is made for only

one SM, and can not be extrapolated for a MMC with arbitrary number of SM, or even

for two per phase. Also, it is made only for the equilibrium operating point of the system,

which is not necessarily sufficient for the system to work properly. Some preliminary

studies and simulations have shown that, taking into account uncertainties or tolerance

in the capacitance values the proposed solution is not sufficient. These uncertainties

are present in practical cases and are associated with manufacturing tolerances and

also with the aging of the components. Also, the uncontrolled and inactive stage dy-

namics are not modeled neither taken into account. There is a recent study that takes

into account tolerances in the capacitance values, but it is made only numerically for

a controlled precharge scheme (BISSAL; ALI, 2019). Also, stage 1 of the precharge

operation dynamics are not modeled nor taken into account.

With the limitations of the previous seen solutions in mind, we consider a

precharge scheme similar presented in Figure 3. This is similar to the one addressed
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by Luo (2018): the precharge is made from the DC side, simultaneously charging all

the SMs, internally fed APS and a balancing resistance Rb in parallel with each SM.

The difference is that it also has the commonly employed current limiting resistance Rl

together with a circuit breaker composed of the switches K1 and K2. This scheme is

based on a circuit prototype we have in our facilities and makes it possible for the three

stages of the precharge to happen. The circuit breaker Kac is considered open during

the precharge process.

First K1 is turned on, beginning the uncontrolled and inactive stage. Then, if the

voltages in the capacitors reach a minimum level, the APSs turn on, characterizing the

uncontrolled and active stage. Finally, when all the APS are turned on, the switch K2 is

turned on and K1 is turned off, bypassing the current limiting resistance Rl. Finally, the

controlled precharge begins, rising the capacitor voltages to their nominal values3.

Figure 3 – MMC converter and its precharge circuit.
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3 An additional circuit could be used to remove Rb from the circuit once the MMC is working during
normal operation in order to improve efficiency. The converter will still work properly, since its control
system can be used to balance the capacitor voltages after the precharge process is complete.
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The aim of this work is to present an in-depth analysis of the stability of the first

and second stages and to provide a guideline for choosing Rb. The main motivation is

to overcome the problem of instability in these stages. An adequate design of the MMC

should take in consideration the stability in dynamic behavior during the precharge

process.

We begin by modeling the system corresponding to the precharge process equiv-

alent circuit. The model is phenomenological, as it is usual in power electronic systems,

and instantaneous, in order to model all the system dynamics. The dynamics of the

stage 1 of the precharge process are modeled as a piecewise smooth system (PWS).

Tools for qualitative analysis of nonlinear systems, such as the Hartman-Grobman the-

orem, the Filippov convention for dynamics in switching boundaries, representations on

the phase plane and bifurcation theory are used in order to analyze the system dynam-

ics. Part of the analysis was made with the aid of symbolic computational tools. Numer-

ical simulations of different cases illustrate the analytical results and give quantitative

insight about parameter dependencies, like the variation of the balancing resistance

and the capacitances values.

1.3 OBJECTIVES

Main Objective

To model and to analyze the dynamics of the MMC precharge operation with

balancing resistance, in order to analyze its stability taking into account parametric

variation of the balancing resistance and the SMs capacitances and to properly design

the balancing resistance.

Specific Objectives

1. To model the instantaneous dynamics of the MMC precharge operation during

stages 1 and 2.

2. To analyze the nonlinear dynamics of a simplified system with only two SM in the

system operating range, not just in the operating point.

3. To investigate the stability of the operating point.

4. To investigate the influence of parametric variation on the system dynamics, specif-

ically the variation of the balancing resistance and SMs capacitances.

5. To propose guidelines to help the design of the balancing resistance.
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1.4 WORK CONTRIBUTIONS

• An instantaneous model taking into account the nonlinearities of the system,

modeled as a piecewise smooth (PWS) system. It models the first and second

stages of the precharge.

• For the studied passive balancing method, analytical conditions for the local sta-

bility of the operating point are derived for a system with an arbitrary number of

SMs.

• Qualitative analysis of a simplified version of the problem, in a system with only

two SM, in order to investigate the system dynamic behavior.

• Numerical simulation illustrate the analysis results in nominal case and also the

influence of parametric variation on the sytem dynamics.

• An experimental result in which the proposed solution works.

• Conditions for the global stability were determined for a system with two submod-

ules per phase.

• Guidelines that help in the design of the balancing resistance were proposed.

1.5 RESULTING PUBLICATION

• This work resulted in the publication and presentation of the paper entitled

"Passive Capacitor Voltage Balancing in Modular Multilevel Converter During its

Precharge: Analysis and Design" at the 15th Brazilian Power Electronics Con-

ference and 5th IEEE Southern Power Electronics Conference (SCHMIDT et al.,

2019)

1.6 THESIS STRUCTURE

This thesis is composed of 7 chapters. In chapter 2, the modeling of stages 1 and

2 of the precharge operation is made. In chapter 3, an analysis of a simplified system

with two submodules is made, in order to better understand the system dynamics. In

chapter 4, simulations are used to illustrate the cases analyzed in Chapter 3 and to

investigate parameter variation influence on the system dynamics. In chapter 5, experi-

mental results are presented. In chapter 6, the conditions needed to guarantee global

stability are proved, for a system with two submodules per phase. The last chapter is

the conclusion, synthesizing all the work main results and presenting perspective of

future works.
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2 MODELING

In this chapter, we propose a model for the precharge dynamics during uncon-

trolled stage, active and inactive. The model proposed here is used in chapter 3 for

the analysis of a simplified version of the problem, from which results regarding the

stability of the operating point and design of Rb are obtained. The model is also is used

in chapter 4 for simulation and numerical results that illustrate the system dynamics and

also for investigation of the influence of parametric variation in the system dynamics.

Finally, it is used in chapter 6 to obtain the results about global stability of the operating

point in the simplified system.

In section 2.1, a model for the active stage, in which all the APSs are turned

on, is made. In section 2.2, this model is extended to a PWS one that represents both

active and inactive dynamics and also the transition from inactive to active. This is the

model used in the next chapters. After the models are presented, a numerical example

illustrating the validity of one of the modeling assumptions, that the effect of La can be

neglected, is shown in section 2.3. Finally, in section 2.4, a summary of this chapter is

presented.

2.1 UNCONTROLLED AND ACTIVE STAGE OF PRECHARGE OPERATION

We begin by analyzing the uncontrolled precharge process of one phase of the

MMC precharge circuit (Figure 4 (a)). At the beginning, all the capacitors are discharged,

and all the IGBTs are switched off and blocked. Then, K1 closes, current flows through

the anti parallel diode in S1. The equivalent circuit of the uncontrolled and inactive

stage of precharge can be seen in Figure 4 (b). For means of simplicity, we begin by

analyzing the precharge in only one phase. The voltage from the DC bus is VDC, Rl is

the precharge current limiting resistance, 2La is the equivalent arm inductance, Ci are

the SM capacitances, P is the power consumed in the APS, modeled as a constant

power load, as in Luo, Zhang, et al. (2018), and Rbi is the balancing resistance of the

i-th SM, for i ∈ {1,2, . . . ,N}, being N, the number of SMs per phase, an even number.

The main goal of the modeling is for analysis of the dynamics, so that we can

investigate the system stability and properly design the balancing resistance. A state

space, time-domain, instantaneous and not linearized model is suitable for that goal.

Not linearized, because we know that the APS can be modeled by a constant power

load, that is a nonlinearity associated with the system instability. Instantaneous, instead

of the average-value model commonly used in power electronics because we intend to

model the dynamics in the uncontrolled stage, which lead the system to the operating

point, and they are essentially transitory. Besides, qualitative analysis tools can be used

with that model in order to investigate the system stability.
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Figure 4 – MMC precharge circuit (a) and equivalent circuit during uncontrolled
precharge (b). In the equivalent circuit, K1 is closed, K2 open, Kac is open,
all the IGBT are blocked and the APS are turned on.
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In addition, the model is phenomenological, as it is usual with electric circuits

because we know its topology and parameter values. We use Kirchhoff current and

voltage laws, together with the voltage-current relations in the components to derive it.

We are specially interested in the capacitor voltages balancing problem and

finding out which value of the discharging resistances makes balancing possible and

the system operating point stable. The variables of interest are the voltages vCi
1, since

the main control goal is to balance them. Hence, the chosen states are vCi, that can be

grouped in the vector vC = [vC1 vC2 . . . vCN]T , and also the current iL in the equivalent

phase inductance. The circuit parameters are VDC, Rl, Ci, and Pi. The resistance Rb

can be seen as a design parameter.

We then use the Kirchhoff Currents Law and the voltage-current relations in the

circuit components to obtain the model equations. In the i-th SM, for i ∈ {1,2 . . . ,N}

(Figure 4(b)), we have

iL – iCi – iPi – iRbi = 0. (1)

Also, using the current-voltage relations in each element we can express the current in

each component in terms of the defined states as

iCi = Ci
dvCi

dt
, (2)

iPi =
Pi

vCi
, (3)

iRbi =
vCi

Rbi
. (4)

For iL, we have, applying the Kirchhoff voltage law in the loop l of Figure 4:

VDC – RliL –

N∑

k=1

vCk – 2La
diL

dt
= 0. (5)

Considering a relatively small arm inductance (La → 0), an assumption that is valid

in practical applications (ZYGMANOWSKI; GRZESIK; NALEPA, 2013), in (5), we can

approximate the inductor current as

iL ≈ VDC –
∑N

k=1 vCk

Rl
. (6)

The equivalent circuit, neglecting the effect of La can be seen in Figure 5. Replacing

(6), (2), (3) and (4) in (1), we have the model equations:

dvCi

dt
=

1

Ci

(

VDC –
∑N

k=1 vCk

Rl
–

Pi

vCi

–
vCi

Rbi

)

. (7)

for i ∈ {1, 2, . . . , N}.

1 In order to simplify the notation, we omit the variable dependencies like in: vC1 = vC1(t).
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Figure 5 – MMC precharge equivalent circuit neglecting the effect of La
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2.2 EXTENDED MODEL - STAGE 1 AND 2 OF THE PRECHARGE OPERATION

Now we propose a model for the stage uncontrolled and inactive of the precharge

operation. In this stage, not all the APS are turned on. In fact, in the prototype which this

work is based on, each one just turns on when their respective voltage vCi has reached

a minimum level VCmin - which is a parameter dependent on the circuit hardware design.

We then propose a model for systems that fits this situation. We also consider the

dynamics of the APS turning on to be much faster than the balancing dynamics, so we

consider it ideally to be instantaneous. So, the power consumed by the i-th CPL that

models the APS is:

PAPSi =

{

0, if vCi < VCmin

Pi, if vCi > VCmin

.

There is a discontinuity in this power, dependent on voltage. That can be expressed in

terms of the sgn function:

PAPSi = wiPi

wi =
1 + sgn(hi)

2

hi = vCi – VCmin
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The same method used to obtain the model (7), but now considering PAPSi as

the power consumed in the i-th APS, is used to derive the extended one:

dvCi

dt
=

1

Ci

(

VDC –
∑N

k=1 vCk

Rl
–

Pi

vCi
wi –

vCi

Ri

)

, (8)

wi =
1 + sgn(hi)

2
(9)

with,

hi = vCi – VCmin, (10)

in which vCi are the state variables and VDC, Rl, Ci, Pi, VCmin and Rbi are the parameters.

This model represents a PWS system since there is discontinuity in the power terms.

Note that equation (10) stands for multiple switching boundaries since i ∈ {1, 2, . . . , N}

and thus the switching law operates with multiple boundaries hi = 0.

2.3 SIMULATION EXAMPLE: APPROXIMATION OF INDUCTOR CURRENT

In this section we show an example illustrating the approximation of the inductor

current, by neglecting the efect of the arm inductances. Two models for the same system

were simulated, one taking into account the approximation, using (8), (9) and (10), and

another one replacing (8) by

dvCi

dt
=

1

Ci

(

iL –
Pi

vCi
wi –

vCi

Rbi

)

, (11)

diL

dt
=

1

2La

(

VDC –

N∑

k=1

vCk – RiL

)

, (12)

thus taking into account the effects of La. The variables vCi and iL are the states and

VDC, Rl, La, Ci, Pi, VCmin and Rbi are the parameters. For simulation, we consider as it

is in the nominal case, that is C1 = C2 = C, P1 = P2 = P and Rb1 = Rb2 = Rb.

The parameter values used for simulation are shown in Table 1. They were based

on a prototype he have in our facilities. The number of submodules per phase N = 2 is

used for simplicity. In the next chapter, the advantages of using N = 2 regardless of real

systems having a typically a greater number of SMs are explained.

Table 1 – Circuit parameters for comparison between models with and without La effect.

N VDC[V] Rl[Ω] C[mF] P[W] VCmin[V] Rb[Ω] La[mH]

2 150 100 2,82 10 50 250 1
Source – Own elaboration.
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Figure 6 – Comparison between models - with iL and with approximated iL

(a)

(b)

(c)

(d)

Source – Own elaboration.

In Figure 6, we can see the comparison between the two models. In 6(a) we

observe both models time responses for the same initial condition. The model taking

into account the effects of La responses are represented in solid lines, meanwhile the

model neglecting these effects are represented in dashed lines. No significant difference
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can be seen between these responses. In Figure 6(b), it is depicted the inductor current

and the approximation in (6), respectively in solid and dashed lines. Again, there is no

visible difference at this scale.

The magnitude of the error between the two models can be seen in Figure 6 (c)

and (d). These are respectively, the voltage and current time responses relative errors

between the two models. For these tipical parameters, the relative error is in the order

of 10–5 for the states and 10–4 for the inductor current. This exemplifies that the effect

of the arm inductance can be neglected if La is relatively small.

2.4 SUMMARY

In this chapter we have seen:

• The modeling of the stage 1 and 2 of the precharge of the MMC for the proposed

passive balancing solution.

• The model is phenomenological, instantaneous, and nonlinear.

• We assumed the arm inductances are low enough so that their dynamics can be

neglected, because the voltage drop in it is relatively much lower than the others.

This is true in practical applications.

• We modeled stage 1 of the precharge, when the APS turn on, considering their

dynamics as ideally instantaneous. We consider them relatively much faster than

the dynamics of vCi.

• Stage 1 was included in the model as a disturbance governed by a discontinuity,

the sgn function, so the resulting model is a PWS system.

In the next chapter we use this model and qualitative analysis tools in order to

better understand the system dynamics.
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3 ANALYSIS OF A TWO SUBMODULE SYSTEM DYNAMICS

In this chapter, a simplified system with only two SM is defined based on the

PWS model obtained in chapter 2. From this system, conditions for the stability of the

operating point are derived and then this result is extend for a general case for a N-SM

system. Based on that, we propose first guidelines on the design of Rb. The simplified

system is used to obtain simulation results in chapter 4. The guidelines to design Rb

are used in chapter 5 to obtain experimental results. The two SM system is further

analyzed in 6 to obtain the results about the global stability of its operating point.

In section 3.1, the simplified system is defined. We show that its dynamics are

governed by four vector fields and two switching boundaries. These are analyzed in

sections 3.2,3.3, 3.4, 3.5, 3.6 and 3.7. For each one of the vector fields, we present

the analytical expressions for their nullclines, equilibrium points and, when feasible, the

classification and stability of these equilibrium points. For the switching boundaries, we

present the tangency points, crossing and sliding regions and corresponding sliding

vector fields. In these sliding vector fields, we present the pseudo-equilibrium points and

their stability and classification. Part of the analysis was made with the aid of symbolic

computation tools.

In the section 3.5 we present the vector field that contains the operating point

of the system. Therefore, it is analyzed in more depth. In the secondary section 3.5.1,

the result about the stability of the operating point is extended for a system with N SM.

Based on that, in the secondary section 3.5.2 we propose first guidelines for the design

of Rb. A summary of this chapter is presented in 3.8.
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3.1 THE TWO SUBMODULE SYSTEM

In order to facilitate the analysis, we consider first a two dimensional case, that

is, the MMC composed by two submodules in one phase leg. In that way we can use

the phase plane tool to analyze the system, and the results obtained in this chapter can

be simulated and plotted in the phase plane (simulation results are shown in chapter

4), and information and insight about the qualitative behavior of the system can be

obtained.

The equations (8-10) for a system with N = 2 are:

dvC1

dt
=

1

C1

(
VDC – (vC1 + vC2)

Rl
–

P1

vC1

w1 –
vC1

Rb1

)

, (13)

dvC2

dt
=

1

C2

(
VDC – (vC1 + vC2)

Rl
–

P2

vC2

w2 –
vC2

Rb2

)

, (14)

w1 =
1 + sgn(h1)

2
, (15)

w2 =
1 + sgn(h2)

2
, (16)

h1 = vC1 – VCmin, (17)

h2 = vC2 – VCmin. (18)

We analyze the system in the domain D, defined as:

D = {(vC1,vC2) ∈ R
2 : 0 < vC1 ≤ VDC and 0 < vC2 ≤ VDC}, (19)

since the capacitor voltages are positive and in principle do not surpass VDC in a real

system1. Because of the sgn function, there are two switching boundaries in the state

space, defined as

Σ1 = {(vC1,vC2) ∈ D : h1 = 0}, (20)

Σ2 = {(vC1,vC2) ∈ D : h2 = 0}. (21)

These boundaries divide the phase plane in four regions defined by

D1 = {(vC1,vC2) ∈ D : h1 < 0 and h2 < 0},

D2 = {(vC1,vC2) ∈ D : h1 < 0 and h2 > 0},

D3 = {(vC1,vC2) ∈ D : h1 > 0 and h2 < 0},

D4 = {(vC1,vC2) ∈ D : h1 > 0 and h2 > 0}.

In each one of these regions, there is a vector field from (13)-(18) governing the system

dynamics, defined as in Figure 7. In that way, we can redefine the system as the
1 In chapter 6, it is proved that the domain D is positively invariant. That means: any trajectories that

start within D, will remain inside it for all positive time. This means that for any initial condition inside
D, it is always valid that 0 ≤ vC1 ≤ VDC, and also 0 ≤ vC2 ≤ VDC.
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equivalent discontinuous piecewise smooth system (DPWS):

f =






dvC1

dt
dvC2

dt




 =

[

f1

f2

]

=







f ––, if (vC1,vC2) ∈ D1,

f –+, if (vC1,vC2) ∈ D2,

f +–, if (vC1,vC2) ∈ D3,

f ++, if (vC1,vC2) ∈ D4,

(22)

composed of the vector fields

f –– =

[

f –
1

f –
2

]

=







1

C1

(
VDC – (vC1 + vC2)

R
–

vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

R
–

vC2

Rb2

)







, (23)

f –+ =

[

f –
1

f +
2

]

=







1

C1

(
VDC – (vC1 + vC2)

R
–

vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

R
–

P2

vC2

–
vC2

Rb2

)







, (24)

f +– =

[

f +
1

f –
2

]

=







1

C1

(
VDC – (vC1 + vC2)

R
–

P1

vC1

–
vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

R
–

vC2

Rb2

)







, (25)

f ++ =

[

f +
1

f +
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

P1

vC1

–
vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

P2

vC2

–
vC2

Rb2

)







, (26)

for w1 = w2 = 0; w1 = 0 and w2 = 1; w1 = 1 and w2 = 0; w1 = w2 = 1; respectively. The

vector fields can be extended to the switching boundaries by using the Filippov theory

(KUZNETSOV; RINALDI; GRAGNANI, 2003).

We begin the analysis by first studying f ––, f –+, f +– and f ++. We study the

null isoclines, equilibrium points and their stability and classification. Then we define

the dynamics over Σ1 and Σ2 using Fillipov’s theory. There we look for sliding regions,

tangency points, pseudo equilibrium points and their stability. Here in this chapter, the

dynamics of each vector field is studied separately. The interaction between them in f

is first addressed in chapter 4 in some simulation results, and then further in chapter 6,

where the matter of global stability is discussed.
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Figure 7 – Phase Plane Regions and respective governing vector fields for the system
(18)-(22)
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3.2 f –– DYNAMICS

The f –– field is given by the equation (23), rewritten below:

f –– =

[

f –
1

f –
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

vC2

Rb2

)







.

It is important to notice that this is a linear vector field. So there can be only one

equilibrium point and its stability properties are global. Its equivalent circuit is shown in

Figure 8, and correspond to the case where all the APS are turned off.

Nullclines

The nullclines of f –– are f –
1 = 0 and f –

2 = 0, respectively

vC2 = VDC – vC1

(

1 +
Rl

Rb1

)

, (27)

vC1 = VDC – vC2

(

1 +
Rl

Rb2

)

. (28)
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Figure 8 – f –– equivalent circuit.
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Equilibrium Point

The equilibrium point is given by the intersection of (27) and (28) or yet f –– = 0 2

which is

E–– =
(
E ––

1 ,E ––
2

)
=

(
VDCRb1

Rl + Rb1 + Rb2

,
VDCRb2

Rl + Rb1 + Rb2

)

. (29)

One can see that the equilibrium voltages simply correspond to the voltages in the

voltage division circuit of Figure 8.

Stability of the Equilibrium Point

As it can be already expected, E–– is globally asymptotically stable. We can verify

its stability by calculating the field’s Jacobian matrix (denoted by A––) in respect to vC

evaluated at the given equilibrium point, and verifying the standard equilibrium points

stability conditions for planar (another name for by-dimensional) systems: det(A––) > 0

and tr(A––) < 0. Then, we get

A–– =







∂ f –
1

∂vC1

∂ f –
1

∂vC2
∂ f –

2

∂vC1

∂ f –
2

∂vC2







=







–

(
1

Rl
+

1

Rb1

)
1

C1

–
1

RlC1

–
1

RlC2

–

(
1

Rl
+

1

Rb2

)
1

C2







,

whose determinant and trace are

det(A––) =
1

C1C2

(
1

RlRb1

+
1

RlRb2

+
1

Rb1Rb2

)

> 0, (30)

tr(A––) = –

(
1

Rl
+

1

Rb1

)
1

C1

–

(
1

Rl
+

1

Rb2

)
1

C2

< 0. (31)

Since f –– = A––vC and A–– has all eigenvalues with negative real part, one concludes

that E–– is globally asymptotically stable.
2 0 is the null vector. In this case, the null vector of dimensions 2×1.
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3.3 f –+ DYNAMICS

Now we proceed studying the dynamics of f –+, which is given by (24):

f –+ =

[

f –
1

f +
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

P2

vC2

–
vC2

Rb2

)







.

Differently from f ––, f –+ is nonlinear. It corresponds to the case where only one APS is

turned on. Its equivalent circuit can be seen in Figure 9.

Figure 9 – f –+ equivalent circuit.
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Nullclines

The nullcline f –
1 = 0 (27), present in f –– is also present in f –+. We rewrite it here

as a reminder:

vC2 = VDC – vC1

(

1 +
Rl

Rb1

)

.

The other one is f +
2 = 0, or

vC1 = VDC – vC2

(

1 +
Rl

Rb2

)

–
P2Rl

vC2

. (32)

Equilibrium Points

The equilibrium points of f –+ are given by the intersection of f –
1 = 0 and f +

2 = 0,

the same as f –+ = 0. There are two equilibrium points:

E–+
1 =

(
E –+

11 ,E –+
12 ,
)

(33)
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with

E –+
11 =

2Rb1(Rl + Rb1)VDC + Rb1Rb2VDC + Rb1

√

R2
b2

V2
DC

– 4P2Rb2(Rl + Rb1)(Rl + Rb1 + Rb2)

2(Rl + Rb1)(Rl + Rb1 + Rb2)
,

(34)

E –+
12 =

Rb2VDC –

√

R2
b2

V2
DC

– 4P2Rb2(Rl + Rb1)(R+Rb1 + Rb2)

2(Rl + Rb1 + Rb2)
, (35)

and

E–+
2 =

(
E –+

21 ,E –+
22

)
, (36)

with

E –+
21 =

2Rb1(Rl + Rb1)VDC + Rb1Rb2VDC – Rb1

√

R2
b2

V2
DC

– 4P2Rb2(Rl + Rb1)(Rl + Rb1 + Rb2)

2(Rl + Rb1)(Rl + Rb1 + Rb2)
,

(37)

E –+
22 =

Rb2VDC +

√

R2
b2

V2
DC

– 4P2Rb2(Rl + Rb1)(Rl + Rb1 + Rb2)

2(Rl + Rb1 + Rb2)
. (38)

The condition that ensures that the components of both of these equilibria are indeed

real numbers is:

P2 ≤
Rb2V2

DC

4(Rl + Rb1)(Rl + Rb1 + Rb2)
= P–+

2c . (39)

That is, if P2 < P–+
2c , both equilibrium points exist. If it reaches the critical value P2 = P–+

2c ,

they collide, and if P2 > P–+
2c , they cease to exist. That characterizes a bifurcation, and as

it has co-dimension one – that means only one parameter is varied in order to produce

it. In bi-dimensional systems, the bifurcation that is characterized for the collision and

disappearance of equilibrium points is a saddle-node bifurcation.

Stability of the Equilibrium Points

We can check the stability of E–+
1

and E–+
2

in case they exist (are real). The

equilibrium point E–+
1

is unstable, and a saddle point. An classification of E–+
1

stability

by analytical proof could not be made. However, the first steps are written here and

the rest may be completed in future works. Also, an numeric approach for practical

problems is suggested.

We begin verifying the stability of E–+
1

. For that, we compute the Jacobian matrix

of f –+ in respect to vC, which is

A–+ =








1

C1

(

–
1

Rl
–

1

Rb1

)

–
1

RlC1

–
1

RlC2

1

C2

(

–
1

Rl
+

P2

v2
C2

–
1

Rb2

)








.
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Then we calculate

det(A–+)
∣
∣
vC=E–+

1

=

4P2Rb2(Rl + Rb1)(Rl + Rb1 + Rb2) – Rb2V2
DC – VDC

√

R2
b2

V2
DC

– 4P2(Rl + Rb1)(Rl + Rb1 + Rb2)

2RlC1C2P2Rb1Rb2(Rb1 + Rb2)
.

If E–+
1

exists, the condition (39) is satisfied. That implies

4P2(Rl + Rb1)(Rl + Rb1 + Rb2) – Rb2V2
DC ≤ 0,

–VDC

√

R2
b2

V2
DC

– 4P2(Rl + Rb1)(Rl + Rb1 + Rb2) ≤ 0,

so

det(A–+)
∣
∣
vC=E–+

1

≤ 0.

If P2 = P–+
2c , det(A–+)

∣
∣
vC=E–+

1

= 0 and E–+
1

is non hyperbolic (and coliding with E–+
2

). If

P2 < P–+
2c , det(A–+)

∣
∣
vC=E–+

1

< 0 and therefore E–+
1

is unstable and a saddle point.

Now, regarding the stability of E–+
2

, it is shown here that det(A–+)
∣
∣
vC=E–+

2

≥ 0, but

no conclusion about the sign of tr(A–+)
∣
∣
vC=E–+

2

. If it exists, condition (39) is satisfied. We

have

det(A–+)
∣
∣
vC=E–+

2

=

4P2(Rl + Rb1)(Rl + Rb1 + Rb2) – Rb2V2
DC + VDC

√

R2
b2

V2
DC

– 4P2Rb2(Rl + Rb1)(Rl + Rb1 + Rb2)

2C1C2P2RlRb1Rb2(Rl + Rb1)
.

We show that

4P2(Rl + Rb1)(Rl + Rb1 + Rb2) – Rb2V2
DC + VDC

√

R2
b2V2

DC – 4P2Rb2(Rl + Rb1)(Rl + Rb1 + Rb2) > 0. (40)

Using the substitution

a = R2
b2V2

DC – 4P2Rb2(Rl + Rb1)(Rl + Rb1 + Rb2) (41)

in (40), we have

–
a

Rb2

+ VDC

√
a > 0,

that can be manipulated into

Rb2VDC >
√

a. (42)

Now, replacing (41) again in (42) we have

Rb2VDC >

√

R2
b2

V2
DC

– 4P2Rb2(Rb1 + Rb2)(Rl + Rb1 + Rb2).
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Therefore, det(A–+)
∣
∣
vC=E–+

2

> 0 if P2 ≤ P–+
2c and det(A–+)

∣
∣
vC=E–+

2

= 0 if P2 = P–+
2c .

The other condition for the stability of E–+
2

is

tr(A–+)
∣
∣
vC=E–+

2

= –
1

C1

(
1

Rl

+
1

Rb1

)

–
1

C2






1

Rl

+
1

Rb2

–
4P2(Rl + Rb1 + Rb2)2

(

–Rb2VDC +

√

R2
b2V2

DC – 4P2Rb2(Rl + Rb1)(Rl + Rb1 + Rb2)

)2




 < 0.

In this context, it remains to prove that

1

Rl
+

1

Rb2

–
4P2(Rl + Rb1 + Rb2)2

(

–Rb2VDC +

√

R2
b2

V2
DC

– 4P2Rb2(R + Rb1)(Rl + Rb1 + Rb2)

)2
> 0.

Due to the system’s own complexity, there is an inherent difficulty in proving

analytically the stability for a general case. In chapter 4, for parameter values based on a

real MMC prototype, the equilibrium points E–+
2

and E–+
3

actually do not exist. As future

works, a normalized model may be used to calculate numerically the stability of these

points for parameter values in ranges that are typically used in practical applications.

The use of the normalized model can reduce complexity by reducing the parameter

number, and also permits to obtain more general results.

3.4 f +– DYNAMICS

The field f +– is

f +– =

[

f +
1

f –
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

P1

vC1

–
vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

vC2

Rb2

)







.

The field f +– has the same dynamic characteristics of f –+, rewritten below:

f –+ =

[

f –
1

f +
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

P2

vC2

–
vC2

Rb2

)







.

This can be seen examining both equivalent circuits (Figure 10), which have the same

topology. Also, the fields f +– and f –+ have the same expression, except for a permu-

tation in the states and parameters. Because of that, the dynamics of f –+ are omitted

here for the sake of simplicity and to avoid repetitions.
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Figure 10 – f +– equivalent circuit (a) and f –+ equivalent circuit (b). Both have the same
topology.
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+
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3.5 f ++ DYNAMICS

The f ++ field is, as defined in (26):

f ++ =

[

f +
1

f +
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

P1

vC1

–
vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

P2

vC2

–
vC2

Rb2

)







.

It corresponds to the precharge uncontrolled and active stage, in which all the APS are

turned on (Figure 11).

Figure 11 – f ++ equivalent circuit.
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Nullclines

The null isoclines of f++ are f +
1 = 0 and f +

2 = 0, given by (32), respectively

vC2 = VDC – vC1

(

1 +
Rl

Rb1

)

–
P1Rl

vC1

, (43)

vC1 = VDC – vC2

(

1 +
Rl

Rb2

)

–
P2Rl

vC2

.

Equilibrium Points

The equilibrium points are given by the intersection of (43) and (32) or solution

of f ++ = 0 for vC. As these equilibrium coordinates are more dificult to compute in this

case, we assume the simplifying hipothesis:

P1 = P2 = P, (44)

Rb1 = Rb2 = Rb, (45)

which happens in the nominal case. For these simplifications, the equilibrium points
coordinates are

E++
1 =

(
E++

11 ,E++
12

)
=




RbVDC +

√

R2
bV2

DC – 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)
,
RbVDC +

√

R2
bV2

DC – 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)



 ,

(46)

E++
2 =

(
E++

21 ,E++
22

)
=




RbVDC –

√

R2
bV2

DC – 4PRb(Rl + Rb)2

2(Rl + Rb)
,
RbVDC +

√

R2
bV2

DC – 4PRb(Rl + Rb)2

2(Rl + Rb)



 ,

(47)

E++
3 =

(
E++

31 ,E++
32

)
=




RbVDC +

√

R2
bV2

DC – 4PRb(Rl + Rb)2

2(Rl + Rb)
,
RbVDC –

√

R2
bV2

DC – 4PRb(Rl + Rb)2

2(Rl + Rb)



 ,

(48)

E++
4 =

(
E++

41 ,E++
42

)
=




RbVDC –

√

R2
bV2

DC – 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)
,
RbVDC –

√

R2
bV2

DC – 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)



 .

(49)

For the equilibrium points E++
1

and E++
4

, vC1 = vC2, meaning the capacitor voltages are

balanced in them. In fact, E++
1

is the desired operating point, as its voltages are closer

to E/N, which is ideal voltage in the uncontrolled stage of the precharge. The existence

conditions for E++
1

and E++
4

are the same:

P ≤
RbV2

DC

4Rl(Rl + 2Rb)
= P++

c14. (50)

That is, if P < P++
c14, they both exist with different coordinates, if P = P++

c14, they both collide

and if P > P++
c14, both cease to exist. This characterizes a bifurcation. That means also,
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that if P is relatively large enough, it is impossible for this system to reach the desired

operating point.

Now there is also the pair E++
2

and E++
3

. One can notice that the voltages are

unbalanced in both of them. Also, E++
21

= E++
32

and E++
22

= E++
31

. Regarding their existence

condition, we have

P ≤
V2

DCRb

4(Rl + Rb)2
= P++

c23. (51)

If P < P++
c23, they both exist with distinct coordinates. If P = P++

c23 they collide together with

E++
1

, at

vC =

(
RbVDC

2(Rl + Rb)
,

RbVDC

2(Rl + Rb)

)

,

and if P > P++
c23, they cease to exist. The collision of three natural equilibrium points in a

planar system, caused by the variation of only one parameter, characterizes a pitchfork

bifurcation.

Stability and Classification of the Equilibrium Points

We are especially interested in verify the conditions of stability of the operating

point E++
1

. Assuming (44-45) case, the stability of E++
2

and E++
3

are linked to it - these

points are related in a pitchfork bifurcation. The analytical proof of neither the stability

of E++
4

nor the other ones could be done analytically for the general case, and are left

for future work. As suggested for E–+
2

, these may be done numerically for a parameter

range typically used in practical applications.

We begin by calculating the Jacobian Matrix of f++ in respect to vC, that is

A++ =









1

C1

(

P

v2
C1

–
1

Rl
–

1

Rb

)

–
1

RlC1

–
1

RlC2

1

C2

(

P

v2
C2

–
1

Rl
–

1

Rb

)









.

We know that, in E++
1

as well as in E++
4

the voltages are balanced. We then rewrite the

coordinates of E++
1

as

E++
1 = (VCb,VCb).

As A++ is symmetric, both of its eigenvalues are real. The following stability conditions

come from both eigenvalues of A++
∣
∣
vC=E++

1

being negative.

We can calculate the eigenvalues of such a matrix knowing that a matrix M in

such a form

mij =

{

D , if i = j

O , if i 6= j
(52)
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has the following eigenvalues3

λ1 = λ2 = · · · = λN–1 = D – O (53)

λN = D + (N – 1)O. (54)

Therefore the stability conditions are

V2
Cb

Rb
>P, (55)

V2
Cb

Rb
>P –

V2
Cb

Rl
. (56)

As (55) is more restrictive than (56) regarding maximum value of Rc, (55) is a sufficient

condition needed to delimit this value. This is the condition of local stability of the system

operating point and it means that the power consumed in Rc must be greater than P, for

E++
1

to be stable.

As for the stability of E++
2

and E++
3

, it is known that they exist with distinct

coordinates if P < P++
c23. Also, that they have a relation with E++

1
stability through a

pitchfork bifurcation. When (55) is satisfied, P is also lower than a critical value so to

say. That indicates that, if E++
1

is stable, both E++
2

and E++
3

exist and are unstable.

When E++
1

is unstable, E++
2

and E++
3

do not exist.

3.5.1 Local Stability of Operating point - Extending Results For a N-SM System

The local stability conditions for the operating point can be generalized for the

case with an arbitrary number N of SMs. We begin by retrieving the model equation for

the uncontrolled and active stage of the precharge in (7), rewritten below:

dvCi

dt
=

1

Ci

(

VDC –
∑N

k=1 vCk

Rl
–

Pi

vCi
–

vCi

Rbi

)

,

with i ∈ {1,2, . . . ,N}.

We also consider the simplifying hipothesis

C1 = C2 = · · · = CN = C, (57)

P1 = P2 = · · · = PN = P, (58)

Rb1 = Rb2 = · · · = RbN = Rb. (59)

Substituting (57)-(59) in (7), we have

dvCi

dt
=

1

C

(

VDC –
∑N

k=1 vCk

R
–

P

vCi
–

vCi

Rb

)

, (60)

with i ∈ {1,2, . . . ,N}.

3 These eigenvalues were calculated for values of N, such that N ≥ 2, with the aid of a symbolic
computation tool.
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Now, we calculate the Jacobian matrix of (60), which is given by

A =









a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...

aN1 aN2 · · · aNN









,

whose elements are defined as

aij =







1

C

(

–
1

Rl
+

P

v2
Ci

–
1

Rb

)

, if i = j,

–
1

RlC
, if i 6= j,

with {i, j} ∈ {1,2, · · · ,N}.

Assuming that, calculating the eigenvalues λn of A at the operating equilibrium

point where vC1 = vC2 = · · · = vCN = VCb in the same way it was calculated in the previous

case by (52-54), we have

λ1 = λ2 = · · · = λN–1 =
1

C

(

P

V2
Cb

–
1

Rb

)

,

λN =
1

C

(

–
N

Rl
+

P

V2
Cb

–
1

Rb

)

.

from which it is possible to establish the following stability conditions:

V2
Cb

Rb
> P, (61)

V2
Cb

Rb
> P –

NV2
Cb

Rl
. (62)

As we are interested in the maximum value of Rb, the condition (61) is more restrictive

than (62). The condition (61) is the same for two or for an arbitrary number N of SM per

phase.

3.5.2 Guidelines for the Design of Rb

Now that we’ve seen the local stability conditions for the operating point, we have

some first guidelines for the design of Rb. In order to properly function, the system has

to satisfy (61). As this means the power consumed in Rb must be greater than P, we

can define the design parameter γ as the ratio

γ =

(

V2
Cb

Rb

)

P
. (63)
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So that with γ > 1, E++
1

is locally stable. With a chosen γ value, it is possible to calculate

the corresponding Rb value. We first compute VCb as a function of γ, and then solve

(63) for Rb.

For that, we begin considering the circuit in Figure 12 in steady state, at E++
1

.

The total power consumed in the SM is

NVCbiRl
= N(P + γP), (64)

with γP being the power consumed in Rb. We have two unknown variables, iRl and VCb,

therefore we add another equation in order to solve for VCb. We also have, at the loop l

(Figure 12):

VDC – RliRl – NVCb = 0. (65)

Solving the equation system (64)-(65), we have the possible solutions for VCb

VCb =
VDC ±

√

V2
DC

– 4Rl(1 + γ)PN

2N
.

The value of VCb in E++
1

is the term with positive square root:

VCb =
VDC +

√

V2
DC

– 4Rl(1 + γ)PN

2N
. (66)

In that way, we calculate Rb from (63)

Rb =
V2

Cb

γP
. (67)

From (66), assuming that E++
1

exists, we can calculate the maximum possible γ value:

γ <
V2

DC

4NPRl
– 1 = γmax. (68)

So, the range of γ values that one can choose, in order to guarantee local stability of

the operating point must satisfy, according to (61), (63) and (68) is

1 < γ < γmax. (69)

In addition, for (69) to be feasible, it is necessary that γmax > 1, which means, from (68):

V2
DC

8NRl
> P, (70)

otherwise, it is simply not possible for the system to function as desired.

With that, we have the first guidelines for the design of Rb. One can choose γ

within the range in (69) and then calculate the corresponding Rb. It is important to state
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that, a local stable operating point is necessary, but not sufficient in order to make the

system to function as desired. The attraction domain of E++
1

must be large enough so

that trajectories starting with initial conditions vC0 = 0 must end up in this domain as

they reach D4. In chapter 4 the relation between Rb variation and size of the attraction

domain is investigated by using numerical simulations. It shows there is a trade-off

between the power consumed in Rb and size of the attraction domain. For now, we

have already a range from which to choose and guarantee local stability. The safest

measure, when ensuring stability is desired, is to choose Rb correspondent to γmax, if

this is feasible.

Figure 12 – MMC precharge equivalent circuit assuming (57)-(59).
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3.6 DYNAMICS IN Σ1

In this section, we analyze the dynamics in Σ1. We look for sliding segments,

crossing segments and tangency points in it. The dynamics of f ––, f –+, f +– and f ++

are properly extended to Σ1 using the Filippov theory. In the vector fields defined in Σ1,

we look for pseudo-equilibrium points and study their stability.
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Sliding or Crossing Segments and Tangency Points

To find whether there are sliding segments and respective extreme tangency

points, we begin by calculating the Lie derivatives4 of the four fields. The switching

boundary Σ1, defined in (20), is determined by the scalar function h1, defined in (17)

and rewritten below:

h1 = vC1 – VCmin,

with respective gradient vector

∇h1 =







∂h1

∂vC1
∂h1

∂vC2







=

[

1

0

]

.

The fields on the left of Σ1 are these boundaries are f –– and f –+, and on the right of it

are f +– and f ++, as defined in (23-26):

f –– =

[

f –
1

f –
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

vC2

Rb2

)

,







f –+ =

[

f –
1

f +
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

P2

vC2

–
vC2

Rb2

)







,

f +– =

[

f +
1

f –
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

P1

vC1

–
vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

vC2

Rb2

)







,

f ++ =

[

f +
1

f +
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

P1

vC1

–
vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

P2

vC2

–
vC2

Rb2

)







.

For these, we have the Lie derivatives in Σ1, where vC1 = VCmin:

Lf ––h1 = Lf –+h1 =
1

C1

(
VDC – (VCmin + vC2)

Rl
–

VCmin

Rb1

)

, (71)

Lf +–h1 = Lf ++h1 =
1

C1

(
VDC – (VCmin + vC2)

Rl
–

P1

VCmin
–

VCmin

Rb1

)

. (72)

4 The first order Lie derivative of a scalar function h in respect to a vector field f is calculated as:
Lf h = 〈∇h, f 〉, in which ∇h is the gradient vector of h, and 〈,〉 is the scalar product operation.
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We test for example if there are attractive sliding segments and where they are.

The attractive sliding conditions are:

Lf ––h1 = Lf –+h1 > 0,

Lf +–h1 = Lf ++h1 < 0,

respectively

vC2 < VDC –
VCmin(Rl + Rb1)

Rb1

,

vC2 > VDC –
P1Rl

VCmin
–

VCmin(Rl + Rb1)

Rb1

.

In that way, we can define the sliding segment Σas
1

as

Σ
as
1 =

{

(vC1,vC2) ∈ Σ1 : VDC –
P1Rl

VCmin
–

VCmin(Rl + Rb1)

Rb1

< vC2 < VDC –
VCmin(Rl + Rb1)

Rb1

}

.

(73)

Now, the extremes of Σas
1

are tangency points in Σ1, given by

T –
1 =

(
T –

11,T –
12

)
=

(

VCmin,VDC –
VCmin(Rl + Rb1)

Rb1

)

, (74)

T +
1 =

(
T +

11,T +
12

)
=

(

VCmin,VDC –
P1Rl

VCmin
–

VCmin(Rl + Rb1)

Rb1

)

, (75)

with T–
1

being the tangency point of f –– or f –+ and T +
1

being the tangency point of f +–

or f ++. Note that T –
12 > T +

12. All of these elements are ilustrated in Figure 13.

Other than that in Σ1, if vC2 > T –
12, Lf ––h1 = Lf –+h1 < 0 and Lf +–h1 = Lf ++h1 < 0, then

it is a crossing region from D4 to D2, or, from D3 to D1. And if vC2 < T +
12, it is a crossing

region from D1 to D3 or from D2 to D4.
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Figure 13 – Regions and tangency points in Σ1. Vector field
dvC1

dt
components are

drawn in gray.

vC1

vC2

VCmin VDC

VDC

Σ1

∇h1

Σas
1

❼T−

1

❼T+

1

Source – Own Elaboration.

Sliding Vector Fields

We can extend the dynamics of f ––, f –+, f +– and f ++ to Σ1 using Filipov’s theory.

According to Kuznetsov, Rinaldi, and Gragnani (2003), the sliding dynamics field of a

field f s in the boundary h = 0 between two fields f– and f+ can be calculated acording

to the expression:

f s =
〈∇h, f +〉f – – 〈∇h, f –〉f +

〈∇h, f + – f –〉 .

In our case, in order to calculate the dynamics in Σ1, we divide it in two regions:

Σ
–
1 = {(vC1,vC2) ∈ Σ1 : h2 < 0},

Σ
+
1 = {(vC1,vC2) ∈ Σ1 : h2 > 0},
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and calculate a sliding vector field for each one, respectively f s1– and f s1+. The field

f s1– is given by

f s1– =
〈∇h1, f +–〉f –– – 〈∇h1, f ––〉f +–

〈∇h1, f +– – f ––〉

=

[

f s1–
1

f s1–
2

]

=





0

1

C2

(
VDC – (VCmin + vC2)

Rl
–

vC2

Rb2

)



 .

Note that there are no dynamics in
dvC1

dt
, and in the

dvC2

dt
component, they are equal to

f –
2 . Analogously, f s+

1
is given by:

f s1+ =
〈∇h1, f ++〉f –+ – 〈∇h1, f –+〉f ++

〈∇h1, f ++ – f –+〉

=

[

f s1+
1

f s1+
2

]

=





0

1

C2

(
VDC – (VCmin + vC2)

Rl
–

P2

vC2

–
vC2

Rb2

)



 .

In a similar way, the
dvC1

dt
component is null, and

dvC2

dt
= f +

2 .

Pseudo-Equilibrium Points

The pseudo-equilibrium points in Σ1 occur where f s1– = 0 and also where f s1+ = 0.

As
dvC1

dt
= 0 for both of them, they coincide with the geometrical locus corresponding to

the intersection of the nullclines f –
2 = 0 and f +

2 = 0 with Σ1.

For f s1–, we have only one solution for f s1– = 0, that is the pseudo-equilbrium

point

Es1– =

(

E s1–
11 ,E s1–

12

)

=

(

VCmin,
Rb2 (VDC – VCmin)

Rl + Rb2

)

.

Now, for f s1+ = 0, we have two solutions: the pseudo-equilibrium points

Es1+
1 =

(
E s1+

11 ,E s1+
12

)
=



VCmin,
Rb2 (VDC – VCmin) –

√

R2
b2 (VDC – VCmin)2 – 4P2RlRb2 (Rl + Rb2)

2(Rl + Rb2)



 ,

Es1+
2 =

(
E s1+

21 ,E s1+
22

)
=



VCmin,
Rb2 (VDC – VCmin) +

√

R2
b2 (VDC – VCmin)2 – 4P2RlRb2 (Rl + Rb2)

2(Rl + Rb2)



 . (76)

Note that E s1–
12

≥ E s1+
22

≥ E s1+
12

. Also, we have an existence condition for Es1+
1

and Es1+
2

,

that can be expressed as

P2 ≤ Rb2 (VDC – VCmin)2

4Rl (Rl + Rb2)
= Ps1+

2c .

If P2 < Ps1+
2c

, both exist and E s1+
22

> E s1+
12

. If P2 = Ps1+
2c

, both pseudo-equilibrium points

collide, and for P2 < Ps1+
2c

, they cease to exist.
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Stability of Pseudo-Equilibrium Points

We can check the stability of the pseudo-equilibrium points in Σ1 as it is done in

one-dimensional systems. In f s1–, for Es1–, we have

∂ f s1–
2

∂vC2

∣
∣
∣
∣
∣
vC=Es1–

= –
Rl + Rb2

C2RlRb2

< 0.

So Es1– is stable, and can be classified as a stable node, since it is in an attractive

sliding region. As this not necessarily coincides with the desired operation point, it is

undesirable that the system trajectory converge to this point, in case it is real.
Now, for the f s1+ field, we can check the stability of Es1+

1
. We prove that it is

unstable. We have in this case

∂ f s1+
2

∂vC2

∣
∣
∣
∣
vC=Es1–

=

–
(VCmin – VDC)

(√

R2
b2 (VDC – VCmin)2 – 4P2Rl (Rl + Rb2) + Rb2(VDC – VCmin)

)

+ 4P2Rl(Rl + Rb2)

2C2P2R2
l Rb2

> 0.

That is equivalent to:

(VDC – VCmin)

√

R2
b2

(VDC – VCmin)2 – 4P2Rl (Rl + Rb2) + Rb2 (VDC – VCmin)2

4Rl (Rl + Rb2)
> P2,

which is true, so Es1+
1

is unstable, assuming that P2 < Ps1+
2c

, or Es1+
1

if and Es1+
2

exist

with distinct coordinates.

Finally, we test if Es1+
2

is stable. We prove that it is stable, that is

∂ f s1+
2

∂vC2

∣
∣
∣
∣
∣
vC=Es1+

2

=
P2RlRb2 – (Rb2 + Rl)v

2
C2

C2RlRb2v2
C2

∣
∣
∣
∣
∣
vC=Es1+

2

< 0,

which is equivalent to

P2 <
Rl + Rb2

RlRb2

v2
C2

∣
∣
∣
∣
vC=Es1+

2

.

Replacing (76), we have

P2 <
Rb2 (VDC – VCmin)2 + (VDC – VCmin)

√

R2
b2

(VDC – VCmin)2 – 4P2RlRb2 (Rl + Rb2)

2Rl (Rl + Rb2)
– P2,

which is true, if P2 < Ps1+
2c

. Therefore, if Es1+
1

and Es1+
2

exist with distinct coordinates,

Es1+
2

is stable.

As both pseudo-equilibrium points are in an attractive sliding region, we can

classify Es1+
1

as a pseudo-saddle equilibrium point and Es1+
2

as a pseudo-node. When

P2 < Ps1+
2c

, these points collide, and when P2 > Ps1+
2c

, they cease to exist. This charac-

terizes a pseudo-saddle-node bifurcation in Σ1.
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3.7 DYNAMICS IN Σ2

The set Σ2 presents the same elements and subsets of Σ1. In the particular

case which P1 = P2 = P and C1 = C2 = C, such elements and subsets are disposed

symmetrically to the ones in Σ1, in relation to the line vC1 = vC2. Besides, the sliding

dynamics in Σ2 has the same qualitative characteristics of the sliding dynamics in Σ1,

studied in the previous section. Therefore, for the sake of simplicity, they are omitted

here. That concludes the matter of dynamics in Σ2 in this chapter, and also of all the

fields in D.

3.8 SUMMARY

In this chapter we have seen:

• The dynamics of a two submodule system was studied, for matters of simplicity.

This helps to obtain insight about the system dynamics, because the phase plane

tool can be used for analyzing them.

• There are dynamics in four different fields: f ––, which corresponds to a system

with no APS turned on; f –+ and f +–, which corresponds to a system with one

APS turned on; and f ++, with corresponds to the system with all (two) APS turned

on. Each of these was studied separately.

• In addition to these, in the switching boundaries Σ1 and Σ2 in between those fields,

there are also sliding modes f s1–, f s1+, f s2– and f s2+.

• The dynamics studied included nullclines, equilibrium points, their classification

and stability; and for the sliding modes: sliding regions, tangency points and

pseudo-equilibrium points. For some fields, the presence of bifurcation was de-

tected.

• Regarding the dynamics in each field, we have:

– In f ––, there is one equilibrium, globally asymptotically stable.

– In f –+ and f +–, there is a saddle point and another point whose stability

could not be analytically proved for the general case. This can be made in

a numerical approach in future works, by using parameter values typically

used in practical applications.

– In f ++, there are four equilibrium points, calculated assuming a simplifying

hypothesis, that P1 = P2 = P and Rb1 = Rb2 = Rb (this occurs in the nominal

case). One of them is the operating point where vC1 = vC2 = VCb, that can

be stable node under a condition, explained better in the next bullet point.
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Two other equilibrium points, with symmetry in relation to the straight line

vC1 = vC2 are present. Depending on the parameter values, these two collide

with the operating point and then can cease to exist. This is an indicative of

a pitchfork bifurcation. The last equilibrium point also satisfies vC1 = vC2 =

VCb, but it is closer to the origin. The stability of these three points was not

proved analytically for the general case, and can be made using a numerical

approach using parameter values typically used in practical applications. This

is left for future works.

– In f s1– and f s2–, there is one pseudo-node in each.

– In f s1+ and f s2+, there is a pseudo-saddle and a pseudo-node in each. Also,

in both of them, it is possible to have a pseudo-saddle-node bifurcation.

• Regarding the stability of the operating point, conditions for local stability of a

system with two SM were obtained and then the results were extended for a

system with an arbitrary number of SM.

– This extends the work from (LUO; CAO, et al., 2016), that has proven this

condition for a system with one SM only.

– The condition is that the power consumption in Rb must be greater than P.

– This condition is not a natural choice when Rb is only a bleeder resistance,

intended just for discharging the capacitors when the MMC is turned off.

• Based on that, the parameter γ was defined by the ratio between these two powers.

Its possible range was calculated, and also how to calculate Rb from a chosen γ

within this range.

In the next chapter, we run simulations of vector fields, phase portrait and time

responses of f ––, f –+, and f ++. Also, the sliding regions and tangency points in Σ1

and Σ2, vector field and phase portrait of f . We also study the dependence of the

parametetric variation in the system stability and operation.
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4 SIMULATION RESULTS

In this chapter we show simulations of the two SM system from chapter 3. The

parameter values used are based on a prototype from which we made the experiments

presented in chapter 5. The results exposed here also help to clarify the analysis made

in chapter 6.

We show the simulation results for the nominal case, in which the SM parameter

have equal values, in section 4.1. The analysis of influence of parametric variation is

exhibited in section 4.2. For the nominal case, we have simulated the fields f ––, f –+,

f ++ and f from the previous chapter, respectively in the secondary sections 4.1.1, 4.1.2,

4.1.3 and 4.1.4. We have simulated the vector field, phase portrait, sliding dynamics

(when present) and time responses for each one of these fields.

In the cases of parametric variations, we have analyzed the influences of Rb, Ci

and VCmin variation, respectively in the secondary sections 4.2.1, 4.2.2 and 4.2.3. As

the design of Rb is one of the main issues of the conducted research, the variation of

this parameter is analyzed in more depth.

In the tertiary section 4.2.1.1, we present the f ++ field for the case in which the

operating equilibrium point is unstable. Then, in the section 4.2.1.2, the influence of Rb

variation in the operating equilibrium point attraction domain is analyzed in f ++. In the

section 4.2.1.2 we present a bifurcation diagram of f ++ in dependence with Rb and in

section 4.2.1.3 we present a locally stable operating equilibrium point case. The section

4.3 is a summary of this chapter.

4.1 NOMINAL CASE

The parameter values choice was based on a real prototype we have in our

facilities at Federal University of Santa Catarina at the Institute of Power Electronics

- the power electronics institute inside the electrical engineering department. These

results were obtaining designing Rb value in order to guarantee a stable equilibrium

operation point. The resistance Rb was designed so that the power consumed in it is

approximately 120% of the power P consumed in one APS when it is active. In other

words, for γ = 1,2. The nominal case is stable, with all capacitance values the same.

(Table 2) From here on, it is assumed C1 = C2 = C, P1 = P2 = P and Rb1 = Rb2 = Rb unless

stated otherwise.

For each possible stage of the circuit (no power load, or one power load, or both

active), the system vector field, phase portrait and some representative time responses

were simulated. After that, the global system, that included all four fields and boundaries,

is simulated. For the global case, the sliding regions over the boundaries were also

illustrated.
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Table 2 – Circuit parameters for simulation of the nominal case with stable operation
equilibrium point. The resistance Rb is dimensioned so that γ = 1,20

N VDC[V] Rl[Ω] C[mF] P[W] VCmin[V] Rb[Ω]

2 150 100 2,82 10 50 250
Source – Own Elaboration.

4.1.1 f–– field

The first simulated field is the f –– field. It corresponds to the system with no

active power loads. As a matter of fact, this circuit is very simple, linear, and corresponds

to a voltage divisor with two connected capacitors. As the system is linear, it has only

one equilibrium point (as seen in previous subsection) (Figure 14). In Figure 14 we can

see the nullclines f –
1 = 0 and f –

2 = 0 that divide the vector field in four main regions... each

one has a predominant direction in which the vector field points to. From left to f –
1 = 0

the field points to the right, and for right it points to the left. At the intersection of the

nullclines, there is the system equilibrium point f .

Figure 14 – Vector field f ––

Source – Own elaboration.
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The coordinates, eigenvalues and eigenvectors of E–– can be seen in Table 3.

As seen in the theory subsection, the equilibrium is stable. Its eigenvalues have both

a negative real part, so it is a stable node. As this field corresponds to a linear system,

it is globally stable. We can see that in all the regions, the vector field points in the

direction of this point.

The eigenvectors v1 and v2 (Table 3) in this point are aligned to two main

directions. The vector v1 is perpendicular and points towards to the direction of

vC1 + vC2 = VDC. That corresponds to the geometric place where the sum of the capac-

itor voltages is balanced with the voltage source VDC. The vector v2 is perpendicular

and points to vC1 = vC2, which corresponds to the situation where the capacitors are

balanced. Also the eigenvalue λ1 associated with v1 is about six times greater than λ2

associated with v2. That means, for this parameter set, that the system approximately

balances the sum of the capacitors with the voltage source VDC about six times faster

than the time it takes to balance vC1 and vC2. That phenomen can be seen observing

the system trajectories in its phase portrait (Figure 15).

Figure 15 – Phase portrait of f ––

Source – Own elaboration.
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Table 3 – Equilibrium points in f –– - coordinates, eigenvalues and eigenvectors of the
linearized system around these equilibrium points.

Equilibrium Point (vC1 ; vC2) λ1 λ2 v1 v2

E–– (62,5 ; 62,5) -8,510 -1.418 [0,707 0,707]T [0,707 – 0,707]T

Source – Own elaboration.

The time response corresponding to one of the trajectories in the phase plane

can be seen in Figure 16. We can see in this figure that the voltage of both capacitors

rise in the first instants, then they balance between themselves reaching the global

stable equilibrium point.

Figure 16 – Time response of f ––

Source – Own elaboration.

4.1.2 f –+ field

The f –+ field is affected by the presence of one constant power load in one of

the submodules. In figure 16 we can see its vector field. The null isocline f +
2 = 0,

vC1 = VDC – vC2

(

1 +
Rl

Rb2

)

–
P2Rl

vC2

,

is bent, in comparison with f –
2 = 0,

vC1 = VDC – vC2

(

1 +
Rl

Rb2

)

,

because of the hyperbola term
(

–PRl

vC2

)

. In this case, because of it, the nullclines do

not intersect themselves, and there is no equilibrium point. That way, the field is divided

in three main regions. The region to the left of f +
2 = 0 and to the right of f –

1 = 0 point both

towards the region "in the middle", that points mostly downward-right (or to southeast

direction) towards the vC1 axis. That means that in this region vC1 tends to increase

whereas vC2 decreases. This is reasonable since there is a constant power load only

consuming power in the capacitor whose voltage is vC2.
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Figure 17 – Vector field f –+

Source – Own elaboration.

The phase portrait of this field can be seen in figure 18. The trajectories converge

to a place roughly near the vC1 + vC2 = VDC line region, indicating that the sum of the

capacitors’ voltages charge up to the VDC value, and then go downward-right to the

direction of vC1 axis, following the vector field directions. The simulation is stopped

before vC2 reaches 0, because vC2 = 0 is not defined for f –+. There are no equilibrium

points in this case.

A time response corresponding to one trajectory of the phase portrait of the

system can be seen in figure 19. Both voltages begin to rise together and diverge,

leading to charge in vC1 and discharge in vC2. When vC2 reaches 0, the simulation

stops. In the real system, the MMC may shut down since the voltage reaches a inferior

safety threshold.

As seen in analysis section, the vector field could have another form depending

on the parameter values. If the other parameters remained the same as the ones in

Table 2 except that P < P–+
2c = 6.6964 W (according to (39)), the null isocline f +

2 = 0 would

bent in a way that it crosses f –
1 = 0 in two points, thus there would be two equilibrium

points. Analyzing the vector field directions, one would be a stable sink and the other

an unstable saddle point. In that way, the system would be locally asymptotically stable

and it would be possible to reach an equilibrium, even with a constant power load

in only one of the two submodules. This equilibrium point would not be over the line
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vC1 = vC2, though. In that way, one could say that this equilibrium is not desired if

trajectories begin at the starting point (vC1,vC2) = (0,0), as trajectories converging to it

do not correspond to a desirable behavior of the system. The form of this field can be

understood physically. The constant power load has a characteristic that it drains more

current when the voltage is lower and less current when it is higher, thus inducing the

system onto unbalance and instability. Therefore, if the system is "unbalanced enough",

its trajectory do not reach a stable equilibrium. Moreover, if the power consumed in it is

high enough, such as this example, there is no state within the operating region from

which the trajectory can reach any equilibrium point.

Figure 18 – Phase portrait of f –+.

Source – Own elaboration.

Figure 19 – Time response of f –+.

Source – Own elaboration.
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4.1.3 f ++ Field

In the f ++, we have the constant power loads active in both submodules. In

Figure 20 its vector field is illustrated. Both null isoclines f1 + = 0 and f2 + = 0,

vC2 = VDC – vC1

(

1 +
Rl

Rb1

)

–
P1Rl

vC1

,

vC1 = VDC – vC2

(

1 +
Rl

Rb2

)

–
P2Rl

vC2

,

are bent, because of the hyperbola terms –
PRl

vC1

and –
PRl

vC2

, respectively. The nullclines

intercept each other in four distinct points, dividing the field in seven regions. At these

intersection, there are the equilibrium points, one locally stable and three unstable. We

can also think of the region around each equilibrium point being divided in four, each

one with a dominant vector field direction.

Figure 20 – Vector field f ++

Source – Own elaboration.

The equilibrium point E++
1

is the desired operating equilibrium point of the system,

where vC1 = vC2, and it is a stable sink, since both eigenvalues of the system linearized

around it have real negative part (Table 4). Similar to E––, its eigenvectors v1 and v2 are

pointing in the direction of vC1 + vC2 = VDC and vC1 = vC2 respectively. The eigenvalue λ1

associated with v1 is approximately 30 times greater than λ2 associated with v2. In that

way, it is expected that in the neighborhood of E++
1

, the trajectories tend to go faster
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towards vC1 + vC2 = VDC, than towards vC1 = vC2, meaning that the system first tends to

charge so that the sum of capacitor voltages balance the voltage source voltage VDC

and then later they balance between themselves.

The equilibrium points E++
2

and E++
3

are both saddle points, as both have both a

real positive and a real negative eigenvalue (Table 4). As the parameter values in each

submodule are equal in this nominal case, the system has a symmetry in the vector

field in relation to the line vC1 = vC2: so E ++
21 = E ++

32 and E ++
31 = E ++

22 . They eigenvectors v1

and v2 point to approximately the same directions of the eigenvalues of E++
1

, and the

difference in the order of magnitude of the eigenvalues is approximately equal to the

case in E++
1

.

The last equilibrium point is E++
4

. It is an unstable node, since both of its eigen-

values are real positive (Table 4). It occurs because the less the voltage is, the greater

is the current drained by the constant power load. So if the voltages vC1 or vC2 are low

enough, there would be no current enough to charge the capacitors.

Table 4 – Equilibrium points in f ++ - coordinates, eigenvalues and eigenvectors of the
linearized system around these equilibrium points.

Equilibrium Point (vC1 ; vC2) λ1 λ2 v1 v2

E++
1 (54,912 ; 54,912) -7,334 - 0,242 [0,707 0,707]T [–0,707 0,707]T

E++
2 (72,804 ; 34,338) -6,860 0.607 [–0.810 – 0,586]T [0,586 0,810]T

E++
3 (34,338 ; 72,804) 0.607 - 6,860 [0.810 – 0,586]T [0,586 0.810]T

E++
4 ( 7,587 ; 7,587) 53,079 60,171 [–0,707 – 0,707]T [–0,707 0,707]T

Source – Own elaboration.

The operating equilibrium point is locally asymptotically stable, and we can find

trajectories that both converge to and diverge from it. The system trajectories can be

seen in the phase portrait in Figure 21. If the initial conditions of the trajectory are within

the attraction domain of the stable node E++
1

, then they will asymptotically converge to

it. If they start outside, the system trajectory will diverge from it, meaning an unbalance

either discharging vC1 and charging vC2 or vice-versa. The simulation is stopped before

vC1 = 0 or vC2 = 0, because these values are not defined for f ++. The attraction domain

of E++
1

is delimited by the green lines in Figure 21, which correspond to the stable

subspace of the saddle points E++
2

and E++
3

. It is also interesting to notice that the

real-negative eigenvalues of E++
2

and E++
3

are associated with eigenvectors tangent to

its stable subspace (Table 4). Any trajectory starting over this subspace will converge

to these equilibrium points. However, this space is as thin as a line, and it is practically

not feasible that such thing ever happens.

In Figure 22 it is illustrated a time response of the system corresponding to a

trajectory with initial conditions inside the attraction domain of E++
1

. It converges to the

operating point, thus reaching balance. Similarly to time responses of the fields f ––

and f –+, the voltages initially rise together, and then balance between themselves in a
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slower dynamic. In Figure 23 it is shown a time response corresponding to a trajectory

that diverges from the operating point, reaching unbalance.

Figure 21 – f ++ phase portrait.

Source – Own elaboration.

Figure 22 – f ++ Time response - converging.

Source – Own elaboration.

Figure 23 – f ++ Time response - diverging

Source – Own elaboration.
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4.1.4 f Field

Lastly for the nominal case, are the simulation results regarding f . In Figure

24 we can see its vector field. There is only one equilibrium point, E++
1

, and there

are discontinuities in the vector fields at the boundaries Σ1 and Σ2. The fact that the

constant power loads are only active if the corresponding capacitor voltage is greater

than the minimum voltage VCmin curiously helps to stabilize the system, which is in

this case, apparently, globally asymptotically stable. In order to check it, we can look

carefully at each field and interaction with its boundaries, as well as the dynamics in

the boundaries themselves.

Figure 24 – Vector field f

Source – Own elaboration.

In Figure 25 there are the sliding regions at the boundaries Σ1 and Σ2. As they

are symmetric, we explain here what happens in Σ1 and in Σ2 it is just the same. The

thicker lines over the boundaries Σ1 and Σ2 represent the attractive sliding regions Σ
as
1

and Σ
as
2

. In these regions, the vector field at each side of the boundaries point towards

the boundary, and any trajectory that reaches this region slides over it. Analytically, it

corresponds to the conditions Lf ––h1 = Lf –+h1 > 0 and Lf +–h1 = Lf ++h1 < 0. In the extremes

of the sliding regions, there are the tangency points. For Σ1 there is the invisible fold

T+
1

and the visible fold T–
1
. The dot-dashed lines correspond to points where the field is

perpendicular to the boundary gradient vector. In its intersection with the boundary, the

tangency points are located. Analytically, they correspond to when the Lie derivatives
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are null. Here, they coincide with the field nullclines because the boundaries are per-

pendicular lines to the axis vC1 and vC2, so its gradients are parallel to the respective

axis. For example, left from the dot-dashed line f –
1 = 0, the vC1 component points to

the right. Also, in the region over the f1+ = 0 curve, the vC1 component points to the

left. At the intersection of these two regions, in Σ1 the field from both sides of Σ1 points

towards them, therefore it is an attractive sliding region. Points in Σ1 that are not in

Σ
as
1

neither T–
1

or T+
1

are crossing points. In Figure 26, we can see that there are no

pseudo-equilibrium points, that is, f +
2 = 0 does not cross the sliding region.

Figure 25 – Sliding regions, tangency points and null Lie derivatives in f

Source – Own elaboration.
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Figure 26 – Sliding regions, tangency points and null Lie derivatives in F near Σ1as.

Source – Own elaboration.

We can make a global analysis of f by looking at the vector field (Figure 24),

sliding regions (Figure 25) and trajectories at the f phase portrait (Figure 27). Starting

on D1 where f –– actuates, the fields leads the system trajectories towards crossings in

Σ1 and in Σ2. In regions D2 and D3, where f–+ and f+ respectively actuate, the vector

field leads the system trajectories to crossings towards D4 or to sidings over Σ
as
1

or

Σ
as
2

. The sliding trajectories can be seen in Figure 27. These trajectories slide until

they reach one of the visible fold tangency points T–
1

or T–
2

and then cross to the D4

region, where f ++ actuates. The vector field in D4 leads the trajectories to the operating

stable equilibrium point, or, to the attractive sliding regions, where they return to D4

and eventually reach the equilibrium point, or finally, to a crossing towards D2 or D3

where they circundate the invisible fold tangency points T+
1

or T+
2
, end up in the sliding

regions Σ
as
1

or Σ
as
2

and slide until the visible fold tangency points T–
1

and T–
2

where

they cross to D4 again and eventually also reach the equilibrium point E++
1

. We can

conclude therefore that considering the operating domain of F, the system is, for this

set of parameter values, globally asymptotically stable.

The APSs help to balance the system in this case, because they are turned on

only when the voltage in its capacitor is greater than VCmin. In this example, when vC2

is greater than vC1, the auxiliary power supply is turned on, and the time derivative of

vC2 diminishes while the time derivative of vC1 stays the same, thus helping the system

to balance faster. This can be seen at the system phase portrait (Figure 27) as all the

trajectories beginning in D1 tend to "funnel" as they cross the boundaries Σ1 and Σ2.
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Figure 27 – Phase Portrait of f in nominal case simulation.

Source – Own elaboration.

It is important to make a remark that, in the practical case, all trajectories part

from initial conditions in the D1 region, ideally from (vC1;vC2) = (0;0). Also, in the real

system, at least in the prototype we have in our facilities, the system actually turns off if

the trajectory crosses from D4 back to D2 or D3 (if an auxiliary power supply is turned

on and then it must be turned off because the voltage is too low), because of safety

reasons. In the Figure 28, it is possible to see trajectories that come from D1, cross to

D2 and D3 and then go to D4 (or cross directly to D4) and then reach the operating point,

showing that it is feasible that the system works as desired in a real situation where the

safety measures are implemented.

A time response of the system with initial conditions in D1 is illustrated in Figure

29. We can see that in the first instants the voltages begin to rise together. We can see

that then the constant power load is active in the second submodule, because there

is a discontinuity in the time derivative of vC2 near 0,1 s. After that, the same happens

also for vC1 near 0,2 s. Then the voltages slowly converge to the equilibrium voltage,

balancing between themselves.

In sum, the dynamics of the studied piecewise smooth system show that: (i)

there is no real pseudo equilibrium point, (ii) there are two sliding regions and (iii) there

is only one real equilibrium point of f which is the operating point of the system.
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Figure 28 – Phase Portrait of f - Zoom near E++
1

Source – Own elaboration.

Figure 29 – Time response of f . Full time (a) and zoom in its first instants (b).

(a)

(b)

Source – Own elaboration.
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4.2 STUDY OF THE SYSTEM UNDER PARAMETRIC VARIATION

4.2.1 Two Submodule System - Variation of Rb

As seen in the analysis section and illustrated by the previous simulation results,

introducing Rb with adequate value, the system can be stabilized. In this section, it is

shown what happens to the system, specially regarding stability, with the variation of

Rb. It is shown that it is not sufficient that the Rb value is chosen so that the operating

point is stable in order to the system to work as desired.

4.2.1.1 Insuficient γ or E ++
1 unstable

We begin by showing what happens when the value of Rb does not satisfy (61).

For the parameters specified in Table 5, we simulated the f ++ field, which contains the

operating point. Its vector field (Figure 30) contains two equilibrium points, instead of

four like in the previous case. By looking at the vector field direction, and also to the

equilibrium points correspondent eigenvalues presented in Table 6, we see that E++
4

remains as an unstable node, whereas E++
1

becomes a saddle point (unstable). The

equilibrium points E++
2

and E++
3

are not present. These change of equilibrium points

number and type in the vector field in dependence of the variation of one parameter

configures a bifurcation. More specifically, a bifurcation of type pitchfork is present in

this circuit’s system. Whenever γ > 1, E++
1

is stable, E++
2

and E++
3

exist as saddle points.

If γ = 1, these three points collide, and γ < 1 corresponds to this present case.

Table 5 – Circuit parameters for simulation of the case with an unstable operation equi-
librium point. The resistance Rb is dimensioned so that γ = 0,8.

N VDC[V] Rl[Ω] C[mF] P[W] Rb[Ω]

2 150 100 2,82 10 450
Source – Own elaboration.

Table 6 – Equilibrium points in f ++ - coordinates, eigenvalues and eigenvectors of the
linearized system around these equilibria for γ = 0.8.

Equilibrium Point (vC1 ; vC2) λ1 λ2 v1 v2

E++
1 (60 ; 60 ) - 6,8952 0.19701 [0,70711 0,70711]T [–0,70711 0,70711]T

E++
4 ( 7,5 ; 7,5) 55,1615 62,2537 [–0,70711 – 0,70711]T [–0,70711 0,70711]T

Source – Own Elaboration.
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Figure 30 – Vector field of f ++ for γ = 0.8

Source – Own elaboration.

We can see the system phase portrait in Figure 31. Because E++
1

is a saddle

point, it has a stable subspace (or manifold) associated to it, drawn in green. Any

trajectory with initial conditions starting over this subspace will asymptotically converge

to E++
1

. This means that, theoretically, if the circuit parameters in every submodule

is perfectly equal, and it started in a initial condition where vC1 is identical to vC2, the

system would reach balance. In the real world, though, these conditions are not feasible.

There are always some uncertainty or lack of accuracy in the parameter values, and

even if they were perfect, any deviation caused by any disturbance would take the

system away from the equilibrium and leading to unbalance, since the equilibrium is

unstable. A typical time response of this situation is illustrated in Figure 32.
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Figure 31 – Phase portrait of f ++ for γ = 0,8

Source – Own Elaboration.

Figure 32 – A time response of f ++ for γ = 0,8

Source – Own Elaboration.
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4.2.1.2 Attraction domain of E ++
1 variation in dependence with Rb

In order to work properly, some conditions must be fulfilled. The operating equi-

librium point E++
1

must be stable. The system trajectory, when reaches D4, should be

inside the attraction domain of E++
1

. Otherwise, the system trajectories tend to reach

the boundaries Σ1 or Σ2 and the real circuit turns itself off for safety reasons.

For γ < 1, E++
1

is a saddle point. For γ = 1, the equilibrium points E++
1

, E++
2

and

E++
3

collide in one degenerated point, that has a saddle point characteristic. These

cases are developed in more details in the next tertiary sections "f ++ Bifurcation Dia-

gram" and "A Locally Stable Case".

For γ > 1, E++
1

is stable and there is an attraction domain. The equilibrium points

E++
2

and E++
3

are present in distinct loci, and their stable subspaces delimit the attraction

domain of E++
1

.

We can see the stable manifolds of E++
2

and E++
3

for several γ values in Figure

33. For γ > 1, these delimit the attraction domain of E++
1

. For γ = 1, E++
1

, E++
2

and E++
3

collide in one point that has a saddle point characteristic. The γ values and respective

Rb values are listed in Table 7. Interestingly, the influence of γ in expanding the limits of

the attraction domain of E++
1

tends to diminish as γ increases.

In a practical case, γ must be more than only sufficient to stabilize E++
1

. In the

next chapter, we try to answer what is the minimum value of γ that maintains the system

properly working, taking into account uncertainties in the capacitance values, a situation

that is far common in a real system. We search also for a value of Rb that ensures not

only local, but global stability.

Table 7 – Circuit parameters for simulations of variation of E++
1

attraction domain limits
in dependence with γ or Rb

Simulation Number N VDC[V] Rl[Ω] C[mF] P[W] Rb[Ω] γ

1 2 150 100 2,82 10 332,4173 1,0
2 2 150 100 2,82 10 288,9176 1,1
3 2 150 100 2,82 10 252,0833 1,2
4 2 150 100 2,82 10 220,2374 1,3
5 2 150 100 2,82 10 192,1147 1,4
6 2 150 100 2,82 10 166,6667 1,5

Source – Own Elaboration.
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Figure 33 – Stable manifolds of E++
2

and E++
3

for several γ values.

Source – Own Elaboration.

f ++ Bifurcation Diagram

We analyze here the existence and stability of the equilibrium points in f ++

in dependence with the variation of Rb, in a bifurcation diagram. In the bifurcation

diagram, we plot a coordinate of the f ++ equilibrium points, and also show whether the

equilibrium are stable or not in dependence with Rb.

Recall that f ++ is given by (26)

f ++ =

[

f +
1

f +
2

]

=







1

C1

(
VDC – (vC1 + vC2)

Rl
–

P1

vC1

–
vC1

Rb1

)

1

C2

(
VDC – (vC1 + vC2)

Rl
–

P2

vC2

–
vC2

Rb2

)







,
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with the equilibrium points given by (46-49):

E++
1 =

(
E++

11 ,E++
12

)
=




RbVDC +

√

R2
bV2

DC – 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)
,
RbVDC +

√

R2
bV2

DC – 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)





E++
2 =

(
E++

21 ,E++
22

)
=




RbVDC –

√

R2
bV2

DC – 4PRb(Rl + Rb)2

2(Rl + Rb)
,
RbVDC +

√

R2
bV2

DC – 4PRb(Rl + Rb)2

2(Rl + Rb)





E++
3 =

(
E++

31 ,E++
32

)
=




RbVDC +

√

R2
bV2

DC – 4PRb(Rl + Rb)2

2(Rl + Rb)
,
RbVDC –

√

R2
bV2

DC – 4PRb(Rl + Rb)2

2(Rl + Rb)





E++
4 =

(
E++

41 ,E++
42

)
=




RbVDC –

√

R2
bV2

DC – 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)
,
RbVDC –

√

R2
bV2

DC – 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)



 .

The existence condition for E++
1

and E++
4

is, as in (50)

P ≤
RbV2

DC

4Rl(Rl + 2Rb)
= P++

c14.

Now, for E++
2

and E++
3

, the condition is as in (51)

P ≤
V2

DCRb

4(Rl + Rb)2
= P++

c23.

Also, we have

A++ =









1

C1

(

P

v2
C1

–
1

Rl
–

1

Rb

)

–
1

RlC1

–
1

RlC2

1

C2

(

P

v2
C2

–
1

Rl
–

1

Rb

)









,

from which we can determine whether the equilibrium point is stable. An equi-

librium point E++ ∈
{

E++
1

, E++
2

, E++
3

, E++
4

}
is stable if det

(
A++

)∣
∣
vC=E++ > 0 and

tr
(
A++

)∣
∣
vC=E++ < 0. Based on that, we can plot the bifurcation diagram. The param-

eters used are exhibited in Table 8.

Table 8 – Parameter values used to draw a bifurcation diagram of f ++ in dependency
with Rb variation.

N VDC[V] Rl[Ω] P[W]

2 150 100 10
Source – Own Elaboration.

The bifurcation diagram of f ++ varying Rb diagram can be seen in Figure 34,

above with the corresponding γ(Rb) at E++
1

. In Figure 34 (b) we can see a saddle-node
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bifurcation (SNB) for a value of Rb around 27Ω. When Rb is approximately 31Ω, a sub-

critical pitchfork (sPB) bifurcation happens. We can see in Figure 34 (a) that there is a

limited range of values so that E++
1

is stable, corresponding to the region where γ > 1.

For Rb ≈ 325Ω, there is another sPB bifurcation, and E++
1

becomes a saddle point. We

can see also, that except for γmax, there are two different Rb values that lead to the

same γ value. If one designs Rb like seen in chapter 3, the value from the right-hand

side is chosen.

Figure 34 – Bifurcation diagram of f ++ varying Rb and corresponding γ(Rb). Full dia-
gram (a) and zoom close saddle-node bifurcation (b).

(a)

(b)

Source – Own Elaboration.
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4.2.1.3 A Locally Stable Operating Point Case

In this section, we just simulate the whole field f , showing an example of the

system in a local-stable operating point situation. We simulate its vector field, sliding

regions, phase portrait and calculate data about its equilibrium points.

In Table 9 we show the parameters used in the simulations. The balancing

resistance was chosen so that γ = 1.005. In Figure 35 we can see that in this case

E++
1

is stable E++
2

and E++
3

are real and saddle points (Table 10), as discussed in the

previous session. Also, the two stable pseudo-nodes Es1+
2

and Es2+
2

are also real.

In Figure 36 we can see the sliding regions of f . The nullcline f +
2 = 0 crosses Σ

as
1

.

Therefore the stable pseudo-node Es1+
2

is real, and by symmetry, Es2+
2

is real too.

In Figure 37 the phase portrait of f is shown. There is an attraction domain

around E++
1

that is in between the asymptotes that cross E++
2

and E++
3

. The trajectories

inside this domain asymptotically converge to E++
1

, whereas the other can asymptotically

converge to E++
2

or E++
3

, if they start on their respective asymptotes (another name for

stable subspace), or else, to Es1+
2

or Es2+
2

.

In the real system, only the trajectories that asymptotically converge to E++
1

correspond to the correct operation of the system. Trajectories that converge to the

saddle points corresponds to a non realistic situation, and for our particular prototype,

the ones that converge to a pseudo-equilibrium correspond to a situation where the

submodules are turned off for safety reasons.

Table 9 – Circuit parameters for simulation of the case with local operating equilibrium
point. Rb is dimensioned so that γ = 1.005

N VDC[V] Rl[Ω] C[mF] P[W] VCmin[V] Rb[Ω]

2 150 100 2,82 10 50 330,0512
Source – Own elaboration.

Table 10 – Equilibrium points in f - coordinates, eigenvalues and eigenvectors of the
linearized system around these equilibria for γ = 1,005.

Equilibrium Point (vC1 ; vC2) λ1 λ2 v1 v2

E++
1 (57,59 ; 57,59 ) - 7,097 -0.00534 [0,707 0,707]T [–0,707 0,707]T

E++
2 ( 54,00 ; 61,11) -7,086 0,0107 [0,693 0,720]T [0,720 0,693]T

E++
3 ( 61,11 ; 54,00) -7,086 0,0107 [–0,720 – 0,693]T [0,693 – 0,720]T

Es1+
2

( 50,00 ; 64,92) - - - -
Es2+

2
( 64,92 ; 50,00) - - - -

Source – Own elaboration.
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Figure 35 – f vector field for γ = 1,005. Domain D (a) and zoom near E++
1

(b)

(a)

(b)

Source – Own Elaboration.
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Figure 36 – f sliding regions for γ = 1.005. Domain D (a) and zoom near T+
1

(b).

(a)

(b)

Source – Own Elaboration.
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Figure 37 – f phase portrait for γ = 1.005. Domain D (a) and zoom near E++
1

(b).

(a)

(b)

Source – Own Elaboration.
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4.2.2 Variation of the capacitances Ci

In this session we test the influence of the variation of Ci. In some preliminary

results, we have observed the following phenomenon: choosing random values for Ci

within an uncertainty range around the nominal value, for a given range, the system

started to malfunction, even though the value of Rb was theoretically sufficient to make

the operating point stable. This was even one of the first motivations of this work. In

chapter 3 we see that Ci does not influence for the nullcline, equilibrium or pseudo-

equilibrium positions. It is also does not influence sliding regions or tangency points

location, neither their classification. Here we explain with an example, how a given

variation in Ci can lead the system to malfunction despite the operating point being

stable.

The simulation is made with the parameters in Table 11. They are the same

used in the local stable case of the previous section, except for the Ci values. Here,

they were chosen as 1,2 and 0,8 of the nominal value C. These are the extremes of a

usual manufacturing tolerance, and also the same we have in the capacitors of a real

prototype in our facilities. The worst case scenario is chosen, that is, one capacitance in

the maximum value and another in the minimum, so that they charge in different rates

leading to a greater unbalance than other cases.

Table 11 – Circuit parameters for local stable case with varying capacitances for the
two-submodule system. The balancing resistance Rb is designed so that
γ = 1,005

N VDC[V] R[Ω] C[mF]
C1

C

C2

C
P[W] VCmin[V] Rb[Ω]

2 150 100 2,82 1,2 0,8 10 50 330,0512
Source – Own Elaboration.

As seen in (8), Ci multiplies the whole equation of a given state. This corresponds

to a scaling in a given axis direction in the vector field. In Figure 38 we can see f

vector field. The vectors are slighty more vertical position than in the previous case.

The nullclines and equilibrium points remain in the same position. The eigenvectors

associated with the equilibrium points, are also tilted towards the vertical (vC2) direction,

though (Table 12). This influences the trajectories and also, the assimptotes of E++
2

and

E++
3

, which determine the position of the attraction domain of E++
1

.

In Figure 39 we can see that the attraction domain of E++
1

is tilted compared

to the previous case, and, more importantly, the origin is out of it. In this phase plane

figure, only the trajectory starting at the origin is plot. This corresponds to the trajectory

of the real system, that should start with discharged capacitances. We can see that it

reaches the pseudo-node Es1+
2

instead of E++
1

, therefore, the system is not working as
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desired, even though E++
1

is stable.

Table 12 – Equilibrium points in f - coordinates, eigenvalues and eigenvectors of the
linearized system around these equilibria for γ = 1,005.

Equilibrium Point (vC1 ; vC2) λ1 λ2 v1 v2

E++
1 (57,59 ; 57,59) -0,00534 -7,393 [0,707 -0,707]T [0,554 0,832]T

E++
2 (54,00 ; 61,11) 0,0106 -7,436 [0,720 -0,693]T [0,540 0,841]T

E++
3 (61,11 ; 54,00) 0,0108 -7,235 [0,693 -0,720]T [0,569 0,822]T

Es1+
2

(50,00 ; 64,92) - - - -
Es2+

2
(64,92 ; 50,00) - - - -

Source – Own Elaboration.

The corresponding time response can be seen in Figure 40. The voltages vC1

and vC2 diverge and unbalance (Figure 40 (a)). In the first instants (Figure 40 (b)), the

discontinuous variation can be seen in
dvC1

dt
and in

dvC2

dt
. In Figure 40 (c), we can see

the voltage vC1 reaches the pseudo-equilibrium value of 50 V. In the real system, the

system would be automatically shut down for safety reasons.

This concludes the example, that it is possible to have a stable operating point,

and the system still not work as desired. Also, it is shown how the capacitances Ci

take part in this phenomenon. In the chapter 6, a condition for guaranteeing global

stability in a two SM system is presented and proved. The global stable system can

work regardless of variation in the Ci values.
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Figure 38 – f vector field for γ = 1,005, but also varying the capacitances. Domain D (a)
and zoom near E++

1
(b).

(a)

(b)

Source – Own Elaboration.
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Figure 39 – f Trajectory starting at vC0 = [0,001 0,001]T in the phase plane, for γ = 1,005,
but also varying the capacitances. Domain D (a) and zoom near E++

1
(b).

(a)

(b)

Source – Own Elaboration.
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Figure 40 – f Time response at vC0 = [0,001 0,001]T for γ = 1.005, but also varying the
capacitances. Whole time response (a), first instants (b) and zoom around
pseudo-equilibrium voltage vC1 (c).

(a)

(b)

(c)

Source – Own Elaboration.
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4.2.3 Variation of VCmin

Here we study the influence of VCmin variation in the system dynamics. Designing

the system for a low VCmin value can bring some advantages. As it determines the points

that the APS are turned on, a low value means that the system spends less time in

the uncontrolled precharge stage, and can help in the system stability if an adequate

control method is used in the controlled stage of the precharge. However, if the value is

too low, it can lead to the system malfunction. We show in the following case how can

that occur.

The parameter VCmin does not influence the position or stability of natural equilib-

rium points of f . However, variations in this parameter may influence whether these equi-

librium points are real or virtual1. Also, it influences the existence of pseudo-equilibrium

points in Σ1 and Σ2. We simulate here a case of a VCmin value such as E++
4

is real. The

simulation parameters are listed in Table 13.

The sliding regions of f can be seen in Figure 41. They cover a vast part of

Σ1 and Σ2. The tangency points T–
1

and T–
2 are invisible folds in this case. Over these

sliding regions, there are also real pseudo-equilibrium points in Σ1 and Σ2. We can

see them in f vector field in Figure 42. In Figure 42 (b), we can see that there is a

pseudo-equilibrium point, Ess, at the intersection of Σas
1

and Σ
as
2

. For the direction of the

vector field, we can conclude that it is a stable pseudo-node, by looking at the vector

field direction. This point is problematic.

As Ess is a stable node, and there are no crossing regions around D1 in this

case, the trajectories with initial conditions can only eventually reach Ess and stay

there. Therefore, the system can not reach its desired operating point. The phase

portrait of f including these trajectories can be seen in Figure 43. A time response

with initial conditions in D1 can be seen in Figure 44. The voltages rise up together but

do not surpass the VCmin value of 5V. A real system may shut down because one of

the capacitor voltages has reached an inferior safety threshold. Note also that all of it

happens, even if the operating point E++ is stable (Table 14).

Table 13 – Circuit parameters for simulation of f such that E++
4

is real.

N VDC[V] Rl[Ω] C[mF] P[W] VCmin[V] Rb[Ω]

2 150 100 2,82 10 5 250
Source – Own Elaboration.

1 A virtual equilibrium point occur in the case of PWS systems, and it is an equilibrium point that is
located outside the vector field in which this point are defined.
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Figure 41 – f sliding regions for the case in which E++
1

is real.

Source – Own Elaboration.

That concludes the example showing how a VCmin poorly designed can lead to

the system malfunctioning, even with a local stable operating point. Another choice

of VCmin that would lead the system to malfunction would be VCmin > E ++
11 . In that way,

the operating point E++
1

is virtual, and it is not possible to reach it. This concludes the

example as well as the simulation results of this work.

Table 14 – Equilibrium points in f - coordinates, eigenvalues and eigenvectors of the
linearized system around these equilibria for γ ≈ 1,2.

Equilibrium Point (vC1 ; vC2) λ1 λ2 v1 v2

E++
1 (54,912 ; 54,912) -7,334 - 0,2424 [0,707 0,707]T [–0,707 0,707]T

E++
2 (72,804 ; 34,338) -6,860 0.6075 [–0.810 – 0,586]T [0,586 0,810]T

E++
3 (34,338 ; 72,804) 0.607 - 6,860 [0.810 – 0,586]T [0,586 0.810]T

E++
4 ( 7,587 ; 7,587) 53,079 60,171 [–0,707 – 0,707]T [–0,707 0,707]T

Es1+
1

(5,000 ; 7.429) - - - -
Es1+

2
(5,000 ; 96.141) - - - -

Es2+
1

(7.429 ; 5,000) - - - -
Es2+

2
(96.141 ; 5,000) - - - -

Ess (5,000 ; 5,000) - - - -

Source – Own Elaboration.
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Figure 42 – Vector field f such that E++
4

is real. Domain D (a) and zoom near E++
4

(b).

(a)

(b)

Source – Own Elaboration.
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Figure 43 – Phase Portrait of f such that E++
4

is real. Domain D (a) and zoom near E++
4

(b).

(a)

(b)

Source – Own Elaboration.
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Figure 44 – A time response of f such that E++
4

is real.

Source – Own Elaboration.
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4.3 SUMMARY

In this chapter, we have seen:

• Vector fields, phase portraits and time responses of f ––, f –+ and f ++ were simu-

lated, in order to help understand the dynamics in each of these fields separately.

• The vector field f was simulated in order to better understand the interaction

between f ––, f –+, f +– and f ++ as well as the dynamics in Σ1 and Σ2.

• The simulations were made for a nominal case, where the SM parameter values

are equal and E++
1

is stable.

• The influence of parametric variation in the system dynamics was also investi-

gated. Variations in Rb, Ci and in VCmin were studied.

• Regarding the variation of Rb, it was shown a case where E++
1

is unstable. Also,

The variation of the attraction domain of E++
1

and f ++ bifurcation diagram. It is

shown that a saddle-node and also to sub-critical pitchfork bifurcations occur

when Rb varies. Regarding f , the variation of Rb can result in an unstable, local

stable or even global stable E++
1

.

• With respect to the variation of Ci, although it does not change the nullclines or

equilibrium points position and classification, it does distort the vector field. In

a local stable case, it can move the attraction domain away from the null initial

condition, which is the one used in a real case. This causes the system not to

reach the operating point, leading to malfunction.

• Regarding the variation of VCmin, it is shown that either if it is chosen so that E++
1

is virtual, or such that E++
4

is real, it causes the system to malfunction. The first

case, because the operating point becomes virtual, thus not reachable, and the

second, because the stable-pseudo node Ess in the intersection of Σas
1

and Σ
as
2

becomes real, and the system trajectories with initial conditions in D1 (with all

APS turned off) eventually all converge to Ess.

In the next chapter, experimental results show an example of the proposed

solution being effective in a real case. The insights learned from the simulations are

used to find an analytical condition for the global stability of a system with two SM in

chapter 6.
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5 EXPERIMENTAL RESULTS

Experiments were conducted on a prototype with ten SM per phase, whose

photo can be seen in Figure 46. This prototype was already present in the university

facilities. The experiments exemplify a case in which the proposed solution was effective.

The same circuit was tested with and without the balancing resistances Rb. The circuit

parameter values are shown in Table 15. Note that the parameter values used in the

simulations in the previous chapter were made based on this prototype parameter

values - only the voltage VDC was reduced so that the operating point voltage matches

the prototype’s. There are uncertainties associated with the capacitance values, as well

as in the power consumed by the APSs of the communication and control circuits. The

power P in the table is actually the average value of Pi, calculated for power dissipations

in the range [11.37,14.3] W. The balancing resistance Rb value was chosen for a γ ≈ 1,2.

The experiments results can be seen in Figure 45. In the first stage of the

precharge operation, the auxiliary power supplies are still not turned on, and therefore

the vCi are not measured. They appear as null, but that does not correspond to their real

value. Because the submodules don’t have identical parameter values, each auxiliary

power supply turns on at a different time instant. In Figure 45 (a), one can see that the

voltages tend to diverge and unbalance. That happens until one of the values reach a

minimum or maximum voltage threshold value and then the circuit is all turned off for

safety reasons.

In Figure 45 (b), it is shown a case in which the balancing resistance is used. The

capacitor voltages converge to a stable operating point. In this point, the voltages are

not equal, and spread in the range [65.3,73.2] V ([-6.4%, +4.8%] in respect to average),

corresponding to calculated power dissipations in the range [11.37,14.3] W. Standard

deviation in steady state is σss = 3.2%. The unbalance in vCi values is likely caused by

the dispersion in values of Pi and Rb and further uncertainties in the measurements,

which are obtained from the own submodule acquisition system based on a micro-

controller (SCHMIDT et al., 2019).

Table 15 – Circuit parameters for the experimental case. Rb was tested in open circuit
Rb → ∞ and Rb = 375 Ω.

Experiment N VDC[V] Rl[Ω] C[mF] P[W] Rb[Ω] γ

1 10 740 100 ±5% 2.82 ±20% 10,74 → ∞ → 0
2 10 740 100 ±5% 2.82 ±20% 10,74 375 1,2

Source – Schmidt et al. (2019).
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5.1 SUMMARY

In this chapter we have seen:

• An experiment was conducted showing a real case that illustrates the unbalancing

of the capacitor voltages problem, and the effectiveness of the proposed solution.

• There is some deviation in the capacitor voltages, caused by differences of power

consumption in each APS. Nevertheless, the operating point is stable and the

system reaches it, keeping the voltages constant.

In the next chapter, analytical conditions for global stability of a system with 2

SM are shown and proved.
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6 GLOBAL STABILITY IN THE PLANAR CASE

In this chapter we show conditions that guarantee global stability of the operating

point in the two SM sytem presented in chapter 3. In the section 6.1 we present the

conditions and present the system vector field in the case the conditions are satisfied

and show by a qualitative analysis that the operating point is globally asymptotically

stable. In the next sections, we prove that the field has the configuration presented in

section 6.1. In 6.2 we prove that the analyzed domain is positively invariant, in 6.3 we

prove that the dynamics on the switching boudaries are as presented in section 6.1

and in 6.4 we prove that the operating is the only real equilibrium point, as presented in

section 6.1 if the conditions are satisfied. Finally, we propose guidelines for the design

of Rb section 6.5 based on the stability conditions. The section 6.6 is a summary of this

chapter.

6.1 A PICTURE OF THE GLOBALLY STABLE OPERATING POINT VECTOR FIELD

If the operating point E++
1

is stable and real, and the saddle points E++
2

and E++
3

are virtual, then the operating point is globally stable. We consider D, as given by (19):

D = {(vC1,vC2) ∈ R
2 : 0 < vC1 ≤ VDC and 0 < vC2 ≤ VDC}.

We prove that any trajectory with initial conditions in any place inside D, will asymptoti-

cally converge to E++
1

, if the conditions (61) (the condition for local stability of E++
1

) and

(77), namely

V2
Cb

Rb
> P,

E ++
21 < VCmin < E ++

11 , (77)

are satisfied.

We look at the general picture of f satisfying conditions (61) and (77). We can

see that, wherever in D (Figure 47) is the initial condition, the trajectory starting in

it asymptotically converges to E++
1

. In the next sections, it is proved that the vector

field has the characteristics depicted in Figure 48 and its phase portrait is topologically

equivalent to the one shown in Figure 49.
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Figure 47 – Domain D = D1 ∪D2 ∪D3 ∪D4 ∪Σ1 ∪Σ2

vC1

vC2

VCmin

VCmin

VDC

VDC

Σ1

Σ2

D1

w1 = w2 = 0

f −−

D2

w1 = 0, w2 = 1

f −+

D3

w1 = 1, w2 = 0

f +−

D4

w1 = w2 = 1

f ++

Source – Own Elaboration.

Take any trajectory in D1. The vector field f –– governs this domain, and its

equilibrium, E––, is virtual. The trajectory is attracted to the virtual equilibrium point, and

can cross to D2, D3 or even to D4, as there are only crossing regions in the boundaries

Σ
–
1 and Σ

–
2.

If the trajectory is in D2, where f –+ governs, it tends to go towards the vC1 axis

as seen in the previous chapter. It can either cross directly to D4 or to slide in Σ
as
1

and go

out of it through the invisible fold T+
1

and then go to D4. Analogously, the same occurs in

D3: trajectories in there can either cross directly to D4 or slide in Σ2as and then cross to

D4 when they reach the visible fold T+
2

. Figure 49 shows an example of a phase portrait

of f in which that happens.

Finally, in D4, the trajectories also all end up converging to E++
1

. They can directly

converge to E++
1

, or converge to Σ
as
1

or Σas
2

and slide until reach the respective visible

fold T+
1

or T+
2

and then converge to E++,1 or yet, cross to D2 or D3. Note that the

trajectories entering D4 through one of the visible folds or through a crossing point does

not touch the switching boundary anymore, for it converges to E++
1

, which is a stable

node. Therefore, the system is globally stable. In the next sections, it is proved that the

vector field has the characteristics illustrated in Figure 48.
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Figure 48 – Vector field f satisfying the global stability conditions.

vC1

vC2

VDC

VDC

Σ1

VCmin

Σ2VCmin

❼E++

1

❼T−

1

❼
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2

❼T+

1

❼

T+

2

Source – Own elaboration.

Figure 49 – A phase portrait example with the globally stable operating point.

Source – Own elaboration.
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6.2 OUTER BOUNDARIES: D IS POSITIVELY INVARIANT

We will show that the domain D is positively invariant. That means: any trajecto-

ries that start within D, will remain inside it for all positive time. This means that for any

initial condition inside D, it is always valid that 0 ≤ vC1 ≤ VDC, and also 0 ≤ vC2 ≤ VDC.

We look at the vector field over the axis vC2. We have

dvC1

dt

∣
∣
∣
∣
vC=(0,vC2)

=

(
VDC – (vC1 + vC2)

Rl
–

vC1

Rb

)∣
∣
∣
∣
vC=(0,vC2)

.

= VDC – vC2 > 0.

This holds true for 0 ≤ vC2 < VDC. However, for vC2 = VDC, we have:

dvC2

dt

∣
∣
∣
∣
vC=(0,VDC)

=

(
VDC – (vC1 + vC2)

Rl
–

P

vC2

–
vC2

Rb

)∣
∣
∣
∣
vC=(0,VDC)

.

= –
P

vC2

–
VDC

Rc
< 0.

So no trajectory will leave D through the vC2 axis. The same happens over the vC1 axis,

in analogous form. In the upper boundary vC2 = VDC, we have
dvC1

dt
= 0 and:

dvC2

dt

∣
∣
∣
∣
vC=(vC1,VDC)

= –
vC1

Rl
–

VDC

Rb
–

P

VDC
< 0.

So no trajectory will leave D through vC2 = VDC. The same happens in analogous form

for vC1 = VDC.

Therefore, D is positively invariant. Now that we know what happens in the outer

boundaries of D, we can look at what happens in the inner boundaries Σ1 and Σ2 in the

next section.

6.3 DYNAMICS IN Σ1 AND Σ2

In chapter 3, it was already studied the dynamics of Σ1. Some of them are

parameter dependent, and other not. Here we investigate what happens in Σ1 and Σ2 in

the case our hypothesis (61) and (77) are true. As the equations have similar form and

symmetry in relation to vC1 = vC2, what happens for Σ1 also happens in Σ2. Therefore,

we show the results only in Σ1, knowing that in Σ2 the same happens.

Crossing And Sliding Regions in Σ1

These are already studied in chapter 3, and are such as Figure 50. The coordi-

nates of the tangency points are

T–
1 =
(
T–

11,T–
12

)
=

(

VCmin,VDC –
VCmin(Rl + Rb)

Rb

)

,

T+
1 =
(
T+

11,T+
12

)
=

(

VCmin,VDC –
PRl

VCmin
–

VCmin(Rl + Rb)

Rb

)

.
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Figure 50 – Crossing and sliding regions in Σ
as
1

. Vector field
vC1

dt
components are drawn

in gray.

vC1

vC2

VCmin VDC

VDC

Σ1

∇h1

Σas
1

❼T−

1

❼T+

1

Source – Own Elaboration.

Dynamics in Σ
as
1

As ilustrated in Figure 48, T–
1

is an invisible fold and T+
1

is a visible fold and there

are no real pseudo equilibrium points in Σ
as
1

. We check if T–
1

and T+
1

belong to Σ
–
1 or to

Σ
+
1 , because that is needed to classify them. We prove that both points belong to Σ

+
1 .

If T1
+ ∈ Σ

+
1 , then T1

– ∈ Σ
+
1 , because T–

12 > T+
12 and therefore, Σas

1
∈ Σ

+
1 . Checking

if T+
1
∈ Σ

+
1 , we have:

T+
12 = VDC –

PRl

VCmin
–

VCmin(Rl + Rb)

Rb
> VCmin,

that, provided that VCmin 6= 0, is equivalent to

–(Rl + 2Rb)V2
Cmin + VDCRbVCmin – PRlRb > 0. (78)

Studying the signal of (78) as a function of VCmin, we see that

VDCRb –

√

V2
DC

R2
b

– 4PRlRb(Rl + 2Rb)

2(R + Rb)
< VCmin <

VDCRb +

√

V2
DC

R2
b

– 4PRlRb(Rl + 2Rb)

2(Rl + Rb)
,
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which can be rewritten as, according to (47) and (48),

E ++
21 < VCmin < E ++

31 . (79)

The initial hypothesis (77) satisfies (79) because E ++
11 < E ++

31 , thus T+
1
∈ Σ

+
1 and T–

1
∈ Σ

+
1 .

Now we prove that T–
1 is an invisible fold. We can do that by calculating

L2
f –+h1

∣
∣
∣
vC=T–

1

1. If it is an invisible fold, we have

L2
f –+h1

∣
∣
∣
vC=T–

1

> 0.

That is

–
1

C1C2Rb

(

PR3
b

Rl (Rl + Rb)VCmin – RlRbVDC
+

(2Rb + Rl)VCmin

Rl
–

RbVDC

Rl

)

> 0, (80)

that can be rearranged as

–
(Rl + 2Rb)

C1C2RbRl








R3
bP

(Rl + Rb)(Rl + 2Rb)

VCmin –
VDCRb

Rl + Rb

+ VCmin –
VDCRb

Rl + 2Rb








> 0. (81)

That is true because

VCmin <
VDCRb

Rl + 2Rb
<

VDCRb

Rl + Rb
.

We know that because our initial hypothesis states that VCmin < E ++
11 . Also

VCmin < E ++
11 < E ––

1 . (82)

We can see it by substituting (46) and (29) in (82), which results in:

VCmin <
RbVDC +

√

R2
b
V2

DC
– 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)
<

VDCRb

Rl + 2Rb
.

Therefore the inequality (81) is true, and T–
1

is an invisible fold.

Finally, we prove that both T+
2

is a visible fold and there are no pseudo-equilibrium

points in Σ
as
1

. This situation fits a kind of local boundary saddle bifurcation cataloged.

This bifurcation is a catastrophic disappearance of a stable pseudo-node and it is

cataloged as the boundary saddle BS2 case in (KUZNETSOV; RINALDI; GRAGNANI,

2003), seen in Figure 51.

In this bifurcation, if VCmin < E ++
21 , E++

2
is real, T+

1
is an invisible fold and there is

the real stable pseudo-node Es1+
2

in Σ
as
1

, 2. In the critical parameter value VCmin = E ++
21 ,

1 The second order Lie derivative of a scalar function h in respect to a vector field f is given by
L2

f h = 〈∇Lf h, f 〉
2 This case is exemplified in chapter 4 in Figure 37.
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these three points collide. When VCmin > E ++
21 , that is our hypothesis, Es1+

2
and E++

2

become virtual, and T+
1

becomes a visible fold. The pseudo-saddle Es1+
1

is virtual,

because, recalling:

E s1+
12 < E s1+

22 < T+
12,

therefore, Es1+
1

6∈ Σ
as
1

as well.

Figure 51 – Bifurcation of a saddle point Xα with a boundary Σ. In case BS2, a saddle
Xα coexists with an invisible tangent point Talpha and a stable pseudo-node
Pα for α < 0, while only a visible tangent point Tα remains for α > 0. This is
a catastrophic disappearance of a stable pseudo-node.

Source – Kuznetsov, Rinaldi, and Gragnani (2003).

6.4 EQUILIBRIUM POINTS IN D1, D2 AND D4

Now we prove that, as in Figure 48, there are no real equilibrium points in D1, D2

(consequently in D3) and that E++
1

is the only real equilibrium point in D4.

Equilibrium points in D1

In D1, f –– actuates, which has only the equilibrium E––. If E++
1

is real, then E––

is virtual:

VCmin < E ++
11 < E ––

1 .

We can see it by substituting E ++
11 and E ––

1 according to (29) and (46):

VCmin <
VDCRb

Rl + 2Rb
<

RbVDC +

√

R2
b
V2

DC
– 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)
,

thus, there are no real equilibrium points in D1.



112 Chapter 6. Global Stability in the Planar Case

Equilibrium points in D2

In D2, f –+ actuates. There are two equilibrium points in this field, E–+
1

and E–+
2

,

and both are virtual. First we verify

E ++
11 < E –+

11 ,

that is

RbVDC +

√

R2
bV2

DC – 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)
<

2VDCRlRb + 3VDCR2
b – Rb

√

V2
DCR2

b – 4PRb(Rl + Rb)(Rl + 2Rb)

2(Rl + Rb)(Rl + 2Rb)
,

which is equivalent to

(Rl + Rb)

√

R2
bV2

DC – 4PRb(Rl + 2Rb)
︸ ︷︷ ︸

<VDCRb(Rl+Rb)

< VDCRb(Rl + Rb) + VDCR2
b – Rb

√

V2
DCR2

b – 4PRb(Rl + Rb)(Rl + 2Rb)
︸ ︷︷ ︸

>0

.

That is true, so

VCmin < E ++
11 < E –+

11 ,

therefore E–+ is virtual.

Now we verify that E–+
2

is virtual. We have

E –+
11 < E –+

21 ,

that is

2VDCRlRb + 3VDCR2
b – Rb

√

V2
DC

R2
b

– 4PRb(Rl + Rb)(Rl + 2Rb)

2(Rl + Rb)(Rl + 2Rb)

<
2VDCRlRb + 3VDCR2

b + Rb

√

V2
DC

R2
b

– 4PRb(Rl + Rb)(Rl + 2Rb)

2(Rl + Rb)(Rl + 2Rb)
,

so we have

VCmin < E ++
11 < E –+

11 < E –+
21 ,

thus, both E–+
1

and E–+
2

are virtual.

Equilibrium points in D4

In D4, f ++ actuates. In our hypothesis, E++
1

is real, and E++
2

and E++
3

are virtual.

There is only need to verify that E++
4

is virtual. We have

E ++
41 < E ++

21 .

That becomes, replacing (49) and (47),

RbVDC –

√

R2
b
V2

DC
– 4PRlRb(Rl + 2Rb)

2(Rl + 2Rb)
<

RbVDC –

√

R2
b
V2

DC
– 4PRb(Rl + Rb)2

2(Rl + Rb)
.
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That is true, so we have

E ++
41 < E ++

21 < VCmin,

therefore E++
4

is virtual.

This concludes all the proofs that f , provided that (61) and (77) are satisfied, has

the elements such as Figure 48, and, as discussed in the beginning of this chapter, is

globally stable.

6.5 GUIDELINES FOR THE DESIGN OF Rb - GLOBAL STABILITY OF THE OPER-

ATING POINT IN A TWO SM SYSTEM

In chapter 3 we have seen some first guidelines for the design of Rb. Assuring

the local stability conditions, we choose a γ between one and the maximum value, and

calculate the corresponding Rb. In this chapter, we have seen conditions for assuring

global stability - E++
1

being real and stable, and E++
2

and E++
1

being virtual. If it is

possible, one can then choose an Rb value that ensures these conditions to attain

global stability. As it is difficult to obtain a closed solution of E ++
21 < vCmin for Rb, one way

is to do it iteratively with the aid of numerical computation tools. One can choose a γ in

the range seen in (69)

1 < γ <
V2

DC

4NPRl
– 1,

calculate the corresponding Rb and then check whether the global stability condition

(77) is satisfied. It is important to notice that greater values for γ tend to bring the saddle

points apart and closer to the origin, as well as the operating point. With that in mind,

the designer of Rb can choose a value trying to satisfy the global stability condition.

The condition does not depend on the values of Ci. However, uncertainties in the

value of other parameters can affect the stability and position of equilibrium points. It is

therefore advisable to choose a γ value still greater than the minimum sufficient value

in order to have a safety margin around parameter uncertainty. Studying the stability

conditions in the case of variations in the parameters VDC, Pi, and Rl are beyond the

scope of this work.
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6.6 SUMMARY

In this chapter we have seen:

• Analytical conditions for global stability of the operating point E++
1

were presented

and proved for a system with two SM.

• These conditions are that E++
1

is real and stable, and the saddle points E++
2

and

E++
3

are virtual.

• These conditions can be achieved through an adequate design of the parameters

Rb or VCmin, for example.

• With these satisfied, the system should be able to reach the operating point

regardless of uncertainties in Ci values.

The next and final chapter concludes this thesis and suggests some ways to

extend it in future works.
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7 CONCLUSION

Stages 1 and 2 of the precharge operation described in chapter 1 were modeled.

The resulting model was an instantaneous, piecewise-smooth nonlinear model. An

analysis for a system with two submodules per phase was made. Nullclines, coordinates,

existence conditions, classification and stability of equilibrium points was analyzed for

the nominal system, that is, with submodules with equal parameter values. Sliding

regions, coordinates, classification and stability of the system’s pseudo-equilibrium

points was also studied. Through that, local stability criteria for the operating point were

obtained with an analytically proven solution, initially for a two submodules system and

then extended for a system with an arbitrary number of submodules. These conditions

help in the design of the balancing resistance.

It was also shown that it is not sufficient that the operating point is stable, but

also its attraction domain must be large enough so that the trajectory corresponding

to the system starting from null initial conditions, corresponding to an all capacitors

discharged situation, belongs to it. Numerical simulations were made to investigate the

size and shape of the attraction domain of the operating point, depending on parametric

variations in the balancing resistance and in the capacitances of the submodules. The

variation of the capacitances does not alter the shape of nullclines, equilibrium point

coordinates, stability or classification, but it scales the vector field in a given direction,

and this molds the shape of the attraction domain, therefore explaining why the variation

in the capacitances can cause the system to malfunction, even though they do not

influence stability properties of the equilibrium points.

Still regarding stability, conditions for global stability of a system with two sub-

modules per phase were established and proved. These conditions also can help in the

design of the balancing resistance. Experiments were conducted and their result was

successfully predicted by the theory.

For future works, the same model, techniques and analysis used in this work

could be made in a system with three submodules per phase. Even though it does not

correspond to a typical real case, where the number of submodules per phase is even,

graphical tools that help to obtain insights about the system, like the phase plane can

still be used. It could be investigated if the dynamics of a system with more than two

submodules per phase are similar to the ones studied in this thesis, and therefore the

results from here can be extended for a system with arbitrary number of submodules,

or if new phenomena arise from such configuration.

The influences of variation in another parameter may also be studied. A normal-

ized model with reduced parameter number would perhaps be a good way to approach

these questions. As a suggestion, first varying P and then considering different Pi in the

SM would be a good start. Some bifurcation analysis made for typically used parameter
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values could be a good approach to explore.

The three-phase system may also be studied. A simplified three-phase (or even

a theoretical two-phase) system with one SM per phase may be a good starting point to

investigate if there are coupling dynamics in between phases and how significant they

are for the capacitor voltage balancing problem.

Also, a model with minor modifications could be used to investigate similar so-

lutions, with active balancing, based on switched balancing resistance and a control

law. Some proposals of control law are comparing the voltage in the capacitor with a

constant reference, another, with a reference that is the medium value of all capacitor

voltages.

Numerical approaches also open perspective for future works. It can be used

parameter values with limited ranges, corresponding only to the ones used in most of

the practical applications. This may help to deal with the system with higher dimensions

or number of SMs and also to obtain results for the system with two SMs that could not

be made by analytical proofs for the general case.

A study about the stability of voltage balancing in precharge made through the

MMC’s AC port with is also an option. It may be used a model similar to the one

proposed at this work. For that, it is necessary to study stability in non-autonomous

system, because of the time-varying voltage in the AC port.

All of these works and approaches would benefit from the use of a normalized

model, because the number of parameter is reduced, an consequently its complexity.

Also, the results obtained from it are more general.

Finally, the techniques learned in the course of this work can be used to study

other power electronic problems in which their application is suitable, or in problems

similar to the voltage balancing, or even just involving piecewise smooth systems, taking

into account the instantaneous and nonlinear dynamics.
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