

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS-CFM PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

Ellen Carolinie Gomes e Silva

Buscas por anãs brancas na região do disco galáctico

Florianópolis 2019 Ellen Carolinie Gomes e Silva

Buscas por anãs brancas na região do disco galáctico

Dissertação submetida ao Programa de Pós-Graduação em Física da Universidade Federal de Santa Catarina para a obtenção do título de mestre em Astrofísica.

Orientador: Prof. Roberto Kalbusch Saito, Dr. Coorientador: Prof. Antônio Nemer Kanaan Neto, Dr. Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Silva, Ellen Carolinie Gomes e Buscas por anãs brancas na região do disco galáctico / Ellen Carolinie Gomes e Silva ; orientador, Roberto Kalbusch Saito, coorientador, Antônio Nemer Kanaan Neto, 2019. 79 p. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Física, Florianópolis, 2019. Inclui referências. 1. Física. 2. Anã branca. 3. Astrofísica estelar. 4. Extinção estelar. 5. Infravermelho próximo. I. Saito, Roberto Kalbusch. II. Neto, Antônio Nemer Kanaan. III. Universidade Federal de Santa Catarina. Programa de Pós Graduação em Física. IV. Título. Ellen Carolinie Gomes e Silva

Buscas por anãs brancas na região do disco galáctico

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca examinadora composta pelos seguintes membros:

Prof. Roberto Kalbusch Saito, Dr. Universidade Federal de Santa Catarina

Prof. Raymundo Baptista, Dr. Universidade Federal de Santa Catarina

> Fábio Rafael Herpich, Dr. Universidade de São Paulo

Certificamos que esta é a **versão original e final** do trabalho de conclusão que foi julgado adequado para obtenção do título de mestre em Astrofísica.

Prof. Ivan Helmuth Bechtold, Dr. Coordenador do Programa

Prof. Roberto Kalbusch Saito, Dr. Orientador

Este trabalho é dedicado aos meus queridos pais, irmãs e professores.

AGRADECIMENTOS

À CAPES pelo apoio financeiro.

À Universidade Federal de Santa Catarina pelo aporte dado ao longo do desenvolvimento desta pesquisa.

Aos meus pais Osvaldo e Vanda e minhas irmãs pelo apoio incondicional durante esta caminhada de muitas alegrias e dificuldades.

Ao professor Dr. Antônio Kanaan pela paciência nos momentos difíceis e por ter me ensinado tudo que sei de Astrofísica.

Ao professor Dr. Roberto Saito por ter colocado novos desafios e ter me ensinado um pouco mais de Astrofísica.

Ao professor Dr. Juan Bulnes que me concedeu as primeiras oportunidades na carreira científica.

Ao Fábio Herpich por todo conhecimento de computação compartilhado, foi um grande amigo.

Aos colegas do Laboratório de Óptica da Astrofísica com a amizade.

Ao Carl Sagan por ser minha fonte de inspiração.

À todas as mulheres cientistas que pude conversar e contribuíram para ampliar meu conhecimento, mesmo aquelas que não pude conversar diretamente, mas foram para mim um exemplo nessa caminhada.

"O nitrogênio em nosso DNA, o cálcio em nossos dentes, o ferro em nosso sangue, o carbono em nossas tortas de maçã. Foram feitos no interior de estrelas em colapso, agora mortas há muito tempo. Nós somos poeira das estrelas." (Carl Sagan, 1980)

RESUMO

As anãs brancas são o estágio final da vida evolutiva de 97% das estrelas da Via Láctea. Por isso, os astrônomos tem empenhado consideráveis esforços para compreender a origem e a forma como esses objetos evoluem. Neste presente trabalho, vamos encontrar as candidatas mais prováveis a serem estrelas anãs brancas nos dados do infravermelho próximo do projeto VISTA Variables in the Via Lactea (VVV). Com os dados do VVV que estão distribuídos em seis tiles, cobrindo uma área aproximada de 9 graus guadrados, utilizamos os diagramas Cor-Magnitude e Cor-Cor, bem como modelos de anãs brancas do tipo DA de Fontaine, Brassard e Bergeron (2001), para buscar estas candidatas. Usamos modelos sintéticos de Besançon para estimar a quantidade de anãs brancas esperadas nos campos escolhidos e a ferramenta VOSA para ajustar a Distribuição Espectral de Energia (ou SED) de cada candidata aos modelos de anãs brancas de Koester (2010) e Tremblay e Bergeron (2009), combinando os dados no infravermelho próximo do VVV com dados no óptico do satélite Gaia. Conseguimos selecionar 301 candidatas prováveis a anãs brancas, dentre os quais 12 objetos são ainda mais parecidos com os modelos nos diagramas mencionados. Construímos as SEDs para estas candidatas que, são compatíveis com os modelos de anãs brancas frias. Com isso fornecemos uma lista com 12 candidatas muito boas aos quais poderemos confirmar com observações espectroscópicas.

Palavras-chave: Anã branca. Diagrama Cor-Cor. Diagrama Cor-Magnitude. Anãs brancas DAs.

ABSTRACT

White dwarfs are the final stage of the 97% evolutionary life of the Milky Way stars. For this reason, astronomers have made considerable efforts to understand the origin and how these objects evolve. In this paper, we will find the most likely candidates to be white dwarf stars in the near infrared data of the project VISTA Variables in the Via Lactea (VVV). With the VVV data that is spread over six tiles covering an area of approximately 9 square degrees, we use the Color-Magnitude and Color-Color diagrams as well as DA-type white dwarf models by Fontaine, Brassard and Bergeron (2001), to search for these candidates. We use Besançon synthetic models to estimate the amount of white dwarfs expected in the chosen fields and the VOSA tool to adjust the Spectral Energy Distribution (or SED) of each candidate for the Koester (2010) and Tremblay and Bergeron (2009) white dwarf models by combining the near infrared data from the VVV with data from the Gaia satellite optic. We were able to select 301 likely white dwarf candidates, of which 12 objects are even more similar to the models in the diagrams mentioned. We built the SEDs for these candidates which are compatible with cold white dwarf models. This gives us a list of 12 very good candidates that we can confirm with spectroscopic observations.

Keywords: White dwarf. Two color diagram. Color magnitude Diagram . DAs' White dwarf.

LISTA DE FIGURAS

Figura 1 – Espectros ópticos de anãs brancas DA quente.	. 16
Figura 2 – O mesmo da Figura 1 para anãs brancas frias. Figura de Wesemael	
<i>et al.,</i> (1993)	. 17
Figura 3 – Espectros ópticos de anãs brancas da classe DB	. 18
Figura 4 – Espectros ópticos de anãs brancas da classe DZ	. 19
Figura 5 – Distribuição de massa para 3.639 anãs brancas DA	. 20
Figura 6 – Diagrama H-R para vários tipos de estrelas	. 21
Figura 7 – Diagrama Cor-Cor comparando a cor das estrelas da sequência prin-	
cipal e das supergigantes. E o modelo teórico para o corpo negro	
Figura de Bohm-Vitense (1989).	. 22
Figura 8 – Imagens no infravermelho da anã branca GD165 e sua companheira	
anã marron GD165B	. 22
Figura 9 – Área do survey do VVV para o bojo da Galáxia com os tiles numerado	os. 24
Figura 10 – Área do <i>survey</i> do VVV para o disco com os <i>tiles</i> numerados	. 24
Figura 11 – Mapa de densidade para todas as fontes com magnitude $Ks \ge 16$.	. 26
Figura 12 – Distribuição espacial dos objetos do VVV limitados a uma distância	
de até $1 \ kpc$ dos <i>tiles</i> b201, b202 e b203	. 28
Figura 13 – Mesmo que para Figura 12 para os <i>tiles</i> b212, b213 e b214	. 28
Figura 14 – O diagrama CMD para os modelos de anãs brancas DA nos filtros	
do 2MASS.	. 29
Figura 15 – CMD e CCD para as fontes dos <i>tiles</i> b212, b213, b214	. 31
Figura 16 – Distribuição das 9 candidatas principais no CMD e CCD.	31
Figura 17 – Distribuição das 172 candidatas a anãs brancas versus a distância	
obtida pelo inverso da paralaxe do Gaia	. 32
Figura 18 – Na simulação de Besançon, do total de 3.346.004 objetos que estão	
até $50 \; kpc$, apenas 6 são anãs brancas (pontos vermelhos) que estão	
dentro da grade de modelos.	. 33
Figura 19 – Simulação de Besançon, do total de 10.167 objetos que estão até	
$1 \; kpc$, apenas 20 são anãs brancas (pontos vermelhos) que estão	
dentro da grade de modelos.	. 34
Figura 20 – Mesmo que na Figura 15 para os <i>tiles</i> b201, b202, b203	. 35
Figura 21 – Mesmo que na Figura 16 para as 3 candidatas principais dos tiles	
b201, b202, b203	. 35
Figura 22 – Distribuição das 129 candidatas a anãs brancas versus a distância	
obtida pelo inverso da paralaxe do Gaia	. 36

Figura 23 – Na simulação de Besançon, do total de 2.128.346 objetos, apenas	
3 são anãs brancas que estão dentro da grade de modelos (pontos	
vermelhos)	36
Figura 24 – Mesmo que da Figura 19, do total de 10.227 objetos que estão até	
1~kpc, apenas 19 são anãs brancas (pontos vermelhos) que estão	
dentro da grade de modelos.	37
Figura 25 – SEDs ajustas aos modelos mencionados de Koester (2010) e Trem-	
blay e Bergeron (2009), com extinção limite de 0.2	41
Figura 26 – Continuação das SEDs	42
Figura 27 – Continuação das SEDs.	43
Figura 28 – Continuação das SEDs.	44
Figura 29 – SEDs ajustas aos modelos mencionados de Koester (2010) e Trem-	
blay e Bergeron (2009), com extinção limite de 0.7	45
Figura 30 – Continuação das SEDs.	46
Figura 31 – Continuação das SEDs.	47
Figura 32 – Continuação das SEDs.	48

LISTA DE TABELAS

Tabela 1 – As 12 candidatas principais a anãs brancas selecionadas nas seções	
3.1.2.1 e 3.1.2.2	38
Tabela 2 – Lista com os valores de movimento próprio das 12 principais candi-	
datas a anãs brancas	39
Tabela 3 – Lista das 172 candidatas mais prováveis a anãs brancas. As co-	
lunas são: ra e dec: coordenadas (VVV); magnitudes absolutas:	
Z, Y, J, H, Ks (VVV); paralaxe (Gaia); magnitudes: G, BP, RP	
(Gaia)	58
Tabela 4 – Continuação a Tabela 3	59
Tabela 5 – Continuação a Tabela 3	60
Tabela 6 – Continuação a Tabela 3	61
Tabela 7 – Continuação a Tabela 3	62
Tabela 8 – Continuação a Tabela 3	63
Tabela 9 – Lista de movimento próprio (pmr) das 172 candidatas a anãs bran-	
cas, seguem a sequência de objetos das tabelas anteriores.	64
Tabela 10 – Continuação a Tabela 10	65
Tabela 11 – Continuação a Tabela 10	66
Tabela 12 – Continuação a Tabela 10	67
Tabela 13 – Continuação a Tabela 10	68
Tabela 14 – Continuação a Tabela 10	69
Tabela 15 – Lista das candidatas mais prováveis a anãs brancas para os <i>tiles</i>	
b201, b202, b203. As colunas seguem a mesma nomenclatura da	
Tabela 3	71
Tabela 16 – Continuação a Tabela 15	72
Tabela 17 – Continuação a Tabela 15	73
Tabela 18 – Continuação a Tabela 15	74
Tabela 19 – Continuação a Tabela 15	75
Tabela 20 – Movimento próprio (pmr) das 129 candidatas a anãs brancas dos	
<i>tiles</i> b201, b202, b203	76
Tabela 21 – Continuação a Tabela 19	77
Tabela 22 – Continuação a Tabela 15	78
Tabela 23 – Continuação a Tabela 15	79
Tabela 24 – Continuação a Tabela 15	79

SUMÁRIO

INTRODUÇÃO	13
VISÃO GERAL	13
PROPRIEDADES OBSERVADAS DE ANÃS BRANCAS	15
DIAGRAMAS COR-MAGNITUDE E COR-COR	17
OBJETIVO GERAL	19
DADOS OBSERVACIONAIS	23
CONHECENDO A INSTRUMENTAÇÃO DO VVV SURVEY	23
Características do Survey	23
Fotometria PSF dos dados do VVV	25
GAIA	25
METODOLOGIA	27
ESTUDO NO INFRAVERMELHO PRÓXIMO DAS CANDIDATAS A	
ANÃS BRANCAS	27
Comparação com os modelos	28
Ajuste aos modelos e seleção	30
Usando os dados dos tiles b212, b213, b2124	30
Usando os dados dos tiles b201, b202, b203	34
DISTRIBUIÇÃO ESPECTRAL DE ENERGIA DAS CANDIDATAS NO	
VOSA	39
DISCUSSÃO FINAL	49
REFERÊNCIAS	51
APÊNDICE A – CANDIDATAS INICIAIS A ANÃS BRANCAS	56
ANEXO A – CANDIDATAS A ANÃS BRANCAS SELECIONADAS	
NOS TILES B212, B213, B214	57
ANEXO B – CANDIDATAS A ANÃS BRANCAS SELECIONADAS	
NOS TILES B202, B203, B204	70
	INTRODUÇÃO VISÃO GERAL PROPRIEDADES OBSERVADAS DE ANÃS BRANCAS DIAGRAMAS COR-MAGNITUDE E COR-COR OBJETIVO GERAL DADOS OBSERVACIONAIS CONHECENDO A INSTRUMENTAÇÃO DO VVV SURVEY Características do Survey Fotometria PSF dos dados do VVV GAIA METODOLOGIA ESTUDO NO INFRAVERMELHO PRÓXIMO DAS CANDIDATAS A ANÃS BRANCAS Comparação com os modelos Ajuste aos modelos e seleção Usando os dados dos tiles b212, b213, b2124 Usando os dados dos tiles b201, b202, b203 DISTRIBUIÇÃO ESPECTRAL DE ENERGIA DAS CANDIDATAS NO VOSA PISCUSSÃO FINAL REFERÊNCIAS APÊNDICE A – CANDIDATAS INICIAIS A ANÃS BRANCAS SELECIONADAS NOS TILES B212, B213, B214. ANEXO B – CANDIDATAS A ANÃS BRANCAS SELECIONADAS NOS TILES B202, B203, B204.

1 INTRODUÇÃO

1.1 VISÃO GERAL

Da teoria da evolução estelar, quando o combustível nuclear de estrelas da sequência principal do diagrama Hertzsprung-Russell¹ chega ao fim, ocorrem transformações estruturais que fazem com que sua luminosidade e/ou raio mudem o suficiente para não mais estar na sequência principal (HANSEN; KAWALER; TRIMBLE, 2004). Essas estrelas continuam a evoluir chegando a sua fase final e terminam suas vidas em objetos compactos. Dependendo da massa inicial da estrela, seu final pode ser uma anã branca (White Dwarf = WD), uma estrela de nêutrons ou um buraco negro (SHAPIRO; TEUKOLSKY, 1983). Aproximadamente 98% de todas as estrelas que já saíram da sequência principal são anãs brancas (OLIVEIRA; SARAIVA, 2014). E a maioria das estrelas atuais da Galáxia terminarão em anãs brancas, incluindo o Sol, com isso esses são os objetos compactos mais numerosos na nossa Galáxia.

A maioria das anãs brancas conhecidas estão na vizinhança solar dentro de 300 pc. Sua massa é comparável com a massa do Sol ($M_{wd} \sim M_{\odot}$), raio comparável com o raio da Terra ($R_{wd} \sim R_{\oplus}$), por isso suas densidades são da ordem de $10^6 g/cm^3$ e, sua gravidade superficial, significativamente grande, em torno de $\sim 10^4$ vezes maior que do Sol (HANSEN; KAWALER, 1994).

Segundo Yuan *et al.* (1989), por representar o estágio final da evolução estelar e muitas delas serem estrelas velhas, as populações de anãs brancas contém informação das suas estrelas progenitoras. Essas informações podem ser extraídas dos dados observacionais das anãs brancas, especialmente a partir da sua distribuição de massa e função de luminosidade. Os parâmetros das progenitoras que podemos estimar são: sua distribuição de massa e a idade.

Para terminar em anãs brancas, as massas das progenitoras devem estar no intervalo estimado de $0, 08 \ M_{\odot}$ à $8 \ M_{\odot}$. E podemos estimar a idade da estrela mãe quando sabemos a idade da anã branca formada, por exemplo as populações de anãs brancas velhas tem aproximadamente $t = 10^9$ anos, certamente suas progenitoras tiveram um tempo de vida acima dessa estimativa, pois elas passam a maior parte da sua vida ativa na sequência principal. Além disso, as anãs brancas também contém informação da história da evolução da Via Láctea, fornecendo a idade do disco galáctico e a taxa de formação estelar (WOOD, 1990). A descoberta do *turndown* da função de luminosidade da anã branca próximo de $log (L/L_{\odot}) \approx -4.5$ reflete o início da formação estelar na Galáxia. Winget e Horn (1987) fizeram o ajuste de funções de luminosidade teóricas ao *turndown* sugerido, este indica que o início da formação estelar ocorreu

¹ O diagrama Hertzsprung-Russell foi criado por volta de 1910 por Ejnar Hertzsprung e Henry Norris Russell e representa uma importante ferramenta para a compreensão da evolução estelar. Este diagrama pode ser abreviado por: H-R, diagrama H-R ou HRD.

em aproximadamente $t = 9 \times 10^9$ anos atrás (ou $9, 3 \pm 2, 0$ Gyr).

Como discutido anteriormente, o principal parâmetro que determina o estágio final de uma estrela é sua massa inicial. Segundo Huang e Yu (1998), a massa inicial de uma estrela depende, essencialmente, da fragmentação da nuvem interestelar que a originou, através de um processo de instabilidade gravitacional, que leva a contração da nuvem até atingir densidades e temperaturas suficientes para a ignição de reações nucleares e, a posterior formação de uma nuvem colapsada. Este processo complexo continua e a fragmentação termina quando a massa dos fragmentos é da ordem da massa das estrelas da seguência principal. A anã branca tem massa menor que de sua progenitora, isto implica que a maior parte da massa da progenitora foi perdida antes da fase de anã branca, o que pode ser confirmado pelas observações das fases anteriores da estrela mãe. Na medida que a estrela mãe evolui e sai da seguência principal ocorrem várias transformações em sua estrutura, culminando na ejeção de suas camadas superficiais na forma de uma nebulosa planetária. Seu núcleo é uma estrela muito quente e brilhante que vai esfriar e perder sua luminosidade até atingir o estágio de anã branca. Nessa fase não há mais reações nucleares no interior da estrela que prossegue resfriando lentamente (MACIEL, 1999).

As anãs brancas tem temperaturas da ordem de 150.000 K até 3.700 K e luminosidade $3 \ge \log (L/L_{\odot}) \ge -1, 5$. Depois da fase de pré-anã, as anãs brancas não-binárias têm $\log g \approx 8$, que corresponde uma distribuição de massa centrada em $0, 6 M_{\odot}$. Essas estrelas são interessantes por apresentarem densidades extremamente altas, onde sua auto-gravidade é sustentada por elétrons degenerados governados pela estatística quântica de Fermi-Dirac e, consequentemente, a existência de uma massa limitante chamada *massa de Chandrasekhar*², que corresponde a 1,4 M_{\odot} (SHU, 1982).

As anãs brancas não possuem fonte de energia nuclear, por isso sua evolução é limitada a resfriar vagarosamente. No início, o resfriamento se deve, essencialmente, pela emissão de um plasma de neutrinos que *rouba* muita energia durante a etapa chamada pré-anã, ocorre quando $log (L/L_{\odot}) > 1, 5$. Este é um estágio complexo que depende das condições iniciais da estrela, bem como do comportamento ainda pouco compreendido do seu envelope. Sabemos que nessa fase, a maior parte do resfriamento é atribuída a emissão de neutrinos (KAWALER *et al.*, 1995). O resfriamento também ocorre pela emissão de fótons. Deste modo, a estrela esfria e, quanto mais fria mais velha é a anã branca. As anãs brancas mais velhas no disco galáctico possuem luminosidade próxima de $3 \times 10^{-5} L_{\odot}$ (OLIVEIRA; SARAIVA, 2014).

Outro processo físico importante no interior da anã branca é a cristalização

² Subrahmanyan Chandrasekhar foi um astrofísico indiano americano. Passou boa parte da sua carreira profissional nos Estados Unidos. Recebeu o prêmio Nobel de Física de 1983 junto com William A. Fowler, pelos estudos teóricos de processos físicos que permitiu a compreensão da estrutura e evolução das estrelas.

do plasma durante sua fase de resfriamento, que ocorre quando $log (L/L_{\odot}) < -3, 0$. Neste, a força de interação entre as partículas no interior da estrela é mais forte que seu movimento térmico, então seu núcleo age como um cristal (LAM; HORN, 1975).

Sendo as anãs brancas o estágio final para a maioria das estrelas, astrônomos tem empenhado consideráveis esforços para compreender a origem e a forma como esses objetos evoluem. Este trabalho visa identificar as melhores candidatas a anãs brancas na direção do bojo galáctico, buscando-as nos dados do infravermelho próximo do projeto VVV combinados com os dados no óptico do satélite Gaia.

As buscas por estrelas anãs brancas no disco galáctico utilizando dados fotométricos no infravermelho próximo são mais complicadas para essa faixa do espectro eletromagnético, porque essas estrelas são intrinsecamente fracas, a maioria das anãs brancas conhecidas estão na faixa óptica. No entanto, temos a vantagem da radiação infravermelha ter menos atenuação pela poeira interestelar que a radiação óptica. Poderemos aumentar a amostra de anãs brancas frias para que sejam estudadas com mais detalhes.

1.2 PROPRIEDADES OBSERVADAS DE ANÃS BRANCAS

As anãs brancas formam um grupo de estrelas com propriedades similares, a começar pela classificação em termos de suas características espectrais. Elas são divididas em duas classes principais: tipos DA e não-DA, que se refere a principal componente presente na sua atmosfera revelada através de observações espectroscópicas. As anãs brancas mais numerosas observadas espectroscopicamente e presentes no catálogo de McCook e Sion (1987) são as do tipo DA, cujos espectros são dominados por fortes linhas de hidrogênio com ausência de hélio. Elas correspondem a $\sim 80\%$ da amostra de anãs brancas conhecidas (OLIVEIRA; SARAIVA, 2014). A temperatura efetiva varia consideravelmente. Por exemplo, uma DA2.5 que é uma subclasse da DA tem $T_{eff} \approx 200.000 \ K$, quanto uma DA13 tem $T_{eff} \approx 3.600 \ K$ (WESEMAEL *et al.,* 1993). As Figuras 1 e 2 mostram alguns espectros ópticos das DAs.

Por outro lado, as não-DAs, em geral, são deficientes em hidrogênio, apresentam atmosfera rica em hélio e outas composições quí-micas peculiares (SHAPIRO; TEUKOLSKY, 1983). Como, as do tipo DB, segunda mais comum, que correspondem a quase ~ 20% do total de anãs brancas conhecidas, com atmosfera rica em He I e temperatura efetiva $T_{eff} \approx 11.000 - 30.000 K$ (HANSEN; KAWALER; TRIMBLE, 2004). Os espectros desta classe são mostrados na figura 3.

O restante, menos que (~ 1%) consiste de estrelas com atmosferas híbridas ou alguma abundância peculiar. Como, as DO para estrelas com fortes linhas de He II e $T_{eff} \approx 45.000 - 200.000 K$; DC para estrelas com espectro contínuo; DZ para estrelas com linhas metálicas (Mg, Ca,Fe) como mostra a Figura 4; DQ para aquelas que possuem átomos ou moléculas de carbono, sendo os três últimos com tempe-

Figura 1 – O painel a esquerda mostra a sequência de espectros ópticos de anãs brancas DAs quentes. A temperatura aumenta de baixo para cima. Destacase no painel a direita as linhas de Hα. A principal característica desses espectros é a presença das fortes linhas da série de Balmer. Figura de Wesemael et al., (1993).

ratura abaixo de $T_{eff} \approx 11.000 \ K$ (LIEBERT *et al.*, 1986; FONTAINE; BRASSARD, BERGERON, 2001).

A maioria das anãs brancas conhecidas tem temperaturas maiores que o Sol e, consequentemente, carrega o nome *branco*. Este nome se trata de uma contigência histórica, visto que as primeiras anãs brancas descobertas eram quentes e sua cor mais branca que o Sol (o Sol apresenta cor mais laranjada e sua temperatura superficial de $T_{eff} = 6.000 K$), no entanto existem muitas anãs brancas frias conhecidas (tal que, a cor não é branca!). Além disso, as observações espectroscópicas combinadas com os modelos teóricos de atmosfera estelar têm determinado que a gravidade superficial de anãs brancas é de $log g \approx 8 (g \approx 10^8 cm s^{-2})$.

Outro resultado observacional importante está na determinação da distribuição de massa das anãs brancas, no qual se usa a relação massa-raio para calcular a massa da estrela. Resultados espectroscópicos para as estrelas DA e DB indicam o pico da distribuição de massa em torno de $0,55 M_{\odot}$ com uma dispersão de $0,1 M_{\odot}$ (BERGERON *et al.*, 1991).

Kepler *et al.*, (2016) mediram a distribuição de massa para todas as anãs brancas DA e DB detectadas pelo *Sloan Digital Sky Survey* (SDSS) com o *Data Release* 12.

Figura 2 – O mesmo da Figura 1 para anãs brancas frias. Figura de Wesemael *et al.,* (1993).

Foi feito o ajuste aos modelos de DAs de $T_{eff} \ge 10.000 \ K$ e, DBs de $T_{eff} \ge 16.000 \ K$. A Figura 5 mostra a distribuição de massa para todas as estrelas com $log \ g \ge 6, 5$. Vemos que DAs e DBs apresentam diferentes valores médios de massa, as DAs se extendem para massas maiores e as DBs são menos massivas.

1.3 DIAGRAMAS COR-MAGNITUDE E COR-COR

Vamos introduzir os conceitos de diagramas Cor-Magnitude (ou CMD) e Cor-Cor (ou CCD). Inicialmente, delineando o conceito fundamental de diagrama Hertzsprung-Russell (H-R) mostrado na Figura 6. Trata-se de um diagrama bidimensional pelo qual astrônomos caracterizam propriedades observacionais importantes das estrelas. O eixo vertical (ordenada) mede a potência de uma estrela ou, equivalentemente, sua luminosidade, enquanto que o eixo horizontal (abscissa) nos diz a temperatura da superfície visível ou sua cor (HANSEN; KAWALER; TRIMBLE, 2004).

Ao analisarmos este diagrama, verificamos que as estrelas não estão distribuídas uniformemente, mas seguem algumas sequências preferenciais, chamadas sequências evolutivas. A maioria das estrelas se encontram ao longo de uma sequência bem definida, chamada *sequência principal*. Outras são chamadas coletivamente de gigantes e supergigantes, enquanto que uma quantidade de estrelas preenche a sequência das anãs brancas, que são os objetos de estudo deste trabalho. Faremos a

Figura 3 – Espectros ópticos de anãs brancas da classe DB. A temperatura aumenta de baixo para cima. Figura de Wesemael *et al.*, (1993).

seleção das melhores candidatas a anãs brancas analisando diagramas deste tipo.

As unidades usadas no diagrama dependem do contexto e de quem as apresenta. Segundo Shapiro e Teukolsky (1983), um observador geralmente expressará a potência em termos da magnitude de um determinado tipo. Neste trabalho, usamos magnitude absoluta em função do índice de cor, ou CMD.

Também usaremos o CCD para fazer a seleção das candidatas, trata-se de um diagrama que compara as magnitudes aparentes da estrela em diferentes comprimentos de onda. A cor está associada a temperatura da estrela, tal que, as mais azuis têm maior temperatura que as mais vermelhas (BOHM-VITENSE, 1989). No CCD da Figura 7, temos a cor no eixo horizontal dado pela diferença de magnitude nas bandas B e V e a cor no eixo vertical definida por outra diferença de brilho, a cor U - B. Vemos que para estrelas da sequência principal, quando a cor B - V aumenta, a cor U - B

Figura 4 – Espectros ópticos de anãs brancas da classe DZ, onde a DZ5 é mais quente e a DZ11.5 mais fria. Figura de Wesemael *et al.*, (1993).

também aumenta, exceto na faixa de 0, 1 < B - V < 0, 5. Também mostra a cor das supergigantes, onde o U - B sempre aumenta com o aumento de B - V. Aparecem também o U - B versus B - V para o corpo negro, para uma cor B - V, a estrela tem menos radiação no ultravioleta que o corpo negro.

1.4 OBJETIVO GERAL

O objetivo do presente trabalho é encontrar candidatas a estrelas anãs brancas na direção do bojo galáctico, nos dados do infravermelho próximo do projeto VVV combinado com dados ópticos do Gaia.

Para isso, vamos usar os dados de seis *tiles* do VVV, totalizando 6.256.508 de objetos. As candidatas a anãs brancas que vamos selecionar estão próximas, na vizinhança do sistema solar, já que objetos distantes não vão aparecer em nossa amostra devido seu limite em magnitude. A Figura 8 mostra a imagem da anã branca GD165 com sua companheira GD165B nos comprimentos de onda do infravermelho

Figura 5 – Distribuição de massa para 3.639 DAs com $T_{eff} \ge 13.000 K$ (linha preta). E para 549 DBs com $T_{eff} \ge 16.000 K$ (linha vermelha). A massa média das duas distribuições corresponde a $\approx 0.6 M_{\odot}$. Figura de Kepler *et al.*, (2016).

nas bandas J, H, Ks.

Usaremos duas ferramentas para analisar e selecionar nossas candidatas, o CMD e o CCD. Para corroborar nossa seleção, usaremos a simulação de *Besançon* ³ descrito em Robin *et al.*, (2003) e está baseada em modelos de síntese de população estelar construídos para elaborar uma visão global da Galáxia, o que inclui aspectos dinâmicos e evolutivos. Também usaremos o VOSA ⁴ (*VO Sed Analyzer*) descrito em Bayo *et al.*, (2008), que é uma ferramenta em ambiente VO (*Virtual Observatory*) que permite a leitura de tabela de fotometria para construção da Distribuição Espectral de Energia (SED) e posterior ajuste espectral, utilizando diferentes catálogos de maneira a encontrar o melhor modelo que reproduz os dados. Com tudo isso, faremos a análise dos nossos resultados.

³ Link para acessar o ambiente virtual para simulação de Besançon: (http://model2003. obs-besancon.fr/)

⁴ This publication makes use of VOSA, developed under the Spanish Virtual Observatory project supported by the Spanish MINECO through grant AyA2017-84089. *Link* de acesso ao ambiente virtual do VOSA: (http://svo2.cab.inta-csic.es/theory/vosa/)

Figura 6 – Diagrama H-R para vários tipos de estrelas. Temos as estrelas da sequência principal. O ramo das gigantes e supergigantes e o ramo das anãs brancas que são pouco luminosas. (Fonte: http://astro.if.ufrgs.br/estrelas/node2.htm).

Figura 7 – Diagrama Cor-Cor comparando a cor das estrelas da sequência principal e das supergigantes. E o modelo teórico para o corpo negro. Figura de Bohm-Vitense (1989).

Figura 8 – Imagens no infravermelho da anã branca GD165 e sua companheira anã marron GD165B obtidas por K. Hodapp, J. Rayner, D. Hall no telescópio de 2.2 m da University of Hawaii, em agosto de 1988. Os comprimentos de onda no infravermelho são: $1.25 \ \mu m$ (J); $1.65 \ \mu m$ (H); $2.2 \ \mu m$ (K). Cada imagem é a soma de 4 exposições de 24 s. A escala é de 0.9 arcsec por pixel e um seeing de ~ 1 arcsec. Figura de Becklin e Zuckerman (1988).

2 DADOS OBSERVACIONAIS

Neste trabalho para busca por anãs brancas, utilizamos dados fotométricos nos comprimentos de onda do infravermelho próximo obtidos pelo projeto *VISTA Variables in the Via Láctea* (VVV). Este capítulo apresenta uma breve descrição dos dados que utilizamos. O projeto VVV fez fotometria no infravermelho próximo de quase um bilhão de estrelas na região central da Galáxia. Utilizando critérios de seleção, combinados com dados de astrometria no óptico do satélite Gaia, chegamos as melhores candidatas a anãs brancas.

2.1 CONHECENDO A INSTRUMENTAÇÃO DO VVV SURVEY

O Visible and Infrared Survey Telescope for Astronomy (VISTA), é composto por um telescópio de 4 m. Pertence ao European Southern Observatory (ESO) e está localizado no Observatório de Cerro Paranal, no Chile. Dedicado a observações de duas regiões da Galáxia, bojo e disco, no infravermelho próximo.

Devido nossa posição na Galáxia não podemos observar os objetos localizados no interior do bojo, pelo menos na parte visual do espectro eletromagnético. O VISTA é otimizado para observações no infravermelho próximo para que, devido a menor atenuação desta região do espectro por nuvens de gás e poeira, seja possível atingir uma profundidade maior que aquela alcançada no óptico.

2.1.1 Características do Survey

O VVV é um dos seis *surveys* públicos selecionados pelo ESO para usar o telescópio VISTA. Este projeto visa monitorar uma área de 562 graus quadrados no bojo galáctico e ao sul do disco adjacente (MINNITI *et al.*, 2010), entre as coordenadas galácticas $-10, 0^{\circ} < l < +10, 4^{\circ}$ e $-10, 3^{\circ} < b < +5, 1^{\circ}$ na região do bojo e, $294, 7^{\circ} < l < 350, 0^{\circ}$ e $-2, 25^{\circ} < b < +2, 25^{\circ}$ na região interna do disco. O VVV fornece informações em cinco bandas, *Z*, *Y*, *J*, *H*, *Ks*, com comprimentos de onda centrais em 0.88 μ m, 1.02μ m, 1.25μ m, 1.65μ m, 2.15μ m, respectivamente. As observações do VVV iniciaram em 2010, sendo que as regiões foram observadas pelo menos duas vezes com todos os filtros. A primeira e segunda épocas foram em 2010-2011 e 2015, respectivamente. Além das observações na banda *Ks* com cerca de 100 épocas entre 2010 e 2016. São 196 campos contíguos no bojo galáctico e 152 em uma região adjacente ao sul do disco. A nomenclatura utilizada para os *tiles* foi d001 à d152 para a região do disco e b201 à b396 para a região do bojo. As Figuras 9 e 10 mostram a distribuição dos *tiles*. O resultado é um atlas de infravermelho próximo nas cinco bandas e um catálogo com mais de 10^6 fontes pontuais variáveis (MINNITI *et al.*, 2010).

O VISTA possui como único instrumento a VIRCAM (VISTA Infrared CAMera),

Figura 9 – Área do *survey* do VVV para o bojo da Galáxia com os *tiles* numerados. O nome de cada *tile* começa com "b" de bojo em seguida da numeração. Estão em coordenadas galácticas. Figura de Gonzalez *et al.*, (2012).

Figura 10 – Área do *survey* do VVV para o disco com os *tiles* numerados. O nome de cada *tile* começa com "d" de disco em seguida da numeração. Estão em coordenadas galácticas. Figura de Saito *et al.,* (2012).

uma câmera constituída de 16 detectores, cada um com 2048x2048 pixeis, totalizando 67 bilhões de pixeis. Cada apontamento do telescópio é chamado de *pawprint*, enquanto que um *tile* consiste de 6 apontamentos sequenciais, de maneira a observar uma área contígua do céu com 1.64 graus quadrados. Os dados do VVV são reduzidos para os *pawprints* e para os *tiles* e ambos são calibrados pelo *VISTA data flow system*, no CASU, centro de processamento de dados astronômicos na Universidade de Cambridge no Reino Unido.

2.1.2 Fotometria PSF dos dados do VVV

As regiões do centro da nossa Galáxia são severamente afetadas pela extinção, por consequência nossa capacidade de estudar populações estelares nessas regiões é limitada. O levantamento VVV observou esta zona em comprimentos de onda do infravermelho próximo onde o avermelhamento é diminuído.

Para medir fluxos estelares, utiliza-se geralmente duas técnicas: a fotometria por abertura e a fotometria por ajuste de uma função de dispersão, denominada *Point Spread Function* (PSF). Esta função de dispersão é basicamente um modelo que descreve a distribuição da luz, isto é, como o brilho pontual de uma estrela é espalhado na atmosfera ou pelo próprio instrumento. Os dados do VVV contêm a fotometria obtida com as duas técnicas e, para este trabalho utilizamos apenas os dados da fotometria por ajuste de PSF descrito em Alonso-García (2018). Com isto, temos os resultados para os filtros Z, Y, J, H e Ks, mostrados pela Figura 11, que compõe a amostra total de fontes consideradas.

2.2 GAIA

Nesta pesquisa utilizamos também dados fotométricos e astromé-tricos do satélite Gaia. O principal objetivo da missão Gaia é fazer o maior e mais preciso mapa tridimensional de nossa Galáxia, analisando uma população de 100 bilhões de estrelas.

Utilizamos os dados do 2 Data Release (DR2) do Gaia, que contêm 1,7 bilhão de estrelas (GAIA COLLABORATION *et al.*, 2018), para obtermos os parâmetros necessários a nossa análise. O Gaia fornece informação no óptico em 3 bandas G, BP e RP, com comprimentos de onda centrais em $0.532 \ \mu m$, $0.673 \ \mu m$, $0.797 \ \mu m$, respectivamente . Usamos nossas tabelas do VVV e fizemos o *matching* com o catálogo do Gaia. Para cada objeto obtivemos o movimento próprio, paralaxe e a fotometria nos três filtros do Gaia, bem como os erros dessas medidas.

Figura 11 – Mapa de densidade para todas as fontes com magnitude $Ks \ge 16$, encontrado pelo VVV nas regiões do bojo (painel de cima) e do disco (painel de baixo e intermediário). Para maior clareza, a área do disco do VVV foi dividida em dois paineis. As cores mais escuras na figura correspondem as regiões mais densas em direção ao centro Galáctico e aglomerados globulares. As cores mais claras são regiões de maior extinção no plano Galáctico. Os pontos escuros mais isolados são aglomerados de estrelas. Figura de Alonso-García *et al.*, (2018).

3 METODOLOGIA

Para o estudo dos objetos de interesse vamos trabalhar com as duas ferramentas descritas anteriormente, o CMD e o CCD. Esses diagramas revelam uma riqueza de informação sobre a natureza e as propriedades físicas de várias populações estelares, por isso vamos utilizá-los para buscar as candidatas a anãs brancas nos campos escolhidos. Para a seleção dessas candidatas nestes diagramas utilizaremos somente dados fotométricos do projeto VVV.

3.1 ESTUDO NO INFRAVERMELHO PRÓXIMO DAS CANDIDATAS A ANÃS BRAN-CAS

Nesta seção apresentamos a fotometria nas bandas J, H, Ks do VVV, onde identificaremos as candidatas a anãs brancas.

Inicialmente, selecionamos as tabelas oriundas da fotometria PSF do VVV dos *tiles* b201, b202, b203, b212, b213, b214. Esses campos foram selecionados por estarem localizados na região mais externa da área do bojo do VVV, sendo aqueles com menor nível de extinção (e.g, GONZALEZ *et al.*, 2012). O meio interestelar é composto de poeira (são as partes mais escuras) e gás (as partes mais vermelhas). A concentração da poeira interestelar, principalmente no plano da Galáxia, têm o efeito de extinguir e avermelhar a luz das estrelas (OLIVEIRA; SARAIVA, 2014). O bloqueio é maior na região óptica do que na infravermelha, chama-se extinção à atenuação da luz pela poeira. A radiação infravermelha é menos afetada com isso têm menor atenuação que a radiação óptica. Além disso, como a poeira absorve mais a luz azul do que a vermelha, este causa o efeito de *redenning* ou avermelhamento. Devido ao avermelhamento, a cor das estrelas mudam no diagrama CMD dependendo da distância de cada uma, o que precisa ser corrigido individualmente. Como estrelas anãs brancas são intrisecamente fracas, altos níveis de extinção poderiam empurrálas para além da magnitude limite dos dados.

Nossas tabelas do VVV apresentam magnitudes e erros nos filtros Z, Y, J, H, Ks. Inicialmente, selecionamos aqueles objetos com magnitude em todos os filtros. Depois de fazer esta pré-seleção, fizemos o *matching* de cada tabela com o catálogo do Gaia DR2, para obtermos outros parâmetros necessários a nossa análise como: a paralaxe, o movimento próprio e as magnitudes nos três filtros do Gaia para cada um dos objetos.

Com este conjunto de dados, agora fazemos outra seleção importante ao identificar somente os objetos que estão até 1 kpc de distância, sendo a distância calculada diretamente pelo inverso da paralaxe d = 1/p do Gaia DR2. As anãs brancas são estrelas muito fracas (alta magnitude). De acordo com os modelos de anãs brancas DAs de Bergeron, Leggett, Ruiz (2001), na banda Ks chega a Ks = 24 mag, muito além da magnitude limite dos nossos dados que é $Ks \approx 15$ mag. Então as anãs brancas mais distantes que 1 kpc não vão aparecer na nossa amostra.

A distribuição espacial dos objetos dos campos mencionados estão nas Figuras 12 e 13 em termos das coordenadas ra e dec.

Figura 12 – Distribuição espacial dos objetos do VVV limitados a uma distância de até 1 kpc. Da esquerda para a direita estão os objetos dos *tiles* b201, b202 e b203. As coordenadas ra e dec estão em graus.

Figura 13 – Mesmo que para Figura 12 para os *tiles* b212, b213 e b214.

3.1.1 Comparação com os modelos

Para obtermos as candidatas a anãs brancas no VVV, precisamos comparar a cor dessas candidatas com as cores sintéticas calculadas a partir dos modelos de atmosfera estelar disponíveis na literatura. Para isso, usamos as sequências evolutivas das anãs brancas de atmosfera de hidrogênio. A Figura 14 mostra modelos de anãs brancas DA nos filtros do 2MASS que são suficientemente similares aos filtros do VISTA para nosso estudo, não necessitando portanto aplicar alguma transformação entre os dois sistemas fotométricos. O 2MASS é a sigla em inglês para o catálogo fotométrico de estrelas *The Two Micron All Sky Survey*, que identifica objetos no infravermelho nos filtros *J*, *H*, *Ks*, com comprimentos de onda centrais $1.25 \ \mu$ m, $1.65 \ \mu$ m, $2.17 \ \mu$ m, respectivamente (SKRUTSKIE *et al.*, 2006).

As tabelas usadas para construir esses modelos apresentam magnitudes absolutas e bolométricas em vários sistemas fotométricos, que incluem os filtros *UBVRI* de *Johnson-Kron-Cousins*, *uvby* de *Stromgren*, os filtros *JHKs* 2MASS e os filtros *ugriz* da *Sloan Digital Sky* para uma extensa grade de modelos de estrelas anãs brancas com atmosferas ricas em hidrogênio.

Figura 14 – O diagrama CMD para os modelos de anãs brancas DA nos filtros do 2MASS. Curvas teóricas de isogravidade são superpostas aos pontos do modelo. De cima para baixo, as linhas de isogravidade começam em $\log g = 7,0$ e terminam em $\log g = 9,5$ variando em passos de $\delta \log g = 0,5$. E a temperatura aumenta de baixo para cima.

Também são obtidas as massas e as idades de resfriamento para cada modelo, a partir de sequências evolutivas de cada estrela. Para os modelos de atmosfera de hidrogênio puro acima de Teff = 30.000 K foram usados os modelos de resfriamento de núcleo de carbono de Wood (1995) com camada de hidrogênio qH = MH/M* = 10^{-4} . Enquanto que para temperaturas abaixo de Teff = 30.000 K, os modelos de resfriamento são semelhantes aos descritos por Fontaine, Brassard e Bergeron (2001), mas com núcleos de carbono-oxigênio e $qH = 10^{-4}$ como descrito em Bergeron, Leggett, Ruiz (2001). A grade de modelos DA cobre uma faixa de T = 1.500 - 100.000 K de log g = 7, 0 - 9, 0.

A sequência evolutiva das estrelas que aparecem nos CMDs pode ser ajustada

por uma isócrona que fornece a distância, idade e avermelhamento (excesso de cor), como mostra a Figura 15. Para isso usamos a simulação do Trilegal ¹ (PASTORELLI *et al.*, 2019). O *turnoff point* da isócrona é a idade média de uma estrela anã branca $(t = 2.5 \times 10^9 \text{ anos})$ e a mesma metalicidade do Sol (Z = 0.0152). A isócrona parte da sequência principal e se estende até o ramo das gigantes e supergigantes, porém não apresenta a sequência evolutiva para estrelas anãs brancas.

3.1.2 Ajuste aos modelos e seleção

Assim, ao introduzir os modelos no CMD e os dados do VVV, podemos fazer uma seleção das candidatas a anãs brancas comparando a magnitude e o índice de cor destes com as cores sintéticas dos modelos. As magnitudes do VVV, assim como dos modelos, estão em magnitude absoluta nos CMDs. Para fazer a primeira seleção das candidatas a anãs brancas, utilizamos o CMD para plotar a sequência dos nossos modelos DAs. O mesmo é feito para o CCD, a partir do qual selecionamos aqueles em que as barras de erro coincidem com os pontos do modelo.

3.1.2.1 Usando os dados dos tiles b212, b213, b2124

Vamos delinear os critérios de seleção para a escolha das candidatas a anãs brancas, utilizando os CMDs e CCDs para os dados observados do VVV e as sequências de modelos DA de anãs brancas. Vamos usar as fontes dos *tiles* b212, b213, b214 que contêm ao todo de 99.847 objetos.

O primeiro passo é comparar os dados do VVV no CMD com os pontos das sequências dos modelos de anãs brancas DA de Fontaine, Brassard e Bergeron (2001) disponíveis na literatura como mostra a Figura 15 (linhas azuis). Para isso, fechamos uma grade bidimensional que contém os pontos do modelo de DA, ajustamos uma curva à primeira linha do modelo de log g = 7, 0, e outro ajuste para uma linha que une os pontos na direção quase perpendicular à primeira, de tal forma a fechar uma grade de modelos DA (linhas vermelhas da Figura 15 são os limites da grade de modelos).

A primeira seleção de candidatas que faremos no CMD são dos pontos que estão dentro da grade de modelos de DAs, com um total de 105 pontos. Porém, levamos em consideração as barras de erro das medidas para avaliar consistência com a faixa de valores delimitadas pelos modelos, com isso aumentamos nossa amostra que contêm ao todo 367 pontos.

A magnitude Ks e as cores (J-Ks), (H-Ks) e (J-H) apresentam incertezas fotométricas. A Figura 16 mostra as incertezas da fotometria dos dados do VVV em cor e magnitude. Agora olhamos para o CCD da Figura 16. Dentre as 367 candidatas, selecionamos aqueles dados cujos valores coincidem com os modelos dentro de $\pm 1\sigma$.

¹ Link para acessar o ambiente virtual do Trilegal: (http://stev.oapd.inaf.it/cgi-bin/cmd3.2). A isócrona não apresenta sequência evolutiva para anãs brancas conforme informado na página.

Figura 15 – No painel esquerdo está o diagrama CMD para $Ks \times (J - Ks)$ para as fontes dos *tiles* b212, b213, b214. Os objetos estão a até 1 kpc de distância, totalizando 99.847 objetos. Os modelos de DA de Fontaine, Brassard e Bergeron estão na cor azul e os limites da grade de modelos em vermelho. Uma isócrona (linha contínua preta) é ajustada aos dados do VVV. No painel direito temos o CCD para $(J - H) \times (H - Ks)$ para os mesmos dados e modelos.

Isto é, verificamos visualmente se os modelos estão dentro de $\pm 1\sigma$ dos nossos dados da amostra e descartamos aqueles que não coincidem com os modelos dentro dessa incerteza. Com isso, reduzimos o número para 172 objetos (pontos de cor verde). O histograma da Figura 17 mostra a distribuição das candidatas em distância, sendo a distância média de $d = 132 \pm 154$ pc.

Figura 16 – No CMD para $Ks \times (J - Ks)$ e CCD para $(J - H) \times (H - Ks)$ aparece a distribuição das 9 candidatas principais (pontos vermelhos) que estão dentro da elipsoide e são mais parecidas com os modelos dentre os 172 candidatos.

Com isso temos 172 candidatas a anãs brancas que são sumarizadas nas Tabelas 3 à 14 no Anexo A. Esse número é significativamente maior que o previsto

Figura 17 – Distribuição das 172 candidatas a anãs brancas versus a distância obtida pelo inverso da paralaxe do Gaia.

pelo modelo sintético de populações estelares de Besançon (ROBIN *et al.,* 2003), com o qual previmos a existência de apenas 6 anãs brancas nessa região como mostra a Figura 18.

Para obter os dados da simulação de Besançon, acessamos o *link* da página *web* para entrar no ambiente virtual do programa. Utilizamos parâmetros de entrada na sua interface para gerar os dados, são estes:

- Intervalo de distância: 0 50 kpc (os dados são gerados nessa faixa limite de distância, com um passo no modo progressivo que para esse limite vale 50 pc).
- Small field, definido pelo centro do campo e sua superfície, nessa opção todas as estrelas simuladas devem estar nas mesmas coordenas. Longitudes e latitudes são das em grau. Longitude = 9 Latitude = -9; ângulo sólido = 4.5 graus².
- Equinócio = 2000.0.
- Longitude e latitude galácticas ou ascensão reta (graus decimais): 200.00 e 59.00, respectivamente (o mesmo sugerido pelo programa).
- Extinção difusa = 0 mag/kpc.
- As funções de luminosidade usadas no modelo cobrem a faixa de magnitude absoluta na banda V: -7 à 20 para o disco fino.
- Tipos espectrais: tipo DA; subtipo 5.
- Classes de luminosidade e idade e/ou população: selecionamos todas.
- Escolha da banda de magnitude aparente: K. Intervalo de magnitude aparente para cada banda com valor mínimo e máximo: U, V, I, H, L, B, R, J de -99 à 99 (esse valor é arbitrário para bandas que não são do interesse!) e K de 10 à 24.

- Índices de cor correspondente e intervalos: J H, H K, J K, V K com –99 à 99.
- Função de erro: 0.

Com esses parâmetros obtemos os dados da simulação e inserimos no CMD, ao qual se verifica a existência de apenas 6 anãs brancas nesta região.

Figura 18 – Na simulação de Besançon, do total de 3.346.004 objetos que estão até 50 kpc, apenas 6 são anãs brancas (pontos vermelhos) que estão dentro da grade de modelos.

Com o número de objetos da amostra significativamente acima do previsto na simulação, um critério mais rigoroso foi utilizado. Adotando uma região elipsoidal quadridimensional em torno dos modelos definida por uma distância de erro de 0.05 mag em índice de cor e de 0.1 mag na magnitude *Ks*. Das 172 candidatas da amostra, apenas 9 caem dentro da região elipsoidal. Com isso, obtemos um conjunto mais restrito de candidatas, cujos dados são mais próximos aos modelos. A Figura 16 mostra os 172 objetos da amostra (pontos verdes) e os 9 mais próximos aos modelos (pontos vermelhos) que são nossas candidatas principais.

Com esses critérios de seleção e usando os CMDs e CCDs, bem como a sequência de modelos de DAs, identificamos 172 candidatas a anãs brancas mais prováveis dentro dos *tiles* mencionados. E com o último critério, conseguimos um conjunto mais restrito de 9 objetos mais próximos aos modelos.

Também fizemos a simulação de Besançon para objetos de até 1 kpc de distância como mostra a Figura 19. Alteramos dois parâmetros, são estes:

- Intervalo de distância: $0 1 \ kpc$ (com passo de $0.6 \ parsec$ no modo *linear*).
- Idade e/ou população: selecionamos o código 7 para o disco que corresponde a idade de 7.7 10 Gyr.

Figura 19 – Simulação de Besançon, do total de 10.167 objetos que estão até 1 *kpc*, apenas 20 são anãs brancas (pontos vermelhos) que estão dentro da grade de modelos.

A quantidade de candidatas prováveis continua acima do previsto por este modelo.

3.1.2.2 Usando os dados dos tiles b201, b202, b203

Usando os mesmos critérios de seleção descritos na seção anterior, vamos agora utilizar os dados do VVV dos *tiles* b201, b202, b203 para selecionar as candidatas a anãs brancas como mostra a Figura 20, estes têm o total de 88.228 objetos.

A partir do CMD, selecionamos aqueles dados dentro da grade de modelos e obtemos 71 pontos, no entanto estamos levando em consideração as barras de erro das medidas para avaliar consistência com a faixa de valores delimitada pelos modelos, com isso aumentamos nossa amostra para o total de 222 pontos.

Agora olhamos para o CCD da Figura 21. Dentre as 222 candidatas, selecionamos aqueles dados cujos valores coincidem com os modelos dentro de $\pm 1\sigma$. Com isso,

Figura 20 – Mesmo que na Figura 15 para os *tiles* b201, b202, b203.

reduzimos o número da amostra para 129 objetos (pontos de cor verde). O histograma da Figura 22 mostra a distribuição das candidatas em distância, sendo a distância média de $d = 156, 4 \pm 54, 4$ pc. Estas 129 candidatas a anãs brancas estão sumarizadas nas Tabelas 15 à 24 no Anexo B.

Figura 21 – Mesmo que na Figura 16 para as 3 candidatas principais dos *tiles* b201, b202, b203.

Este número é significativamente maior que o previsto pelo modelo sintético de população estelar de Besançon, com o qual previmos a existência de apenas 3 anãs brancas nessa região como mostra a Figura 23. Os dados da simulação de Besançon foram obtidos com os mesmos parâmetros de entrada descritos na seção anterior, exceto as coordenadas galácticas que são: Longitude = -9 e Latitude = -9.

Com o número de objetos da amostra significativamente acima do previsto na simulação, utilizamos o critério mais rigoroso, ao qual adotamos uma região elipsoidal quadridimensional em torno dos modelos definida por uma distância de erro de 0.05 mag em índice de cor e de 0.1 mag na magnitude *Ks*. Das 129 candidatas da amostra,

Figura 22 – Distribuição das 129 candidatas a anãs brancas versus a distância obtida pelo inverso da paralaxe do Gaia.

Figura 23 – Na simulação de Besançon, do total de 2.128.346 objetos, apenas 3 são anãs brancas que estão dentro da grade de modelos (pontos vermelhos).

apenas 3 caem dentro da região elipsoidal. Com esse critério, agora temos um conjunto mais restrito de candidatas. Portanto esses 3 pontos são os objetos mais próximos aos modelos. A Figura 21 mostra os 129 objetos da amostra (pontos verdes) e os 3 mais próximos aos modelos (pontos vermelhos) que são nossas candidatas principais.

Com esses critérios de seleção e usando os CMDs e CCDs, bem como a sequência de modelos de DAs, identificamos 129 candidatas a anãs brancas mais

prováveis dentro dos *tiles* mencionados. E com o último critério, temos um conjunto mais restrito de 3 objetos mais próximos aos modelos.

Também fizemos a simulação de Besançon para objetos de até 1 kpc de distância como mostra a Figura 24. E nossa amostra de anãs brancas prováveis continua com uma quantidade acima do previsto neste modelo.

Figura 24 – Mesmo que da Figura 19, do total de 10.227 objetos que estão até 1 *kpc*, apenas 19 são anãs brancas (pontos vermelhos) que estão dentro da grade de modelos.

Com isso, conseguimos selecionar o total de 301 prováveis candidatas a anãs brancas nos dados dos seis *tiles* mencionados. Esses dados caem dentro da grade de modelos DA no CMD e coincidem com os modelos dentro de $\pm 1\sigma$ no CCD. Desse total, obtemos 12 candidatas mais próximas aos modelos de anã branca DA no CCD e, estão listadas na Tabela 1. E na Tabela 2 temos os alto valores de movimento próprio de cada uma, isto porque as candidatas estão próximas, do contrário não perceberíamos este movimento. Na próxima seção vamos analisar a distribuição espectral de energia para as 12 candidatas.

Capítulo 3.	
Metodologia	

Tabela 1 – As 12 candidatas principais a anãs brancas selecionadas nas seções 3.1.2.1 e 3.1.2.2.

objeto	ra	dec	dist	Bergeron	Koester	χ^2	Koester	χ^2	Schlafly_Av
	(grau)	(grau)	(parsec)	(Teff/logg)	Av=0.2 mag		Av = 0.7 mag		
WD01	279.6187	-27.76276	76.7	5500/7.00	5500/7.5/0.19	5.88	6500/7.75/0.7	5.19	0.873
WD02	281.08057	-24.37376	92.2	5500/7.5	5750/6.5/0.19	1.43	6750/6.5/0.7	1.20	0.759
WD03	281.15094	-26.12847	95.1	4750/7.5	5000/6.5/0.15	2.66	5750/6.5/0.63	2.32	0.896
WD04	281.11141	-25.87009	111.3	5000/7.00	5000/6.5/0.19	4.04	5500/6.5/0.7	2.32	1.013
WD05	280.58855	-26.5277	116.0	5500/7.00	5750/6.5/0.13	6.02	6750/6.5/0.665	5.65	0.970
WD06	280.68034	-24.50637	116.4	4750/7.00	5000/6.5/0.19	5.90	5500/6.5/0.7	4.18	0.935
WD07	279.60896	-27.44466	133.9	5250/7.00	5000/6.75/0.19	1.89	5750/8.00/0.7	1.48	0.937
WD08	279.53384	-27.49309	160.7	5500/7.00	5000/9.25/0.19	1.08	5500/9.5/0.7	0.31	0.918
WD09	280.37539	-25.45647	186.8	6000/7.00	5500/9.5/0.16	4.63	6500/9.5/0.7	4.46	1.112
WD10	272.2081	-40.56693	53.8	4500/8.00	5250/9.5/0.18	3.05	6000/9.5/0.63	2.54	0.371
WD11	271.71018	-40.41967	101.7	4250/7.00	5500/9.5/0.19	5.19	6250/9.5/0.665	4.63	0.345
WD12	273.00207	-39.05516	144.6	5500/7.00	5500/6.5/0.19	9.05	6500/6.75/0.7	8.48	0.319

objeto	pmra	pmdec
	$(mas yr^{-1})$	$(mas yr^{-1})$
WD01	-13.0	0.6
WD02	-8.3	-2.0
WD03	-5.1	-3.6
WD04	-3.1	-1.0
WD05	-6.8	2.1
WD06	-3.0	-3.4
WD07	-0.5	-4.1
WD08	-13.4	-12.5
WD09	-4.4	-1.1
WD10	-14.8	8.7
WD11	-13.6	4.4
WD12	17.7	7.7

Tabela 2 – Lista com os valores de movimento próprio das 12 principais candidatas a anãs brancas.

3.2 DISTRIBUIÇÃO ESPECTRAL DE ENERGIA DAS CANDIDATAS NO VOSA

Com os critérios de seleção aplicados aos dados nos CMDs e CCDs das seções anteriores, selecionamos 12 candidatas a anãs brancas mais próximas aos modelos do total de candidatas prováveis da amostra (ver Tabela 1). Agora vamos ajustar a distribuição espectral de energia ou SED de cada uma aos modelos independentes de anãs brancas DAs dado por Koester (2010) e Tremblay e Bergeron (2009). Estes modelos são para anãs brancas com atmosfera de hidrogênio puro e, eles usam o equilíbrio termodinâmico local e o equilíbrio hidrostático. Métodos e dados básicos para construir os modelos são descritos em Koester (2010).

Construímos as SEDs para cada candidata, usando a ferramenta VOSA (BAYO *et al.,* 2008), um ambiente virtual que permite a leitura de tabela de fotometria e constrói a SED para cada objeto e o posterior ajuste espectral para encontrar o melhor modelo que reproduz os dados. Na construção da tabela de fotometria, inserimos estes parâmetros:

- Nome da candidata (wd01, wd02,...,wd12).
- Coordenadas espaciais: ra e dec.
- Distância de cada objeto.
- Comprimento de onda central (λ_{mean}) dos filtros (5 filtros do VVV e 3 do Gaia DR2).
- Magnitudes absoluta em cada filtro e seus erros.

Limite de extinção Av = 0.2 (o programa faz o Av variar de 0 a 0.2). O Besançon sugere um valor de Av = 0.7/kpc, considerando a distância das candidatas, é razoável que adotemos 0.2 como limite de entrada.

Na página *web* do VOSA, adicionamos cada uma das tabelas de fotometria. Selecionamos os modelos de anãs brancas de Koester (2010) e Tremblay e Bergeron (2009) para comparar com as SEDs das candidatas. Escolhemos a faixa para os parâmetros de entrada na interface: $5.000 \leq T_{eff} \leq 80.000 K$ e $6.5 \leq T_{eff} \leq 9.5$ (esses valores são os limites mínimo e máximo do VOSA para cada parâmetro). Com estes dados, obtemos as SEDs com seus respectivos ajustes para a extinção limite de 0.2 e modelos mais parecidos que estão nos gráficos das Figuras 25 à 28. Cada gráfico abaixo é um *plot* interativo com seu ajuste. O VOSA fornece dessa forma para facilitar a inspeção mais detalhada dos ajustes, por isso os *plots* não incluem os espectros dos modelos. Estão adicionadas barras de erro de $\pm 3 \sigma$ (em cor cinza claro) aos pontos ajustados, sendo que os melhores ajustes são aqueles com menor valor de χ^2 .

Vemos que a WD05 tem o nível de extinção mais razoável, seguida da WD03, WD09 e WD10, sendo esta última a que melhor se ajusta ao modelo dentre as mencionadas. A WD08 tem o menor valor de χ^2 , embora sua extinção esteja no limite do modelo.

De acordo com os valores de extinção calculados por Schlafly *et al.*, (2011), a extinção Av na posição das candidatas varia entre 0,31 e 1,1 (ver Tabela 1), sendo que os valores de Schlafly são integrados em toda a linha de visada. Embora a maioria vai para o limite do modelo de 0.2, se o Av ficar maior os ajustes deixam os modelos mais quentes.

Vemos também que os valores de Schlafly para as 9 candidatas dos primeiros *tiles* tem maiores níveis de extinção ou avermelhamento do que as 3 dos segundos *tiles*, certamente existe mais poeira interestelar nos campos dos primeiros *tiles* e a luz dos objetos desses campos sofrem maior atenuação.

As Figuras 29 à 32 mostram as SEDs limitadas em Av = 0.7. Vemos que os valores de χ^2 são menores quando comparado com aqueles de Av = 0.2, embora a maioria vai para o limite de extinção do modelo. As três últimas possuem níveis de extinção inconsistentes com os valores de Schlafly. Quanto maior a extinção, as SEDs são mais afetadas pelo avermelhamento, por isso as de Av = 0.7 são piores ajustadas e os modelos são mais quentes.

Vemos que no filtro G ($\lambda_{mean} = 6230$) do Gaia, o ponto fica pior ajustado nas SEDs, levantamos a hipótese de ter algum problema ainda não completamente compreendido neste filtro, tendo em vista que o VOSA fornece quatro possibilidades de filtros, são estes: GAIA0, GAIA2, GAIA2m, GAIA2r. Para este trabalho usamos o GAIA2 (Gaia DR2), embora isto ocorra nas SEDs, os pontos do ajuste e do modelo neste filtro caem dentro de $\pm 3 \sigma$.

wd02 Koester WD models, Teff:5750, logg:6.5, Av:0.19

Figura 25 – SEDs ajustas aos modelos mencionados de Koester (2010) e Tremblay e Bergeron (2009), com extinção limite de 0.2.

wd05 Koester WD models, Teff:5750, logg:6.5, Av:0.13

Figura 26 - Continuação das SEDs.

Figura 27 - Continuação das SEDs.

wd11

Figura 28 - Continuação das SEDs.

wd02 Koester WD models, Teff:6750, logg:6.5, Av:0.7

Figura 29 – SEDs ajustas aos modelos mencionados de Koester (2010) e Tremblay e Bergeron (2009), com extinção limite de 0.7.

wd05

Figura 30 - Continuação das SEDs.

wd08

Figura 31 - Continuação das SEDs.

wd11

Wavelength (A)

4 DISCUSSÃO FINAL

Com base nos nossos critérios de seleção usados para buscar candidatas a anãs brancas na direção do bojo galáctico, conseguimos buscar 301 objetos que cumprem com os critérios de seleção nos CMDs e CCDs quando comparados suas magnitudes e cores aos modelos de anãs brancas DA de Fontaine, Brassard e Bergeron (2001).

A posterior seleção das 12 candidatas foi feita de forma a reduzir arbitrariamente o número de objetos da amostra quando usamos critérios mais restritivos. Este último critério nos forneceu a quantidade de candidatas esperadas pelos modelos de Besançon, embora esta seleção tenha a única finalidade de reduzir os dados da nossa amostra de forma inteiramente arbitrária. A faixa de temperatura das 12 candidatas corresponde a $T_{eff} = 4250 - 6000$ K para os modelos de Fontaine, Brassard e Bergeron (2001) e $T_{eff} = 5500 - 6750$ K quando ajustados ao modelo de Koester (2010). São estrelas frias, com distâncias na faixa de d = 53, 8 - 186, 8 pc, situado nos limites de distância para a maioria das anãs brancas conhecidas que é de 300 pc (OLIVEIRA; SARAIVA, 2014). Os valores para temperatura e distância estão dentro do esperado pelos modelos.

Ao conferir as candidatas principais (a partir de suas coordenadas ra e dec) em todos os possíveis catálogos do VizieR¹, a maioria delas possuem dados em outros comprimentos de onda. Com isso, temos, além das 5 magnitudes no infravermelho próximo do VVV e 3 magnitudes no óptico do Gaia, as magnitudes nas bandas B, r, R, i, y. Também consultamos os catálogos do Simbad² e não encontramos informações sobre elas.

Sabemos de uma candidata a anã branca descoberta pelo VVV por Gromadzki et al., (2016). Trata-se da estrela VVVJ141421.23-602326.1 (uma companheira de co-movimentação de VVV J141420.55-602337.1) de maginute absoluta $J_{2MASS} =$ 16.75 mag, parece ser uma rara anã branca localizada perto da faixa de instabilidade da *ZZ cet*. Sua posição no CMD e CCD indica que tem $T_{eff} \sim 12.000 K$ e uma massa relativamente alta de $\sim 1 M_{\odot}$. A faixa de magnitude e das cores dessa candidata são respectivamente: 11.7 < I < 12.3; -0.2 < I - J < -0.1 e -0.02 < J - H < 0.04. Essa candidata cai dentro da grade de modelos de DA de Fontaine, Brassard e Bergeron (2001), sabemos disso porque os modelos fornecem a fotometria no filtro *I* e com isso fizemos a comparação das faixas de magnitude e cor, ao passo que não sabemos precisar se ela cairia dentro da nossa amostra se estivesse em um dos campos do VVV analisados neste trabalho, pois o VVV não fornece fotometria nesse filtro. Podemos aplicar a mesma técnica para todos os outros *tiles* do VVV, já que os dados do Gaia cobrem toda a região e podem ser combinados facilmente. Já para a confirmação,

¹ Link de acesso aos catálogos do VizieR: (http://vizier.u-strasbg.fr/viz-bin/VizieR)

² Link de acesso aos catálogos do Simbad: (http://simbad.u-strasbg.fr/simbad/sim-fid)

será necessário um *follow up* espectroscópico com os telescópios disponíveis para a comunidade brasileira.

Concluímos que nossas candidatas que estão na Tabela 1 têm espectros de estrelas anãs brancas frias. Do total de 184.072 observados nos *tiles* do projeto VVV que estão até 1 *kpc*, conseguimos buscar 301 candidatas, do qual fizemos o ajuste espectral para 12 delas. Buscamos por essas candidatas em outros catálogos como dos levantamentos USNO-B1.0, USNO-A2.0, PPMXL, NOMAD, Gaia DR1, PanSTARRS, não encontramos uma pré classificação destes objetos como anãs brancas.

Sendo previstas pelos modelos, fornecemos uma lista com 12 prováveis anãs brancas que agora podem ser melhor estudadas em trabalhos futuros.

5 REFERÊNCIAS

ALONSO-GARCÍA, J. et al. Milky Way demographics with the VVV survey: PSF photometry from almost one billion stars in the Galactic bulge and adjacent southern disk. Astronomy and Astrophysics, arXiv:1808.06139 [astro-ph.GA], v. 619, n. 4, p. 1-13, ago./2018. Disponível em: https://arxiv.org/abs/1808.06139. Acesso em: 1 jan. 2019.

BAYO, A. et al. VOSA: virtual observatory SED analyzer. An application to the Collinder 69 open cluster. Astronomy and Astrophysics, SAO/NASA ADS Astronomy Abstract Service, v. 492, n. 1, p. 277-287, jun./2008. Disponível em: http://adsabs.harvard.edu/a bs/ 2008A. Acesso em: 2 abr. 2019.

BECKLIN, E. E., A low-temperature companion to a white dwarf star. Nature, Becklin1988, v. 336, n. 2, p. 656-658, 1988. Disponível em: https://doi.org/10.1038/336656a0. Acesso em: 4 mai. 2019.

BERGERON, P. E. T. E. P. Spectroscopic Analysis of DA White Dwarf: Stark broadening of hydrogen lines including nonideal effects. The Astrophysical Journal, Canada, v. 696, n. 2, p. 1, abr./2019.

BERGERON, P.; WESEMAEL, F. Photometric Calibration of Hydro-gen-and Helium-Rich White Dwarf Models. Astronomical society of the Pacific, Astr, v. 107, n. 1, p. 1047-1054, 1995. Disponível em: http://www.astro.umontreal.ca/ bergeron/CoolingMode Is/B95.p df. Acesso em: 7 out. 2017.

BERGERON, P.; LEGGETT, S. K.; RUIZ, María Teresa. Photometric and Spectroscopic Analysis of Cool White Dwarfs with Trigonometric Parallax Measurements. Astrophysical Journal Supplement Series, American, v. 133, n. 1, p. 413-449, 2001. Disponível em: https://iopscience.iop.org/article/10.1086/320356/fulltext/52557. text. html. Acesso em: 8 nov. 2017.

BERGERON, P. et al. The isolated massive DA white dwarf GD 50. Astrophysical Journal, USA, v. 372, n. 1, p. 267-272, mai./1991. Disponível em: http://adsabs.harvard.edu/abs/1991ApJ...372..267B. Aces-so em: 6 fev. 2017.

BOHM-VITENSE, Erika. Introduction to stellar astrophysics: Basic stellar observations and data. 1. ed. University of Cambridge: British Library, 1989. p. 1-244.

COLLABORATION, A. G. et al. Gaia Data Release 2. Summary of the contents and survey properties. Astronomy and Astrophysics, ESO, v. 616, n. 1, p. 1-1, jan./2018.

FONTAINE, G.; BRASSARD, P.; BERGERON, And P.. The Potential of White Dwarf Cosmochronology. Astronomical Society of the Pacific,v. 113, n. 782, p. 409-435, abr./2001. Disponível em: http://adsabs.harvard.edu/abs/2001PASP..113..409F. Acesso em: 12 fev. 2019. GARCÍA-BERRO, J. White dwarfs and the age of the Universe. Lecture Notes and Essays in Astrophysics, SAO/NASA Astrophysics Data System (ADS), v. 1, n. 2, p. 23-42, out./2004. Disponível em: http://adsabs.harvard.edu/full/2004LNEA....1...23I. Aces so em: 3 out. 2016.

GONZALEZ, O. A. et al. Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS. II. The complete high resolution extinction map and implications for Galactic bulge studies : The complete high resolution extinction map and implications for Galactic bulge studies. Astronomy and Astrophysics, v. 543, n. 13, p. 9, 2012. Disponível em: https://ui.adsabs.harvard.edu/abs/2012A. Acesso em: 27 fev. 2019.

GROMADZKI, M. et al. High proper motion objects toward the Inner Milky way: Characterization of newly identified nearby stars from the VISTA variables in the Vía láctea surveys. Acta Astronomica, Scopus, v. 66, n. 3, p. 293-306, 2016. Disponível em: https://www.scopus.com /record/display.urieid=2-s2.0-849946457990 rigin=inwardtxGid=3a5e6 a3f683b06eb93685d9084c60c87. Acesso em: 26 jun. 2019.

HANSEN, Carl J.; KAWALER, Steven D.. Stellar Interiors: Physical Principles, Structure, ans Evolution. New York, USA: Springer-Velarg, 1994.

HANSEN, Carl J.; KAWALER, Steven D.; TRIMBLE, Virginia. Stellar Interiors: Physical Principles, Structure, and Evolution. 2. ed. Astronomy and astrophysics library: Springer, 2004. p. 1-526.

HOLBERG, J. B.; BERGERON, Pierre.Calibration of syn thetic photometry using Da white dwarf. Astronomical Journal, v. 132, n. 2, p. 1221-1221, set./2006. Disponível em: http://www.astro.umon treal. ca/ bergeron/CoolingModels/Synthetic_Calibration.pdf. Acesso em: 9 mar. 2019.

HUANG, R. Q.; YU, K. N.. Stellar Astrophysics. Singapore: Springer-Verlag Singapore, 1998. p. 1-644.

KAWALER, Steven D.. White Dwarf Stars (With 37 figures). Saas-Fee Advanced Course 25, Berlin, New York 1995. Disponível em: http://adsabs.harvard.edu/abs/1995stre.conf 1K. Acesso em: 15 jul. 2017.

KEPLER, S. O. et al. White Dwarf Mass Distribution. Solar and Stellar Astrophysics, United Kingdom, v. 1, n. 1, p. 1-1, out./2016. Disponível em: https://arxiv.org/abs/1610.00371. Acesso em: 13 abr. 2018.

KILIC, M. et al. Gaia Reveals Evidence for Merged White Dwarfs. Solar and Stellar Astrophysics (astro-ph.SR), arXiv:1805.01227 [astro-ph.SR], v. 4, n. 1, p. 1-5, jun./2018.

KOESTER, D. et al. Atmospheric Parameters and Mass Distribuition of DA White Dwarf. Astronomy and Astrophysics, SAO/NASA ADS, v. 76, n. 3, p. 262-275, 1979. Disponível em: http://adsabs.harvard.edu /abs/1979A. Acesso em: 11 out. 2017.

KOESTER, D.. White dwarf spectra and atmosphere models. Memorie della Societa Astronomica Italiana, Kiel, Germany, v. 81, n. 1, p. 921, 2010. Disponível em: http://sait.oat.ts.astro.it/ MmSAI /81/PDF/921.pdf. Acesso em: 11 jul. 2019.

LAMB, D. Q.; HORN, H. M. V. Evolution of crystallizing pure C-12 white dwarfs. Astrophysical Journal, SAO/NASA ADS, v. 200, p. 306-323, set./1975. Disponível em: http://adsabs.harvard. edu/abs/1975A pJ...200..306L. Acesso em: 16 set. 2018.

LIEBERT, J. et al. Hydrogen deficient stars and related objects. Astronomical and Astrophisycs, v. 87, n. 2, p. 367, abr./1986.

LIEBERT, James. White Dwarf Stars. Annual Review of Astronomy and Astrophysics, Tucson Arizona, v. 18, n. 1, p. 363-398, jun./1908. Disponível em: https://ui.adsabs.harvard.edu/abs/1980A RA.

LUYTEN, W.j.. White Dwarfs. International Astronomical Union, Minneapolis USA, v. 42, n. 1, p. 164, dez./1971. Disponível em: https://www.springer.com/br/book/97890277018 00. Acesso em: 5 jun. 2017.

MACIEL, Walter J.. Introdução à Estrutura e Evolução Estelar. São Paulo: editora da universidade de São Paulo, 1999. p. 1-272.

MCCOOK, George P; SION, Edward M.. A Catalog of Spectroscopically Identified White Dwarfs. The Astrophysical Journal Supplement Series, American Astronomical Society, v. 65, n. 1, p. 603-671, 1987. Disponível em: http://adsabs.harvard.edu/abs/1999ApJS.. 121....1M. Acesso em: 12 mar. 2018.

MINNITI, D. et al. VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way. New Astronomy, New Astron.15:433-443,2010, n. 1, p. 31, dez./2009. Disponível em: https://arxiv.org/abs/0912.1056. Acesso em: 9 fev. 2019.

OLIVEIRA, Kepler De; SARAIVA, M. D. F. Astronomia e Astrofísica. 3. ed. São Paulo, Brasil: Livraria da Física, 2014. p. 1-780.

PASTORELLI, G. et al. Constraining the thermally pulsing asymptotic giant branch phase with resolved stellar populations in the Small Magellanic Cloud. MNRAS, SAO/NASA ADS Astronomy Abstract Service, v. 485, n. 2, p. 5666-5692, /2019. Disponível em: http://ad sabs.harvard.edu/abs/2019MNRAS.485.5666P. Acesso em: 29 abr. 2019.

ROBIN, A. C. et al. A synthetic view on structure and evolution of the Milky Way. Astronomy and Astrophysics, edp sciences, v. 409, n. 2, p. 523-540, 2003. Disponível em: https://www.aanda. org/articles/aa/pdf/2003/38/aa3188.pdf. Acesso em: 2 jan. 2019.

SAITO, R. K. et al. Milky Way demographics with the VVV survey: The 84-million star colour?magnitude diagram of the Galactic bulge. Astronomy and Astrophysics,

arXiv:1208.5178 [astro-ph.GA], v. 544, n. 1, p. 147, ago./2012. Disponível em: https://arxiv.org/abs/120 8.5178. Acesso em: 14 abr. 2019.

SAITO, R. K. et al. VVV DR1: The first data release of the Milky Way bulge and southern plane from the near-infrared ESO public survey VISTA variables in the Vía Láctea. Astronomy and Astrophysics , Astrophysics of Galaxies (astro-ph.GA), v. 537, n. 1, p. 107, nov./2012. Disponível em: https://arxiv.org/abs/1111.5511. Acesso em: 16 mai. 2019.

SAITO, R. K. et al. VVV-WIT-07: another Boyajian?s star or a Mamajek?s . MNRAS, Solar and Stellar Astrophysics (astro-ph.SR), v. 1, n. 1, p. 1-7, nov./2018. Disponível em: https://arxiv.org/ abs/1811.02265. Acesso em: 28 abr. 2019.

SCHLAFLY, Edward F.; FINKBEINER, Douglas P. Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. The Astrophysical Journal, SAO/NASA ADS Astronomy Abstract Service, v. 737, n. 2, p. 103-116, 2011. Disponível em: http://adsabs.harvard.edu/abs/2011ApJ...737..103S. Acesso em: 6 abr. 2019.

SHAPIRO, Stuart L.; TEUKOLSKY, Saul A.. Black Holes, White Dwarfs, and Neutron stars: The physics of compact objects. 1. ed. Weinheim: Wiley-VCH, 1983. p. 1-672.

SHU, Frank H.. The Physical Universe: An Introduction to Astronomy. Sausalito, California: University Science Books, 1982. p. 9-575.

SKRUTSKIE, M. F. et al. The Two Micron All Sky Survey (2MASS). The Astronomical Journal, USA, v. 131, p. 1163-1183, fev./2006.

TREMBLAY, P. E.; BERGERON, P. Spectroscopic Analysis of DA White Dwarfs: Stark Broadening of Hydrogen Lines Including Non-Ideal Effects. Solar and Stellar Astrophysics, Canadá, v. 1, n. 1, p. 1-1, 2009. Disponível em: https://arxiv.org/abs/0902.4182. Acesso em: 2 mai. 2019.

WINGET, D. E.; HORN, H. M. V. Photometry of faint blue stars. IN: Conference on Faint Blue Stars, Schenectady, NY, L. Davis Press, n. 2, p. 31-40, jul./1987. Disponível em: http://adsabs.harvard.edu/ full/1987fbs..conf...31K. Acesso em: 22 abr. 2018.

WESEMAEL, F. et al. An Atlas of Optical Spectra of White-Dwarf Stars. Astronomical Society of the Pacific, NASA Astrophysics Data System, v. 105, n. 689, p. 761-778, abr./1993. Disponível em: https://www.aanda.org/articles/aa/pdf/2012/07/aa19222-12.pdf. Aces so em: 18 jan. 2017.

WOOD, M. A. Astero-Archaeolgy: Reading the galactic history recorded in the white dwarf stars. 1990. 259 f. Dissertation (Philosophy)- The University of Texas at Austin, Texas, 1990.

YUAN, J. W. White dwarf luminosity functions calculated from models of galactic evolution and the age of the galactic disk. Astronomy and Astrophisics, Germany, v. 224, n. 1, p. 108-116, out./1989. Disponível em: http://adsabs.harvard.edu/abs/1989A%26A... 224..108Y. Acesso em: 9 mar. 2017.

YUAN, H. B.; LIU, X. W.; XIANG, M. S. Empirical extinction coefficients for the GALEX, SDSS, 2MASS and WISE passbands.MNRAS, v. 430, p. 2188?2199, abr. 2013.

APÊNDICE A – CANDIDATAS INICIAIS A ANÃS BRANCAS

Neste apêndice estão anexadas as tabelas com os dados observacionais das candidatas a anãs brancas.

ANEXO A – CANDIDATAS A ANÃS BRANCAS SELECIONADAS NOS TILES B212, B213, B214.

Tabela 3 – Lista das 172	2 candidatas	mais prováveis a	a anãs brancas.	As colunas	são: ra e dec	: coordenadas	(VVV); magnitudes
absolutas: Z ,	Y, J, H, Ks	(VVV); paralaxe	(Gaia); magnituc	les: G, BP, R	P (Gaia).		

ra	dec	mag_Z	mag_Y	mag_J	mag_H	mag_Ks	parallax	g_mag	bp_mag	rp_mag
279.5	-27.2	17.7	17.5	17.242	16.904	16.811	8.6	18.690647	18.891344	17.638485
279.6	-28.0	18.7	18.6	18.29	18.073	17.941	4	19.667467	19.247198	18.176836
280.0	-28.1	18.2	18.1	17.871	17.524	17.413	9.3	19.50386	19.640451	18.523367
279.3	-27.5	17.8	17.6	17.336	17.018	16.95	7	19.134428	19.322794	18.071026
279.4	-27.5	18.6	18.4	18.034	17.688	17.678	5.9	19.852827	19.892384	18.888094
279.4	-27.5	18.7	18.5	18.076	17.727	17.525	16.9	19.95916	19.869009	18.338543
279.3	-27.4	17.9	17.5	17.261	16.946	16.775	12.4	18.754324	18.983164	17.685978
279.6	-27.6	18.4	18.3	17.987	17.606	17.505	7.6	19.834333	19.242504	18.378004
279.7	-27.6	17.9	17.7	17.47	17.141	17.101	10.8	19.108105	19.5858	18.362246
279.6	-27.5	18	17.8	17.475	17.167	17	8.1	19.058193	19.52675	18.229368
279.7	-27.5	18.3	18.2	17.809	17.461	17.368	6.6	19.481737	19.738428	18.373806
279.7	-27.5	18.7	18.5	18.158	17.811	17.774	4.4	20.0483	20.265339	19.136536
279.9	-27.8	18.7	18.4	18.277	18.051	17.851	7	20.174406	20.219267	19.104666
280.1	-27.9	17.9	17.8	17.654	17.526	17.536	3.9	18.922537	18.110891	17.400919
280.1	-27.9	18.1	17.9	17.836	17.717	17.61	4.4	18.920126	18.383434	17.36023
279.8	-27.3	18.6	18.4	18.124	17.793	17.624	7	19.780968	19.505316	18.757296
279.8	-27.2	18.1	17.8	17.501	17.199	17.117	7.6	19.165022	19.456192	18.045242
280.1	-27.5	18.8	18.7	18.318	18.01	17.801	14.4	19.631725	19.71814	18.72608
280.0	-27.4	17.2	17.1	17.007	16.745	16.672	14.6	18.406996	18.109577	17.088276
280.3	-27.5	18.2	18	17.721	17.33	17.244	8.71	19.354538	19.41781	18.015926
280.0	-26.9	17.5	17.3	17.027	16.687	16.654	13.9	18.891684	19.018414	17.827002
280.3	-27.1	18.7	18.5	18.208	17.873	17.778	10.1	19.704426	19.814634	18.559645
280.2	-26.9	18.6	18.3	18.041	17.81	17.686	5.7	19.80292	19.721676	18.442043
280.6	-27.2	17.6	17.3	17.098	16.763	16.773	8	18.878462	18.773699	17.618477
279.0	-27.8	18.2	17.9	17.841	17.599	17.6	6.8	19.42069	19.631266	18.119007
279.6	-28.0	18.6	18.4	18.129	17.777	17.737	7.3	19.924593	18.326748	18.945

Tabela 4 – Continuação a Tabela 3.

279.9	-28.1	18.4	18.2	18.06	17.775	17.589	6.1	19.289753	18.748259	18.185555
279.2	-27.4	18.2	18	17.654	17.356	17.241	6	19.59904	19.814268	18.619463
279.3	-27.4	18.2	18	17.74	17.384	17.308	9.6	19.260014	19.138733	17.92902
279.5	-27.4	18.6	18.4	18.12	17.791	17.722	6.2	19.688227	20.221384	18.918404
280.1	-27.7	18	17.8	17.841	17.474	17.418	8.7	19.33117	19.254078	18.141212
280.1	-27.7	18.2	18	17.707	17.437	17.289	6.6	19.164162	19.29824	18.178492
280.2	-27.4	18.3	18.1	17.877	17.554	17.636	8.2	19.280338	18.921587	17.917822
280.2	-27.4	17.5	17.3	17.046	16.795	16.642	10.7	18.800737	18.934008	17.836557
279.8	-26.9	18.4	18.1	17.792	17.427	17.341	7.2	19.563498	19.836498	18.577662
279.3	-27.1	18.1	17.9	17.707	17.445	17.303	6.2	19.46115	19.715729	18.542843
280.2	-27.5	17.6	17.4	17.217	16.999	16.9	6.3	18.672955	18.479767	17.44599
279.0	-27.6	17.8	17.8	17.81	17.792	17.636	5.7	18.207323	18.239536	17.95772
279.0	-27.6	17.8	17.6	17.387	17.02	16.897	10.9	19.084463	18.80181	18.114685
279.6	-27.8	18.8	18.6	18.291	17.951	17.886	5	19.969555	20.055073	19.113983
279.6	-27.7	17	16.8	16.449	16.137	16.077	13	17.942177	17.839346	16.859072
279.8	-28.0	18.3	18.1	17.874	17.596	17.507	6.8	19.734081	19.599342	18.608551
279.8	-28.0	17.6	17.4	17.137	16.79	16.662	13.1	18.496052	18.500364	17.544596
279.9	-27.9	17.8	17.7	17.486	17.142	17.127	7.5	19.009691	19.103867	18.041374
279.9	-27.9	18.3	18.2	18.169	18.129	17.808	5	19.677351	19.704327	18.38316
279.2	-27.3	17.8	17.6	17.273	16.963	16.809	13.6	18.798464	18.924072	17.802277
279.6	-27.4	18.5	18.2	17.911	17.605	17.491	7.4	19.539305	19.77955	18.614683
279.4	-27.3	18.4	18.2	17.871	17.587	17.415	6.2	10.5779855417	19.153526	18.263136
279.5	-27.4	18.4	18.2	18.258	18.027	17.784	7.6	19.149012	19.172876	18.49939
279.8	-27.5	17.9	17.7	17.488	17.216	17.181	6.8	18.78897	18.968895	18.007727
279.8	-27.5	17.5	17.3	17.033	16.732	16.591	8.8	18.845165	18.800768	17.734274
280.0	-27.6	17.8	17.7	17.509	17.202	17.015	9.9	18.888987	18.6538	17.672148
280.1	-27.5	18.2	18.1	17.827	17.541	17.591	5.3	19.088835	19.334522	18.20444
279.4	-26.8	18.5	18.3	18.041	17.713	17.555	6.8	19.82494	20.189165	18.901403
279.7	-27.1	18.1	17.9	17.645	17.368	17.431	5	18.969976	19.19493	18.007845
280.0	-26.5	18.3	18	18.032	17.72	17.587	6	19.30364	19.394192	18.194967
280.2	-26.7	18	17.8	17.463	17.202	17.099	11.6	19.045547	19.41121	18.035166

Tabela 5 – Continuação a Tabela 3.

280.1	-26.6	18.1	17.9	17.637	17.321	17.248	29.6	18.868391	18.931602	17.754078
280.2	-26.7	18.6	18.3	18.08	17.733	17.61	8.4	19.690908	20.247456	18.62993
280.2	-26.6	17.9	17.7	17.43	17.101	17.07	7.7	19.222105	19.390083	18.219208
280.2	-26.5	17.8	17.6	17.351	17.038	16.912	20.1	18.622444	18.926243	17.628515
280.4	-26.8	18.4	18.2	17.966	17.627	17.592	6.3	19.50367	19.547668	18.403946
280.4	-26.7	18.5	18.3	18.117	17.751	17.688	5.8	19.63431	19.84105	18.887184
280.6	-26.9	18.2	18	17.62	17.437	17.241	7.2	19.27611	19.31298	18.294643
280.6	-26.9	17.6	17.4	17.12	16.753	16.6	15.3	18.894299	19.044733	17.850386
280.8	-26.8	18.3	1.1	17.754	17.54	17.458	5.6	19.410664	19.687086	18.597538
280.3	-26.2	18.6	18.4	18.227	17.935	17.8	5.6	19.693577	19.718508	18.676481
280.4	-26.2	18	17.8	17.457	17.103	16.936	11.6	19.21749	18.959097	17.969803
280.6	-26.4	18.7	18.5	18.2	17.872	17.758	5.2	19.701067	19.633957	18.80495
280.6	-26.4	18.7	18.5	18.2	17.872	17.758	5.2	19.701067	19.633957	18.80495
280.8	-26.6	18.2	18	17.792	17.487	17.445	5.1	19.09775	19.177616	17.961319
280.8	-26.5	18.4	18.3	18.017	17.742	17.741	4.1	19.426533	19.33314	18.231373
280.8	-26.4	18.4	18.2	17.93	17.639	17.491	8.4	19.337622	19.520393	18.578848
280.9	-26.4	18.2	18.3	17.7	17.381	17.494	10.8	18.962605	19.29003	17.910776
280.5	-26.0	17.6	17.4	17.273	16.975	16.789	11.2	18.968872	19.121302	17.614866
280.7	-26.1	18.8	18.5	18.263	17.916	17.744	12	19.823864	20.048512	18.674782
281.0	-26.1	18.2	18.1	17.863	17.571	17.619	11.7	19.243364	19.144232	18.08214
280.4	-25.5	18.2	18	17.674	17.302	17.245	7	19.880814	19.543406	18.389917
280.7	-25.7	18.1	17.8	17.555	17.279	17.151	6.6	19.320244	19.522919	18.402716
280.8	-25.6	17.6	17.4	17.166	16.826	16.701	9.3	19.086843	19.146467	17.969744
280.7	-25.6	18.3	18.1	17.771	17.411	17.276	12.6	19.733116	19.705914	18.682947
280.9	-25.7	18.3	18	17.766	17.408	17.401	19.8	18.987072	19.134193	18.079094
279.7	-26.5	18.4	18.2	17.958	17.581	17.477	7.6	19.710394	19.77031	18.589695

Tabela 6 – Continuação a Tabela 3.

280.0	-26.5	17.9	17.7	17.58	17.265	17.102	7.6	19.043505	19.159647	18.01043
280.6	-26.7	17.7	17.6	17.268	16.902	16.762	11.1	19.615175	19.202898	18.114828
279.9	-26.2	18.4	18.2	17.828	17.611	17.358	9	19.698286	20.015617	18.722162
279.9	-26.1	18.4	18.1	17.784	17.446	17.342	6.7	19.523722	19.83244	18.550087
280.3	-26.2	17.6	17.4	17.109	16.712	16.605	12.3	18.609402	18.82774	17.660246
280.8	-26.5	17.9	17.7	17.486	17.192	17.03	7.1	18.831202	19.102673	18.055746
280.7	-26.0	18.6	18.3	17.878	17.597	17.449	7.7	19.851557	19.993599	18.681578
280.7	-25.9	18.2	17.9	17.657	17.337	17.218	6.4	19.592026	19.50157	18.223913
280.3	-25.4	18.3	18.2	17.857	17.574	17.387	11.3	19.386469	19.421516	18.213474
280.3	-25.4	18.7	18.4	18.256	17.985	17.905	5.3	19.639317	19.761633	18.483671
281.1	-25.8	17.7	17.3	17.23	17.055	16.968	9.6	18.864958	19.118076	17.924902
281.1	-25.8	18.2	18	17.659	17.334	17.225	8.9	19.451456	19.602451	18.604223
281.1	-25.8	17.8	17.5	17.227	16.873	16.781	7.7	18.990221	19.44822	18.118593
280.1	-25.4	17.1	16.9	16.572	16.228	16.108	12.2	18.386923	18.679296	17.1507
279.9	-26.4	17.6	17.4	17.044	16.681	16.624	10.7	19.259714	19.54677	17.987371
280.1	-26.4	18.3	18	17.777	17.443	17.349	6	19.431427	19.873302	18.501007
280.3	-26.5	18.2	18	17.679	17.418	17.228	8.6	19.134783	19.273214	18.159409
280.3	-26.5	17.8	17.5	17.337	17.057	16.97	6.5	19.179907	19.321377	18.109861
280.3	-26.4	18.5	18.2	18.032	17.618	17.54	9.7	19.68579	19.671293	18.540316
280.2	-26.0	18.9	18.6	18.363	17.971	17.868	6	20.209297	20.097511	19.000635
280.5	-26.2	18.4	18.1	17.926	17.67	17.546	5.5	20.086586	19.631575	18.67906
280.6	-26.2	17.8	17.5	17.212	16.912	16.744	9.9	18.750616	19.11189	17.82503
280.6	-26.1	17.4	17.2	16.836	16.445	16.338	21.7	18.446903	18.728168	17.444626
280.8	-26.2	18.1	18	17.671	17.328	17.326	5.4	19.19866	19.257332	18.155453
280.8	-26.2	18.2	1.121	18.051	17.82	17.581	18.9	19.805725	19.089443	17.95349
280.2	-25.6	18	1.82	17.523	17.22	17.09	7	19.433226	19.236412	18.199286
280.1	-25.5	18.5	1.534	18.03	17.749	17.688	4.5	19.753523	19.559393	18.395382
280.3	-25.7	18	1.831	17.544	17.202	17.123	6.7	19.229752	19.265589	17.905968
280.8	-26.0	18.2	18	17.767	17.423	17.271	8.5	19.391296	18.949652	18.3522
280.9	-26.0	18.4	18.1	17.924	17.641	17.512	5.3	19.574059	19.795618	18.548866

Tabela 7 – Continuação a Tabela 3.

281.0	-25.9	18.7	18.5	18.219	17,991	17.767	5.5	20.0936	19.732874	18.850176
280.3	-25.3	18.2	17.9	17.765	17.537	17.656	5.1	19.279928	19.195377	17.969133
280.4	-25.3	18.4	18.1	17.855	17.511	17.515	4.9	19.799128	19.85677	18.506315
280.7	-25.3	18.3	18.2	17.824	17.552	17.42	6.3	19.50785	19.72314	18.194178
281.1	-25.5	18.6	18.4	17.993	17.71	17.547	7.9	19.933254	19.872019	18.553305
280.4	-26.6	17.9	17.7	17.423	17.123	16.997	7	19.160736	19.512077	18.383171
280.5	-26.5	18	17.8	17.498	17.192	17.11	8.6	18.889732	18.686192	17.82542
280.3	-26.1	18	17.9	17.516	17.211	17.045	9.2	18.9703	19.045628	17.932198
280.6	-26.1	18.5	18.3	17.924	17.52	17.42	8.5	19.950644	20.281221	19.005217
280.9	-26.4	18.9	18.6	18.295	17.978	17.875	15.2	19.791193	19.56788	18.260876
280.3	-25.6	18.4	18.1	17.732	17.371	17.211	13.6	19.884983	19.73847	18.542559
280.7	-25.9	18.3	18.1	18.067	17.768	17.69	5	19.694317	19.070412	18.367672
280.8	-25.9	18.2	17.8	17.623	17.265	17.103	16	19.597382	19.7655	18.316416
281.1	-26.1	18.5	18.3	18.007	17.688	17.579	10.5	19.636541	19.808643	18.580988
280.7	-25.5	17.6	17.5	17.143	16.892	16.724	7.9	19.09643	19.373095	18.004786
280.9	-26.7	17.9	17.7	17.474	17.151	17.127	6.1	18.934471	18.806929	18.071577
281.0	-26.4	18.1	18	17.813	17.631	17.627	4.7	19.209944	19.567972	18.499865
281.2	-26.1	18.5	18.2	17.964	17.679	17.463	8.3	19.383076	19.878054	18.161491
280.9	-26.1	18.5	18.3	18.008	17.657	17.476	17.6	19.625696	19.624168	18.387028
280.8	-24.9	17.6	17.3	17.04	16.636	16.564	9.8	18.95441	18.987677	17.89213
280.8	-24.9	18.3	18.1	17.839	17.507	17.456	8.1	19.194828	19.01902	18.082764
281.0	-24.9	18.8	18.7	18.34	18.037	18.079	3.8	19.88255	20.205753	19.00093
281.7	-25.2	18.3	18.08	17.702	17.336	17.235	8.4	19.493275	19.561483	18.563793
281.0	-24.5	17.7	17.5	17.261	16.933	16.942	8	18.904099	18.808975	17.734522
281.3	-24.6	18.3	18.1	17.827	17.473	17.379	7.9	19.44261	19.526218	18.574104
281.5	-24.8	18.6	18.4	18.256	17.999	17.833	6.8	20.060007	19.839664	18.734602
281.7	-24.9	18.2	18	17.615	17.274	17.141	12.3	19.096783	19.402044	18.111881
281.1	-24.2	18	17.8	17.535	17.321	17.131	10.3	19.346378	19.39055	18.182833

Tabela 8 – Continuação a Tabela 3.

281.0	-24.1	18.4	18.3	18.063	17.728	17.619	11	19.60323	19.95112	18.63893
281.1	-24.1	18.2	17.9	17.679	17.509	17.377	5.4	19.160229	19.167587	18.1437
281.3	-24.2	18.6	18.4	18.146	17.799	17.742	4.7	19.769476	20.050686	18.948933
281.0	-25.4	18.5	18.2	18.044	17.736	17.593	7.4	19.477837	19.603712	18.287975
280.6	-24.7	18.5	18.3	18.038	17.708	17.581	9	19.689154	19.85861	18.46415
281.3	-24.7	17.7	17.5	17.174	16.831	16.739	8.1	18.689339	18.957611	17.679058
281.0	-24.1	18.8	18.6	18.338	18.124	17.922	4.4	19.823195	19.909847	19.288088
281.2	-24.3	18.5	18.3	18.04	17.77	17.551	8.3	19.328766	18.857765	17.836544
280.6	-24.5	18.4	18.2	17.938	17.548	17.476	8.5	19.790537	19.833336	18.5661
280.5	-24.9	18.3	18	17.745	17.584	17.408	5.2	19.541431	19.527521	18.083097
281.1	-25.2	17.4	17.2	16.932	16.581	16.557	10	18.976141	18.858831	17.440779
281.3	-25.2	18	17.8	17.51	17.157	17.001	10.3	19.33192	18.992912	17.931936
281.4	-25.2	18.2	18	17.714	17.435	17.356	7.9	19.269325	19.570774	18.046793
280.5	-24.6	18.3	18.1	17.829	17.477	17.443	6.9	19.693628	18.872984	18.511442
280.7	-24.5	18.3	18.1	17.773	17.436	17.497	6.4	19.698986	19.877474	18.585377
280.9	-24.7	17.7	17.5	17.206	16.842	16.733	17.6	18.6125	18.720417	17.628334
281.3	-24.8	18.6	18.4	18.208	17.869	17.874	4.2	19.746552	19.521872	18.744083
281.5	-25.0	18.6	18.4	18.112	17.753	17.764	6.4	19.738327	19.86405	18.551336
280.9	-24.3	17.6	17.4	17.097	16.741	16.748	7.5	18.878624	19.02638	17.470488
280.9	-24.2	17.7	17.5	17.232	16.952	16.8	8.2	18.949045	19.010298	17.965475
280.9	-24.2	18.7	18.5	18.153	17.743	17.639	8.1	19.811434	19.971203	18.885054
281.0	-24.3	17.9	17.7	17.476	17.167	17.087	10.8	18.79421	18.942327	17.953562
281.3	-24.5	18.4	18.3	17.906	17.649	17.446	7.2	19.707577	19.30741	18.120977
280.6	-25.0	18.3	18.2	17.886	17.55	17.438	6.1	19.383932	19.514257	18.18048
280.6	-25.0	17.5	17.4	17.058	16.816	16.743	8	18.776405	18.831478	17.789764
281.1	-25.3	18	17.8	17.568	17.231	17.236	8.7	19.610723	19.630949	18.408161
281.5	-25.3	17.7	17.685	1.334	17.02	16.963	10.7	19.173986	19.081873	17.945942
280.7	-24.7	18.2	18.1	17.743	17.401	17.364	7.4	19.21931	19.436356	17.931364
281.3	-24.8	18.1	18	17.795	17.566	17.447	10.5	19.414091	18.767294	17.596493
281.7	-25.0	17.8	17.6	17.314	16.981	16.891	8.6	18.806265	19.138826	17.889648
281.7	-25.1	18.7	18.5	18.162	17.807	17.766	7.6	19.712486	20.02809	18.900434

63

Tabela 9 – Lista de movimento próprio (pmr) das 172 candidatas a anãs brancas, seguem a sequência de objetos das tabelas anteriores.

ra	dec	pmra	pmdec
279.50023	-27.92332	-10.2936248289	-5.8015857385
279.69181	-28.05168	-3.9101801749	0.4430536155
280.03048	-28.11124	-11.9570125226	-9.7025133805
279.32662	-27.55359	-3.5706433615	-0.2721694743
279.41039	-27.53038	-3.8606498194	-4.112171938
279.41788	-27.50354	-1.6372565105	11.7575093162
279.32233	-27.4303	-8.7770551667	-2.0482685286
279.64044	-27.63653	-8.8353347348	-10.2179884687
279.75884	-27.67306	-8.3416207132	-3.6843889321
279.60867	-27.58938	-4.4296803967	2.81010683
279.75645	-27.58595	-12.2674974727	-2.7574809097
279.79318	-27.59738	-8.8447147931	-2.4500474566
279.97597	-27.81704	-8.5260531886	-12.563626303
280.17619	-27.93011	-6.2024512695	-2.51993229
280.17645	-27.92987	2.8985304178	3.0627588965
279.85637	-27.31462	-8.6953939943	-4.7421509853
279.88085	-27.26696	-6.8154080942	-0.272413725
280.16137	-27.53556	-15.9056969274	4.9668978569
280.03545	-27.439	-9.1377663688	-0.7592893692
280.30468	-27.55585	-16.7675897748	10.5811619003
280.02911	-26.98782	-7.4318328576	-3.2010905701
280.33824	-27.13634	1.0614343616	-0.4055354057
280.24885	-26.99772	-5.4078388813	-7.4173909371
280.60005	-27.20831	-7.8233838165	1.8104922463
279.04202	-27.80065	-1.9557992754	-8.1441039936
279.6644	-28.04366	-9.9925897001	-3.9762963724

279.91687	-28.16136	8.4767313245	10.6826802082
279.21768	-27.45681	-5.7012955755	-4.5243942584
279.30216	-27.40897	-4.3328338252	-4.0008948168
279.53384	-27.49309	-3.1812722472	-1.0445900696
280.10641	-27.77291	-14.4082889195	-4.9196707114
280.15729	-27.74384	-6.5729700241	-1.871096806
280.28334	-27.49722	-7.1441864565	-10.4343744606
280.27006	-27.44577	-17.862133314	4.7769331752
279.88983	-26.98894	-3.9715584091	-0.886672375
279.32395	-27.16504	-8.1576930864	-0.9698101509
280.25646	-27.50294	-0.0066376537	-6.1820272635
279.09736	-27.68144	-25.6638994734	-39.5497184147
279.00348	-27.62181	-9.5995280429	-3.6871568284
279.61704	-27.85254	-4.6858370412	-0.8125098603
279.61287	-27.76276	-6.8159790021	2.1873343161
279.8594	-28.01871	-10.5371103273	-0.730508522
279.87704	-28.01396	-3.1810006422	9.9107388903
279.95329	-27.98189	-3.6473239147	-0.283356073
279.95313	-27.93279	-6.1141332142	-4.4209484932
279.25361	-27.3358	-8.9577895017	-1.0075938955
279.60896	-27.44466	-5.1225665935	-3.6692695363
279.46992	-27.38417	-4.5711332709	-3.2308085074
279.59974	-27.40564	-8.0149970544	-0.2121797376
279.87987	-27.55608	0.3629326745	-6.1186359177
279.87784	-27.54733	-3.7259923174	0.6063451096
280.07226	-27.69437	-4.2194533226	-2.1776040773
280.15421	-27.57811	-7.0139826618	-4.6880841129
279.46384	-26.86209	-12.1670036277	-6.4771807645
279.71585	-27.12295	-7.1157368495	1.0448152613
280.01833	-26.52582	-2.6795723466	1.5944919567

Tabela 10 – Continuação a Tabela 10.

280.2325	-26.73935	-18.7644683681	-4.3054001171
280.10274	-26.6752	-15.8397062702	-2.6396729435
280.21493	-26.71762	-5.7237141581	0.6353500076
280.21298	-26.66864	-12.5303332469	-3.277694347
280.23379	-26.57551	-18.6834912428	6.6562976585
280.44735	-26.80984	-9.9869079319	-5.6758961096
280.49987	-26.70873	-7.7665139485	-3.4655834728
280.62491	-26.93135	-14.5387376096	0.1490354068
280.67924	-26.93952	-13.3100047363	1.3595204013
280.8564	-26.8969	-5.6159764113	-0.415253493
280.38189	-26.29207	-7.1125845268	-7.765092605
280.40097	-26.27802	0.8849557641	3.0456102908
280.67128	-26.4623	-5.4462233812	-3.9325156156
280.67128	-26.4623	-5.4462233812	-3.9325156156
280.86582	-26.60708	-12.2226947644	1.7373266601
280.86346	-26.52387	-4.7584110568	-2.4731896336
280.8678	-26.4891	-12.4911566782	3.6975553515
280.94564	-26.49221	-6.4053977461	-3.6985071202
280.53883	-26.08389	-11.3356939249	1.0732726442
280.74182	-26.1719	-1.0015141527	-4.228610624
281.05637	-26.18767	-7.7921317603	3.867543878
280.46735	-25.5798	-10.0474171392	-2.7628983074
280.71951	-25.75653	-6.8375869168	-1.6912045094
280.80882	-25.67534	-12.8382548791	-6.7797891468
280.73165	-25.60075	-9.0192880388	-1.3538831312
280.93788	-25.77386	-14.6884512052	-0.6203668332
279.76322	-26.51567	-7.6295881988	-1.7260118845
280.02416	-26.58349	-6.9951429075	-0.4711999287

Tabela 11 – Continuação a Tabela 10.

280.63206	-26.78818	34.854446994	-23.5246401705
279.92188	-26.2283	-3.6383649182	0.494817015
279.91209	-26.1404	-2.625880853	-3.2283052223
280.30109	-26.20528	0.2261987851	6.2267837036
280.81745	-26.50584	-12.7573629096	0.0769001046
280.73696	-26.0404	-6.5502791284	0.6967696782
280.74613	-25.96839	0.3754390453	6.9893456227
280.31602	-25.45783	-16.5587216077	1.116447909
280.37539	-25.45647	-0.5590159516	-4.1548645435
281.16494	-25.89962	-13.1104752063	0.6049106053
281.11141	-25.87009	-8.3399635696	-2.0521701394
281.13027	-25.87365	-6.2976742721	-2.7036402497
280.19883	-25.41039	-5.5660402151	3.1390791473
279.97829	-26.43569	-13.1473455364	-3.0702927947
280.17551	-26.47816	-8.6336139745	-0.328433558
280.30979	-26.56968	-10.132081037	4.2121266145
280.30799	-26.52694	-10.9120152884	-0.1833673892
280.38326	-26.47771	-14.238376977	-11.1423974052
280.25554	-26.04528	-6.0389342926	0.2578412556
280.58452	-26.28727	12.6102838588	7.4330925652
280.60606	-26.24541	-9.9493645638	8.8460573415
280.62516	-26.1932	-14.548690044	7.516845658
280.84	-26.29164	-8.4496063551	-4.5975400483
280.84925	-26.22712	-25.7683419073	5.8952858595
280.26233	-25.61116	-10.175226572	-5.3007679341
280.14059	-25.51338	-10.2012366533	-8.4957107054
280.39879	-25.77177	-4.5244419129	-3.4946748864
280.88948	-26.002	-7.4823989305	-0.7813676027
280.99261	-26.03747	-6.6622472362	-1.3971354872
281.03684	-25.9688	-6.1333581574	-6.0961853762
280.30393	-25.3098	-7.8407726076	-2.081945499

Tabela 12 – Continuação a Tabela 10.

280.42548	-25.34736	-0.8734149771	-8.8518130632
280.72246	-25.3644	-5.9898139682	-4.497700489
281.10645	-25.59918	-13.2426386609	0.3096022834
280.48795	-26.62377	-7.2942867298	-0.7291040344
280.58855	-26.5277	-3.0381321652	-3.4881790643
280.35098	-26.16367	-24.175124941	3.4120292427
280.69338	-26.17378	-3.8020918027	-4.2967415257
280.95174	-26.4243	-8.9144759024	-2.5747898007
280.35025	-25.64271	-16.0116515696	-6.4642641204
280.78677	-25.981	-4.2256866551	-0.9717133125
280.86529	-25.93151	-7.3223776063	4.6536009329
281.15094	-26.12847	-13.4936375112	-12.5546473516
280.79499	-25.51361	-11.8878882979	-1.0959345657
280.91063	-26.72845	-3.52188794	-5.3397308815
281.06254	-26.44868	-1.9886616952	-1.6139237016
281.24562	-26.14365	-2.868618884	-4.2587441443
280.91836	-26.12892	-17.0817689323	0.371094506
280.81559	-24.92008	-12.6165383327	-1.5841988647
280.83867	-24.91621	-2.2303360776	-4.8450562488
281.04987	-24.97851	-2.4964785177	-1.1799770708
281.7255	-25.23854	-5.4787216102	-3.0160519019
281.00925	-24.51054	-13.4485273147	-3.8934928216
281.30001	-24.63303	-8.1029653651	-2.9592073702
281.59158	-24.81389	18.8642788065	-8.9349701776
281.79087	-24.92855	-12.8628758177	-1.3107347915
281.1547	-24.29154	-11.6702212806	-3.7059804626
281.06254	-24.19973	-9.8013629991	-0.3390618505
281.16292	-24.19938	-9.219442085	-0.1693965469

Tabela 13 – Continuação a Tabela 10.

281.33333	-24.29099	-2.3834001555	-8.2077996067
281.00983	-25.44606	-7.3142258045	-3.0133031483
280.64425	-24.77555	-2.7990195699	-4.1580406231
281.35366	-24.718	0.4559191809	1.9278245735
281.06664	-24.12562	-4.6754489183	1.6820979846
281.25651	-24.33584	-11.9485227979	-8.1909336764
280.68034	-24.50637	-13.0872082951	0.630398093
280.56912	-24.96453	-7.1497840822	-4.2239265863
281.10127	-25.25908	-6.6785376927	-3.9176122715
281.3936	-25.26425	-3.2398255066	-4.2155857198
281.43023	-25.27743	-2.1780116787	-6.816094582
280.58023	-24.65834	-2.993050874	-6.3690717941
280.71153	-24.59491	-7.0206505034	-2.0443684112
280.98211	-24.74403	-13.348906754	5.5121523076
281.3538	-24.85187	-3.4806943223	-3.2783487337
281.53774	-25.07213	-7.3159668301	-0.5457423444
280.9317	-24.36002	-10.4434745657	-2.1273512233
280.97455	-24.2795	-10.4503788844	-3.4442275403
280.98994	-24.27691	-3.2948032942	-2.005170633
281.08057	-24.37376	-4.4460306981	-1.1137470189
281.35487	-24.50198	-3.3739143147	-4.2500034514
280.62249	-25.05645	-15.6267535015	-5.6028424403
280.6789	-25.04103	-8.9610148581	3.0056325818
281.19024	-25.34923	-8.7535400905	4.4086741015
281.539	-25.357	-0.0063766823	-5.3904039834
280.78466	-24.75496	1.4456510177	-5.1142831231
281.38296	-24.86581	-14.1941829208	-8.1023540316
281.71716	-25.0335	-4.234955139	-2.0332390764
281.74063	-25.1796	-6.9716161788	-5.0798465028

Tabela 14 – Continuação a Tabela 10.

ANEXO B – CANDIDATAS A ANÃS BRANCAS SELECIONADAS NOS TILES B202, B203, B204.

Tabela 15 – Lista das candidatas mais prováveis a anãs brancas para os *tiles* b201, b202, b203. As colunas seguem a mesma nomenclatura da Tabela 3.

ra	dec	mag Z	mag Y	mag J	mag H	mag Ks	parallax	g mag	bp mag	rp mag
270.39677	-42.22483	18.275	17.964	17.78	17.567	17.418	5.7864292436	18.905886	19.08359	17.941729
270.55139	-41.90128	18.214	17.999	17.751	17.48	17.337	6.9005611735	19.259428	18.675472	17.741636
270.82856	-41.86729	18.197	17.979	17.774	17.45	17.425	14.7652554129	19.245209	19.334757	18.343208
271.66599	-42.20155	18.315	18.242	17.906	17.724	17.55	5.917472645	19.153078	19.023497	18.240923
270.72282	-41.52498	17.501	17.337	17.066	16.725	16.667	9.1464594855	18.223337	18.402828	17.456644
271.08349	-41.59431	18.226	18.043	17.837	17.517	17.471	5.892751207	19.136518	19.229763	18.168297
271.18163	-41.59393	18.11	18.003	17.657	17.396	17.367	4.9466535558	18.806746	19.156158	18.017628
271.12018	-41.2292	18.856	18.663	18.296	18.044	17.893	6.8398184341	20.096025	19.747807	18.776796
270.96413	-41.14271	18.959	18.645	18.34	18.076	17.83	7.3982529039	19.689114	19.522501	18.596563
271.01352	-41.13231	18.247	18.026	17.719	17.494	17.459	4.8725491479	19.210503	19.109947	18.121946
271.23243	-41.29166	17.904	17.741	17.532	17.266	17.242	5.641251976	19.12143	18.841862	17.91014
271.3463	-41.33223	18.653	18.542	18.203	17.883	17.823	4.5954904846	19.40295	19.508072	18.670872
270.68076	-41.96611	17.9	17.71	17.433	17.118	17.036	7.5240604004	18.984276	19.070717	17.982723
271.51361	-41.3171	18.283	18.109	17.855	17.527	17.436	7.0977052322	19.266672	19.33447	18.197554
270.28368	-41.78179	18.193	18.082	17.801	17.662	17.533	8.180504032	19.302908	19.366894	18.40064
270.73419	-41.78752	17.646	17.5	17.276	16.957	16.859	8.6141068233	18.280228	18.460766	17.633633
271.23527	-41.86379	18.592	18.426	18.087	17.749	17.622	8.8502486938	19.749258	19.91004	18.850351
271.32011	-41.47907	18.799	18.258	18.012	17.703	17.547	6.1149635952	19.303192	18.834455	18.147495
271.59161	-41.65252	18.315	18.245	18.065	17.668	17.582	7.5163513619	19.380804	19.033537	18.316792
270.88366	-41.01881	18.584	18.4	18.096	17.753	17.733	7.894331997	19.553312	19.605568	18.412405
271.87893	-41.38597	18.208	18.052	17.789	17.461	17.497	4.5154880591	19.302952	19.27856	18.596281
271.92139	-41.24393	18.721	18.702	18.198	17.898	17.696	9.1935243106	19.121292	19.255001	18.1539
270.94352	-41.83121	18.14	18.013	17.764	17.478	17.342	11.1213962255	19.341028	19.316738	18.30221
271.24308	-41.95199	18.316	18.155	17.943	17.629	17.582	5.7749967887	19.341059	19.55924	18.269482
271.6687	-42.01495	18.291	18.108	17.823	17.404	17.31	9.1426124336	19.119753	19.091394	18.136354
271.7276	-41.7602	18.084	18.055	17.842	17.556	17.693	6.4047251505	18.77296	18.887539	18.065222
Tabela 16 – Continuação a Tabela 15

271.81317	-41.78562	17.65	17.48	17.19	16.856	16.855	9.2678505495	18.39407	18.508339	17.438087
271.13183	-40.98629	18.137	17.963	17.657	17.309	17.203	10.7096971068	19.178812	19.215164	18.14807
271.70971	-41.26292	18.243	18.117	17.839	17.588	17.57	13.4072582415	19.305447	19.22842	18.300667
271.80723	-41.19591	17.861	17.653	17.363	17.026	16.919	8.9628615085	18.682926	18.89545	17.748653
271.18183	-40.7666	18.39	18.235	18.051	17.794	17.717	6.1814825391	19.344048	19.676432	18.672266
271.59859	-40.18791	18.237	18.101	17.896	17.551	17.406	7.3069285434	18.95219	18.737762	17.943047
271.70339	-40.13493	18.266	17.987	17.837	17.654	17.844	3.3651089824	19.145557	18.84486	17.572422
271.88123	-40.39356	18.463	18.339	18.044	17.844	17.845	3.5394717966	19.132116	19.124138	18.299398
272.00002	-40.32772	19.084	18.828	18.349	18.059	17.976	4.683378007	20.015789	20.176172	19.388596
271.99461	-40.29862	18.326	18.035	17.796	17.449	17.307	13.2962674084	19.20954	19.658346	18.292582
272.20212	-40.48471	18.049	17.916	17.65	17.41	17.322	6.1952268668	18.789963	18.849277	17.932703
272.25374	-40.4987	18.354	18.24	17.862	17.54	17.523	4.8054835209	19.428757	19.504843	18.333786
272.42639	-40.49619	17.689	17.614	17.352	17.009	16.955	7.2089697196	19.10466	18.686811	17.522161
272.28725	-40.38019	18.138	18.007	17.692	17.406	17.451	4.6942785102	18.963894	19.239435	18.25885
272.70242	-40.68893	18.095	17.979	17.859	17.601	17.687	6.8474421564	18.933056	19.167847	18.264498
272.67282	-40.6333	18.169	17.954	17.753	17.451	17.447	6.4874644264	19.189035	19.235403	18.101927
271.78488	-39.95539	18.506	18.317	17.997	17.673	17.652	5.3291961368	19.669065	19.71625	18.683762
271.82251	-39.96264	18.021	17.97	17.843	17.722	17.642	5.9289736046	18.711557	18.249374	17.95763
271.90667	-39.90988	18.337	17.99	17.838	17.544	17.449	8.5890328153	19.171846	18.980022	17.92995
271.98533	-39.87083	18.098	17.914	17.632	17.276	17.251	7.0497702684	19.383602	19.16704	18.106956
272.31332	-40.06686	18.131	17.939	17.644	17.38	17.215	6.7573989702	19.353542	19.432795	18.287249
272.34762	-39.99206	18.041	17.701	17.797	17.519	17.655	6.64421672	19.258316	18.78473	17.735586
271.00146	-40.81773	18.01	17.793	17.481	17.129	17.149	9.0773893629	19.215342	19.10693	18.082752
271.36725	-41.01207	17.938	17.631	17.391	17.035	16.96	7.1490134645	18.68082	18.766298	17.58319
271.39066	-40.93995	18.453	18.325	18.137	17.945	17.782	5.3611501653	19.381384	19.043522	18.264778
271.70379	-40.56039	17.325	17.172	16.975	16.671	16.63	7.3285337629	18.16254	18.1139	17.250431
272.00522	-39.96628	18.755	18.583	18.347	18.096	17.859	7.9000636536	19.442104	19.458206	18.68079
271.03788	-40.75515	17.84	17.719	17.48	17.2	17.268	4.6580206429	18.813192	18.831163	18.026396
271.48868	-40.04767	18.207	18.061	17.878	17.56	17.427	7.3955113268	19.105165	19.170992	18.354422
272.34221	-40.1777	17.746	17.568	17.419	17.142	17.079	8.5716079889	18.607443	18.02809	16.717009

Tabela 17 – Continuação a Tabela 15

271.0858	-40.67022	18.271	18.095	17.724	17.393	17.266	8.0168351741	19.37747	19.608643	18.583513
271.2351	-40.64029	18.686	18.402	18.135	17.971	17.892	14.8931791813	20.185324	19.414724	18.458286
272.00171	-40.99749	18.765	18.544	18.201	17.838	17.679	9.9498367761	19.61165	19.612276	18.694141
271.71018	-40.41967	18.322	18.135	17.955	17.735	17.658	9.8305479165	19.507603	19.395342	18.47219
272.09042	-40.6275	18.375	18.177	17.866	17.576	17.643	4.8653940732	19.075806	19.12691	18.211176
272.0157	-40.55263	18.831	18.688	18.374	18.152	17.94	6.0799240828	19.829506	19.300308	18.646225
272.39284	-40.76227	18.387	18.15	17.991	18.166	17.979	3.06021421	19.263264	19.524452	17.239054
272.41579	-40.64549	18.786	18.658	18.287	18.092	17.826	6.0915460654	19.3725	19.09061	18.286444
272.38462	-40.63072	18.6	18.409	18.139	17.935	17.859	4.3428848537	19.450882	19.514845	18.621252
272.35001	-40.60255	18.465	18.281	17.903	17.567	17.39	19.9268722117	19.357283	19.36611	18.395554
271.49513	-40.02034	18.016	17.864	17.719	17.458	17.39	5.4772349252	18.627735	18.303768	17.461084
271.63379	-40.02507	17.993	17.788	17.464	17.189	17.075	6.1670593359	19.242802	19.160425	18.076485
271.5944	-39.9938	18.291	18.014	17.665	17.445	17.178	8.7954400014	19.258602	19.436487	18.419806
271.51438	-39.94286	18.713	18.435	18.261	17.922	17.89	4.1814086159	19.720953	19.566912	18.552973
271.94863	-40.22622	16.575	16.414	16.123	15.827	15.724	12.8864585369	17.350584	17.592	16.537565
271.91596	-40.06693	18.377	18.228	17.949	17.651	17.515	5.4171707423	19.296997	19.22521	18.247072
272.24525	-40.23295	18.194	18.11	17.847	17.683	17.727	6.8740254912	18.92157	19.01743	18.22601
272.48232	-40.39674	17.922	17.792	17.557	17.407	17.311	4.830497299	19.26618	18.924032	18.059185
272.18792	-39.70739	18.439	18.448	18.074	17.815	17.672	4.8795154436	18.682743	19.011068	17.606325
272.47433	-39.91461	18.635	18.471	18.177	17.939	17.84	4.5347568379	19.52142	19.132587	18.104315
272.63954	-40.02333	18.876	18.725	18.335	18.105	17.883	5.1191933957	20.04168	19.44854	19.372038
271.36153	-40.68375	18.574	18.332	18.01	17.717	17.602	6.9058970245	19.818943	19.667635	18.662485
271.5525	-40.88609	18.011	17.774	17.812	17.767	17.778	4.0918799583	19.361116	18.642965	18.012175
271.67916	-40.78607	18.683	18.413	18.019	17.877	17.879	3.2124069144	19.581772	19.805653	18.641973
272.29756	-41.09997	17.83	17.7	17.409	17.117	17.012	6.3246980515	18.892166	18.974106	18.046461
271.50714	-40.29653	17.873	17.728	17.481	17.162	17.156	5.9418040612	18.554901	18.29203	17.64819
271.81897	-40.45174	18.293	18.085	17.76	17.541	17.358	7.4131045237	19.593376	19.7549	18.48809
272.16235	-40.56454	18.103	17.969	17.765	17.459	17.495	5.358373519	18.862347	18.943605	18.22375

Tabela 18 – Continuação a Tabela 15

272.2081	-40.56693	17.99	17.809	17.482	17.281	17.221	18.586393238	19.039057	19.175274	18.1467
272.48907	-40.79386	18.465	18.272	17.921	17.689	17.481	7.9893227606	19.275145	19.211798	18.323563
272.52289	-40.70381	18.277	18.07	17.879	17.632	17.538	5.1491478318	19.329054	19.754501	18.447496
271.81966	-39.99767	18.693	18.423	18.114	17.898	17.766	5.8191068266	19.609133	18.887688	18.308245
271.83149	-39.98065	18.5	18.339	18.036	17.744	17.604	11.042885446	19.437513	19.155344	18.292126
272.83676	-40.14774	18.65	18.366	18.23	17.871	17.812	4.792883948	19.42113	19.560682	18.549833
272.93028	-40.13482	18.075	17.833	17.711	17.421	17.48	6.7538035776	19.24511	18.686388	18.2867
272.31773	-39.14855	18.161	17.95	17.678	17.377	17.288	9.2607093267	18.95116	18.890032	17.921368
273.34878	-39.73871	18.425	18.334	18.064	17.817	17.639	7.2948416042	19.233482	19.14177	18.199175
273.22481	-39.64595	18.475	18.287	18.009	17.695	17.733	8.1936802485	19.293154	19.560947	18.477493
273.00207	-39.05516	18.378	18.142	17.938	17.625	17.528	6.9138965242	19.484722	18.97427	18.46872
273.52048	-39.27088	18.347	18.156	17.872	17.693	17.606	7.305006047	19.017185	18.992031	18.191502
272.85754	-38.58762	18.017	17.749	17.512	17.162	17.199	7.3195593966	18.724915	18.550495	17.68287
273.18824	-38.74792	17.812	17.658	17.416	17.054	17.045	6.8993357671	18.9625	18.984911	18.062859
273.082	-38.67245	18.009	17.838	17.594	17.263	17.246	6.2303332988	19.041292	19.03144	18.176645
273.72861	-39.07648	17.925	17.645	17.436	17.143	16.972	13.978076735	19.001284	19.17515	18.093512
273.5985	-39.02493	17.886	17.691	17.451	17.16	17.063	9.5732640925	18.87441	19.02819	17.982712
272.81923	-39.37342	18.487	18.277	18.016	17.747	17.728	4.4494330714	19.353394	19.456808	18.493961
272.76182	-38.96299	18.757	18.496	18.227	18.053	17.85	4.8410949476	19.796703	19.13914	18.23612
273.59412	-38.92612	18.683	18.457	18.072	17.741	17.723	4.3329918915	19.382067	19.297745	18.45056
272.26103	-38.84085	18.358	18.061	18.019	17.718	17.764	6.1838378576	19.599516	19.644747	18.427465
272.48769	-38.50073	17.752	17.481	17.301	16.961	16.858	7.5594087192	18.823301	18.967619	18.047499
271.97164	-39.27839	18.106	18.106	17.729	17.518	17.427	6.9903252854	18.97681	18.333466	17.793295
272.71386	-39.58205	17.881	17.722	17.453	17.128	17.044	6.8925743039	18.662508	18.659742	17.718552
272.67871	-39.53261	18.147	17.993	17.762	17.524	17.328	11.2848341372	18.97464	18.991215	18.062532
272.77655	-39.56679	17.711	17.547	17.346	17.063	16.942	14.4191739964	18.662626	18.823591	17.892584
272.99838	-39.8229	17.742	17.561	17.371	17.087	17.122	5.4962426642	18.753578	18.848915	17.80231
272.49744	-39.11305	18.306	18.115	17.931	17.616	17.538	4.9448856835	19.199265	19.047945	18.258959
272.99841	-39.26037	18.221	17.983	17.666	17.438	17.276	7.2048738817	19.145445	18.505692	17.509092
273.14065	-39.35999	18.421	18.253	17.94	17.751	17.838	6.243963804	19.40898	19.341496	18.45212

Tabela 19 – Continuação a Tabela 15

273.14129	-38.89718	18.449	18.304	18.044	17.696	17.631	5.0305037919	19.223553	19.152794	18.395897
272.74247	-38.3922	18.573	18.323	18.127	17.775	17.756	4.3561883082	19.341755	19.433441	18.56518
272.78834	-38.37822	18.407	18.234	17.926	17.639	17.46	6.4803900938	19.475082	19.148605	18.160234
272.72374	-38.31895	17.989	17.771	17.534	17.171	17.161	10.7769691342	19.028503	19.34097	18.186583
272.91292	-38.55408	18.626	18.466	18.161	17.841	17.693	7.6264487445	19.559174	19.5468	18.43233
272.90247	-38.47808	18.015	17.794	17.521	17.437	17.568	3.2392702333	19.239946	18.952986	17.754774
272.96252	-38.44862	18.514	18.372	18.161	17.877	17.795	9.2269448499	19.38604	19.292152	18.008413
272.14538	-39.41986	17.793	17.692	17.236	16.903	16.742	10.5864021605	18.723501	18.745483	17.48237
272.71832	-39.70876	18.201	18.091	17.77	17.502	17.585	4.4231334917	18.860792	18.673328	17.912262
272.69638	-39.25247	18.129	18.137	18.148	17.851	17.813	8.5215302861	19.396639	18.695072	18.194674
273.5943	-39.07441	18.767	18.566	18.307	17.911	17.852	4.8819693391	19.99298	20.064655	18.81733
273.25331	-39.86226	17.723	17.57	17.315	17.115	17.21	7.4914581378	18.693966	18.745157	17.865639
273.31643	-39.79853	18.649	18.434	18.135	17.784	17.762	4.8353744694	20.063276	19.656418	18.750605
273.51541	-39.4235	18.285	18.149	17.905	17.908	17.792	3.708353524	19.13115	19.128395	18.138947
273.8604	-38.87474	17.656	17.543	17.485	17.484	17.412	16.7174071956	19.187693	18.66262	17.635618

Tabela 20 – Movimento próprio (pmr) das 129 candidatas a anãs brancas dos *tiles* b201, b202, b203.

dec	pmra	pmdec
-42.22483	0.9202015072	10.8348806372
-41.90128	-0.1548654588	9.2890387622
-41.86729	-16.5989294827	7.0973500632
-42.20155	-10.4388459144	-1.5546434299
-41.52498	-6.6281028193	-0.2084636129
-41.59431	-7.1981543346	-2.7683279764
-41.59393	5.5865714719	-0.6058426376
-41.2292	12.8607463245	16.0120098875
-41.14271	7.7446096353	15.4123963004
-41.13231	4.3780928396	-9.5415752652
-41.29166	-4.7126402155	-4.4783249844
-41.33223	-2.5239431336	-5.6356217018
-41.96611	-0.9105467384	-0.0689892936
-41.3171	10.864963397	-14.9112934004
-41.78179	-6.4060317858	-12.8317730727
-41.78752	-11.2043964944	3.6692325389
-41.86379	0.621456047	-0.6660866379
-41.47907	3.9829389756	-11.2178631552
-41.65252	-6.7870543104	-23.1067119503
-41.01881	-7.9481566302	-1.1519023628
-41.38597	-4.6599879455	-5.9503998448
-41.24393	15.3426870253	21.0196923617
-41.83121	-6.8630074381	-0.5376674503
-41.95199	-14.6616640639	2.3264103127
-42.01495	0.8655031295	1.2035870675
-41.7602	3.7272434513	-7.5872553604
-41.78562	1.2780153621	0.214437084
-40.98629	-8.118301693	-1.3564660206
	dec -42.22483 -41.90128 -41.86729 -42.20155 -41.52498 -41.59431 -41.59393 -41.2292 -41.14271 -41.13231 -41.29166 -41.33223 -41.96611 -41.3171 -41.78179 -41.78752 -41.86379 -41.47907 -41.65252 -41.01881 -41.38597 -41.24393 -41.24393 -41.83121 -41.95199 -42.01495 -41.78562 -40.98629	decpmra-42.224830.9202015072-41.90128-0.1548654588-41.86729-16.5989294827-42.20155-10.4388459144-41.52498-6.6281028193-41.59431-7.1981543346-41.593935.5865714719-41.229212.8607463245-41.142717.7446096353-41.132314.3780928396-41.29166-4.7126402155-41.3223-2.5239431336-41.96611-0.9105467384-41.96611-0.9105467384-41.317110.864963397-41.78179-6.4060317858-41.78752-11.2043964944-41.863790.621456047-41.479073.9829389756-41.65252-6.7870543104-41.01881-7.9481566302-41.38597-4.6599879455-41.2439315.3426870253-41.83121-6.8630074381-41.95199-14.6616640639-42.014950.8655031295-41.785621.2780153621-40.98629-8.118301693

271.70971	-41.26292	-17.5585606413	3.5622337488
271.80723	-41.19591	-3.1050191929	-4.2349930687
271.18183	-40.7666	-6.4936077355	-1.2410309004
271.59859	-40.18791	3.9418221448	0.2895254179
271.70339	-40.13493	-5.847041279	-2.8008633267
271.88123	-40.39356	-1.2821132575	2.7589682046
272.00002	-40.32772	-5.7266344321	-2.3686084108
271.99461	-40.29862	-12.5531198555	4.0048969996
272.20212	-40.48471	-7.6527885729	-7.3646421683
272.25374	-40.4987	11.9841269789	12.2006599141
272.42639	-40.49619	-6.9962078015	0.396024366
272.28725	-40.38019	-3.2210094534	-1.1753491399
272.70242	-40.68893	-5.7501860049	-12.2588670498
272.67282	-40.6333	-12.8800813719	1.9050334406
271.78488	-39.95539	-6.5383121656	-1.9367332267
271.82251	-39.96264	16.2777853149	-20.6609422301
271.90667	-39.90988	-7.6238930594	1.7142070995
271.98533	-39.87083	-0.2968686622	-1.1122091464
272.31332	-40.06686	-5.7486380354	1.7935275497
272.34762	-39.99206	-5.6989626549	6.7853646276
271.00146	-40.81773	-9.8834770519	2.5574589947
271.36725	-41.01207	-15.2317376662	-0.6655902814
271.39066	-40.93995	-4.7240699493	7.4943148617
271.70379	-40.56039	-8.5823032692	2.1999758062
272.00522	-39.96628	-3.9688212235	2.8374292907
271.03788	-40.75515	-4.7020985686	0.0169773936
271.48868	-40.04767	8.5949389915	14.4946778037
272.34221	-40.1777	-4.157005834	2.428543342

Tabela 21 – Continuação a Tabela 19

271.0858	-40.67022	-0.7550388966	-1.9763223151
271.2351	-40.64029	-7.6539049343	-3.9392212164
272.00171	-40.99749	-8.3691582001	1.096810575
271.71018	-40.41967	-13.629259266	4.4179752038
272.09042	-40.6275	13.7950573886	-12.2952666968
272.0157	-40.55263	1.4296710036	-11.0184090068
272.39284	-40.76227	-3.0802763623	-7.3493299688
272.41579	-40.64549	21.2618297022	22.4312291992
272.38462	-40.63072	0.5078921731	-4.3999710063
272.35001	-40.60255	-10.3567984839	11.5468921913
271.49513	-40.02034	-1.4821400112	0.5748385492
271.63379	-40.02507	-14.941099253	5.1053968179
271.5944	-39.9938	-1.3212564806	5.8201779226
271.51438	-39.94286	-7.0999368125	-3.1408485376
271.94863	-40.22622	-8.4209670064	4.0343846189
271.91596	-40.06693	9.3870950688	6.6135065467
272.24525	-40.23295	-7.7970018176	-1.8788829001
272.48232	-40.39674	15.7004976878	13.4902872043
272.18792	-39.70739	-2.2923903564	-2.8886840161
272.47433	-39.91461	-3.1088873925	-3.6049081299
272.63954	-40.02333	5.9295253838	5.4659934012
271.36153	-40.68375	-15.8418671882	-1.0081971912
271.5525	-40.88609	-7.4173456635	-4.4813644435
271.67916	-40.78607	-2.2581857103	-8.866836538
272.29756	-41.09997	-3.5066110379	2.9974749978
271.50714	-40.29653	8.494856098	4.8770468866
271.81897	-40.45174	-11.4393961857	2.933126979
272.16235	-40.56454	-7.5015964214	8.7772324698
272.2081	-40.56693	-14.8929145881	8.7569712821
272.48907	-40.79386	-7.736126418	1.9002927965

Tabela 22 – Continuação a Tabela 15

272.52289	-40.70381	-9.1107733551	-3.2146540144
271.81966	-39.99767	-28.016440573	-23.0694057823
271.83149	-39.98065	4.0509891283	-7.908901587
272.83676	-40.14774	-1.8858283821	-3.7254019717
272.93028	-40.13482	-15.2544983276	-1.6414983945
272.31773	-39.14855	3.1768740448	12.4851526475
273.34878	-39.73871	-1.3119798899	3.2638893665
273.22481	-39.64595	-11.3646677918	4.3462468738
273.00207	-39.05516	17.7370069532	7.7866653842
273.52048	-39.27088	-5.6789971347	-4.1862607284
272.85754	-38.58762	-2.1896554912	2.224989059
273.18824	-38.74792	10.558642199	14.8907786172
273.082	-38.67245	-2.4725124581	-1.4270554184
273.72861	-39.07648	-0.2858082677	-9.8482835204
273.5985	-39.02493	-11.9035485757	1.0943392685
272.81923	-39.37342	-2.2485426583	-4.5775480773
272.76182	-38.96299	-1.2976152755	-5.462774232
273.59412	-38.92612	8.354373486	-9.936849069
272.26103	-38.84085	-0.4504420307	0.7948235871
272.48769	-38.50073	-4.7920843064	-4.7990999404
271.97164	-39.27839	1.0116028925	-3.8925008956
272.71386	-39.58205	-8.9859821948	8.0546749056
272.67871	-39.53261	7.102768002	-8.09813136
272.77655	-39.56679	4.6128831011	-2.8997957808
272.99838	-39.8229	-2.4970079658	-5.8089198908
272.49744	-39.11305	2.4027803184	-3.2252075518
272.99841	-39.26037	21.6163857828	-26.609146894
273.14065	-39.35999	32.6851134549	-26.9268132792

Tabela 23 – Continuação a Tabela 15

Tabela 24 – Continuação a Tabela 15

273.14129	-38.89718	-0.7676085617	-6.3308617641
272.74247	-38.3922	-10.2172642049	-2.9033231558
272.78834	-38.37822	-1.406738556	-6.4458994212
272.72374	-38.31895	-15.1133437735	-1.8679445013
272.91292	-38.55408	-20.5595221404	7.1278860479
272.90247	-38.47808	3.7901371663	2.456020282
272.96252	-38.44862	-6.4941403882	-1.6094515259
272.14538	-39.41986	-6.7305544186	-12.2495062448
272.71832	-39.70876	11.9500751665	15.9056620013
272.69638	-39.25247	0.6868990184	-0.448951787
273.5943	-39.07441	-9.1184547619	-0.6801796688
273.25331	-39.86226	-6.6518895173	-8.7334024722
273.31643	-39.79853	3.4053142915	1.9131507794
273.51541	-39.4235	-5.6549938728	-3.7091689359
273.8604	-38.87474	-4.7425672018	-3.6937379018