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Resumo

Os experimentos desempenham um papel importante na ciência, sendo

a maneira como observamos o mundo real. No entanto, em muitos

casos, os experimentos podem ser caros, demorados ou não fornecer

informação o suficiente sobre as quantidades de interesse. Nesses casos,

pode ser interessante ajustar o experimento para melhorar sua eficiência.

O campo da ciência cujo o objetivo é encontrar a melhor configuração

para experimentos é chamado de projeto ótimo de experimento (OED).

Utilizamos conceitos de inferência bayesiana para modelar a realização

do experimento e, assim, podemos avaliar o desempenho do experimento

utilizando o ganho esperado de informação de Shannon (EIG). Quanto

mais informativo um experimento for quanto às quantidades de interesse,

maior será seu EIG. Assim, o EIG é nossa função de utilidade no OED;

a quantidade que queremos maximizar.

Para o caso geral, estimar o EIG pode ser caro. A abordagem direta

é aproximar as integrais do EIG usando integração de Monte Carlo

(MCI). O estimador resultante é o Monte Carlo de laço duplo (DLMC).

O DLMC é caro e é conhecido por ter problemas numéricos, assim,

buscamos outro estimador de EIG que possa ter melhor desempenho

que o DLMC. Uma alternativa é aproximar a informação posterior ao

experimento por uma função gaussiana, resultando no estimador de

Monte Carlo com Laplace (MCLA). Este estimador tem um viés da

aproximação de Laplace e é, portanto, inconsistente. Como alternativa

para estimar o EIG, apresentamos o Monte Carlo de laço duplo com

amostragem por importância. A amostragem por importância usa uma

estimativa Gaussiana da posterior para obter amostras mais informativas

quanto às quantidades de interesse.

Sendo o custo uma questão principal em OED, é importante tornar

a otimização o mais eficiente possível. Para otimizar o projeto de ex-

perimentos, usamos o gradiente estocástico de descida, reduzindo o

custo de cada iteração ao evitar o custo de um MCI. A diminuição no

tamanho do passo para o SGD torna a convergência sensível ao tamanho



do passo escolhido. Usamos técnicas no estado-da-arte em otimização

estocástica para obter uma otimização robusta e rápida. Uma técnica

é a média de Polyak–Ruppert, consistindo de uma média móvel do

caminho de otimização. Como a média é mais suave do que o caminho,

a diminuição do tamanho do passo necessário para o SGD pode ser

relaxada, fornecendo, assim, um algoritmo mais robusto. Para acelerar a

convergência, combinamos o SGD com um método de momento, a acel-

eração do Nesterov. O algoritmo resultante, o ASGD-restart, é robusto

e mantém a convergência acelerada em algumas situações.

Para usar os métodos do gradiente estocástico, são necessários esti-

madores não-enviesados do gradiente verdadeiro. Assim, deduzimos

os gradientes dos estimadores DLMC, MCLA e DLMCIS em função

do modelo direto e suas derivadas. Além disso, as complexidades dos

estimadores de gradiente são apresentadas e o pseudocódigo de seus

algoritmos é mostrado para permitir a reprodução.

Para testar o desempenho dos métodos, nós os usamos para resolver

quatro exemplos numéricos. O primeiro é um problema de otimização

estocástica pura com vinte dimensões tanto para o projeto quanto para

as quantidades de interesse. O segundo exemplo é um problema de

OED sem um significado físico que criamos para testar as combinações

entre os estimadores EIG e os métodos de otimização. Na média de

cem execuções, o ASGD-restart com o MCLA resolveu este exemplo

com menos de 300 avaliações de modelo, enquanto o DLMC usando a

descida de gradiente deterministico precisou de 2.99× 107 avaliações.

O terceiro exemplo é o posicionamento ideal de um extensômetro em

uma viga para inferir propriedades mecânicas do material do qual a

viga é feita. Este exemplo é usado para mostrar que o ótimo encontrado

é consistente com a intuição de engenharia. O quarto e último exemplo

é a otimização das correntes em um experimento de tomografia por

impedância elétrica (EIT) para inferir os ângulos nas camadas de um

material laminado composto. A simulação do EIT requer o uso do

método de elementos finitos, sendo, portanto, um modelo avançado caro

para avaliar. O ASGD-restart usando o gradiente do estimador MCLA



convergiu para soluções ótimas nos quatro casos testados. Até onde vai

o conhecimento dos autores, esta é a primeira pesquisa para resolver

efetivamente um problema OED com um modelo baseado na análise de

elementos finitos.

Nos testes numéricos, usando o gradiente do estimador MCLA para

otimização estocástica resultou em convergência rápida em relação ao

custo. Além disso, o reinício do ASGD acoplado ao MCLA provou ser

uma opção viável para a otimização de experimentos com modelos caros.

Keywords: Projeto ótimo de experimentos. Inferência Bayesiana. Otimiza-

ção estocástica. Método de Laplace.





Abstract

Experiments play an important role in science, being the way we observe

the real world. However, in many cases experiments can be expensive,

time-consuming or not provide enough information about the quantities

of interest. In such cases, it might be interesting to tune the experiment

up as to improve its efficiency. The field of science concerned with find-

ing the best set-up for experiments is called optimal experiment design

(OED). We use Bayesian inference concepts to model the experiment

evaluation and, thus, are able to evaluate the experiment performance

using the Shannon’s expected information gain (EIG). The more infor-

mative an experiment is about the quantities of interest, the larger is

its EIG. Thus, the EIG is our utility function in OED; the quantity we

want to maximize.

Estimating the EIG can be expensive. The straightforward approach is to

approximate the integrals in the EIG by Monte Carlo Integration (MCI).

The resulting estimator is the double-loop Monte Carlo (DLMC). The

DLMC is expensive and is known to have numerical issues, thus, we seek

other EIG that can have better performance than DLMC. One estimator

arises from approximating the posterior by a Gaussian function, the

Monte Carlo with Laplace approximation (MCLA). This estimator has

a bias from the Laplace approximation, thus, it is inconsistent. As an

alternative to estimate the EIG, we present the double-loop Monte Carlo

with importance sampling. The importance sampling uses a Gaussian

estimate of the posterior to draw more informative samples about the

quantities of interest.

Being the cost a main issue in OED, it is important to make the opti-

mization as efficient as possible. To optimize the design of experiments,

we use the stochastic gradient descent, reducing the cost of each iter-

ation by the cost of a MCI at the cost of a decreasing step-size. The

decrease in step-size for SGD makes the convergence sensible to the

step-size chosen. We use state-of-the-art techniques in stochastic op-

timization to get a robust and fast framework. One technique is the



Polyak–Ruppert averaging, consisting of a moving average of the opti-

mization path. Since the average is smoother than the path, the decrease

of the step-size required for SGD can be relaxed, thus, furnishing a more

robust algorithm. To accelerate the convergence, we combine the SGD

with a momentum method, the Nesterov’s acceleration. The resulting

algorithm, the ASGD-restart is robust and maintains the accelerated

convergence under some situations.

To use the stochastic gradient methods, unbiased estimators of the

true gradient are needed. Thus, we devise the gradients of the DLMC,

MCLA, and DLMCIS estimators as a function of the forward model and

its derivatives. Moreover, the complexities of the gradient estimators

are presented and pseudocode of their algorithms is shown to allow

reproduction.

To test the performance of the methods, we use them to solve four

numerical examples. The first is a pure stochastic optimization problem

with twenty dimensions for both the design and quantities of interest

spaces. The second example is an OED problem without a physical

meaning that we created to test the combinations between the EIG

estimators and the optimization methods. In the average of a hundred

runs, the ASGD-restart with MCLA solved this example with less than

300 model evaluations, whereas DLMC using full-gradient descent took

2.99× 107 evaluations. The third example is the optimal positioning of

strain-gauges on a beam to infer mechanical properties of the material

the beam is made. This example is used to show that the optimum

found is consistent with engineering intuition. The fourth and last

example is the optimization of the currents in an electrical impedance

tomography experiment to infer the angles in the plies of a composite

laminate material. The EIT simulation requires the use of finite elements

method, thus, being an expensive forward model to evaluate. The ASGD-

restart using the gradient of the MCLA estimator converged to optimum

solutions in the four cases tested. To best of the author’s knowledge,

this is the first research to effectively solve an OED problem with a

model based on finite elements analysis.



In the numerical tests, using the gradient of the MCLA estimator for

stochastic optimization resulted in fast convergence with respect to

cost. Moreover, the ASGD-restart coupled with MCLA has proven to

be a viable option for the optimization of experiments with expensive

forward models.

Keywords: Optimal experimental design. Bayesian inference. Stochas-

tic optimization. Laplace method.
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1 Introduction

1.1 Motivation

Many fields of science rely heavily on information obtained

through experiments. Statistics about quantities of interest are inferred

from data resulting from experiment observations, therefore, it is im-

portant that experiments provide informative data. For example, in

structural engineering, it is useful to have statistical information about

the properties of materials, e.g., Young modulus, Poisson modulus, yield

stress; so that the engineer can take the best decisions. However, to

obtain statistically relevant data, experiments must have large enough

samples. For example, if a three-point flexural test is performed on con-

crete beams to evaluate the fracture toughness of concrete, a significant

number of beams must be built beforehand and let to cure for 28 days.

Even if a hundred beams are built, cured, and tested, the standard error

in the fracture toughness estimate is still the standard deviation of one

of the samples divided by ten. To reduce the standard error of the mean

by one digit requires increasing the sample size by a hundred times. A

three-point bending experiment for fracture toughness determination

and its design parameters are presented in Figure 1. Properly defining

design parameters can reduce dispersion of the quantity of interest

estimation or reduce the cost required to achieve the same precision.

Another example of practical interest is the one of verifying the

quality of composite laminates. Some composite materials can have

improved mechanical properties in some directions by alternating plies of

orthotropic materials with some specific angles between them. One way

of testing these laminates is by electrical impedance tomography (EIT),

however, the information obtained depends heavily on the currents

imposed on the electrodes, as can be seen in our results obtained by

Beck et al. (2). The set-up of an EIT experiment is presented in Figure
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inversely proportional to the covariance matrix, to qualify an experiment.

The better known of these criteria, D-optimality, consists in minimizing

the determinant of the Fisher information matrix (3). According to

Chaloner and Verdineli (3), D-optimality is the best optimality criterion

to obtain the maximum of information about the quantities of interest.

Another popular approach is to minimize the trace of the inverse of

the information matrix, known as A-optimality. This is equivalent to

minimize the average of the variances of the estimates. In some cases

where is the E-optimality; it maximizes the minimum eigenvalue of the

Fisher information matrix. However, these methods require knowledge

about the model of the experiment. We want to build an OED framework

that can optimize experiments with nonlinear black-box forward model.

Thus, we opt to measure the performance of an experiment by its

Shannon’s expected information gain (EIG) (4). The EIG is related to

the relative entropy of information and, in the OED context, is a measure

on how much information an experiment provides (5). Lindley (6) was

the first to use EIG as an utility function for OED. However, for a general

experiment with nonlinear model, estimating EIG is cumbersome.

Ryan (7) develop an EIG estimator based on Monte Carlo inte-

gration (MCI), however, his estimator requires the evaluation of two

nested integrals. We refer to Ryan’s estimator as the double-loop Monte

Carlo (DLMC). The DLMC estimator has the disadvantages of being

expensive to evaluate and numerically unstable. The evaluation of the

two nested MCI requires a large number of experiment simulations;

if the two outer and inner MCI have sample size of, respectively, N

and M , the DLMC estimator requires N(M + 1) forward model eval-

uations to approximate the EIG. Moreover, for some cases, M needs

to be large to avoid numerical underflow (2). Long et al. (8) propose a

method to estimate the EIG using a Laplace approximation, furnishing

the Monte Carlo with Laplace approximation (MCLA) estimator. The

MCLA estimator does not require the evaluation of one of the two

nested integrals, thus, being less expensive. The disadvantage of MCLA

is that the Laplace approximation introduces a bias that might not
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be acceptable depending on the situation. Beck et al. (2) propose an

importance sampling for DLMC that uses Laplace approximation to

draw more informative samples, reducing the cost of DLMC without

adding the bias of MCLA. The DLMC with the importance sampling is

called double-loop Monte Carlo with importance sampling (DLMCIS).

In the present thesis we compare the performance of DLMC, MCLA,

and DLMCIS in OED.

Even MCLA and DLMCIS being cheaper than DLMC, they still

require the evaluation of MCI. Moreover, for DLMCIS, an maximum a

posteriori must be found for each outer loop. In the present thesis, we use

gradient-based methods to perform optimization. Indeed, gradient based

methods have been successfully applied to several engineering fields

such as structural optimization (9), multibody dynamics (10), oil well

placement (11), among other. Therefore, the gradients of EIG estimators

are needed. However, evaluating these gradients each iteration of an

optimization procedure might not be feasible.

To perform optimization, we propose the use the stochastic gra-

dient descent (SGD) and some of its variations. The main idea of

SGD, proposed by Robbins and Monro (12), is to converge with noisy

estimates of the gradient. The effect of the noise is mitigated by a

reducing step-size. The SGD algorithm was developed by Robbins and

Monro (12) to solve regression problems over large data-sets. With

the rise of machine learning methods, SGD became prominent as the

main algorithm in the training process (13). In the context of OED,

Huan and Marzouk (14) use the Robbins-Monro algorithm to solve

OED problems, however, their approach is not efficient; they do not

see much improvement in comparison to a BFGS with sample average

approximation. To develop on the work of Huan and Marzouk (14), we

apply state-of-the-art stochastic optimization techniques to solve OED

problems, namely, Polyak–Ruppert averaging, Nesterov’s acceleration,

and a restart scheme.

The Polyak–Ruppert averaging is a technique developed indepen-
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dently by both Polyak and Juditsky (15), and Ruppert (16). It consists

of using a moving average of the optimization path, thus, relaxing the

step-size decrease constraint in SGD. The SGD with Polyak–Ruppert

averaging is more robust to step-size tuning, converging in cases where

vanilla SGD would not. On top of that, we use Nesterov’s acceleration

(17), resulting in the accelerated stochastic gradient descent (ASGD) al-

gorithm. Nesterov’s accelerated gradient descent is a momentum method

that achieves optimal linear convergence for deterministic convex op-

timization. Its stochastic counterpart does not maintains its linear

convergence, however, it still improves on SGD. Moreover, to further

improve ASGD we use a restart technique developed for deterministic

optimization.

To use the stochastic optimization framework we developed, we

need unbiased estimators of the gradient of EIG with respect to the

design variables. Thus, we devise the gradients of DLMC, MCLA, and

DLMCIS with respect to the design parameters as a function of the

forward model and its derivatives. We present the cost of evaluating

each EIG gradient estimator.

1.2 Notation

The following notation is used throughout this thesis: ||a|| is the

l2-norm of a, det(A) is the determinant of the matrix A, 〈a, b〉 is the

inner product between vectors a and b: aT b, ||a||A is the matrix A

norm of a:
√

aT Aa , E[·] is the expected value, V[·] is the variance, and

dim(·) is the dimension.

1.3 Aim and objectives

The aim of this thesis is to study numerical methods in both

stochastic optimization and uncertainty quantification in order to effi-

ciently solve OED problems.

The objectives to achieve are:
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• to implement the EIG estimators DLMC, MCLA, and DLMCIS;

• to devise the gradients of the EIG estimators;

• to develop a state-of-the-art stochastic optimization framework

that is robust and efficient;

• to combine the stochastic optimization framework with the EIG

gradients devised;

• to evaluate the performance of the methods in numerical examples.

1.4 Original contributions

The contributions of the present thesis are both theoretical and

practical. From the theoretical perspective, we devised the gradients of

the EIG estimators for both deterministic (full-gradient) and stochastic

optimization and discussed their numerical complexity. The gradient of

the MCLA for stochastic optimization, the main EIG estimator used

in the present thesis, does not require any MCI in its evaluation. In

the practical sense, as far as the author’s knowledge goes, this is the

first research to perform OED in an experiment simulated with finite

element method (FEM) with nonlinear forward model, what could only

be achieved by the efficient OED machinery we devised. Thus, the

combination of the optimization and uncertainty quantification methods

we propose allows the solution of expensive problems with practical

interest that would be unsolvable otherwise.

1.5 Outline of the thesis

Chapter 2: In this chapter, we introduce key concepts of OED.

First, we define the experiment model we use throughout the thesis.

Then, we introduce Bayes’ theorem and show how it applies to our

experiment model. Using the concepts from Bayesian inference, we

introduce the Kullback–Leibler divergence and the EIG. To estimate
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the EIG, we present three alternatives: DLMC, MCLA, or DLMCIS

estimators.

Chapter 3: This chapter tackles the optimization part of OED.

We formulate the OED as an stochastic optimization problem and

introduce the SGD method. Then, we discuss improvements made over

the SGD, namely, Polyak–Rupert averaging, Nesterov’s acceleration,

and a restart technique to improve acceleration. We combine these

features in the main algorithm of this thesis, the ASGD-restart. To

use stochastic gradient methods, we devise the gradients of the DLMC,

MCLA, and DLMCIS estimators.

Chapter 4: In this chapter, we solve four numerical examples.

The first example is a 20-dimensional quadratic function with 20 random

parameters we devised to compare the performance of the optimization

methods presented. The second example is an OED with a forward

model quadratic with respect to both the design parameters and the

quantities of interest. The idea of the second example is to test the

combinations between EIG estimators and optimization methods. The

third example is an engineering example used to test the consistency of

the OED framework we use; we find the optimal placement of strain-

gauges on a beam to infer mechanical properties of its material. This

example is used to illustrate that the solution found in OED is consistent

with engineering intuition. The fourth and last example is an engineering

problem with a FEM-based forward model. In this example, we find the

optimal currents to be imposed on the electrodes in and EIT experiment

to infer the angles of the plies a composite laminate material.

Chapter 5: This chapter is the conclusion. We revise the devel-

opment of the thesis and discuss the main difficulties of OED. Moreover,

we highlight our achievements and discuss the conclusions from the

results obtained. We finish the chapter with recommendations for future

research.

Appendix A: In this Appendix, we show how to obtain the

equation for the maximum a posteriori and the covariance matrix to be
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used in Laplace approximation and importance sampling.

Appendix B: Here, we present a proof that, for our experiment

model, the gradients of the EIG estimators are estimators of the gra-

dients of EIG. Thus, the gradients of the estimators presented can be

used for OED.

Appendix C: The governing equations for the Timoshenko

beam model, used in the example in Section 4.3, are deduced from the

elasticity equations in this chapter.
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2 Optimal Experimental Design

The principal goal of the present thesis is the optimization of

experiments, which is OED (3). From the perspective of optimization, it

is important to define a criterion to measure the efficiency of experiments:

the objective function to be maximized. On the present thesis, we use

the Shannon’s EIG (4) of an experiment to evaluate its performance.

Thus, on the next section, we introduce EIG and other concepts related

to it.

2.1 Experiment model

We model the evaluation of Ne repetitive experiments as

yi(ξ, θt, ǫi) = g(ξ, θt) + ǫi, i = 1, . . . , Ne, (2.1)

where yi ∈ R
q is the vector of experiment observations, θt ∈ R

d is the

vector of quantities of interest (QoI) to be recovered, ξ is the vector with

experiment parameters to be optimized, g is the experiment model, and ǫ

is the additive noise from measurements. For Ne experiments performed

with the same setup ξ, the set of observed data is Y = {yi}Ne

i=1. Since we

cannot observe θt directly, we use the random variable θ: Θ→ R
m with

prior distribution π(θ) in lieu of θt. Thus, through observations Y , we

calculate statistics about θ. In the present thesis, our goal is to find the

optimal experimental design ξ ∈ Ξ ⊂ R
n that provides more information

about θ, where Ξ is the space of experiment designs. Moreover, we

consider ǫ ∼ N (0, Σǫ) to be an additive noise, i.e. independent of g, ξ

and θ, for some positive-definite and symmetric matrix Σǫ. This model

for experiments is the same used in (8, 2, 18).

For example, consider the case of a single three-point test where

the stiffness modulus (E) of some material is estimated, as illustrated in

Figure 3. In this case, the QoI (θ) is E, the measurement y is the observed
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Figure 3 – Example of the setup for a three-point flexural test.

deflection in mm, and ǫ is the error in the observation of y. The design

parameter of the experiment to be optimized is ξ = x, the position where

the point load q is applied, and where the deflection if measured. The

model relating E and x to the observation y is g(x, E) = qx
6LeEIe

(2Le−x),

where Ie is the moment of inertia of the cross-section of the beam. This

simple problem is used to illustrate the concepts introduced in the

present chapter; the proof that the optimum is at x∗ = Le/2 is trivial.

2.1.1 Bayesian Inference

To evaluate the quality of experiments, we use a Bayesian frame-

work of analysis. Thus, in this section, we introduce essential concepts

of Bayesian inference. The main idea behind Bayesian inference is to,

given some previously known information about a parameter, use new

data to update statistics about it. This update is done using Bayes’

theorem:

π(θ|Y , ξ) =
p(Y |θ, ξ)π(θ)

p(Y |ξ)
, (2.2)

where π(θ|Y , ξ) is the posterior distribution, the updated probability

density function (pdf) of some random variable θ given observations

Y ; π(θ) is the prior distribution, the pdf of θ before the experiment;

p(Y |θ, ξ) is the likelihood, the probability of observing Y given the

previously known prior π(θ); and p(Y |ξ) is the evidence, the probability

of Y being observed.

On the context of experiments, Bayesian inference is used to

estimate a posterior pdf of a QoI given a prior pdf and some observations

Y provided by the experiment. For example, consider the previously
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with respect to θ∗ as

p(Y |ξ) =
∫

Θ

p(Y |θ∗, ξ)π(θ∗)dθ∗. (2.4)

The likelihood in Eq. 2.4 can be calculated from Eq. 2.3 as

p(Y |θ∗, ξ) = det (2πΣǫ)− Ne

2 exp

(

−1
2

Ne
∑

i=1

‖yi(ξ, θ, ǫi)− g(ξ, θ∗)‖2
Σǫ

−1

)

.

(2.5)

Thus, substituting in the Bayes’ equation in Eq. 2.2 the likelihood and

the evidence respectively presented in Eqs. 2.3 and 2.4, one can obtain

the posterior distribution of the experiment, i.e., the statistics for the

QoI after the experiment.

To estimate how much information an experiment provides, we

use the Kullback–Leibler divergence (DKL) between the prior and

posterior pdfs.

2.1.2 Kullback–Leibler Divergence

According to Cover and Thomas (19), entropy is a measure

of uncertainty of a random variable. Cover and Thomas define the

differential entropy of a random variable θ with pdf fθ as

−
∫

Θ

fθ(θ) log fθ(θ)dθ. (2.6)

The larger the entropy of π(θ) is, the larger its uncertainty with respect

to θ is. The DKL is the entropy of a probability measure with respect

to another (20), and, for two probability measures fθ and gθ on θ with

the same support Θ, the DKL is defined as

DKL(fθ(θ)‖gθ(θ)) = −
∫

Θ

fθ(θ) log gθ(θ)dθ +
∫

Θ

fθ(θ) log fθ(θ)dθ

= −
∫

Θ

fθ(θ) log
(

gθ(θ)
fθ(θ)

)

dθ

=
∫

Θ

log
(

fθ(θ)
gθ(θ)

)

fθ(θ)dθ.

(2.7)
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On this thesis, we use Equations. 2.10 and 2.11 instead of Eq. 2.9

to calculate EIG.

2.2 Expected information gain estimators

Evaluating I in Eq. 2.11 requires the solution of the double

integral over θ and Y , moreover, it requires the solution of the integral

used to marginalize the evidence. In most cases, these integrals do not

have closed form, thus, numerical methods are needed to approximate

them. When the number of random parameters is small, quadrature

methods can be used to approximate the integrals in Eq. 2.11, however,

as pointed out by Robert and Casella (21), these methods suffer from the

curse of dimensionality. Hamada et al. (22) note that using deterministic

integration methods to approximate 2.11 becomes unfeasible if the

dimensionality of θ exceeds three.

2.2.1 Error analysis

In this thesis, we focus on the case where the integrals in Eq. 2.11

do not have closed form solution and Monte Carlo integration (MCI)

is needed to approximate them. In this section, we introduce Monte

Carlo-based estimators for EIG that can deal with high dimensional

parameter spaces. We present the error analysis and complexity of the

EIG estimators with respect to the evaluation of g by FEM with a

mesh discretization parameter h. As h → 0, the discretization bias

asymptotically converges as

E [|g(ξ, θ)− gh(ξ, θ)|2] = O (hη) , (2.12)

where gh is the FEM approximation of g using h, and η > 0 is the rate

of convergence of the discretization error. For the computational effort

analysis, we assume that the cost of evaluating gh is O(h−̺), for the

constant ̺ > 0. Both η and ̺ are constants that depend only on the

numerical approach used in approximating g by gh.
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and f : θ → R, the integral of f over θ can be approximated as

∫

Θ

f(θ)dθ ≈
∫

Θ

dθ
1
N

N
∑

i=1

f(θi), (2.13)

where the θi are sampled uniformly from Θ. If f(θ) is being integrated

over some measure, say π(θ), its integral can be approximated as

∫

Θ

f(θ)π(θ)dθ ≈
∫

Θ

π(θ)dθ
1
N

N
∑

i=1

f(θi), (2.14)

where θ is sampled from π(θ). Note that, if π(θ) is a pdf, the integral
∫

Θ
π(θ)dθ evaluates to one. From the strong law of large numbers, the

Monte Carlo estimator converges to the real value of the integral as

N → ∞ (23). Moreover, from the central limit theorem, as N → ∞,

the error in approximating an integral by MCI converges to zero with

rate 1/
√

N (23).

2.2.3 Double-loop Monte Carlo estimator

The double integral in Eq. 2.10 can be approximated using MCI

by sampling θ from the prior pdf and Y from the likelihood (the

measures that the integrands are being integrated over in Eq. 2.10).

Then, for N samples, the Monte Carlo estimator for OED is defined as

IMC(ξ)
def
=

1
N

N
∑

n=1

log
(

p(Y n|θn, ξ)
p(Y n|ξ)

)

. (2.15)

Also, we use Eq. 2.4 and approximate the evidence integral by a MCI

as
∫

Θ

p(Y |θ∗, ξ)π(θ∗)dθ∗ ≈ 1
M

M
∑

m=1

p(Y |θ∗
m, ξ). (2.16)

Thus, the DLMC estimator for EIG is defined as

IDLMC(ξ)
def
=

1
N

N
∑

n=1

log

(

p(Y n|θn, ξ)
1

M

∑M
m=1 p(Y n|θ∗

m, ξ)

)

. (2.17)

The first to use DLMC in OED is Ryan (7).
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Monte Carlo estimators are generally not biased, however, the

DLMC estimator has a bias resulting from the logarithm of the inner

loop. However, DLMC is a consistent estimator because the bias goes

to zero as the number of inner loop samples M goes to infinity. The

DLMC estimator has bias and variance respectively given by

|I − E[I
DLMC

]| ≤ CDL,1hη +
CDL,2

M
+ o(hη) +O

(

1
M2

)

, and

(2.18)

V[I
DLMC

] =
CDL,3

N
+

CDL,4

NM
+O

(

1
NM2

)

(2.19)

for the constants CDL,1, CDL,2, CDL,3, and CDL,4 (cf. (2)).

To evaluate the DLMC estimator in Eq. 2.17, one needs the

likelihood of observing Y n given θn and the likelihoods of observing

Y n given each θ∗
m. Using Eq. 2.3 to estimate the likelihood of observing

Y n given θn furnishes

p(Y n|θn, ξ) = det (2πΣǫ)− Ne

2 exp

(

−1
2

Ne
∑

i=1

∥

∥

∥y
(n)
i (ξ)− g(ξ, θn)

∥

∥

∥

2

Σǫ
−1

)

,

(2.20)

= det (2πΣǫ)− Ne

2 exp

(

−1
2

Ne
∑

i=1

‖g(ξ, θn) + ǫi − g(ξ, θn)‖2
Σǫ

−1

)

,

(2.21)

= det (2πΣǫ)− Ne

2 exp

(

−1
2

Ne
∑

i=1

‖ǫi‖2
Σǫ

−1

)

. (2.22)

Since Y and g are evaluated using the same θ, the model evaluation

g in Eq. 2.21 cancels out. Thus, evaluating the likelihood of observing

Y n given θn does not require any model evaluation. However, for

the evidence evaluation, we must evaluate the model g. For example,

consider the likelihood in Eq. 2.3, where Y n is evaluated from θn and

ǫ (sampled in the outer loop), and θ∗
m is sampled in the inner loop
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(independently from θn),

p(Y n|θ∗
m, ξ) = det (2πΣǫ)− Ne

2 exp

(

−1
2

Ne
∑

i=1

∥

∥

∥y
(n)
i (ξ)− g(ξ, θ∗

m)
∥

∥

∥

2

Σǫ
−1

)

.

(2.23)

Each observation of p(Y n|θ∗
m, ξ) requires an evaluation of g(ξ, θ∗

m).

In Algorithm 1, we present the pseudocode for DLMC, where the

inputs are the experiment setup, ξ, the sample-size for the outer loop,

N , and the sample-size for the inner loop, M . Problem parameters, e.g.,

Σǫ, π(θ), g, Ne, are considered to be known. The DLMC returns the

estimation of I, IDLMC .

Algorithm 1 Pseudocode for the DLMC estimator for EIG.

1: function DLMC(ξ, N, M)
2: for n = 1, 2, ..., N do ⊲ Outer loop
3: Sample θn from π(θ)
4: Evaluate g(ξ, θn)
5: for i = 1, 2, .., .Ne do
6: Sample ǫi from N (0, Σǫ)
7: yi ← g(ξ, θn) + ǫi

8: end for
9: Y n ← {yi}Ne

i=1

10: p(Y n|θn, ξ)← det (2πΣǫ)− Ne

2 exp
(

− 1
2

∑Ne

i=1 ‖ǫi‖2
Σǫ

−1

)

11: for m = 1, 2, ..., M do ⊲ Inner loop
12: Sample θ∗

m from π(θ)
13: Evaluate g(ξ, θ∗

m)
14: p(Y n|θ

∗

m
, ξ)← det (2πΣǫ)

−
Ne

2 exp

(

− 1
2

∑

Ne

i=1

∥

∥y
(n)
i

(ξ)− g(ξ, θ∗

m
)
∥

∥

2

Σǫ
−1

)

15: end for
16: p(Y n|ξ)← 1

M

∑M
m=1 p(Y n|θ∗

m, ξ)
17: end for
18: IDLMC(ξ)← 1

N

∑N
n=1 log

(

p(Y n|θn,ξ)
p(Y n|ξ)

)

19: return IDLMC(ξ)
20: end function

From Algorithm 1, it can be seen that the cost of evaluating the

DLMC estimator is N(M + 1) forward model evaluations. Considering

that each model evaluation requires the solution of a PDE using FEM
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2.2.4 Monte Carlo estimator with Laplace approximation

The cost of solving the two-loop Monte Carlo required for DLMC

can be expensive. Since MCI is a method for approximating integrals,

one might think of alternative methods to approximate one of the

integrals. Long et al. (8) propose the use of the Laplace method to

approximate the the logarithm of the posterior distribution by a second-

order Taylor expansion, thus, avoiding the evaluation of the evidence.

We follow the same approach as Long et al. (8) to devise the Monte

Carlo with Laplace method (MCLA) estimator. One advantage of the

MCLA is that the approximated posterior pdf is a Gaussian function

π(θ|Y , ξ) ≈ det(2πΣ(ξ, θ̂))− 1
2 exp

(

−1
2
‖θ − θ̂(ξ, Y )‖2

Σ−1(ξ,θ̂)

)

,

(2.24)

where θ̂ is the maximum a posteriori (MAP) of θ, and Σ(ξ, θ̂) is the

covariance matrix of the posterior at the MAP. The MAP is the θ that

maximizes the posterior pdf, i.e., the θ more likely to be θt after the

experiment data is considered. Thus, θ̂ is the θ that solves

θ̂(ξ, Y )
def
= arg min

θ∈Θ

[

1
2

Ne
∑

i=1

‖yi − g(ξ, θ)‖2
Σǫ

−1 − log(π(θ))

]

. (2.25)

Long et al. (8) show that

θ̂ = θt +OP

(

1√
Ne

)

. (2.26)

The covariance matrix of the posterior Σ(ξ, θ̂) is the Hessian matrix of

the negative logarithm of the posterior pdf evaluated at ξ and θ̂,

Σ
−1(ξ, θ̂) = Ne∇θ(g(ξ, θ̂))T

Σǫ
−1∇θg(ξ, θ̂)−∇θ∇θ log(π(θ̂)) +OP

(√
Ne

)

.

(2.27)

A detailed deduction of θ̂ and Σ(ξ, θ̂) is presented in Appendix A.

According to Long et al. (8), using the approximation θ̂ ≈ θt

yields the Laplace-approximated EIG as

I(ξ) =

∫

Θ

[

−1

2
log(det(2πΣ(ξ, θt)))−

dim(θ)

2
− log(π(θt))

]

π(θt)dθt+O
(

1

Ne

)

.

(2.28)
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Compared to Eq. 2.9, the approximated EIG in Eq. 2.28 has only one

integral, not requiring the integration over Y nor the integral to calculate

the evidence. This EIG with Laplace approximation is consistent with

Chaloner and Verdinelli (3), according to whom, maximizing EIG is

equivalent to minimizing the determinant of the posterior covariance

matrix.

Estimating I in Eq. 2.28 by MCI results in the MCLA:

I
MCLA

(ξ)
def
=

1
N

N
∑

n=1

[

−1
2

log(det(2πΣ(ξ, θn)))− dim(θ)
2

− log(π(θn))
]

.

(2.29)

According to Beck et al. (2), the bias and variance of the MCLA

estimator are, respectively,

|I − E[I
MCLA

]| ≤ CLA,1hη +
CLA,2

Ne
+ o(hη), and (2.30)

V[I
MCLA

] =
CLA,3

N
(2.31)

for the constants CLA,1, CLA,2, and CLA,3. Although DLMC is a con-

sistent estimator, MCLA is not, because the bias from the Laplace

approximation does not vanish as the number of samples increases,

being dependent on the number of repetitive experiments Ne. Hence,

in the numerical example section we investigate whether the bias of

MCLA affects the optimization.

Algorithm 2 presents the pseudocode for the MCLA estimator.

Since MCLA does not have an inner loop, it only needs the outer loop

sample-size, N . The evaluation of Eq. 2.27 requires a Jacobian of the

model g with respect to the parameters θ; the main cost of MCLA

evaluation.

If forward-Euler is used for the estimation of the Jacobian in Eq.

2.27, the evaluation of the MCLA estimator cost has order N(dim(θ) +

1)h−̺. Thus, in comparison to DLMC, MCLA requires lower computa-

tional effort if dim(θ) is less than M . For most cases, the M required
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Algorithm 2 Pseudocode for the MCLA estimator for EIG.

1: function MCLA(ξ, N)
2: for n = 1, 2, ..., N do ⊲ Outer loop
3: Sample θn from π(θ)
4: Evaluate ∇θg(ξ, θn)
5: Use ∇θg(ξ, θn) to evaluate Σ(ξ, θn) using Eq. 2.27
6: end for
7: IMCLA(ξ)← 1

N

∑N

n=1

[

− 1
2

log(det(2πΣ(ξ, θn)))− dim(θ)
2
− log(π(θn))

]

8: return IMCLA(ξ)
9: end function

to achieve a certain precision with DLMC is large, therefore, for these

cases, MCLA is is computationally more efficient than DLMC.

2.2.5 Double-loop Monte Carlo estimator with Laplace-based im-

portance sampling

Based on the idea proposed by Beck et al. (2), we use an im-

portance sampling in the MCI of the evidence. Instead of sampling θ∗

from π(θ), we sample θ∗ from π̃(θ), where π̃(θ) ∼ N (θ̂, Σ(θ̂)), and

θ̂ and Σ are given in Eqs. 2.25 and 2.27. Therefore, we are using a

Gaussian approximation of the posterior resulting from a second-order

Taylor expansion of the logarithm of the posterior at its MAP to draw

more informative samples for the inner loop. The advantage of using

the importance sampling is that it avoids the approximation error from

the Laplace approximation and the numerical underflow problem from

DLMC. The DLMCIS estimator is defined as

IDLMCIS(ξ)
def
=

1
N

N
∑

n=1

log

(

p(Y n|θn, ξ)
1

M

∑M
m=1 L(Y n; ξ; θ∗

m)

)

, (2.32)

where

L(Y ; ξ; θ) =
p(Y |θ, ξ)π(θ)

π̃(θ)
. (2.33)

The bias and variance of the DLMCIS estimator are deduced on the

original paper (2) and are proven to be the same as of DLMC for a

given tolerance, thus the DLMCIS estimator is also consistent. How-

ever, to achieve the desired tolerance, the inner loop sample-size M is
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significantly smaller for DLMCIS than for DLMC. Like in MCLA, the

evaluation of Eq. 2.27 requires a Jacobian of the model g with respect to

the parameters θ, moreover, finding θ̂ requires solving the optimization

problem in Eq. 2.25. We use a steepest descent search to find θ̂. For

that we use the gradient of the function to be minimized in Eq. 2.25,

∇̂θ
def
= −(∇θg(ξ, θ̂))T Σǫ(Y − g(ξ, θ̂))−∇θ log π(θ̂). (2.34)

Algorithm 3 Pseudocode for finding MAP using steepest descent.

1: function FindMAP(ξ, θ, Y , αθ, TOL)
2: θ̂ ← θ

3: for j = 1, 2, 3.. do
4: ∇̂θ ← −(∇θg(ξ, θ̂))T Σǫ(Y − g(ξ, θ̂))−∇θ log π(θ̂)
5: θ̂ ← θ̂ − αθ∇̂θ

6: if |∇̂θ|2 > TOL then
7: Break
8: end if
9: end for

10: return θ̂

11: end function

If forward-Euler is used for the estimation of the Jacobians in Eq.

2.27 and Algorithm 3, the evaluation of the DLMCIS estimator costs

N((CMAP + 1)(dim(θ) + 1) + M)h−̺, where CMAP is the number of

iterations to estimate θ̂ in Eq. in Algorithm 3.

Besides the advantage of reducing the number of samples of the

inner loop, M , the DLMCIS estimator is more robust to numerical

underflow than the DLMC estimator. The change of measure in the

sampling of θ∗ guarantees that g(ξ, θ∗) is close to Y , evaluated using

the θ sampled in the outer loop. Thus, it is not likely that, for all inner

loops, the likelihood of observing Y given θ∗ is numerically evaluated

to zero. Figure 10 illustrates how the importance sampling mitigates

the numerical underflow problem for the three-point flexural point; the

likelihoods of observing y(n) for each g are larger than zero.

A pseudocode for the DLMCIS is presented in Algorithm 4, where

the line where importance sampling happens is shaded in gray.
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Algorithm 4 Pseudocode for the DLMCIS estimator for EIG.

1: function DLMCIS(ξ, N, M)
2: for n = 1, 2, ..., N do ⊲ Outer loop
3: Sample θn from π(θ)
4: for i = 1, 2, .., .Ne do
5: Sample ǫi from N (0, Σǫ)
6: yi ← g(ξ, θn) + ǫi

7: end for
8: Y n ← {yi}Ne

i=1

9: p(Y n|θn, ξ)← det (2πΣǫ)− Ne

2 exp
(

− 1
2

∑Ne

i=1 ‖ǫi‖2
Σǫ

−1

)

10: Find θ̂n(ξ, Y n) using Algorithm 3
11: Evaluate ∇θg(ξ, θ̂n)
12: Use ∇θg(ξ, θ̂n) to evaluate Σ(ξ, θ̂n) using Eq. 2.27
13: for m = 1, 2, ..., M do ⊲ Inner loop

14:
Sample θ∗

m from π̃(θ) ∼ N (θ̂n, Σ(ξ, θ̂n)) ⊲
Importance sampling

15: Evaluate g(ξ, θ∗
m)

16: p(Y n|θ
∗

m
, ξ)← det (2πΣǫ)

−
Ne

2 exp

(

− 1
2

∑

Ne

i=1

∥

∥y
(n)
i

(ξ)− g(ξ, θ∗

m
)
∥

∥

2

Σǫ
−1

)

17: L(Y n; ξ; θ∗
m)← p(Y n|θ∗

m, ξ)π(θ∗
m)/π̃(θ∗

m)
18: end for
19: p(Y n|ξ)← 1

M

∑M
m=1 L(Y n; ξ; θ∗

m)
20: end for
21: IDLMCIS(ξ)← 1

N

∑N
n=1 log

(

p(Y n|θn,ξ)
p(Y n|ξ)

)

22: return IDLMCIS(ξ)
23: end function

in the numerical example section. For the cases where the bias of MCLA

is not acceptable, we introduced an importance sampling based on the

Laplace approximation, proposed by Beck et al (2), resulting in the

DLMCIS estimator.
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3 Optimization

We formulate the optimization problem of OED as

find ξ∗ = arg max
ξ ∈ Ξ

(I(ξ)). (3.1)

In the present thesis, we assume that I is continuous and differentiable,

thus, we focus on gradient-based methods to search for local maxima.

The main idea behind gradient methods is to use information on the

derivatives of the objective function to iteratively converge to local op-

tima. Considering the problem in Eq. 3.1, if the function I is continuous,

smooth, and convex, we can state that the iterative process

ξk = ξk−1 + α∇ξI(ξk−1) (3.2)

produces a sequence {I(ξk)}k≥0 that monotonically increases to I(ξ∗),

given that α is small enough (24). Moreover, if I is convex with respect

to ξ, the sequence {|ξk − ξ∗|}k≥0 converges to zero in the Cauchy sense

independently of the starting point ξ0. We refer to Eq. 3.2 as the full-

gradient descent (FGD) method. Note that, since we are maximizing I,

the optimizer performs steps in the direction of the gradient, therefore,

it is actually ascending. However, for the sake of simplicity, we refer to

gradient-based algorithms as descent algorithms, even when they are

employed for maximization.

To perform gradient-based optimization for the OED problem,

each iteration requires the evaluation of the gradient of I,

∇ξI(ξ) = ∇ξ

∫

Θ

∫

Y
log
(

p(Y |θ, ξ)
p(Y |ξ)

)

p(Y |θ, ξ)dY π(θ)dθ. (3.3)

One aspect of Eq. 3.1 is that each evaluation of ∇ξI requires the

solution of an uncertainty quantification task: the evaluation of the two

integrals in Eq. 3.3 and the integral in Eq. 2.4, needed to estimate the

evidence. In cases where these integrals cannot be directly evaluated,
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one might use the DLMC, MCLA, or DLMCIS estimators presented

in Chapter 2. In these cases, the cost of evaluating these estimations

every iteration can be prohibitive. For example, if K iterations are

needed to find an optimum using the DLMC estimator, and forward

finite differences are used to approximate the gradient, the total cost of

performing optimization is K(dim(ξ) + 1)NMh−̺, where K, N , and

M can be large.

3.1 Stochastic optimization problem

To alleviate the computational burden of the optimization, we

reformulate the optimization problem in Eq. 3.1 as an stochastic opti-

mization problem,

find ξ∗ = arg max
ξ ∈ Ξ

(Eθ,Y [f(ξ, θ, Y )]) , (3.4)

where

f(ξ, θ, Y ) = log
(

p(Y |θ, ξ)
p(Y |ξ)

)

. (3.5)

Note that I(ξ) = Eθ,Y [f(ξ, θ, Y )]. The problem of finding minima of the

expected value of functions, i.e., stochastic optimization, is well-known,

and much has been done to reduce the cost of solving it (13, 25, 26).

One of the most popular methods for the solution of Eq. 3.4 is the

Robbins–Monro algorithm (12), also known as the stochastic gradient

descent.

3.2 Stochastic gradient descent

The SGD is a method of finding minima (or maxima) of the

expected value of functions. In our case, the SGD for OED is

ξk = ξk−1 + αk∇ξf(ξk−1, θk, Y k), (3.6)

where the step-size α at iteration k is a decreasing sequence that satisfies

∞
∑

i=o

αi =∞ and
∞
∑

i=o

α2
i <∞. (3.7)
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interchangeable, that is,

∇ξEθ,Y [f(ξ, θ, Y )] = ∇ξ

∫

Θ

∫

Y
log
(

p(Y |θ, ξ)
p(Y |ξ)

)

p(Y |θ, ξ)dY π(θ)dθ

=
∫

Θ

∫

Y
∇ξ log

(

p(Y |θ, ξ)
p(Y |ξ)

)

p(Y |θ, ξ)dY π(θ)dθ

= Eθ,Y [∇ξf(ξ, θ, Y )].

(3.8)

Indeed, for the experiment model in Eq. 2.1, Eq. 3.8 is true. A proof is

presented in Appendix B.

Robbins and Monro (12) propose the SGD method and prove

that it converges given that the function f is convex, continuous, and

differentiable with respect to ξ, and that conditions in Eq. 3.7 are

satisfied. In comparison to Eq. 3.3, the iterative procedure in Eq. 3.6

does not require the evaluation of the expectation over θ and Y . For

example, applying the SGD to the OED problem with DLMC and

forward finite-differences reduces the cost from K(dim(ξ) + 1)NMh−̺

to K(dim(ξ) + 1)Mh−̺, i.e., the optimization cost is N times lower

than the cost for the full-gradient case.

We denote the estimators of the gradient of f with respect to ξ

as G, thus, the SGD iterative equation for the OED problem is written

as

ξk = ξk−1 + αkG(ξk−1, θk, Y k) (3.9)

where θk is sampled independently from the prior each iteration and Y k

is evaluated from Eq. 2.1 using Ne independent samples of ǫ. Note that,

since we are trying to find the maximizer of I, we move in the direction

of G, and not in its opposite direction. In Eq. 3.5, the evidence still

needs to be evaluated. Thus, we have an equivalent gradient estimator

G for each of the three expected information gain estimators presented

is Section 2.2 (DLMC, MCLA, DLMCIS). In DLMC and DLMCIS the

evidence is estimated by another MCI, whereas, in MCLA, because of

the the approximation that the posterior is a Gaussian, the evidence

need not be evaluated.
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In Algorithm 5, we present the pseudocode for SGD. For the

sake of notation consistency, we use θ and Y as the random parameters

in the gradient estimator G, however, one could use any number of

random parameters as long as G is an unbiased estimator of the gradient

of the objective function. One of the advantages of SGD is that the

Algorithm 5 Pseudocode for vanilla SGD.

1: procedure SGD(ξ0, α0)
2: for k = 1, 2, ... do
3: Sample random variables, e.g., θk, Y k,...
4: αk ← α0

k
5: ξk ← ξk−1 + αkG(ξk−1, θk, Y k)
6: end for
7: ξ̂ ← ξk

8: end procedure

cost per iteration does not scales up with the number of dimensions

in the parameters space, i.e., SGD does not suffer from the curse of

dimensionality. For example, using surrogate models (e.g., polynomial

chaos expansions, kriging) to approximate EIG for a 20-dimensional

problem like the one in Section 4.1 is unfeasible.

In gradient-based stochastic optimization, noisy estimates of the

gradient are used to perform steps. If, throughout optimization, the

gradient of the objective function converges to a null vector, and the

noise in the estimates does not, the relative error in gradient estimates

goes to infinity. Thus, if the order of magnitude of the noise does not

vary much in the optimization domain, the error in gradient estimation

in early iterations is relatively small when compared to the gradient size.

We divide the behavior of the SGD in two phases: the preasymptotic

phase, where the true-gradient is large with respect to the error, and

the asymptotic phase, where the optimizator is already close to the

optimum. As optimization evolves, the error dominates the gradient

estimates and step-size reduction mitigates the influence of the noise.

The SGD has proven convergence for αk = α0/k, however, in

practice, the decrease in the step-size can be faster than ideal, i.e., at
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M . According to Beck et al. (2), DLMC can suffer from numerical

underflow if M is not large enough; thus, choosing small M might

cause a numerical error for some experiments. Huan and Marzouk (14)

conclude that SGD converges slightly better than BFGS with a sample

average approximation. Moreover, Huan and Marzouk (14) acknowledge

the difficulty of finding a step-size for the SGD algorithm. Thus, the

problem of efficiently using SGD in OED is still unsolved. To tackle this

issue, we devise a robust and efficient stochastic optimization framework

for OED, which we consider the main contribution of this thesis.

In the next sections, we present a discussion on how to improve

over Robbins–Monro algorithm and get globally-convergent algorithms

that are robust to sub-optimal tuning of the initial step-size. Namely,

we use the Polyak–Ruppert averaging to relax the step-size decrease

condition, improving the convergence in the asymptotic phase, and

a Nesterov’s acceleration that improves the convergence in the non-

asymptotic phase.

3.2.1 Polyak–Ruppert averaging

Polyak and Juditsky (15) and Ruppert (16) independently devel-

oped an averaging method that relaxes the step-size constraint. The

method consists in having a moving-average of the stochastic gradient

as an optimum estimate as, for example,

ξ̄k
def
=

1
k

k
∑

i=0

ξi (3.10)

or

ξ̄k
def
=





∑

k

2 ≤i≤k

αi





−1
∑

k

2 ≤i≤k

αiξi. (3.11)

Nemirovksi (27) proves convergence of ξ̄k to ξ∗ as k goes to infinity, for

the averaging in Eq. 3.11. Moreover, he proves that it converges with

any step-size sequence

αk =
α0

kc
(3.12)
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for c in (1/2, 1). In the present thesis, we use SGD with Polyak–Ruppert

averaging as defined in Eq. 3.11 using step-size αk = α0/
√

k.

In Algorithm 6, we present the pseudocode for SGD with the

Polyak–Ruppert averaging and the stop-criterion based on the Polyak–

Ruppert average. Using Algorithm 6 has the advantage that the step-size

does not decrease as fast as in vanilla SGD in Algorithm 5, αk = α0/k,

thus, SGD with averaging can better explore the search space while

convergence is still guaranteed.

Algorithm 6 Pseudocode for SGD with Polyak–Ruppert averaging.

1: procedure SGD(ξ0, α0, TOL)
2: ξ̄0 ← ξ0

3: for k = 1, 2, ... do
4: Sample random variables, e.g., θk, Y k,...

5: αk ← α0√
k

6: ξk ← ξk−1 + αkG(ξk−1, θk, Y k)

7: ξ̄k ←
(

∑

k

2 ≤i≤k αi

)−1
∑

k

2 ≤i≤k αiξi ⊲ Polyak–Ruppert
averaging

8: if |ξ̄k − ξ̄k−1|2 < TOL then ⊲ Stop Criterion
9: Break

10: end if
11: end for
12: ξ̂ ← ξ̄k

13: end procedure

In Figure 13, we present SGD with Polyak–Ruppert (with step-

size αk ← α0√
k
) in red, and its average in black. The SGD walks er-

ratically, whereas its average converges smoothly to the optimum in

(0, 0). In Figure 14, the convergence of the distance to the optimum

per iteration is shown for vanilla SGD, SGD with Polyak–Ruppert, and

its average. The SGD with Polyak–Ruppert behaves like a stochastic

process, achieving the error of 10−2 in 25 iterations and not improving

much after that. The SGD averaging, however, continues to converge

as the distance to the optimum decrease monotonically. Even though
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Algorithm 8 Pseudocode for AGD-restart.

1: procedure AGD(ξ0, α, q)
2: z0 ← ξ0, λ0 ← 1
3: for k = 1, 2, ... do
4: Solve λk for λ2

k = (1− λk)λ2
k−1 + qλk

5: γk ← λk−1(1−λk−1)
λ2

k−1
+λk

6: zk ← ξk−1 + α∇ξI(ξk−1)
7: ξk ← ξk−1 + γk(zk − zk−1) ⊲ Nesterov’s accelerated step

8: if
〈

∇ξI(ξk−1), ξk − ξk−1

〉

< 0 then ⊲ Restart technique
9: ξk ← zk

10: λk+1 = 1
11: end if

12: end for
13: ξ̂ ← ξk

14: end procedure

3.4 Accelerated stochastic gradient descent

Using the Nesterov’s accelerated step of AGD in Section 3.3 to

the SGD in Section 3.2 furnishes the ASGD algorithm. We adapt the

AGD for the stochastic optimization problem of OED by substituting

the gradient in Eq. 3.13 for G and the constant step-size by a decreasing

one:










zk = ξk−1 + αkG(ξk−1, θk, Y k)

ξk = zk + γk(zk − zk−1).

(3.17)

We couple ASGD with Polyak–Ruppert averaging to allow the use

of the step-size sequence αk = α0/
√

k. Consequently, since the step-size

does not reduce as fast as with αk = α0/k, ASGD with Polyak–Ruppert

can better explore the search space, improving its global convergence

properties. Moreover, in the asymptotic region, where the convergence

is dominated by term O(k−1/2), the Nesterov acceleration does not

affect the convergence. Thus, in the preasymptotic regime, if the ratio
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between the noise and the true gradient is small, Nesterov’s acceleration

achieves the optimal linear convergence for first order methods. As

the optimization approaches the optimum and the true gradient norm

converges to a null vector, i.e., as we get into the asymptotic phase, the

ratio between the true gradient and the noise gets small and acceleration

is degenerated. Results in the numerical section confirm the efficiency

of ASGD for both a pure stochastic optimization problem and OED. In

example 2, Nesterov’s acceleration reduced the total cost of optimization

by a factor of ten in an average of a hundred independent runs.

A variant of ASGD using Polyak–Ruppert averaging is proposed

by Lan (32) for the minimization of the sum of non-smooth functions,

however, with an increasing step-size, instead of a decreasing one. Even

though Lan presents a theoretical proof of ASGD convergence, he

does not solve any numerical example using his method. Cotter et al.

(33) use a variant of Lan’s ASGD for binary classification problems.

According to Cotter et al. (33), the ASGD algorithm does not have

the same accelerated convergence of AGD, being bounded by the same

sublinear convergence rate as of SGD, O(1/
√

k). Many papers have been

recently published using Nesterov’s technique to accelerate stochastic

optimization problems using variance reduction techniques to avoid

losing the accelerated convergence (33, 34, 35). Recently, Allen-Zhu

developed an accelerated algorithm called Katyusha (26) for which he

proves accelerated convergence even for non-strongly convex stochastic

problems.

In Algorithm 9, we present the pseudocode for ASGD, where the

accelerated step is painted in blue and Polyak–Ruppert averaging and

its respective step-size are painted in green.

The ASGD algorithm is the main optimization method of the

present thesis.
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Algorithm 9 Pseudocode for ASGD.

1: procedure ASGD(ξ0, α0, q)
2: ξ̄0 ← ξ0, z0 ← ξ0, λ0 ← 1
3: for k = 1, 2, ... do
4: Sample random variables, e.g., θk, Y k,...
5: Solve λk for λ2

k = (1− λk)λ2
k−1 + qλk

6: γk ← λk−1(1−λk−1)
λ2

k−1
+λk

7: αk = α0√
k

⊲ Decreasing step scheme

8: zk ← ξk−1 + αk∇ξG(ξk−1, θk, Y k)
9: ξk ← ξk−1 + γk(zk − zk−1) ⊲ Nesterov’s accelerated step

10: ξ̄k =
(

∑

k

2 ≤i≤k αi

)−1
∑

k

2 ≤i≤k αiξi ⊲ Polyak–Ruppert
averaging

11: end for
12: ξ̂ ← ξk

13: end procedure

3.4.1 Restart method for the stochastic case

The restart method proposed by O’Donoghue and Candès (30)

for the deterministic case uses information from the gradient of the

objective function to decide whether or not to restart the Nesterov’s

acceleration. Since we cannot observe the true gradient, we use the

stochastic approximation of the gradient as the criterion to perform the

restart, i.e.,

〈

G(ξk−1, θk, Y k), ξk − ξk−1

〉

< 0. (3.18)

Nitanda (35) uses a restart scheme like this to improve the acceleration

of the minimization of a finite number of sums. However, as previously

mentioned, Nitanda uses control variates and minibatches to reduce the

variance of the estimator, resulting in a near-deterministic estimation

of the gradient.

In Algorithm 10, we present the general pseudocode for ASGD

with restart technique (ASGD-restart).
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Algorithm 10 Pseudocode for ASGD-restart.

1: procedure ASGD-restart(ξ0, α0, q)
2: ξ̄0 ← ξ0, z0 ← ξ0, λ0 ← 1
3: for k = 1, 2, ... do
4: Sample random variables, e.g., θk, Y k,...
5: Solve λk for λ2

k = (1− λk)λ2
k−1 + qλk

6: γk ← λk−1(1−λk−1)
λ2

k−1
+λk

7: αk = α0√
k

⊲ Decreasing step scheme

8: zk = ξk−1 + αkG(ξk−1, θk, Y k)
9: ξk = zk + γk(zk − zk−1) ⊲ Nesterov’s accelerated step

10: if
〈

G(ξk−1, θk, Y k), ξk − ξk−1

〉

< 0 then ⊲ Restart
technique

11: λk = 1
12: end if

13: ξ̄k =
(

∑

k

2 ≤i≤k αi

)−1
∑

k

2 ≤i≤k αiξi ⊲ Polyak–Ruppert
averaging

14: end for
15: ξ̂ ← ξk−1

16: end procedure

3.5 Gradients of Monte Carlo estimators for OED

In this section, we deduce the gradients of the estimators pre-

sented in Section 2.2, for both full-gradient and stochastic optimization.

From Eq. 3.3, and applying Eq. 3.8 we get

∇ξI(ξ) =
∫

Θ

∫

Y
∇ξ log

(

p(Y |θ, ξ)
p(Y |ξ)

)

p(Y |θ, ξ)dY π(θ)dθ, (3.19)

the full-gradient of I. To use SGD, we need the gradient of f presented

in Eq. 3.5, used to approximate the gradient in Eq. 3.19, i.e.,

∇ξf(ξ, θ, Y ) = ∇ξ log
(

p(Y |θ, ξ)
p(Y |ξ)

)

. (3.20)

Developing the gradients in Eq. 3.20:

∇ξf(ξ, θ, Y ) =
∇ξp(Y |θ, ξ)

p(Y |θ, ξ)
− ∇ξp(Y |ξ)

p(Y |ξ)
. (3.21)
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From Eq. 2.3,

∇ξp(Y (ξ, θ, ǫ)|θ, ξ) = p(Y |θ, ξ)∇ξ

(

−1
2

Ne
∑

i=1

‖yi − g(ξ, θ)‖2
Σǫ

−1

)

= p(Y |θ, ξ)∇ξ

(

−1
2

Ne
∑

i=1

‖g(ξ, θ) + ǫi − g(ξ, θ)‖2
Σǫ

−1

)

= p(Y |θ, ξ)∇ξ

(

−1
2

Ne
∑

i=1

‖ǫi‖2
Σǫ

−1

)

= 0,

(3.22)

thus, the first term in Eq. 3.21 disappears. To estimate the evidence

and its gradient, we marginalize them with respect to θ∗, as in Eq. 2.4.

Thus,

∇ξp(Y |ξ) =
∫

Θ

∇ξp(Y |θ∗, ξ)π(θ∗)dθ∗. (3.23)

Substituting Eq. 3.23 in Eq. 3.21 furnishes

∇ξf(ξ, θ, Y ) = −∇ξp(Y |ξ)
p(Y |ξ)

,

= −

∫

Θ

∇ξp(Y |θ∗, ξ)π(θ∗)dθ∗

∫

Θ

p(Y |θ∗, ξ)π(θ∗)dθ∗

(3.24)

The gradient of the likelihood of observing Y given θ∗ different

than θ is

∇ξp(Y (ξ, θ, ǫ)|θ∗, ξ) = p(Y |θ∗, ξ)∇ξ

(

−
1

2

Ne
∑

i=1

‖yi − g(ξ, θ∗)‖2
Σǫ

−1

)

= −p(Y |θ∗, ξ)

[

Ne
∑

i=1

(

∇ξy −∇ξg(ξ, θ∗)
)T

Σǫ
−1 (yi − g(ξ, θ∗))

]

= −p(Y |θ∗, ξ)

[

(

∇ξg(ξ, θ)−∇ξg(ξ, θ∗)
)T

Ne
∑

i=1

Σǫ
−1 (yi − g(ξ, θ∗))

]

(3.25)

In the next section we present estimators of the gradient of f using

MCI and Laplace approximation.
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3.5.1 Gradient of the double-loop Monte Carlo estimator

Similarly to the derivation of the DLMC estimator for the EIG

in Section 2.2.3, we approximate the nested integrals by Monte Carlo

integration and the evidence by another Monte Carlo integration, as in

Eq. 2.4,

∇ξIDLMC(ξ) =
1
N

N
∑

n=1

∇ξ log

(

p(Y n|θn, ξ)
1

M

∑M
m=1 p(Y n|θ∗

m, ξ)

)

. (3.26)

Given that Eq. 3.8 holds, the gradient in Eq. 3.26 is exactly the gradient

of the DLMC estimator in Eq. 2.17, i.e., the gradient in Eq. 3.26 is an

approximation of the full-gradient of I. To perform SGD, we need an

estimator for ∇ξf . Marginalizing the evidence in Eq. 3.26 with respect

to θ∗, and applying MCI, furnishes the approximation of the gradient

of the DLMC estimator,

GDLMC(ξ, θ, Y )
def
= ∇ξ log

(

p(Y |θ, ξ)
1

M

∑M
m=1 p(Y |θ∗

m, ξ)

)

. (3.27)

The Eq. 3.27 does not have two Monte Carlo loops, however, to keep

the consistency between the naming of I and G estimators, we keep the

same naming standard. Developing the gradient in Eq. 3.27 and noting

that ∇ξp(Y |θ, ξ) = 0, we have

GDLMC(ξ, θ, Y ) = −
∑M

m=1∇ξp(Y |θ∗
m, ξ)

∑M
m=1 p(Y |θ∗

m, ξ)
. (3.28)

Using MCI on the two integrals in Eq. 3.24 results in a similar estimator,

however, we opt to use the same set {θ∗
m}m>0 for both integrals, reducing

computational complexity. Haun and Marzouk (14) use the gradient of

the DLMC estimator in Eq. 3.28.

In Algorithm 11, we present the the pseudocode for the evaluation

of estimator GDLMC .

Note that the cost of evaluating GDLMC , is N times smaller

than the cost of evaluating ∇ξIDLMC . For example, if forward finite

differences are used to calculate the gradient of g, the cost of evaluating



80 Chapter 3. Optimization

Algorithm 11 Pseudocode for the gradient of the DLMC estimator.

1: function Gradient(ξ, θ, Y )
2: Evaluate g(ξ, θ)
3: Evaluate ∇ξg(ξ, θ)
4: for i = 1, 2, .., .Ne do
5: Sample ǫi from N (0, Σǫ)
6: yi ← g(ξ, θ) + ǫi

7: end for
8: Y ← {yi}Ne

i=1

9: for m = 1, 2, ..., M do
10: Sample θ∗

m from π(θ)
11: Evaluate g(ξ, θ∗

m)
12: p(Y n|θ

∗

m
, ξ)← det (2πΣǫ)

−
Ne

2 exp

(

− 1
2

∑

Ne

i=1

∥

∥y
(n)
i

(ξ)− g(ξ, θ∗

m
)
∥

∥

2

Σǫ
−1

)

13: Evaluate ∇ξg(ξ, θ∗
m)

14: ∇ξp(Y |θ∗
m, ξ) ← −p(Y |θ∗

m, ξ)
[

(∇ξg(ξ, θ)−∇ξg(ξ, θ∗
m))T

∑Ne

i=1 Σǫ
−1 (yi − g(ξ, θ∗

m))
]

15: end for

16: GDLMC ← −
∑

M

m=1
∇ξp(Y |θ∗

m
,ξ)

∑

M

m=1
p(Y |θ∗

m
,ξ)

17: return GDLMC

18: end function

∇ξIDLMC is N(M + 1)(dim(ξ) + 1)h−̺, whereas, for GDLMC , the cost

is (M + 1)(dim(ξ) + 1)h−̺.

3.5.2 Gradient of the Monte Carlo estimator with Laplace approxi-

mation

From Eq. 2.28, we have the Laplace approximation of the EIG.

We derive the full-gradient of the Laplace approximation of I as

∇ξI(ξ) ≈
∫

Θ

[

−1
2
∇ξ log(det(2πΣ(ξ, θt)))

]

π(θt)dθt. (3.29)

Approximating the integral in Eq. 3.29 by a MCI results in the full-

gradient of the MCLA estimator,

∇ξIMCLA(ξ) =
1
N

N
∑

n=1

[

−1
2
∇ξ log(det(2πΣ(ξ, θn)))

]

. (3.30)
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The gradient of f using the Laplace approximation, needed for stochastic

optimization, is

∇ξGMCLA(ξ, θ) = −1
2
∇ξ log(det(2πΣ(ξ, θ)))

= −1
2
∇ξ log(det(Σ(ξ, θ)))

= −1
2
∇ξdet(Σ(ξ, θ))

det(Σ(ξ, θ))
.

(3.31)

Using Jacobi’s formula (and suppressing the dependencies of Σ) fur-

nishes

∇ξdet(Σ) = tr
(

det (Σ) (Σ−1)T∇ξΣ
)

, (3.32)

thus,

∇ξGMCLA(ξ, θ) = −1
2

tr
(

det (Σ) (Σ−1)T∇ξΣ
)

det(Σ)

= −1
2

tr
(

(Σ−1)T∇ξΣ
)

(3.33)

Using Eq. 2.27, and remembering that Σǫ is symmetric,

∇ξΣ−1 = 2Ne∇ξ∇θgT Σ−1
ǫ ∇θg, (3.34)

and, using the identity ∇Σ = −ΣT∇Σ−1Σ,

∇ξΣ = −2NeΣ∇ξ∇θgΣ−1
ǫ ∇θgΣ. (3.35)

Using Eq. 3.33,

∇ξGMCLA(ξ, θ) = −1
2

tr
(

(Σ−1)T (−2NeΣ∇ξ∇θgΣ−1
ǫ ∇θgΣ)

)

= Netr
(

∇ξ∇θgΣ−1
ǫ ∇θgΣ)

)

,
(3.36)

or, in index notation,

{GMCLA}s = (Ne)Σlm

(

∂2gi

∂ξs∂θl

(

Σ−1
ǫ

)

ij

∂gj

∂θm

)

. (3.37)

This estimator has the advantage of not needing the solution of any

integral, i.e., it does not need MCI.
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Algorithm 12 Pseudocode for the gradient of the MCLA estimator.

1: function Gradient(ξ, θ, Y )
2: Evaluate ∇θg(ξ, θ) and ∇ξ∇θg(ξ, θ)
3: Use ∇θg(ξ, θ) to evaluate Σ(ξ, θ) using Eq. 2.27
4: GMCLA(ξ)← Netr

(

∇ξ∇θg(ξ, θ)Σ−1
ǫ ∇θg(ξ, θ)Σ(ξ, θ))

)

5: return GMCLA(ξ)
6: end function

Evaluating the gradient of the MCLA estimator requires both

∇θg, and ∇ξ∇θg. If we use forward Euler to approximate the deriva-

tives, the cost of evaluating GMCLA is (dim(ξ) + 1)(dim(θ) + 1)hη, N

times less than the cost of evaluating ∇ξIMCLA, which is (dim(ξ) +

1)(dim(θ) + 1)Nhη.

3.5.3 Gradient of the double-loop Monte Carlo estimator with

importance sampling

The full-gradient of the DLMC estimator in Eq. 3.26 can be

improved by using an importance sampling to estimate the evidence,

∇ξIDLMCIS(ξ) =
1
N

N
∑

n=1

∇ξ log

(

p(yn|θn, ξ)
1

M

∑M
m=1 L(yn; ξ; θ∗

m)

)

, (3.38)

where L is presented in Eq. 2.33. Similarly, the approximation of Eq.

3.38, i.e., the gradient of f using importance sampling, is

GDLMCIS(ξ, θ, Y ) = ∇ξ log

(

p(y|θ, ξ)
1

M

∑M
m=1 L(y; ξ; θ∗

m)

)

. (3.39)

The development of Eq. 3.39 is similar to the one of Eq. 3.27.

GDLMCIS(ξ, θ, Y ) =
∇ξp(Y |θ, ξ)

p(Y |θ, ξ)
−
∑M

m=1∇ξL(y; ξ; θ∗
m)

∑M
m=1 L(y; ξ; θ∗

m)
. (3.40)

The gradient of the likelihood in the first term of Eq. 3.40 vanishes,

as shown in Eq. 3.22, However, the evaluation of the gradient of L
is cumbersome. Remember that the importance sampling pdf π̃ is

Gaussian-distributed with mean θ̂(ξ, θ) and covariance matrix Σ(ξ, θ̂),
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thus, evaluating its gradient requires the evaluation of the gradient of θ̂

with respect to ξ. We assume ∇ξπ̃ ≈ 0, thus, taking the gradient of Eq.

2.33 furnishes

∇ξL(Y ; ξ; θ) ≈ ∇ξp(Y |θ, ξ)π(θ)
π̃(θ)

. (3.41)

Indeed, for any ξ̃
def
= lim∆ξ→0(ξ + ∆ξ), the MAP of θ at ξ̃ can be

approximated as θ̂(ξ̃) ≈ θ̂(ξ), hence, this simplification should not

affect importance sampling effectiveness in drawing informative samples.

Therefore, we opt to calculate θ̂ and Σ(θ̂) only once per GDLMCIS

evaluation. Moreover, we sample θ∗ only once per GDLMCIS and use it

to estimate the gradient of L. The gradient of the likelihood in Eq. 3.41

is evaluated as in Eq. 3.25.

If we use forward finite differences to estimate the gradients with

respect to ξ and θ, the cost for evaluating GDLMCIS is [(M +1)(dim(ξ)+

1)+(CMAP +1)(dim(θ)+1)]h−̺, where CMAP is the number of iterations

needed to find θ̂ in Algorithm 3. Moreover, the cost of evaluating

GDLMCIS is already N times smaller the cost of evaluating ∇ξIDLMCIS ,

which is of N(dim(ξ) + 1)[(1 + CMAP )(dim(θ) + 1) + M + 1)]h−̺.

Algorithm 13 presents the pseudocode for the gradient of the

DLMCIS estimator, where the line where importance sampling happens

is shaded in gray.

Given that the cost of estimating ∇θg and ∇ξg by finite difffer-

ences are respectively CJ,θ and CJ,ξ, and that the cost of evaluating

∇θ∇ξg is CJ,θCJ,ξ, the number of evaluations of g needed by each esti-

mator I, their full gradients, and gradient estimators G are presented

in Table 1.

3.5.4 Pseudocode of the complete stochastic optimization frame-

work for OED

In Algorithm 14, we present the pseudocode for the ASGD method

for Bayesian OED. The Polyak–Ruppert averaging at the last iteration

is taken as ξ̂ ≈ ξ∗.
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Algorithm 13 Pseudocode for the gradient of the DLMCIS estimator.

1: function Gradient(ξ, θ, Y )
2: Evaluate ∇ξg(ξ, θ)
3: for i = 1, 2, .., .Ne do
4: Sample ǫi from N (0, Σǫ)
5: yi ← g(ξ, θ) + ǫi

6: end for
7: Y ← {yi}Ne

i=1

8: Find θ̂(ξ, Y ) using Algorithm 3
9: Evaluate ∇θg(ξ, θ̂)

10: Use ∇θg(ξ, θ̂) to evaluate Σ(ξ, θ̂) using Eq. 2.27
11: for m = 1, 2, ..., M do ⊲ Inner loop

12:
Sample θ∗

m from π̃(θ) ∼ N (θ̂, Σ(ξ, θ̂)) ⊲ Importance
sampling

13: p(Y n|θ
∗
m, ξ)← det (2πΣǫ)−

Ne

2 exp

(

− 1
2

∑Ne

i=1

∥

∥

∥
y

(n)
i

(ξ)− g(ξ, θ∗m)

∥

∥

∥

2

Σǫ
−1

)

14: L(Y n; ξ; θ∗
m)← p(Y n|θ∗

m, ξ)π(θ∗
m)/π̃(θ∗

m)
15: Evaluate ∇ξg(ξ, θ∗

m)

16: ∇ξp(Y |θ∗
m, ξ) ← −p(Y |θ∗

m, ξ)
[

(∇ξg(ξ, θ)−∇ξg(ξ, θ∗
m))T

∑Ne

i=1 Σǫ
−1 (yi − g(ξ, θ∗

m))
]

17: ∇ξL(Y n; ξ; θ∗
m)← ∇ξp(Y n|θ∗

m, ξ)π(θ∗
m)/π̃(θ∗

m)
18: end for

19: GDLMCIS(ξ, θ, Y )← −
∑

M

m=1
∇ξL(Y ;ξ;θ∗

m
)

∑

M

m=1
L(Y ;ξ;θ∗

m
)

20: return GDLMCIS(ξ)
21: end function

ASGD-restart is the main optimization algorithm of this thesis

and its efficiency and robustness is assessed in the numerical example

section.

3.6 Chapter summary

In this chapter, we introduced the stochastic optimization frame-

work that we propose to solve OED problems. In Section 3.2, we pre-

sented the Robbins–Monro algorithm, also known as the SGD, and the

rationale behind it, pointing out its main drawbacks and the literature
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Algorithm 14 Pseudocode for the ASGD-restart method for Bayesian
OED.

1: procedure ASGD(ξ0, α0, q, TOL)
2: z0 = ξ0, λ0 = 1
3: for k = 1, 2, ... do
4: Solve λk for λ2

k = (1− λk)λ2
k−1 + qλk

5: γk = λk−1(1−λk−1)
λ2

k−1
+λk

6: Sample θk from π(θ)
7: for i = 1, 2, .., .Ne do
8: Sample ǫi from N (0, Σǫ)
9: yi = g(ξk−1, θk) + ǫi

10: end for
11: Y k = {yi}Ne

i=1

12: αk = α0√
k

⊲ Decreasing step scheme

13: zk = ξk−1 + αkG(ξk−1, θk, Y k)
14: ξk = zk + γk(zk − zk−1) ⊲ Nesterov’s accelerated step

15: if
〈

G(ξk−1, θk, Y k), ξk − ξk−1

〉

< 0 then ⊲ Restart
technique

16: λk = 1
17: end if

18: ξ̄k =
(

∑

k

2 ≤i≤k αi

)−1
∑

k

2 ≤i≤k αiξi ⊲ Polyak–Ruppert
averaging

19: if |ξ̄k − ξ̄k−1|2 < TOL then ⊲ Stop Criterion
20: Break
21: end if

22: end for
23: ξ̂

def
= ξ̄k+1

24: end procedure
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Table 1 – Number of evaluations of g required for each estimator.

DLMC MCLA DLMCIS

I N(M + 1) NCJ,θ N [(CMAP + 1)CJ,θ + M + 1]
∇ξI CJ,ξN(M + 1) CJ,ξNCJ,θ CJ,ξN [(CMAP + 1)CJ,θ + M + 1]
G CJ,ξ(M + 1) CJ,ξCJ,θ (CMAP + 1)CJ,θ + CJ,ξ(M + 1)

limitation regarding its application to OED problems. In order to over-

come these drawbacks, we presented in the following section different

approaches, we presented the averaging technique, known as the Polyak–

Ruppert averaging, as a way of improving SGD main weaknesses, its

lack of robustness and its step-size tuning sensibility.

In Section 3.3, we introduced Nesterov’s acceleration to de-

terministic gradient descent (17) and a restart method proposed by

O’Donoghue and Candès (30).

In Section 3.4, we apply Nesterov’s acceleration to SGD, fur-

nishing the ASGD. In addition, we adapted the deterministic restart

technique from O’Donoghue and Candès (30) to ASGD. In Section 3.5,

we derived the gradients of the EIG estimators presented in Chapter 2.

The gradient of the MCLA estimator with respect to design

parameters is novel, being first published in a paper from the authors

(36). Moreover, we deduced the gradient of the DLMCIS with respect

to design parameters. These gradient estimators do not introduce any

bias for our case, thus, being suited for stochastic optimization.
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4 Examples

To assess the efficiency of the methods presented in Chapters 2

and 3, we solve four different numerical examples. The first numerical

example is a stochastic optimization problem used to compare the

efficiency of SGD, ASGD, and ASGD-restart in the minimization of

a quadratic function. In the second example, we solve a simple OED

problem with quadratic model in order to draw comparisons among the

performances of DLMC, MCLA, and DLMCIS estimators using different

optimization methods (SGD, ASGD, and ASGD-restart). In the third

example, we address the optimization of strain gauge positioning on a

beam modeled following Timoshenko beam theory for estimating the

beam’s mechanical properties. The purpose of example 3 is to show that

the proposed OED framework can reproduce the engineer’s intuition.

That is, that the optimized design found is consistent with what an

engineer would intuitively expect. In the fourth and last example, we

optimize an EIT experiment; we identify the optimal currents that,

when imposed on the electrodes, maximize the expected information

gain about ply orientations in a composite material.

The main interest in the numerical examples presented in this the-

sis is the evaluation of the performance and robustness of the methods

discussed in Sections 2 and 3.2. Thus, the numerical examples do not

contemplate practical aspects that may be important for actual experi-

ments. Details regarding the experiment evaluation are responsibility of

the experiment designer.

4.1 Example 1: Stochastic quadratic function

In this first example, we evaluate the performance of stochastic

optimization algorithms on finding the maximum of a quadratic function.

The goal of this example is to evaluate the efficiency of the Nesterov’s
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acceleration and the restart technique when using noisy gradient obser-

vations. Moreover, since the problem has a closed-form solution with

known optimum and derivatives, we can use the optimal q tuning as

Nemirovksi (27), and compare its effect with the restart technique.

We analyze the problem of finding ξ that maximizes the expected

value of a function f(ξ, θ) with respect to θ given as

f(ξ, θ) = −
(

1
2

ξT Aξ + ξT Aθ

)

, (4.1)

where A is a diagonal n × n matrix with elements Ajj = j for j =

1, · · · , n. The random vector θ is Gaussian-distributed with null mean

and covariance matrix Σθ = diag({σ2
θ}n

i=1). The vector ξ is a design

variable, belonging to Ξ, a subset of Rn. The objective function to be

maximized is

Eθ [f(ξ, θ)] = −Eθ

[

1
2

ξT Aξ + ξT Aθ

]

(4.2)

= −1
2

ξT Aξ. (4.3)

Taking the derivative of the objective function with respect to ξ furnishes

∇ξEθ [f(ξ, θ)] = −Aξ, (4.4)

hence, the maximum of Eq. 4.2 has closed form

ξ∗ = 0. (4.5)

To approximate ∇ξEθ [f(ξ, θ)] for stochastic optimization, we use the

gradient of f ,

G(ξ, θ) = −A(ξ + θ). (4.6)

Note that∇ξEθ [f(ξ, θ)] = Eθ [G(ξ, θ)], thus, G is an unbiased estimator

for the gradient of the objective function. Since A is diagonal with

elements Aii = i, the variance of the i-th element of the estimator G is

calculated as

V[Gi(ξ, θ)] = i2
V[θi] (4.7)

= i2σ2
θ . (4.8)
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The variance in the gradient estimation does not depend on ξ and does

not vanish in the optimum. Thus, as ∇ξEθ [f(ξ, θ)] converges to zero,

the relative error in gradient estimation goes to infinity.

The SGD in Eq. 3.9 for example 1 becomes

ξk+1 = ξk + αkG(ξk, θk) (4.9)

= ξk − αkA(ξ + θk), (4.10)

where each θk is independently sampled from the multivariate Gaus-

sian N (0, Σθ) each iteration. The accelerated gradient formulation is

similarly obtained by replacing G in Eq. 3.17.

The estimation of the conditioning number L/µ is straightforward

in this case, since the Hessian of the objective function is constant and

equal to A, whose maximum and minimum eigenvalues are, respectively,

L = n, and µ = 1. Thus, for this example, the optimal value for

the parameter q is q∗ = 1/n. Similarly, the step-size is set to α0 =

2/(L + µ) = 2/(n + 1).

We solve the stochastic optimization problem in example 1 using

SGD, ASGD, ASGD employing optimal q, and ASGD with the restart

technique. In the numerical tests for example 1, we use n = 20, thus,

α0 = 2/21 and q∗ = 1/20. Note that θ has is n-dimensional, thus, this

example has 20 random parameters. One advantage of SGD is that

it can solve high-dimensional problems without any increase in the

cost per iteration. Figure 20 presents the convergence of each method

towards the optimum using different standard deviations for the prior

pdf π(θ); on the left, σθ = 0.1, and on the right, σθ = 0.01. It can be seen

that the algorithms behave similarly to their deterministic counterparts

up to a certain point, where they start converging sublinearly. As the

noise in the gradient estimation becomes large in comparison to its

magnitude, the convergence gets dominated by the sublinear term of

stochastic gradient. Moreover, when the variance σθ is increased to 0.1,

the sublinear phase starts sooner.

As discussed in Section 3.4.1, in ASGD the Nesterov’s acceleration
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In this example, the forward model is

g(ξ, θ) = ξTAξθ − ξTA1θ2 − 81θ − 1, where A =

[

1 −0.2

−0.2 0.5

]

,

(4.11)

the scalar random variable θ is sampled from the prior pdf π(θ) =

N (0, 10−4), and ξ ∈ Ξ = [−2, 2]2 ⊂ R
2. For DLMC and DLMCIS

gradients, ∇ξg need to be evaluated, and MCLA gradient requires ∇θg

and ∇ξ∇θg. For this problem, closed forms of the model derivatives

can be obtained as

∇ξg(ξ, θ) = 2Aξθ −A1θ2, (4.12)

∇θg(ξ, θ) = ξTAξ − 2ξTA1θ − 81, (4.13)

∇ξ∇θg(ξ, θ) = 2Aξ − 2A1θ. (4.14)

The additive error is assumed to be Gaussian ǫ ∼ N (0, 10−4) and

the number of experiments is Ne = 1. The initial step-size is chosen as

α0 = 1.00.

The efficiency criterion we use to compare different methods is

defined as the average number of calls of the forward model (NCFM)

required to approximate ξ∗ for a given tolerance. We compute NCFM

as the mean value of ten independent runs (because of the randomness

of SGD), where we aim for an error tolerance of 0.01, i.e., ‖ξk − ξ∗‖2 ≤
0.01.

To approximate the inner loop in DLMC and DLMCIS, we use the

optimal sampling from Beck et al. (2), which we evaluate at the starting

point of the optimization and keep constant during the process. To

achieve the tolerance of 0.01 in the error of the optimum estimation, the

optimal numbers of MC samples are N∗
DLMC

= 2447 and M∗
DLMC

= 80

for DLMC, N∗
DLMCIS

= 2402 and M∗
DLMCIS

= 7 for DLMCIS, and

N∗
MCLA

= 966 for MCLA. We use the same values for their SG estimators,

except that N = 1 is used. We use the Algorithm 3 to estimate θ̂ in

(2.25) for DLMCIS.
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We solve this problem for each combination of the optimization

methods (FGD, SGD, ASGD, ASGD-restart), and gradients of EIG

estimators (DLMC, MCLA, DLMCIS) to compare their performances.

Table 2 presents mean NCFM for each different combinations of the

optimization methods and gradient estimators for a hundred independent

runs, except for FGD using DLMC, where, because of the high cost,

only ten runs were performed. The optimization methods are indicated

at the top of each column, and the gradient estimators in Section 2.2

are listed by row.

Table 2 – Mean NCFM over a hundred independent runs to achieve
‖ξk − ξ∗‖2 ≤ 0.01.

FGD SGD ASGD ASGD-restart

DLMC 2.99× 107 1.68× 105 9.94× 103 1.18× 104

DLMCIS 6.57× 106 3.18× 104 3.17× 103 2.56× 103

MCLA 2.80× 105 4.06× 103 2.87× 102 2.75× 102

By analyzing the first line of Table 2, we see that the two methods

using Nesterov’s acceleration (ASGD and ASGD-restart) reduce the

computational burden by three to four orders of magnitude compared

to FGD. Moreover, when using MCLA, ASGD-restart estimates ξ∗

in fewer than 300 calls of the forward model. For this example, the

Laplace method and the Nesterov acceleration both performed as ex-

pected and reduced the cost to solve the OED problem. Moreover, the

coupling of the methods worked; the Laplace approximation did not

affect the Nesterov’s acceleration. The convergence to the optimum of

SGD, ASGD, and ASGD-restart using the gradient of MCLA estimator

is presented in Figure 21. It can be seen that the acceleration speeds

up the convergence, and, moreover, that the restart technique results in

smoother convergence.

To further evaluate Nesterov’s acceleration combined with the

EIG estimators, we solve the problem using ASGD-restart with MCLA

and with DLMCIS using three different values for the inner sample-size,
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4.3 Example 3: Strain gauge positioning on Timoshenko beam

To test the OED machinery developed on the present thesis

on a problem with physical meaning, we study the purely academic

engineering problem of finding the optimal placement of a strain-gauge

on a beam to estimate Young and shear deformation moduli. In this

problem, we opt to use the gradient of MCLA, given its lower cost in

comparison to DLMCIS. We compare SGD, ASGD, and ASGD-restart

in the maximization of IMCLA.

We consider that the strain-gauges provide (noisy) strains obser-

vations in the vertical and longitudinal axes for a given point of the

domain of the beam. We characterize the beam’s mechanical properties,

namely the Young modulus E and the shear modulus G, given mea-

surements obtained from the strain gauge using the Timoshenko beam

model. The beam to be studied has 10 m length, 2 m height, and 0.1

m base width. The beam’s geometry is not consistent with engineering

practice and is devised to furnish an interesting OED problem on the

stochastic optimization perspective: we want an optimization problem

where the optimum is not in a vertex of the beam. A uniform load qo

of 1.00 kN/mm is imposed on the beam’s vertical axis and distributed

along its main axis. The geometry of the beam, the load, and the posi-

tion of the strain gauge are illustrated in Figure 6. We aim to locate a

Figure 24 – (Example 3) Geometry of the Timoshenko beam.

strain gauge on the beam that maximizes the information on E and G.

We model the beam following Timoshenko’s theory (37), a mechanical

model that captures the strains resulting from both normal and shear
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stresses. The Timoshenko beam model for our case is






KsGArε12 = qoLe

2 − qox1,

EInε11 = qox1(Le−x1)
2 x2,

(4.15)

where ε11 is the normal strain, ε12 is the shear strain, x1 and x2 are

the positions of the strain gauge on the horizontal and vertical axes

respectively, qo is the uniform load, Le is the length of the beam,

In is the inertia moment of the cross section, Ks is the Timoshenko

constant (Ks = 5/6 in all test cases), and Ar is the cross-section area.

A deduction of the Timoshenko beam equations from the elasticity

equations is presented in Appendix C.

4.3.1 Bayesian formulation

The optimal position for the strain gauge that provides the

maximum information about E and G is denoted by ξ∗ = (x∗
1, x∗

2).

The longitudinal strain on the main axis of the beam, denoted by ε11,

together with the transverse strain ε12, compose the output of the

forward model. Therefore, based on (4.15), we find that

g(ξ, θ) = (ε11(ξ, θ), ε12(ξ, θ))

=

(

ξ2

(

qoLeξ1 − qoξ2
1

)

2θ1In
,

Le

2 qo − qoξ1

Ksθ2Ar

)

, (4.16)

where (x1, x2) and (E, G) are replaced by (ξ1, ξ2) and (θ1, θ2), respec-

tively. The additive error of the measurement is Gaussian ǫ ∼ N (0, Σǫ),

where the noise covariance matrix is Σǫ = diag
{

σ2
ǫ1

, σ2
ǫ2

}

.

4.3.2 Test cases

We assess the robustness of the proposed methods in four test

cases, in which we attempt to locate the optimal strain-gauge placement

on a beam. We test all the different cases, changing the variance of the

prior pdf of θ, the dispersion of the measurement noise, and the number

of experiments. The prior pdf of θ is Gaussian with the distribution
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π(θ) ∼ N
(

(µE
pr, µG

pr)T , diag
{

(σG
pr)2, (σE

pr)2
})

, where µE
pr = 30.00 GPa

and µG
pr = 11.54 GPa.

Table 3 presents the parameters used in each of the four cases.

Table 3 – Parameters for the Timoshenko beam problem (Example 3).

Parameter Ne σE
pr(GPa) σG

pr(GPa) σǫ1
(×10−4) σǫ2

(×10−4)

Case 1 3 9.00 3.46 6.25 1.30
Case 2 1 6.00 2.31 3.75 0.78
Case 3 1 6.00 0.46 3.75 0.78
Case 4 1 1.20 2.31 3.75 0.78

We devised the parameters of the four cases with the intention

of having four different optimization problems. In the first two cases,

both E and G have standard deviation of, respectively, 30% and 20% of

their means. Also, case 1 has larger observation noise than case 2, and

more experiments, 3. The third and fourth cases are exactly like case 2,

except that case 3 has significantly less dispersion in G, a coefficient of

variation of 4%, and case 4 has the same coefficient of variation for E.

To evaluate the efficiency of each optimization method in the

solution of each case, we run 10000 iterations of each method for each

case. Since MCLA is used for this problem, the cost per iteration is

(dim(θ) + 1)(dim(ξ) + 1) forward model evaluations. Thus, since the

dimension of θ is two, and the dimension of ξ is also two, the NCFM

each method uses is 90000. We compare how close to each optimum

each method can get with this fixed cost. The optimization paths for the

placement of the strain gauges on the beam are drawn against contour

plots of the expected information gain across the optimization domain

in Figure 25.

In cases 1 and 2, the optima are similarly located near the bottom

of the beam, between the middle and the end. In case 3, the optimum

is located in the bottom-middle of the beam; in case 4, the optimum is

located on the supports. These placements are expected, as the Young
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to the prior, and the standard deviations of the posterior pdfs of the

parameters E and G for the four cases. The posteriors are evaluated

at θ̂ = (µE
pr, µG

pr) for the four cases are presented in Figure 27. We

observe a reduced variance in the optimized experiment, compared to

the original, reflecting the importance of an informative experiment. In

cases 3 and 4, no information is acquired about G and E, respectively,

since the variances in the axes are not reduced, compared to the prior.
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Table 4 – Results from the Timoshenko beam problem (Example 3).

x∗
1(mm) x∗

2(mm) I
MCLA

σE
post (GPa) σG

post (GPa)

Case 1
Non-Opt. 5500.00 -100 0.14 8.00 2.40

Opt. 8022.59 -1000.00 2.43 2.48 0.54

Case 2
Non-Opt. 5500.00 -100 0.23 2.38 1.38

Opt. 7962.77 -1000.00 3.35 1.60 0.74

Case 3
Non-Opt. 5500.00 -100 0.06 5.70 0.46

Opt. 5004.47 -1000.00 1.28 1.72 0.46

Case 4
Non-Opt. 5500.00 -100 0.22 1.20 1.93

Opt. 10000.00 -1000.00 1.94 1.20 0.33
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4.4.1 Bayesian setting

We consider a body D that is 20 cm long and composed of two

plies that are each 1 cm thick, resulting in a total thickness of 2 cm. Both

plies are made of the same material, but are oriented at different angles.

The conductivity of each ply is σ̄(θ, x) = QT (θi) · σ · Q(θi), where

σ = diag
{

10−2, 10−3, 10−3
}

, and Q(θi) is an orthogonal matrix that

rules the rotation of the unknown orientation angle θi of ply i, counting

from bottom to top. The objective is to infer θ1 and θ2, about which

we assume the prior information to be π(θ1) ∼ U( π
4.5 , π

3.5 ) and π(θ2) ∼
U(− π

3.5 ,− π
4.5 ). During the EIT experiment, low-frequency electrical

currents are injected through the electrodes El (with l = 1, · · · , Nel)

attached to the boundary of the body, with Nel being the number of

electrodes. The potentials at the electrodes are calculated as

yi(ξ) = gh(ξ, θt) + ǫi
def
= Uh(ξ, θt) + ǫi, for i = 1, · · · , Ne , (4.17)

where yi ∈ R
Nel−1, and θt = (θt,1, θt,2) are the true orientation an-

gles that we intend to infer. In the Bubnov–Galerkin sense, Uh =

(U1, · · · , UNel−1) is the finite elements approximation (i.e., the potential

at the electrodes) of U from the following variational problem: find

(u, U) ∈ L2
P

(Θ;H) such that

E [B ((u, U), (v, V ))] = Ie · E [U ] , for all (v, V ) ∈ L2
P

(Θ;H) .

(4.18)

where Ie represents the values of injected current at Nel − 1 electrodes

Ie =
(

Ie1
, · · · , IeNel−1

)T

. Let the constitutive relation for the current

flux be (θ, x) = σ̄(θ, x)·∇u(θ, x). Then, the bilinear form B : H×H →
R is

B ((u, U), (v, V )) =
∫

D

 · ∇vdD +
Nel
∑

l=1

1
zl

∫

El

(Um − u) (Vm − v) dEl,

(4.19)

where zl is the surface contact impedance between the electrode l and

the surface of the body. The space of the solution for the potential field

(u(θ), U(θ)) is H def
= H1(D) × R

Nel

free for a given random event θ ∈ Θ,
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the cost of iteration is different. The third case has ten design variables,

thus, each iteration costs 33 NCFM. Thus, in the most expensive

case, 33000 finite element analysis are used. The evaluation of the

optimization for each case takes less than half an hour in a personal

computer, however, the running time can change depending on the

computer used.

4.4.2.1 Test case 1 (Configuration with four electrodes and one design

variable)

We aim to find the most informative current intensity to inject

through three out of the four electrodes attached to the two-ply com-

posite material described above and shown in Figure 28. The current at

the fourth is defined by Kirchhoff’s law. The electrodes are 1 cm long

and have fixed positions.

We approximate the covariance of the posterior pdf for each ξ by

Σpost(ξ), as presented in (2.27). Thus, the approximated covariances at

the initial guess and the optimum solution are

Σpost(ξ0) =

[

7.21× 10−3 9.73× 10−4

9.73× 10−4 1.35× 10−4

]

,

Σpost(ξ
∗) =

[

5.39× 10−6 3.21× 10−6

3.21× 10−6 3.39× 10−6

]

. (4.21)

The optimization reduces the terms in the covariance matrices

by two orders of magnitude, meaning that the optimized experiment

provides more precise estimates of QoI. Due to the symmetry of the

problem, there are two local maxima, one with ξ1 = −1 and one

with ξ1 = 1. However, the local maximum where ξ1 = 1 is also the

global maximum, with a larger expected information gain. Therefore,

we conclude that we can obtain more information about the angles of

the plies from the optimized configuration than from the non-optimized

configuration.

In Figure 29, we present the electric potential and the current
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4.4.2.3 Test case 3 (Configuration with ten electrodes and ten design

variables)

We now consider a more complex EIT experiment with ten 2 cm

long electrodes. The intensity of the initial current applied is 0.5 at the

inlet electrodes (on top of the two-ply composite body) and −0.5 for

the outlet electrodes (on the bottom). It is worth to highlight that this

problem has ten design variables, thus, each gradient by forward finite

differences costs 11 model evaluations, i.e. FEM is evaluated 11 times.

Therefore, it is a case where the stochastic optimization framework

devised can show its performance by efficiently utilizing the gradient

information.

The current streamlines, before and after the optimization, are

depicted at the top of Figure 32. The optimization converges to a

setup with both positive and negative currents applied on both the top

and the bottom electrodes. This optimal setup provides an expected

information gain of 7.18. For the sake of comparison, the expected

information gain from the setup with currents of 1.0 and -1.0 applied

to the top and bottom electrodes, respectively, is only 2.95. On the

bottom-left of Figure 32, the posteriors show that the variance of QoI

for the optimized configuration is remarkably smaller than for the initial

guess. On the bottom-right of the figure, we present the self-convergence

test where we see that using Nesterov’s acceleration resulted in an

accelerated convergence of the optimizer to the optimum found. The

expected information gains for the three cases presented in Example 4

are listed in Table 5.

Table 5 – Expected information gain using MCLA with N = 1000 in
Example 4.

Initial Guess Optimized

Case 1 2.26 6.72
Case 2, Guess 1 0.64 2.46
Case 2, Guess 2 1.74 2.47

Case 3 1.57 7.18
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5 Conclusion

Experiments are an important part of science, and, as such, it

is interesting to tune the experiments parameters to obtain the most

informative observations. However, for many cases, finding the optimum

tuning for experiments is not a trivial task. We opted to use Shannon’s

expected information gain (EIG), a measure based on Bayes’ theorem,

to estimate the performance of an experiment, in what is called Bayesian

optimal experimental design (OED). The Bayesian OED is a very general

methodology that can be applied to a wide range of experiments. The

price of generality is often high; the standard method to estimate EIG

requires the solution of a double-loop Monte Carlo (DLMC) method.

The cost of evaluating DLMC to achieve a desired precision can be of

the order of millions of physical model simulations. Moreover, DLMC

is sensible to the dispersion of the parameters, being susceptible to

numerical instabilities, e.g., numerical underflow. Thus, the goal of

the present thesis was to study numerical methods in both stochastic

optimization and uncertainty quantification in order to solve OED

problems efficiently.

We devised a robust stochastic optimization framework to solve

OED problems. We followed the same path as Huan and Marzouk (14),

and used stochastic gradient descent (SGD) for OED, however, we em-

ployed state-of-the-art techniques in stochastic optimization to improve

the convergence: Polyak–Ruppert averaging, Nesterov acceleration, and

a restart scheme. The SGD does not require the evaluation of the

outer-loop of the EIG estimators, consequently reducing the cost of each

iteration. In comparison to the full-gradient descent approach, the reduc-

tion to the iteration cost is of the order of the outer-loop Monte Carlo

sample size, thus, the optimization cost can be dramatically reduced.

We also used Nesterov’s acceleration with a restart technique to speed

up the convergence in stochastic optimization. The restart technique is
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proposed by Candès and O’Donoghue (30) for the deterministic case.

We adapted the restart method for stochastic optimization by using the

gradient approximation instead of the true gradient to decide whether

or not to restart the acceleration. The accelerated stochastic gradient

descent (ASGD) with the restart technique performs well in the numeri-

cal examples evaluated in this thesis, thus, being a viable alternative for

stochastic optimization problems. The rationale behind ASGD efficiency

is that it takes advantage of acceleration in the starting iterations, before

the asymptotic regime. As the optimization progresses, the acceleration

is degenerated by the noise in gradient estimation, however, ASGD

does not perform worst than SGD in asymptotic regime. Thus, ASGD

takes advantage of Nesterov’s acceleration in its preasymptotic phase,

arriving faster in the neighborhood of the optimum.

To further improve the efficiency of the proposed OED machin-

ery, we coupled the stochastic optimization framework with a Laplace

approximation of the posterior pdf, thus, avoiding the evaluation of the

two nested Monte Carlo integrations needed for the gradient of EIG.

Long et al. (8) proposed the use of the Laplace method to approxi-

mate the integral of the posterior in the context of OED. The Laplace

approximation consists in approximating the log of a pdf by a second-

order Taylor expansion at its mode, thus, the pdf is approximated by

a Gaussian. By using the Laplace approximation of the posterior, we

avoided the need of evaluating the evidence, consequently only one of

the two nested integrals, the outer integral, needed to be evaluated. The

Monte Carlo with Laplace approximation (MCLA) is can be orders of

magnitude cheaper than the DLMC estimator, however it is a biased

and inconsistent estimator. As a viable alternative for the cases where

the Laplace approximation bias is not acceptable, Beck et al. (2) use

an importance sampling based on the Laplace method to improve the

performance on the MC approximation of the evidence. Beck et al. (2)

prove that the double-loop Monte Carlo with Laplace-based importance

sampling (DLMCIS) is a consistent estimator and that the reduction in

comparison to DLMC in cost can be of several orders of magnitude. We
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derived the gradients for stochastic optimization of the DLMC, MCLA,

and DLMCIS estimators and estimated their costs. These gradients

do not have the outer-loop, thus, are cheaper than their deterministic

counterparts.

To test the performance of the methods presented in this thesis,

we solved four numerical examples. The first example was a non-OED

stochastic optimization problem we devised to test the optimization

methods and compare their performances. The second was a simple OED

problem without any physical meaning; we used a model that is quadratic

with respect to both the design parameters and the quantities of interest.

The third example was an engineering problem built to be an interesting

OED case: we optimized the positioning of strain-gauges on a beam

to infer mechanical properties of the material which the beam is made.

The fourth and last example was an engineering problem with a model

that requires a finite element analysis; we optimized the currents to be

imposed on the electrodes during an electrical impedance tomography

(EIT) experiment to infer the angles of the plies of laminated composite

material.

The general conclusion from the numerical examples was that

the stochastic optimization framework for OED is efficient, being able

to consistently solve the proposed problems. For the second example, a

hundred independent runs were performed with each combination o the

optimization algorithms (FGD, SGD, ASGD, ASGD-restart), and the

EIG estimators (DLMC, MCLA, DLMCIS). ASGD-restart with MCLA

solved the problem with an average of 275 calls of the forward model,

whereas DLMC with FGD needed 2.99× 107 model evaluations. These

results where obtained for optimized sample-sizes for EIG estimators

derived in Beck et al. (2). However, the gradient of the MCLA for

stochastic optimization does not require any Monte Carlo integration.

The iteration without Monte Carlo integration results in an efficient

and cheap optimization process. Consequently, OED problems with

expensive models can be optimized. The combination of ASGD-restart

and MCLA solved the expensive problem of EIT that would, otherwise,
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be unfeasible. The main weakness of the MCLA estimator is the bias

introduced from the Laplace approximation, however, for the last two

problems, we evaluated the full-gradient of the DLMCIS estimator in

the solution found with MCLA as a sanity check. This is a way of

measuring if the true gradient is indeed null at the optimum candidate.

We emphasize that the present work is an improvement on the

state-of-the-art for simulation based OED with practical purposes for

both academic and industrial research, enabling improvements on ex-

perimental processes that would not be able with current methods.

5.1 Future research

For future research, we suggest:

Global convergence in multimodal case: To improve the

optimization we presented, we suggest the use of global convergence

techniques that can escape local minima. Torii, Lopez, and Luersen (39)

apply a probabilistic restart technique that restarts the local search

from a point less likely to converge to same local optimum as others.

Another approach, proposed by Pagu and Souza (40), is to create a set

of random points sampled from a Gaussian distribution centered on

the current iteration point and check if any of these points have better

objective function value than the current one. Given that the variance

of the Gaussian distribution is large enough, the algorithm can jump to

regions with better local minima until the global minimum is found.

Variance reduction techniques: A viable way of improving

the convergence of the optimization process is to use variance reduction

methods. One way of reducing the variance is to use minibatches (33),

which means to use a small (but larger than one) sample to estimate the

gradient each iteration. Another example is the use of control variates

as Johnson and Zhang (41) and Nitanda (35). Control variates take

advantage of autocorrelation between the gradients in the domain to

use information from previous iterations.
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Multilevel Monte Carlo: Moreover, for expensive problems

that require the numerical approximation of partial differential equations,

multilevel Monte Carlo can be used to approximate the true gradient of

EIG using a hierarchical mesh discretization, as proposed by Beck et

al.(42).
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APPENDIX A – Deduction of

MAP and covariance matrix for

Laplace methods

Consider the case where the logarithm of the posterior is approx-

imated by a second order Taylor expansion at its MAP. In this case,

the resulting approximation of the posterior is a Gaussian-distributed

variable with mean θ̂ and covariance Σ(ξ, θ̂), where θ̂ is the MAP and

Σ(ξ, θ̂) is the covariance at the true posterior evaluated at θ̂. For the

sake of simplicity, we write Σ̂
def
= Σ(ξ, θ̂). Thus, we write the posterior

approximation as

π(θ|Y , ξ) ≈ π̃(θ|Y , ξ)
def
= (2π)−

dim(θ)
2 det(Σ̂)−1 exp

(

−1

2

∥

∥θ − θ̂(ξ, Y )
∥

∥

Σ̂
−1

)

(A.1)

To approximate the posterior we need to find θ̂ and Σ̂. By definition,

the MAP is

θ̂(ξ, Y )
def
= arg max

θ∈Θ
π(θ|Y , ξ). (A.2)

Since the natural logarithm is a monotonically increasing function

defined on the positive real numbers, and the posterior is a strictly

positive function, instead of maximizing the posterior, we can maximize

its logarithm,

θ̂(ξ, Y ) = arg max
θ∈Θ

log π(θ|Y , ξ). (A.3)

Using the Bayes’ theorem presented in Eq. 2.2 on Eq. A.3, and noting

that the evidence does not depend on θ, thus, can be ignored, furnishes

θ̂(ξ, Y ) = arg max
θ∈Θ

log [p(Y |θ, ξ)π(θ)] (A.4)

= arg max
θ∈Θ

[log p(Y |θ, ξ) + log π(θ)] (A.5)
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Substituting the likelihood from Eq. 2.3 and noting that the normalizing

constant is strictly positive for any positive-definite matrix Σǫ, thus,

can be ignored, results in

θ̂(ξ, Y ) = arg max
θ∈Θ

[

−1
2

Ne
∑

i=1

‖yi(ξ)− g(ξ, θ)‖2
Σǫ

−1 + log π(θ)

]

,

(A.6)

or, alternatively,

θ̂(ξ, Y ) = arg min
θ∈Θ

[

1
2

Ne
∑

i=1

‖yi − g(ξ, θ)‖2
Σǫ

−1 − log(π(θ))

]

. (A.7)

The covariance matrix of the posterior evaluated at its MAP, Σ̂,

can be obtained from the second order derivative with respect to θ of

the log-posterior evaluated at the MAP,

∇θ∇θ log π̃(θ̂|Y , ξ) = −Σ̂
−1

. (A.8)

From Bayes’ rule,

π̃(θ|Y , ξ) =
p(Y |θ, ξ)π(θ)

p(Y |ξ)
(A.9)

log π̃(θ|Y , ξ) = log(p(Y |θ, ξ)) + log(π(θ))− log(p(Y |ξ))

(A.10)

∇θ∇θ log π̃(θ|Y , ξ) = ∇θ∇θ log(p(Y |θ, ξ)) +∇θ∇θ log(π(θ)).

(A.11)

Substituting the likelihood from Eq. 2.3 and Σ̂ from Eq. A.8 results in

− Σ̂
−1

= −Ne∇θg(ξ, θ̂)T Σ−1
ǫ ∇θg(ξ, θ̂)− (∇θ∇θg(ξ, θ̂))T

Σ−1
ǫ

Ne
∑

i=1

(yi − g(ξ, θ̂)) +∇θ∇θ log(π(θ̂)). (A.12)

Long et al. (8) prove that ignoring the second term in the right hand

side of Eq. A.12 results in an error of OP(
√

Ne), therefore, we opt to
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avoid evaluating the second order derivatives of the model. Hence, the

resulting Σ̂ is

Σ−1(ξ, θ̂) = Ne∇θ(g(ξ, θ̂))T Σǫ
−1∇θg(ξ, θ̂)−∇θ∇θ log(π(θ̂))+OP

(

√

Ne

)

.

(A.13)
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APPENDIX B – Proof of Eq. 3.8

Throughout the present thesis, we assume that

∇ξEθ,Y [f(ξ, θ, Y )] = Eθ,Y [∇ξf(ξ, θ, Y )]. (B.1)

This assumption is consistent with the experiment model at Eq. 2.1.

Consider

∇ξEθ,Y [f(ξ, θ, Y )] = ∇ξ

∫

Θ

∫

Y
log
(

p(Y |θ, ξ)
p(Y |ξ)

)

p(Y |θ, ξ)dY π(θ)dθ

=
∫

Θ

∫

Y
∇ξ log

(

p(Y |θ, ξ)
p(Y |ξ)

)

p(Y |θ, ξ)dY π(θ)dθ+

+
∫

Θ

∫

Y
log
(

p(Y |θ, ξ)
p(Y |ξ)

)

∇ξp(Y |θ, ξ)dY π(θ)dθ

(B.2)

Recall that the likelihood is

p(Y |θ, ξ) = det (2πΣǫ)− Ne

2 exp

(

−1
2

Ne
∑

i=1

‖yi(ξ)− g(ξ, θ)‖2
Σǫ

−1

)

,

(B.3)

thus,

∇ξp(Y |θ, ξ) = p(Y |θ, ξ)

(

−Σǫ
−1

Ne
∑

i=1

(∇ξyi(ξ)−∇ξg(ξ, θ))

)

.

(B.4)

For the experiment model yi = g(ξ, θ) + ǫi, since Y is evaluated using

θ, it can be observed that ∇ξyi = ∇ξg, hence,

∇ξp(Y |θ, ξ) = 0, (B.5)

and, consequently, Eq. 3.8 holds.
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APPENDIX C – Timoshenko Beam

Model

We derive the governing equations for the Timoshenko beam

from 3d linear elasticity, as in (43). Considering a point x ∈ Ω ⊂ R
3,

we write its position after loading is applied as x + u(x), where u is the

displacement vector. The symmetric strain tensor is defined as

ǫ(u)(x) =
1
2

(∇u(x) + (∇u(x))T ), (C.1)

being linearly related to the corresponding Cauchy stress tensor

σ(x) = C : e(u)(x). (C.2)

The fourth-order tensor C elements can be deduced from constitutive

equations for isotropic homogeneous materials as

Cijkl =
E

2(1 + ν)
(δikδjl + δilδjk) +

Eν

(1 + ν)(1− 2ν)
δijδkl, (C.3)

where E is the Young modulus, and ν is the Poisson ratio.

We formulate the Timoshenko beam as

Geometry The domain Ω ⊂ R
3 has one dimension significantly

greater than the others on the x1 dimension. The line on the middle

of the beam along the x1 dimension is described by the domain Ωo ≡
(0, Le) ⊂ R, the width by a function b : Ωo 7→ (0,∞) and the height by

a function H : Ωo 7→ (0,∞). The domain Ω ⊂ R
3 is defined as

Ω ≡ {(x1, x2, x3) ∈ R
3 : x1 ∈ Ωo, x2 ∈ [−H/2, H/2], x3 ∈ [−b/2, b/2]}

(C.4)

Mechanics Straight lines perpendicular to the line on the middle

of the beam remain straight after loading. Transverse normals do not

elongate, thus, σ33 = 0.
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Kinematics The transverse normal sections can rotate in rela-

tion to the deformed line on the middle of the beam, allowing shear

strains to be considered. The displacement of any point x ⊂ Ωo is given

by the vector w(x), and the rotation of the cross-section at x is η(x)

Since we admit that the loading is on the direction of w3 and that the

displacement due to the Poisson ratio on the direction of w2 is negligible,

we ignore the displacement and strain on this direction. We consider

the displacement field for the beam to be

u(x1, x2) = (w1(x1)− x2ς(x1), w2(x1), 0) (C.5)

We want to find the pair u and ς on the domain Ω that satisfies

the conditions stated above as besides boundary conditions, cinematic

conditions — relating displacement field u and strains ε — and com-

patibility equations between strains ε and stresses σ.

Modeling the beam in such a way that the rotation of the cross

section ς can be different than dw2

dx leads to shear strains on the sections,

as required for our problem. Since we are ignoring the 3rd dimension,

we can simplify our process by considering a 2D problem. Using the

balance of linear momentum equation, we define the strong form for

our problem as

−div σ = 0 in Ω (C.6a)

σ = C : ε(u) in Ω (C.6b)

u = 0 in Γo (C.6c)

σ · n = t in Γ1 (C.6d)

σ · n = 0 in ΓF (C.6e)

where Γo is the region where the supports are, Γ1 is where traction q

are applied, and ΓF is the remaining part of the boundary, the free part

of the boundary. To find a weak form, we introduce the test function v

as

v(x1, x2) = (y1(x1)− x2η(x1), y2(x1), 0) , (C.7)
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and integrate the Cauchy equation in Eq. C.6d on Ω

Wext =
∫

Γ1

t v dΓ1 =
∫

Γ1

(σ · n) v dΓ1. (C.8)

Using the divergence theorem,
∫

Γ1

t v dΓ1 =
∫

Ω

div(σ · v)dΩ, (C.9)

and noting that v is a null vector on the boundaries, furnishes
∫

Γ1

t v dΓ1 =
∫

Ω

div(σ) · vdΩ +
∫

Ω

σ : ∇v dΩ. (C.10)

Since σ is symmetrical, its double contraction with respect to the

skew part of ∇v is null, thus, we substitute ∇v by its symmetrical part,

∇vsym = 1
2 (∇v + ∇vT ) = ε(v). We are not considering body forces,

hence, div(σ) = 0, resulting in
∫

Γ1

t v dΓ1 =
∫

Ω

σ : ε(v) dΩ. (C.11)

Substituting the constitutive Eq. C.6b furnishes the weak form

of the governing equations
∫

Γ1

t v dΓ1 =
∫

Ω

ε(u) : C : ε(v) dΩ. (C.12)

From elasticity theory, we have

ε11(u) =
∂u1

∂x1

= x2
dς

dx1

γ12(u) = ε21(u) + ε12(u)

γ12(u) =
∂u1

∂x2
+

∂u2

∂x1

γ12(u) =
dw2

dx1
− ς,

(C.13)
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and, similarly,

ε11(v) = x2
dη

dx1

γ12(v) =
dy2

dx1
− η.

(C.14)

Substituting the strains in Eq. C.13 and Eq. C.14 on Eq. C.12,

and considering t = (0, q, 0), a system of two equations arise



















∫

Ω

(

dw2

dx1
− ς
)

G dy2

dx1
dΩ =

∫

Ω
q y2 dΩo

∫

Ω
x2

dς
dx1

E x2
dη

dx1
dΩ−

∫

Ω

(

dw2

dx1
− ς
)

G η dΩ = 0,

(C.15)

where G is the shear modulus and is related to E and µ as G =

E(1 + µ)/2. Integrating Eq. C.15 over the area Ar = H × b, and noting

that In =
∫

Ar

x2
2dAr is the inertia moment, results in



















GArKs

∫

Ωo

(

dw2

dx1
− ς
)

dy2

dx1
dΩo =

∫

Ωo

qoy2 dΩo

EIn

∫

Ωo

dς
dx1

dη
dx1

dΩo −GArKs

∫

Ωo

(

dw2

dx1
− ς
)

ηdΩo = 0.

(C.16)

The constant Ks is included on the formulation to correct the

error on G Ar induced on the model by assuming that the shear stress is

uniform on the cross section and is adopted as Ks = 5/6 for rectangular

sections. A discussion on the definition of this value can be found on

the work of Wang and Reddy (44).

Summing both equations in Eq. C.16 results in

EIn

∫

Ωo

dς

dx1

dη

dx1
dΩo+GArKs

∫

Ωo

(

dw2

dx1
− ς

)(

dy2

dx1
− η

)

dΩo =
∫

Ωo

qoy2 dΩo

(C.17)

where the first integral is the energy related to the strains due to the

bending of the beam, the second to the shear strains and the third to

the vertical uniform load, considered to be applied over Ωo.
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Integrating the equations C.16 by parts and noting that the trial

functions vanish on the boundaries vanishes


















−GArKs

∫

Ωo

d
dx1

(

dw2

dx1
− ς
)

y2dΩo =
∫

Ωo

qoy2 dΩo

−EIn

∫

Ωo

d2ς
dx2

1
η dΩo −GArKs

∫

Ωo

(

dw2

dx1
− ς
)

ηdΩo = 0,

(C.18)

thus,


















−GArKs
d

dx1

(

dw2

dx1
− ς
)

= qo

−EIn
d2ς
dx2

1
−GArKs

(

dw2

dx1
− ς
)

= 0.

(C.19)

Considering the beam as simply supported with length Le, we

obtain the boundary conditions










EIn
dς

dx1

∣

∣

∣

x1=0
= EIn

dς
dx1

∣

∣

∣

x1=Le

= 0

KsGAr

(

dw2

dx1
− ς
)∣

∣

∣

x1=0
= KsGAr

(

dw2

dx1
− ς
)∣

∣

∣

x1=Le

= qoLe

2 ,

(C.20)

and applying these conditions on equations C.19 furnishes

g(ξ, θ) = (ε11(ξ, θ), ε12(ξ, θ))

=

(

x2(ξ)
(

qLex1(ξ)− qx2
1(ξ)

)

2E(θ)In
,

Le

2 q − qx1(ξ)
KsG(θ)Ar

)

.
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