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Resumo

Os experimentos desempenham um papel importante na ciéncia, sendo
a maneira como observamos o mundo real. No entanto, em muitos
casos, 0os experimentos podem ser caros, demorados ou nao fornecer
informagao o suficiente sobre as quantidades de interesse. Nesses casos,
pode ser interessante ajustar o experimento para melhorar sua eficiéncia.
O campo da ciéncia cujo o objetivo é encontrar a melhor configuragio
para experimentos é chamado de projeto 6timo de experimento (OED).
Utilizamos conceitos de inferéncia bayesiana para modelar a realizagdo
do experimento e, assim, podemos avaliar o desempenho do experimento
utilizando o ganho esperado de informagao de Shannon (EIG). Quanto
mais informativo um experimento for quanto as quantidades de interesse,
maior serd seu EIG. Assim, o EIG ¢é nossa funcdo de utilidade no OED;

a quantidade que queremos maximizar.

Para o caso geral, estimar o EIG pode ser caro. A abordagem direta
é aproximar as integrais do EIG usando integragdo de Monte Carlo
(MCI). O estimador resultante é o Monte Carlo de lago duplo (DLMC).
O DLMC é caro e é conhecido por ter problemas numeéricos, assim,
buscamos outro estimador de EIG que possa ter melhor desempenho
que o DLMC. Uma alternativa é aproximar a informagdo posterior ao
experimento por uma funcdo gaussiana, resultando no estimador de
Monte Carlo com Laplace (MCLA). Este estimador tem um viés da
aproximacao de Laplace e é, portanto, inconsistente. Como alternativa
para estimar o EIG, apresentamos o Monte Carlo de lago duplo com
amostragem por importancia. A amostragem por importancia usa uma
estimativa Gaussiana da posterior para obter amostras mais informativas

quanto as quantidades de interesse.

Sendo o custo uma questao principal em OED, é importante tornar
a otimizagao o mais eficiente possivel. Para otimizar o projeto de ex-
perimentos, usamos o gradiente estocéastico de descida, reduzindo o
custo de cada iteragdo ao evitar o custo de um MCI. A diminui¢do no

tamanho do passo para o SGD torna a convergéncia sensivel ao tamanho



do passo escolhido. Usamos técnicas no estado-da-arte em otimizacao
estocastica para obter uma otimizagao robusta e rapida. Uma técnica
é a média de Polyak—Ruppert, consistindo de uma média mével do
caminho de otimizacdo. Como a média é mais suave do que o caminho,
a diminuicdo do tamanho do passo necessario para o SGD pode ser
relaxada, fornecendo, assim, um algoritmo mais robusto. Para acelerar a
convergéncia, combinamos o SGD com um método de momento, a acel-
eragdo do Nesterov. O algoritmo resultante, o ASGD-restart, é robusto

e mantém a convergéncia acelerada em algumas situagoes.

Para usar os métodos do gradiente estocéstico, sdo necessarios esti-
madores ndo-enviesados do gradiente verdadeiro. Assim, deduzimos
os gradientes dos estimadores DLMC, MCLA e DLMCIS em fungao
do modelo direto e suas derivadas. Além disso, as complexidades dos
estimadores de gradiente sao apresentadas e o pseudocddigo de seus

algoritmos é mostrado para permitir a reproducao.

Para testar o desempenho dos métodos, nés os usamos para resolver
quatro exemplos numéricos. O primeiro é um problema de otimizagao
estocastica pura com vinte dimensbes tanto para o projeto quanto para
as quantidades de interesse. O segundo exemplo é um problema de
OED sem um significado fisico que criamos para testar as combinagdes
entre os estimadores EIG e os métodos de otimizagdao. Na média de
cem execugoes, 0 ASGD-restart com o MCLA resolveu este exemplo
com menos de 300 avaliagoes de modelo, enquanto o DLMC usando a
descida de gradiente deterministico precisou de 2.99 x 107 avaliacdes.
O terceiro exemplo é o posicionamento ideal de um extensémetro em
uma viga para inferir propriedades mecanicas do material do qual a
viga é feita. Este exemplo é usado para mostrar que o 6timo encontrado
é consistente com a intuicdo de engenharia. O quarto e ultimo exemplo
é a otimizacgdo das correntes em um experimento de tomografia por
impedéncia elétrica (EIT) para inferir os 4ngulos nas camadas de um
material laminado composto. A simulacdo do EIT requer o uso do
método de elementos finitos, sendo, portanto, um modelo avancado caro

para avaliar. O ASGD-restart usando o gradiente do estimador MCLA



convergiu para solugbes étimas nos quatro casos testados. Até onde vai
o conhecimento dos autores, esta é a primeira pesquisa para resolver
efetivamente um problema OED com um modelo baseado na anélise de

elementos finitos.

Nos testes numeéricos, usando o gradiente do estimador MCLA para
otimizagao estocdstica resultou em convergéncia rapida em relagao ao
custo. Além disso, o reinicio do ASGD acoplado ao MCLA provou ser

uma opg¢ao viavel para a otimizagdo de experimentos com modelos caros.

Keywords: Projeto 6timo de experimentos. Inferéncia Bayesiana. Otimiza-

cao estocéstica. Método de Laplace.






Abstract

Experiments play an important role in science, being the way we observe
the real world. However, in many cases experiments can be expensive,
time-consuming or not provide enough information about the quantities
of interest. In such cases, it might be interesting to tune the experiment
up as to improve its efficiency. The field of science concerned with find-
ing the best set-up for experiments is called optimal experiment design
(OED). We use Bayesian inference concepts to model the experiment
evaluation and, thus, are able to evaluate the experiment performance
using the Shannon’s expected information gain (EIG). The more infor-
mative an experiment is about the quantities of interest, the larger is
its EIG. Thus, the EIG is our utility function in OED; the quantity we

want to maximize.

Estimating the EIG can be expensive. The straightforward approach is to
approximate the integrals in the EIG by Monte Carlo Integration (MCI).
The resulting estimator is the double-loop Monte Carlo (DLMC). The
DLMC is expensive and is known to have numerical issues, thus, we seek
other EIG that can have better performance than DLMC. One estimator
arises from approximating the posterior by a Gaussian function, the
Monte Carlo with Laplace approximation (MCLA). This estimator has
a bias from the Laplace approximation, thus, it is inconsistent. As an
alternative to estimate the EIG, we present the double-loop Monte Carlo
with importance sampling. The importance sampling uses a Gaussian
estimate of the posterior to draw more informative samples about the

quantities of interest.

Being the cost a main issue in OED, it is important to make the opti-
mization as efficient as possible. To optimize the design of experiments,
we use the stochastic gradient descent, reducing the cost of each iter-
ation by the cost of a MCI at the cost of a decreasing step-size. The
decrease in step-size for SGD makes the convergence sensible to the
step-size chosen. We use state-of-the-art techniques in stochastic op-

timization to get a robust and fast framework. One technique is the



Polyak—Ruppert averaging, consisting of a moving average of the opti-
mization path. Since the average is smoother than the path, the decrease
of the step-size required for SGD can be relaxed, thus, furnishing a more
robust algorithm. To accelerate the convergence, we combine the SGD
with a momentum method, the Nesterov’s acceleration. The resulting
algorithm, the ASGD-restart is robust and maintains the accelerated

convergence under some situations.

To use the stochastic gradient methods, unbiased estimators of the
true gradient are needed. Thus, we devise the gradients of the DLMC,
MCLA, and DLMCIS estimators as a function of the forward model and
its derivatives. Moreover, the complexities of the gradient estimators
are presented and pseudocode of their algorithms is shown to allow

reproduction.

To test the performance of the methods, we use them to solve four
numerical examples. The first is a pure stochastic optimization problem
with twenty dimensions for both the design and quantities of interest
spaces. The second example is an OED problem without a physical
meaning that we created to test the combinations between the EIG
estimators and the optimization methods. In the average of a hundred
runs, the ASGD-restart with MCLA solved this example with less than
300 model evaluations, whereas DLMC using full-gradient descent took
2.99 x 107 evaluations. The third example is the optimal positioning of
strain-gauges on a beam to infer mechanical properties of the material
the beam is made. This example is used to show that the optimum
found is consistent with engineering intuition. The fourth and last
example is the optimization of the currents in an electrical impedance
tomography experiment to infer the angles in the plies of a composite
laminate material. The EIT simulation requires the use of finite elements
method, thus, being an expensive forward model to evaluate. The ASGD-
restart using the gradient of the MCLA estimator converged to optimum
solutions in the four cases tested. To best of the author’s knowledge,
this is the first research to effectively solve an OED problem with a

model based on finite elements analysis.



In the numerical tests, using the gradient of the MCLA estimator for
stochastic optimization resulted in fast convergence with respect to
cost. Moreover, the ASGD-restart coupled with MCLA has proven to
be a viable option for the optimization of experiments with expensive

forward models.

Keywords: Optimal experimental design. Bayesian inference. Stochas-

tic optimization. Laplace method.
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1 Introduction

1.1 Motivation

Many fields of science rely heavily on information obtained
through experiments. Statistics about quantities of interest are inferred
from data resulting from experiment observations, therefore, it is im-
portant that experiments provide informative data. For example, in
structural engineering, it is useful to have statistical information about
the properties of materials, e.g., Young modulus, Poisson modulus, yield
stress; so that the engineer can take the best decisions. However, to
obtain statistically relevant data, experiments must have large enough
samples. For example, if a three-point flexural test is performed on con-
crete beams to evaluate the fracture toughness of concrete, a significant
number of beams must be built beforehand and let to cure for 28 days.
Even if a hundred beams are built, cured, and tested, the standard error
in the fracture toughness estimate is still the standard deviation of one
of the samples divided by ten. To reduce the standard error of the mean
by one digit requires increasing the sample size by a hundred times. A
three-point bending experiment for fracture toughness determination
and its design parameters are presented in Figure 1. Properly defining
design parameters can reduce dispersion of the quantity of interest

estimation or reduce the cost required to achieve the same precision.

Another example of practical interest is the one of verifying the
quality of composite laminates. Some composite materials can have
improved mechanical properties in some directions by alternating plies of
orthotropic materials with some specific angles between them. One way
of testing these laminates is by electrical impedance tomography (EIT),
however, the information obtained depends heavily on the currents
imposed on the electrodes, as can be seen in our results obtained by

Beck et al. (2). The set-up of an EIT experiment is presented in Figure
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| e

Figure 1 Example of fracture toughness testing. Source: Wikimedia
commons (1)

2, where the electrodes are illustrated in black, the first ply in blue and
the second ply in red. We optimize the currents in an EIT experiment

in Section 4.4.

E; First ply ~ Second ply 8D\ UE;

Figure 2 FElectrical impedance tomography example. Source: adapted
from Beck et al. (2)

Given the difficulties and the costs involved in the experimental
process, it might be interesting to optimally tune experiments param-
eters to maximize their efficiency, the main concern of optimal exper-
imental design (OED). Thus, in OED, we seek the optimum design

parameters that maximize some measure of efficiency of an experiment.

The classical optimality criteria for experiments are known as the
alphabetic optimality criteria. However, they require the model to be
linear with respect to the random parameters. The alphabetic optimality

criteria use the Fisher information matrix, a measure of information
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inversely proportional to the covariance matrix, to qualify an experiment.
The better known of these criteria, D-optimality, consists in minimizing
the determinant of the Fisher information matrix (3). According to
Chaloner and Verdineli (3), D-optimality is the best optimality criterion
to obtain the maximum of information about the quantities of interest.
Another popular approach is to minimize the trace of the inverse of
the information matrix, known as A-optimality. This is equivalent to
minimize the average of the variances of the estimates. In some cases
where is the E-optimality; it maximizes the minimum eigenvalue of the
Fisher information matrix. However, these methods require knowledge
about the model of the experiment. We want to build an OED framework
that can optimize experiments with nonlinear black-box forward model.
Thus, we opt to measure the performance of an experiment by its
Shannon’s expected information gain (EIG) (4). The EIG is related to
the relative entropy of information and, in the OED context, is a measure
on how much information an experiment provides (5). Lindley (6) was
the first to use EIG as an utility function for OED. However, for a general

experiment with nonlinear model, estimating EIG is cumbersome.

Ryan (7) develop an EIG estimator based on Monte Carlo inte-
gration (MCI), however, his estimator requires the evaluation of two
nested integrals. We refer to Ryan’s estimator as the double-loop Monte
Carlo (DLMC). The DLMC estimator has the disadvantages of being
expensive to evaluate and numerically unstable. The evaluation of the
two nested MCI requires a large number of experiment simulations;
if the two outer and inner MCI have sample size of, respectively, N
and M, the DLMC estimator requires N(M + 1) forward model eval-
uations to approximate the EIG. Moreover, for some cases, M needs
to be large to avoid numerical underflow (2). Long et al. (8) propose a
method to estimate the EIG using a Laplace approximation, furnishing
the Monte Carlo with Laplace approximation (MCLA) estimator. The
MCLA estimator does not require the evaluation of one of the two
nested integrals, thus, being less expensive. The disadvantage of MCLA

is that the Laplace approximation introduces a bias that might not
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be acceptable depending on the situation. Beck et al. (2) propose an
importance sampling for DLMC that uses Laplace approximation to
draw more informative samples, reducing the cost of DLMC without
adding the bias of MCLA. The DLMC with the importance sampling is
called double-loop Monte Carlo with importance sampling (DLMCIS).
In the present thesis we compare the performance of DLMC, MCLA,
and DLMCIS in OED.

Even MCLA and DLMCIS being cheaper than DLMC, they still
require the evaluation of MCI. Moreover, for DLMCIS, an maximum a
posteriori must be found for each outer loop. In the present thesis, we use
gradient-based methods to perform optimization. Indeed, gradient based
methods have been successfully applied to several engineering fields
such as structural optimization (9), multibody dynamics (10), oil well
placement (11), among other. Therefore, the gradients of EIG estimators
are needed. However, evaluating these gradients each iteration of an

optimization procedure might not be feasible.

To perform optimization, we propose the use the stochastic gra-
dient descent (SGD) and some of its variations. The main idea of
SGD, proposed by Robbins and Monro (12), is to converge with noisy
estimates of the gradient. The effect of the noise is mitigated by a
reducing step-size. The SGD algorithm was developed by Robbins and
Monro (12) to solve regression problems over large data-sets. With
the rise of machine learning methods, SGD became prominent as the
main algorithm in the training process (13). In the context of OED,
Huan and Marzouk (14) use the Robbins-Monro algorithm to solve
OED problems, however, their approach is not efficient; they do not
see much improvement in comparison to a BFGS with sample average
approximation. To develop on the work of Huan and Marzouk (14), we
apply state-of-the-art stochastic optimization techniques to solve OED
problems, namely, Polyak-Ruppert averaging, Nesterov’s acceleration,

and a restart scheme.

The Polyak-Ruppert averaging is a technique developed indepen-



1.2. Notation 35

dently by both Polyak and Juditsky (15), and Ruppert (16). It consists
of using a moving average of the optimization path, thus, relaxing the
step-size decrease constraint in SGD. The SGD with Polyak—Ruppert
averaging is more robust to step-size tuning, converging in cases where
vanilla SGD would not. On top of that, we use Nesterov’s acceleration
(17), resulting in the accelerated stochastic gradient descent (ASGD) al-
gorithm. Nesterov’s accelerated gradient descent is a momentum method
that achieves optimal linear convergence for deterministic convex op-
timization. Its stochastic counterpart does not maintains its linear
convergence, however, it still improves on SGD. Moreover, to further
improve ASGD we use a restart technique developed for deterministic

optimization.

To use the stochastic optimization framework we developed, we
need unbiased estimators of the gradient of EIG with respect to the
design variables. Thus, we devise the gradients of DLMC, MCLA, and
DLMCIS with respect to the design parameters as a function of the
forward model and its derivatives. We present the cost of evaluating

each EIG gradient estimator.

1.2 Notation

The following notation is used throughout this thesis: ||a|| is the
I2-norm of a, det(A) is the determinant of the matrix A, (a,b) is the
inner product between vectors a and b: a’b, ||a||a is the matrix A
norm of a: vVaT Aa , E[-] is the expected value, V][] is the variance, and

dim(-) is the dimension.

1.3 Aim and objectives

The aim of this thesis is to study numerical methods in both
stochastic optimization and uncertainty quantification in order to effi-

ciently solve OED problems.

The objectives to achieve are:
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e to implement the EIG estimators DLMC, MCLA, and DLMCIS;
e to devise the gradients of the EIG estimators;

e to develop a state-of-the-art stochastic optimization framework

that is robust and efficient;

e to combine the stochastic optimization framework with the EIG

gradients devised;

e to evaluate the performance of the methods in numerical examples.

1.4 Original contributions

The contributions of the present thesis are both theoretical and
practical. From the theoretical perspective, we devised the gradients of
the EIG estimators for both deterministic (full-gradient) and stochastic
optimization and discussed their numerical complexity. The gradient of
the MCLA for stochastic optimization, the main EIG estimator used
in the present thesis, does not require any MCI in its evaluation. In
the practical sense, as far as the author’s knowledge goes, this is the
first research to perform OED in an experiment simulated with finite
element method (FEM) with nonlinear forward model, what could only
be achieved by the efficient OED machinery we devised. Thus, the
combination of the optimization and uncertainty quantification methods
we propose allows the solution of expensive problems with practical

interest that would be unsolvable otherwise.

1.5 OQutline of the thesis

Chapter 2: In this chapter, we introduce key concepts of OED.
First, we define the experiment model we use throughout the thesis.
Then, we introduce Bayes’ theorem and show how it applies to our
experiment model. Using the concepts from Bayesian inference, we
introduce the Kullback—Leibler divergence and the EIG. To estimate
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the EIG, we present three alternatives: DLMC, MCLA, or DLMCIS

estimators.

Chapter 3: This chapter tackles the optimization part of OED.
We formulate the OED as an stochastic optimization problem and
introduce the SGD method. Then, we discuss improvements made over
the SGD, namely, Polyak—Rupert averaging, Nesterov’s acceleration,
and a restart technique to improve acceleration. We combine these
features in the main algorithm of this thesis, the ASGD-restart. To
use stochastic gradient methods, we devise the gradients of the DLMC,
MCLA, and DLMCIS estimators.

Chapter 4: In this chapter, we solve four numerical examples.
The first example is a 20-dimensional quadratic function with 20 random
parameters we devised to compare the performance of the optimization
methods presented. The second example is an OED with a forward
model quadratic with respect to both the design parameters and the
quantities of interest. The idea of the second example is to test the
combinations between EIG estimators and optimization methods. The
third example is an engineering example used to test the consistency of
the OED framework we use; we find the optimal placement of strain-
gauges on a beam to infer mechanical properties of its material. This
example is used to illustrate that the solution found in OED is consistent
with engineering intuition. The fourth and last example is an engineering
problem with a FEM-based forward model. In this example, we find the
optimal currents to be imposed on the electrodes in and EIT experiment

to infer the angles of the plies a composite laminate material.

Chapter 5: This chapter is the conclusion. We revise the devel-
opment of the thesis and discuss the main difficulties of OED. Moreover,
we highlight our achievements and discuss the conclusions from the
results obtained. We finish the chapter with recommendations for future

research.

Appendix A: In this Appendix, we show how to obtain the

equation for the maximum a posteriori and the covariance matrix to be
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used in Laplace approximation and importance sampling.

Appendix B: Here, we present a proof that, for our experiment
model, the gradients of the EIG estimators are estimators of the gra-
dients of EIG. Thus, the gradients of the estimators presented can be
used for OED.

Appendix C: The governing equations for the Timoshenko
beam model, used in the example in Section 4.3, are deduced from the

elasticity equations in this chapter.
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2 Optimal Experimental Design

The principal goal of the present thesis is the optimization of
experiments, which is OED (3). From the perspective of optimization, it
is important to define a criterion to measure the efficiency of experiments:
the objective function to be maximized. On the present thesis, we use
the Shannon’s EIG (4) of an experiment to evaluate its performance.
Thus, on the next section, we introduce EIG and other concepts related
to it.

2.1 Experiment model

We model the evaluation of N, repetitive experiments as

yi(£70t7€i):g(€a0t)+ei7 izla"'7NE7 (21)

where y,; € RY is the vector of experiment observations, 8; € R? is the
vector of quantities of interest (Qol) to be recovered, £ is the vector with
experiment parameters to be optimized, g is the experiment model, and €
is the additive noise from measurements. For N, experiments performed
with the same setup &, the set of observed datais Y = {yl}f\[;l Since we
cannot observe 8; directly, we use the random variable 8: © — R™ with
prior distribution 7 (@) in lieu of 8;. Thus, through observations Y, we
calculate statistics about 6. In the present thesis, our goal is to find the
optimal experimental design & € Z C R" that provides more information
about @, where = is the space of experiment designs. Moreover, we
consider € ~ N(0,X,) to be an additive noise, i.e. independent of g, &
and 0, for some positive-definite and symmetric matrix 3.. This model

for experiments is the same used in (8, 2, 18).

For example, consider the case of a single three-point test where
the stiffness modulus (E) of some material is estimated, as illustrated in

Figure 3. In this case, the Qol () is E, the measurement y is the observed
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VAN L. JAN b

Figure 3 — Example of the setup for a three-point flexural test.

deflection in mm, and € is the error in the observation of y. The design
parameter of the experiment to be optimized is £ = x, the position where
the point load ¢ is applied, and where the deflection if measured. The
model relating E and x to the observation y is g(z, E) = ﬁ@Lefx),
where I, is the moment of inertia of the cross-section of the beam. This
simple problem is used to illustrate the concepts introduced in the

present chapter; the proof that the optimum is at * = L. /2 is trivial.

2.1.1 Bayesian Inference

To evaluate the quality of experiments, we use a Bayesian frame-
work of analysis. Thus, in this section, we introduce essential concepts
of Bayesian inference. The main idea behind Bayesian inference is to,
given some previously known information about a parameter, use new
data to update statistics about it. This update is done using Bayes’

theorem:
p(Y16,&)m(6)
p(Yl§)

where 7(0|Y, &) is the posterior distribution, the updated probability

w(0|Y,€) = (2.2)

density function (pdf) of some random variable € given observations
Y'; m(0) is the prior distribution, the pdf of 8 before the experiment;
p(Y']0, &) is the likelihood, the probability of observing Y given the
previously known prior w(0); and p(Y'|€) is the evidence, the probability
of Y being observed.

On the context of experiments, Bayesian inference is used to
estimate a posterior pdf of a Qol given a prior pdf and some observations

Y provided by the experiment. For example, consider the previously
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mentioned three-point flexural test; in Figure 4 we present the pdf for
the stiffness both before and after the flexural experiment, i.e., the
prior and posterior pdfs of Eq. 2.2. It can be seen that the dispersion is
reduced after the experiment, meaning that the experiment provided

useful information about the Qol.

0.40 = Prior
0.35 Posterior ||
0.30

z

20325
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£0.15

"o //\\
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200 225 250 275 300 325 350 375 400
E (MPa)

Figure 4 Prior and posterior pdfs for the three-point flexural experi-
ment.

In this example, we modeled the prior knowledge about the Qol
as a Gaussian function, however, other distributions can be used as
well. The only requirement is that one can sample 8 from the prior
distribution. Using the Bayes’ theorem in Eq. 2.2, the posterior can be
obtained by multiplying the prior by the division between the likelihood
and the evidence. For our experiment model with additive noise in
Eq. 2.1, the likelihood of observing Y given 8 and £ is a multivariate

Gaussian with mean g(&, 8) and covariance matrix 3,

p(Y18,€) = det (2750) % exp <—Z|yl g(e. 02, ) (2.3)

where 8 is not necessarily the same used to calculate Y. Using Eq. 2.3,
the likelihood in Eq. 2.2 can be evaluated, yet, the evidence p(Y|€) is
not known. To estimate the evidence, we follow the same procedure
as Ryan (7). We introduce a new variable 8" that is independent and

identically distributed with respect to 8 and marginalize its likelihood
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with respect to 8 as

p(Y]E) = /@ p(Y6°, €)r(87)d0". (2.4)

The likelihood in Eq. 2.4 can be calculated from Eq. 2.3 as

Ne
p(Y|0*7€) = det (277—25)77& exp <_; Z ”yz(£7 07 61') - g(év 0*)“§lel>
=1

(2.5)
Thus, substituting in the Bayes’ equation in Eq. 2.2 the likelihood and
the evidence respectively presented in Eqgs. 2.3 and 2.4, one can obtain
the posterior distribution of the experiment, i.e., the statistics for the

Qol after the experiment.

To estimate how much information an experiment provides, we
use the Kullback-Leibler divergence (D) between the prior and
posterior pdfs.

2.1.2  Kullback—Leibler Divergence

According to Cover and Thomas (19), entropy is a measure
of uncertainty of a random variable. Cover and Thomas define the

differential entropy of a random variable 8 with pdf fg as

- /@ Jo(6)log fo(6)d6. (2.6)

The larger the entropy of 7(0) is, the larger its uncertainty with respect
to @ is. The Dy, is the entropy of a probability measure with respect
to another (20), and, for two probability measures fg and gg on 0 with
the same support ©, the Dy, is defined as

Dict(f0(8) 90 (6 / fo(6) 108 6(8)d0 + / fo(6) log f4(6)6
= [[sores (235 o0
(e

2.7)



2.1. FEzperiment model 43

The larger the Dy p, of fg(8) with respect to gg(8) is, the more informa-
tive fg(0) is with respect to gg(0). As a way of measuring the efficiency
of an experiment, we use the Dy of the posterior with respect of the

prior:

m(8Y,§)

DKL(ﬂ'(0|Ya€)|7T(0))—/@10g< 7(8)

)w(0|Y,§)d0. (2.8)

For the sake of simplicity, throughout this thesis, the Kullback
Leibler divergence between the prior and posterior pdfs is referred
simply as Kullback Leibler divergence and denoted as Dgr,. In Figure
5, at the left, we present the prior and posterior pdf of the three-point
flexural test. The regions where the probability density of the posterior
distribution is greater than the one of the prior are shaded in green,
whereas the regions where the posterior pdf is less than the prior pdf
are shaded in red. In Figure 5, at the right, we present the integrand
in Eq. 2.8 over the domain of 8 for the three-point flexural test. The
regions where the integrand is positive are shaded in green, and the

regions where the integrand is negative are shaded in red. The more
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Figure 5 For the three-point flexural test: prior and posterior distri-
butions (a), and the integrand of the Dy, (b).

informative an experiment is, the larger is the integral of the function in
Figure 5. Thus, we aim to find the £* that provides the more informative
observations Y*; the Y that maximize difference between the green

area and the red area in Figure 5.
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Figure 6 The pdfs for prior, posterior, and optimized posterior (a)
and the Dg integrand for the non-optimized and for the
optimized cases (b).

In Figure 6, we present a comparison between the optimized and
non-optimized cases for the three-point flexural test. The non-optimized
case is evaluated with = = L. /4, whereas, in the optimized case, the load
and the measurement are in the middle of the beam, i.e., x = 2* = L. /2.
In the left plot of Figure 6, it can be observed that the posterior pdf for
the optimized configuration is more concentrated than the posterior pdf
before before optimization. In the right plot of Figure 6, the integrand
of the Dgy, is presented for both the optimized and non-optimized
configurations. It can be observed that the Dy, for the optimized case
is greater than the Dy for the non-optimized configuration, as can be

inferred from the areas under the integrands.

When modeling a real experiment, one might need to consider the
noise inherent to experiment observations. To estimate the information

gain considering the noise in observations, we use the EIG (4).

2.1.3 Shannon’'s Expected Information Gain

The Dgy does not consider the noise in observations due to
measurement uncertainties. To estimate the information gain on this

context, we need to marginalize the Dk with respect to Y, thus,
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obtaining the Shannon’s expected information gain (4) as

// ( e 6))”(6’|Y,€)d0p(Y|€)dY. (2.9)

Lindley (6) is the first to use EIG as an utility function for optimal
experimental design. An example of the integrand in Eq. 2.9 with respect
to both the Qol and the observations for the three-point flexural test is

presented in Figure 7. Estimating I requires the solution of a double

Figure 7 The EIG integrand.

integral over the sample space of the Qol (©), and the observations (}).

Using the Bayes’ equation presented in Eq. 2.2, we can rewrite

Eq. 2.9 as
/ / ( Y1|f6|’§)>p(Y|0,€)dY7r(0)d0. (2.10)

Presenting EIG as in Eq. 2.10 has the advantage that, for our experiment
model, the likelihood can be calculated directly using Eq. 2.3. Moreover,

using Eq.2.4 to estimate the evidence results in

//10g p(Y16,¢) p(Y'|8,£)dY 7(6)d6.
/ (Y|6*,¢)7(67)do*

(2.11)
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On this thesis, we use Equations. 2.10 and 2.11 instead of Eq. 2.9
to calculate EIG.

2.2 Expected information gain estimators

Evaluating I in Eq. 2.11 requires the solution of the double
integral over @ and Y, moreover, it requires the solution of the integral
used to marginalize the evidence. In most cases, these integrals do not
have closed form, thus, numerical methods are needed to approximate
them. When the number of random parameters is small, quadrature
methods can be used to approximate the integrals in Eq. 2.11, however,
as pointed out by Robert and Casella (21), these methods suffer from the
curse of dimensionality. Hamada et al. (22) note that using deterministic
integration methods to approximate 2.11 becomes unfeasible if the

dimensionality of @ exceeds three.

2.2.1 Error analysis

In this thesis, we focus on the case where the integrals in Eq. 2.11
do not have closed form solution and Monte Carlo integration (MCI)
is needed to approximate them. In this section, we introduce Monte
Carlo-based estimators for EIG that can deal with high dimensional
parameter spaces. We present the error analysis and complexity of the
EIG estimators with respect to the evaluation of g by FEM with a
mesh discretization parameter h. As h — 0, the discretization bias

asymptotically converges as

E(lg(§,0) —9,(£ 0)[,] = O (h"), (2.12)

where g;, is the FEM approximation of g using h, and n > 0 is the rate
of convergence of the discretization error. For the computational effort
analysis, we assume that the cost of evaluating g, is O(h™9), for the
constant ¢ > 0. Both 1 and ¢ are constants that depend only on the

numerical approach used in approximating g by g,,.
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The error of estimators can be decomposed in two terms: their
bias and variances. The variance of the estimator is a measure of the
dispersion from different and independent estimations of the same
quantity, e.g., for an estimator Z, its variance is V[Z] < E [(Z — E[1))?].
The bias of an estimator is the difference between its expected value
and the true value that is being estimated, e.g., for an estimator Z of
a quantity 7, the bias of 7 is |I — E[Z]|. Figure 8 illustrates the bias
and variance of an hypothetical estimator of 7, where the curve in blue
is the probability density that a value of 7 is estimated. Moreover,
the distance between the expected value of 7 and I, i.e., the bias, is
presented, as is the square root of the variance, o, the standard error of

the estimator. The bias of the estimator includes the bias from numerical
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Figure 8 Bias and variance of an estimator

approximation of the model. For further information about the bias and

variance of each EIG estimator, the reader is referred to Beck et al.(2).

2.2.2 Monte Carlo integration

The MCI is a method for approximating integrals by sampling
the integrand and averaging the samples. For example, for 8 € © C R”,
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and f: 60 — R, the integral of f over 8 can be approximated as

1 N
/@f(O)dO%/@dG N;f(ei), (2.13)

where the 6; are sampled uniformly from ©. If f(0) is being integrated

over some measure, say m(0), its integral can be approximated as

1 N
/@f(O)w(O)dOz/eﬂ(O)dB N;f(ei), (2.14)

where 0 is sampled from 7(0). Note that, if 7(0) is a pdf, the integral
f@ 7(0)d0 evaluates to one. From the strong law of large numbers, the
Monte Carlo estimator converges to the real value of the integral as
N — oo (23). Moreover, from the central limit theorem, as N — oo,

the error in approximating an integral by MCI converges to zero with

rate 1/v/N (23).

2.2.3 Double-loop Monte Carlo estimator

The double integral in Eq. 2.10 can be approximated using MCI
by sampling € from the prior pdf and Y from the likelihood (the
measures that the integrands are being integrated over in Eq. 2.10).
Then, for N samples, the Monte Carlo estimator for OED is defined as

Tuc(&)E ! Zl (Ylg’éf)) (2.15)

Also, we use Eq. 2.4 and approximate the evidence integral by a MCI

as
M
Y65, &)n(07)d0* ~ — S p(Y |67, 2.1
JRECRCEE MmZ: | (2.16)

Thus, the DLMC estimator for EIG is defined as

i 1 p(Y 1[0, €)
; . . 2.17
prymc(§) = Z i) (M MY n97*na€)> o

The first to use DLMC in OED is Ryan (7).

n=1
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Monte Carlo estimators are generally not biased, however, the
DLMC estimator has a bias resulting from the logarithm of the inner
loop. However, DLMC is a consistent estimator because the bias goes
to zero as the number of inner loop samples M goes to infinity. The

DLMC estimator has bias and variance respectively given by

Cpr 1
I = BTy o]l < Cppah” + =372 (h")+O<M2> and

(2.18)

1
VT, o] = Cprs | CpLa ( ) (2.19)

prvel TN T NM NM?

for the constants Cpr1, Cpr2, Cpr.s, and Cpr 4 (cf. (2)).

To evaluate the DLMC estimator in Eq. 2.17, one needs the
likelihood of observing Y, given 6,, and the likelihoods of observing
Y, given each 6,. Using Eq. 2.3 to estimate the likelihood of observing

Y ,, given 8,, furnishes

N.
p(Y 0|0, €) = det (27E) " exp (—; . v (&) — g(€.0,) s 1) ;

(2.20)

N,
_Ne 1
= det (271—26) 2 exp <2 ||g(£7071) +€ — g(&a Gn)||22€1> )

(2.21)
= det (27X)" 52 exp (— Z ||ez||2 1) . (2.22)

Since Y and g are evaluated using the same 6, the model evaluation
g in Eq. 2.21 cancels out. Thus, evaluating the likelihood of observing
Y, given 6, does not require any model evaluation. However, for
the evidence evaluation, we must evaluate the model g. For example,
consider the likelihood in Eq. 2.3, where Y ,, is evaluated from 6,, and

¢ (sampled in the outer loop), and @}, is sampled in the inner loop
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(independently from 6,,),

n) f 0* )Hzé_l

(2.23)
Each observation of p(Y ,,|07,, &) requires an evaluation of g(&, 6.

p(Y 105, &) = det (27726)7% exp (

In Algorithm 1, we present the pseudocode for DLMC, where the
inputs are the experiment setup, &, the sample-size for the outer loop,
N, and the sample-size for the inner loop, M. Problem parameters, e.g.,
e, ©(0), g, N., are considered to be known. The DLMC returns the
estimation of I, Zpryc-

Algorithm 1 Pseudocode for the DLMC estimator for EIG.

1: function DLMC(&, N, M)
2 forn=1,2,.... N do > Outer loop
3 Sample 6,, from 7(0)

4: Evaluate g(&,0,,)

5: fori=1,2,..,.N, do
6

7

8

9

Sample €; from N(0, )
y; < 9(&.0,) e

2
=1

end for

: Y, « {y.}Y
10: p(Y,|0,,,8) < det (27Xe)” = exp( L Zfiel Hei||22671)
11: for m=1,2,..., M do > Inner loop
12: Sample 6, from 7(0)
13: Evaluate g(&,0;,)
14: P(¥ n103,,6)  det (27550) "2 exp (—% S v @ - gce 05
15: end for
16: p(Y,|€) « M Zm 1p( nw:mﬁ)
17: end for
18: IDLJVIC(&) < % 22[21 log (%)
19: return Zpr e (€)

20: end function

From Algorithm 1, it can be seen that the cost of evaluating the
DLMC estimator is N(M + 1) forward model evaluations. Considering

that each model evaluation requires the solution of a PDE using FEM
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with a mesh of size h, the computational cost of evaluating the DLMC
estimator is of order N(M + 1)h~—¢.

The DLMC estimator can suffer from numerical instabilities,
namely, numerical underflow (2). The marginalization of the likelihood
of observing Y (evaluated using 8" sampled in the outer loop) given
0 sampled in the inner loop can result in numerical underflow. If the
likelihood is zero for all the M inner samples, the evidence also becomes
zero. If g(€,07,) is too distant to each (™), or if 3 has small eigenvalues,
the likelihood can get smaller than floating-point precision. Thus, to
avoid numerical underflow, M needs to be large enough as to guarantee
that at least one of the M likelihoods is not numerically evaluated
to zero. If the evidence is evaluated to zero, then Eq. 2.15 cannot be
evaluated. Figure 9 illustrates the numerical underflow for the flexural
test for five inner loop samples; for each loop the model is evaluated and
the likelihood of y being observed is drawn in red. It can be observed
that, for all g evaluated at each inner loop, the likelihood of observing

the 4™ evaluated at the outer loop is near to zero. In the next sections
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Figure 9 Numerical underflow illustrated for the three-point flexural
test.

we present two estimators of EIG that are able to overcome the high

cost and numerical instabilities of DLMC.



52 Chapter 2. Optimal Experimental Design

2.2.4 Monte Carlo estimator with Laplace approximation

The cost of solving the two-loop Monte Carlo required for DLMC
can be expensive. Since MCI is a method for approximating integrals,
one might think of alternative methods to approximate one of the
integrals. Long et al. (8) propose the use of the Laplace method to
approximate the the logarithm of the posterior distribution by a second-
order Taylor expansion, thus, avoiding the evaluation of the evidence.
We follow the same approach as Long et al. (8) to devise the Monte
Carlo with Laplace method (MCLA) estimator. One advantage of the
MCLA is that the approximated posterior pdf is a Gaussian function

(O1Y . €) ~ det(22(6, ) exp (516 OE VI 1 e ).
(2.24)
where  is the maximum a posteriori (MAP) of 8, and (&, 8) is the
covariance matrix of the posterior at the MAP. The MAP is the 0 that
maximizes the posterior pdf, i.e., the @ more likely to be 8; after the

experiment data is considered. Thus, 6 is the 6 that solves

Ne
0(6.Y) argmin [; Sy, — g€, 0|2, — 1og<w<e>>] . (2:25)

i=1

Long et al. (8) show that

0=0,+0p ( ) . (2.26)

1
V' Ne
The covariance matrix of the posterior X(€, @) is the Hessian matrix of

the negative logarithm of the posterior pdf evaluated at £ and 9,
B7(€,0) = NeVa(g(£,0))" S ™" Vog(€,0) — VoVo log(n(8)) + O (VL) .

(2.27)
A detailed deduction of 6 and (&, é) is presented in Appendix A.

According to Long et al. (8), using the approximation 0~0,
yields the Laplace-approximated EIG as

- log(ﬂ(et))} 7(8,)d6,+0 (Ni

(2.28)

_ 1 dim(0)
1) = [ |- ontaeriznzie. o -

).
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Compared to Eq. 2.9, the approximated EIG in Eq. 2.28 has only one
integral, not requiring the integration over Y nor the integral to calculate
the evidence. This EIG with Laplace approximation is consistent with
Chaloner and Verdinelli (3), according to whom, maximizing EIG is
equivalent to minimizing the determinant of the posterior covariance

matrix.

Estimating I in Eq. 2.28 by MCI results in the MCLA:

dim(®) _ 1og(r(6,))

(2.29)

N
Tyicra (€ :e Z [—log det(273%(&, 6,))) —

According to Beck et al. (2), the bias and variance of the MCLA

estimator are, respectively,

c
[T — [Ty )l < Craih” + szA2 o(h"), and (2.30)
Cra,
VIZyoral = N3 (2.31)

for the constants Cr 4,1, Cra,2, and Cr 4 3. Although DLMC is a con-
sistent estimator, MCLA is not, because the bias from the Laplace
approximation does not vanish as the number of samples increases,
being dependent on the number of repetitive experiments N,. Hence,
in the numerical example section we investigate whether the bias of
MCLA affects the optimization.

Algorithm 2 presents the pseudocode for the MCLA estimator.
Since MCLA does not have an inner loop, it only needs the outer loop
sample-size, N. The evaluation of Eq. 2.27 requires a Jacobian of the
model g with respect to the parameters 8; the main cost of MCLA

evaluation.

If forward-Euler is used for the estimation of the Jacobian in Eq.
2.27, the evaluation of the MCLA estimator cost has order N(dim(0) +
1)h~2. Thus, in comparison to DLMC, MCLA requires lower computa-
tional effort if dim(@) is less than M. For most cases, the M required
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Algorithm 2 Pseudocode for the MCLA estimator for EIG.

1: function MCLA(¢, N)

2 forn=1,2,.... N do > Outer loop
3 Sample 0,, from 7(0)

4: Evaluate Vgg(&,0,,)

5: Use Vog(&,0,,) to evaluate (&, 0,,) using Eq. 2.27

6

7

8

9

end for ‘
Tacra(€) < & 30 [—4 log(det(2r5(€,0,,))) — 2% — log((8,.))]

return IMCLA &)
: end function

to achieve a certain precision with DLMC is large, therefore, for these

cases, MCLA is is computationally more efficient than DLMC.

2.2.5 Double-loop Monte Carlo estimator with Laplace-based im-

portance sampling

Based on the idea proposed by Beck et al. (2), we use an im-
portance sampling in the MCI of the evidence. Instead of sampling 8*
from 7(0), we sample 8* from 7(0), where 7(8) ~ N (0, %(6)), and
0 and X are given in Eqgs. 2.25 and 2.27. Therefore, we are using a
Gaussian approximation of the posterior resulting from a second-order
Taylor expansion of the logarithm of the posterior at its MAP to draw
more informative samples for the inner loop. The advantage of using
the importance sampling is that it avoids the approximation error from
the Laplace approximation and the numerical underflow problem from
DLMC. The DLMCIS estimator is defined as

def 1 al p(Y4|60n,8) )
. 1 | , 2.32
pryvcrs(§) = N Z 08 <1\14 Zﬂj\le L(Y »;&;0;,) .

p(Y'10,8)7(0)
7(6) '
The bias and variance of the DLMCIS estimator are deduced on the

original paper (2) and are proven to be the same as of DLMC for a

n=1
where

L(Y;§;0) = (2.33)

given tolerance, thus the DLMCIS estimator is also consistent. How-

ever, to achieve the desired tolerance, the inner loop sample-size M is
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significantly smaller for DLMCIS than for DLMC. Like in MCLA, the
evaluation of Eq. 2.27 requires a Jacobian of the model g with respect to
the parameters 8, moreover, finding 0 requires solving the optimization
problem in Eq. 2.25. We use a steepest descent search to find 6. For

that we use the gradient of the function to be minimized in Eq. 2.25,

Vo™ —(Vog(£,0))"Sc(Y — g(¢,0)) — Volog (D). (2.34)

Algorithm 3 Pseudocode for finding MAP using steepest descent.

1: function FINDMAP(£,0,Y, ag, TOL)
2 6«06
3 for j=1,2,3.do R R
4: Vo +— —(Veg(€,0)TS(Y —g(£,0)) — Vologm(0)
5: é — é — ae@e
6 if Vgl > TOL then
7 Break
8 end if
9 end for
10: return

11: end function

If forward-Euler is used for the estimation of the Jacobians in Eq.
2.27 and Algorithm 3, the evaluation of the DLMCIS estimator costs
N((Cprap + 1)(dim(6) + 1) + M)h=2, where Cprap is the number of

iterations to estimate @ in Eq. in Algorithm 3.

Besides the advantage of reducing the number of samples of the
inner loop, M, the DLMCIS estimator is more robust to numerical
underflow than the DLMC estimator. The change of measure in the
sampling of 8* guarantees that g(£,80™) is close to Y, evaluated using
the @ sampled in the outer loop. Thus, it is not likely that, for all inner
loops, the likelihood of observing Y given 8 is numerically evaluated
to zero. Figure 10 illustrates how the importance sampling mitigates
the numerical underflow problem for the three-point flexural point; the

likelihoods of observing y(™) for each g are larger than zero.

A pseudocode for the DLMCIS is presented in Algorithm 4, where

the line where importance sampling happens is shaded in gray.
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Figure 10  Avoiding numerical underflow using importance sampling
illustrated for the three-point flexural test.

2.3 Chapter summary

In this chapter, we introduced key concepts related to Bayesian
inference and OED. In Section 2.1, we presented the model of experi-
ments with additive noise used in this thesis. Also, in Section 2.1, we
defined a measure of efficiency of experiments: D, between the prior
and posterior pdfs. Moreover, we presented, from an experiment with

additive noise, the EIG, the quantity we want to maximize.

In Section 2.2, we presented EIG estimators based in MCI. Ap-
plying MCI in EIG furnishes the DLMC estimator, introduced by Ryan
(7). The DLMC estimator is consistent and can estimate EIG for any
general case, however, depending on the problem it can be expensive
and unstable (2). As an alternative to DLMC, we presented the MCLA
estimator proposed by Long et al. (8). This estimator uses the Laplace
approximation of the posterior, thus, avoiding the inner-loop in DLMC.
The resulting algorithm, MCLA is an inexpensive estimator for EIG, at
the expense of the introduction of a bias. This bias resulting from the
Laplace approximation does not vanish as sample-sizes go to infinity,

thus, MCLA is an inconsistent estimator. This fact is then investigated
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Algorithm 4 Pseudocode for the DLMCIS estimator for EIG.

10:
11:
12:
13:

14:

15:
16:

17:
18:
19:
20:
21:

22:
23:

1
2
3
4:
5:
6
7
8
9

: function DLMCIS(¢, N, M)
forn=1,2,.... N do > Outer loop

Sample 8,, from 7(0)
fori=1,2,..,.N. do
Sample €; from N(0, )
Y A g(é» en) + €
end for
Y, < {yz}iv:el N
PY 160, €)  det (272%) ™ F exp (-3 21 leills, )
Find OAn(S7 Y ,) using Algorithm 3
Evaluate Vgg(¢,0,,)
Use Vog(&, én) to evaluate X (&, én) using Eq. 2.27
form=1,2,...,M do > Inner loop

A

Sample 67, from 7(0) ~ N'(0,,,3(¢,0,)) >

’ 2
1

Importance sampling

Evaluate g(&,0;))
DY 1105, 6)  det (2e30)” 7 exp (4 32 [0 (€) — ate.65,)
L(Y ;€ 6,) < p(Yn|07,,6)n(0;,)/7(6;,)

end for u

P(Y nl€) 57 2y L(Y 03 €:67,)

end for ~ v. 16
Iprmcis(§) % > n=1log (%)
return Zprcrs(€)

end function

in the numerical example section. For the cases where the bias of MCLA

is not acceptable, we introduced an importance sampling based on the

Laplace approximation, proposed by Beck et al (2), resulting in the
DLMCIS estimator.
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3 Optimization

We formulate the optimization problem of OED as

find & = arggemax(l(ﬁ)). (3.1)

[

In the present thesis, we assume that I is continuous and differentiable,
thus, we focus on gradient-based methods to search for local maxima.
The main idea behind gradient methods is to use information on the
derivatives of the objective function to iteratively converge to local op-
tima. Considering the problem in Eq. 3.1, if the function I is continuous,

smooth, and convex, we can state that the iterative process

& =& +aVel(§_y) (3.2)

produces a sequence {I(£€;)}r>0 that monotonically increases to I(£"),
given that « is small enough (24). Moreover, if I is convex with respect
to &, the sequence {|&;, — &|}x>0 converges to zero in the Cauchy sense
independently of the starting point &,. We refer to Eq. 3.2 as the full-
gradient descent (FGD) method. Note that, since we are maximizing I,
the optimizer performs steps in the direction of the gradient, therefore,
it is actually ascending. However, for the sake of simplicity, we refer to
gradient-based algorithms as descent algorithms, even when they are

employed for maximization.

To perform gradient-based optimization for the OED problem,

each iteration requires the evaluation of the gradient of I,

Vel(£) = Ve / / ( Y;‘Tg) p(Y0,£)dY(0)d0.  (3.3)

One aspect of Eq. 3.1 is that each evaluation of V¢I requires the
solution of an uncertainty quantification task: the evaluation of the two
integrals in Eq. 3.3 and the integral in Eq. 2.4, needed to estimate the

evidence. In cases where these integrals cannot be directly evaluated,
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one might use the DLMC, MCLA, or DLMCIS estimators presented
in Chapter 2. In these cases, the cost of evaluating these estimations
every iteration can be prohibitive. For example, if K iterations are
needed to find an optimum using the DLMC estimator, and forward
finite differences are used to approximate the gradient, the total cost of
performing optimization is K(dim(&) + 1)NMh™¢, where K, N, and
M can be large.

3.1 Stochastic optimization problem

To alleviate the computational burden of the optimization, we
reformulate the optimization problem in Eq. 3.1 as an stochastic opti-

mization problem,

find & = arg max (Eo,v[f(£,0.Y)]), (3.4)
where (Y10.€)
£(£,0.Y) = log <pMY|’£)) . (3.5)

Note that I(§) = Eg,y[f(&,0,Y)]. The problem of finding minima of the
expected value of functions, i.e., stochastic optimization, is well-known,
and much has been done to reduce the cost of solving it (13, 25, 26).
One of the most popular methods for the solution of Eq. 3.4 is the
Robbins—Monro algorithm (12), also known as the stochastic gradient

descent.

3.2 Stochastic gradient descent

The SGD is a method of finding minima (or maxima) of the

expected value of functions. In our case, the SGD for OED is

Er =8&1t awVef(§r1,0k Yi), (3.6)
where the step-size « at iteration k is a decreasing sequence that satisfies

oo

Zai =00 and ia? < 0. (3.7)

=0 =0
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Figure 11 Path of full-gradient descent and stochastic gradient de-
scent.

Robbins and Monro (12) suggest the use of o = ap/k as the step-size

sequence.

The rationale behind SGD is that, instead of spending computa-
tional effort in estimating the true gradient, noisy gradients are used
in the optimization process. Then, the decreasing step-size guarantees
that the effect of the noise in the optimization also decreases. Figure
11 presents the optimization path for both FGD (deterministic steep-
est descent) and SGD. It can be observed that SGD walks erratically,
however, it still moves in the direction of the optimum. Note that, even
though FGD approximates the optimum faster than SGD, the cost of
each FGD iteration might be several orders of magnitude larger than
the one of SGD.

The SGD can be used as long as V¢ f is an unbiased estimator
of Eg v [Vef] (12). Throughout the present thesis, we assume that

gradients with respect to £ and integrals with respect to 8 and Y are
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interchangeable, that is,

Y(0.¢)
Vo [/(6.0.Y) = Ve | / log( e >p<Y|0,s>dY7r(0>d0

Y|9 £)
/ / Ve log ( Yo >p(Y|0,£)dY7r(0)d0
= EG,Y[VEf(€7 07 Y)]

(3.9)

Indeed, for the experiment model in Eq. 2.1, Eq. 3.8 is true. A proof is
presented in Appendix B.

Robbins and Monro (12) propose the SGD method and prove
that it converges given that the function f is convex, continuous, and
differentiable with respect to &, and that conditions in Eq. 3.7 are
satisfied. In comparison to Eq. 3.3, the iterative procedure in Eq. 3.6
does not require the evaluation of the expectation over 8 and Y. For
example, applying the SGD to the OED problem with DLMC and
forward finite-differences reduces the cost from K (dim(&) + 1)NMh™¢
to K(dim(&) + 1)Mh~¢, i.e., the optimization cost is N times lower
than the cost for the full-gradient case.

We denote the estimators of the gradient of f with respect to &
as G, thus, the SGD iterative equation for the OED problem is written
as

=&t tarG(§,_1,0k,Yy) (3.9)

where 0}, is sampled independently from the prior each iteration and Yy
is evaluated from Eq. 2.1 using N, independent samples of €. Note that,
since we are trying to find the maximizer of I, we move in the direction
of G, and not in its opposite direction. In Eq. 3.5, the evidence still
needs to be evaluated. Thus, we have an equivalent gradient estimator
G for each of the three expected information gain estimators presented
is Section 2.2 (DLMC, MCLA, DLMCIS). In DLMC and DLMCIS the
evidence is estimated by another MCI, whereas, in MCLA, because of
the the approximation that the posterior is a Gaussian, the evidence

need not be evaluated.
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In Algorithm 5, we present the pseudocode for SGD. For the
sake of notation consistency, we use @ and Y as the random parameters
in the gradient estimator G, however, one could use any number of
random parameters as long as G is an unbiased estimator of the gradient
of the objective function. One of the advantages of SGD is that the

Algorithm 5 Pseudocode for vanilla SGD.

1: procedure SGD(&, ap)

2 for k=1,2,... do

3 Sample random variables, e.g., O, Yg,...
4: o < %

5 §r < &1+ anG(€p 1,0k, Y)

6 (ind for

7 £ &

8: end procedure

cost per iteration does not scales up with the number of dimensions
in the parameters space, i.e., SGD does not suffer from the curse of
dimensionality. For example, using surrogate models (e.g., polynomial
chaos expansions, kriging) to approximate EIG for a 20-dimensional

problem like the one in Section 4.1 is unfeasible.

In gradient-based stochastic optimization, noisy estimates of the
gradient are used to perform steps. If, throughout optimization, the
gradient of the objective function converges to a null vector, and the
noise in the estimates does not, the relative error in gradient estimates
goes to infinity. Thus, if the order of magnitude of the noise does not
vary much in the optimization domain, the error in gradient estimation
in early iterations is relatively small when compared to the gradient size.
We divide the behavior of the SGD in two phases: the preasymptotic
phase, where the true-gradient is large with respect to the error, and
the asymptotic phase, where the optimizator is already close to the
optimum. As optimization evolves, the error dominates the gradient

estimates and step-size reduction mitigates the influence of the noise.

The SGD has proven convergence for aj = ag/k, however, in

practice, the decrease in the step-size can be faster than ideal, i.e., at
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Figure 12 Convergence of FGD and SGD.

later iterations, the step-size becomes small. According to Nemirovksi,
(27), the convergence depends on the initial step-size being g = 1/L
for strongly-convex objective functions with L-Lipschitz gradient. Since,
for the general case, L is not known, the initial step-size must be tuned
arbitrarily. Moreover, as pointed out by Moulines and Bach (28), SGD
convergence is very sensible to the tuning of the initial step-size «yg. If
the initial step-size is too small, cvg << 1/L, the step-size gets too small
before the algorithm gets close to the optimum, specially if the starting
point is far from the optimum. If, otherwise, the step-size is too large,

ag > 1/L, the algorithm might not converge.

Figure 12 presents the convergence of the distance to the optimum
for both FGD and SGD. It can be observed that SGD converges slower
each iteration. After a hundred iterations the step-size is reduced by
a hundred, thus, the algorithm gets slower each iteration. The SGD
algorithm converges in the asymptotic phase, however, the reduction in
step-size during the non-asymptotic phase does not allow SGD to get

in the asymptotic phase.

Huan and Marzouk (14) use SGD in OED; however, they also

increase bias by using small samples for the inner-loop sample size
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M. According to Beck et al. (2), DLMC can suffer from numerical
underflow if M is not large enough; thus, choosing small M might
cause a numerical error for some experiments. Huan and Marzouk (14)
conclude that SGD converges slightly better than BFGS with a sample
average approximation. Moreover, Huan and Marzouk (14) acknowledge
the difficulty of finding a step-size for the SGD algorithm. Thus, the
problem of efficiently using SGD in OED is still unsolved. To tackle this
issue, we devise a robust and efficient stochastic optimization framework

for OED, which we consider the main contribution of this thesis.

In the next sections, we present a discussion on how to improve
over Robbins—Monro algorithm and get globally-convergent algorithms
that are robust to sub-optimal tuning of the initial step-size. Namely,
we use the Polyak—-Ruppert averaging to relax the step-size decrease
condition, improving the convergence in the asymptotic phase, and
a Nesterov’s acceleration that improves the convergence in the non-

asymptotic phase.

3.2.1 Polyak—Ruppert averaging

Polyak and Juditsky (15) and Ruppert (16) independently devel-
oped an averaging method that relaxes the step-size constraint. The
method consists in having a moving-average of the stochastic gradient

as an optimum estimate as, for example,

= def 1 r
€22 & (3.10)
=0

or
-1

~ def
£, = a; I (3.11)
E<i<k E<i<k

Nemirovksi (27) proves convergence of £, to £€* as k goes to infinity, for
the averaging in Eq. 3.11. Moreover, he proves that it converges with
any step-size sequence

a0

e93
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for ¢ in (1/2,1). In the present thesis, we use SGD with Polyak—Ruppert
averaging as defined in Eq. 3.11 using step-size ay = ag/Vk.

In Algorithm 6, we present the pseudocode for SGD with the
Polyak—Ruppert averaging and the stop-criterion based on the Polyak—
Ruppert average. Using Algorithm 6 has the advantage that the step-size
does not decrease as fast as in vanilla SGD in Algorithm 5, ay, = ag/k,
thus, SGD with averaging can better explore the search space while

convergence is still guaranteed.

Algorithm 6 Pseudocode for SGD with Polyak—Ruppert averaging.

1: procedure SGD(§,, o, TOL)
2 & <&
3 for k=1,2,... do
4: Sample random variables, e.g., O, Yg,...
5 ag & %
6 &k Ep1 + rG(€p_1,6k, Yi)
_ —il
7. &, (Zggigk ozi> Z%SiSk €, > Polyak—Ruppert
averaging
8: if [, — &;_1]2 < TOL then > Stop Criterion
9: Break
10: end if
11: gnd for
12: £+ &,

13: end procedure

In Figure 13, we present SGD with Polyak—Ruppert (with step-
size ayp + %) in red, and its average in black. The SGD walks er-
ratically, whereas its average converges smoothly to the optimum in
(0,0). In Figure 14, the convergence of the distance to the optimum
per iteration is shown for vanilla SGD, SGD with Polyak—Ruppert, and
its average. The SGD with Polyak—Ruppert behaves like a stochastic
process, achieving the error of 1072 in 25 iterations and not improving
much after that. The SGD averaging, however, continues to converge

as the distance to the optimum decrease monotonically. Even though
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Figure 13 Example of SGD with Polyak Ruppert averaging.

both Polyak Ruppert averaging and vanilla SGD converge sublinearly,

Polyak Ruppert averaging converges faster.

The SGD algorithm with Polyak Ruppert averaging is globally-
convergent, converging almost-surely to the optimum of convex functions
from any starting point, given that the step-size is properly tuned (27).
However, since the step-size does not decrease as fast as in vanilla
SGD, the resulting algorithm is less sensible to the step-size tuning,
numerically converging for any «ag of around the same order of magnitude
of 1/L (27).

In this thesis, we use Polyak Ruppert averaged SGD instead of
vanilla SGD, given the robustness of the former and its global conver-
gence properties. We also employ the change in the Polyak Ruppert
averaging at iteration k£ as a stopping criterion for our algorithm, i.e.,
if |€, — &,_1|2 < TOL, for a tolerance TOL defined by the user, then

stop the optimization procedure.
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Figure 14 Convergence of vanilla SGD, SGD with Polyak Ruppert
and its average.

3.3 Nesterov's accelerated gradient descent

The steepest descent method converges linearly to local minimum
functions that are convex and smooth, however, its convergence rate is
suboptimal (29). Nesterov (17) proposes an optimal first-order method
that uses the information from previous iterations to achieve accelerated
convergence. The Nesterov’s accelerated gradient descent (AGD) is a
gradient-based iterative method to find the local minimum of convex
deterministic functions (17). The AGD is a momentum method in the
sense that it adds a fraction of the last step taken to the current step,
in an analogy to the linear momentum in physics. For a deterministic

function f : & — R, we write the AGD to find a minimizer of f as

Zp = 5]671 - avﬁf(skfl)

(3.13)
& =z + (2K — 21-1)
where the sequence (1), is given by
A1 (1 — Mg
= el = ) (3.14)

)‘ifl + Ak
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the sequence (Ay),, solves
A= (1= M)A |+ ahe, Ao =1, (3.15)

and ¢ is a positive real number smaller than one (g € (0,1)). In Figure
15, we present the optimization path for AGD for a quadratic function
with optimum in (0,0). The red arrows illustrate the steepest descent
steps from &, to ziy1. The blue arrows represent the accelerated parts
of the steps, from z;; to &, calculated as in Eq. 3.13. It can be
observed that &, is closer to the optimum than zg, i.e., acceleration
furnishes a better approximation of the optimum with the same gradi-

ent information. Figure 16 shows how the Nesterov’s accelerated step,

2.00 .I Steepest descent step

[ J
1754 Accelerated step i_
1.50

&=
1.25 fommrd
100 \
0.75 & \ \ \ \
0.50 = o "
: L s A
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% IR
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0.0 05 1.0 1.5 2.0 2.5 3.0 35

Figure 15 Example of Nesterov’s acceleration.

presented in Eq. 3.13, is performed. The accelerated part of the opti-
mization step is built as the scaled difference between z; 1 and z;_1,

where the scaling constant is yg.

The constant ¢ defines how much acceleration is applied in the
optimization; when ¢ = 0 the acceleration is maximum whereas ¢ = 1
furnishes the steepest descent method. Nesterov (29) proves that the
optimal value for ¢ is ¢ = p/L, where L is the first-order L-Lipschitz

constant of the objective function, and p is a strong-convexity constant,
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Figure 16 Representation of how accelerated steps are taken.

Le, u X VV[f(£) < LVYE € Z, being [ the objective function. As proven
in (29), the use of the optimal ¢ results in the optimal linear convergence
for first-order methods. Figure 17 shows the convergence of Nesterov’s
acceleration for different values of ¢. It can be observed that using
the optimal ¢ results in the fastest convergence to the optimum. The
convergences of the methods with ¢ < ¢* have bumps indicating that
the algorithms are accelerating too much, resulting in the provable
sublinear convergence of O(1/k?). Cases where q > ¢* have sub-optimal

linear convergence (30), as can be observed in Figure 17.

In Algorithm 7 we present the Nesterov’s accelerated gradient

descent for the maximization of some deterministic function 1.

3.3.1 Restart method

The use of ¢* furnishes the optimal linear convergence for first-

order methods (29), however, the constants g and L are difficult to
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The effect of g in acceleration
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Figure 17 Convergence of the Nesterov acceleration for different values
of q.

Algorithm 7 Pseudocode for AGD.
1: procedure AGD (&, o, q)

2: Z; 50, Ag 1

3: for k=1,2,... do

4: Solve Ay for A2 = (1 — )‘k))‘ifl + q)\k
Ap—1{1—=Ap—1)

5: Ve < TN e

8: end for

9: é% Sk

10: end procedure

estimate. O’Donoghue and Candés (30) propose an alternative method
for achieving the same linear rate as with ¢*, however without evaluating
p and L. Their method consists of restarting the acceleration whenever
the optimizer moves in an unwanted direction, e.g., for the maximization

of I, when

(VeFoy [f(€,-1,0,Y)] & — &xq) <0 (3.16)
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This simple restart technique improves the convergence of Nesterov’s

acceleration without needing to tune ¢, i.e., ¢ can be set to 0.
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Figure 18 Illustration of restart technique for Nesterov’s acceleration.

Figure 18 illustrates the restart technique for Nesterov’s accelera-
tion. The update candidate &~ is moving upwards the objective function,
with respect to &g, hence, it is rejected, & is set as z7, and Ay, is reset to
1. Note that the angle between the steepest descent direction, illustrated
with a red arrow, and the accelerated step, illustrated as a dashed blue
arrow, have negative inner product, thus, as the condition in Eq. 3.16

is satisfied, the acceleration is restarted.

Figure 19 shows the convergence of Nesterov’s accelerated gradi-
ent for two different values of q, ¢ = 0 and ¢ = 1, and for the accelerated

gradient with restart. It can be observed that the restart technique
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Comparison of acceleration with and without the restart method
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Figure 19 Convergence of the Nesterov acceleration with the restart
technique.

improved the convergence of AGD with ¢ = 0 to the linear convergence
of AGD with ¢ = ¢*.

O'Donoghue and Candés (30) also propose a third, equally effi-
cient method based on verifying whether or not the objective function
is decreasing, however, this method requires the evaluation of the objec-
tive function for each step. Su, Boyd and Candes (31) propose another
criterion for the restart based on the increase of speed, i.e., restart
if 1€, — &r_1ll < ||€x_1 — €x_2||, however, the gradient-based restart

performs significantly better in their numerical evaluations.
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Algorithm 8 Pseudocode for AGD-restart.
1: procedure AGD (&, o, q)

2: Z0 50, A1

3: for k=1,2,... do

4: Solve A\, for A2 = (1 — )\k)/\i_l + gk
5: Yk _Ak;\1z(711—_"_>\;k—1)

12: end for

13: E—¢ &
14: end procedure

3.4 Accelerated stochastic gradient descent

Using the Nesterov’s accelerated step of AGD in Section 3.3 to
the SGD in Section 3.2 furnishes the ASGD algorithm. We adapt the
AGD for the stochastic optimization problem of OED by substituting
the gradient in Eq. 3.13 for G and the constant step-size by a decreasing

one:
zp =&, 1 +G(& 1,0k, Yy)
(3.17)

& =z + (2K — ZK—1)-

We couple ASGD with Polyak—Ruppert averaging to allow the use
of the step-size sequence oy, = ap/ V'k. Consequently, since the step-size
does not reduce as fast as with ay, = ag/k, ASGD with Polyak—Ruppert
can better explore the search space, improving its global convergence
properties. Moreover, in the asymptotic region, where the convergence
is dominated by term O(k~'/2?), the Nesterov acceleration does not

affect the convergence. Thus, in the preasymptotic regime, if the ratio
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between the noise and the true gradient is small, Nesterov’s acceleration
achieves the optimal linear convergence for first order methods. As
the optimization approaches the optimum and the true gradient norm
converges to a null vector, i.e., as we get into the asymptotic phase, the
ratio between the true gradient and the noise gets small and acceleration
is degenerated. Results in the numerical section confirm the efficiency
of ASGD for both a pure stochastic optimization problem and OED. In
example 2, Nesterov’s acceleration reduced the total cost of optimization

by a factor of ten in an average of a hundred independent runs.

A variant of ASGD using Polyak—Ruppert averaging is proposed
by Lan (32) for the minimization of the sum of non-smooth functions,
however, with an increasing step-size, instead of a decreasing one. Even
though Lan presents a theoretical proof of ASGD convergence, he
does not solve any numerical example using his method. Cotter et al.
(33) use a variant of Lan’s ASGD for binary classification problems.
According to Cotter et al. (33), the ASGD algorithm does not have
the same accelerated convergence of AGD, being bounded by the same
sublinear convergence rate as of SGD, O(1/v/k). Many papers have been
recently published using Nesterov’s technique to accelerate stochastic
optimization problems using variance reduction techniques to avoid
losing the accelerated convergence (33, 34, 35). Recently, Allen-Zhu
developed an accelerated algorithm called Katyusha (26) for which he
proves accelerated convergence even for non-strongly convex stochastic

problems.

In Algorithm 9, we present the pseudocode for ASGD, where the
accelerated step is painted in blue and Polyak—Ruppert averaging and

its respective step-size are painted in green.

The ASGD algorithm is the main optimization method of the
present thesis.
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Algorithm 9 Pseudocode for ASGD.
1: procedure ASGD (&g, ao, q)
2 €0<_£O’z0<_607)\0<_1
3 for k=1,2,... do
4: Sample random variables, e.g., O, Yg,...
5
6

Solve Ay for A2 = (1 — A\g)A2_| + ghx

Ae—1(1=Ap—1)
Vi )\Qk_l_;’_)\k

7

10:

11: end for
12: £+ &
13: end procedure

3.4.1 Restart method for the stochastic case

The restart method proposed by O’Donoghue and Candes (30)
for the deterministic case uses information from the gradient of the
objective function to decide whether or not to restart the Nesterov’s
acceleration. Since we cannot observe the true gradient, we use the
stochastic approximation of the gradient as the criterion to perform the

restart, i.e.,

<g(£k—170k7 Yk)7€k - £k—1> < 0. (318)

Nitanda (35) uses a restart scheme like this to improve the acceleration
of the minimization of a finite number of sums. However, as previously
mentioned, Nitanda uses control variates and minibatches to reduce the
variance of the estimator, resulting in a near-deterministic estimation

of the gradient.

In Algorithm 10, we present the general pseudocode for ASGD
with restart technique (ASGD-restart).
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Algorithm 10 Pseudocode for ASGD-restart.
1: procedure ASGD-RESTART(, v, q)
2 & &y 20 € Ao+ 1
3 for k=1,2,... do
4: Sample random variables, e.g., Ok, Yg,...
5
6

Solve A for A2 = (1 — X\p)A2_| + Ak

Ae—1(1=Ak—1)
Vg )‘lcg—1+)‘k

T

8:
9:

10:

11:
12:

13:
14: end for

15: £ &
16: end procedure

3.5 Gradients of Monte Carlo estimators for OED

In this section, we deduce the gradients of the estimators pre-
sented in Section 2.2, for both full-gradient and stochastic optimization.
From Eq. 3.3, and applying Eq. 3.8 we get

Vel (€) / / Velo ( Y0|§)£)) p(YV0,6)dY 7(0)d0,  (3.19)

the full-gradient of I. To use SGD, we need the gradient of f presented
in Eq. 3.5, used to approximate the gradient in Eq. 3.19, i.e.,

Vef(€,0,Y) = Velog (%) . (3.20)

Developing the gradients in Eq. 3.20:

Ver(Y16.6) _ Ven(YE)

p(Y0.8)  p(YIE) (8.21)

Vef(£,0,Y) =
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From Eq. 2.3,

N,
>y —9(&.0)]5, )

=1

l\D\»—t

Vep(Y'(€,0,€)|0,€) = p(Y1]0,£)V <

N,
= p(Y]0,€)V < % 1g(§,6) + e — (579)||ng1>
=1
1 Qe
=p(Y'0,£)V < 5 2 le: 5. 1)
=0,

(3.22)

thus, the first term in Eq. 3.21 disappears. To estimate the evidence
and its gradient, we marginalize them with respect to 8, as in Eq. 2.4.
Thus,

Vep(Y1€) = /@ Ven(Y10", €)n(6")d6". (3.23)
Substituting Eq. 3.23 in Eq. 3.21 furnishes
Vep(Y1§)
0.Y)=——— >~
Vef(£,6,Y) DY)
| Vevieonerae @21

/ p(Y|0"€)m(6")d6"
©

The gradient of the likelihood of observing Y given 8* different
than @ is

Ne
1
Vep(Y (£,6,6)[07,6) = p(Y 0%, £)Ve (2 > v - g(s,e*)n;e_l)
i=1

Ne

= —p(Y]6".£) [Z (Vey — Vea(€.69)) " = (v, — alé. e*»]
=1
Ne

= —p(Y]6",€) [(ng(&@) ~Vea(6,6M)" D S (v, - 9(€,67)
i=1

(3.25)
In the next section we present estimators of the gradient of f using

MCI and Laplace approximation.
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3.5.1 Gradient of the double-loop Monte Carlo estimator

Similarly to the derivation of the DLMC estimator for the EIG
in Section 2.2.3, we approximate the nested integrals by Monte Carlo
integration and the evidence by another Monte Carlo integration, as in
Eq. 2.4,

VeIprme(§ ZVS 10%( S Yy |0n’£) ) (3.26)

Given that Eq. 3.8 holds, the gradient in Eq. 3.26 is exactly the gradient
of the DLMC estimator in Eq. 2.17, i.e., the gradient in Eq. 3.26 is an
approximation of the full-gradient of I. To perform SGD, we need an
estimator for V¢ f. Marginalizing the evidence in Eq. 3.26 with respect
to 8%, and applying MCI, furnishes the approximation of the gradient
of the DLMC estimator,

(3.27)

Gprmc(€,0,Y) d:CfV£ log< p(Y']6,€) )) .

M
37 Lom1 P(Y107,,€
The Eq. 3.27 does not have two Monte Carlo loops, however, to keep
the consistency between the naming of Z and G estimators, we keep the

same naming standard. Developing the gradient in Eq. 3.27 and noting
that Vep(Y']0,&) = 0, we have

Using MCI on the two integrals in Eq. 3.24 results in a similar estimator,

gDL]\/IC(€767Y) (328)

however, we opt to use the same set {0, },,~0 for both integrals, reducing
computational complexity. Haun and Marzouk (14) use the gradient of
the DLMC estimator in Eq. 3.28.

In Algorithm 11, we present the the pseudocode for the evaluation

of estimator Gprac.

Note that the cost of evaluating Gprare, is N times smaller
than the cost of evaluating V¢Zprac. For example, if forward finite

differences are used to calculate the gradient of g, the cost of evaluating
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Algorithm 11 Pseudocode for the gradient of the DLMC estimator.

1: function GRADIENT(E,0,Y)
2 Evaluate g(&,0)
3 Evaluate V¢g(&,0)
4: fori=1,2,..,.N. do
5: Sample €; from N (0, X¢)
6 y7,<_g(£a9)+€z
7 end for
8 Y « {y;}i
9: for m=1,2,...,M do
10: Sample 0}, from ()
11: Evaluate g(&,0))
12: p(Y |05, &) + det (27Xe) & exp (,, Z o' (™M (&) — g(g,07) i: 4)
13: Evaluate Veg(€,0;,)
W Ven(¥18,6) ¢ —p(Y10;,.€) [(Veo(&.0) - Vea(€.0;,))"
Ne s —
Zi:l 26 ! (yz (£7 m)):|
15: end for s
. DR )
16: Gprvc < S Yo €)
17: return Gprve

18: end function

VeIprme is N(M 4 1)(dim(€) + 1)h~¢, whereas, for Gprac, the cost
is (M + 1)(dim(&) + 1)h™e.

3.5.2 Gradient of the Monte Carlo estimator with Laplace approxi-

mation

From Eq. 2.28, we have the Laplace approximation of the EIG.
We derive the full-gradient of the Laplace approximation of I as

Vel(€) ~ /O {—;vg log(det(27r2(£,0t)))} ©(0,)d0,.  (3.29)

Approximating the integral in Eq. 3.29 by a MCI results in the full-
gradient of the MCLA estimator,

VeIncrpa(€ %Z [—vg log(det(273(¢, 0 )))} (3.30)
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The gradient of f using the Laplace approximation, needed for stochastic

optimization, is
1
VeGuera(§,0) = _§V£ log(det(27%(€,0)))

_ %vg log(det (S(¢, 0))) (3.31)

1 Vedet(2(€,0))
2 det(X(€,0))

Using Jacobi’s formula (and suppressing the dependencies of X) fur-

nishes
Vedet(X) = tr (det () (271)TVeX), (3.32)

thus,

1tr (det (B) (27H)TVeZ)

VeGuera(§, 0) =

= f%tr (Z7HTVZ)

Using Eq. 2.27, and remembering that 3 is symmetric,

VX' =2N.VeVeg' 2 ' Veg, (3.34)
and, using the identity VE = -7V =13,

VeE = 2N, XV VogE, 'VogX. (3.35)
Using Eq. 3.33,

1
VeGueora(€,0) = —5tr (Z7HT(—2N.ZVeVogE, 'VogX))

(3.36)
= N.tr (VnggZEIVggE)) ,
or, in index notation,
8gi dg;
s = (Ne)Sim e O A :
{Gmcrats = (Ne)X <658861( . )” 69777,) (3.37)

This estimator has the advantage of not needing the solution of any

integral, i.e., it does not need MCI.
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Algorithm 12 Pseudocode for the gradient of the MCLA estimator.

1: function GRADIENT(E,0,Y)

2 Evaluate Vgg(&,6) and V¢Vog(&,0)

3 Use Vgg(&,0) to evaluate 3(€,0) using Eq. 2.27

4 Guera(€) « Netr (VeVeg(€,0)2'Vog(€,0)2(¢,0)))
5

6:

return Gyopa(€)
end function

Evaluating the gradient of the MCLA estimator requires both
Vog, and V¢Vgg. If we use forward Euler to approximate the deriva-
tives, the cost of evaluating Gyropa is (dim(€) 4+ 1)(dim(0) + 1)A", N
times less than the cost of evaluating VeZyrcra, which is (dim(§) +
1)(dim(0) + 1) Nh".

3.5.3 Gradient of the double-loop Monte Carlo estimator with

importance sampling

The full-gradient of the DLMC estimator in Eq. 3.26 can be

improved by using an importance sampling to estimate the evidence,

VeIpomcrs(€) = 1 ivﬁ log( 1 A]Z(ynwmﬁ) i ) L (3.38)
N n=1 Hzmzl ﬁ(ynaévem)

where L is presented in Eq. 2.33. Similarly, the approximation of Eq.

3.38, i.e., the gradient of f using importance sampling, is

p(yl6,£)
Gprmcrs(€,0,Y) = Velog <131 S € 9;)) . (3.39)

The development of Eq. 3.39 is similar to the one of Eq. 3.27.

Vep(Y10,6)  Soi VeL(y; €65
0)Y) = - . (3.40

The gradient of the likelihood in the first term of Eq. 3.40 vanishes,
as shown in Eq. 3.22, However, the evaluation of the gradient of £

is cumbersome. Remember that the importance sampling pdf 7 is

Gaussian-distributed with mean (£, 8) and covariance matrix 3(&, 8),
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thus, evaluating its gradient requires the evaluation of the gradient of 0

with respect to §&. We assume V7 = 0, thus, taking the gradient of Eq.

2.33 furnishes

Vep(Y16,8)7(6)
(0)

VeL(Y:€,0) ~ (3.41)
Indeed, for any € & lima, 0(€ + Ag), the MAP of 0 at € can be
approximated as é(f) ~ é(ﬁ), hence, this simplification should not
affect importance sampling effectiveness in drawing informative samples.
Therefore, we opt to calculate 6 and E(é) only once per Gprymcis
evaluation. Moreover, we sample 8™ only once per Gprarcrs and use it
to estimate the gradient of L. The gradient of the likelihood in Eq. 3.41
is evaluated as in Eq. 3.25.

If we use forward finite differences to estimate the gradients with
respect to &€ and 0, the cost for evaluating Gprarors is [(M+1)(dim(€)+
1)+(Crrap+1)(dim(0)+1)]h~¢, where Cps 4 p is the number of iterations
needed to find @ in Algorithm 3. Moreover, the cost of evaluating
Gprmcis is already N times smaller the cost of evaluating VeZprycrs,
which is of N(dim(&) + 1)[(1 + Cprap)(dim(€) + 1) + M + 1)]h~e.

Algorithm 13 presents the pseudocode for the gradient of the
DLMCIS estimator, where the line where importance sampling happens
is shaded in gray.

Given that the cost of estimating Vgg and Vg by finite difffer-
ences are respectively Cjg and Cj¢, and that the cost of evaluating
VoVeg is Cj9C ¢, the number of evaluations of g needed by each esti-
mator Z, their full gradients, and gradient estimators G are presented
in Table 1.

3.5.4 Pseudocode of the complete stochastic optimization frame-
work for OED

In Algorithm 14, we present the pseudocode for the ASGD method
for Bayesian OED. The Polyak—Ruppert averaging at the last iteration

is taken as € ~ £*.
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Algorithm 13 Pseudocode for the gradient of the DLMCIS estimator.

1: function GRADIENT(E,0,Y)

2 Evaluate Veg(€,0)

3 fori=1,2,..,.N. do

4: Sample €; from N(0, X)
5t yzkg(530)+ez
6:
7
8
9

end for
Y < iy@}f\;
Find 6(¢,Y) using Algorithm 3
: Evaluate Vog (£, )
10: Use Vag(&, é) to evaluate X (&, é) using Eq. 2.27

11: for m=1,2,...,M do > Inner loop
12 Sample 6;, from 7(0) ~ N(0,X(¢,0)) > Importance
sampling
Ne n 2
13: P(Y 0|65,,€)  det (2n80) =7 exp | =3 201, |08 (€) — 9(&,65) - 1)
14; L(Y ;€ 0,,) < p(Y,10,,,€)m(0;,)/7(67,)
15: Evaluate Veg(&,0,;,)
16 Ven(Y16;,,€) < —p(Y16;,,€) |(Vea(£,0) ~ Veg(€,6;,)"
ST (- 9(6,65,)]
17 VeL(Yn:€:0,,) < Vep(Yal0;,,€)m(6,,)/7(6},)
18: end for u
VeL(Y €07,
190 Gprmcrs(§,6,Y) < — Do Ve )

S L(Yi8:05,)
20: return Gpraors(€)
21: end function

ASGD-restart is the main optimization algorithm of this thesis
and its efficiency and robustness is assessed in the numerical example

section.

3.6 Chapter summary

In this chapter, we introduced the stochastic optimization frame-
work that we propose to solve OED problems. In Section 3.2, we pre-
sented the Robbins—Monro algorithm, also known as the SGD, and the

rationale behind it, pointing out its main drawbacks and the literature
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Algorithm 14 Pseudocode for the ASGD-restart method for Bayesian
OED.

1: procedure ASGD(&,, ap, ¢, TOL)
2: zZ0 = 50, M =1

3 for k=1,2,... do
4 Solve g for A2 = (1 — X\p)A2_; + g\,
5 A=)
Ve = PYNES Y,
6: Sample 0y, from 7(0)
7 for:=1,2,..,.N. do
8 Sample €; from A (0, ;)
9: Y =9(&_1,01) + €
10: end for
L Y= {y;};
13:
14:
15:
16:
17:
19:
20:
21:
22: end for

2 def %
23: £=¢&,1
24: end procedure
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Table 1 — Number of evaluations of g required for each estimator.

DLMC MCLA DLMCIS

7T N(M—l—l) NCJ,Q N[(CMAP—Fl)OJ,e—FM—Fl]
V§Z CJ7€N(M + 1) CJ7€NCJ,0 CJyEN[(C]uAp + ].)CJ)g + M + 1]
g Cre(M+1) C1eCreo (Crvap +1)Cro+ Cre(M+1)

limitation regarding its application to OED problems. In order to over-
come these drawbacks, we presented in the following section different
approaches, we presented the averaging technique, known as the Polyak—
Ruppert averaging, as a way of improving SGD main weaknesses, its

lack of robustness and its step-size tuning sensibility.

In Section 3.3, we introduced Nesterov’s acceleration to de-
terministic gradient descent (17) and a restart method proposed by
O’Donoghue and Candeés (30).

In Section 3.4, we apply Nesterov’s acceleration to SGD, fur-
nishing the ASGD. In addition, we adapted the deterministic restart
technique from O’Donoghue and Candes (30) to ASGD. In Section 3.5,
we derived the gradients of the EIG estimators presented in Chapter 2.

The gradient of the MCLA estimator with respect to design
parameters is novel, being first published in a paper from the authors
(36). Moreover, we deduced the gradient of the DLMCIS with respect
to design parameters. These gradient estimators do not introduce any

bias for our case, thus, being suited for stochastic optimization.
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4 Examples

To assess the efficiency of the methods presented in Chapters 2
and 3, we solve four different numerical examples. The first numerical
example is a stochastic optimization problem used to compare the
efficiency of SGD, ASGD, and ASGD-restart in the minimization of
a quadratic function. In the second example, we solve a simple OED
problem with quadratic model in order to draw comparisons among the
performances of DLMC, MCLA, and DLMCIS estimators using different
optimization methods (SGD, ASGD, and ASGD-restart). In the third
example, we address the optimization of strain gauge positioning on a
beam modeled following Timoshenko beam theory for estimating the
beam’s mechanical properties. The purpose of example 3 is to show that
the proposed OED framework can reproduce the engineer’s intuition.
That is, that the optimized design found is consistent with what an
engineer would intuitively expect. In the fourth and last example, we
optimize an EIT experiment; we identify the optimal currents that,
when imposed on the electrodes, maximize the expected information

gain about ply orientations in a composite material.

The main interest in the numerical examples presented in this the-
sis is the evaluation of the performance and robustness of the methods
discussed in Sections 2 and 3.2. Thus, the numerical examples do not
contemplate practical aspects that may be important for actual experi-
ments. Details regarding the experiment evaluation are responsibility of

the experiment designer.

4.1 Example 1: Stochastic quadratic function

In this first example, we evaluate the performance of stochastic
optimization algorithms on finding the maximum of a quadratic function.

The goal of this example is to evaluate the efficiency of the Nesterov’s
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acceleration and the restart technique when using noisy gradient obser-
vations. Moreover, since the problem has a closed-form solution with
known optimum and derivatives, we can use the optimal ¢ tuning as

Nemirovksi (27), and compare its effect with the restart technique.

We analyze the problem of finding & that maximizes the expected

value of a function f(&,0) with respect to 0 given as

16.0) = (€7 A¢+¢"46) (a.1)

where A is a diagonal n x n matrix with elements A;; = j for j =
1,--- ,n. The random vector 8 is Gaussian-distributed with null mean
and covariance matrix X = diag({o3}";). The vector £ is a design
variable, belonging to =, a subset of R™. The objective function to be

maximized is
Eq [f(€,0)] = —Eg BgTAg + gTAo} (4.2)
= €7 A (4.3)
Taking the derivative of the objective function with respect to £ furnishes

VeEo [/(£,0)] = — A€, (4.4)

hence, the maximum of Eq. 4.2 has closed form
& =0. (4.5)

To approximate V¢Eg [f(&, 6)] for stochastic optimization, we use the
gradient of f,

G(&,0)=—-A(E+0). (4.6)
Note that V¢Eg [f (£, 0)] = Eg [G(§, 0)], thus, G is an unbiased estimator

for the gradient of the objective function. Since A is diagonal with
elements A;; = 7, the variance of the i-th element of the estimator G is

calculated as

VIGi(€,0)] = i*V[4] (4.7)
=i%0}. (4.8)
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The variance in the gradient estimation does not depend on & and does
not vanish in the optimum. Thus, as V¢Eg [f (£, 0)] converges to zero,

the relative error in gradient estimation goes to infinity.

The SGD in Eq. 3.9 for example 1 becomes

€pr1 =& + arG (&, O0k) (4.9)
=&, — aA(§ + 0y), (4.10)

where each 6 is independently sampled from the multivariate Gaus-
sian NV(0, Xg) each iteration. The accelerated gradient formulation is

similarly obtained by replacing G in Eq. 3.17.

The estimation of the conditioning number L/ is straightforward
in this case, since the Hessian of the objective function is constant and
equal to A, whose maximum and minimum eigenvalues are, respectively,
L = n, and u = 1. Thus, for this example, the optimal value for
the parameter ¢ is ¢* = 1/n. Similarly, the step-size is set to ag =
2/(L+p)=2/(n+1).

We solve the stochastic optimization problem in example 1 using
SGD, ASGD, ASGD employing optimal ¢, and ASGD with the restart
technique. In the numerical tests for example 1, we use n = 20, thus,
ap = 2/21 and ¢* = 1/20. Note that 0 has is n-dimensional, thus, this
example has 20 random parameters. One advantage of SGD is that
it can solve high-dimensional problems without any increase in the
cost per iteration. Figure 20 presents the convergence of each method
towards the optimum using different standard deviations for the prior
pdf w(0); on the left, oy = 0.1, and on the right, o9 = 0.01. It can be seen
that the algorithms behave similarly to their deterministic counterparts
up to a certain point, where they start converging sublinearly. As the
noise in the gradient estimation becomes large in comparison to its
magnitude, the convergence gets dominated by the sublinear term of
stochastic gradient. Moreover, when the variance gy is increased to 0.1,

the sublinear phase starts sooner.

As discussed in Section 3.4.1, in ASGD the Nesterov’s acceleration
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Quadratic example, ap =0.1 Quadratic example, ap =0.01
— T T — T
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Figure 20 (Example 1): Convergence of the methods with standard
deviations oy = 0.1 (a) and gy = 0.01(b).

imposes an excessive momentum that generates oscillations over the
optimum. For this example, the optimal tuning of ¢ do not improve on
ASGD; however, the restart technique speed up the convergence without
the need for any prior knowledge about the Hessian of the objective
function. Observing Figure 20, it can be seen that ASGD-restart achieves
the asymptotic phase at around 300 gradient evaluations, whereas SGD

takes almost 10000 gradients to get to the sublinear regime.

4.2 Example 2: OED with quadratic model

Here, we consider an OED problem based on a quadratic forward
model we devised to perform a comparative analysis between the gradi-
ents of EIG estimators presented in Chapter 3.5. We are interested in
assessing the efficiency of the gradients of DLMC, MCLA, and DLM-
CIS estimators on the solution of OED problems. Moreover, we are
interested in evaluating the performance of the optimization methods
presented, FGD, SGD, ASGD, and ASGD-restart, when coupled with
the gradients of DLMC, MCLA, and DLMCIS estimators. Since ¢* is
hard to estimate, and ASGD-restart performed better than ASGD-¢* in
Example 1, we opt to focus on ASGD-restart as our main optimization
algorithm. In FGD, we use the full-gradients of the OED estimators,
whereas, in the other (stochastic) optimization methods, we use the

gradients derived for stochastic optimization in Section 3.5, noted as G.
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In this example, the forward model is

1 —02
0)=¢TAL0 — €TA102 —810 -1, wh A= ,
9(&,0) =& A&0— ¢ where 02 05
(4.11)

the scalar random variable 6 is sampled from the prior pdf 7(6) =
N(0,107%), and ¢ € = = [-2,2]? C R% For DLMC and DLMCIS
gradients, V¢g need to be evaluated, and MCLA gradient requires Vog
and V¢Vgg. For this problem, closed forms of the model derivatives

can be obtained as

Veg(€,0) = 2AL0 — A16%, (4.12)
Vog(€,0) = ¢TA¢ — 26T A10 — 81, (4.13)
VeVog(€,0) = 2A€ — 2A16. (4.14)

The additive error is assumed to be Gaussian € ~ N(0,10~%) and
the number of experiments is N, = 1. The initial step-size is chosen as
ap = 1.00.

The efficiency criterion we use to compare different methods is
defined as the average number of calls of the forward model (NCFM)
required to approximate £* for a given tolerance. We compute NCFM
as the mean value of ten independent runs (because of the randomness
of SGD), where we aim for an error tolerance of 0.01, i.e., [|€;, — &7, <
0.01.

To approximate the inner loop in DLMC and DLMCIS, we use the
optimal sampling from Beck et al. (2), which we evaluate at the starting
point of the optimization and keep constant during the process. To

achieve the tolerance of 0.01 in the error of the optimum estimation, the

optimal numbers of MC samples are N* = = 2447 and M} = =80
for DLMC, NS vers = 2402 and M7 =T for DLMCIS, and
N*¥ = 966 for MCLA. We use the same values for their SG estimators,

MCLA
except that N = 1 is used. We use the Algorithm 3 to estimate 6 in

(2.25) for DLMCIS.
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We solve this problem for each combination of the optimization
methods (FGD, SGD, ASGD, ASGD-restart), and gradients of EIG
estimators (DLMC, MCLA, DLMCIS) to compare their performances.
Table 2 presents mean NCFM for each different combinations of the
optimization methods and gradient estimators for a hundred independent
runs, except for FGD using DLMC, where, because of the high cost,
only ten runs were performed. The optimization methods are indicated
at the top of each column, and the gradient estimators in Section 2.2

are listed by row.

Table 2 — Mean NCFM over a hundred independent runs to achieve
1€ — &7l < 0.01.

FGD SGD ASGD ASGD-restart

DLMC  2.99 x 107 1.68 x 10> 9.94 x 103 1.18 x 104
DLMCIS 6.57 x 106 3.18 x 10* 3.17 x 103 2.56 x 103
MCLA 280 x 10° 4.06 x 103 2.87 x 102 2.75 x 102

By analyzing the first line of Table 2, we see that the two methods
using Nesterov’s acceleration (ASGD and ASGD-restart) reduce the
computational burden by three to four orders of magnitude compared
to FGD. Moreover, when using MCLA, ASGD-restart estimates &*
in fewer than 300 calls of the forward model. For this example, the
Laplace method and the Nesterov acceleration both performed as ex-
pected and reduced the cost to solve the OED problem. Moreover, the
coupling of the methods worked; the Laplace approximation did not
affect the Nesterov’s acceleration. The convergence to the optimum of
SGD, ASGD, and ASGD-restart using the gradient of MCLA estimator
is presented in Figure 21. It can be seen that the acceleration speeds
up the convergence, and, moreover, that the restart technique results in

smoother convergence.

To further evaluate Nesterov’s acceleration combined with the
EIG estimators, we solve the problem using ASGD-restart with MCLA

and with DLMCIS using three different values for the inner sample-size,
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OED with quadratic model
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Figure 21 (Example 2) Convergence to the optimum in relation to
iterations for SGD, ASGD, and ASGD-restart with MCLA.

1,10, and 100. The convergence of the distance to the optimum per
model evaluation is presented in Figure 22. Even for M = 1, DLMCIS

OED with quadratic model
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Figure 22 (Example 2) Convergence to the optimum in relation to
iterations for the ASGD-restart with MCLA and with DLM-
CIS.

does not suffer with numerical underflow. However, for this example,

using MCLA resulted in a faster convergence than DLMCIS with any
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of the sample-sizes used.

Figure 23 shows the contour of EIG and the optimization path for
ASGD-restart using MCLA and DLMCIS with the different inner-loop
sample sizes. Each method in Figure 23 has only a thousand gradient
evaluations. It can be seen that MCLA is the only one to be close to

the optimum.

Tyucra
L2 —— MCLA
—w— DLMCIS, M =1
—%— DLMCIS, M = 10
LOT —— DpLMCIS, M = 100
® st
® &
0.8
0.6
&
04 L
0.2 2
0.0
—0.2
02 00 0.2 0.4 0.6 0.8 10 1.2

&

Figure 23 (Example 2) Contour of EIG and optimization ascent paths
for the ASGD-restart with MCLA and with DLMCIS.

As a sanity check to estimate the intrinsic bias of the Laplace
approximation in the optimization carried out with the estimator MCLA,
we compute the expected value of gradient using DLMCIS at the
optimum found. Using N = 10° and M = 10% in DLMCIS, we obtain a
gradient with a norm of 10~%, thus, the bias introduced by the Laplace

approximation is negligible in this case.
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4.3 Example 3: Strain gauge positioning on Timoshenko beam

To test the OED machinery developed on the present thesis
on a problem with physical meaning, we study the purely academic
engineering problem of finding the optimal placement of a strain-gauge
on a beam to estimate Young and shear deformation moduli. In this
problem, we opt to use the gradient of MCLA, given its lower cost in
comparison to DLMCIS. We compare SGD, ASGD, and ASGD-restart

in the maximization of Zy;cora.

We consider that the strain-gauges provide (noisy) strains obser-
vations in the vertical and longitudinal axes for a given point of the
domain of the beam. We characterize the beam’s mechanical properties,
namely the Young modulus F and the shear modulus G, given mea-
surements obtained from the strain gauge using the Timoshenko beam
model. The beam to be studied has 10 m length, 2 m height, and 0.1
m base width. The beam’s geometry is not consistent with engineering
practice and is devised to furnish an interesting OED problem on the
stochastic optimization perspective: we want an optimization problem
where the optimum is not in a vertex of the beam. A uniform load ¢,
of 1.00 kN/mm is imposed on the beam’s vertical axis and distributed
along its main axis. The geometry of the beam, the load, and the posi-

tion of the strain gauge are illustrated in Figure 6. We aim to locate a

A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o

JAN L. a b

Figure 24 — (Example 3) Geometry of the Timoshenko beam.

strain gauge on the beam that maximizes the information on £ and G.
We model the beam following Timoshenko’s theory (37), a mechanical

model that captures the strains resulting from both normal and shear
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stresses. The Timoshenko beam model for our case is

oLe
KSGAT€12 = q2 — o1,

(4.15)
Elnenn = 7%“(%7“) T2,

where €11 is the normal strain, €15 is the shear strain, x; and z are
the positions of the strain gauge on the horizontal and vertical axes
respectively, ¢, is the uniform load, L. is the length of the beam,
I, is the inertia moment of the cross section, K is the Timoshenko
constant (Ks = 5/6 in all test cases), and A, is the cross-section area.
A deduction of the Timoshenko beam equations from the elasticity

equations is presented in Appendix C.

4.3.1 Bayesian formulation

The optimal position for the strain gauge that provides the
maximum information about E and G is denoted by &* = (z7,z3).
The longitudinal strain on the main axis of the beam, denoted by €11,
together with the transverse strain €12, compose the output of the
forward model. Therefore, based on (4.15), we find that

9(57 6) = (811<€,9>7512(£7 0))
_ <§2 (qOLefl - QOS%) %QO - QO§1> 7 (416)

291[11 ’ KSHQAT

where (21, x2) and (E, Q) are replaced by (£1,&2) and (01, 62), respec-

tively. The additive error of the measurement is Gaussian € ~ N (0, X,),
2

where the noise covariance matrix is X, = diag {02 ,02 }.

4.3.2 Test cases

We assess the robustness of the proposed methods in four test
cases, in which we attempt to locate the optimal strain-gauge placement
on a beam. We test all the different cases, changing the variance of the
prior pdf of 8, the dispersion of the measurement noise, and the number

of experiments. The prior pdf of @ is Gaussian with the distribution
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7(0) ~ N ((uh., u5)T, diag {(o5.)?, (0})?}), where puf, = 30.00 GPa
and 4§, = 11.54 GPa.

Table 3 presents the parameters used in each of the four cases.

Table 3 — Parameters for the Timoshenko beam problem (Example 3).

Parameter N. o} (GPa) 05.(GPa) o0, (x107%) o0, (x107%)

Case 1 3 9.00 3.46 6.25 1.30
Case 2 1 6.00 2.31 3.75 0.78
Case 3 1 6.00 0.46 3.75 0.78
Case 4 1 1.20 2.31 3.75 0.78

We devised the parameters of the four cases with the intention
of having four different optimization problems. In the first two cases,
both E and G have standard deviation of, respectively, 30% and 20% of
their means. Also, case 1 has larger observation noise than case 2, and
more experiments, 3. The third and fourth cases are exactly like case 2,
except that case 3 has significantly less dispersion in G, a coefficient of

variation of 4%, and case 4 has the same coefficient of variation for E.

To evaluate the efficiency of each optimization method in the
solution of each case, we run 10000 iterations of each method for each
case. Since MCLA is used for this problem, the cost per iteration is
(dim(0) + 1)(dim(&) + 1) forward model evaluations. Thus, since the
dimension of @ is two, and the dimension of £ is also two, the NCFM
each method uses is 90000. We compare how close to each optimum
each method can get with this fixed cost. The optimization paths for the
placement of the strain gauges on the beam are drawn against contour
plots of the expected information gain across the optimization domain

in Figure 25.

In cases 1 and 2, the optima are similarly located near the bottom
of the beam, between the middle and the end. In case 3, the optimum
is located in the bottom-middle of the beam; in case 4, the optimum is

located on the supports. These placements are expected, as the Young
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From top to bottom, cases 1 to 4 from Example 3 (sum-
marized in Table 4). Expected information gain contours
computed with MCLA and optimization ascent paths using

SGD, ASGD, and ASGD-restart with MCLA.

modulus depends on the bending moment (that is maximum at the

middle of the beam (z; =

L./2)), and the shear modulus depends on

the shear stress (that is maximum at the beam supports (1 = 0 and

x1 = L¢)). In case 3, the prior information about G is more accurate;

consequently, the algorithm converges to the middle of the beam where

more information about E can be collected. Conversely, in case 4,

the algorithm converges to the beam supports, where data is more

informative about G. In Table 4, we present the initial guesses, the

optimized setups, the respective expected information gains in relation
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to the prior, and the standard deviations of the posterior pdfs of the
parameters E and G for the four cases. The posteriors are evaluated
at 6 = (,ufm ,ug';) for the four cases are presented in Figure 27. We
observe a reduced variance in the optimized experiment, compared to
the original, reflecting the importance of an informative experiment. In
cases 3 and 4, no information is acquired about G and E, respectively,

since the variances in the axes are not reduced, compared to the prior.
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Table 4 — Results from the Timoshenko beam problem (Example 3).

i(mm) x3(mm) T, Uﬁ)st (GPa) Uﬁ)st (GPa)
Case 1 Non-Opt.  5500.00 -100 0.14 8.00 2.40
Opt. 8022.59  -1000.00 2.43 2.48 0.54
Case 2 Non-Opt.  5500.00 -100 0.23 2.38 1.38
Opt. 7962.77  -1000.00 3.35 1.60 0.74
Case 3 Non-Opt.  5500.00 -100 0.06 5.70 0.46
Opt. 5004.47  -1000.00 1.28 1.72 0.46
Case 4 Non-Opt.  5500.00 -100 0.22 1.20 1.93
Opt. 10000.00 -1000.00 1.94 1.20 0.33
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Because we use the biased and inconsistent MCLA estimator of
the gradient, as a sanity check, we evaluate the gradient at the optima
we found (the first two cases) using the full gradient of the DLMCIS
estimator with N = 10% and M = 102. In both cases, the gradient norm
is below 1073, meaning that the bias of the Laplace approximation is
considerably small at the optima. We conclude that the biased solutions
found are not significantly distant to the real optima. To plot the
convergence, we estimate the real optima using DLMCIS with FGD
from the optima found using the MCLA. The convergences from the

first two cases are presented in Figure 26.

:
108 o — 56D
— — ASGD
102 102 —— ASGD-restart
T \ 1
10! V N ol \
o 10— W : b
SR = -
< i LI <
10 it [ I T
2 10!
10 ¥ 'l I
10 *4 — sGD 102
g ASGD
10 = ASGD-restart 10 °
o 2000 4000 8000 8000 10000 o 2000 4000 8000 8000 10000
Iterations Iterations
(a) (b)

Figure 26 Convergences from cases 1 (a) and 2 (b) using ASGD-
restart with tolerance of 1 mm, or relative tolerance of
10~%) (Example 3).

The main goal of this example is to visualize how the optimum
found is consistent with the input data given. Moreover, to show that
the ASGD-restart with the gradient of MCLA is able to solve the OED
problem proposed.

4.4 Example 4: Electrical impedance tomography

EIT is an imaging technique that infers the conductivity of a
closed body from potential measurements obtained from electrodes
placed on the boundary surface of the body. Here, we consider the
optimal design of an EIT experiment conducted on two orthotropic

plies, in which the potential field is assumed to be quasi-static. The
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Figure 27  Prior, posterior, and optimized posterior pdfs for the Young
modulus F and the shear modulus G for cases 1 (a), 2 (b),
3 (c), and 4 (d) from Example 3.

physical phenomenon is governed by a second-order partial differential

equation combined with the complete electrode boundary model (38).

Beck et al. (2) prove that the bias of the Laplace approximation for

this problem is negligible. Therefore, in this example, we use MCLA

combined with ASGD-restart.
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4.4.1 Bayesian setting

We consider a body D that is 20 ¢cm long and composed of two
plies that are each 1 cm thick, resulting in a total thickness of 2 cm. Both
plies are made of the same material, but are oriented at different angles.
The conductivity of each ply is &(0,z) = Q™ (6;) - o - Q(6;), where
o = diag {10_27 1073, 10_3}, and Q(6;) is an orthogonal matrix that
rules the rotation of the unknown orientation angle ; of ply ¢, counting
from bottom to top. The objective is to infer #; and 6, about which

we assume the prior information to be 7(61) ~ U({%, %) and 7(62) ~

U(—F%, —7%). During the EIT experiment, low-frequency electrical
currents are injected through the electrodes E; (with I = 1,--- |, Ny)

attached to the boundary of the body, with N,; being the number of

electrodes. The potentials at the electrodes are calculated as

Yi(€) = 9,(€.0) + & = UWEO) + e for i=1- No, (417)
where y, € RN<~1 and 6, = (6,1,0,2) are the true orientation an-
gles that we intend to infer. In the Bubnov—Galerkin sense, U}, =
(Uy, -+ ,Un,,—1) is the finite elements approximation (i.e., the potential
at the electrodes) of U from the following variational problem: find
(u,U) € L% (0;H) such that

E[B((u,U),(v,V))] =I.-E[U], forall (v,V)eL2(0;H).

(4.18)

where I, represents the values of injected current at N, — 1 electrodes
T

I.= (I, - ,IeNel_1 . Let the constitutive relation for the current

flux be (6, x) = 5(0,x)-Vu(0,x). Then, the bilinear form B : HxXH —
R is

Ne; 1
B((u,U),(v,V)):/DJ.WdDJrlZ;ZZ/El (Up — 1) (Vop — v) dE;,

(4.19)
where z; is the surface contact impedance between the electrode I and
the surface of the body. The space of the solution for the potential field
(u(0),U(0)) is H ' H(D) x RN for a given random event 6 € O,

free
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where H' is the Sobolev space of functions that belong to L?, and whose
first-order partial derivatives also belong to L2, Then, L3 (©;H) is the

Bochner space given by

e =0y 01 st [ 100, UO)IE ) < |
(4.20)

The measurement-error distribution is € ~ A(0,100.0). We note that,

by imposing the Kirchhoff law on I, and the zero-potential law on Uy,

the model output g is projected to a suitable space for the optimization.

The optimization parameters are defined as the current intensity
to be injected through the electrodes, i.e., £ = ({Ie}fvzei), where each
I, is the normalized current intensity applied to the i-th electrode such
that I, € [—1,1]. A schematic of the experimental setup showing the

laminated material with four electrodes is depicted in Figure 28.

L =+1 I =—1

=& Iy=-&

Figure 28 Experimental configuration for EIT with two plies and four
electrodes (Example 4).

4.42 Numerical tests for EIT

To evaluate the efficiency of MCLA combined with ASGD-restart
in solving the EIT problem, we solve four different cases using different
numbers of electrodes of different lengths and positions. In all cases,
the number of experiments is N, = 1. In all cases, a fixed number
of iterations is defined as 1000. Since the gradient of thee MCLA
estimator for stochastic optimization is used, the cost of each iteration

is (dim(@)+1)(dim (&)+1) forward model evaluations, thus, for each case
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the cost of iteration is different. The third case has ten design variables,
thus, each iteration costs 33 NCFM. Thus, in the most expensive
case, 33000 finite element analysis are used. The evaluation of the
optimization for each case takes less than half an hour in a personal
computer, however, the running time can change depending on the

computer used.

4421 Test case 1 (Configuration with four electrodes and one design
variable)

We aim to find the most informative current intensity to inject
through three out of the four electrodes attached to the two-ply com-
posite material described above and shown in Figure 28. The current at
the fourth is defined by Kirchhoff’s law. The electrodes are 1 cm long

and have fixed positions.

We approximate the covariance of the posterior pdf for each £ by
3p0st(§), as presented in (2.27). Thus, the approximated covariances at

the initial guess and the optimum solution are

721 x 1073 9.73 x 10~*
z:post(EO) = [ ] 5

9.73 x 107* 1.35 x 10~*

539 x107% 3.21x10°6

b 0Ss ) =
post(€7) l3.21 %1076 3.39 x 10~

] . (4.21)

The optimization reduces the terms in the covariance matrices
by two orders of magnitude, meaning that the optimized experiment
provides more precise estimates of Qol. Due to the symmetry of the
problem, there are two local maxima, one with & = —1 and one
with & = 1. However, the local maximum where £&; = 1 is also the
global maximum, with a larger expected information gain. Therefore,
we conclude that we can obtain more information about the angles of
the plies from the optimized configuration than from the non-optimized

configuration.

In Figure 29, we present the electric potential and the current
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streamlines both before and after the optimization. We also present the
expected information gain when using the MCLA estimator with the
optimization path and the posteriors evaluated at 6 = (3955 3955 )-

The initial guess provides less information about #; than about 6s.
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300
2
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0 1
I3 =6 =-03 i i i I, =& =03 00 »
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Figure 29  Current streamlines (a), optimization path (b), and pdfs of
both the initial and optimized configurations (c) for case 1
(Example 4).

6z

However, the optimized position significantly reduces the variance of the
#, estimation and provides insightful information on both parameters

f, and 5 with almost the same uncertainty.
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44272 Test case 2 (Configuration with three electrodes and two design

variables)

Here, we consider a configuration for the EIT experiment with
two electrodes on the top of the two-ply composite body, and one at
the bottom, each 4 cm long. We allow the current applied to the two
top electrodes to vary from —1 to 1, i.e., the optimization variables are
&€ = (I}, 12). We enforce Kirchhoff’s law by letting I3 = —I} — 2, and
force box constraints on I2 by imposing the constraint |I} + I2] < 1 by
projection. The contour plot of the expected information gain and the
ascent paths of two different initial guesses are presented in Figure 30,
in which the regions illustrated in blue are where the box constraint
on I3 are violated. The optimization is presented for the two initial
guesses over the contour lines of the expected information gain. The

region shaded in gray indicates where the experiment does not provide

any information gain, i.e., where Z = 0.
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Figure 30 (Example 4) Contour of 7.

voLa With optimization paths for
EIT test case 2.

Figure 30 shows that the optimization converges to local optima

for the two initial guesses, arriving at solutions where the expected
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information gain is around 2.4. Figure 31 presents the current streamlines
for one of the initial guesses, & = (0.8, —0.4) and the posteriors from

both guesses. The two optimized posteriors look alike. As shown in
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100
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Figure 31  Current streamlines for guess 2 (a) and pdfs for both guess
1 (b) and guess 2 (¢) (Example 4).

Figure 30, this problem has four optima: (0,1), (1,0), (0,—1), and
(—1,0). These optima have in common the fact that one of the two
electrodes in the top ply (&; or £€,) has null-current while the other two

electrodes have current 1 or -1.
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4423 Test case 3 (Configuration with ten electrodes and ten design
variables)

We now consider a more complex EIT experiment with ten 2 cm
long electrodes. The intensity of the initial current applied is 0.5 at the
inlet electrodes (on top of the two-ply composite body) and —0.5 for
the outlet electrodes (on the bottom). It is worth to highlight that this
problem has ten design variables, thus, each gradient by forward finite
differences costs 11 model evaluations, i.e. FEM is evaluated 11 times.
Therefore, it is a case where the stochastic optimization framework
devised can show its performance by efficiently utilizing the gradient

information.

The current streamlines, before and after the optimization, are
depicted at the top of Figure 32. The optimization converges to a
setup with both positive and negative currents applied on both the top
and the bottom electrodes. This optimal setup provides an expected
information gain of 7.18. For the sake of comparison, the expected
information gain from the setup with currents of 1.0 and -1.0 applied
to the top and bottom electrodes, respectively, is only 2.95. On the
bottom-left of Figure 32, the posteriors show that the variance of Qol
for the optimized configuration is remarkably smaller than for the initial
guess. On the bottom-right of the figure, we present the self-convergence
test where we see that using Nesterov’s acceleration resulted in an
accelerated convergence of the optimizer to the optimum found. The
expected information gains for the three cases presented in Example 4
are listed in Table 5.

Table 5 — Expected information gain using MCLA with N = 1000 in

Example 4.
Initial Guess Optimized
Case 1 2.26 6.72
Case 2, Guess 1 0.64 2.46
Case 2, Guess 2 1.74 2.47

Case 3 1.57 7.18
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Figure 32 Current streamlines (a), pdfs of initial and optimized con-
figurations (b), and self-convergence to the optimum (c) for
case 3.
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5 Conclusion

Experiments are an important part of science, and, as such, it
is interesting to tune the experiments parameters to obtain the most
informative observations. However, for many cases, finding the optimum
tuning for experiments is not a trivial task. We opted to use Shannon’s
expected information gain (EIG), a measure based on Bayes’ theorem,
to estimate the performance of an experiment, in what is called Bayesian
optimal experimental design (OED). The Bayesian OED is a very general
methodology that can be applied to a wide range of experiments. The
price of generality is often high; the standard method to estimate EIG
requires the solution of a double-loop Monte Carlo (DLMC) method.
The cost of evaluating DLMC to achieve a desired precision can be of
the order of millions of physical model simulations. Moreover, DLMC
is sensible to the dispersion of the parameters, being susceptible to
numerical instabilities, e.g., numerical underflow. Thus, the goal of
the present thesis was to study numerical methods in both stochastic
optimization and uncertainty quantification in order to solve OED

problems efficiently.

We devised a robust stochastic optimization framework to solve
OED problems. We followed the same path as Huan and Marzouk (14),
and used stochastic gradient descent (SGD) for OED, however, we em-
ployed state-of-the-art techniques in stochastic optimization to improve
the convergence: Polyak-Ruppert averaging, Nesterov acceleration, and
a restart scheme. The SGD does not require the evaluation of the
outer-loop of the EIG estimators, consequently reducing the cost of each
iteration. In comparison to the full-gradient descent approach, the reduc-
tion to the iteration cost is of the order of the outer-loop Monte Carlo
sample size, thus, the optimization cost can be dramatically reduced.
We also used Nesterov’s acceleration with a restart technique to speed

up the convergence in stochastic optimization. The restart technique is
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proposed by Candés and O’Donoghue (30) for the deterministic case.
We adapted the restart method for stochastic optimization by using the
gradient approximation instead of the true gradient to decide whether
or not to restart the acceleration. The accelerated stochastic gradient
descent (ASGD) with the restart technique performs well in the numeri-
cal examples evaluated in this thesis, thus, being a viable alternative for
stochastic optimization problems. The rationale behind ASGD efficiency
is that it takes advantage of acceleration in the starting iterations, before
the asymptotic regime. As the optimization progresses, the acceleration
is degenerated by the noise in gradient estimation, however, ASGD
does not perform worst than SGD in asymptotic regime. Thus, ASGD
takes advantage of Nesterov’s acceleration in its preasymptotic phase,

arriving faster in the neighborhood of the optimum.

To further improve the efficiency of the proposed OED machin-
ery, we coupled the stochastic optimization framework with a Laplace
approximation of the posterior pdf, thus, avoiding the evaluation of the
two nested Monte Carlo integrations needed for the gradient of EIG.
Long et al. (8) proposed the use of the Laplace method to approxi-
mate the integral of the posterior in the context of OED. The Laplace
approximation consists in approximating the log of a pdf by a second-
order Taylor expansion at its mode, thus, the pdf is approximated by
a Gaussian. By using the Laplace approximation of the posterior, we
avoided the need of evaluating the evidence, consequently only one of
the two nested integrals, the outer integral, needed to be evaluated. The
Monte Carlo with Laplace approximation (MCLA) is can be orders of
magnitude cheaper than the DLMC estimator, however it is a biased
and inconsistent estimator. As a viable alternative for the cases where
the Laplace approximation bias is not acceptable, Beck et al. (2) use
an importance sampling based on the Laplace method to improve the
performance on the MC approximation of the evidence. Beck et al. (2)
prove that the double-loop Monte Carlo with Laplace-based importance
sampling (DLMCIS) is a consistent estimator and that the reduction in

comparison to DLMC in cost can be of several orders of magnitude. We
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derived the gradients for stochastic optimization of the DLMC, MCLA,
and DLMCIS estimators and estimated their costs. These gradients
do not have the outer-loop, thus, are cheaper than their deterministic

counterparts.

To test the performance of the methods presented in this thesis,
we solved four numerical examples. The first example was a non-OED
stochastic optimization problem we devised to test the optimization
methods and compare their performances. The second was a simple OED
problem without any physical meaning; we used a model that is quadratic
with respect to both the design parameters and the quantities of interest.
The third example was an engineering problem built to be an interesting
OED case: we optimized the positioning of strain-gauges on a beam
to infer mechanical properties of the material which the beam is made.
The fourth and last example was an engineering problem with a model
that requires a finite element analysis; we optimized the currents to be
imposed on the electrodes during an electrical impedance tomography
(EIT) experiment to infer the angles of the plies of laminated composite

material.

The general conclusion from the numerical examples was that
the stochastic optimization framework for OED is efficient, being able
to consistently solve the proposed problems. For the second example, a
hundred independent runs were performed with each combination o the
optimization algorithms (FGD, SGD, ASGD, ASGD-restart), and the
EIG estimators (DLMC, MCLA, DLMCIS). ASGD-restart with MCLA
solved the problem with an average of 275 calls of the forward model,
whereas DLMC with FGD needed 2.99 x 107 model evaluations. These
results where obtained for optimized sample-sizes for EIG estimators
derived in Beck et al. (2). However, the gradient of the MCLA for
stochastic optimization does not require any Monte Carlo integration.
The iteration without Monte Carlo integration results in an efficient
and cheap optimization process. Consequently, OED problems with
expensive models can be optimized. The combination of ASGD-restart
and MCLA solved the expensive problem of EIT that would, otherwise,
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be unfeasible. The main weakness of the MCLA estimator is the bias
introduced from the Laplace approximation, however, for the last two
problems, we evaluated the full-gradient of the DLMCIS estimator in
the solution found with MCLA as a sanity check. This is a way of

measuring if the true gradient is indeed null at the optimum candidate.

We emphasize that the present work is an improvement on the
state-of-the-art for simulation based OED with practical purposes for
both academic and industrial research, enabling improvements on ex-

perimental processes that would not be able with current methods.

5.1 Future research

For future research, we suggest:

Global convergence in multimodal case: To improve the
optimization we presented, we suggest the use of global convergence
techniques that can escape local minima. Torii, Lopez, and Luersen (39)
apply a probabilistic restart technique that restarts the local search
from a point less likely to converge to same local optimum as others.
Another approach, proposed by Pagu and Souza (40), is to create a set
of random points sampled from a Gaussian distribution centered on
the current iteration point and check if any of these points have better
objective function value than the current one. Given that the variance
of the Gaussian distribution is large enough, the algorithm can jump to

regions with better local minima until the global minimum is found.

Variance reduction techniques: A viable way of improving
the convergence of the optimization process is to use variance reduction
methods. One way of reducing the variance is to use minibatches (33),
which means to use a small (but larger than one) sample to estimate the
gradient each iteration. Another example is the use of control variates
as Johnson and Zhang (41) and Nitanda (35). Control variates take
advantage of autocorrelation between the gradients in the domain to

use information from previous iterations.
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Multilevel Monte Carlo: Moreover, for expensive problems
that require the numerical approximation of partial differential equations,
multilevel Monte Carlo can be used to approximate the true gradient of
EIG using a hierarchical mesh discretization, as proposed by Beck et
al.(42).
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APPENDIX A - Deduction of

MAP and covariance matrix for

Laplace methods

Consider the case where the logarithm of the posterior is approx-
imated by a second order Taylor expansion at its MAP. In this case,
the resulting approximation of the posterior is a Gaussian-distributed
variable with mean @ and covariance (¢, é), where 6 is the MAP and
¥(£,0) is the covariance at the true posterior evaluated at 6. For the
sake of simplicity, we write 35 d:efE(ﬁ7 é) Thus, we write the posterior
approximation as

_ dim(8)

e dim(6) P 1 A
m(O1Y &) ~ 761V, €)' 2m) 7 F det(£) exp (5 [|0 — 66, V)1 )
(A1)
To approximate the posterior we need to find 6 and 3. By definition,
the MAP is

6(¢,Y) < argmax n(0|Y, €). (A.2)
6co

Since the natural logarithm is a monotonically increasing function
defined on the positive real numbers, and the posterior is a strictly
positive function, instead of maximizing the posterior, we can maximize

its logarithm,
6(¢,Y) = argmax logn(0]Y,£). (A.3)
0co

Using the Bayes’ theorem presented in Eq. 2.2 on Eq. A.3, and noting

that the evidence does not depend on 6, thus, can be ignored, furnishes
0(¢Y) = arg max log [p(Y']60,&)7(6)] (A4)
€

= argmax [logp(¥[8.€) + log(6)] (A5)
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Substituting the likelihood from Eq. 2.3 and noting that the normalizing
constant is strictly positive for any positive-definite matrix ¥, thus,

can be ignored, results in

o(¢, Y) = argmax lZH% g(5,0>||§€1+1ogw<0>1,
- (A.6)

or, alternatively,

0(¢,Y) = arg min lz ly;: — g(&.0)ll5;, -1 — log(x (0))] - (A7)

The covariance matrix of the posterior evaluated at its MAP, 3,
can be obtained from the second order derivative with respect to 6 of
the log-posterior evaluated at the MAP,

VoVelog#(BY,€) = -3 . (A.8)

From Bayes’ rule,

p(Y6,£)7(6)

T(OY,€) = a3 (A.9)

log @(0]Y, €) = log(p(Y']0,€)) + log(m(8)) — log(p(Y'[€))
(A.10)

VeVelog@(0|Y,£) = VoVelog(p(Y10,£)) + VoVelog(n(0)).
(A.11)

Substituting the likelihood from Eq. 2.3 and 3 from Eq. A.8 results in

— 8 = —N.Veg(£.0)"=.'Vag(€,0) — (VoVog(£,0))"

2D (yi —9(£.0)) + VoVelog(n(8)). (A.12)

i=1

Long et al. (8) prove that ignoring the second term in the right hand
side of Eq. A.12 results in an error of Op(y/N,), therefore, we opt to
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avoid evaluating the second order derivatives of the model. Hence, the

resulting $is

S1(¢,0) = N.Vo(g(£,0)) TS Vog(€,0)—VoVe log(m(8))+0p (\/ﬁ) .
(A.13)
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APPENDIX B - Proof of Eq. 3.8

Throughout the present thesis, we assume that

VeEo v [f(£,0,Y)] =Eoy[Vef(€,0,Y)] (B.1)

This assumption is consistent with the experiment model at Eq. 2.1.

Consider

VeEoy [f(£,0,Y)] vg/ / log (p ;ﬁ'; ) (Y0, €)dY 7(0)d0

:/ / Ve log < Y)'/el;) (Y0, €)dY (8)d6+

// ( o £)>VsiD(Y|6lE)de(e)cw

(B.2)

Recall that the likelihood is

p(Y|0,£) det (271—2 7NT <_ Z ||yz £ 0)”2 1) )
(B.3)
thus,

NS

Vep(Y10,8) = p(Y60,£) <—2e_1 D (Vewi(€) — Veg(&, 0)))
i=1
(B.4)
For the experiment model y; = g(&, 8) + €;, since Y is evaluated using

0, it can be observed that Vey, = Vg, hence,
Vep(Y'16,€) = 0, (B.5)

and, consequently, Eq. 3.8 holds.
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APPENDIX C - Timoshenko Beam
Model

We derive the governing equations for the Timoshenko beam
from 3d linear elasticity, as in (43). Considering a point x €  C R3,
we write its position after loading is applied as x + u(x), where u is the

displacement vector. The symmetric strain tensor is defined as
1
e(u)(z) = §(Vu(x) + (Vu(z))T), (C.1)
being linearly related to the corresponding Cauchy stress tensor
o(z) =C: e(u)(z). (C.2)

The fourth-order tensor C' elements can be deduced from constitutive

equations for isotropic homogeneous materials as

E
2(1+v)

Ev

o= (1+v)(1 - 2v)

where E is the Young modulus, and v is the Poisson ratio.

We formulate the Timoshenko beam as

Geometry The domain 2 C R? has one dimension significantly
greater than the others on the x; dimension. The line on the middle
of the beam along the 1 dimension is described by the domain 2, =
(0, L.) C R, the width by a function b : , — (0, 00) and the height by
a function H : Q, + (0,00). The domain  C R? is defined as

Q= {(z1,20,73) €R® 12y € Qp, 0 € [-H/2,H/2), 23 € [-b/2,b/2]}
(C.4)
Mechanics Straight lines perpendicular to the line on the middle

of the beam remain straight after loading. Transverse normals do not

elongate, thus, o33 = 0.
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Kinematics The transverse normal sections can rotate in rela-
tion to the deformed line on the middle of the beam, allowing shear
strains to be considered. The displacement of any point x C 2, is given
by the vector w(z), and the rotation of the cross-section at z is n(z)
Since we admit that the loading is on the direction of ws and that the
displacement due to the Poisson ratio on the direction of wy is negligible,
we ignore the displacement and strain on this direction. We consider

the displacement field for the beam to be

u(zy, xe) = (wi (1) — x25(x1), wa(x1), 0) (C.5)

We want to find the pair v and ¢ on the domain €2 that satisfies
the conditions stated above as besides boundary conditions, cinematic
conditions — relating displacement field u and strains € — and com-

patibility equations between strains € and stresses o.

Modeling the beam in such a way that the rotation of the cross
section ¢ can be different than dd% leads to shear strains on the sections,
as required for our problem. Since we are ignoring the 3rd dimension,
we can simplify our process by considering a 2D problem. Using the
balance of linear momentum equation, we define the strong form for

our problem as

—div o = in (C.6a)
o=C:¢e(u) in Q (C.6b)
u=0 in Iy (C.6¢)

o-n=t in T (C.6d)
o-n= inTp (C.6e)

where I', is the region where the supports are, I'y is where traction ¢
are applied, and I' is the remaining part of the boundary, the free part
of the boundary. To find a weak form, we introduce the test function v

v(a1, w9) = (yr(21) — 2an(21), ya(21), 0), (C.7)
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and integrate the Cauchy equation in Eq. C.6d on €2
Wzt :/ tvdly :/ (o0 -n) v dly. (C.8)
T I

Using the divergence theorem,

/ tvdl = / div(o - v)dQ, (C.9)
I Q

and noting that v is a null vector on the boundaries, furnishes
/ tvdly = / div(o) - vdf2 —|—/ o : Vv dQ. (C.10)
I Q Q

Since ¢ is symmetrical, its double contraction with respect to the
skew part of Vv is null, thus, we substitute Vv by its symmetrical part,
Vusym = 5(Vv 4+ VoT) = e(v). We are not considering body forces,

hence, div(c) = 0, resulting in
/ tvdly = / o:e(v) dQ. (C.11)
Iy Q

Substituting the constitutive Eq. C.6b furnishes the weak form

of the governing equations
/ tvdl = / e(u) : C :e(v) dd. (C.12)
Fl Q

From elasticity theory, we have

o 8u1
Oy
_ d(
= (I;zdixl

Ell(u)

(C.13)
Y12(u) = £21(u) + €12(u)
o 8u1 6uz
" Ory  Oxy
d’u)g

'712(U) = dil'l -G,

Y12(u)
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and, similarly,

dn
=, (C.14)
(v) = 22 - |
Y12 day n

Substituting the strains in Eq. C.13 and Eq. C.14 on Eq. C.12,

and considering ¢t = (0, ¢,0), a system of two equations arise

fQ (‘21:12 - §) G gTyzl)dQ = qu Y2 on
(C.15)

Jo w2 g B waft d — [, (422 — <) Gy a2 =0,

where G is the shear modulus and is related to E and pu as G =
E(1+ p)/2. Integrating Eq. C.15 over the area A, = H x b, and noting

that I,, = fA , x%dAT is the inertia moment, results in

wo dys
GA K, fQ (L - ) d;ll dQ, = fQO Qoy2 dS2,
(C.16)
EI” fQ L 4 on - GArKs fQo (d& - ) non =0.

dzi dz dz
The constant K is included on the formulation to correct the
error on G A, induced on the model by assuming that the shear stress is
uniform on the cross section and is adopted as K = 5/6 for rectangular
sections. A discussion on the definition of this value can be found on
the work of Wang and Reddy (44).

Summing both equations in Eq. C.16 results in

ds d d d
EIn/ © 40, +GA, K, / (wz—<> (”—n)dﬂoz/ Qo2 A0
Q. dzl d:vl dzq dx; Qo
(C.17)
where the first integral is the energy related to the strains due to the

bending of the beam, the second to the shear strains and the third to

the vertical uniform load, considered to be applied over €,.
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Integrating the equations C.16 by parts and noting that the trial

functions vanish on the boundaries vanishes

~GAK, o, 7% (42 =) yade, = o, dov2 A%

~El, [, S50 dQ, — GAK, [, (42 = <) nd2, =0,
(C.18)

thus,

—GA K, (42 ) =4

d:El

(C.19)
ndm’ dxq

—EI, LS GATKS(M—) =0.

Considering the beam as simply supported with length L., we

obtain the boundary conditions

BLiS| = BLis| =0
KsGA, (M— ) = KsGA, (dw ) :qogLe’
=
(C.20)

and applying these conditions on equations C.19 furnishes

g(g?e) = (511(5’9)7512(&9))
_ (ms) (4Ler1(6) —qr3(©)) o~ qx1(£)> |

2E(0)I, TK,.GO)A
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