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RESUMO

Com a disseminação da Internet, a comunicação entre pessoas e o acesso a informação se tornou
instantâneo. O principal mecanismo que garante essa comunicação de forma segura e privada é
a criptografia. Atualmente, os protocolos criptográficos utilizados para realizar a troca de men-
sagens segura são baseados em problemas matemáticos que podem ser considerados inseguros
com o avanço da computação quântica. A fim de criar novos padrões de criptografia, o Instituto
de Padrões e Tecnologia (NIST), abriu um processo de padronização de esquemas que sejam se-
guros contra ataques clássicos e quânticos. Como consequência, a implementação desses novos
esquemas precisa ser realizada de forma com que não seja possível realizar um ataque de efeito
colateral. Este trabalho apresenta um ataque a um esquema criptográfico baseado em códigos
de correção de erro submetido ao NIST, o BIGQUAKE. Este esquema é baseado no clássico
trabalho de McEliece, e em sua fase de decodificação, durante o algoritmo de Paterson, os auto-
res do BIGQUAKE não utilizam um método constante. Adicionalmente, contramedidas a esse
ataque são apresentadas, comparadas e avaliadas para que seja possível construir um esquema
seguro. Palavras-chave: Ataque de efeito colateral. Criptografia pós-quantica. Criptografia

baseada em códigos de correção de erro. Raizes de polinomios.





RESUMO ESTENDIDO

Introdução
A segurança dos algoritmos de criptografia assimétrica depende de problemas computacional-
mente difíceis, os quais o tempo para um computador conseguir quebrar o esquema deve ser
suficientemente grande, a ponto de se tornar inviável. Esquemas atuais tem sua segurança base-
ada na fatoração de um número composto por dois primos grandes(1024 ou 2048 bits). Outro
problema comumente utilizado é o logaritmo discreto. Estes dois problemas computacionais,
atualmente, ainda são considerados seguros. Entretanto, com o avanço dos computadores quân-
ticos nos últimos anos, e o conhecido algoritmo de Shor fazem com precisamos encontrar novos
esquemas criptográficos que sejam resistentes a ataques quânticos. Uma classe principais candi-
datos a substituto são esquemas baseados em códigos de correção de erro, mais especificamente,
os baseados no criptossistema de McEliece.
O criptossistema de McEliece é considerado seguro tanto quanto ataques quânticos quanto
como ataques feitos em computadores atuais. Porém, sua implementação está sujeita a ata-
ques de canal lateral em sua decodificação. Este trabalho propõe explorar tal vulnerabilidade
no criptosistema chamado BIGQUAKE, que foi submetido ao National Institute of Standards
and Technology. Além disso, é proposto 5 contramedidas para este tipo de ataque, de forma que
seja possível realizar a implementação do criptossistema de McEliece de forma segura.

Objetivos
O principal objetivo deste trabalho é o estudo e o desenvolvimento de métodos seguros para
realizar a decodificação em criptossistemas baseados em códigos de correção de erros. Evitando
ataques de canal lateral baseados no tempo de execução do algoritmo. Mais especificamente,
este trabalho busca métodos para encontrar raízes de polinômios sobre extensões de corpos
finitos.

Metodologia
Com o objetivo de alcançar os objetivos deste trabalho, foi adotado uma metodologia de pes-
quisa, a qual após o amplo estudo de todos os conceitos básicos da área de pesquisa, se inicio
uma revisão da literatura. Pesquisando nas principais ferramentas de busca científica, artigos e
trabalhos acadêmicos sobre ataques de canal lateral em criptossistemas baseados em códigos.
Foram considerados os trabalhos mais relevantes encontrados nos principais artigos, tanto de
conferências quanto de periódicos. Após o levantamento dos principais trabalhos, foram com-
parados as principais estratégias encontradas para proteger um criptossistema. A partir dessa
comparação, novas estratégias foram propostas, implementadas, analisadas e comparadas.

Resultados e Discussão
Este trabalho tem como resultado inicial a execução de um ataque de canal lateral baseado na
variação do tempo em uma proposta de esquema resistente a ataques quânticos submetido ao
NIST. Com um computador comum, em dezessete minutos é possível recuperar uma mensa-
gem em claro, que no protocolo em questão é uma chave de sessão. Como principal resultado,
este trabalho tem a proposta de cinco contramedidas a este tipo de ataque. As contramedidas
são baseados em modificações em algoritmos já conhecidos na literatura. Com as contramedi-
das propostas, foi analisado o tempo de execução de cada algoritmo e a variância do tempo de
execução em relação ao grau do polinômio de entrada de cada algoritmo. Para todas as contra-
medidas os resultados foram superiores às propostas originais, no que diz respeito a variância



do tempo. Reduzindo consideravelmente o tempo de execução para cada estratégia de computar
as raízes de um polinômio em uma extensão de corpo finito. Consequentemente reduzindo a
variação do tempo de execução do algoritmo de decodificação do criptossistema de McEliece,
e tornando a implementação segura contra ataques de efeito colateral baseado na variação do
tempo.

Considerações Finais
Neste trabalho foi apresentado cinco contramedidas a um ataque de canal lateral baseados na
variação de tempo para o criptossistema de McEliece. Todas essas contramedidas foram im-
plementadas e medidas a sua eficacia contra este tipo de ataque. De modo que o objetivo deste
trabalho foi alcançado. De modo que uma nova implementação do algoritmo de decodificação
do McEliece pode ser realizada, que seja segura contra ataques de efeito colateral. Construindo
protocolos criptograficamente seguros contra ataques realizados em computadores clássicos e
também resistente a ataques realizados em computadores quânticos.
Por fim, trabalhos futuros são propostos, como implementar o novo método de euclides proposto
recentemente que tem tempo de execução constante. Adicionalmente, realizar a medição das
contramedidas em um sistema dedicado, tornando a medição mais precisa. Adicionalmente,
realizar o estudo de diferentes cenários de ataques para o criptossistema de McEliece. Palavras-

chave: Ataque de efeito colateral. Criptografia pós-quantica. Criptografia baseada em códigos
de correção de erro. Raizes de polinomios.



ABSTRACT

In the last few years, post-quantum cryptography has received much attention. National Insti-
tute Standards and Technology (NIST) is running a competition to select some post-quantum
schemes as standard. As a consequence, implementations of post-quantum schemes have be-
come important and with them side-channel attacks. In this work, we show a timing attack on a
code-based scheme which was submitted to the NIST competition. This timing attack recovers
secret information because of a timing variance in finding roots in a polynomial. We present
five algorithms to find roots that are protected against timing exploitation.

Keywords: Side-channel Attack. Post-quantum Cryptography. Code-based Cryptography.
Roots Finding.
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1 INTRODUCTION

Communications through electronic devices require privacy. This privacy between two
parts is made with key agreements and key encapsulation protocols, or public-key algorithms.
For several years, these protocols were designed over classical asymmetric cryptography, which
security is based on number theory problems. Nowadays, integer factorization and discrete
logarithm, typical examples of such problems, are considered secure. However, the quantum
algorithm proposed by Shor (SHOR, 1997) is able to solve these numerical problems with
a polynomial-time algorithm in a quantum computer. Besides, the recent and fast advances
in quantum computing make necessary the study of new cryptography primitives, which are
resistant to Shor’s algorithm.

In recent years, the area of post-quantum cryptography has received considerable atten-
tion, mainly because of the call by the National Institute of Standards and Technology (NIST)
for the standardization of post-quantum cryptosystems. On this call, NIST did not give restric-
tions about specific hard problems. However, most of the submitted schemes for Key Encap-
sulation Mechanisms (KEM) are lattice- and code-based. The latter is centered around coding
theory and includes one of the oldest unbroken cryptosystems, namely McEliece cryptosys-
tem (MCELIECE, 1978).

This classical algorithm uses an error-correcting code that can recover errors added to a
message. This process is achieved through redundancy added to the original message. Using the
idea behind coding theory, and protecting some parts of the code, only parties with knowledge
of the code structure are able to recover the original message. Hence, we can construct schemes
based on coding theory, which are safe against quantum and classical attacks. However, the
scheme implementation may not be secure. One of the requirements for those proposals is that
they are resistant to all known cryptanalysis methods. In particular, cryptosystems need to avoid
side-channel attacks.

There are many different type of side-channel attacks that can be applied to code-based
cryptosystem. As an example, an attacker can measure the execution time of the operations per-
formed by an algorithm and, based on these time variations, estimate some secret information
of the scheme. Although the attack scenario is non-trivial, side-channel attacks are a dangerous
mechanism that a cryptosystem designer should consider.

In code-based cryptography, timing attacks on the decryption process are mostly made
during the retrieval of the Error Locator Polynomial (ELP). The attack is usually made in the
process of evaluating the polynomials, performed to find its roots. This attack was demonstrated
firstly in (SHOUFAN et al., 2009) and later in an improved version in (BUCERZAN et al.,
2017).

In (STRENZKE, 2012), the authors present a survey of algorithms and compare their
performances to find roots in code-based cryptosystems efficiently. However, the author only
shows timings speedup in different types of implementations. Additionally, they select the one
which has the least timing variability. In other words, the authors do not present an algorithm to
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find the roots in constant time and therefore eliminate the attack, as remarked in (STRENZKE,
2013).

The algorithms presented in (STRENZKE, 2012) are not designed with constant be-
havior of the implementations in mind. The authors present two optimizations in the exhaustive
search method, but these do not affect time variations while the algorithms are in execution.
The author further proposes other improvements, some of them in the classical Berlekamp
Trace Algorithm (BERLEKAMP, 1970) and also in the algorithm proposed in (FEDORENKO;
TRIFONOV, 2002). However, none of these implementations focus on constant-time behaviors
to protect the application and thus may leak sensitive information in the decoding process of
the McEliece cryptosystem.

The root-finding implementations presented in (CHOU, 2017; BERNSTEIN; CHOU;
SCHWABE, 2013) use Fast Fourier Transforms (FFT), and, while efficient, they are built and
optimized for a specific finite field. We are interested in proposing a more generic imple-
mentation that does not require specific optimizations on the underlying finite field arithmetic.
Additionally, their approach takes advantage of computer architecture and uses the fact that it
can evaluate multiple points in parallel. We are also interested in approaches that could avoid
side-channel attacks in any architecture.

In this work, to evidence the threat of a timing side-channel attack, we present an
implementation of the Strenzke’s attack over a NIST Round 1 submission, the BIGQUAKE.
The main focus of this work is to propose countermeasures to make the execution time of the
aforementioned algorithms constant. One of the countermeasures is to write the algorithms iter-
atively, eliminating all recursions. Additionally, we propose the use of probabilistic algorithms
to achieve a secure root computation. We also use permutations and simulated operations to
mask possible measurements of the side effects of the data being measured.

1.1 OBJECTIVES

The main goal of this work is to find new alternatives to perform the decoding process
of McEliece Cryptosystem safely, avoiding timing side-channel attacks. To achieve this, we
are interested in building a constant time to compute the roots of Error Locator Polynomial
or remove the relation between the polynomial to be factorized and the execution time of the
algorithm.

1.1.1 Specific objectives

i. Perform a timing side-channel attack against a code-based cryptosystem which has non-
constant time root extraction;

ii. Select methods to compute the roots of a polynomial in code-based cryptosystems;

iii. Measure the time variation of methods selected in the previous item;
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iv. Propose strategies to achieve a secure way to compute roots;

v. Evaluate new time variations of our proposals.

1.2 METHODOLOGY

In order to accomplish the aforementioned goals, we present the methodology used in
this work.

1. Code-based cryptosystems overview: We first study the theoretical background needed to
understand the code-based cryptosystems. Starting from the first proposal by McEliece
until the NIST standardization submissions;

2. Literature review of timing side-channel attacks on code-based cryptosystems: The sec-
ond step is to perform a literature review over side-channel attacks against code-based
schemes. This literature review is constructed through a search over the main journals
and conferences;

3. Perform a timing side-channel attack against a cryptosystem: to illustrate that a naive
implementation is insecure against a timing side-channel attack, we perform an attack
against a code-based scheme;

4. Literature review of root-finding methods: the main algorithms used to compute the roots
of a polynomial in code-based cryptosystems are listed and individually studied;

5. Addition of different methods: Since the area of computing roots of a polynomial does
not apply only to code-based cryptosystem, a search for methods which are not being
used in code-based cryptography is done, and we list them together with the methods
indexed in the previous item;

6. Propose countermeasures: Since the listed algorithms are not originally designed to pre-
vent a side-channel attacker, we propose countermeasures in order to protect the imple-
mentation and avoid the leakage of sensitive information;

7. Implementation: in order to effectively measure the efficacy of our proposal, we im-
plement the countermeasures presented to analyze the information leakage in our ap-
proaches.

8. Analysis: We use our implementation to measure the time variance of all studied methods,
with and without the countermeasures proposed. Additionally, we present an analysis of
the execution time of each algorithm with different parameters;

9. Summarize the obtained results: all results obtained are summarized, and a conclusion is
drawn, defining the results obtained and the future works.
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1.3 SCIENTIFIC CONTRIBUTION

The timing side-channel attack performed in Chapter 3 and the countermeasures pro-
posed in Chapter 4 resulted in the following paper:

• MARTINS, D.; BANEGAS, G.; CUSTÓDIO, R. Don’t Forget Your Roots: Constant-
Time Root Finding over Fm

2 . In: International Conference on Cryptology and Information
Security in Latin America. 2019. p. 109-129. Available in: https://doi.org/10.1007/
978-3-030-30530-7_6.

This thesis includes direct text from this publication.

1.4 ORGANIZATION

The remainder of this thesis is organized as follows. In Chapter 2, we give a brief de-
scription of the mathematical background used throughout the text for a better comprehension of
our work. The McEliece cryptosystem, BIGQUAKE submission, and the timing side-channel
attack are presented in Chapter 3. In Chapter 4, the core of this thesis, we present five methods
for finding roots over binary finite fields. We also include countermeasures for avoiding timing
attacks. Chapter 5 provides a comparison of the number of cycles of the original implemen-
tation and the implementation with countermeasures, a performance analysis, and the security
consideration of our proposals. At last, in Chapter 6, we conclude this thesis and discuss open
problems.
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2 MATHEMATICAL BACKGROUND

In this chapter, we present an overview of the needed concepts to better understand this
thesis. First, we describe the main properties of polynomials over finite fields. After, we present
an overview of coding theory. We explain the main structures and operations. Moreover, we
present a fundamental work called Goppa Codes and review the state of the art of algorithms
used to find roots in code-based cryptography.

2.1 ALGEBRAIC STRUCTURES

The goal of this work is to define a secure way to compute the roots of a polynomial
over a binary finite field. In this section, we define it and present the main characteristics of it.

Definition 2.1 Let F2m be a finite field with 2m elements, and f ∈ F2m[x] be given by f (x) =

∑
t
i=0 gixi.

Now we can define irreducible polynomials.

Definition 2.2 Let f (x) = ∑
t
i=0 gixi be a polynomial of degree t, f is an irreducible polynomial

if f can not be factored into the product of two or more polynomial, with one of them being

constant.

Also, we define an monic polynomial.

Definition 2.3 Let f (x) = ∑
t
i=0 gixi be a polynomial of degree t, f is a monic polynomial if the

leading coefficient equals to 1.

Thus, a monic polynomial of degree t has the form xt +gt−1xt−1 + · · ·+g0. Finally, we define
the roots of a polynomial.

Definition 2.4 Let f (x) = ∑
t
i=0 giX i be a polynomial of degree t. The roots of f are all elements

in F2m that the result of evaluation in f is 0.

We can note that a root of a polynomial is equivalent to a factor of it. Since a polynomial it
is composed by a multiplication of their factors. When we evaluate the polynomial with one
factor, the corresponding factor on the product is equal to zero. Consequently, the results of the
evaluations are equal to zero.

2.2 CODING THEORY

Coding theory is an engineering area that focuses on data transmission. Many com-
munications channels are susceptible to the introduction of errors, for example, wireless con-
nection. The error detection and correction techniques able us to recover the originally sent
message. In this work, we study cryptography schemes that made use of an error correction
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code to achieve key exchange between two parts. In the following sections, we give a brief in-
troduction to the main concepts of error correction codes, and we also present the Goppa code,
which is the linear code used to achieve key exchange in McEliece cryptosystem.

2.2.1 Linear codes

Definition 2.5 Let Fq be a finite field with q elements. A linear [n,k] code C is a subspace of

dimension k of the vector space Fn
q.

The parameter k is the code dimension, and n represents the length. The code C is able
to correct up to t errors. This recovery is given through the redundancy added in a message with
size k, encoded in a codeword of size n. Messages in Fk

q are mapped to a unique codeword. One
of the most used metrics in codes is the Hamming metrics, defined below.

Definition 2.6 Let a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn) ∈ C be two codewords. The

Hamming distance between a and b is the number of positions in which they differ.

Definition 2.7 Let a = (a1,a2, . . . ,an) ∈ C be a codeword. The Hamming weight of the code-

word a is the number of non-zero positions.

2.2.2 Goppa codes

Let m,n, t ∈ N. A binary Goppa code Γ(L,g) is defined by a polynomial g(z) =

∑
t
i=0 gizi over F2m with degree t and supported by L = (α1,α2, . . . ,αn), such that αi ∈ F2m with

αi 6=α j for i 6= j, and g(αi) 6= 0 for all αi ∈ L with g square-free. To a vector c=(c1, . . . ,cn)∈Fn
2

we associate the syndrome polynomial

Sc(z) =
n

∑
i=1

ci

z+αi
, (2.1)

where z+αi is invertible (mod g(z)).

Definition 2.8 The binary Goppa code Γ(L,g) consists of all vectors c ∈ Fn
2 such that

Sc(z)≡ 0 (mod g(z)). (2.2)

The parameters of a linear code are the size n, dimension k, and minimum distance d.
We use the notation [n,k,d]−Goppa code for a binary Goppa code with parameters n,k and d. If
the polynomial g which defines a Goppa code is irreducible over F2m , the code is an irreducible
Goppa code.

The length of a Goppa code is given by n = |L| and its dimension is k≥ n−mt, where
t = deg(g), and the minimum distance of Γ(L,g) is d ≥ 2t+1. The syndrome polynomial Sc(z)

can be written as:
Sc(z)≡

w(z)
σ(z)

(mod g(z)), (2.3)



29

where σ(z) =
l

∏
i=1

(z+αi) is the product over those (z+αi) where there is an error in position i

of c. This polynomial σ is the Error-Locator Polynomial (ELP).
A binary Goppa code can correct a codeword c ∈ Fn

2, obscured by an error vector
e ∈ Fn

2 with Hamming weight wh(e) up to t, i.e., the numbers of non-zero entries in e is at most
t. The way to correct errors is by using a decoding algorithm. For irreducible binary Goppa
codes, we have three main alternatives for that. The extended Euclidean Algorithm (EEA)
and the Berlekamp-Massey algorithm are out of the scope of interest for this work because
they needed a parity-check matrix that has twice more rows than columns. The Patterson al-
gorithm (PATTERSON, 1975), that are the focus of our work, can correct up to t errors with
smaller structures, e.g., a smaller generator polynomial.

2.2.3 Patterson decoding algorithm

Patterson’s algorithm is one of the most used decoding algorithms for Binary Goppa
codes. The Algorithm 1 is the description of Patterson’s algorithm. First, the algorithm starts
by computing the inverse of the syndrome polynomial Sc. After that, we compute the square
root of this inverse τ , and the odd and even parts of the error locator polynomial. Finally, using
a and b we construct the error locator polynomial σ and we can reconstruct the error vector
from the ELP.

Algorithm 1: Patterson decoding algorithm.
Data: Sc as syndrome polynomial and (L,g).
Result: Original message m of size k

1 Compute τ(z) =
√

S−1
c (z)+ z;

2 Compute b(z) and a(z), so that b(z)τ(z) = a(z) mod g(z), such that deg(a)≤ b t
2c

and deg(b)≤ b t−1
2 c;

3 Compute the error locator polynomial σ(z) = a2(z)+ zb2(z) and deg(σ ) ≤ t;
4 The position in L of the roots of σ defines the error vector e;
5 Compute the plaintext m = c⊕ e;
6 return m;

It is important to remark that the heaviest part of Patterson’s algorithm is computing
roots of σ . Patterson’s algorithm can correct up to t errors. The complete proof of the algorithm
correctness was presented in full detail in (PATTERSON, 1975). A suitable explanation of the
algorithm workflow is present in (BARRETO; LINDNER; MISOCZKI, 2010).

2.3 PUBLIC-KEY CRYPTOGRAPHY

Public-key cryptography was first introduced by Diffie and Hellman (DIFFIE; HELL-
MAN, 1976) as a new concept to cryptography area. After that, Rivest, Shamir, and Adleman
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propose one of the most important public-key cryptosystems that still is massively used on
different cryptography applications (RIVEST; SHAMIR; ADLEMAN, 1978). The main idea
of asymmetric cryptography was to associate a public key to a private key. The public key is
distributed for and used for encryption; thus, given a ciphertext, only who knows the private
key can recover the plain text. Using this idea, we present in the next section the idea of key
encapsulation mechanisms.

2.3.1 Key encapsulation mechanisms

Most of the public-key algorithms are clumsy to be used in data transmission. Thus, a
key encapsulation mechanism could be used to exchange a symmetric key, and the data trans-
mission could be done using an efficient algorithm, like AES (DAEMEN; RIJMEN, 2013).
Key encapsulation mechanisms are widely used in many protocols, for example, TLS (Trans-
port Layer Security) protocol. It makes use of digital certificates to guarantee the authenticity
of the server and provide a private connection between the browsers and servers.

A Key encapsulation mechanism is defined by a 3-tuple of algorithms (KeyGen, Enc,

Dec), where KeyGen is a probabilistic algorithm that receives a security parameter outputs a key
pair. The Enc is an encapsulation algorithm that receives as input a public key and a plain text
and returns a ciphertext. The encapsulation process could be a probabilistic algorithm. The Dec
is a decapsulation algorithm, which takes as input the ciphertext and the private key and returns
the plaintext or a failure. In the Chapter 3, we present an implementation of a Key encapsulation
mechanism.

2.4 SIDE-CHANNEL ATTACKS

A side-channel attack is any attack where the attacker acquires sensitive information
from the implementation of the cryptosystem. There are several types of side-channel attacks,
and almost all of then require extensive knowledge over the target cryptosystem. Even the
standard cryptography primitives, like the RSA (RIVEST; SHAMIR; ADLEMAN, 1978), are
susceptible to side-channel attacks (KOCHER, 1996).

Similar to traditional cryptography, quantum resistance cryptography is susceptible
to most side-channel attacks. In the case of the code-based cryptosystems, one of the most
dangerous side-channel attacks is based on the time variance on the execution of the operations.
This attack is called timing side-channel attack.

2.4.1 Timing side-channel attacks

A timing side-channel attack is an attack where it is possible to infer information from
the time execution of a cryptographic algorithm. To better understand how a timing side-channel
attack works, we present Example 2.1.
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Example 2.1 Let us suppose that an attacker has access to the execution time of a password

validation (for instance, we use a four-digit password). This validation was made through the

naive implementation presented in the Listings 2.1

Listing 2.1 – Naive implementation of a password check

/ / Dumby password v a l i d a t i o n

i n t passCheck ( char ∗ i n p u t _ p a s s ) {

i n t i = 0;

/ / I t e r a t e s f o r a l l c h a r a c t e r s

w h i l e ( i < 4) {

/ / V e r i f y i f are e q u a l

i f ( i n p u t _ p a s s [ i ] == g e t P a s s A t ( i ) ) {

c o n t i n u e ;

} e l s e {

/ / I f d i f f e r e n t , r e t u r n s e r r o r code

r e t u r n −1;

}

}

r e t u r n 0;

}

An attacker with knowledge of the implementation and with access to the time wasted to verify

a password, could perform a simple side-channel attack. First, setting a password attempt to

"AAAA", after that, flip the first character to all possible letters, and assume that the correct

was the one that spent more time. The attacker conjectures this because, if the first character

is right, the password verification will check at least one more position. After repeating this for

all remaining letters, the attacker recovers the secret password.

We present this toy example to give an idea of how an attacker, who knows the im-
plementation details can infer information about the execution time of an algorithm. In more
complex cryptosystems, this inference is not that simple. However, it is still possible to steal
sensitive information measuring the decoding execution time.

2.4.2 Timing side-channel attacks on code-based cryptosystems

Equally to many other cryptosystems, code-based schemes are susceptible to side-
channel attacks. Since the sensitive artifact in a code-based cryptosystem are the properties that
able the decoding process, the decryption step is the target of side-channel attacks. Additionally,
there are two different types of attacks, with focus on recover private key and to recover the
original message. In this work, we focus on timing side-channel attacks that aim to recover the
plain text.
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One of the most popular idea on timing side-channels attacks over code-based schemes
is based on the fact that a cipher message with more errors spends more timing decoding. In a
scenario when an attacker is able to measure the time wasted on the decoding algorithm, and
also are able to modify the message passed to the decoder, this attacker could measure the time
variation and infers sensitive information, such as the original message.

The authors in (SHOUFAN et al., 2009) present the idea of inferring information on
the time variance when we flip a bit over a ciphertext. This idea is based on the fact that if we
flip a correct bit (i.e. a position where an error was added), the algorithm will have fewer errors
to correct and will return early. The opposite occurs when we flip the wrong bit. Thus, the
algorithm will return lately. The attack presented in Chapter 3 is based on this attack.

2.5 LITERATURE REVIEW

The decoding process of the McEliece cryptosystem, presented in the next chapter,
is the most sensitive part of the algorithm. The usage of the private key demands that this
algorithm does not leak any information about such key, or even, any information about the error
added to the message. The authors in (BUCERZAN et al., 2017) show that a time deviation on
the root-finding process in Patterson’s decoding algorithm could open avenues for side-channel
attacks.

In this section, we present the related works as a results of our literature review. Our
main goal was to propose a method to achieve root computation of a polynomial over a binary
field. The main focus of this root computation is to avoid timing side-channel attacks over
code-based cryptosystems. Thus, we start our literature review by searching for root-finding
methods that are currently used in code-based schemes.

A direct way to find all roots of a polynomial is an exhaustive search. In summary,
it just tests all possible elements and checks if they are roots. The authors in (STRENZKE,
2012) show an optimization to this approach. They divide the original polynomial when a
root is found. This reduces the size of the polynomial and speeds up the exhaustive search in
about 30%. Although this algorithm is more efficient than the original one, it does not prevent
side-channel attacks and still has exponential execution time.

Berlekamp, in (BERLEKAMP, 1970), proposed an alternative method to finding-roots.
The classical Berlekamp Trace Algorithm computes the roots of a polynomial efficiently in
polynomial time. The authors in (STRENZKE, 2012) present an optimized version by return-
ing to the recursion before the original algorithm. Another approach to compute roots was
proposed in (FEDORENKO; TRIFONOV, 2002), and was generalized in (SKACHEK; ROTH,
2008; BISWAS; HERBERT, 2009). However, all of these approaches do not present constant
behaviour on execution time, and consequently are susceptible to a side-channel attack.

More recently, the authors in (PETIT, 2014) present a different algorithm to compute
the roots of a polynomial. Lately, generalized in (DAVENPORT; PETIT; PRING, 2016), the
Successive Resultants Algorithm (SRA) is a polynomial method, with a different approach to
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finding roots in a polynomial over any finite field. Nevertheless, no analysis of execution time
deviation was made.

All approaches presented in this section were root-finding techniques currently in use
in code-based cryptosystems. Nonetheless, it was well known that Cantor and Zassenhaus pro-
posed one of the most efficient methods for computing roots over a polynomial in 1981 (CAN-
TOR; ZASSENHAUS, 1981). Notwithstanding its efficiency, to the best of our knowledge, it
was not used in any code-based cryptosystems. For this work, we consider the Rabin algorithm,
which is adapted to fields with even characteristic.
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3 CODE-BASED CRYPTOGRAPHY

The rising of quantum computing in the last few years turned the attention of re-
searchers to schemes that use cryptography primitives different from discrete logarithm and
integer factorization. As mentioned in Chapter 1, code-based cryptosystems are those which
use fundamental aspects of coding theory to add redundancy into a plain text, to after that,
intentionally add some errors and recover the plain text.

In this chapter, we explain the first cryptosystem based on coding theory, the McEliece
Cryptosystem. Furthermore, we present the code-based scheme BIGQUAKE, that was sub-
mitted to the first round of the NIST standardization process. Then, we show the timing side-
channel attack performed in the reference implementation of this scheme.

3.1 MCELIECE CRYPTOSYSTEM

Robert J. McEliece proposed in 1978 the first cryptosystem based on coding theory.
The McEliece cryptosystem is based on Goppa codes and has three main algorithms, i.e.: key
Generation, encryption, and decryption (MCELIECE, 1978). Figure 1 shows the main idea of
the McEliece Cryptosystem and most of the schemes based on coding theory. Given a plaintext
and a public encoding function, anyone can generate a codeword and intentionally add some
errors to obtain a ciphertext. From this ciphertext, only parties with the knowledge of the code
structure can perform a decoding procedure and recover the plaintext.

The security of the McEliece cryptosystem has remained stable based on two well
know assumptions. The first assumption is the hardness of generic decoding, that is NP-
complete and is also considered hard on average (BERLEKAMP; MCELIECE; TILBORG,
1978). The second assumption with regards to the security of the McEliece scheme is the in-
distinguishability of the code. It is not old as the first one, but it relates to old problems of
algebraic coding theory. According to (FAUGERE et al., 2013), it is also valid to consider this
assumption.

The original parameters were designed for 64 security bits, but it easily scales up to

plaintext

ciphertext

codeword

intentionally add errors

encoding

decoding

Source – the author.

Figure 1 – Code-based cryptography main idea.
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provide an ample security margin against attackers (CANTEAUT; SENDRIER, 1998). Fur-
thermore, the McEliece cryptosystem has been subjected to many structural attacks, and up to
today the original proposal is considered secure (BERNSTEIN; LANGE; PETERS, 2008). It
is important to note that many of these attacks are based on the same strategy; the information
set-decoding. This kind of attack does not affect schemes based on Goppa codes. However,
many other families of codes suffer several drawbacks with this attack.

As proposed in (BERNSTEIN et al., 2017; BARDET et al., 2017) on the NIST stan-
dardization process, the McEliece cryptosystem, using binary Goppa codes, could be applied to
conceive a KEM, as defined in Chapter 2. Based on this fact, we can generalize the cryptosys-
tem in three algorithms: the key generation and encryption process are defined in Section 3.1.1
and Decryption in Section 3.1.2.

3.1.1 Definitions

In this section, we describe the three main algorithms of the McEliece cryptosystem
based on irreducible binary Goppa codes. These algorithms are related to the generation of a
Goppa code, the encoding process, and the decoding process, as presented in Chapter 2.

Algorithm 2 shows the key generation of McEliece. First, it starts by generating a
binary irreducible Goppa polynomial g of degree t. This random selection is made by generating
a random polynomial and testing if it is an irreducible polynomial. Second, it generates the
support L as an ordered subset of F2m satisfying the root condition. Third, it computes the
systematic form of H ′ using the Gauss-Jordan elimination algorithm. Steps four, five, and six
compute the generator matrix from the previous systematic matrix and return secret and public
key.

Algorithm 2: McEliece key generation.
Data: t,k,n,m as integers.
Result: pk as public key, sk as secret key.

1 Select a random binary Goppa polynomial g of degree t over F2m;
2 Randomly choose n distinct elements of F2m that are not roots of g as the support

L;
3 Compute the k×n parity check matrix H ′ according to L and g;
4 Bring H ′ to systematic form: Hsys = [H ′|In−k];
5 Compute generator matrix G from Hsys;
6 return sk = (L,g) pk = (G);

Given a public key, generated by Algorithm 2 and a message m, Algorithm 3 shows
the encryption process of McEliece. The process is efficient and straightforward, requiring only
a random error vector e with wh(e) ≤ t and multiplication of a vector by a matrix. After the
multiplication, we intentionally add the error vector to the codeword obtained and return the
ciphertext.
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Algorithm 3: McEliece encryption.
Data: Public key pk = G, message m ∈ Fk

2.
Result: c as ciphertext of length n.

1 Randomly choose an error vector e of length n with wh(e)≤ t;
2 Compute c = (m ·G)⊕ e;
3 return c;

3.1.2 Decryption

Algorithm 4 describes the decryption part of McEliece. This algorithm consists of the
removal of the applied errors using a decoding algorithm. First, we compute the syndrome
polynomial Sc. Second, we recover the error vector e from the syndrome polynomial. Finally,
we recover the plaintext m computing c⊕e, i.e., the exclusive-or of the ciphertext and the error
vector. We observe that in modern KEM versions of McEliece, m ∈ Fn

2 is a random bit string
used to compute a session key using a hash function. Hence, in moderns KEM, in the first k

positions of m we have random data. Then, the amount of error would be moderated.

Algorithm 4: McEliece decryption.
Data: c as ciphertext of length n, secret key sk = (L,g).
Result: Message m of size k

1 Compute the syndrome Sc(z)≡ ∑
ci

z+αi
(mod g(z));

2 Compute τ(z) =
√

S−1
c (z)+ z;

3 Compute b(z) and a(z), so that b(z)τ(z)≡ a(z) (mod g(z)), such that
deg(a)≤ b t

2c and deg(b)≤ b t−1
2 c;

4 Compute the error locator polynomial σ(z) = a2(z)+ zb2(z) and deg(σ ) ≤ t;
5 The position in L of the roots of σ(z) define the error vector e;
6 Compute the plaintext m = c⊕ e;
7 return m;

In the decryption algorithm, Steps 2-5 are the description of Patterson’s decoding algo-
rithm (PATTERSON, 1975). This same strategy can be used in schemes based on the Niederre-
iter cryptosystem (NIEDERREITER, 1986). These schemes differ in their public-key structure,
encryption, and decryption step, but both of them, in the decryption steps, decode the message
from the syndrome. Another decoding algorithm can be applied to decode a message with er-
rors. Still, the main focus of this work is on Patterson’s algorithm, since it is the most used on
McEliece cryptosystem with Goppa codes.

The roots of the ELP can be acquired with different methods. Although these strate-
gies can be implemented with different forms, the implementations must not leak any timing
information about their execution. This leakage can lead to a side-channel attack using time
differences in the decryption algorithm, as we explore in a scheme in Section 3.2.
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3.2 BIGQUAKE

In this section, we describe the BIGQUAKE submission, the usage of the McEliece
in their protocol, and after that, we present a timing side-channel attack against the decapsu-
lation process. The attack was originally proposed in (SHOUFAN et al., 2009). We use the
fact that BIGQUAKE claims to be indistinguishability under adaptive chosen ciphertext at-
tack (IND-CCA) to create our attack scenario and perform the attack proposal (BERNSTEIN;
PERSICHETTI, 2018). Our attack was implemented based on BIGQUAKE implementation
available in https://bigquake.inria.fr/files/2018/03/BIGQUAKE-source.tar.gz.

3.2.1 Submission overview

BIGQUAKE (BARDET et al., 2017) uses binary Quasi-cyclic (QC) Goppa codes in
order to accomplish a KEM between two distinct parts. Instead of using binary Goppa codes,
BIGQUAKE uses QC Goppa codes, which have the same properties as Goppa codes but allow
smaller keys.

Let us suppose that Alice and Bob (A and B respectively) want to share a secret ses-
sion key K using BIGQUAKE. Then Bob needs to publish his public key, and Alice needs to
follow the encapsulation mechanism. After receiving the vector c from Alice, Bob executes the
decapsulation process. If Bob succeeds, both parties obtain the same session secret key K. The
security of the protocol is based on steps that involve the McEliece encryption performed by Al-
ice and the McEliece decryption performed by Bob. The BIGQUAKE description is presented
in Protocol 1.

The function F maps an arbitrary binary string as input and returns a word of weight t,
i.e F : {0,1}∗→{x ∈ Fn

2|wh(x) = t}. The detailed construction of the function F can be found
in subsection 3.4.4 in (BARDET et al., 2017). The cryptographic hash function H : {0,1}k→
{0,1}s maps an arbitrary binary string of size k to a fixed string of size s. The functionH in the
original implementation is SHA-3.

When Alice computes c2, she is encrypting a message m, with error t and Bob’s public
key G. Additionally, Alice needs to compute exclusive-or between the hash of the error and the
message. Also, she needs to compute the hash of the message. These last two values are used
on Bob’s side to verify if both sides are computing the same session key.

On Bob’s side, after he receives c, he starts the decoding process on c2, and only
he is able to perform this correctly for the reason that Alice uses Bob’s public key on the
encapsulation process. To complete the key encapsulation mechanism, Bob uses the decoded e′

to check against c1 and c2 if both sides are agreeing in the same session key.
The security of BIGQUAKE relies on the same security as other McEliece cryptosys-

tems that uses Goppa Codes: the syndrome decoding problem and the indistinguishability of
Goppa codes (BARDET et al., 2017). These two problems are well studied in the literature, and
it is safe to use them as the security assumption of a cryptosystem (BERNSTEIN; LANGE; PE-



39

Protocol 1: BIGQUAKE Key Encapsulation Mechanism between Alice and Bob
Inputs. Bob’s public key as a generator matrix G

Goal. Parties jointly agree the same session key K

The protocol:

1. Encapsulation.

(a) Alice generates a random m ∈ Fs
2;

(b) Generate e←F(m);

(c) Alice sends c← (m⊕H(e),H · eT ,H(m)) to Bob;

(d) The session key is defined as: K←H(m,c).

2. Decapsulation.

(a) Bob receives c = (c1,c2,c3);

(b) Using the secret key, Bob decodes c2 to e′ with wh(e′)≤ t such that c2 = H · e′T ;

(c) Bob computes m′← c1⊕H(e′);
(d) Bob computes e′′←F(m′);
(e) If e′′ 6= e′ orH(m′) 6= c3 then Bob aborts;

(f) Else, Bob computes the session key: K←H(m′,c).

TERS, 2008; FAUGERE et al., 2013). Additionally, other schemes on the NIST standardization
rely on their security on these same properties(BERNSTEIN et al., 2017).

As mentioned in Chapter 2, a secure scheme could suffer attacks on their implemen-
tation. The BIGQUAKE has well know semantic security assumptions. Nevertheless, its im-
plementation has several problems against a timing side-channel attack. In the next section, we
present our attack against the reference implementation of the BIGQUAKE.

3.2.2 Timing side-channel attack

In (SHOUFAN et al., 2009), the attack exploits the fact that flipping a bit of the error
e changes the Hamming weight w and per consequence the timing for its decryption. If we
flip a position that contains an error (ei = 1) then the error will be removed and the time of
computation will be shorter. However, if we flip a bit in a wrong position (ei = 0) then it will add
another error, and it will increase the decryption time. The attack described in (BUCERZAN
et al., 2017) exploits the root-finding in the polynomial ELP. It takes advantage of sending
ciphertexts with fewer errors than expected, which generates an ELP with a degree less than t,
resulting in less time for finding roots. We explore both ideas applied to the implementation of
BIGQUAKE.

Algorithm 5 is the direct implementation of the attack proposed in (SHOUFAN et al.,
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2009). We use this attack on BIGQUAKE to show that implementations with the usual root-
finding process are vulnerable to remote timing attacks.

Algorithm 5: Attack on root extraction of error locator polynomial of the
BIGQUAKE.

Data: n-bit ciphertext c, t as the number of errors and precision parameter M
Result: Attempt to obtain an error vector e hidden in c.

1 e← [0, . . . ,0];
/* iterate over all bits on the ciphertext */

2 for i← 0 to n−1 do
3 A← 0;
4 c′← c⊕ setBit(n, i);
5 timem← 0;

/* perform M decryption operations measuring the average
execution time */

6 for j← 1 to M do
7 times← time();
8 decrypt(c′);
9 timee← time();

10 timem← timem +(timee− times);
11 end
12 A← timem/M;
13 T ← (A, i);
14 end

/* select the errors position according whose small average
execution time */

15 Sort T in descending order of A;
16 for k← 0 to t−1 do
17 index← T [k].i;
18 e[index]← 1;
19 end
20 return e;

After finding the position of the errors, one needs to verify if the error e′ found is the
correct one, and then recover the message m. In order to verify for correctness, one can check
e′ by computingH(e)⊕H(e′)⊕m = m′ and if c3 is equal toH(m′). As mentioned early in this
section, the ciphertext is composed by c = (m⊕H(e),H · eT ,H(m)) or c = (c1,c2,c3).

In our attack, we select the precision parameter M as 500 since it shows the more
precise results while maintains a relative level of efficacy. In our tests, it takes ≈ 17 minutes for
recovering one correct error vector and, consequently, compute the session key. The attack was
performed on an Intel R© Core(TM) i7-4500U CPU @ 1.80GHz. The source code of this attack
are available on https://git.dags-project.org/gustavo/roots_finding/src/master/attack_bigquake.
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3.2.2.1 Implementation remarks

Some small corrections on the BIGQUAKE reference implementation were made to
perform the attack correctly. First, the correct initialization of the error vector e with zeros in
all positions. The original implementation does not fill all error positions with zero because the
malloc function does not fill the positions with zero (C++ Standards Committee, 2014). We
also modify the decryption failure condition. The original algorithm failure when an additional
error are inserted. We removed the part that causes this failure on the attack implementation.

Additionally, we notice that the original implementation of BIGQUAKE uses log
and antilog tables for computing multiplications and inversions. These look-up tables give a
speedup in those operations. However, this approach is subject to cache attacks in a variation
of (BRUINDERINK et al., 2016), where the attacker tries to induce cache misses and infer the
data.

Since we want to avoid the use of look-up tables, we made a constant-time imple-
mentation for multiplication and inversion, using a similar approach as (CHOU, 2017). In
order to illustrate that, Listing A.3 shows the multiplication in constant-time between two ele-
ments over F212 followed by the reduction of the result by the irreducible polynomial f (x) =

x12 + x6 + x4 + x+ 1. Further, the inversion in finite fields can be computed by raising an ele-
ment a to the power 2m−2, i.e., a2m−2, as presented on Listing A.4. These operations and the
others implementation remarks are present on Appendix A.

The performed attack show us a naive implementation of root-finding enables a side-
channel attacker to find the secret plain message on BIGQUAKE submission. In the next chap-
ter, we propose five alternatives to construct a safe root-finding algorithm and consequently a
secure McEliece implementation.
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4 ROOT FINDING TECHNIQUES AND COUNTERMEASURES

As argued, the leading cause of information leakage in the decoding algorithm is the
process of finding the roots of the ELP. In general, the time needed to find these roots varies,
often depending on the roots themselves. Thus, an attacker who has access to the decoding
time can infer these roots, and hence get the vector of errors e. One example of this attack is
presented in Section 3.2, where we perform a side-channel attack over the decryption part of
a cryptosystem, and we recover the secret exchange between two parts of the protocol in an
acceptable time on a conventional laptop.

Factoring polynomials is a well-studied problem in the finite fields area. More recently,
with the rising of the code-based area, some works deal with the factorization problem on
the decoding process in order to avoid timing side-channel attacks (SHOUFAN et al., 2009;
BUCERZAN et al., 2017). In our literature review, we select five methods used on code-
based cryptosystems to analyze and propose modifications in their implementation to make
them available on cryptosystems applications.

The adjustments were made in the following algorithms to find roots: exhaustive
search, linearized polynomials, Berlekamp Trace Algorithm (BTA), and Successive Resultant
Algorithm (SRA). Also, we present the Cantor-Zassenhaus method, as it has a probabilistic
algorithm that makes use of a random selection of polynomials in its execution. We make a
security analysis over this algorithm to evaluate their time variance on a side-channel attack
scenario. The description of each algorithm is given in the next sections, and the analysis is
present in Chapter 5.

As the main focus of this works relies on the root computation of a polynomial over
a finite field in cryptographic applications, we restrict our scope to polynomials over binary
fields. Also, we assume that we want to compute the roots of a squarefree polynomial. Because
of the nature of the ELP, it is composed of the code locators, and each error represents one
factor. However, if this was not the nature of the polynomial, we can achieve a squarefree
easily, see (VON ZUR GATHEN; PANARIO, 2001).

4.1 EXHAUSTIVE SEARCH

The exhaustive search, also called Chien Search (CHIEN, 1964), is a direct method, in
which the evaluation of f for all the elements in F2m is performed. A root is found when the
evaluation result is zero. This method is acceptable for small fields and can be made efficient
with a parallel implementation. The greatest drawback of this method is its asymptotic com-
plexity, and this is the reason it is not widely used. However, we consider it still relevant, since
some NIST proposals are based on a small finite field, enabling their usage.

Algorithm 6 describes the exhaustive search. For all elements in F2m , we evaluate the
polynomial and check if it is a root or not, and this method leaks information when a root is
found. This leakage occurs because whenever we found, i.e., dummy = 0, an extra operation is
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performed by adding the root found on the returning list R. In this way, the attacker can infer
this from this additional time that a root was found, providing ways to obtain data that should
be secret.

Algorithm 6: Exhaustive search algorithm for finding roots of a univariate
polynomial over F2m .

Data: p a univariate polynomial over F2m with t roots, A = [a0, . . . ,an−1] all
elements in F2m , n = 2m the length of A.

Result: R a set of roots of p.
1 R← /0;
2 for i← 0 to n−1 do
3 dummy← p(A[i]);
4 if dummy == 0 then
5 R.add(A[i]);
6 end
7 end
8 return R;

One solution to avoid this leakage is to permute the elements of vector A before the
evaluation. Using this technique, an attacker can identify the extra operation, but without learn-
ing any secret information. In our case, we use the Fisher-Yates shuffle (BLACK, 1998) for
shuffling the elements of vector A. In (WANG; SZEFER; NIEDERHAGEN, 2018), the authors
show an implementation of the shuffling algorithm, which is safe against timing attacks. Thus,
we can build and exhaustive search without leaking information against a side-channel attack.
Line 1 on Algorithm 7 shows the permutation call of the elements and the computation of the
roots.

Algorithm 7: Exhaustive search algorithm with a countermeasure for finding
roots of an univariate polynomial over F2m .

Data: p a univariate polynomial over F2m with t roots, A = [a0, . . . ,an−1] all
elements in F2m , n = 2m the length of A.

Result: R a set of roots of p.
1 permute(A);
2 R← /0;
3 for i← 0 to n−1 do
4 dummy← p(A[i]);
5 if dummy == 0 then
6 R.add(A[i]);
7 end
8 end
9 return R;

Using this approach, we add one extra step to the algorithm. However, this permutation
blurs the sensitive information of the algorithm, making the usage of Algorithm 7 slightly harder
for the attacker to acquire timing leakage. In this case, we want to avoid the addition of an else
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clause adding the elements that are not a root in another list. This addition will reduce the time
variance on the execution of the algorithm, but it could facilitate cache attacks (BERNSTEIN,
2005).

4.2 BERLEKAMP TRACE ALGORITHM

Our second strategy applies to the Berlekamp factoring algorithm (BERLEKAMP,
1970). Berlekamp presents an efficient algorithm to factor a polynomial, which can be used
to find its roots. We call this algorithm BTA - Berlekamp Trace Algorithm since it relies on
the trace function properties to split a polynomial into two small polynomials. This classical
algorithm is one of the most used on code-based cryptosystems for the reason that it has lower
complexity when compared with exhaustive search (BISWAS; HERBERT, 2009).

The trace function is defined as Tr(x) = x+ x2 + x22
+ · · ·+ x2m−1

. It is possible to
change BTA for finding roots of a polynomial p using β = {β1,β2, . . . ,βm} as a standard basis
of F2m , and then computing the greatest common divisor between p(x) and Tr(β0 · x). After
that, BTA performs two recursive calls; one with the result of gcd algorithm and the other with
the remainder of the division p(x)/gcd(p(x),Tr(βi · x)) for successive i’s. On the next call, the
BTA must use a different basis element from the previous one.

The base case is when the degree of the input polynomial is smaller than or equal to
one. In this case, BTA returns the root by getting the independent term of the polynomial. In
summary, it is a divide and conquer like algorithm since it splits the task of computing the roots
of a polynomial p into the roots of two smaller polynomials. Some improvements can be made
on BTA with a hybrid version, i.e., when the degree of the polynomial is two, we can use a
different algorithm to find its factors, as presented in (STRENZKE, 2012). As efficiency was
not the focus of this work, we do not consider this approach. All steps of the Berlekamp trace
algorithm are described in Algorithm 8.

Algorithm 8: Berlekamp Trace Algorithm – BTA(p, i)− r f .
Data: p a univariate polynomial over F2m and i to select the basis element.
Result: The set of roots of p.

1 if deg(p)≤ 1 then
2 return root of p;
3 end
4 p0(x)← gcd(p(x),Tr(βi · x));
5 p1(x)← p(x)/p0(x) ;
6 return BTA(p0(x), i+1)∪BTA(p1(x), i+1);

As we can see, a direct implementation of Algorithm 8 has no constant execution time.
The recursive behavior may leak information about the characteristics of roots in a side-channel
attack. Additionally, in our experiments, we note that the behavior of the gcd with the trace
function might result in a polynomial with the same degree. Therefore, BTA will divide this
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input polynomial in a future call upon a different basis element. Consequently, there is no
guarantee of a constant number of executions because we cannot control if a polynomial will
be split or not.

In order to avoid the nonconstant number of executions and avoid timing side-channel
attacks, we propose an iterative implementation of Algorithm 8, hereafter referred to BTA− it.
In this way, our proposal iterates in a fixed number of iterations instead of calling itself until
the base case. The main idea is not changed; we still divide the task of computing the roots of
a polynomial p into two smaller instances. However, we change the approach of the division
of the polynomial. Since we want to compute the same number of operations independent of
the degree of the polynomial, we perform the gcd with a trace function for all basis in β , and
choose a division that results in two new polynomials with a medium degree.

This new approach allows us to define a fixed number of iterations for our version
of BTA. Since we always divide into two small instances, we need t − 1 iterations to split a
polynomial of degree t into t polynomials of degree 1. Then we just need to add a stack to
control the polynomials to be divided. Algorithm 9 presents our new approach of the iterative
BTA− it.

Algorithm 9: Iterative Berlekamp Trace Algorithm – BTA(p)− it.
Data: p a univariate polynomial over F2m , t the number of expected roots.
Result: The set of roots of p.

1 g←{p(x)}; // The set of polynomials to be computed
2 for k← 0 to t do
3 current = g.pop();
4 Compute candidates = gcd(current,Tr(βi · x)) f or all βi ∈ β ;
5 Select p0 ∈ candidates such as p0.degree ' current

2 ;
6 p1(x)← current/p0(x) ;
7 if p0.degree == 1 then
8 R.add(root of p0)
9 end

10 else
11 g.add(p0);
12 end
13 if p1.degree == 1 then
14 R.add(root of p1)
15 end
16 else
17 g.add(p1);
18 end
19 end
20 return R

Algorithm 9 extracts a root of the polynomial when the variable current has a poly-
nomial of degree one. If this degree is higher than one, then the algorithm needs to continue
dividing the polynomial until it finds a root. The algorithm does that by adding the polynomial
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in a stack and reusing this polynomial in a future division. The iterative BTA has a higher
complexity when compared to the original approach. Nevertheless, with our new approach,
we achieve a more constant time execution on the root-finding task, consequently reducing the
knowledge obtained by an attacker. In Chapter 5, we analyze and compare our iterative BTA
with other approaches.

4.3 LINEARIZED POLYNOMIALS

The third countermeasure proposed is based on linearized polynomials. The authors
in (FEDORENKO; TRIFONOV, 2002) propose a method to compute the roots of a polynomial
over F2m , using a particular class of polynomials, called linearized polynomials. In (STREN-
ZKE, 2012), this approach is a recursive algorithm which the author calls “dcmp-rf”. In our
solution, however, we present an iterative algorithm. First, we define linearized polynomials.

Definition 4.1 A polynomial ` over F2m is a linearized polynomial if

`(y) = ∑
i

ciy2i
, (4.1)

where ci ∈ F2m .

In addition, from (TRUONG; JENG; REED, 2001), we have Lemma 4.1 that describes the main
property of linearized polynomials for finding roots.

Lemma 4.1 Let y ∈ F2m and let α0,α1, . . . ,αm−1 be a standard basis of F2m over F2. If

y =
m−1

∑
k=0

ykα
k, yk ∈ F2 (4.2)

and `(y) = ∑ j c jy2 j
, then

`(y) =
m−1

∑
k=0

yk`(α
k). (4.3)

We call A(y) over F2m an affine polynomial if A(y) = `(y)+β for β ∈ F2m , where `(y)
is a linearized polynomial. Using this definition, we can construct a method for finding the ELP
roots. First, we present a toy example from (TRUONG; JENG; REED, 2001) to understand the
idea behind finding roots using linearized polynomials.

Example 4.1 Let us consider the polynomial f (y) = y2 +(α2 +1)y+(α2 +α +1)y0 over F23

and α a primitive element in F2[x]/(x3+x2+1). Since we are trying to find roots, we can write

f (y) equals to zero

y2 +(α2 +1)y+(α2 +α +1)y0 = 0

and after that, we can rewrite this expression as

y2 +(α2 +1)y = (α2 +α +1)y0. (4.4)
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We can point that on the left hand side of Equation (4.4), `(y) = y2 +(α2 +1)y is a linearized

polynomial over F23 and Equation (4.4) can be expressed as

`(y) = α
2 +α +1. (4.5)

If y = y2α2 + y1α + y0 ∈ F23 then, according to Lemma 4.1, Equation (4.5) becomes

y2`(α
2)+ y1`(α)+ y0`(α

0) = α
2 +α +1. (4.6)

We can compute `(α0), `(α) and `(α2) using the left hand side of Equation (4.4) and we have

the following values

`(α0) = (α0)2 +(α2 +1)(α0) = α
2 +1+1 = α

2,

`(α) = (α)2 +(α2 +1)(α) = α
2 +α

2 +α +1 = α +1,

`(α2) = (α2)2 +(α2 +1)(α2) = α
4 +α

4 +α
2 = α

2.

(4.7)

A substitution of Equation (4.7) into Equation (4.6) gives us

(y2 + y0)α
2 +(y1)α +(y1)α

0 = α
2 +α +1. (4.8)

Equation (4.8) can be expressed as a matrix in the form

[
y2 y1 y0

]1 0 0
0 1 1
1 0 0

=
[
1 1 1

]
. (4.9)

If one solves the linear system in Equation (4.9) then the results are the roots of the original

polynomial given in Equation (4.4). From Equation (4.8), one observes that the solutions are

y = 110 and y = 011. Furthermore, we can translate 110 and 011 to α +1 and α2 +α . After

all these steps, it is easy to check if we found the factors of f (y). We just need to multiply

y+(α +1) by y+(α2 +α), thus we get

(y+α +1)(y+α
2 +α) = y2 +(α2 +1)y+(α2 +α +1) = f (y).

Fortunately, the authors in (FEDORENKO; TRIFONOV, 2002) provide a generic de-
composition for finding affine polynomials. Thus we can transform the error locator polyno-
mial in an affine polynomial. In their work, each polynomial in the form F(y) = ∑

t
j=0 f jy j for

f j ∈ F2m can be represented as

F(y) = f3y3 +
d(t−4)/5e

∑
i=0

y5i( f5i +
3

∑
j=0

f5i+2 jy2 j
). (4.10)

After that, we can summarize all the steps on Algorithm 10. The function on Step
21, “generate(m)”, refers to the generation of the elements in F2m using Gray codes. See
(SAVAGE, 1997) for more details about Gray codes. The linearized method differs from the
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exhaustive search on the evaluation process; it is much more efficient to compute this evaluation
because the polynomial is in linearized form. Algorithm 10 presents our countermeasure in the
last steps of the algorithm, i.e., we added a dummy operation for blinding if X [ j] is a root of
polynomial F(x). The analysis of the linearized method and its countermeasure are presented
in Chapter 5.

4.4 SUCCESSIVE RESULTANT ALGORITHM

In (PETIT, 2014), the authors present an alternative method for finding roots in Fpm .
Later on, the authors explain better the method in (DAVENPORT; PETIT; PRING, 2016). The
Successive Resultant Algorithm (SRA) relies on the fact that it is possible to find roots exploit-
ing properties of an ordered set of rational mappings.

Given a polynomial f of degree d and a sequence of rational maps K1, . . . ,Kt , the
algorithm computes finite sequences of length j ≤ t +1 obtained by successively transforming
the roots of f by applying the rational maps. The algorithm is as follows: Let {v1, . . . ,vm} be an
arbitrary basis of Fpm over Fp. Then it is possible to define m+1 functions `0, `1, . . . , `m from
Fpm to Fpm such that 

`0(z) = z

`1(z) = ∏i∈Fp `0(z− iv1)

`2(z) = ∏i∈Fp `1(z− iv2)
...
`m(z) = ∏i∈Fp `m−1(z− ivm).

The functions ` j are examples of linearized polynomials, as previously defined. Our next step
is to present the theorems from (PETIT, 2014). We suggest the reader to consult the original
work for proofs and more details.

Theorem 4.1 a) Each polynomial `i is split and its roots are all elements of the vector space

generated by {v1, . . . ,vi}. In particular, we have `n(z) = zpm− z.

b) We have `i(z) = `i−1(z)p−ai`i−1(z) where a := (`i−1(vi))
p−1.

c) If we identify Fpm by the vector space (Fp)
m, then each `i is a p-to-1 linear map of `i−1(z)

and a pi to 1 linear map of z.

From Theorem 4.1 and its properties, we can reach the following polynomial system:
f (x1) = 0
xp

j = a jx j = x j+1 j = 1, . . . ,m−1

xp
n −anxn = 0

(4.11)

where the ai ∈ Fpn are defined as in Theorem 4.1. Any solution of this system provides us with
a root of f by the first equation, and the n last equations together imply this root belongs to Fpn .
From this system of equations, (PETIT, 2014) derives Theorem 4.2.
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Algorithm 10: Linearized polynomials for finding roots over F2m .
Data: F as a univariate polynomial over F2m with degree t and m the extension

field degree.
Result: R as a set of roots of p.

1 `k
i ← /0; `is← /0; A j

k← /0; R← /0; dummy← /0;
2 if f0 == 0 then
3 R.append(0);
4 end
5 for i← 0 to d(t−4)/5e do
6 `i(x)← 0;
7 for j← 0 to 3 do
8 `i(x)← `i(x)+ f5i+2 jx2 j

;
9 end

10 `is[i]← `i(x);
11 end
12 for k← 0 to m−1 do
13 for i← 0 to d(t−4)/5e do
14 `k

i ← `is(α
k);

15 end
16 end
17 A0

i ← /0;
18 for i← 0 to d(t−4)/5e do
19 A0

i ← f5i;
20 end
21 X ← generate(m);
22 for j← 1 to 2m−1 do
23 for i← 0 to d(t−4)/5e do
24 A← A j−1

i ;

25 A← A+ `
δ (X [ j],X [ j−1])
i ;

26 A j
i ← A;

27 end
28 end
29 for j← 1 to 2m−1 do
30 result← 0;
31 for i← 0 to d(t−4)/5e do
32 result = result +(X [ j])5iA j

i ;
33 end
34 eval = result + f3(X [ j])3;
35 if eval == 0 then
36 R.append(X [ j]);
37 else
38 dummy.append(X [ j]);
39 end
40 end
41 return R;



51

Theorem 4.2 Let (x1,x2, . . . ,xm) be a solution of the equations in Equation (4.11). Then x1 ∈
Fpm is a solution of f . Conversely, given a solution x1 ∈ Fpm of f , we can reconstruct a solution

of all equations in Equation (4.11) by setting x2 = xp
1 −a1x1, etc.

In (PETIT, 2014), the author presents an algorithm for solving the system in Equation
(4.11) using resultants. The solutions of the system are the roots of a polynomial f . It is worth
remarking that this algorithm is almost constant-time, and hence we just need to protect the
branches presented on it.

4.5 RABIN ALGORITHM

Our last proposal for finding the roots of the error locator polynomial was the classical
method proposed by Rabin (RABIN, 1980). This classical method is a probabilistic algorithm
and has running time similar to the Cantor-Zassenhaus algorithm (CANTOR; ZASSENHAUS,
1981). This method is used to factor huge polynomials, with a higher degree and over larger
fields. Although the main focus of this work relies on polynomials with no more than 200 roots
and fields of size at most 218, we consider this algorithm because of its efficiency.

The Cantor-Zassenhaus differs from Rabin’s method on the field extension of the poly-
nomial to be factored. Since Cantor’s method is designed only for odd extensions, we do not
consider them in our works. However, Rabin made an adaptation to support even fields, intro-
ducing a trace computation to finding a nontrivial factorization of the input polynomial, similar
to the BTA method. This addition increases the execution time of the algorithm, but it is still
efficient, even when used in large field extensions.

The main difference between Cantor-Zassenhaus and Rabin’s method to the other
methods presented in this chapter is the insertion of a randomness choice of an element in
the algorithm. The computation of the roots depends on the choice of a random element in F2m .
This random selection was used with a trace function and a gcd to find a nontrivial factorization
of the original polynomial. This class of algorithm is also called probabilistic algorithms.

Rabin method is a probabilistic algorithm because of its random behavior, because of
the chance of failure, the parameter ε is used to define the maximum number of iterations on the
algorithm. Since we always choose a random element to continue, the probability of failure of
the algorithm is based on the fact that a random selection could not result in a nontrivial factor
of the input polynomial. However, Ben-Or proves that this probability is 1−1/2t−1, where t is
the degree of the polynomial (BEN-OR, 1981).

To the best of our knowledge, no code-based cryptosystem makes use of a probabilistic
algorithm as a method for root finding. The original proposal was designed as a recursive
algorithm, here we present an iterative version, as show in (VON ZUR GATHEN; PANARIO,
2001). Algorithm 11 shows all steps to compute the roots.

Rabin’s algorithm is an equal degree factorization method. Hence we are computing
the roots of a polynomial that is composed only by linear factors. We simplified a step where
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Algorithm 11: Probabilistic root finding algorithm – Rabin(p).
Data: p as an univariate polynomial over F2m , t as number of expected roots.
Result: The set of roots of p.

1 Factors←{p}; // The set of polynomials to be computed
2 k← 1;
3 itmax← 2dlog t2

ε
e;

4 while k < itmax do
5 h $←− F2m // choose h with degree < t at random
6 g← gcd(h, f );
7 if g = 1 then
8 g← tr(h)
9 end

10 for u ∈ Factors and u.degree > d do
11 if gcd(g,u) 6= 1 and gcd(g,u) 6= u then
12 Factors.remove(u);
13 Factors.insert(gcd(g,u));
14 Factors.insert(u/gcd(g,u));
15 end
16 end
17 end
18 return Factors

the original method computes before the trace g = ∑
d−1
i=0 hqi

, where d is equal to the degree of
the factors of f .

Rabin’s algorithm is a great example of a naturally safe root-finding against timing
side-channel attack. Since it uses a random selection on their execution, we consider that this
randomness does not permit an attacker to infer any information about the roots. Moreover,
since we are using a random selection, an attacker could not infer any information from the
time variance of the algorithm. A more detailed analysis was presented in Chapter 5.
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5 COMPARISON

In this chapter, we present an analysis of the five presented methods in the Chapter 4.
The first two analyses focus on the complexity and performance of the algorithms. However,
we are not interested only in efficient techniques. Our primary goal was to achieve a method
with no information leakage against a timing side-channel attack. Hence, we demonstrate a
time-variance analysis for each proposed root-finding method. After that, we present a security
analysis of the algorithm. We remark that n = 2m is the size fields, and t is the degree of the
polynomial.

5.1 COMPLEXITY ANALYSIS

In order to compare the complexity of the algorithm, we use the Big O notation. This
asymptotic notation permits us to classify the algorithms according to their behavior when the
inputs grow towards infinity.

Table 1 – Complexity comparison

Method
Exhaustive search O(t2m)
Permuted exhaustive O(t2m)
Linearized Polynomials O(2m)
Constant Linearized Polynomials O(2m)
Berlekamp trace algorithm O(t2m)
Iterative Berlekamp trace algorithm O(m2t2)
Successive resultant algorithm O(t2m3)
Constant Successive resultant algorithm O(t2m3)
Rabin root finding O(t2m)

As we can note, the most asymptotic efficient method was the Rabin root-finding
method and the Berlekamp trace algorithm. However, this asymptotic could not reflect the
execution timing of the algorithm for parameters used in code-based schemes. This happens
because the big O notation does not consider constants and the asymptotic complexity was for
all m and t greater then m0 and t0 respectively, and the parameters used on code-based cryp-
tosystems could be smaller than the m0 and t0.

5.2 PERFORMANCE ANALYSIS

To give a more careful analysis, we present an execution time analysis of each algo-
rithm. This comparison gives an idea of the real execution cost. All root finding-methods were
performed over a random polynomial of degree t over F2m , for t = 50 until t = 200 and n = 210

to n = 216. For each polynomial, we take the average time of 10 executions to minimize the
environment noise. Figure 2 show the obtained results.
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The performance analysis was implemented using SageMath (The Sage Developers,
2020), since we want to measure the execution cost with different parameters, the Sage library
permits us to change the field with an easy way to perform this analysis. We run all proposed
methods in a locally Intel R© Core(TM) i7-4500U CPU @ 1.80GHz. The source code of this
attack are available on https://github.com/doodomartins/root-finding/soft-factorization.

The Figure 2d to Figure 2c presents the execution time for each root finding method
that has exponential behaviour. For each of that algorithm, we can observe the same behavior
on execution time. Since the exponential term in the complexity was the extension m, we can
note that the algorithms have a different growth for each extension. The higher m results in a
growth on the runtime.

Moreover, we can observe the massive difference between the extension 215 to 216 on
the exhaustive search and in the linearized algorithm. On the other hand, the degree of the
polynomial affects the execution time of the algorithm linearly. Therefore, the execution time
grows more slowly when we are increasing the degree of the polynomial.

For Successive Resultant Algorithm and the Berlekamp Trace algorithm we can note
a suitable growth in relation to the field extension m, Figure 2a and Figure 2b. This relies that
both of then are linearly related with the field extension. As we expect in all method, SRA and
BTA execution time also increase when we increase the degree of the input polynomial.

By last, the Rabin Factorization Algorithm has the most interesting behaviour when we
compare different executions. Since we are analyzing an probabilistic algorithm, each execution
of it depends directly to the random decision taken inside the algorithm. It is well know that
this algorithm respect an linear growth curve. However, when we compare different execution
with polynomials with close degree we can note that some higher polynomials has shorter run
time then lower polynomials.

In our experiment for the Rabin method, we select ε = 0.01. And for all of our execu-
tion, the algorithm any returns a failure. Set the probability of failure closes to zero, permits to
us find an scenario that our probabilistic algorithm has a behaviour closes to our deterministic
algorithms. Also in our experiments, we note that the Rabin method starts to has a consider
number of failures if we considerably reduce the ε value and increase the polynomial degree.
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(a) Execution time comparison between different m and t for Successive resultant algorithm.
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(b) Execution time comparison between different m and t for Berlekamp trace algorithm.
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(c) Execution time comparison between different m and t for exhaustive search method.
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(d) Execution time comparison between different m and t for linearized algorithm.
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(e) Execution time comparison between different m and t for Rabin algorithm.

Figure 2 – Measurements time for the five methods presented. For the degree of the polynomial
as t = 50 until t = 200 and the size of the field as n = 210 to n = 216.

5.3 TIME VARIANCE ANALYSIS

The main focus of our work relies on propose alternatives to compute roots of error
locator polynomial without leaking sensitive information against a timing side-channel attack.
As previously presented, a naive implementation of the root-finding process allows an attacker
to recover the ciphertext and compute a session key of a code-based cryptosystem. In order
to avoid this attack, we present five algorithms to compute the roots of a polynomial over bi-
nary finite fields. For three of these algorithms, we propose countermeasures to reduce the time
variance in its runtime. In this section, we present a time variance analysis of these counter-
measures.

In order to measure the time variance, we perform the root-finding procedures and
measure the time variance between different executions. This variance is measured in CPU cy-
cles. Figure 3 presents the time variance for Berlekamp Trace Algorithm, Linearized Algorithm
and Successive Resultant Algorithm for a polynomial with degree t = {55,60,100} and F216 .



58

(a) Comparison between linearized polynomials with and without countermeasures.

(b) Comparison between BTA-rf and BTA-it executions.
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(c) Comparison between SRA and Safe SRA executions.

Figure 3 – Measurements cycles for methods presented in Chapter 4. Our evaluation of SRA
was made using a Python implementation and cycles measurement with C. In our
tests, the drawback of calling a Python module from C has behavior bordering to
constant.

For all measures in Figure 3, we could note that we reduce the time variance to compute
the roots of different polynomials with same degree. In specific, on Linearized polynomial
comparison, we can note that all quartiles are closer to the average value. This behaviour also
is noticed for on Successive Resultant Algorithm and even more on BTA.

An important difference in our implementation and the original was that we increase
the execution time for all executions. This is justified by all extra operations that we add in order
to reduce the time variance. However, we also can note that this growth is not too significant.
Since we still are close to the original values. A more detailed comparison, for only polynomials
with degree 100 is presented in Figure 4.

For the execution with degree equals to 100, we can observe the same behaviour as
with other degrees. In all methods, when we apply our countermeasure, we increase the average
execution time. However, we can note that we considerably reduced the time variance of the
algorithm. This variance can be observed on the quartiles in Figure 4. Since the quartiles inside
the box represents 50% of all measured time, and the other quartiles represent the remained
50%, ignoring the outliers, we can uphold that our countermeasures reduce the time variance of
the root-finding methods.
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6.38 ·108 6.4 ·108 6.42 ·108 6.44 ·108 6.46 ·108

Ours
Lin.

5.24 ·109 5.28 ·109 5.32 ·109 5.36 ·109

Ours
SCA

7.6 ·108 8 ·108 8.4 ·108 8.8 ·108 9.2 ·108

Ours
BTA

Figure 4 – Comparison of original implementation and our proposal for Linearized Algorithm
- Lin., Successive resultant algorithm - SCA., and Berlekamp trace algorithm - BTA
with t = 100.

A notable time variation reduction can be viewed on BTA comparison. We obtain
this huge variation reduction because we completely redesign the algorithm structure. Now
the algorithm works always dividing the currently polynomial into two polynomials with an
approximated degree. This strategy results in a considerably time variation result. And, as
expected, we increase the average execution time.

Another important improvement in our implementation was the reduction of outliers.
A more specialized attacker, that is able to modify ciphertexts that result in an error locator
polynomial with an execution time that is an outlier, could not more detect this information
with our implementation.

5.4 SECURITY OVERVIEW

In order to present a security analysis over our countermeasures showed in Chapter 4,
in this section we provide a general security overview of our proposals. Our main hypothesis
on the BIGQUAKE attack was the fact that the time variance on the root-finding process leak
information about which kind of polynomial was factorized. This approach leads us to recover
a cipher message in a few minutes on a normal laptop. Nonetheless, this attack is hard to be
implemented in real cases. The main problem of this attack in a key encapsulation mechanism
protocol relies on that one of the parts of the protocol could abort after a few attempts and restart
the protocol.

Nonetheless, an attacker with a more precise method to measure the decryption time
could be able to guess part of the original plain message and with large computational power
could be enabled to make an educated guess to find the correct session key. In order to increase
the difficulty to correctly perform a timing side-channel attack over McEliece schemes, we
presented five countermeasures to avoid this information leakage.

The first countermeasure is based on the direct method, the Exhaustive Search. This
method was quite simple to be implemented. With the permutation applied to the elements
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before the execution of all evaluations, we shuffle all elements taking out the chance of an
attacker guess a root based on when an extra operation is executed.

The main drawback of this method was your exponential behaviour. Since an attacker
could modify an encrypted message to add more errors, the exhaustive search will also increase
its execution time. Despised this time variance it will not be huge, an attacker with a delicate
measure tool will notice this variance and still will acquire information.

Our second countermeasure is based on reducing the time variance of the algorithms.
This strategy is applied to Berlekamp Trace Algorithm, Linearized Algorithm, and Successive
Resultant Algorithm. The main idea of this countermeasure was to present a protected imple-
mentation where the time difference between executions will be kept to the minimum.

The first countermeasure, on Berlekamp’s method, consists of change the recursive
classical implementation to an iterative one. Next, we apply the same techniques in all three
methods in order to achieve a reduction in the time variance of each algorithm. This simple
strategy was used to protect the implementation against a timing side-channel attacker. We
considerably reduce the time variance and this reduction is presented on experiments results in
Section 5.3.

With a smaller time variance on the root-finding algorithm implementation, we can
reduce the association between the time execution and the input polynomial. Consequently,
reducing the relation with the ciphertext. With our proposal we can build a more secure imple-
mentation of the McEliece decryption.

Our last countermeasure was the usage of a probabilistic algorithm. The Rabin’s
method execution time is related to a random choice of a polynomial. Each iteration of the
algorithm has a different random selection. This randomized behavior results in different exe-
cution times for each different execution. Even more, we cannot determine if the time variance
of the algorithm between two executions relies upon the characteristics of the input polynomial
or for the random selections.

The idea of use a probabilistic algorithm to finding roots in code-based cryptosystems
still was not exhaustively studied in the literature. However, we consider its use secure, because,
in our tests, we could control the fail rate by selecting a total number of iteration that permit
to us reduce the failure rate to zero. Thus, an attacker measuring the time variance of this
algorithm cannot access any sensitive information of the plain text message of the code-based
cryptosystem.
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6 FINAL CONSIDERATIONS

In this thesis, we propose countermeasures on root-finding algorithms in order to
achieve a decoding process without leaking any sensitive information against a timing side-
channel attack. We propose five methods, with different characteristics that can be applied
to the root extraction task. Our proposals are based on reducing the time variance by apply-
ing implementation techniques which aim to construct an algorithm without branches and with
constant behavior.

Before presenting our countermeasures, we execute a timing attack against a Round 1
NIST proposal, the BIGQUAKE submission. This attack uses the fact that a naive implementa-
tion on the decoding process, more specifically, on the root-finding method, leaks information
about the polynomial that has been factorized and consequently about the error added to the
message.

The attack is presented to illustrate how insecure a naive implementation is. In our
experiments, we detect that the root-finding method was responsible for the major time variance
on a root-finding algorithm. Thus, we present five alternatives to construct secure decoding.
Our countermeasures are based on Exhaustive search, the Berlekamp Trace Algorithm, the
Linearized Algorithm, the Successive Resultant Algorithm, and the Rabin Algorithm.

These countermeasures were implemented and analyzed in order to measure their time
variance and their behavior. In our analysis, we observe that we reduce the time variance for all
methods where we propose to reduce this variance. Also, in the probabilistic method, we note
that the behavior of the original method does not leak any information about the polynomial
that has been factorized. This dissimilarity relies on the fact that the algorithm takes a random
selection in each iteration.

We recommend the usage of three root-finding methods presented in this works. First,
the use of the new iterative Berlekamp trace algorithm; in our experiments, the BTA method
presents a small-time variance. However, it uses the Euclidean algorithm to compute the gcd in
their execution, and it is well known in the literature that the classical implementation of gcd

has no constant time. Second, the usage of the SRA approach, with our countermeasures, also
presents a small-time variance; however, its implementation was more complicated because it
relies on multivariate polynomial systems.

Lastly, we suggest the usage of the Rabin Algorithm, since it has a random behavior,
with no way to infer information from the execution time. This was easily observed on the time
execution analysis presented in Figure 2e. However, the gcd algorithm, as in BTA could be
used to employ a timing attack. Notwithstanding, to the best of our knowledge, any existent
timing attack on the literature can infer sufficient information of the gcd to acquire information
of the polynomial that was being factorized.

Two of our proposed countermeasures, the Berlekamp algorithm, and the Rabin Al-
gorithm, we don’t solve the problem of the non-constant implementation of the gcd. It is well
known that its implementation could be insecure, for thus we strongly suggest the study of new
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methods to achieve a secure implementation of the gcd. One of the candidates for a secure
implementation is the recent work from Bernstein and Yang (BERNSTEIN; YANG, 2019).
This new work presents a new variant to compute the Euclidean algorithm for polynomials and
integers that aims to have constant execution time.

Using this new approach, we can improve two of our proposed methods. First, on BTA,
we can deploy a method that will have in all your steps a constant behaviour. With all branches
having the same coast on final execution time. The second improvement that the constant gcd

gives to us is a more random behaviour com Rabin’s method. With this new feature, the random
selection will be mandatory on the total execution time, removing totally the relation between
the execution time and the input polynomial.

6.1 FUTURE WORK

For future work, we suggest the following:

• Employ a constant-time gcd to our implementation: Bernstein and Yang recently propose
a constant time approach to perform the gcd algorithm (BERNSTEIN; YANG, 2019).
This new approach claims to solve the problem of a non-constant gcd that our root-finding
methods present.

• Use a dedicated environment to perform a more detailed analysis: Our implementation
was made on a common laptop with a general propose operation system. This implies
that other applications were running during the execution of our experiments. To mitigate
this, we run ten times each execution and take the average time. However, a dedicate
environment can present more precise results to measure the time variance.

• We bring the attention of the reader that we did not use any optimization in our implemen-
tations, i.e., we did not use vectorization or bit slicing techniques or any specific instruc-
tions such as Intel R© IPP Cryptography for finite field arithmetic in our code. Therefore,
these techniques and instructions can improve the finite field operations and speed up our
algorithms.

• We remark that for achieving a safer implementation, one needs to improve the security
analysis, by removing conditional memory access and protecting memory access of in-
structions. Moreover, one can analyze the security of the implementations by considering
different attack scenarios and performing an in-depth analysis of hardware side-channel
attacks.
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A IMPLEMENTATION REMARKS ON BIGQUAKE ATTACK

Listing A.1 – Code snippet of BIGQUAKE error attribution

/ / C o n s t r u c t an e r r o r e from m

i n t e r r o r = ( i n t ∗ ) ma l l oc (NB_ERRORS∗ s i z e o f ( i n t ) ) ;
m 2 e r r i r (m, e r r o r ) ;

/ / E n c r y p t e ( N i e d e r r e i t e r )

unsigned char∗ syndrome =
ma l l oc (SYNDROME_BYTES∗ s i z e o f ( unsigned char ) ) ;

d e c r y p t _ n i e d ( syndrome , e r r o r , ( unsigned char ∗ ) sk ) ;

Listing A.2 – Code snippet of BIGQUAKE error attribution with the fix.

/ / C o n s t r u c t an e r r o r e from m

i n t e r r o r = { 0 } ;
m 2 e r r i r (m, e r r o r ) ;

/ / E n c r y p t e ( N i e d e r r e i t e r )

unsigned char∗ syndrome =
ma l l oc (SYNDROME_BYTES∗ s i z e o f ( unsigned char ) ) ;

d e c r y p t _ n i e d ( syndrome , e r r o r , ( unsigned char ∗ ) sk ) ;

Listing A.3 – Multiplication of two elements in F212 and inversion of an element in F212

# i n c l u d e < s t d i n t . h>
t y p e d e f u i n t 1 6 _ t g f ;

/ / M u l t i p l i c a t i o n be tween i n 0 and i n 1

gf gf_q_m_mult ( g f in0 , g f i n 1 ) {
u i n t 6 4 _ t i , tmp , t 0 = in0 , t 1 = i n 1 ;
/ / M u l t i p l i c a t i o n

tmp = t 0 ∗ ( t 1 & 1 ) ;
f o r ( i = 1 ; i < 1 2 ; i ++)

tmp ^= ( t 0 ∗ ( t 1 & (1 << i ) ) ) ;
/ / r e d u c t i o n

tmp = tmp & 0x7FFFFF ;
/ / f i r s t s t e p o f r e d u c t i o n

gf r e d u c t i o n = ( tmp >> 1 2 ) ;
tmp = tmp & 0xFFF ;
tmp = tmp ^ ( r e d u c t i o n << 6 ) ;
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tmp = tmp ^ ( r e d u c t i o n << 4 ) ;
tmp = tmp ^ r e d u c t i o n << 1 ;
tmp = tmp ^ r e d u c t i o n ;
/ / s econd s t e p o f r e d u c t i o n

r e d u c t i o n = ( tmp >> 1 2 ) ;
tmp = tmp ^ ( r e d u c t i o n << 6 ) ;
tmp = tmp ^ ( r e d u c t i o n << 4 ) ;
tmp = tmp ^ r e d u c t i o n << 1 ;
tmp = tmp ^ r e d u c t i o n ;
tmp = tmp & 0xFFF ;
re turn tmp ;

}

Listing A.4 – Inversion of an element in F212

# i n c l u d e < s t d i n t . h>
t y p e d e f u i n t 1 6 _ t g f ;

/ / M u l t i p l i c a t i v e i n v e r s e o f i n

gf g f _ i n v ( g f i n ) {
g f tmp_11 = 0 ;
g f tmp_1111 = 0 ;
g f o u t = i n ;
o u t = g f _ s q ( o u t ) ; / / a ^2

tmp_11 = g f _ m u l t ( out , i n ) ; / / a ^2∗a = a ^3

o u t = g f _ s q ( tmp_11 ) ; / / ( a ^ 3 ) ^ 2 = a ^6

o u t = g f _ s q ( o u t ) ; / / ( a ^ 6 ) ^ 2 = a ^12

tmp_1111 = g f _ m u l t ( out , tmp_11 ) ; / / a ^12∗a ^3 = a ^15

o u t = g f _ s q ( tmp_1111 ) ; / / ( a ^ 1 5 ) ^ 2 = a ^30

o u t = g f _ s q ( o u t ) ; / / ( a ^ 3 0 ) ^ 2 = a ^60

o u t = g f _ s q ( o u t ) ; / / ( a ^ 6 0 ) ^ 2 = a ^120

o u t = g f _ s q ( o u t ) ; / / ( a ^ 1 2 0 ) ^ 2 = a ^240

o u t = g f _ m u l t ( out , tmp_1111 ) ; / / a ^240∗a ^15 = a ^255

o u t = g f _ s q ( o u t ) ; / / ( a ^ 2 5 5 ) ^ 2 = 510

o u t = g f _ s q ( o u t ) ; / / ( a ^ 5 1 0 ) ^ 2 = 1020

o u t = g f _ m u l t ( out , tmp_11 ) ; / / a ^1020∗a ^3 = 1023

o u t = g f _ s q ( o u t ) ; / / ( a ^1023 )^2 = 2046

o u t = g f _ m u l t ( out , i n ) ; / / a ^2046∗a = 2047

o u t = g f _ s q ( o u t ) ; / / ( a ^2047 )^2 = 4094

re turn o u t ;
}
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