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RESUMO EXPANDIDO

Nas últimas décadas a área de aprendizado de máquina tem se tornado cada vez mais
presente da tecnologia da informação. Com o aumento crescente da quantidade de
dados disponíveis, a tarefa de automaticamente descobrir padrões nos dados tem sido
realçada pelas pesquisas acadêmicas e do meio industrial. Um método para identi-
ficar padrões é estimar uma função que se aproxima do comportamento dos dados
disponíveis, e para criar uma função com capacidade de aprendizagem é necessária
conter os seguintes tópicos: uma teoria baseada no princípio da indução e a possibili-
dade de incluir conhecimento passado. Nesta tese o foco é no algoritmo de Máquina
de Vetores de Suporte (Support Vector Machine, SVM) para tarefas de classificação
de dados, introduzido em meados dos anos 90. Desta forma, é necessário analisar
vários aspectos do SVM, incluindo a formulação, métodos de treinamento, o ajuste
de hiperparâmetros e a aplicabilidade em conjunto de dados de diferentes tamanhos
e finalidades. Baseado nessas análises, nós fizemos três propostas de contribuição.
Dada a complexidade computacional do SVM, na primeira contribuição, propõe-se um
método para viabilizar o uso do SVM em grandes conjuntos de dados (por exemplo
nos casos em que não é possível carregar todo o conjunto de dados na memória
disponível) por meio da pré-seleção de instâncias candidatas que são mais provaveis
a melhorar a performance do erro de generalização. O objetivo do método é diminuir o
tempo dos processos de treinamento e ajuste de hiperparâmetros do SVM degradando
o mínimo possível o erro de generalização.

A segunda contribuição está relacionada com a tarefa de ajuste de hyperparâmetros,
que dependendo do caso pode ser demorada. A utilização do SVM com uma função
kernel fornece uma liberdade que viabiliza aplicar o método em muitas situações,
contudo, a escolha dos hiperparâmetros pode ser uma desvantagem. Desta forma, nós
propõe-se um método para ajuste dos hiperparâmetros que utiliza um mínimo local pré-
definido como critério de parada e possui um mecanismo para escapar de eventuais
locais mínimos. Muitas tentativas foram realizadas para abordar os problemas do SVM
relacionados ao custo computacional, aprendizado incremental e consumo de memória
relacionado a ambos. Na última contribuição, introduz-se uma nova variação do SVM
com uma complexidade computacional menor comparado ao SVM original, que é
capaz de lidar com procedimentos incrementais e decrementais (sem a necessidade
de retreinar completamente), e é eficiente no gerenciamento de memória.

Objetivos

A fim de lidar com grandes conjuntos de dados nos problemas de aprendizado nós
propõe-se um método de amostragem passiva que seleciona um sub-conjunto dos
conjuntos de treinamento disponível diminuindo a necessidade de recurso computa-
cional, porém, mantendo a capacidade de generalização. Os resultados do protocolo
experimental mostra que o método proposto pré-seleciona instâncias que tem mais
chance de serem vetores de suporte (e seus respectivos vizinhos) mesmo em um
espaço reduzido, logo, não compromete a capacidade de generalização. Os métodos
de otimização de caixa-preta (blackbox) baseados em meta-heurística ou por busca



extensiva podem ser utilizados para ajuste de hiperparâmetros, contudo não fornecem
propriedades de convergência matemática e um critério dinâmico de parada, o que
pode resultar em resultados sub-ótimos. Desta maneira, propõe-se um método para
seleção de hiperparâmetros baseado em métodos de otimização por busca direcio-
nada. O método proposto fornece ao usuário uma flexibilidade ao permitir a escolha
de parâmetros a fim de explorar diferentes estratégias e situações. Os experimentos
mostram que o método proposto é menos suscetível a resultados sub-ótimo. Por fim,
introduz-se uma nova variante do SVM adequada para o aprendizado incremental e
decremental que integra elementos do SVM, da variação do SVM gêmeo (Twin SVM)
e da teoria difusa (fuzzy). O método proposto mantém a flexibilidade do SVM e adi-
ciona os procedimentos de incremento e decremento. O conceito difuso incorporado
realça a resistência a ruído e tende a melhorar a generalização do método proposto
quando utilizamos o modelo linear. A etapa incremental pode ser utilizada em diferen-
tes quantidades, e o procedimento decremental controla a complexidade do modelo.
Segundo os resultados apresentados, o método possui uma capacidade de generaliza-
ção competitiva comparada aos outros métodos de aprendizado incremental baseado
em SVM.

Metodologia

Para o desenvolvimento da tese foi realizada uma pesquisa exploratória a fim de com-
preender as limitações do SVM, logo ter capacidade de formular as hipóteses. Uma
pesquisa empírica foi realizada para analisar de maneira mais profunda os métodos
por meio de uma pesquisa bibliográfica por meio de uma revisão sistemática. Define-se
o escopo da tese como uma variante do SVM adequada para conjuntos de dados con-
tínuos e de larga escala, com uma solução eficiente para ajustes de hiperparâmetros.
Uma pesquisa quantitativa foi conduzida com o propósito de validação para comparar
diretamente os métodos propostos com trabalhos relacionados utilizando conjuntos
de dados benchmark ou criados a fim de analisar aspectos individuais, analisando
as saídas de forma numérica (como a exatidão), a complexidade computacional, o
tempo de processamento e o consumo de memória RAM. Questiona-se a validação
em relação aos resultados do protocolo experimental e a aplicabilidade em situações
reais, e foram desenvolvidos múltiplos procedimentos experimentais para suavizar a
incerteza da validação interna e avaliar as variáveis com parâmetros numéricos.

Resultados e discussão

Através da validações realizadas em quatro conjuntos de dados públicos, o método
proposto para reduzir o tempo de processamento através da amostragem passiva
apresentou resultados similares comparado ao método sem amostragem, confirmando
a pouca degradação do modelo. A principal contribuição do método está na possi-
bilidade de realizar a amostragem passiva para determinar do sub-conjunto em um
espaço reduzido.

Em testes realizados em diversos conjutos de dados, o método proposto para ajuste
de hiperparâmetros apresentou resultados mais consistentes comparados à outros
métodos da literatura, isto é, uma convergência mais efetiva que requer um menor



número de avaliações da função objetivo. Os diferenciais do método proposto é a
existência de um critéria dinâmico de parada, um método para escapar de mínimos
locais indesejados, e a integração com um framework já existente.

Testes realizados em diversos conjuntos de dados da variante que integra elementos
do SVM, da variação do SVM gêmeo (Twin SVM) e da teoria difusa (fuzzy) apresen-
taram um tempo de treinamento menor comparado ao SVM clássica, porém com a
capacidade de incrementar e decrementar novos elementos sem a necessidade de
retreinamento. O conceito difuso apresentou uma resistência à pequenos ruídos, e a
performance utilizando um kernel aproximado aproximou-se de modelos não-lineares.

Considerações finais

Nesta tese apresentamos metodologias que visam melhorar as questões de esca-
labilidade, eficiência computacional e performance de generalização do SVM ou de
uma variante, e todos os métodos propostos são adequados para serem utilizados em
cenários reais.

Palavras-chave: Máquina de Vetores de Suporte. Aprendizado de Máquina. Máquina
de Vetores de Suporte Gêmea. Inteligência Artificial.



RESUMO

Nas últimas décadas a área de aprendizado de máquina tem se tornado cada vez mais
presente da tecnologia da informação. Com o aumento crescente da quantidade de
dados disponíveis, a tarefa de automaticamente descobrir padrões nos dados tem sido
realçada pelas pesquisas acadêmicas e do meio industrial. Um método para identificar
padrões é estimar uma função que se aproxima do comportamento dos dados disponí-
veis, e para criar uma função com capacidade de aprendizagem é necessária conter
os seguintes tópicos: uma teoria baseada no princípio da indução e a possibilidade de
incluir conhecimento passado. Nesta tese o foco é no algoritmo de Máquina de Vetores
de Suporte (Support Vector Machine, SVM) para tarefas de classificação de dados, in-
troduzido em meados dos anos 90. Desta forma, é necessário analisar vários aspectos
do SVM, incluindo a formulação, métodos de treinamento, o ajuste de hiperparâmetros
e a aplicabilidade em conjunto de dados de diferentes tamanhos e finalidades. Base-
ado nessas análises, nós fizemos três propostas de contribuição. Dada a complexidade
computacional do SVM, na primeira contribuição, propõe-se um método para viabilizar
o uso do SVM em grandes conjuntos de dados (por exemplo nos casos em que não é
possível carregar todo o conjunto de dados na memória disponível) por meio da pré-
seleção de instâncias candidatas que são mais provaveis a melhorar a performance
do erro de generalização. O objetivo do método é diminuir o tempo dos processos de
treinamento e ajuste de hiperparâmetros do SVM degradando o mínimo possível o
erro de generalização. A segunda contribuição está relacionada com a tarefa de ajuste
de hyperparâmetros, que dependendo do caso pode ser demorada. A utilização do
SVM com uma função kernel fornece uma liberdade que viabiliza aplicar o método em
muitas situações, contudo, a escolha dos hiperparâmetros pode ser uma desvantagem.
Desta forma, nós propõe-se um método para ajuste dos hiperparâmetros que utiliza
um mínimo local pré-definido como critério de parada e possui um mecanismo para
escapar de eventuais locais mínimos.

Muitas tentativas foram realizadas para abordar os problemas do SVM relacionados
ao custo computacional, aprendizado incremental e consumo de memória relacionado
a ambos. Na última contribuição, introduz-se uma nova variação do SVM com uma
complexidade computacional menor comparado ao SVM original, que é capaz de li-
dar com procedimentos incrementais e decrementais (sem a necessidade de retreinar
completamente), e é eficiente no gerenciamento de memória. A fim de lidar com gran-
des conjuntos de dados nos problemas de aprendizado nós propõe-se um método de
amostragem passiva que seleciona um sub-conjunto dos conjuntos de treinamento
disponível diminuindo a necessidade de recurso computacional, porém, mantendo a
capacidade de generalização. Os resultados do protocolo experimental mostra que
o método proposto pré-seleciona instâncias que tem mais chance de serem vetores
de suporte (e seus respectivos vizinhos) mesmo em um espaço reduzido, logo, não
compromete a capacidade de generalização.

Os métodos de otimização de caixa-preta (blackbox) baseados em meta-heurística
ou por busca extensiva podem ser utilizados para ajuste de hiperparâmetros, contudo
não fornecem propriedades de convergência matemática e um critério dinâmico de
parada, o que pode resultar em resultados sub-ótimos. Desta maneira, propõe-se



um método para seleção de hiperparâmetros baseado em métodos de otimização
por busca direcionada. O método proposto fornece ao usuário uma flexibilidade ao
permitir a escolha de parâmetros a fim de explorar diferentes estratégias e situações.
Os experimentos mostram que o método proposto é menos suscetível a resultados sub-
ótimo. Por fim, introduz-se uma nova variante do SVM adequada para o aprendizado
incremental e decremental que integra elementos do SVM, da variação do SVM gêmeo
(Twin SVM) e da teoria difusa (fuzzy). O método proposto mantém a flexibilidade do
SVM e adiciona os procedimentos de incremento e decremento. O conceito difuso
incorporado realça a resistência a ruído e tende a melhorar a generalização do método
proposto quando utilizamos o modelo linear. A etapa incremental pode ser utilizada
em diferentes quantidades, e o procedimento decremental controla a complexidade do
modelo. Segundo os resultados apresentados, o método possui uma capacidade de
generalização competitiva comparada aos outros métodos de aprendizado incremental
baseado em SVM.

Para o desenvolvimento da tese foi realizada uma pesquisa exploratória a fim de com-
preender as limitações do SVM, logo ter capacidade de formular as hipóteses. Uma
pesquisa empírica foi realizada para analisar de maneira mais profunda os métodos
por meio de uma pesquisa bibliográfica por meio de uma revisão sistemática. Define-se
o escopo da tese como uma variante do SVM adequada para conjuntos de dados con-
tínuos e de larga escala, com uma solução eficiente para ajustes de hiperparâmetros.
Uma pesquisa quantitativa foi conduzida com o propósito de validação para comparar
diretamente os métodos propostos com trabalhos relacionados utilizando conjuntos
de dados benchmark ou criados a fim de analisar aspectos individuais, analisando
as saídas de forma numérica (como a exatidão), a complexidade computacional, o
tempo de processamento e o consumo de memória RAM. Questiona-se a validação
em relação aos resultados do protocolo experimental e a aplicabilidade em situações
reais, e foram desenvolvidos múltiplos procedimentos experimentais para suavizar a
incerteza da validação interna e avaliar as variáveis com parâmetros numéricos.

Nesta tese apresentamos metodologias que visam melhorar as questões de esca-
labilidade, eficiência computacional e performance de generalização do SVM ou de
uma variante, e todos os métodos propostos são adequados para serem utilizados em
cenários reais.

Palavras-chave: Máquina de Vetores de Suporte. Aprendizado de Máquina. Máquina
de Vetores de Suporte Gêmea. Inteligência Artificial.



ABSTRACT

Over the past decade machine learning has become one of the mainstays of the infor-
mation technology, and with the increasing amount of available data the automatically
discover of patterns in data has become one of the main tasks in the field. A method
to find these patterns is to estimate a data-based function and to build a successful
learning function it must include: a solid theoretical background based on an induction
principle, the possibility to include prior knowledge, and an efficient way to apply it in
practice. In this thesis, we will focus on the Support Vector Machine (SVM) algorithm for
classification tasks, which has been introduced in the mid-90s and has become popular
in academic and industrial communities since then. We will analyze many aspects of
the SVM, including its formulation, the training method, the hyperparameters tuning,
and applicability on a range of different datasets. Based on the analysis, we propose
three contributions. Given the computational complexity of the SVM, in the first contri-
bution, we propose a method to make viable the usage of the SVM for large datasets
(i.e., cases that the dataset does not fit on available memory) by preselecting instance
candidates that are more suitable to enhance the generalization error performance. The
method goal is to decrease the training and hyperparameter tuning procedures time
degrading as less as possible the generalization error.

The second contribution is related to the hyperparameter tuning task, that depending
on the case may be time-consuming. The use of the SVM with a kernel function gives
a freedom that allows to apply the method in many situations, however, choosing the
hyperparameters is a downside. In this way, we propose a hyperparameters tuning
method with mathematical convergence properties that uses a predefined local minima
as stopping criteria and have a mechanism to escape from undesired local minima.

Many attempts have been made to tackle the problems of the SVM computational cost,
incremental learning, and memory consumption related to both. In the last contribution,
we introduce a novel SVM-variant with a smaller computational complexity compared
to the original SVM, which is able to deal with incremental and decremental procedures
(without the need for full retraining) and being memory efficient.

We perform exploratory research to understand the SVM limitations, so we are able to
formulate our hypothesis. We did empirical research to further analyze the proposed
methods through bibliography research over a systematic review. We set the thesis
scope as an SVM-variant suitable for continuous and large-scale datasets with an
effective hyperparameters tuning solution. We conduct quantitative research with a pro-
posal validation that directly compares the proposed methods with related work using
benchmark or controlled generated datasets, analyzing the numerical outputs as accu-
racy, computational complexity, processing time, and RAM consumption. We question
the validation regarding the results of the experimental protocol and the applicability
in real-world situations. We develop multiple experimental procedures to mitigate the
uncertainty of the internal validation, and we evaluate the variables with numerical
parameters.

To deal with large datasets in learning problems we propose a passive sampling that



selects a subset from the available training data that can be handled within time an
computational resource constraints, maintaining the generalization capability. The ex-
perimental protocol results shows that the proposed method preselects instances that
are likely to be support vectors (and its neighbors) even in a reduced space, thus, it
does not compromise much the generalization capability.

Most common methods for hyperparameters tuning does not provide mathematical con-
vergence properties and dynamic stopping criteria, leading to sub-optimal outcomes, in
this way, the proposed model selection technique leads to an outcome less susceptible
to sub-optimal results and requires inferior processing time compared to frequently
used methods. The prosed method gives the user a flexibility of choosing parameters to
explore different strategies and situations, and the experimental shows that the method
is more likely to require less function evaluations to reach good set of hyperparameters.

We introduced a novel SVM-variant suitable for incremental and decremental learning
that integrates elements from many methods from literature. The proposed method
keeps the SVM flexibility and adds incremental and decremental procedures. The fuzzy
concept incorporated enhances noise-resistance and generalization performance when
using the linear model. The incremental step can run with different batch sizes, and the
decremental procedure controls the model complexity. According to the experimental
results, the method presents a competitive generalization capability compared to the
best methods available.

In this thesis, we present methodologies that address the issues of improving scalability,
computational and data efficiency, and generalization performance of the SVM or a
variant, and all proposed methods are suitable to be used in real-world scenarios.

Keywords: Support Vector Machine. Incremental Learning. Machine Learning. Twin
Support Vector Machine. Artificial Intelligence.
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1 INTRODUCTION

1.1 MOTIVATION

The problem of learning from data has been investigated by philosophers, sci-
entists, and engineers throughout history, and there is a long history of studying this
problem within the statistical framework. Researchers in the field of artificial intelligence
started to consider the problem of learning from its beginning, as Alan Turing (TURING,
1950) proposed the idea of learning machines in 1950, and just a few years later the
first examples of learning method were developed, as the Arthur Samuel’s draughts
player was an early example of reinforcement learning (SAMUEL, 1959), the Frank
Rosenblatt’s perceptron (ROSENBLATT, 1958), and the Solomonoff inductive learning
in (SOLOMONOFF, 1964a) and (SOLOMONOFF, 1964b).

The field of machine learning is an important sub-field of artificial intelligence
and is based on the idea of modeling learning systems as a problem of search in
suitable hypothesis space (CRISTIANINI; SHAWE-TAYLOR, 2000). Over the past few
decades, machine learning has become one of the mainstays of information techno-
logy, and with the increasing amounts of available data, data analysis is becoming
indispensable to technological progress. A fundamental problem of machine learning
is the searching for patterns in data, and the field of pattern recognition is concerned
with the automatic discovery of regularities in data through the use of computer algo-
rithms and with the use of these regularities to take actions such as classifying the data
into different categories (BISHOP, 2006). Pattern recognition is used in many areas
of science and engineering, as the optical character recognition, speech recognition,
computer vision, computer-aided diagnosis, character recognition, face and fingerprint
recognition, galaxy classifying, temporal analysis, fault diagnosis, among others.

Pattern classification differs from classical statistical hypothesis testing, wherein
the sensed data are used to decide whether or not to reject a null hypothesis in favor of
some alternative hypothesis, i.e., pattern classification seeks to find the most probable
hypothesis from a set of hypotheses (DUDA; HART; STORK, 2001). The general struc-
ture of a pattern classification system is given in Fig. 1, and we define its three main
steps in the following (NIEMANN, 1990):

1. Data preprocessing: A pattern is transformed to some other pattern which is ex-
pected to be more suited for further processing and which should yield improved
results of classification and analysis, i.e., it is the act of modifying the input data to
simplify subsequent operations without losing relevant information. Some of the
most common preprocessing procedures are the noise removal, spatial or tem-
poral element segmentation, alignment or registration of the query to a canonical
frame, fixed transformation of the data, and the transformation from a numerable
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Figura 1 – The flowchart of a pattern classification system.

Preprocessing Feature Extraction Classification

Training Sample Training

Input Decision

representation to a vector space.

2. Feature Extraction: The measurements which represent the data. The statistical
model one uses is crucially dependent on the choice of features. Hence it is useful
to consider alternative representations of the same measurements (i.e. different
features). For example, different representations of the color values in an image.
General techniques for finding new representations include discriminant analysis,
Fourier analysis, principal component analysis, and clustering (RIPLEY, 1996).

3. Classification: Assigning a class to measurement, or equivalently, identifying the
probabilistic source of a measurement. The only statistical model that is needed
is the conditional model of the class variable given the measurement. This condi-
tional model can be obtained from a joint model or it can be learned directly. The
former approach is generative since it models the measurements in each class. It
is more work, but it can exploit more prior knowledge, needs less data, is more mo-
dular, and can handle missing or corrupted data. Methods include mixture models
and Hidden Markov Models. The latter approach is discriminative since it focu-
ses only on discriminating one class from another. It can be more efficient once
trained and requires fewer modeling assumptions. Methods include SVM, neural
networks, logistic regression, generalized linear classifiers, and instance-based
methods (RIPLEY, 1996).

This thesis concerns about the learning (classification), thus we are not focusing
on the preprocessing and feature extraction steps. Learning refers to some form of
algorithm for reducing the error on a set of training data, and comes in several general
forms:

• Supervised Learning: The task is to estimate (or to predict, which is the same in
this context) one or more outputs (or targets) based on one or more inputs using
empirical evidence (a dataset) that is collected beforehand (RUSSELL; NORVIG;
DAVIS, 2010).

• Unsupervised Learning (clustering): There is no explicit teacher, and the system
forms clusters (or natural groupings) of the input patterns. It is always defined
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explicitly or implicitly in the clustering system itself and given a particular set of
patterns or cost function, different clustering algorithms lead to different clusters
(DUDA; HART; STORK, 2001).

• Semi-supervised Learning: Is the halfway between supervised and unsupervised
learning, so the dataset contains labeled and unlabeled instances.

• Reinforcement Learning: It learns how to act optimally in a given environment,
especially with delayed and nondeterministic rewards, and it is composed of two
interleaved tasks: modeling the environment and making optimal decisions based
on the model. The first task is a statistical modeling problem, and the second task
is a decision theory problem: converting the expectation of delayed reward into
immediate action (DUDA; HART; STORK, 2001).

This thesis interest is in supervised learning, especifically in the SVM classifier,
in this manner, we do not extend the theory and theorems to the other types of learning.
To make viable the use (or development) of a supervised learning method there are
several aspects that must be considered, as the computational complexity, that defines
how an algorithm scales in the number of features dimensions, patterns, or categories
(DUDA; HART; STORK, 2001). There are many characteristics from the SVM classifier
that must be considered when applying it, or specially when designing a new one. Fig. 2
presents some important SVM’s characteristics that are relevant to the development of
this thesis.

The goal of a classifier is to accurately be able to predict outcomes values for
previously unseen data, and the generalization error is the aspect that carries this
property. Considering the input data x, the unknown target function f : X → Y, where
X is the input space (set of all possible input x), and Y is the output space (in the
classification problem case, the predicted label), there is a dataset D of input-output
relation, i.e., for each input instance there is an associated label. The learning algorithm
goal is, using the dataset D, to get a hypothesis set H (thus a single hypothesis h ∈ H)
through a formula g : X → Y that approximates f . The error rate within sample Ein

is the fraction of D where f and h, whereas the out-of-sample error Eout measures
how well the training data has generalized to a data that has not seen before (ABU-
MOSTAFA; MAGDON-ISMAIL; LIN, 2012). In this manner, the generalization error is
defined as the discrepancy between Ein and Eout1.

The learning algorithms are evaluated over a set of finite samples, so the algo-
rithm’s evaluation may be sensitive to sampling error. As a result, the measurements
of prediction error on the current data may not provide information about the generali-
zation error, which characterizes the overfitting, that is the phenomenon where fitting
the data well no longer indicates that we will get a decent out-of-sample error, and may
1 The mathematical proof can be found in (ABU-MOSTAFA; MAGDON-ISMAIL; LIN, 2012).
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Figura 2 – Aspects of a supervised learning classifier.
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actually lead to the opposite effect (ABU-MOSTAFA; MAGDON-ISMAIL; LIN, 2012).
Mathematically speaking, it is when the hypothesis has a lower Ein and results in a
higher Eout. Thus, the generalization error can be minimized by avoiding the overfitting
in the learning model.

The computational complexity in machine learning (KEARNS, 1990) is measured
in terms of information and computation, where the first concerns about the generali-
zation performance of learning (e.g., the required number of training instances), and
the latter concerns the computation resources applied to the training data to extract
from it learner’s prediction. In this manner, there is a contradiction in improving the
information and deteriorating the computation, and vice versa. The formal definition of
the computational complexity of learning is: Let H be a hypothesis class of functions
defined over an instance space of size d, and let ε, δ be accuracy and confidence
parameters. Let m(H, ε, δ) be the sample complexity of learning H with accuracy ε

and confidence 1 − δ. Then, the computational complexity of (ε, δ)-learning H is said
to be bounded by T (dm(H, ε, δ)) if there exists a learning algorithm that (ε, δ)-learns
H and whose runtime is bounded by T (dm(H, ε, δ)) and such that the runtime of the
hypothesis it outputs on any new instance x is also bounded by T (dm(H, ε, δ)). In this
way, it is possible to solve the empirical risk minimization in time O(|H|dm(H, ε, δ)) by
performing an exhaustive search over H with a training set of size m(H, ε, δ). Following
this definition, it is possible to define an efficient learning as a sequence of learning pro-
blems (dn,Hn, εn, δn)∞n=1 if there exists a polynomial p that for each n there is a learning
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algorithm that (εn, δn)-learns Hn in time p(dnm(Hn, εn, δn)). The solutions proposed in
this thesis must follow (and contribute) to the efficient learning principle, to turn viable
the proposed methods use in a practical scenario.

The model selection plays an important role, and considering the SVM case,
it refers to control the hyperparameters of the classification in order to achieve the
lowest test error, i.e., the lowest probability of misclassification of unseen test instan-
ces (GOLD; SOLLICH, 2003), however, it falls in the No Free Lunch (NFL) theorem
(WOLPERT, 1996) (WOLPERT; MACREADY, 1997) (WOLPERT, 2013), which implies
that all learning algorithms perform equally well when averaged over all possible data-
sets. This nonintuitive idea meant that looking for a general, a predictive algorithm is
not feasible, and it is well known in empirical research that some algorithms perform
consistently much better than others (GÓMEZ; ROJAS, 2016). The NFL for search and
optimization applies to finite spaces and algorithms that do not re-sample points. All al-
gorithms that search for an extremum of a cost function perform exactly the same when
averaged over all possible cost functions, so, for any search/optimization algorithm and
in this case the control of hyperparameters tuning, any elevated performance over one
class of problems is exactly paid for in performance over another class. For this reason,
there is no single optimal set of hyperparameters to all situations, and to each different
application, it is necessary to properly tune the hyperparameters, where depending on
the application, can be time-consuming.

1.1.1 ONLINE LEARNING AND MULTICLASS

Online learning (or incremental learning) refers to the situation of continuous
model adaptation based on a constantly arriving data stream, and it becomes necessary
in interactive scenarios where training instances are provided over time (GEPPERTH;
HAMMER, 2016). Therefore, online learning can continuously integrate new information
into already constructed models, allowing to use new data as soon as it is available,
which leads to all-time up to date models, and also reduces the costs for data storage
and maintenance. The online learning algorithms challenges are: it must have limited
memory resources, the model has to adapt gradually without complete retraining, it
must preserve previously acquired knowledge without catastrophic forgetting, and only a
limited number of training instances are allowed to be maintained (LOSING; HAMMER;
WERSING, 2018). Due to the ability of continuous processing (in some cases the
algorithms can deal with large-scale and real-time), online learning has gained the
attention in the context of the Internet of Things, Big Data, and learning in nonstationary
environments.

Supervised multiclass classification algorithms aim at assigning a class label for
each input example when the problem has three or more classes. Several classification
algorithms have been proposed to solve a two class problem (as the original SVM it-
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self), and while some cases can be naturally extended to the multiclass case, there are
methods that need formulation adaptation. To extend a binary classifier with multiclass
problems we can either combine several binary classifiers or propose a larger optimi-
zation problem (HSU; LIN, 2002), and the choice of method must be done considering
the other aspects of the supervised learning classifier, as the computational complexity,
generalization error, overfitting, and online learning capability.

1.2 RESEARCH OBJECTIVES

The SVM is a supervised learning classifier with a computational complexity
of O(n3) for n instances, thus it has some limitations to deal with large datasets, and
considering the existence of hyperparameters, it requires a proper model selection to
get the best generalization error as possible. In this manner, considering the aspects
of the training dataset size and the model selection, larger datasets (consider here the
number of instances and the dimension) requires more time to the SVM learn, thus
it takes longer to properly tune the hyperparameters. So, there is a trade-off between
the time available to tune the hyperparameters (because it is related to the dataset
dimension) and the generalization error. In this manner, this thesis proposes solutions
to ease the use of the SVM or a SVM-variant.

The research objective of this thesis is to develop methods to improve the usa-
bility of the SVM (or an SVM-variant) under real-world application scenarios, and its
based on the following research questions:

1. How to make viable the use of an SVM classifier for large datasets, given that the
computational complexity isO(n3), thus, the training procedure may be unpractical
for datasets with a large number of instances and attributes?

To make viable the usage of a regular SVM for large datasets, (i.e., cases that
the dataset does not fit on available memory) we propose to preselect instance
candidates that are more suitable to enhance the generalization error perfor-
mance. This process increases the training and hyperparameter tuning procedu-
res degrading as less as possible the generalization error performance.

2. How to tune the SVM hyperparameters in an efficient manner?

The hyperparameter tuning may be a time-consuming task, so we propose to
use a method with mathematical convergence properties that use a predefined
local minima as stopping criteria and have a mechanism to escape from undesired
local minima.

3. How to reduce the computational cost of the SVM adapting the optimization
formula to deal with large and continuous data?
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We propose an SVM-variant that has a smaller computational complexity com-
pared to the original SVM, and it is able to deal with incremental and decremental
procedures without the need for full retraining and being memory efficient.

1.3 METHODOLOGY AND VALIDATION

This thesis is inspired by other academic works with similar thematics related to
SVM, and we narrow the related work to selecting training sets ((NALEPA; KAWULOK,
2016); (NALEPA; KAWULOK, 2018); (KAWULOK; NALEPA, 2012); (SHEN et al., 2016);
(GOTO; ISHIDA; UCHIDA, 2015); (LOPEZ CHAU et al., 2010)), SVM hyperparameters
tuning strategies ((CHEN; FLORERO-SALINAS; LI, 2017), (CHUNG et al., 2003),
(GOLD; SOLLICH, 2003)), and SVM-variations ((SUYKENS; VANDEWALLE, 1999),
(MANGASARIAN, 1998), (FUNG, G.; MANGASARIAN, O. L., 2001), (JAYADEVA;
KHEMCHANDANI, R.; CHANDRA, 2007), (CAUWENBERGHS; POGGIO, 2000),
(TIAN; JU et al., 2014), (GAO; WANG et al., 2015)).

Considering the thesis’ goals, we perform exploratory research to understand
the SVM limitations, so we can formulate our hypothesis. We made an empirical rese-
arch to further analyze and mitigate potential threats to the proposal validation, in our
case, the proposed methods, through a bibliography research over a systematic review,
selecting works considering the theme proximity to this thesis, and the presence of a
solid methodological fundamentals and a suitability to be applied in real-world scenario.

Considering the many aspects of the SVM (as the optimization problem, solver,
application, among others), we set the thesis scope as an SVM-variant suitable to
continuous and large datasets with an effective hyperparameters tuning solution. It is
important to highlight that the proposed methods do not depend on the values used
to exemplify and illustrate this document. We conduct a quantitative research with a
proposal validation that directly compares the proposed method with related work, using
benchmark or controlled generated datasets and analyzing the accuracy, computational
complexity, processing time, and RAM consumption (when applicable to the respective
context).

We question the validation in two topics: the experimental protocols results and
the applicability in real-world situations. We develop multiple experimental procedures
to mitigate the uncertainty of the internal validation, to cover the maximum types of
scenarios as possible. We design the experimental procedures to evaluate the varia-
bles respective to each contribution behavior under real-world and controlled datasets,
with the goal of validating the proposed methods to generalization. For each experimen-
tal protocol, we define numerical parameters to compare the proposed methods with
related others, as the accuracy, considering different scenarios that include diverse situ-
ations. All further detail about the used algorithms, datasets, and experimental protocols
for validation are detailed in the respective chapters.
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1.4 SUMMARY OF CONTRIBUTIONS

This thesis brings contributions to different aspects of the Support Vector Machi-
nes that can be used combined or separate in different application scenarios.

The contributions of Chapter 3 is about preselecting SV candidates as a form
of passive sampling. The proposed technique preselects SV candidates that are in the
convex-hull of its class and its neighbors from the Delaunay graph, and the SV candida-
tes size is related to the Delaunay graph connections density from points that belong to
the convex-hull of each class from the dataset, consequently, the SVM training time is
proportionally faster. The method’s restriction is that, if the dataset instances have more
than 3 features, it is necessary to apply a dimensional reduction technique. The main
contribution is that the proposed method works in a reduced space, which means that
preselecting SV coincides well with original SV, as the accuracy of tested datasets does
not decrease significantly. Also, the dimensional reduction techniques smooth eventual
noises present in the dataset. Additionally, using a graph-based method to preselect
SV works in datasets with the presence of imbalanced distribution.

Hyperparameters tuning for SVM is a Black-Box Optimization (BBO) problem
that may be time-consuming (depending on the dataset dimension) and have a high
sensitivity, i.e., small differences in the hyperparameters may lead to considerably
different results. To improve the model selection performance, Chapter 4 presents the
Ortho-MADS with the Nelder-Mead (NM) and the VNS for hyperparameter tuning. The
contributions of the proposed method includes a flexibility of choosing parameters (from
the method) to explore different strategies and situations, the method has mathematical
convergence proof, a mechanism to escape from eventual undesired local minima,
and by using the mesh size as a stopping criterion gives to the user the possibility
of setting a specific local minimum region instead of using the number of evaluations,
time, or fixed-size grid as a stopping criterion. Results show that the proposed method
outperforms widely used and state-of-the-art methods for model selection.

Chapter 5 advances the SVM studies to a new incremental and decremental for-
mulation. The FBTWSVM integrates ideas from several methods, and it can be configu-
red (according to the application) to add new SV in the incremental step and the number
of occurrences in the decremental step. The fuzzy concept enhances noise-resistance
and generalization capability, while the use of a kernel approximation shows a good
generalization performance with our linear model. The incremental solution follows the
shrinking strategy and can run with different batch sizes, from a single individual to
the number of data points that fits the available memory. The decremental procedure
is fundamental to control the model complexity, keeping only the most critical SV in
the model. According to the experimental results, the Directed Acyclic Graph (DAG)
strategy showed a generalization capability and a fast training speed, but for further
studies, the use of training data structural and statistical information in the training pro-
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cess may increase the generalization performance. The contributions of the FBTWSVM
are the good generalization capability and a fast training speed compared to traditional
incremental SVM, the incremental solution follows the shrinking strategy and can run
with different batch sizes, from a single individual to the number of data points that fits
the available memory, it can adapt current models using the window strategy without
retraining, the fuzzy concept enhances noise-resistance and generalization capability,
while the use of a kernel approximation shows an efficient generalization performance
with our linear model, and the dual coordinate descent method with shrinking requires
less memory storage than the TWSVM on the training procedure, as it discards points
that are less likely to be SV.

1.5 ORGANIZATION

The remainder of this thesis is organized as follows.

• Chapter 2 contains the common notations that are used through all the document,
followed by the SVM introduction, formal definition, popular solvers, the multiclass
problem, and important variations.

• Chapter 3 presents the Support Vector Candidates Selection via Delaunay Graph
and Convex-Hull for Large and High-Dimensional Datasets. The method preselect
instances from the dataset that have a higher probability to be an SV, reducing
the dataset size to enable faster training or hyperparameter tuning.

• Chapter 4 proposes A Novel Orthogonal Direction Mesh Adaptive Search Ap-
proach for SVM Hyperparameter Tuning. To proper tune the SVM (or any SVM-
variant) hyperparameters can be challenging, and the most common methods in
the literature have fixed stopping criterion (as the number of iterations or time)
and no mathematical convergence proof, in this way, we propose a method with a
dynamic stopping criterion, mathematical convergence proof, and mechanisms to
escape from eventual undesired local minima.

• Chapter 5 proposes an Incremental and Decremental Fuzzy Bounded Twin Sup-
por Vector Machine, which is an SVM-variant that has lower computational com-
plexity, compared to original SVM, an online learning capacity, and a decremental
procedure to keep memory efficiency. The proposed method includes a fuzzy
component to diminish the effect of outliers, and we propose the use of an ap-
proximate kernel operation to avoid the two-dimensional increase in the online
learning process. We use the Error-Correcting Output Codes (ECOC) framework
to expand the classifier to a multiclass situation.
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• Chapter 6 presents a conclusion for this thesis with a summary of the achieve-
ments and perspectives for future research.
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2 SUPPORT VECTOR MACHINES

2.1 COMMON NOTATION

We use the following definitions and notations throughout the thesis. The
problems are in a n−dimensional space Rn. We denote the training data as
D=(xi, yi)|i = 1, 2, . . . , l, where xi ∈ Rn is an instance (input data point), and l is the
number of instances, with the corresponding label yi ∈ {1, 2, . . . , u} where u is the
number of classes.

We adopt the definition of incremental learning proposed by (LOSING; HAM-
MER; WERSING, 2018) as an algorithm that generates on a given stream of training
data x1,x2, . . . ,xt a sequence of models h1,h2, . . . ,ht, where (hi:Rn|i = 1, 2, . . . , l) is
a model function solely depending on hi−1 and the recent p data points xi, . . . ,xi−p with
p being strictly limited. The approach used to deal with multiclass problems is the DAG,
where it is necessary to create 2u − 1 binary problems. For each binary problem we
assign either a positive or a negative label yi ∈ {+1,−1}. Therefore, the training set D
is divided into the l+ × n dimensional matrix X+ and l− × n dimensional matrix X− for
positive and negative labels respectively, where l+ and l− denote the number of data
points from each label. We define the aggregation per binary problem as X=[X>+X

>
− ],

and it denotes all input data points from both classes.

2.2 SVM INTRODUCTION

The SVM (BOSER; GUYON; VAPNIK, 1992; CORTES; CORTES; VAPNIK,
1995) is an algorithm used in machine learning for statistical pattern recognition tasks,
originally designed for binary classification (HSU; LIN, 2002), and its first appearance,
as so-called maximal margin classifier, optimizes the linear machines generalization
error bounds by separating the data with a strategy to find the maximal margin hy-
perplane in an appropriately chosen kernel-introduced feature space (CRISTIANINI;
SHAWE-TAYLOR, 2000). We can reduce the SVM problem to a convex optimization
form, i.e., minimize a quadratic function under linear inequality constraints1, and to solve
this convex optimization, we fix the geometric margin through the functional margin to
be equal to 1, minimizing the norm of the weight vector associated with the hyperplane
(w, b) (it does not change if rescaled). Fig. 3 depicts the maximal margin hyperplane,
where H1 and H2 are the geometric margin, H0 is the median between margins, the
SV are on the margins H1 and H2, and the d+ is the shortest distance to the closest
positive point, and d− is the shortest distance to the closest negative point.

This way, a weight vector w realizes a functional margin of 1 on positive x+ and
negative x− instances, which its geometric margin is computed as:
1 Aditional proves and deductions can be found in (CRISTIANINI; SHAWE-TAYLOR, 2000).
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Figura 3 – A maximal margin hyperplane with its support vectors highlighted.
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where b is the threshold (also known as bias term) that is re-computed after each step.
To compute the geometric margin γ, w must be normalized, and is calculated by the
functional margin of the following classifier:

γ =
1

||w||2

The problems are in a n−dimensional space Rn, so we denote the training data
as D=(xi, yi)|i = 1, 2, . . . , l, where xi ∈ Rn is an instance (input data point), and l is
the number of instances, with the corresponding label yi ∈ {1, 2, . . . , u} where u is
the number of classes. To solve a linear SVM for l linearly separable training samples
S = ((x1, y1), ..., (xl, yl)) and its respective labels yl ∈ {±1}, we define the hyperplane
(w, b) optimization problem as:

minimizew,b < w ·w >

subject to yi(< w · xi >) + b ≥ 1

i = 1, ..., l

where it realizes the maximal margin hyperplane with geometric margin γ = 1/||w||2.
The optimization problem can now be rearranged to its corresponding dual through
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Lagrange multipliers, α ≥ 0, and it is found by differentiating with respect to w and b,
imposing stationarity. The dual form is also necessary to introduce the use of kernels
and the is presented as:

L(w, b,α) =
l∑

i=1

αi − 0.5
l∑

i,j=1

yiyjαiαj < xi · xj >

Considering the linearly separable data, and suppose the Lagrangiansα∗, where
∗ stands for a generic solution, solve the quadratic optimization problem, the standard
SVM dual is defined as:

maximise W (α) =
l∑

i=1

αi − 0.5
l∑

i,j=1

yiyjαiαj < xi · xj >

subject to
l∑

i=1

yiαi = 0,

α ≥ 0, i = 1..., l

(1)

The weight vector w∗ =
∑l

i=1 yiα
∗
ixi realizes the maximal margin hyperplane

with geometric margin. As b do not appear in the dual problem, it is found by the primal
constraints:

b∗ = −maxyi=−1(< w∗ · xi >) +minyi=1(< w∗ · xi >)

2

The Karush–Kuhn–Tucker Complementary Conditions (KKT) provides informati-
ons about the solution structure, and the KKT states that the optimal solution α∗, (w∗, b)

that must be satisfied is:

α∗i [yi(< w
∗ · xi > +b∗)− 1 = 0, i = 1, ..., l

Thus, the xi instances that the functional margin is 1 and lie closest to the hy-
perplane are called SV, and the corresponding α∗i is non-zero. The optimal hyperplane
dual representation, in terms of the parameters subset, is expressed as:

f(x,α∗, b∗) =
∑
i∈SV

yiα
∗
i < xi · x > +b

The Lagrange multipliers associated with each point become the dual variables,
and points that are not SV have no influence in the final solution. A consequence of
applying the KKT complementary conditions is that for j ∈ SV ,

yif(xj ,α
∗, b∗) = yj(

∑
i∈SV

yiα
∗
i < xi · x > +b) = 1

therefore
< w∗ ·w∗ >=

∑
i∈SV

α∗i
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Figura 4 – A feature map to simplify the classification task.
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The geometric margin is now defined as:

γ = 1/||w||2 = (
∑
i∈SV

α∗i )
1/2

where in both dual objective and decision functions the instances only appear inside
an inner product, which enables the kernel function use, i.e., the SVM nonlinearity is
brought forth by the kernel function κ(x,x>) that satisfies the distance relationship
between transformed and original space, i.e., κ(x,x>) = Φ(x)>Φ(x>). The kernel
function maps the training instances into some feature space F : Rn → F , and Fig. 4
illustrates the map transformation.

One popular kernel function is the Radial Basis Function (RBF), defined as:

κ(x,x>) := exp(
−||x− x>||2

2σ2
)

= exp(γ||x− x>||2), ∀h,h′ ∈ Rn

(2)

where || · || represents the l2 norm and (γ, σ) are fixed constants with the geometric
margin γ = 1

2σ2 . The decision rule is given by sgn(f(x)), that is equivalent to the
maximum margin separating hyperplane in the feature space is defined as ω>Φ(x)+b =

0. The kernel must satisfy Mercer’s conditions, which is equivalent to requirement that
the matrix with entries (K(xi, xj))

l
i,j=1 be positive definite for all training sets. Hence,

the optimization problem is convex.
For the cases that there is no method to make the instances separable in the

feature space, the soft margin optimization is introduced by the use of slack variables
ξ, allowing the margin constraints to be violated:

subject to yi(< w · x > +b) ≥ 1− ξi, i = 1, ..., l

ξi ≥ 0, i = 1, ..., l

The 2-norm soft margin contains the ξi scaled by the weight vectorw, suggesting
that an optimal choice for C in the resulting optimization problem objective function
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should be R2. Thus, assuming the restrictions introduced with the slack variable, the
objective function is updated to:

minimizeξ,w,b < w ·w > +C
l∑

i=1

ξ2

Eq. 3 describes the primal form of quadratic programming problem that repre-
sents the nonlinear soft-margin SVM, and its minimization results are the maximum
margin separating hyperplane.

min
ω,b,ξ

1

2
||ω||2 + C

n∑
i=1

ξi

subject to yi(ω · Φ(xi) + b) ≥ 1− ξi
ξi ≥ 0,∀i

(3)

where ξ is the slack variable that introduces the soft margin optimization (allowing the
margin constraints to be violated), and the constant C > 0 is a trade-off hyperparameter.
If ξ < 0, the first constraint will hold if ξi = 0, reducing the value of the objective function.
Hence, the optimal solution can be obtained by removing the positivity constraint on
ξi. The parameter C varies through a wide range of values, thus the norm ||w||2 varies
smoothly though a corresponding range. Thus, choosing a particular C corresponds
to selecting a value for ||w||2 (methods like cross-validation are usually applied), then
minimizing ||ξ||2 for size w. There are two dual form of the margin slack vector, that
result in the soft margin algorithms.The 2-Norm Soft Margin (weighting the diagonal)
is a dual form found by differentiating with respect to w, ξ and b, imposing stationarity.
The objective function is maximized over α, and KKT complementary conditions are
applied. The feature space are implicitly defined by the kernel κ(x, z), and parameters
α∗ solve the following quadratic optimization problem:

maximize W (α) =
l∑

i=1

αi − 0.5
l∑

i,j=1

yiyjαiαj(κ(xi,xj) +
1

C
δij

subject to
l∑

i=1

yiαi = 0

αi > 0, i = 1, ..., l

(4)

where δij is the Kronecker δ defined to be 1 if i = j and 0. The decision rule given
by sgn(f(x)) is equivalent to the hyperplane in the feature space which solves the
optimization problem, and the slack variables are defined relative to the geometric
margin:

γ = (
∑
i∈SV

α∗i −
1

C
< α∗ ·α∗ >)−1/2
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The 1-Norm Soft Margin (box constraint) follow the same idea of the 2-Norm
Soft Margin, with the difference that the constraint C −αi− ri = 0, with ri ≥ 0, enforces
αi ≤ C, while ξi 6= 0 only if ri = 0, and therefore αi = C. The KKT conditions implies
that a non-zero slack variables only occur whenαi = C. Using the same training sample
and kernel already defined, and suppose α∗ solve the following quadratic optimization
problem, the 1-Norm Soft Margin SVM is defined as:

minimize W (α) = −
l∑

i=1

αi + 0.5
l∑

i,j=1

yiyjαiαj(κ(xi,xj)

subject to
l∑

i=1

yiαi = 0

∀i : 0 ≤ αi ≤ C, i = 1, ..., l

(5)

Using decision rule function, b∗ is chosen so that yif(xi) = 1 for any i with
C > α∗ > 0. The decision rule is also given by sgn(f(x)), and the slack variables are
defined relative to the following geometric margin:

γ = (
∑
i∈SV

yiyjα
∗
iα
∗
jκ(xi,xj))

−1/2

The maximum margin separating hyperplane in the feature space is defined as
ω>Φ(x) + b = 0. The Eq. 6 calculates the classification score regarding the distance
from an instance x to the decision boundary.

f(h) =
d∑
i=1

αiyiκ(xi,x) + b (6)

To solve the SVM it requires a large memory and a high CPU power since the
computational complexity of the SVM for n data points is O(n3). A solution to solve
the iterative quadratic programming optimization inherent to SVM is the Sequential
Minimal Optimization (SMO) algorithm (PLATT, 1998). It is derived by taking the idea of
decomposition method to its extreme and optimizing a minimal subset of just two points
at each iteration (CRISTIANINI; SHAWE-TAYLOR, 2000). The SMO jointly optimize
analytically two elements, chosen by a heuristic, αi and αj at each step, since the
condition from standard SVM implies that the smallest number of multipliers to be
optimized at each step is two. The algorithm fixes all other hyperparameters, and the α
vector is updated accordingly. For theoretical properties, extensions and experimental
details, refer to (FAN; CHEN; LIN, 2005) and (CHEN; BUJA, 2006) work. The work of
(FAN; CHEN; LIN, 2005) concludes that the methods to choose the working set with
either first or second order approximation leads to faster convergence (fewer iterations)
than using a conventional SMO algorithm. Also, the second order approximation shows
that it is better than the original SMO considering time and iterations (FAN; CHEN;
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LIN, 2005), this way it is the standard training method of LIBSVM library (CHANG; LIN,
2011a). It is clear that the choice of α is essential to the SMO algorithm.

The SVM with a kernel (as the Gaussian or RBF) has two important hyperpara-
meters that impact greatly in the performance of the learned model: the soft-margin C
and the kernel hyperparameter γ. Therefore, the application of the SVM with Gaussian
kernel to a classification problem requires an appropriate selection of hyperparameters,
called hyperparameter tuning or model selection. Given these two hyperparameters
and a training dataset, an SVM solver can find a unique solution of the constrained
quadratic optimization problem and return a classifier model. Unfortunately, there is
no standard procedure for hyperparameter tuning, and a common approach is to split
the dataset into training and validation set, and for each C and γ from a suitable set,
select the pair that results in an SVM model that when trained on the training set has
the lowest error rate over the corresponding validation set (WAINER; CAWLEY, 2017).

For the multiclass problem cases we can extend the SVM by reducing the classi-
fication problem with three or more classes to a set of binary classifiers using methods
as the One-Vs-One (OVO), the One-Vs-Rest (OVR) (HSU; LIN, 2002), the ECOC mo-
del (DIETTERICH; BAKIRI, 1994), or the DAG model (PLATT; CRISTIANINI; SHAWE-
TAYLOR, 2000). The multiclass method choice does not interfere in the proposed
solution, however, different methods may results in different classification outcomes.

2.2.1 SVM VARIANTS

Based on the SVM, other variations were proposed, and we highlight the most
cited in the literature. The Least Squares Support Vector Machine (LS-SVM), propo-
sed by (SUYKENS; VANDEWALLE, 1999), change the formulation to a set of linear
equations and changes the inequality constraint to an equality. This way, the LS-SVM
includes the following properties (SUYKENS; VAN GESTEL et al., 2002):

• Choice of kernel function: the kernel function still have to be positive definite and
satisfy Mercer condition.

• Global and unique solution: the dual problem of LS-SVM corresponds to solve
a linear KKT system which is a square system with a unique solution when the
matrix has full rank.

• The KKT system as a core problem: solving SVM classifier can be considered
as iteratively solving KKT systems where each take a similiar form as one single
LS-SVM classifier (NAVIA-VAZQUEZ et al., 2001).

• Lack of sparseness and interpretation of support vectors: every data point is a
support vector, thus no αi value will be exactly zero. In the LS-SVM case all
training data point will contribute to the model, and certain data points are more
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important than other, in this manner, points with large |αi| are located close and
far from decision boundary.

• Non-parametric/parametric issues: have the same primal-dual interpretations as
the SVM. In primal weight space, the problem is parametric with fixed size vector,
and in the dual space the problem is non-parametric as the size of the solution
vector α ∈ RN grows with the number of training data N .

As highlighted by (JOSHI; KALE, 2014), the LS-SVM advantage is, due to the
equality constraints, a set of linear equations has to be solved instead of a quadratic
programming problem. On the other hand, this approach is more suitable for small
datasets. A toolbox develop by the authors is available at http://www.esat.kuleuven.
be/sista/lssvmlab/toolbox.html.

The Lagrangian Support Vector Machine (LSVM) was developed for classification
tasks (MANGASARIAN; MUSICANT, 2000) by reformulating the original SVM dual
to an implicit Lagrangian version. This modification leads to the minimization of an
unconstrained differentiable convex function in a space of dimensionality equal to the
number of classified points. The LSVM is linearly convergent, however it requires the
inversion at the outset of a single matrix. The authors proposes to use the Sherman-
Morrison-Woodbury (SMW) identity (GOLUB; LOAN, 1996) to calculate the approximate
inverse matrix.

The Proximal Support Vector Machine (PSVM) was proposed by (FUNG, G.;
MANGASARIAN, O. L., 2001), where instances are classified by assigning to the clo-
sest of two parallels planes (in input or feature space) that are pushed apart as far
as possible. The 2-norm of the error vector is minimized, and the margin between the
bounding hyperplanes are maximized with respect to orientation and relative location
to the origin, realizing into a convexity in the objective function. The constraints are
equalities, enabling to write an explicit exact solution in terms of the problem data. This
way, the hyperplanes are not bounded but proximal, clustering and pushing the classes
as far apart as possible.

The Generalized Support Vector Machine (GSVM) (MANGASARIAN, 1998) cre-
ates a nonlinear separating surface using a completely arbitrary kernel. This method is
a strongly convex minimization problem without constraints that has a unique solution,
however, its objective function is not twice differentiable.

The Reduced Support Vector Machine (RSVM) (LEE; MANGASARIAN, 2001)
generates a non-linear separating surface for a large dataset requiring a small portion
of the respective dataset for its characterization. The problem is interpreted as possible
instance-based learning where the small samples are learning from much larger training
set by performing a rectangular kernel relationship between original and reduced sets.
The RSVM is useful problems with many support vectors, and it was designed for large

http://www.esat.kuleuven.be/sista/lssvmlab/toolbox.html
http://www.esat.kuleuven.be/sista/lssvmlab/toolbox.html
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scale nonlinear kernel (JOSHI; KALE, 2014).
The Linear Programming Support Vector Machine (LPSVM) (FUNG, G. M.; MAN-

GASARIAN, O., 2004) is a linear programming SVM formulation solved with a fast New-
ton method. The SVM formulation is changed to a linear programming form, generating
very sparse solutions (BRADLEY; MANGASARIAN, 1998), thus it is suitable for feature
selection in classification problems. The algorithm only requires a linear equation solver.

2.3 SVM LIMITATIONS

The SVM have a high computational cost during training phase, which makes
it unpractical for situations which the data is too large, i.e., do not fit on available
memory. When using a kernel, the SVM requires a model selection, that comprehends
choosing a kernel function and a manual tune of the hyperparameters, and it implies
in an additional RAM requirement during training phase. This limitation is related to
the first research question: How to make viable the use of an SVM classifier for large
datasets, given that the computational complexity is O(N3), thus, the training procedure
may be unpractical for datasets with a large number of instances and attributes?.

The hyperparameters tuning may be time consuming, and there is no standard
procedure. The most used methods are naive based (exhaustive search), heuristic
methods (without convergence proof), and direct search (do not have a mechanism
to escape from local minima). We relate the hyperparameters tuning limitation with
the second research question: How to tune the SVM hyperparameters in an efficient
manner?

The training phase also requires that all data is simultaneously accessed, in this
way, the SVM is not suitable for scenarios where the data is partially available at a time.
Considering the open-end scenario, where the data is temporally available and there is
no prior knowledge about the incoming data stream end, the SVM will always increase
the model size, and eventually it will reach the computer RAM memory limitations. This
problem becomes worse when using the kernel, as the RAM consumption scale much
faster. We relate this problem to our last question: How to reduce the computational
cost of the SVM adapting the optimization formula to deal with large and continuous
data?
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3 SUPPORT VECTOR CANDIDATES SELECTION VIA DELAUNAY GRAPH AND
CONVEX-HULL FOR LARGE AND HIGH-DIMENSIONAL DATASETS

3.1 INTRODUCTION

The SVM have an generalization capability for classification tasks (CRISTIANINI;
SHAWE-TAYLOR, 2000), however, two disadvantages are well known: firstly, the model
requires manual tunes and hyperparameters choices, which comprehends the selection
of the kernel function and its tuning, and the choice of tolerance values. Secondly, the
high computational cost during the training phase, especially with tasks that involve
large-scale datasets. Despite the large-scale dataset be effective for training classifiers
(WANG; NESKOVIC; COOPER, 2005), both the training process and the hyperpara-
meters tuning procedure (which the latter require multiple training repetitions) may be
challenging and time demanding. Among various methods to reduce the computational
complexity of SVM training there is the SV candidates pre-selection (SHIN; CHO, 2007),
as shortening the training set implies in speeding-up the training time. In this chapter
we introduce a method to pre-select SV candidates based on the relationship between
inputs depicted by a network representation. The dataset dimensionality is reduced to
3 dimensions, if necessary, and we describe the training dataset with a Delaunay graph
(DELAUNAY, 1934). We create convex-hulls to each class of training dataset and select
all points that belong to a convex-hull as SV candidates, as well as their neighbors from
Delaunay graph.

From this chapter we created the following paper:
Reeberg de Mello, A.; STEMMER, M. R.; Oliveira Barbosa, F. G. Support vector

candidates selection via Delaunay graph and convex-hull for large and high-dimensional
datasets. Pattern Recognition Letters, North-Holland, v. 116, p. 43–49, dec 2018. ISSN
0167-8655.

3.2 LITERATURE REVIEW

The work of (NALEPA; KAWULOK, 2018) presents a review on selecting training
sets for SVM, where the techniques to reduce the cardinality of a training set are catego-
rized based on the underpinning optimization strategy: data geometry analysis and its
subbranches clustering or non-clustering based, neighborhood analysis, evolutionary,
active learning, and random sampling. Due to the page limit, we only reference the
works that are most related to this paper.

The work of (WU; PHAM; NGUYEN, 2017) proposes a two-phase Two-Phase
Sequential Minimal Optimization (TSMO) approach to scale down the training cost of
large-scale data, and a two-phased-in-differential-learning particle swarm optimization
(tDPSO) to ensure the accuracy of under-sampled data through parameter selection.
The first phase is a supporting-vector-based working set selection named fast working
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set selection (FWSS), which uses only first-order gradient information. The second
phase is the modification of Lagrange multipliers using a Second-Order Approximation
(WSS3) algorithm (FAN; CHEN; LIN, 2005). Tests comparing TSMO, First-Order Ap-
proximation (WSS1) and WSS3 (last two from LibSVM (CHANG; LIN, 2011a)) present
similar accuracy, despite the different number of Support Vectors (SVs) used for training
in each case. Also, TSMO training time is significantly smaller, since there are fewer
points to consider as SVs during SMO training process.

The work of (NALEPA; KAWULOK, 2016) proposes a new adaptive memetic
algorithm (PCA2MA), enhanced with a Principal Component Analysis (PCA) based
preprocessing, to select valuable SVM training data. It starts with a population of re-
duced training sets undergoes the evolution, which is complemented by refinement
procedures, exploiting both training set (a priori) information and the knowledge attai-
ned dynamically during PCA2MA execution to enhance the refined sets. The authors
also introduce a new adaptation scheme to control the pivotal algorithm parameters on
the fly, based on the current search state. PCA2MA central features include: prepro-
cess all dataset using PCA to exploit geometrical properties and to extract potentially
valuables vectors before the evolutionary optimization, and create an initial popula-
tion and guide the evolution effectively towards high-quality refined training sets. The
adaptation scheme has no essential parameters, which contour the drawback present in
other adaptation procedures. The reported experiments show efficacy and convergence
capabilities, especially compared with others evolutionary algorithms approach.

The work of (SHEN et al., 2016) proposes a clustering-based training set selec-
tion for SVM. The method explores clustered and scattered data points in a cluster, in
which dense points that lie around the clustering centroid, i.e., are in the inner layer,
are removed. Scattered data points are usually sparse and located in an outside layer,
thus are reserved. The boundary between clustered and scattered data in each cluster
is set using the Fisher Discriminant Ratio, which calculates the distance densities of
data points to the cluster centroid. Lastly, redundant clustered data points are removed
to speed up SVM training process. Experimental results, on balanced datasets, show a
significant reducing on training time without degrading classification accuracy.

The work of (GUO; BOUKIRA, 2015) introduces a method to select support
vector candidates based on ensemble learning, that consists in applying a random forest
algorithm followed by an ensemble-method called Small Votes Instances Selections
(SVIS). The method uses an unsupervised margin concept, introduced by (SCHAPIRE
et al., 1997), that combines the first and second most voted class labels under the
model. The bottleneck is the memory cost, which is O(N × T ), where N is the number
of inputs and T is the number of trees in the ensemble. Tests show a training time 30
to 40 times faster using SVIS when comparing to traditional training using raw dataset,
with a result degradation under 5%.



Capítulo 3. SUPPORT VECTOR CANDIDATES SELECTION VIA DELAUNAY GRAPH AND
CONVEX-HULL FOR LARGE AND HIGH-DIMENSIONAL DATASETS 42

To preselect support vector candidates for large-scale character recognition,
(GOTO; ISHIDA; UCHIDA, 2015) proposed the use of a relative neighborhood graph
(RNG). The method analyzes data distribution via network representation to preselect
SV candidates, where the RNG represents the entire training dataset. It selects boun-
dary pattern nodes (called bridge vectors) to be SV candidates by looking for edge
connections between different class patterns. The modification proposed to construct
RNG scales the graph creation to O(N2). The SV preselected with RGN coincide well
with original SV, so SVs candidates selected by RNG reduces the training data to
10% and accelerates the SVM training process from 5 to 15 times without degradation
(GOTO; ISHIDA; UCHIDA, 2015).

The work of (LÓPEZ CHAU; LI; YU, 2013) proposes a convex-concave hull for
SVM classification, firstly introduced in (LOPEZ-CHAU; LI; YU, 2012). The algorithm
looks for points that are on the outer boundaries of the set. It starts using (JARVIS,
1973) march method to compute the convex hulls, and from the convex hulls’ vertices, it
creates concave hulls. The authors also introduce a grid method based on binary trees
to preprocess the dataset, considering the leaves as versions of the original points,
which makes possible to look down from a certain height of the tree and take all leaves
as subsets. The grid process contains four parameters that lead to a trade-off: higher
binary trees leads to a finer quantization, but increase the amount of memory required to
store the grid. Another consideration is that the convex-concave hull searching algorithm
calculates angles, so it works fine in a two-dimensional space, and in case of higher-
dimension datasets, a dimension reduction technique is needed. To compute the convex
hull in more than three dimensions, the problem search convex-concave hull’s vertices
in several two-dimensional spaces subsets, and in the end get back to original aspect
concerning fixed center values of each subset. Results show that the training time is
decreased considerably, while accuracy is similar to classic SVM.

Also based on convex hull vertices selection within each class, (DI WANG et al.,
2013) proposes the vertices selection online SVM (VS-OSVM), that is composed of
two steps: i) the sample selection process which selects points from a small number of
skeleton samples constituting an approximate convex hull in each class of the current
training set, and ii) the online updating process, in which the classifier is updated with
newly arriving and selected skeleton samples. The first d+ 1 (where d is the dimension
of the input samples) selected samples are the vertices of the convex hull, and it
updates the classifier if the newly arrived data with distances to current classifier are
within a given threshold. The initial data is randomly chosen with a size of 50% of the
dataset size. The authors remark that the method is not suitable to be directly applied to
datasets with heavy noise since it is based on vertices selection of the convex hull of the
samples in each class. Experimental presents that the method does not compromise
classification accuracy, but considerably decrease SVM training time.
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(KAWULOK; NALEPA, 2012) introduces a method for selecting valuable training
dataset for SVM for large, noisy sets using a genetic algorithm. The technique relies
on analyzing the geometric properties of the data or adapts a randomized selection.
However, it has a high computational cost for large sets (more than 4000 samples).

The work of (LOPEZ CHAU et al., 2010) proposes a non-convex hull set stra-
tegy that envelops elements with the same label to select SV candidates. Instead of
using a convex-hull approach, which only considers points located on the boundaries,
non-convex hull methods add more points, therefore are less probable to miss support
vectors, as it includes points near borders. The proposed algorithm uses Jarvi’s appro-
ach to find boundary points while K-Nearest Neighbor provides with local candidates
(LOPEZ CHAU et al., 2010), implemented in parallel to accelerate training time. The
selected support vector candidates from the proposed method give a similar accuracy
to the whole dataset, but with a fraction of training time.

The work of (CERVANTES et al., 2008) proposed a four-step SVM classification
for large datasets via minimum enclosing ball clustering (MEB). The first step consists
in clustering the data using MEB with a (1 + ε)−approximation with a random sampling
method to generate l ball centers with a radius r. The distance between each point
and its belonging ball center must be less than r. The last clustering step consists in to
perform for all l, and if there is any point outside all balls, increase the radius and repeat
the process. The clustering process results in three ball categories: positive, negative,
and one mixed samples. The second stage of SVM classification is the training, that is,
find the support vectors considering only the balls center. Next step is the de-clustering,
which consist in retrieving all points that belong to centers that are support vectors
from the first SVM training. The last step is to retrain a new SVM considering all data
retrieved from the third step. The proposed method has shown to be as fast as possible
depending on the accuracy requirement, resulting training data size is considerably
smaller than original. Memory space, algorithm complexity and training time are smaller
when compared to a regular SVM, without decreasing classification accuracy.

The work of (WANG; SHI, 2008) presents a sample reduction technique based
on data structure analysis (SR-DSA) to improve SVM scalability. The algorithm has
three steps: i) find the data structures for positive and negative class independently,
where it defines a data structure as units in which the data points are considered to
share the same dispersion. A hierarchical clustering (Ward-linkage) is used to detect
the clusters in each class, and it can be performed in either linear or nonlinear SVM.
The clustering output is a dendrogram, which topology also represents the clustering
process, so the number of clusters is chosen by selecting dendrogram’s point of maxi-
mum curvature. ii) remove interior samples in each cluster by selecting points that are
smaller than a threshold, which is related to Mahalanobis distance between the points
and its respective cluster center. iii) for each cluster, remove exterior samples that are



Capítulo 3. SUPPORT VECTOR CANDIDATES SELECTION VIA DELAUNAY GRAPH AND
CONVEX-HULL FOR LARGE AND HIGH-DIMENSIONAL DATASETS 44

distant from opposite class. The remaining data are used to train the SVM. SR-DSA
can also be used in multiclass classifiers using the DAG combination. Results show no
degradation on classification accuracy on binary datasets.

The work of (ZENG et al., 2008) proposes a method to select convex hull sam-
ples in the feature space (SebSVM) for SVM training with linear time complexity. It
applies a kernel function to map training set into a higher space, followed by creating
two balls of minimum radius. Samples that lie on or close to the balls’ boundary are
selected to train the SVM. Experimental on low dimensional datasets (smaller than
54 dimensions) using a Gaussian kernel shows a significant decrease in training time,
preserving the generalization performance.

A neighborhood property-based pattern selection (NPPS) algorithm is proposed
by (SHIN; CHO, 2007) to select patterns located near decision boundaries. The neigh-
borhood property explored is that patterns situated near the decision boundary tend to
have more heterogeneous neighbors in its class memberships. An entropy concept is
utilized to measure the heterogeneity of class labels among k-nearest neighbors, which
leads to estimate the proximity. Tests comparing performance over NPPS, random
sample set (RAN) and all dataset show that the accuracy of NPPS preselected SVs
is better than RAN, and similar to all dataset, despite the number of patterns selected
from NPPS be around 5% of all data, which reduces training time proportionally.

The work of (SCHOLKOPF; BURGES; SMOLA, 1999) introduces three new
concepts; shrinking the SVM by selecting a working set among training data, caching
to improve computational efficiency, and incremental updates of the gradient. To select
a feasible working set, the first-order approximation to the target function is used, finding
the steepest feasible direction of descent which has only non-zero elements (which will
compose the working set), and (SCHOLKOPF; BURGES; SMOLA, 1999) was one of
the first works to make reasonable the use of SVM on large-scale datasets.

3.3 PROPOSED SOLUTION

The proposed solution to determine SV candidates consists in finding the relati-
onship between Delaunay graph neighborhood and vertices located in the convex-hull
of each class. There is a relationship between SV points and different class neighbor
points in the Gabriel Graph (WAN ZHANG; IRWIN KING, 2002), and as Delaunay
graph is a sub-graph of Gabriel graph (URQUHART, 1980), points that belong to the
convex-hull of each class are likely to be SVs. Figure 5 presents the flowchart of the
subsequent processing steps for the proposed method.

The first step is to check the data dimension, and in cases of bigger than three,
it requires a dimensional reduction technique. Formally, for any convex set P with n

points in p dimension, it is possible to create a lower dimension dataset P ′ with n points
in q dimension, where q ≤ 3 ≤ p. The dimensionality reduction technique influences the
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Figura 5 – Flowchart of subsequent processing steps.
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proposed algorithm outcome because each method results in a different distribution in
space R3. The dimensional reduction techniques were chosen based on computational
cost, which implies in a shorter processing time overall. Among all existing techni-
ques, we recommend the use of linear methods as the PCA introduced by (PEARSON,
1901), and the Linear Discriminant Analysis (LDA) proposed by (FISHER, 1936). For
comparison purpose we use two versions of the same nonlinear dimensionality re-
duction technique, based on the dataset size: for datasets smaller then 5000 inputs
we apply the classical t-Distributed Stochastic Neighbor Embedding (T-SNE) (MAA-
TEN; HINTON, 2008), and for more massive datasets we use the accelerated T-SNE
(MAATEN, 2014). All implementations were adopted by the same author (MAATEN;
MAATEN et al., 2009),(MAATEN; HINTON, 2008), and (MAATEN, 2014)1. For the PCA,
the worst complexity case is O(D3 + n3/2+1), and when points are uniformly distributed,
is O(D3 + n1+1/3); while for the LDA, the worst case is O(nD + nt + Dt + n3/2+1), and
for uniformly distributed points O(nD + nt + Dt + n1+1/3) (FISHER, 1936), (MAATEN;
MAATEN et al., 2009). The computational and memory complexities of regular T-SNE
are O(n2), while the accelerated T-SNE run in O(nlogn) and require O(n) memory
((MAATEN, 2014)).

The proposed method selects SV candidates based on the Delaunay Graph
(DG) neighborhood in 2 or 3 dimensions (thus the method runs in reduced space for
datasets with dimension bigger than three), so we first need to create those Delaunay
Graphs (DGs). There are two approaches to construct a DG: extract it from other graphs,
because DG is a subgraph of Relative neighborhood graph ⊆ Urquhart ⊆ Gabriel ⊆
Delaunay (URQUHART, 1980); or create a DG through the Delaunay triangulation,
which is our choice due to computational and memory complexity. The convex hull of a
1 available at https://lvdmaaten.github.io/software/#dimensionality-reduction

https://lvdmaaten.github.io/software/#dimensionality-reduction
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set P is a convex polytope, which is used to solve the Delaunay triangulation (BARBER;
DOBKIN; HUHDANPAA, 1996), (DEVILLERS; HORNUS; JAMIN, 2017), which in turn
a graph is a Delaunay graph if it is the Delaunay triangulation of some set of points in
the plane. In this manner, to create a DG, we primarily extract the convex hull of the
desired set, which in case it could be all data or by class. Convex-hull is defined as:
given a finite set A ⊆ Rn, where n is the dimension, for l points p1, ..., pl of a subset
P ⊆ A, and to each point pl is assigned a non-negative coefficient λl which sums to
one, equation 7 formally describe each subset.

Conv(P ) =

{ l∑
i=1

λipi|l ∈
l∑

i=1

λi = 1 ∧ ∀i ∈ {i, ..., l} :

λ ≥ 0 ∧ pi ∈ P
} (7)

We use the Quick hull (Qhull) algorithm ((BARBER; DOBKIN; HUHDANPAA,
1996)), that is currently natively supported by Matlab, where Qhull’s conjecture is:
let l be the number of input points in Rn, and v the number of output points. If the
input points precision is O(logl), the worst case complexity is O(nlogv) for n ≤ 3 and
O(nfv/v) for n ≥ 4, that leads the algorithm to work efficiently in dimensions from 2
to 8. (K. Q. BROWN, 1979) discovered an intimate relationship between convex hull
and Delaunay triangulation. Given a set P of n points in plane z = 0, the points are
projected onto the unit elliptic paraboloid z = x2 + y2 to yield a point set P ′ such that for
each p = (px, pu) ∈ P a point p′ ∈ P is computed as p′ = (px, py, p

2
x + p2

y). The CH(P ′)

contains every p′ ∈ P ′. Projecting the downward-facing facets, which are normal vectors
with a negative z-value, in CH(P ′) onto z = 0 yields the Delaunay triangulation of P
(Dt(P )) (FISHER et al., 2004), (EDELSBRUNNER; SEIDEL, 1986).

The complex Del(P ) is the Delaunay triangulation of the convex hull of P ((GAL-
LIER, 2008)), so Dt (Del(P )) is formally defined as: let P = {p1, ..., pl} be a set of
l points in Em, and consider the Voronoi diagram of P V or(P ). The complex Del(P )

contains k-simplex {p1, ..., pk+1} iff V1 ∩ ...∩ Vk+1 6= ∅, where 0 ≤ k ≤ m. For any convex
set P ∈ R2, Delaunay graphs are the dual of Voronoi diagram of a set of points concer-
ning the convex distance function defined by P ((BONICHON et al., 2010)). Expanding
this concept for any convex set in any dimension P ∈ Rn, the Delaunay graph can be
created provided that the convex distance function is also in n dimensions, as stated
by (DEVILLERS; HORNUS; JAMIN, 2017) in CGAL library, where the complexity is
related to dimension. The Delaunay triangulation algorithm complexity for non-spatially
sorted data is O(l

n
2

+1) (BOISSONNAT; DEVILLERS; HORNUS, 2009), therefore, to
create Delaunay graphs for large sets in a reasonable time complexity the dimensions
is limited to 3 (p′ = 3). The Delaunay triangulation implementation used is from the
computational geometry algorithms library (CGAL) (DEVILLERS; HORNUS; JAMIN,
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Figura 6 – 2D two-class toy dataset.
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2017), using (BOISSONNAT; DEVILLERS; HORNUS, 2009) approach, which is also
available in Matlab. For the worst case scenario (without spatial sort), the complexity is
O(l

d
2

+1), and when points are uniformly distributed, the localization complexity is O(l
1
n ),

and the size of triangulation is O(n), resulting in a complexity of O(l1+ 1
n ). Thus, with

spatial sort and random points, the expected complexity is O(llogn).
To summarize DG creation, for any dataset P , considering all convex-hull subsets

Pt ⊆ P ′ and the Delaunay graph of Dg(P ′), points pi that are vertices of the Delaunay
graph and belongs to any Convex hull subsets pi ∈ Dg(P ′) ∩ Pt, and its t neighbors,
form the set of SV candidates Psvq ⊂ P ′ (in q dimension). Two observations are relevant
about the chosen method: (i) after creating the DG of a set we already have the convex-
hull information, and (ii) by creating a DG from a set P and others subsets P ′ ⊆ P , we
can map the interactions between those subsets.

Figure 5 shows that SV candidates selection algorithm has two initial parallel
branches, where one acts in all data, and the other in each class. Therefore, we create
a DG using all data to map the interaction between all nodes and classes, and a DG to
each class for mapping the interaction between points inner class. To help visualize the
process, we present a 2D two-class toy dataset (figure 6).

Figure 7a presents the convex hull (magenta line) and the Delaunay triangulation
(black lines) considering all data, and figure 7b shows resultant DG.

To create a DG for each class, we repeat the process, however considering
each one as a set. Figure 8 shows the convex-hull (dashed lines) and the Delaunay
triangulation (thinner and lighter lines) by class.

To find the nodes that are in the boundary between classes we use a convex
hull in each class 8, and all nodes that are in the convex hull of a class and are at least
one 1-hop neighbor from a different class are considered main nodes. All main nodes
and its t-hops neighbors are considered SV candidates, so larger t implies in more
candidates. In figure 9a we identify both classes in all data DG, and the black dots are
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Figura 7 – The steps to create a DG considering all data as one set.
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a Convex hull and the Delaunay triangulation
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Figura 8 – Each class convex hull and Delaunay triangulation.
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the SVC for t = 2, that is, we consider the convex-hull points and their neighbors. The
last step is to retrieve the SVC index from DG to original space, as presented by figure
9b, where the black dots are the SVC in original space. The computational complexity
of the proposed method is the sum of dimensionality reduction, Qhull and Delaunay
triangulation.
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Figura 9 – Support vector candidates in black.
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b Delaunay graph.

3.4 EXPERIMENTAL METHOD AND RESULTS

The experimental method is composed of: dataset selection, dimensionality re-
duction, SV candidates set creation, SVM training, and validation. The computer used
is an Intel Core i7-7700HQ, with dual-channel memory 16384 MB, 1300 MHz, and
datasets loading time was not considered.

We used the following datasets in the experiments2, summarized by table 2:

• MNIST dataset (LECUN et al., 1998): it is composed of 28× 28 images (with 784
attributes each) that represent handwritten digits from 0 to 9 in a binary form;
therefore it is a multivariate class dataset. The training set has 60000 examples,
and the test set has 10000 examples.

• Letter Recognition dataset (FREY; SLATE, 1991): it is made of black-and-white
rectangular pixel that displays the 26 capital letters in the English alphabet. The
character images were based on 20 different fonts and each letter within these
20 fonts was randomly distorted to produce a file of 20000 unique stimuli. Each
stimulus was converted into 16 numerical attributes (statistical moments and
edge counts) which were then scaled to fit into a range of integer values from 0
through 15. Training is performed on the first 16000 items, while the testing on the
remaining 4000.

• Covertype dataset (BLACKARD; DEAN, 1999): the dataset was created to predict
the forest cover type from cartographic variables. The actual forest cover type for
a given observation (30x30 meter cell) was determined from US Forest Service
(USFS) Region 2 Resource Information System (RIS) data. Independent variables

2 available at UCI Machine Learning Repository (LICHMAN, 2013)
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were derived from data originally obtained from US Geological Survey (USGS)
and USFS data. Data is in raw form (not scaled) and contains binary (0 or 1)
columns of data for qualitative independent variables (wilderness areas and soil
types). The dataset is imbalanced and has 54 attributes and 581012 instances,
divided (in a stratified manner) in 389279 for training and 191733 for testing.

• Skin and non-skin dataset (BHATT et al., 2009) (Skin): randomly sampled RGB
values from faces of various age groups (young, middle, and old), race groups
(white, black, and asian), and genders, obtained from FERET database (PHILLIPS
et al., 1998) and PAL database (MINEAR; PARK, 2004). The dataset is univariate
(skin or non-skin), and has 245057 RGB-dimensional training examples.

Tabela 2 – Training and test sets size (No. of samples × No. of attributes)

Dataset Training Testing
MNIST 60000×768 10000×768
Letter 16000×16 4000×16
Covertype 38927989×54 191733×54
Skin 164189×3 80868×3

For the datasets with dimension bigger than three (MNIST, Letter Recognition,
and Covertype) the PCA, LDA and aTSNE dimensional reduction techniques are ap-
plied, reducing the dimension to 3, besides the label. Table 3 summarizes the proces-
sing time for each dataset.

Tabela 3 – Time (in seconds) to compute PCA, LDA, and accelerated TSNE

PCA(s) LDA(s) aTSNE
MNIST 0.49 2.60 2398.62
Letter 0.19 0.03 488.92
Covertype 0.10 0.24 15894.83

We create SV candidates sets for all datasets using the proposed method, and
for those with dimension bigger than 3, we create an SV candidates set for each dimen-
sionality reduction technique described. The SV candidates set for the Skin dataset
contains 16075 candidates, and the processing time took 13.55 seconds. Table 4 pre-
sents the number of elements per SV candidates set for the remaining datasets.

Tabela 4 – Number of elements per SV candidates set in 3D and its processing time

PCA PCA(s) LDA LDA(s) aTSNE aTSNE(s)
MNIST 49806 18.63 41607 19.30 28325 18.60
Letter 6998 5.00 7165 5.07 11106 5.44
Convertype 324547 126.37 351266 119.05 305076 126.13
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We train all SVM models using SMO algorithm with second-order approximation
and radial basis function (RBF) kernel. We use Matlab’s built-in functions to perform the
experiments: fitsvm to create a model for binary classification with a Matlab automa-
ted function to optimize the hyper-parameters from SVM and RBF (exp(−γ ∗ |u− v|2))
on a single thread; and fitecoc to create K binary models for multiclass classifica-
tion using an one-versus-all (OVA) strategy with error-correcting output codes (ECOC)
(FÜRNKRANZ, 2002) (ESCALERA; PUJOL; RADEVA, 2009) (also using an automated
function from Matlab to optimize the hyper-parameters), and parallel computing).

To evaluate the performance over the datasets, table 5 show the results of the
hold-out validation method using the training and test sets described in table 2.

Tabela 5 – Training and testing time, and accuracy percentage

Training(s) Testing(s) Accuracy(%)
MNIST-original 1850.70 111.25 96.84
MNIST-PCA 1207.44 101.59 96.46
MNIST-LDA 675.54 87.71 96.54
MNIST-aTSNE 370.21 108.55 96.50
Letter-original 36.14 1.15 96.30
Letter-PCA 18.22 0.63 93.38
Letter-LDA 18.43 0.57 93.28
Letter-aTSNE 28.66 1.41 96.25
Covertype-original 12917.73 1263.17 86.05
Covertype-PCA 9597.93 1137.27 85.84
Covertype-LDA 10231.07 1170.40 85.28
Covertype-aTSNE 9881.28 1179.17 86.33
Skin-original 11040.48 11044.94 81.10
Skin-SVC 8906.69 8906.80 92.56

The RNG based method of (GOTO; ISHIDA; UCHIDA, 2015) applied on MNIST
resulted in an SV candidates set of 5313 inputs, which is less than 10% of the original
dataset, with a processing time of 7.61 × 102 seconds. Compared to our method, we
have a bigger SV candidates set, however the processing time to generate it is much
smaller when considering linear dimensionality reduction methods. (GUO; BOUKIRA,
2015) method SVIS (Small Votes Instance Selection) showed a reduction of 91% in
the letter dataset with a training set of 10000 samples, achieving the same accuracy
as our method. SVIS have an execution time much smaller (0.44s) compared to our
proposed solution, however, it was only tested in small datasets (Letter dataset was
the largest) with low dimension (up to 64). (SHEN et al., 2016) applied their method
(redundant data reduction) in a binary classification version of Cover type, and despite
not presenting the SV candidates generation time, the training size was reduced from
570000 to 334891 samples, which is more or less same as ours. The PCA2MA of
(NALEPA; KAWULOK, 2016) shrunk the Skin dataset in a range from 61.1 to 89.3 %
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(with a mean of 70.8%), hence, our method reduces consistently 89.7%, when using
1-hop neighbors.

3.5 SUMMARY AND SYNTHESIS OF CONTRIBUTION

In this chapter, we propose a method for preselecting SV candidates by convex-
hull and Delaunay graph. The technique preselects SV candidates that are in the
convex-hull of its class and its neighbors from the Delaunay graph, and the SV candida-
tes size is related to the Delaunay graph connections density from points that belong to
the convex-hull of each class from the dataset. The dimensional reduction is necessary
when dimensions are bigger than 3, and more sophisticated dimensionality reduction
methods may improve the results. One of our main contributions is the fact that the pro-
posed method works in a reduced space. Preselecting SV coincides well with original
SVs, as the accuracy of tested datasets does not decrease significantly. The developed
system is efficient, with a time complexity of O(n3/2+1) to O(n1+1/3) plus time complexity
of dimensionality reduction technique. It is possible to extend the proposed method by
substituting the Delaunay graph by its sub-graphs, resulting in a higher time complexity
and smaller SV candidates set. The dimensional reduction techniques smooth eventual
noises present in the dataset, and distinct dimensionality reduction techniques produce
different SV candidates set. The most apparent finding to emerge from this study is
that the SVM training time is accelerated proportionally to the size difference of the
original dataset and SV candidates set. Finally, we validate the contributions through
experiments over four datasets.

The contributions of this chapter are:

• The pre-selection of SV candidates results in a reduction of the training dataset,
that is related to the density of connections in the Delaunay graph from points
that are in the convex-hull of each class; consequently, the SVM training time is
proportionally faster.

• It can be performed in a reduced space.

• The proposed method works with imbalanced dataset distribution.

• We got consistent results for different size and dimension datasets.
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4 A NOVEL ORTHOGONAL DIRECTION MESH ADAPTIVE DIRECT SEARCH AP-
PROACH FOR SVM HYPERPARAMETER TUNING

4.1 INTRODUCTION

The application of the SVM with Gaussian kernel to a classification problem
requires an appropriate selection of hyperparameters, called hyperparameter tuning
or model selection. Given these two hyperparameters and a training dataset, an SVM
solver can find a unique solution of the constrained quadratic optimization problem and
return a classifier model. Unfortunately, there is no standard procedure for hyperpara-
meter tuning, and a common approach is to split the dataset into training and validation
set, and for each C and γ from a suitable set, select the pair that results in an SVM
model that when trained on the training set has the lowest error rate over the corres-
ponding validation set (WAINER; CAWLEY, 2017). The BBO is the study of the design
and analysis of algorithms that assume that the objective and/or constraint functions
are given by a black-box (audet2017). Some of the most used methods to solve BBO
problems are: (i) the naive methods such as the exhaustive search, grid search, and
coordinate search; (ii) the heuristic methods, such as the genetic algorithm (and its
variations) and the NM search (NELDER; MEAD, 1965); and (iii) the direct search al-
gorithms, such as the Generalized Pattern Search (GPS) and the MADS (audet2006).
The naive and the heuristic methods do not guarantee convergence, while the direct
search methods combine a flexible framework with proof of convergence (audet2017).

4.2 LITERATURE REVIEW

Considering the relationship between the data geometric structure in the feature
space and the kernel function (that is not relevant to C), (JIANCHENG et al., 2010)
determine C and γ separately by two stages. (CHEN; FLORERO-SALINAS; LI, 2017)
proposed another two-step procedure for efficient parameter selection by exploiting the
geometry of the training data to select γ directly via nearest neighborhood and choo-
sing the C value with an elbow method that finds the smallest C leading to the highest
possible validation accuracy. This approach reduces the number of candidate points
to be checked, while maintaining comparable accuracy to other classical methods.
(CHUNG et al., 2003) and (GOLD; HOLUB; SOLLICH, 2005) introduced the Bayesian
Optimization (BO) approach for tuning the kernel hyperparameters, which constructs
a probabilistic model to find the minimum function f(x) on some bounded set X , that
exploits the model to make decisions about where in X to next evaluate the function
while integrating out uncertainty (snoek2012). (ACERBI; JI, 2017) proposed the Baye-
sian Adaptive Direct Search (BADS) which combines a Bayesian optimization with the
MADS framework via a local Gaussian surrogate process, implemented with a number
of heuristics. The BADS’ goal is fitting moderately expensive computational models, and
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it achieved state-of-the-art accuracy on computational neuroscience models (such as
convolution neural networks). (CHANG; CHOU, 2015) proposed a two-stage method for
hyperparameter tuning. The first step consists of tuning the γ using the generalization
error of a k-NN classifier with the aim of maximizing the margins and extend the class
separation. The second stage defines the value of C by an analytic function obtained
with the jackknife technique.

Although many efforts to properly tuning the hyperparameters of a SVM with
Gaussian kernel have been made, most of the BBO-based methods lack convergence
proof. The BBO problems may present a limited precision or may be corrupted by
numerical noise, which leads to an invalid output. Considering a fixed starting point,
a BBO algorithm may provide different outputs, and there are unreliable properties
frequently encountered in real problems (AUDET, 2014). Furthermore, most of BBO-
based methods use the time or number of function evaluations as a stopping criterion,
which creates an uncertainty on the achieved local minimum.

The Nonlinear Optimization by Mesh Adaptive Direct Search (NOMAD) software
(LE DIGABEL; SÉBASTIEN, 2011) (COUTURE et al., 2018) is a C++ implementation
of the MADS algorithm which can efficiently explore a design space in search of bet-
ter solutions for a large spectrum of BBO problems as described by (AUDET, 2018),
and inspired by cases of success as (ACERBI; JI, 2017) and (AUDET, 2018). We use
the Ortho-MADS (Abramson2009) (that is a MADS improvement), with two different
search strategies NM (NELDER; MEAD, 1965) and the VNS (AUDET; BÉCHARD; DI-
GABEL, 2008), to tune hyperparameters of a SVM with Gaussian kernel considering
a dynamic stopping criterion. The proposed method relies on the MADS convergence
properties and it combines different search strategies to reach the desired local mini-
mum (that is set by the mesh size) and escape from undesired local minimum. The
experimental results on benchmark datasets have shown that the proposed approach
achieves state-of-the-art accuracy, besides presenting several interesting properties
such as the guarantee of convergence and a dynamic stopping criterion. Furthermore,
it also provides many other tools that aid to adjust the hyperparameters regarding the
particularities of each application.

4.3 BASIC CONCEPTS

A practical difficulty in the nonlinear SVM is how to properly tune the hyperpara-
meters γ and C from Eqs. 2 and 3 respectively. For the BBO-based methods that are
not based on internal metrics, the tuning process attempts to maximize the accuracy
on a training data usually using a cross-validation procedure, which is equivalent to
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minimizing a loss function (L), as described by Eq. 8.

max
γ>0, C>0

accuracy(γ, C) ≡ min L(γ, C) (8)

Almost all loss functions commonly used in the literature met convexity assump-
tion, however, different loss functions lead to different theoretical behaviors, i.e., different
convergence rates (ROSASCO et al., 2004). It is possible to use any loss function that
meets convexity with the proposed approach, but based on (ROSASCO et al., 2004)
and considering the loss function options for classification tasks, we have chosen the
Hinge loss (HL). The HL leads to a convergence rate practically equal to the conver-
gence rate of a logistic loss and better than the convergence rate of a square loss.
However, considering a hypothesis space sufficiently rich, the thresholding stage has
little impact on the obtained bounds. We define the weighted average classification
hinge loss to tune the hyperparameters of the SVM as Eq. 9.

L =
d∑
i=1

wi max{0.1−mi} (9)

where wi is the normalized weight for an observation i (
∑d

i=1wi = 1) and mi = yif(hi)

is the scalar classification score when the model predicts true for the instance hi.
We can formulate the problem of tuning the hyperparameters of the SVM with

Gaussian as a BBO function f(x) : Rn → R in the sense that we obtain a function
value from a given x ∈ R (in this case x corresponds to the hyperparameters C and γ)
for which the analytic form of f is unknown. The objective function f and the different
functions defining the set Ω are provided as a bounded optimization problem of the
form:

min
z ∈ Ω⊆Rn

f(x) (10)

where f : Rn → R ∪ {∞}, Ω = {x ∈ X : cj(x) ≤ 0, j = 1, 2, · · · ,m}, and X ∈ Rn

represents closed constraints which are bounded by L ≤ x ≤ U , with the lower (L) and
the upper (U ) bounds in (R ∪ {±∞})n, and the functions cj represent the other m open
constraints (AUDET; BÉCHARD; DIGABEL, 2008; ZEGAL; ESSADDAM; BRIMBERG,
2012).

Following we briefly introduce separately the methods that we propose for tuning
the hyperparameters of a SVM with Gaussian kernel, which are the MADS and the
Ortho variation, as well as the two search methods used with the Ortho-MADS: the NM
search and the VNS.
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4.3.1 Ortho Mesh Adaptive Direct Dual Search (Ortho-MAD2S)

In this section, we introduce the Ortho Mesh Adaptive Direct Dual Search (Ortho-
MAD2S), which is a method for tuning the hyperparameters of an SVM with Gaussian
kernel. We briefly introduce the methods that compose the Ortho Mesh Adaptive Direct
Dual Search (Ortho-MAD2S)‘, which are: the MADS and the Ortho variation, the Nelder-
Mead (NM) search, and Variable Neighborhood Search (VNS).

4.3.1.1 MESH ADAPTIVE DIRECT SEARCH (MADS)

The Mesh Adaptive Direct Search (MADS) (audet2006) is a direct search
method to solve problems of the form Eq. 10, in which the goal at each iteration is to
replace the current best feasible points (called incumbent solution, or the incumbent)
by a better one. The algorithm starts from a finite collection of initial points V0 ∈ Rn,
and the incumbent xk at iteration k is defined as f(x) : x ∈ V k ∩ Ω, where V k is the
set of trial points where the black-box was previously evaluated. To achieve a better
solution at each iteration it uses a mesh Mk to generate trial points on a discretized
space, defined by Eq. 11.

Mk := {xk + δkD y : y ∈ Np} (11)

where δk defines the mesh size, D is the set of directions, and p is the number of
directions. At iteration k, the algorithm attempts to improve the incumbent solution by
executing the search or poll stage, allowing an attempt of improving the current solution
or escaping from an undesired local minimum. The search stage attempts to improve
the incumbent by evaluating points that are generated from a finite trial points of the
subset Mk, based on the D set of directions, and that are not necessarily close to the
current incumbent. When the search stage does not succeed, the poll stage is executed
to evaluate points inside a frame defined by:

F k := {x ∈Mk :‖ x− xk ‖∞< ∆kb} (12)

where x is the point being evaluated, ∆k is the frame size that must satisfy 0 < δk ≤ ∆k,
and b is defined by:

b = max{‖ d′ ‖∞: d′ ∈ D} (13)

where d′ is a direction.
The frame is always larger than the mesh and provides a broader sampling. If

the poll stage obtains a new incumbent, the frame moves to this point and increases its
size, otherwise, it decreases its size and maintains the current incumbent. We define
the initial poll size as ∆0

j =
Uj−Lj

10
according to (AUDET; LE DIGABEL; TRIBES, 2016),

and the initial mesh size as δ0 = ∆0. The poll stage selects points based on a subset
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Dk of directions from D, δ and ∆, and at each iteration, the mesh size δ is updated as
δ = min{∆k,∆k2}, changing the frame size by τ−1∆ when increased and τ 1∆ when
decreased, where τ ∈ [0, 1]. This process allows a continuous refinement of the mesh
around the incumbent, and consequently reducing the objective function value. A further
complexity analysis on direct search based methods can be found at (DODANGEH;
VICENTE, 2016).

The Ortho-MADS (Abramson2009) is an improvement in the poll stage of the
MADS algorithm, where the choice of the polling directions is deterministic and ortho-
gonal to each other. This leads, at each iteration, to convex cones of missed directions
that are minimal in a reasonable measure (Abramson2009). The Ortho-MADS chan-
ges the evaluation point selection method during the poll stage by creating Dk set of
orthogonal directions, which define a dense sphere that increases with the number of
iterations k1.

Fig. 10a depicts a mesh and frame of size one, where the poll stage points p1,
p2, and p3 are limited by the frame and the mesh size, which in this case, the search
and poll stage would find both the same points, performing similarly. In Fig. 10b, the
mesh size is half of the frame size, and the poll stage can use 24 points defined by the
mesh intersections (excluding xk), allowing a broader exploration of the search space
than the searching step.

Figura 10 – Two mesh and frame representations with different sizes.

a mesh size δk = 1 and frame size ∆k = 1. b Mesh size δk = 1
4 and frame size ∆k = 1

2 .

Among the traditional stopping criterion, such as time and number of function
evaluations, the MADS can terminate the optimization process when it achieves a
desired minimum mesh size value, that corresponds to achieve a desired local minimum.
1 for further information refers to (Abramson2009).



Capítulo 4. A NOVEL ORTHOGONAL DIRECTION MESH ADAPTIVE DIRECT SEARCH APPROACH
FOR SVM HYPERPARAMETER TUNING 58

During the MADS optimization process, it continuously updates the mesh (δ) and the
frame (∆) sizes. Both δ and ∆ become smaller as the algorithm moves towards the
minimum of f(x). This mesh size verification is the last step in the MADS iterations. For
the SVM with Gaussian kernel, we have two hyperparameters (thus two variables) C
and γ that may have different scales, e.g. C ∈ [0, 100] and γ ∈ [1e−5, 1]. The NOMAD can
assume different minimum mesh sizes for each dimension, pre-defined at the beginning
of the BBO optimization process.

4.3.2 SEARCH METHODS

The search stage is not necessary for the convergence analysis and can be
done using different strategies such as the VNS (AUDET; BÉCHARD; DIGABEL, 2008)
or the NM search (NELDER; MEAD, 1965). The MADS algorithm does not dictate the
selection of points in the search stage.

The NM (NELDER; MEAD, 1965) is a method for function minimization proposed
by (AUDET; TRIBES, 2018) to be used in the search stage of the MADS algorithm.
The NM continuously replaces the worst point xn from a set of n points defined as
X = {x0, x1, · · · , xn}, where X is a set of n vertices from a simplex problem for the
minimization function f(x). A point xnew is considered better, or is said to dominate
another point x, if f(xnew) < f(x). The domination defines the function Best(x, xnew) as
in Eq. 14, where:

Best(xnew, x) =

xnew, if f(xnew) < f(x)

x, otherwise
(14)

At each iteration, the NM evaluates f(x) at the points given by the simplex and
replaces xn according to the following criteria:

xn =



shrink(X) if xic ∈ inside contraction zone

xic if xic /∈ inside contraction zone

Best(xr, xe) if xr ∈ expansion zone

xr If xr ∈ reflexion zone

Best(xr, xoc) If xr ∈ outside contraction zone

(15)

where xr, xe, xoc, and xic are defined by Eqs. 17 to 20 as follows:

xc =
1

n

n−1∑
i=0

xi (16)

xr = xc + (xc − xn) (17)
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xe = xcQe(xc − xn) (18)

xoc = xcQoc(xc − xn) (19)

xic = xcQic(xc − xn) (20)

shrink(X) =x0, x0 + ζ(x1 − x0), x0 + ζ(x2 − x0),

· · · , x0 + ζ(xn − x0)
(21)

where Qe, Qoc, and Qic are expansion, outside contraction and inside contraction res-
pectively, being defined as Qe = 2, Qoc = −1

2
, and Qic = 1

2
. ζ is the shrinking parameter

usually defined as ζ ic = 1
2
.

The zone definition of a new point x is given as follows:

x ∈



inside contraction zone if xn dominates x

expansion zone if x dominates x0

reflection zone if x dominates at least two X points

outside contraction zone otherwise

and in the last case, x dominates none or one point of X.
The NM method improves the search stage by selecting new points in a more

controlled way than e.g., a random selection. The MADS algorithm can also use other
methods in the search stage, such as the Bayesian Optimization method, which is the
basis of the BADS algorithm. The convergence rate of the MADS algorithm depends
on the quality of the search method.

In order to include a far-reaching search step to escape from an undesired local
minimum, (AUDET; BÉCHARD; DIGABEL, 2008) also incorporates the VNS (MLADE-
NOVIĆ; HANSEN, 1997; HANSEN; MLADENOVIĆ, 2001) as a search stage in the
MADS algorithm. The VNS algorithm complements the MADS poll stage, i.e., when
current iteration results in no success, which means that it could not find points with a
smaller f(x), the next poll stage generates trial points closer to the poll center, while
the VNS explores a more distant region with a larger perturbation amplitude. The VNS
uses a random perturbation method to attempt to escape from a local optimum solution
so that a new descent method from the perturbed point leads to an improved local opti-
mum. The VNS requires a neighborhood structure that defines all possible trial points
reachable from the current solution, and a descent method that acts in the structure.
The VNS amplitude of iteration k is parameterized by a non-negative scalar Υk ∈ N that
gives the order of the perturbation.
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The MADS mesh provides the required neighborhood structure to the VNS, and
by adding a VNS exploration in the search step, it introduces two new parameters: one
is related to the VNS shaking method ∆v > 0, and the other defines a stopping criterion
for the descent ρ > 0 (AUDET; BÉCHARD; DIGABEL, 2008). The shaking of iteration
k generates a point x′ belonging to the current mesh M(k,∆k), and the amplitude of
the perturbation is relative to a coarser mesh, which is independent of ∆k. The VNS
mesh size parameter defined as ∆v > 0 and the VNS mesh M(k,∆v) are constant
and independent on the iteration number k not to be influenced by a specific MADS
behavior (the perturbation amplitude Υk is updated outside the VNS search step). The
shaking function is defined as:

shaking : (M(k,∆k),N)→M(k,∆v) ⊆M(k,∆k)

(x,Υk) 7−→ x′ = shaking(x,Υk)
(22)

The VNS descent function generates a finite number of mesh points and it is
defined as:

descent : M(k,∆v)→M(k,∆k)

x′ 7−→ x′′ = descent(x′)
(23)

where x′ is the point resultant from the previous shaking and x′′ is a point based on x′ but
with improved f(x) value. The improvement is important because x′ has low probability
to generate good optimization results due to its random choice by the shaking.

The descent step must lead towards a local optimum, and in the MADS context
the local optimality is defined with respect to the mesh, so the descent step acts with
respect to the current step size ∆k and the directions used. To reduce the number
of function evaluations and to avoid exploring a previously visited region, the descent
step stopping criterion is defined as ||x− xnew||∞ ≤ ρ, where xnew is a trial point close
to another point x considered previously2. The VNS generally brings about a higher
number of black-box evaluations, but these additional evaluations lead to better results
(AUDET; BÉCHARD; DIGABEL, 2008).

We choose to use the mesh size parameter δk as stopping criterion because
it corresponds to a situation where new refinements could not find a better solution,
meaning a local minimum, and according to (audet2017), the mesh size parameter
goes to zero faster than the poll size parameter ∆k. The NM improves the quality of
the solutions in the search stage (AUDET; TRIBES, 2018), while the VNS allows the
far-reaching exploration from current incumbent (AUDET; BÉCHARD; DIGABEL, 2008).
The pseudo-code in Alg. 1 describes the high-level procedure of the MADS technique
2 Further information of the VNS and the MADS integration can be found at (AUDET; BÉCHARD;

DIGABEL, 2008)
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considering the Ortho-MADS algorithm with the NM and the VNS search strategies and
the minimum mesh size as stopping criterion implemented by NOMAD.

To run the Ortho-MAD2S with the NOMAD software we need to set the lower
bound L = [l1, l2], the upper bound U = [u1, u2], and the initial poll and mesh size
are defined as ∆0

j = δ0
j =

uj−lj
10

, where the mesh size parameter is associated with
the variable j ∈ {1, 2, . . . , n}. The algorithm (Alg. 1) starts evaluating f(x) within the
initial point. The first iteration executes a search step, and in case of a failure, that is,
not finding a f(x) value smaller than f(xk), it executes a poll step with Ortho-MADS
direction. In case of a successful iteration of the NM-Search and the poll step, the next
iteration runs the VNS-search to try escaping from an eventual and undesired local
minimum.

Algorithm 1 NOMAD high-level procedure
Input: Initial point x0 = {C0, γ0}, VNS amplitude parameter Υ, Minimum mesh size {δminC , δmin γ}
Output: Best point xbest = {Cbest, γbest}
Initialization: k ← 0

1: while δkC > δminC and δkγ > δmin γ do
2: x′ ← shaking(xk, δk)
3: x′′ ← descent(x′)

Search stage
4: Sk ← finite number of points of M(k,∆k) . M(k,∆k) is the current mesh size
5: Evaluates f(t) on Sk ∪ x′′ . f(t) is the sub-step evaluation inside the search stage
6: if f(t) < f(xk) for some t in a finite subset of Sk ⊂Mk using NM-SEARCH then
7: xk+1 ← t
8: goto 20
9: end if

Poll stage
10: Compute p MADS directions Dk ∈ Rnxp . p is the number of Poll stage points and Dk is the

directions set at k
11: Construct the frame Pk ⊆M(k,∆k)
12: Evaluates f(p) on p points of Pk
13: if f(p) < f(xk) then
14: xk+1 ← t
15: ∆k+1 ← τ−1∆k

16: else
17: xk+1 ← xk
18: ∆k+1 ← τ1∆k

19: end if
20: Update VNS amplitude (Υk+1 ← Υ0 or Υk+1 ← Υk + δ)
21: Updates of solution and mesh
22: k ← k + 1
23: end while
24: return xk

4.4 EXPERIMENTAL PROTOCOL AND RESULTS

We use the NOMAD black-box optimization software (COUTURE et al., 2018)
(LE DIGABEL; SÉBASTIEN, 2011) (version 3.9.1), which provides several interfaces to
run the Ortho-MADS and its variations, including MATLAB. The other approaches used
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for comparison are also implemented in MATLAB, and we developed an experimental
protocol to compare the black-box optimization methods in a machine learning classi-
fication context based on (audet2017) and (MORÉ; WILD, 2009). The experimental
protocol consists of three steps:

1. Select datasets;

2. Algorithm comparison using a common configuration;

3. Evaluation of the proposed strategy.

4.4.1 DATASETS

We have selected thirteen benchmark datasets with different numbers of ins-
tances and dimensions to evaluate the proposed approach, and to compare it with
other strategies available in the literature. These datasets are publicly available at the
LIBSVM website3. Tab. 6 summarizes the main characteristics of each dataset.

Dataset #Class #Features #Train #Test #Valid
Astroparticle (HSU; CHANG; LIN, 2003) 2 4 3,089 4,000 NA
Car (HSU; CHANG; LIN, 2003) 2 21 1,243 41 NA
DNA (HSU; LIN, 2002) 3 180 1,400 1,186 600
Letter (DHEERU; KARRA TANISKIDOU, 2017) 26 16 10,500 5,000 4,500
Madelon (guyon2005) 2 500 2,000 600 NA
Pendigits (DHEERU; KARRA TANISKIDOU, 2017) 10 16 7,494 3,498 NA
Protein (WANG, 2002) 3 357 14,895 6,621 2871
Satimage (HSU; LIN, 2002) 6 36 3,104 2,000 1,331
Shuttle (HSU; LIN, 2002) 7 9 30,450 14,500 13,050
Splice (DHEERU; KARRA TANISKIDOU, 2017) 2 60 1,000 2,175 NA
SVMguide4 (HSU; CHANG; LIN, 2003) 4 10 300 312 NA
USPS (hull1994) 10 256 7,291 2,007 NA
Vowels (DHEERU; KARRA TANISKIDOU, 2017) 11 9 598 462 NA
NA: Not available.

Tabela 6 – Benchmark datasets used in the experiments.

4.4.2 OTHER BBO METHODS

We have selected five widely used BBO-based methods of hyperparameter
tuning for comparison purposes: BO, BADS, Simulated Annealing (SA), Grid Search
(GS), and Random Search (RS). These methods are briefly described as follows:

• The BO (snoek2012) uses a probabilistic function f(x) as a model for the pro-
blem. It benefits from previous information in contrast with other methods that use
gradients or Hessians. Bayesian optimization uses prior, which is the probabilistic
model of the objective function, and the acquisition function, which defines the

3 www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
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next points to evaluate. In this comparison, we used the Gaussian process as
prior and the expected improvement as acquisition function. We use the bayesopt
function from MATLAB.

• The BADS (ACERBI; JI, 2017) uses a Mesh Adaptive Direct Search (MADS)
(audet2006) with a Bayesian optimization in the search step. The search step
performs the discovering of the points with the intention of inserting domain-
specific information and improving the quality of the points. When the search
stage does not find suitable points, the poll stage of MADS broadly evaluates
new points. The poll step is a computational expensive process and explores the
objective function’s shape for new points. We use the MATLAB implementation
provided by (ACERBI; JI, 2017)4.

• The Simulated Annealing SA mimics the process of annealing in metal. The
temperature value dictates the probability function of the distance to a new random
point based on the current point, while the distance to new points reduces as the
temperature decreases with time. This procedure does not limit the new points
to minimal points, this means that new points can have higher objective function
value, helping to avoid the local minimum. We use the simulannealbnd function
from MATLAB.

• The Grid Search GS algorithm consists of testing a combination of values for all
the hyperparameters. This is a naive method that needs NM evaluations where
M is the number of hyperparameters and N is the number of values for each
hyperparameter. The advantage of this method is that it can be easily parallelized,
however, the method itself does not define a maximum number of evaluations.
Therefore, we have split the search space based on the lower and upper bounds
of C and γ to obtain the same number of evaluations allowed for other methods.
We implemented the method in MATLAB.

• The Random Search RS algorithm starts by generating a set of points in the pre-
defined search space. Subsequently, it gets the minimum among them and refines
the search around it. It repeats this process until achieving the stop criterion. We
implemented the method in MATLAB.

As one may see we do not compare the proposed method with derivative or
evolutionary methods. In the framework of BBO, which includes the hyperparameter
optimization problem, the derivative is unavailable, making the former unsuitable, while
the later consists of global search heuristic methods (e.g. genetic algorithm and particle
4 Available at https://github.com/lacerbi/bads

https://github.com/lacerbi/bads
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swarm optimization) in which the emphasis is on finding a decent global solution ins-
tead of finding an accurate local solution that provides a stopping criterion with some
assurance of optimality.

We have evaluated the hinge-loss output value and the classification accuracy
in the test set after 100 evaluations using a common configuration for all methods
and the Ortho-MADS onsidering only the Nelder-Mead as search step. We used the
functions fitcsvm and fitcecoc from the MATLAB Statistics and Machine Learning To-
olbox to train the SVM for the binary or multiclass cases respectively, and the func-
tion predict to evaluate the learned model in the test sets. We defined the lower
bound of the search space as L = [0.01, 0.01] and its upper bound as U = [100, 100].
Considering that the starting point plays an important role in BBO optimization, we
have compared the methods using six different initialization points x0 = (C, γ) =

{(0.5, 0.5), (10, 10), (50, 50), (90, 90), (1, 90), (90, 1)}. We have used the pre-defined va-
lidation set when it was available on the hinge-loss function, and for the cases where
there was not a pre-defined validation set, we have used the training set with a stra-
tified 3-fold cross validation strategy. For the RS and the GS, there is no pre-defined
initialization point, and we have set a linear search of 100 iterations, i.e., C ∈ {1, 10×
1, 10× 2, . . . , 10× 9} and γ ∈ {1, 10× 1, 10× 2, . . . , 10× 9}.

Tab. 7 shows the mean accuracy, standard deviation and maximum accuracy
for all hyperparameter tuning methods. Both Ortho-MADS and BADS have shown to
be more consistent to achieve a competitive mean accuracy for all datasets. The BO,
SA, and RS present competitive results in ten datasets, and the GS shows competitive
results in six datasets. Tab. 8 presents the mean loss L, its standard deviation and the
minimum loss Lmin. For most of the datasets, the behavior is similar to that presented in
Tab. 7. The Bayesian, SA, RS, and GS provided the lowest Lmin for the Splice dataset.
However this result does not necessarily translate into high accuracy because in this
case, the function might be overfitting.

Ortho-MADS Bayesian SA RS GS BADS
Astro 0.970±0.001 | 0.971 0.970±0.000 | 0.970 0.969±0.000 | 0.970 0.955±0.004 | 0.959 0.967±0.001 | 0.967 0.970±0.001 | 0.972
Car 0.715±0.013 | 0.732 0.695±0.034 | 0.732 0.687±0.052 | 0.732 0.407±0.230 | 0.707 0.715±0.040 | 0.732 0.724±0.030 | 0.780
DNA 0.942±0.000 | 0.942 0.942±0.000 | 0.942 0.616±0.005 | 0.624 0.943±0.002 | 0.945 0.943±0.001 | 0.945 0.945±0.003 | 0.949
Letter 0.943±0.030 | 0.957 0.954±0.000 | 0.955 0.935±0.045 | 0.959 0.838±0.022 | 0.859 0.943±0.000 | 0.943 0.955±0.002 | 0.958
Madelon 0.587±0.016 | 0.607 0.573±0.003 | 0.577 0.547±0.024 | 0.565 0.589±0.011 | 0.607 0.573±0.001 | 0.575 0.578±0.012 | 0.603
Pendigits 0.973±0.001 | 0.973 0.968±0.001 | 0.970 0.971±0.002 | 0.975 0.931±0.012 | 0.956 0.859±0.000 | 0.859 0.973±0.002 | 0.976
Protein 0.690±0.000 | 0.691 0.690±0.001 | 0.691 0.692±0.000 | 0.693 0.678±0.008 | 0.694 0.691±0.001 | 0.692 0.685±0.004 | 0.689
Satimage 0.912±0.001 | 0.912 0.915±0.001 | 0.917 0.915±0.004 | 0.918 0.876±0.016 | 0.908 0.705±0.020 | 0.718 0.910±0.003 | 0.915
Shuttle 0.905±0.000 | 0.905 0.913±0.005 | 0.917 0.918±0.001 | 0.918 0.885±0.018 | 0.910 0.718±0.000 | 0.718 0.907±0.007 | 0.917
Splice 0.897±0.001 | 0.899 0.607±0.005 | 0.611 0.614±0.010 | 0.626 0.870±0.020 | 0.899 0.582±0.000 | 0.582 0.897±0.002 | 0.901
Svmguide4 0.846±0.010 | 0.859 0.774±0.004 | 0.780 0.774±0.057 | 0.824 0.540±0.117 | 0.696 0.712±0.007 | 0.720 0.846±0.006 | 0.856
USPS 0.943±0.001 | 0.944 0.943±0.001 | 0.944 0.943±0.001 | 0.944 0.942±0.003 | 0.945 0.943±0.001 | 0.945 0.943±0.001 | 0.944
Vowels 0.622±0.013 | 0.641 0.630±0.011 | 0.641 0.587±0.016 | 0.608 0.498±0.052 | 0.589 0.591±0.003 | 0.593 0.625±0.011 | 0.641

Tabela 7 – Mean accuracy, standard deviation and maximum accuracy for all hyperpara-
meter optimization methods in 13 datasets. The best results are underlined.
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Ortho-MADS Bayesian SA RS GS BADS
Astro 1.042±0.001 | 1.041 1.041±0.001 | 1.039 1.042±0.001 | 1.039 1.082±0.015 | 1.067 1.045±0.000 | 1.044 1.043±0.002 | 1.041
Car 1.190±0.003 | 1.186 1.194±0.005 | 1.186 1.194±0.004 | 1.190 1.206±0.012 | 1.186 1.188±0.001 | 1.186 1.191±0.004 | 1.184
DNA 1.033±0.000 | 1.033 1.033±0.000 | 1.033 1.046±0.002 | 1.044 1.034±0.001 | 1.034 1.044±0.001 | 1.042 1.035±0.002 | 1.033
Letter 1.001±0.000 | 1.001 1.001±0.000 | 1.001 1.006±0.007 | 1.003 1.003±0.001 | 1.002 1.001±0.000 | 1.001 1.001±0.000 | 1.001
Madelon 1.459±0.006 | 1.453 1.450±0.004 | 1.445 1.455±0.005 | 1.446 1.498±0.024 | 1.462 1.449±0.003 | 1.444 1.452±0.009 | 1.443
Pendigits 1.001±0.000 | 1.001 1.041±0.001 | 1.040 1.042±0.002 | 1.040 1.090±0.012 | 1.068 1.043±0.001 | 1.042 1.001±0.000 | 1.001
Protein 1.157±0.000 | 1.157 1.157±0.000 | 1.157 1.163±0.000 | 1.163 1.168±0.011 | 1.158 1.163±0.000 | 1.162 1.158±0.000 | 1.157
Satimage 1.011±0.000 | 1.011 1.041±0.001 | 1.039 1.042±0.001 | 1.040 1.090±0.020 | 1.056 1.045±0.001 | 1.043 1.011±0.000 | 1.011
Shuttle 1.000±0.000 | 1.000 1.042±0.001 | 1.041 1.042±0.000 | 1.041 1.080±0.025 | 1.047 1.044±0.001 | 1.043 1.000±0.000 | 1.000
Splice 1.179±0.005 | 1.175 1.041±0.001 | 1.040 1.042±0.001 | 1.041 1.076±0.012 | 1.061 1.044±0.001 | 1.043 1.185±0.004 | 1.178
SVMguide4 1.044±0.002 | 1.041 1.041±0.001 | 1.040 1.045±0.004 | 1.041 1.089±0.013 | 1.072 1.045±0.001 | 1.044 1.044±0.001 | 1.042
USPS 1.002±0.000 | 1.002 1.002±0.000 | 1.002 1.002±0.000 | 1.002 1.003±0.001 | 1.002 1.002±0.000 | 1.002 1.002±0.000 | 1.002
Vowels 1.003±0.000 | 1.003 1.003±0.000 | 1.003 1.194±0.004 | 1.188 1.023±0.010 | 1.006 1.004±0.000 | 1.004 1.004±0.000 | 1.003

Tabela 8 – Mean loss (L), its standard deviation and minimum loss (Lmin) for all hy-
perparameter optimization methods in 13 datasets. The best results are
underlined.

Another aspect to analyze is the convergence rate and the trajectory of the
algorithms. For all datasets, the Ortho-MADS presents a competitive convergence rate,
and in many cases (as exemplified in Figs. 11a and 11b), both the Ortho-MADS and the
BADS (that also uses the MADS algorithm) have the fastest convergence rate to reach
a minimum. In some cases, the Ortho-MADS may not have the fastest convergence,
as depicted in Figs. 12a and 12b. However, it is still competitive with other methods,
and may pass over its convergence rate to reach a lower local minimum, as shown
in Fig. 12b. The BADS achieved the best results overall, with better accuracy in eight
out of thirteen datasets (Astro, Car, DNA, Letter, Pendigits, Splice, Svmguide4, and
USPS), and competitive accuracy for all other datasets with a low standard deviation.
The Ortho-MADS has the second-best results, with best results in five out of thirteen
datasets (Astro, Pendigits, Splice, Svmguide4, and USPS), and competitive accuracy
for all other datasets with a low standard deviation.

The Bayesian and the SA methods presented the best results in four out of
thirteen datasets, but sometimes the results are not competitive, as observed for the
Splice and Svmguide4 datasets when applying the Bayesian method, and for the DNA,
Splice, and Svmguide4 datasets when using the SA method. In addition, both methods
have presented standard deviations higher than Ortho-MADS and BADS. The RS
achieved the best accuracy in the Madelon dataset, however, RS depends on the
randomness that leads to more iterations to achieve a good result, and GS depends on
the grid choice, which creates unreachable spaces.

A close look at the Ortho-MADS standard deviation (this extends to other
methods as well) from Tab. 7 indicates that in some cases we do not reach the best
point, and this fact could be related to the choice of the starting point, as it has an
important influence on the result or the method randomness that falls into a local
minimum. Figs. 12a and 12b exemplify the influence of the starting point on the



Capítulo 4. A NOVEL ORTHOGONAL DIRECTION MESH ADAPTIVE DIRECT SEARCH APPROACH
FOR SVM HYPERPARAMETER TUNING 66

effectiveness of the algorithms. From the starting point x0 = {0.5, 0.5}, depicted in
Fig. 12a, the Ortho-MADS, Bayesian, BADS, SA, and GS achieved worse objective
function value when compared to the starting point x0 = {90, 1} from Fig. 12b.

We generate an ordering of the methods based on the mean, maximum and
worst accuracy reported in Tab. 7. Tab. 9 summarizes the comparison between all
methods through an average ranking (BRAZDIL; SOARES, 2000) according to the
measured accuracy mean, worst case, and best case. The BADS has the best rank
among all considered methods, followed by the Ortho-MADS, Bayesian, SA, GS, and
RS. The most consistent methods are the BADS and the Ortho-MADS, ranking 1 and
2 for the best mean and the best maximum accuracy, and 6 and 5 for the worst mean
accuracy respectively.

Best Mean Worst Mean Best Maximum
Algorithm Accuracy Accuracy Accuracy

r̄ Rank r̄ Rank r̄ Rank
BADS 1.77 1 4.38 6 2.08 1
Ortho-MADS 2.07 2 3.77 5 2.69 2
Bayesian 2.31 3 3.46 4 3.23 4
SA 2.78 4 3.08 3 2.92 3
GS 3.54 5 2.38 2 4.38 6
RS 3.77 6 2.08 1 3.92 5

Tabela 9 – Average ranking (AR) considering the best mean accuracy, the worst mean
accuracy and the maximum accuracy for the 13 datasets (BRAZDIL; SOA-
RES, 2000).

Figura 11 – Satimage dataset with x0 = {0.5, 0.5}.
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Figura 12 – Astroparticle dataset comparison convergence plot with different starting
points.
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4.5 THE ORTHO-MADS WITH NELDER-MEAD AND VNS

The Ortho-MADS has shown to be competitive with other state-of-the-art
methods (Tab. 7) to tune the hyperparameters of the SVM with Gaussian kernel,
however, we propose to use the Ortho-MAD2S, that combines the Ortho-MADS
convergence properties with two different search algorithms to enhance the stability
and reachability, and to use the mesh size as stopping criterion. The NM search
strategy leads to a faster convergence when compared to regular Ortho-MADS search
strategy, i.e., it requires fewer function evaluations to reach the pre-defined minimum
mesh size. The VNS explores regions far from the incumbent (increasing the number
of function evaluations), helping to escape from an eventual undesired local minimum.
The VNS counterbalance the NM fast convergence; however, it explores more regions
from the search space and it mitigates the initial point influence. The Ortho-MADS
attempts to find an accurate local solution and using the mesh-size as stopping criterion
translates into stopping the algorithm when achieving a local solution (mesh-size) that
satisfies the user needs.

We evaluate the accuracy and the number of function evaluations Ortho-MAD2S
considering a non-opportunistic strategy for the search algorithms5 using the minimum
mesh size as stopping criterion. Because the MADS direction is randomly chosen,
for each dataset we run 50 times using the following default configuration (empirically
defined): the lower bound (L) as [0.01, 0.01], the upper bound (U) as [100.01, 100.01], the
starting point (x0) as {50, 50}, the minimum mesh size (δmin) as 0.009 (that corresponds
to three shrinking executions from the initial mesh size), and the perturbation amplitude
is Υ = 0.25. From the initial configuration, we further analyze the impact of changing
the starting point x0, the minimum mesh size δmin and the perturbation amplitude Υ.
Tab. 10 presents the mean accuracy, the standard deviation, and the maximum and
median accuracy. For each measure we also present the corresponding number of
function evaluations. As stated before, the incorporation of VNS in the search step aids
the Ortho-MADS to escape from local minimum, which may lead to better results, and
the NM counterbalance the number of function evaluations needed.

Tab. 10 presents the results of the proposed approach, and comparing with Tab. 7
we observe several improvements. Using the minimum mesh-size as stopping criterion
may avoid unnecessary function evaluations. In our previous experiment (Tab. 7), the
stopping criterion was 100 function evaluations, and using the new stopping criterion
we reach the same or better accuracy with fewer function evaluations (as reported in
Tab. 10) in all runs for five datasets (DNA, Madelon, Protein, Shuttle, and USPS). In ad-
dition, it may reduce the number of function evaluations in another five datasets (Astro,
Pendigits, Shuttle, Splice, and Vowels), i.e., sometimes it achieves the minimum mesh-

5 For each search iteration, the algorithm does not finish when a better incumbent is found. It only
finishes when all points are evaluated.
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Mean Std Max Median
Astro 0.968 | 167 0.001 | 45 0.971 | 81 0.969 | 162
Car? 0.720 | 141 0.027 | 41 0.829 | 105 0.707 | 137
DNA 0.942 | 51 0.000 | 0 0.942 | 51 0.942 | 51
Letter? 0.954 | 111 0.000 | 0 0.954 | 111 0.954 | 111
Madelon? 0.598 | 85 0.007 | 43 0.607 | 70 0.602 | 75
Pendigits 0.972 | 117 0.000 | 27 0.973 | 76 0.972 | 113
Protein 0.691 | 73 0.000 | 0 0.691 | 73 0.691 | 73
Satimage 0.913 | 108 0.000 | 0 0.913 | 108 0.913 | 108
Shuttle? 0.999 | 73 0.000 | 0 0.999 | 73 0.999 | 73
Splice 0.897 | 120 0.001 | 27 0.901 | 78 0.897 | 118
Svmguide4? 0.847 | 118 0.008 | 23 0.865 | 135 0.848 | 112
USPS 0.943 | 95 0.001 | 23 0.945 | 78 0.943 | 97
Vowels 0.624 | 128 0.011 | 32 0.643 | 91 0.621 | 123

Tabela 10 – Accuracy | No. of function evaluations for the proposed approach. Mean,
standard deviation, maximum (and the number of function evaluations re-
garding the best result), and median for all 13 datasets. ? indicates higher
mean accuracy.

size with fewer than 100 function evaluations. Regarding the stability, the DNA, Letter,
Protein, Satimage, and Shuttle datasets present a standard deviation of approximately
zero. We achieved a better accuracy for the Car dataset (from 0.780 to 0.829), but it
increases the number of function evaluations to reach the minimum mesh-size. For the
Madelon dataset we reached the best accuracy reported in Tab. 7 by the RS algorithm,
and increased the mean accuracy with fewer function evaluations (85 of mean, and
best value achieved with 70). We achieved the best accuracy overall for the Shuttle
dataset, with a lower number of function evaluations. In the Vowels dataset, the best
accuracy improved from 0.641 to 0.643, however, with an increase in the number of
function evaluations (from 100 to 128 of mean).

Here again, we generate an ordering of the methods but now replacing the
Ortho-MADS by the proposed approach. Tab. 11 summarizes the comparison between
all methods through an average ranking (BRAZDIL; SOARES, 2000) according to the
measured accuracy mean, worst case, and best case. The proposed approach has
the best rank among all considered methods, followed by the BADS, Bayesian, SA,
GS, and RS. The most consistent methods are the proposed approach and the BADS,
ranking 1 and 2 for the best mean and the best maximum accuracy, and 5 and 6 for the
worst mean accuracy respectively.

The Friedman rank sum test shows a p-value of 0.00024, and Tab. 12 presents
the Nemenyi test using Tabs. 7 and 10. The results indicate that the Ortho-MAD2S pre-
sents similar results to BADS, and the concordance of results between Ortho-MADS
and BADS are smaller than the proposed approach. We can conclude that both BADS
and Ortho-MAD2S present superior performance compared to other methods. Further-
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Best Mean Worst Mean Best Maximum
Algorithm Accuracy Accuracy Accuracy

r̄ Rank r̄ Rank r̄ Rank
Ortho-MAD2S 1.85 1 4.31 5 2.15 1
BADS 1.92 2 4.46 6 2.38 2
Bayesian 2.61 3 3.38 4 3.46 4
SA 3.08 4 3.08 3 3.15 3
GS 3.85 5 2.31 2 4.46 6
RS 4.15 6 2.00 1 4.08 5

Tabela 11 – Average ranking (AR) considering the best mean accuracy, the worst mean
accuracy and the maximum accuracy for the 13 datasets (BRAZDIL; SOA-
RES, 2000).

more, the advantage of the proposed approach when compared to BADS is the false
minimum avoidance and the stopping criterion. Fig. 13 depicts the critical difference
graph comparing all methods, illustrating the results of Tab. 12. The confidence inter-
val is 95% for the null hypotheses of H0 : Θi = Θj and the alternative hypotheses of
H1 : Θi 6= Θj. Considering the used confidence interval the p-values close to one do
not reject the null hypotheses, while the p-values close to zero reject the H0 and do not
reject H1.

Proposed Ortho-MAD2S Bayesian SA RS GS
Approach

Ortho-MAD2S 0.9637 - - - - -
Bayesian 0.8446 0.9998 - - - -
SA 0.3597 0.9175 0.9876 - - -
RS 0.0037 0.0821 0.1959 0.6601 - -
GS 0.0497 0.4163 0.6601 0.9780 0.9876 -
BADS 1.0000 0.9780 0.8844 0.4163 0.0052 0.0642

Tabela 12 – Nemenyi test between all methods using the 13 datasets.

Figura 13 – Nemenyi test critical difference.

We choose the Car dataset (as it has the largest standard deviation among all
datasets reported in Tab. 10) to analyze the impact of changing the VNS, the starting
point and the minimum mesh size. We start considering different perturbation amplitu-
des Υ = {0.25, 0.5, 0.75, 0.9}, and Tab. 13 shows the results after 50 runs for each Υ. By
increasing Υ, the algorithm can reach regions more distant from the current incumbent,
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however, it requires more function evaluations to achieve a high mean accuracy. A large
Υ does not translate into a better accuracy, as increasing Υ it creates sparser points to
evaluate which may skip good regions, as the results for Υ = 0.75 and Υ = 0.9 indicate.

Car Υ = 0.25 Υ = 0.5 Υ = 0.75 Υ = 0.9
Mean 0.720 | 141 0.720 | 172 0.710 | 275 0.710 | 362
Std 0.027 | 41.3 0.042 | 60.5 0.042 | 79.4 0.029 | 86.9
Max 0.829 | 105 0.829 | 107 0.805 | 200 0.780 | 205
Median 0.707 | 137 0.707 | 161 0.707 | 264 0.707 | 361

Tabela 13 – Mean accuracy, standard deviation, maximum accuracy and median accu-
racy and the corresponding No. of function evaluations by changing the
VNS for the Car dataset for different perturbation amplitudes.

Tab. 14 shows that by decreasing δmin, the proposed approach needs more
function evaluations to reach the desired local minimum, as the mesh size reduction
occurs in sequence (it is not possible to execute two mesh reduction operations in the
same Ortho-MAD2S iteration). For δmin(C,γ) = 9e−1 we need fewer function evaluations
to reach the stopping criterion, however, the maximum accuracy achieved was lower
than the results from δmin(C,γ) = 9e− 3. A smaller minimum mesh size, δmin(C,γ) = 9e− 7,
does not guarantee a good performance, but for sure it increases the number of function
evaluations needed to reach the stopping criterion. In this case the model can discard
good points or over-fit the model.

Car δmin(C,γ) = 9e− 1 δmin(C,γ) = 9e− 3 δmin(C,γ) = 9e− 7
Mean 0.738 | 34.9 0.729 | 184.4 0.716 | 236.7
Std 0.036 | 21.3 0.035 | 43.9 0.029 | 68.2
Max 0.804 | 60 0.829 | 133 0.804 | 212
Median 0.756 | 24 0.732 | 169 0.707 | 218

Tabela 14 – Mean accuracy, standard deviation, maximum accuracy and median accu-
racy and the corresponding No. of function evaluations for the Car dataset
for different minimum mesh sizes (δmin).

We have also evaluated the influence of the starting point for the Car dataset
using five pre-defined and five random starting points x0 = {(0.5, 0.5),(50, 50), (90, 90),

(1, 90), (90, 1), (70.93, 75.21), (50.60, 64.29), (25.21, 79.05), (89.59, 13.49), (2.37, 57.91)}.
Tab. 15 shows that the mean value may be similar to the solution without VNS

(as shown in Tab. 7), however, we could reach at least 0.805 of accuracy for all starting
points, which is higher than the best solution from Tab. 7 (0.780 using BADS). Thus, the
VNS mitigates the starting point effect and the MADS randomness. Fig. 14 exemplifies
a comparison example between the Ortho-MADS with and without the VNS, both using
the same starting point at x0 = (50, 50) and the number of function evaluations. The
Ortho-MADS without VNS reached Lmin = 1.1904 and the accuracy of 0.7073 on the
test set, while the Ortho-MAD2S reached Lmin = 1.1876 and the accuracy of 0.8048.
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x0 = (C, γ) Mean Max Min
(0.5, 0.5) 0.717 | 1.191 0.805 | 1.187 0.780 | 1.185
(50, 50) 0.735 | 1.189 0.829 | 1.187 0.805 | 1.183
(90, 90) 0.706 | 1.190 0.805 | 1.188 0.732 | 1.183
(1, 90) 0.690 | 1.192 0.805 | 1.194 0.780 | 1.185
(90, 1) 0.721 | 1.192 0.805 | 1.196 0.707 | 1.118
(70.93, 75.21) 0.698 | 1.192 0.829 | 1.188 0.707 | 1.186
(50.60, 64.29) 0.728 | 1.191 0.805 | 1.196 0.780 | 1.184
(25.21, 79.05) 0.726 | 1.190 0.805 | 1.189 0.707 | 1.187
(89.59, 13.49) 0.727 | 1.191 0.805 | 1.193 0.732 | 1.185
(2.37, 57.91) 0.727 | 1.190 0.805 | 1.189 0.780 | 1.186

Tabela 15 – Mean accuracy, maximum accuracy and minimum accuracy and the cor-
responding L value for the Car dataset for different starting points x0.

Figura 14 – Convergence plot comparison between Ortho-MADS with and without VNS
for the Car dataset.
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Tab. 16 compares the number of function evaluations that each method takes
to achieve its best accuracy in the Madelon dataset. In the case of a good starting
point (as we previously knew), all methods need the same or fewer function evaluations
than the proposed approach to achieve their best accuracy. However, none can reach
the accuracy achieved by the proposed method. In the case of a "bad"starting point,
the BADS, Bayesian, and SA have a high probability of achieving an undesired local
minimum, not reaching the highest accuracy. The GS and the RS depend on the grid
designed by the user and on the dataset randomness to find a point that results in
the best accuracy. Tab. 17 shows the accuracy of each method using the accuracy
of 0.8 or one thousand function evaluations as stopping criteria and previously known
"good"starting points. We choose the Car dataset because it has a significant difference
in the best accuracy between the proposed approach and the other methods, and no
other method achieved accuracy above 0.732.

We noticed in experiments that all methods were susceptible to fall at a minimum
point that is not their best. Even the Ortho-MADS method without the VNS appro-
ach can reach this condition. The VNS approach is important to leave false minimum
points. Ortho-MAD2S is less sensitive to the impact of initialization points and the false
minimum problem. During the experiments we observed one situation where the RS
achieved its minimum at five iterations with a random initialization point, but in the great
majority of the situations, this method could not reproduce this result with less than
1,000 iterations.

Approach Accuracy # Evaluations
Proposed Approach 0.607 70
Bayesian 0.568 30
BADS 0.602 106
GS 0.571 57
RS 0.603 30
SA 0.601 19

Tabela 16 – Best maximum accuracy and No. of function evaluations for the Madelon
dataset.
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Approach Accuracy # Evaluations
Proposed Approach 0.829 105
Bayesian 0.707 1,000
BADS 0.707 1,000
GS 0.732 1,000
RS 0.707 1,000
SA 0.732 1,000

Tabela 17 – Best maximum accuracy and No. of function evaluations for the Car da-
taset with stopping condition of either 0.8 of accuracy or 1,000 function
evaluations.

4.6 SUMMARY AND SYNTHESIS OF CONTRIBUTION

We proposed an approach for tuning the hyperparameters of SVM with Gaussian
kernel based on black-box optimization algorithms which is an extension of Ortho-
MADS. The proposed approach employs two different search strategies (Nelder-Mead
and Variable Neighborhood) to escape from local minima as well as the mesh size
as a stopping criteria to avoid unnecessary function evaluations. We have shown on
benchmark datasets that the proposed approach outperforms other state-of-the-art
methods for hyperparameter tuning which are widely used in machine learning. The
alternation between the search and pool stage provides a robust performance, and the
use of two different search methods attenuate the randomness of the MADS and the
starting point choice. Besides that, the proposed approach has convergence proof, and
using the mesh size as stopping criterion gives to the user the possibility of setting
a specific local minimum region instead of using the number of evaluations, time, or
fixed-size grid as a stopping criterion. In the cases where a test set is available, the
evolution of the mesh size during the BBO iterations can help identify under and over
fitting behaviors.

The proposed approach gives the user the flexibility of choosing parameters
to explore different strategies and situations. From our experiments, we recommend
starting with the proposed default configuration, and from there the user can custo-
mize the Ortho-MADS parameters if necessary, which may improve the quality of the
results. Therefore, the Ortho-MAD2S can be used to replace current methods, as grid
search, for tuning the hyperparameters of a SVM with Gaussian kernel. For future work,
we expect to analyze the NOMAD with SVM variations, which includes incremental
formulations and different kernels.

The contributions of this chapter are:

• We propose a novel approach to tune hyperparameters of an SVM with Gaus-
sian kernel (thus we have 2 hyperparameters to be tuned) based on the Ortho-
MADS (Abramson2009) and the combination of two different search strategies,
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the Nelder-Mead (NELDER; MEAD, 1965) and the Variable Neighborhood Search
(VNS) (AUDET; BÉCHARD; DIGABEL, 2008). Combining such search strategies
leads to a faster convergence (NM) and the possibility to escape from undesired
local minimum (VNS).

• We propose a dynamic stopping criteria, i.e., we define the stopping criteria re-
garding the desired local minimum size which is set by the mesh size.

• The integration of the proposed approach into a black-box optimization framework
that provides many other tools that aid to adjust the hyperparameters regarding
the particularities of each application, as the mesh size, poll size, convergence
step, and other stopping criteria such as the number of function evaluations and
processing time. The experimental results on several benchmark datasets have
shown that the proposed approach converges fast to appropriate hyperparameter
values while achieving state-of-the-art accuracy. Besides that, the proposed appro-
ach presents several interesting properties such as the guarantee of convergence
and a dynamic stopping criterion.
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5 INCREMENTAL AND DECREMENTAL FUZZY BOUNDED TWIN SUPPORT
VECTOR MACHINE

5.1 INTRODUCTION

Classical machine learning approaches, in which all data is simultaneously ac-
cessed, do not meet the requirements to deal with the scenario in which training data
is partially available at a time or where the amount of data is so large that it does not fit
into the memory or into the storage of a single machine. Incremental or on-line learning
is an approach to tackle problems in which only a subset of the data is considered at
each step of the learning process, or when the dataset is too large to be processed at
once (KHEMCHANDANI; JAYADEVA; CHANDRA, 2009). From the computational point
of view, incremental learning has three goals (HE, 2011): transform previously learned
knowledge to current received data to facilitate learning from new data; accumulate
experience over time to support the decision-making process; and achieve global gene-
ralization through learning to accomplish goals. Incremental learning often also refers
to on-line learning strategies with limited memory resources, relying on creating a com-
pact memory model that represents the already observed data but providing accurate
results for all relevant settings.

5.2 LITERATURE REVIEW

The work of (LOSING; HAMMER; WERSING, 2018) evaluated the most common
algorithms of incremental learning on diverse datasets, and the conclusion is that the
Support Vector Machines (SVMs) are usually the highest accurate models. However,
such an accuracy is at the expense of the most complex model besides many other
shortcomings. The SVMs were developed to tackle two-class classification problems
by solving a complex Quadratic Programming Problem (QPP) that determines a unique
global hyperplane in the input space that maximizes the separation between the classes
(CORTES; CORTES; VAPNIK, 1995). However, it requires a large memory and a high
CPU power since the computational complexity of the SVM for l data points is O(l3),
which makes it impractical for large datasets. To circumvent this problem, one may use
the incremental version of SVM or its variants, that learns from new data by discarding
past data points excepting the SVs, i.e., the new data is used to retrain the model
together with the current SVs (CAUWENBERGHS; POGGIO, 2000; DOMENICONI;
GUNOPULOS, 2001; KHEMCHANDANI; JAYADEVA; CHANDRA, 2009).

The Incremental Support Vector Machine (ISVM) proposed by Cauwenberghs
and Poggio (CAUWENBERGHS; POGGIO, 2000) is an exact solution to the problem of
on-line SVM that updates the optimal solution of the SVM by adding or removing one
training data point. The bottleneck of the ISVM is that the computational complexity of a
minor iteration of the algorithm is quadratic in the number of training data points learned
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so far. Therefore, the actual runtime depends on the balance between memory access
and arithmetic operations in a minor iteration (LASKOV et al., 2006). The LASVM
(BORDES et al., 2005) is an on-line kernel classifier that relies on the soft-margin SVM
formulation to handle noisy data. The iterations are similar to the SMO algorithm but
with a different search strategy. Furthermore, it introduces a SV removal step, where it
removes the vectors collected in the current kernel expansion during the on-line process.
The iterations run in epochs, where each epoch sequentially visits all the randomly
shuffled training data points, and the stopping criteria is a predefined number of epochs.
Multiple number of epochs can be used as a stochastic optimization algorithm in the
off-line training, and a single epoch in the on-line step. The computational cost of the
LASVM is O(p× lSV × i), where (nSV ) is the number of SVs, i is the number of on-line
iterations, and p scales no more than linearly to the amount of training data points,
which makes the training process faster than the ISVM. Empirical results suggest that
using a single epoch yields to misclassification rates comparable with the SVM. Despite
the effectiveness of the ISVM and the LASVM, both methods still need to deal with one
large QPP, requiring large memory storage and CPU processing time on training and
update steps.

The work of (MANGASARIAN; WILD, 2006) introduced the Generalized Eigen-
value Proximal Support Vector Machine (GEPSVM) that generates two non-parallel
hyperplanes for a two-class problem. Thus, it solves two smaller Quadratic Program-
ming Problems (QPPs) instead of a single complex QPP, laying each class data point
in the proximity of a hyperplane, which reduces the complexity compared to the SVM.
Jayadeva et al. (JAYADEVA; KHEMCHANDANI, R.; CHANDRA, 2007) proposed the
TWSVM, which also solves a pair of QPPs where the data points of one class provide
constraints to the other QPP and vice versa (TOMAR; AGARWAL, 2015; DING; YU et
al., 2014). The TWSVM classifies the data points of two classes using two non-parallel
hyperplanes with a complexity of O(2 × (l/2)3), which is four times lower than a SVM.
Twin-based models are mathematically smaller than the SVM and they require low
memory storage and CPU processing time.

Based on the TWSVM, several variants and solvers have been proposed (DING;
ZHANG et al., 2017; TOMAR; AGARWAL, 2015; TIAN; QI, 2014; JAYADEVA; KHEM-
CHANDANI, Reshma; CHANDRA, 2017a). Yuan-HaiShao et al. (SHAO; ZHANG et al.,
2011) suggested the Twin Bounded Support Vector Machine (TBSVM) that includes
adherence to the structural risk minimization principle, so the dual formulation (whose
inverse is guaranteed) can be solved by Successive Over-Relaxation (SOR) methodo-
logy. The Improved Twin Support Vector Machine (ITWSVM) (TIAN; JU et al., 2014)
uses a different representation from the TBSVM that leads to a different Lagrangian
function for the primal problem and different dual formulations. The ITWSVM does not
need to compute the inverse of large matrices before training and can be solved by the



Capítulo 5. INCREMENTAL AND DECREMENTAL FUZZY BOUNDED TWIN SUPPORT VECTOR
MACHINE 78

SOR or the SMO. However, the matrices in the dual form must involve all the data points
from both classes, which makes the dual QPPs larger than the TWSVM. Khemchan-
dani et al. (KHEMCHANDANI; JAYADEVA; CHANDRA, 2008) proposed a novel fuzzy
TWSVM that assigns a fuzzy weight to each data point to mitigate the effect of outliers
and improve accuracy. Gao et al. (GAO; WANG et al., 2015) proposed a coordinate
descent fuzzy TWSVM, assigning a fuzzy membership function to mitigate the effect
of noisy data points, and solving the QPPs with a coordinate descent with shrinking
by active set. Other variants or extensions are the Least Square Twin Support Vector
Machine (LS-TWSVM) (ARUN KUMAR; GOPAL, 2009) that solves the primal problems
of the TWSVM, and the ν-TWSVM (PENG; XINJUN, 2010) where the ν parameter
controls the bounds of the fractions of the SVs and the error margin.

Considering the TWSVM and its variations, Khemchandani et al. (KHEMCHAN-
DANI; JAYADEVA; CHANDRA, 2009) introduced the Incremental Twin Support Vector
Machine (I-TWSVM), which uses the concept of margin vectors and error vectors to
select new data points to update the classifier. It learns from new data by retraining
the model while discarding past data points except for the previous SVs and erroneous
classified data points from the training dataset. However, for each new data point, both
models need to be completely re-built. Hao et al. (HAO; ZHANG, 2014) proposed a
fast incremental TWSVM that uses a distance-based strategy to determine if a new
data point is above a predefined threshold. It selects the most important data points
that are nearby the proximal hyperplane from the current training set, and keep data
points that are not near the proximal hyperplane from the new training set. In each itera-
tion, it retrains the model considering the previous SVs and the new data points (there
is no decremental step). The On-line Twin Independent Vector Machine (OTWISVM)
(ALAMDAR; GHANE; AMIRI, 2016) uses a modified Newton method to build a decision
function via a subset of data points seen so far for each class separately (called basis).
The basis vectors are found (or added during the on-line procedure) during iterative
minimization by checking if a new data point is linearly independent in the feature space
from the current basis. The basis size is limited, so it does not grow linearly with the
training set. The OTWISVM does not have a decremental step, and as it utilizes a mo-
dified Newton solver, it needs to calculate the inverse of the Hessian on every update,
making the method unfeasible to deal with high-dimensional datasets.

Besides improving the model with new data, it is also important to have a decre-
mental procedure to prevent the model from growing indefinitely. Despite the update
strategy be closely related to the model formulation, there are many alternatives on
choosing the SVs to be removed, such as the time-window proposed by Fung et al.
(FUNG, G.; MANGASARIAN, O. L., 2002), the concept of informative margin vectors
and error vectors (CAUWENBERGHS; POGGIO, 2000), or decay coefficients (TVEIT;
HETLAND; ENGUM, 2003).
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Finally, to unveil the full power of the incremental SVM, it is necessary to adapt
it to deal with non-linear problems using the kernel trick. However, conventional kernel
approaches struggle to deal with large datasets due to the storage and computational
issues in handling large kernel matrices. A feasible solution is the use of kernel appro-
ximations such as: exploiting low-rank approximation of the kernel matrix; reducing the
kernel space definition; or exploiting a randomized kernel space definition (IOSIFIDIS
et al., 2016). Random Fourier (RF) approximations provide an efficient and elegant
methodology (RAHIMI; RECHT, 2008), where the Fourier expansion generates featu-
res based on a finite set of random basis projections with inner products that are the
kernel Monte Carlo approximations (LI; IONESCU; SMINCHISESCU, 2010). Fourier
features are applicable to translation-invariant kernels, so it can be used to approximate
the Gaussian kernel. Rahimi et al. (RAHIMI; RECHT, 2008) use RF to map the input
data to a randomized low-dimensional feature space providing convergence bounds to
approximate various radial basis kernel. Le et al. (LE; SARLOS; SMOLA, 2014) propo-
sed an RF-based approximation called Fastfood, which requires a smaller computation
and memory storage than Random Kitchen Sinks (RAHIMI; RECHT, 2009) to obtain
an explicit function space expansion.

Although many efforts have been made, the incremental SVM approaches still
have several shortcomings such as the impossibility of endless learning, high model
complexity, high training time, high complexity of hyperparameter optimization, adap-
tability to concept drift, among others. In this paper we propose a novel incremental
and decremental variant of the TWSVM called FBTWSVM that overcomes many of the
shortcomings of the current approaches. The FBTWSVM combines a fast training and
an incremental procedure (with the ability to handle noisy data) without weakening the
accuracy when updated. The proposed approach can continuously integrate new infor-
mation into already-built models and it is adherent to the structural risk minimization
principle (as in (SHAO; ZHANG et al., 2011)), and it uses the Dual Coordinate Descent
(DCD) algorithm with active shrinking (TIAN; JU et al., 2014; GAO; WANG et al., 2015;
GAO; WANG, 2017; KHEMCHANDANI; JAYADEVA; CHANDRA, 2008; GAO; WANG
et al., 2015) to create the off-line classifier. The incremental and decremental strategies
are based on the DCD with shrinking, exploiting the relevance of each support vector.
Furthermore, we propose the use of our linear formulation with a kernel approximation
to speed up training and classification while maintaining the non-linearity. Finally, the
FBTWSVM is extended to multiclass problems using a strategy based on the DAG.
The experimental results on benchmarking datasets have shown that the proposed
approach achieves accuracy comparable to the exact solution besides being faster
to integrate new information and to discard outdated information into the already-built
models.
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5.3 BASIC CONCEPTS

5.3.1 THE FUZZY SVM

The Fuzzy SVM introduced by Lin et al. (CHUN-FU LIN; SHENG-DE WANG,
2002) uses the fuzzy theory to reduce the effect of outliers by applying a fuzzy mem-
bership to each data point. Fuzzy numbers, denoted as si, are assigned to each in-
put data point to add information that reflects the noise contamination level, which is
0 ≤ si ≤ 1, i = 1, 2, ..., l. Therefore, the training dataset D becomes a triple D′=(xi, yi, si)

to accommodate the fuzzy number and to reduce the influence of the contaminated
data points in generating the decision functions. The fuzzy SVM is formulated as:

min
w,b,ξ

1

2
||w||2 + Cs>ξ

s.t. yi(ω>xi + b) + ξi ≥ 1

ξi ≤ 0, i = 1, 2, ..., l

(24)

where C is the trade-off scalar and ξi is the slack variable that represents the
error associated with the i-th input data point. An important remark about this
formulation is that a small si can reduce the effect of the slack variable ξi in Eq. 24, so
reducing the importance of the corresponding data point xi. The classification of an
input x is given by the sign of ω∗>x+ b∗, where ω∗ and b∗ are the solution of Eq. 24.

The construction of the membership functions follows the strategy used by Gao
et al. (GAO; WANG et al., 2015; GAO; WANG, 2017), which is inspired in (TANG,
2011). The method considers reducing the noise carried by outliers while keeping the
importance of the SVs. We integrate the fuzzy SVM into the TWSVM formulation by
selecting two different classes and assigning a positive label to the first class and a
negative label to the second one. The class centers xc+ and xc− are the mean points
considering the input space of these two classes, defined by:

xc+ =
1

l+

∑
yi=+1

xi, xc− =
1

l−
∑
yi=−1

xi (25)

The hyperspheres radii r+ and r− are constructed by measuring the distance of
the farthest scattering data point of each class:

r+ = max
i
||xi − xc+|| if yi = +1

r− = max
i
||xi − xc−|| if yi = −1

(26)

The membership of si is assigned according to the distance relationship between
||xi−xc+|| and ||xi−xc−|| when xc+, xc−, r+, and r− are known. Formally, si of a positive
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data point is given as:

si =



µ
(
1− ||xi − xc+||/(r+ + δ)

)
if ||xi − xc+|| ≥ ||xi − xc−|| ∧ yi = +1

(1− µ)
(
1− ||xi − xc+||/(r+ + δ)

)
if ||xi − xc+|| < ||xi − xc−|| ∧ yi = +1

(27)

where µ ∈ [0, 1] is used to balance the effect of normal and noisy data points,
and δ > 0 is used to avoid fuzzy numbers equal 0. A data point is usually assigned
by a proportional decreasing value si when it drifts farther from its native class center,
which increases the uncertainty (GAO; WANG, 2017). A small positive real number µ is
assigned to decrease the effect of outliers towards the hyperplane. The fuzzy numbers
for the negative data points are calculated in an analogous manner.

5.3.2 THE TWIN SVM (TWSVM)

The TWSVM (JAYADEVA; KHEMCHANDANI, R.; CHANDRA, 2007) generates
two non-parallel hyperplanes such that each hyperplane is closer to one class and
is as far as possible from the other class (TOMAR; AGARWAL, 2015; JAYADEVA;
KHEMCHANDANI, Reshma; CHANDRA, 2017b) as shown in Fig. 15. The two non-
parallel decision planes are defined as:

Figura 15 – Binary classification using the TWSVM, inspired by (TOMAR; AGARWAL,
2015)

Class +1

Class -1

Non parallel 
hyperplanes

ω>+x + b+ = 0 and ω>−x + b− = 0 (28)

where ω+,ω−∈ Rn indicate normal vectors to the hyperplane, and b+, b− ∈ Rn

are the bias terms.
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Considering a soft margin hyperplane to handle non-linearly separable data, the
following pair of primal optimization problems is the set up to build the decision planes:

min
ω+,b+,ξ−

1

2
||X+ ω+ + e+ b+||2 + C1 e

>
− ξ−

s.t. y−(X− ω+ + e− b+) + ξ− ≤ e−, ξ− ≥ 0

(29)

and
min

ω−,b−,ξ+

1

2
||X− ω− + e− b−||2 + C2 e

>
+ ξ+

s.t. y+(X+ ω− + e+ b−) + ξ+ ≤ e+, ξ+ ≥ 0

(30)

where C1>0 and C2>0 are the penalty factors that trade-off the complexity and
data misfit between the minimization of the two terms in the objective function, ξ+

and ξ− denote the slack variable vectors (the deviation from the margin that allows
subsets of misclassification error for positive and negative classes respectively), e−,
e− correspond to unit row vectors with their dimensions exact to data point size in each
class used for mathematical purpose only, y+ and y− are +1 and −1 respectively. In
each QPP (Eqs. 29 and 30) the objective function corresponds to a particular class
and the constraints are set by the data points of the opposite class. Assuming that the
TWSVM is split into two QPPs of size n/2, and that the complexity of the original SVM
is less or equal to n3, the TWSVM is approximately four times faster than the original
SVM (2× (n/2)3 = n3/4)(JAYADEVA; KHEMCHANDANI, Reshma; CHANDRA, 2017b).

After solving the Eqs. 29 and 30 for (w∗+, b
∗
+) and (w∗−, b

∗
−), respectively, we can

classify a new data point x by:

f(x) = argmin±
|ω∗>± + b∗±|
||ω∗±||

(31)

and choose either +1 or −1 according to the lowest value of Eq. 31.
We can write Eqs. 29 and 30 as an unconstrained problem using Lagrangian

multipliers. The dual formulation of the linear TWSVM for Eq. 29 is:

max
α

e>−α−
1

2
α>H−(H>+H+)−1H>−α

s.t. 0 ≤ α ≤ C1

(32)

where H+=[X+, e+], H−=[X−, e−], and α=(α1, . . . , αm)> is the Lagrangian vector.
In a similar manner we can write the dual formulation for Eq 30 as:

max
ν

e>+ ν −
1

2
ν>H+(H>−H−)−1H>+ν

s.t. 0 ≤ ν ≤ C2

(33)
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where ν=(ν1, ν2, . . . , νm) is the Lagrangian vector. For more detail on the dual
formulation one may refer to (JAYADEVA; KHEMCHANDANI, R.; CHANDRA, 2007;
JAYADEVA; KHEMCHANDANI, Reshma; CHANDRA, 2017b). Once we solve dual
problems for α and ν, we can get the vectors [ω+, b+]> and [ω−, b−]>. Thus, the
separating hyperplanes are given by:

x>ω+ + b+ = 0 and x>ω− + b− = 0 (34)

During testing, a new data point is assigned to the closest hyperplane regarding
the two classes by:

class(x) = argmini={−1,+1}(dr(x)) (35)

where

dr(x) =
|x>ωr + br|
||ωr||

(36)

5.3.3 KERNEL APPROXIMATION

Kernel machines that operate on the data kernel matrix (Gram matrix) scale
more than quadratically in the data dimension (RAHIMI; RECHT, 2008; LI; IONESCU;
SMINCHISESCU, 2010). This makes methods as the ISVM or the LASVM impractical
to deal with large datasets or incremental data that requires sequential learning. Ap-
proximating non-linear kernels by linear kernels in the transformed space is a way to
make possible the use of efficient linear methods that depend linearly on the size of the
training set, allowing to solve large-scale and incremental learning problems efficiently
(RAHIMI; RECHT, 2008; LI; IONESCU; SMINCHISESCU, 2010). Instead of relying on
the kernel trick implicit lifting, the Random Fourier Features (RAHIMI; RECHT, 2008) ex-
plicitly map the data to a low-dimensional Euclidean inner product using a randomized
feature map z : Rn→RN , described as:

κ(x1,x2) = 〈ϕ(x1), ϕ(x2)〉 ≈ z(x1)>z(x2) (37)

where z is a low-dimensional space. The feature space approximates shift-invariant
kernels κ(x1 − x2) to within an error err with N = O(err−2n log 1

err2
) dimensions.

Rahimi and Recth (RAHIMI; RECHT, 2008) show empirically that a similar classification
performance can be obtained for dimensions smaller than N .

The first set of transformed features are the Random Fourier bases cos(τ>x+ b),
where τ ∈ Rn and b ∈ R are random variables. It maps projected data on a randomly
chosen line, followed by passing the resulting scalar through a sinusoidal function. The



Capítulo 5. INCREMENTAL AND DECREMENTAL FUZZY BOUNDED TWIN SUPPORT VECTOR
MACHINE 84

direction of these lines, in an appropriate distribution, guarantees that the product of
two transformed points approximates a desired shift-invariant kernel (RAHIMI; RECHT,
2008). The transformation follows Bochner’s theorem: A continuous kernel κ(x, y) =

κ(x − y) on Rn is positive definite if and only if κ(δ) is the Fourier transform of a
non-negative measure. For a properly scaled shift-invariant kernel κ(δ) Bochener’s
guarantees that its Fourier transform p(τ) is a proper probability distribution:

κ(x− y) =

∫
Rn
p(τ)ejτ

>(x−y)dτ = Eτ [ζτ (x)ζτ (y)∗] (38)

where ζτ (x) = ejτ
>x. ζτ (x)ζτ (y)∗ is an unbiased estimate of k(x, y) when τ is

drawn for p (note that here ∗ is the complex conjugate). The integral of Eq. 38 conver-
ges when the complex exponentials are replaced by cosines, zτ (x)=

√
2cos(τ>x + b),

obtaining a real-valued mapping that satisfies the condition E[zτ (x)zτ (y)], where τ

is drawn from p(τ) and b is uniformly distributed from [0, 2π]. The variance of the
estimate of the kernel can be reduced by concatenating N randomly chosen zτ into one
N -dimensional normalized vector, .i.e. the inner product z(x)>z(y) = 1

N

∑N
j=1 zτ (x)zτ (y)

is a lower variance approximation to the expectation of Eq. 381

To summarize, the Random Fourier Feature algorithm starts by getting a rando-
mized feature map z(x):Rn→RN , so that z(x)>z(y) ≈ k(x− y). The second step is to
compute the Fourier transform or p of the kernel k as,

p(τ) =
1

2π

∫
ejτ
>δk(δ)d∆ (39)

The third step is to draw N independent and identically distributed (iid) data
points τ1, ..., τN ∈ Rn from p and N iid data points b1, ..., bN ∈ R from the uniform
distribution on [0, 2π]. Finally, z(x) is computed as:

z(x) ≡
√

2

N
[cos(τ>1 x+ b1), . . . , cos(τ>Nx+ bN)]> (40)

The scalar σ2
p is equal to the trace of Hessian of k at 0, that quantifies

the curvature of the kernel at the origin. For a Gaussian kernel denoted as
k(x1,x2)=exp(−γ||x1 − x2||2), we have σ2

p=2nγ, that approximates the kernel to:

p(τ ) = 2π−
N
2 e−

||τ ||22
2 (41)

The important implications of using this kernel approximation in our incremental
approach are: (i) we approximate the non-linear model accuracy with a linear model; (ii)
it is faster to calculate the approximate kernel than the regular kernel; (iii) and mainly,
we increment the model only in one dimension, so we do not need to recalculate the
kernel approximation for the previous data.
1 The proof can be found in (RAHIMI; RECHT, 2008).
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5.4 THE FUZZY BOUNDED TWIN SVM (FBTWSVM)

We present a formulation based on the original TWSVM (JAYADEVA; KHEM-
CHANDANI, R.; CHANDRA, 2007) and inspired by the FRTSVM (GAO; WANG et al.,
2015; GAO; WANG, 2017) and by the TBSVM (SHAO; ZHANG et al., 2011) to include
the fuzzy formulation (Eq. 24) in the TWSVM (Eqs. 29 and 30) and write the duals.
We also incorporate the TBSVM (SHAO; ZHANG et al., 2011) solution to maintain the
structural risk minimization principle by automatically getting the dual formulation in-
verse matrix guarantee to circumvent the drawback of the standard TWSVM formulation
that only adheres to the empirical risk minimization principle in the dual problem. The
FBTWSVM primal formulation is defined as:

min
ω+,b+,ξ−

1

2
C1(||ω+||2 + b2

+) +
1

2
||X+ ω+ + e+ b+||2

+ C3s
>
− ξ−

s.t. y−(X− ω+ + e− b+) + ξ− ≥ e−, ξ− ≥ 0

(42)

min
ω−,b−,ξ+

1

2
C2(||ω−||2 + b2

−) +
1

2
||X− ω− + e− b−||2

+ C4s
>
+ ξ+

s.t. y+(X+ ω− + e+ b−) + ξ+ ≥ e+, ξ+ ≥ 0

(43)

where C1, C2, C3, and C4 are the trade-off parameters between the margin and the
complexity for weighting the regularization, s+∈Rl+ and s−∈Rl− are the fuzzy number
vectors sequentially associated with the positive and negative input data points, which
introduce the desired robustness in the weighted regularized model (GAO; WANG et al.,
2015; GAO; WANG, 2017). The additional b+ and b− in Eqs. 42 and 43 minimize the
structural risk.

The two hyperplanes in Rn are defined as ω>± + b± = 0, and since the TWSVM
has two proximal decision functions, two margin terms 1/||ω±|| are defined for the
proximal decision function (GAO; WANG et al., 2015). The margin between two classes
can be measured by the distance between the proximal hyperplane x>ω+ + b+ = 0 and
the bounding hyperplane x>ω+ + b+ = −1. The distance is 1/||ω+||2, and it is the one-
sided margin between the two classes with respect to the hyperplane x>ω+ + b+ = 0

(SHAO; ZHANG et al., 2011; JAYADEVA; KHEMCHANDANI, Reshma; CHANDRA,
2017b). The process is analogous to the other hyperplane.

We need to derive the dual problems to obtain the solutions of Eqs. 42 and 43.
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We start by taking the Lagrangian of Eq. 42 to obtain the Wolfe dual:

L(ω+, b+, ξ−) =
1

2
C1(||ω+||2 + b2

+) +
1

2
||X+ω+ + e+b+||2

−α>(−(X− ω+ + e− b+) + ξ− − e−)

+ C3 s
>
− ξ− − η>ξ−

(44)

where α=(α1, . . . , αX+)>, and η=(η1, . . . , ηX+)> are the Lagrange multiplier vectors.
Considering that Eq. 42 is a convex optimization problem, the Karush-Kuhn-Tucker
(KKT) optimality conditions are both necessary and sufficient, and they are written as:

∇ω+ L = C1 ω+ +X>+ (X+ ω+ + e+ b+)

+X>− α = 0
(45a)

∇b+ L = C1 b+ + e>+(X+ ω+ + e+ b+)

+ e>− α = 0
(45b)

∇ξ− L = −α> − η> + C3 s− = 0 (45c)

− (X− ω+ + e− b+) + ξ− ≥ e−ξ− ≥ 0 (45d)

α>(ω− X+ + e− b+ − ξ− + e−) = 0; η>ξ− = 0 (45e)

α ≥ 0, η ≥ 0, ξ− ≥ 0 (45f)

Considering that η ≥ 0 and α ≥ 0 from Eq. 45f, and using Eq. 45c, we know that
α is bounded as 0 ≤ α ≤ C3s−. Summing Eqs. 45a and 45b, and using Eqs. 45c to
45f for simplification, we obtain:

([X+, e+]>[X+, e+] + C1I)[ω+, b+] + [X−, e−]>α = 0 (46)

Defining H+=[X+, e+], H−=[X−, e−], u+=[ω+, b+] and u−=[ω−, b−] (one to each
class), we can rewrite Eq. 46 as:

(H>+H+ + C1I)u>+ +H>− α = 0 or

u>+ = −(H>+H+ + C1I)−1H>− α
(47)

Using our notation, the Wolfe dual is defined as:

max L(ω+, b+, ξ−,α,η)

s.t ∇ω+
L(ω+, b+, ξ−,α,η)

∂L

∂b+

= 0

∂L

∂ξ−
= 0

α ≥ 0, η ≥ 0

(48)
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Using the KKT conditions (from Eqs. 45a to 45f) and Eq. 47, the Wolfe dual of
Eqs. 42 and 43 can be written as:

max
α

e>− α−
1

2
α>H−(H>+H+ + C1I1)−1H>− α

s.t. 0 ≤ α ≤ C3s−

(49)

max
ν

e>+ ν −
1

2
ν>H+(H>−H− + C2I2)−1H>+ ν

s.t. 0 ≤ ν ≤ C4s+

(50)

where I1 and I2 are identity matrices. The matrices (H>+H+ +C1I1) and (H>−H− +C2I2)

from Eqs. 49 and 50 are non-singular naturally, therefore their inverses are guaranteed
to exist, which adds the adherence to the structural risk minimization principle (SHAO;
ZHANG et al., 2011; JAYADEVA; KHEMCHANDANI, Reshma; CHANDRA, 2017b).
Notice that the dual for Eq. 43 can be obtained is an analogous way.

By solving the duals (Eqs. 49 and 50), we obtain the optimal solutions for α∗

and ν∗, and furthermore, the corresponding classes u∗± (as defined in Eq. 47) and the
non-parallel hyperplanes. The dual of Eq. 49 and 50 relates to the primal problems
(Eqs. 42 and 43) as:

u∗+ = −(H>+H+ + C1I1)−1H>−α
∗

u∗− = (H>−H− + C2I2)−1H>+ν
∗

(51)

Finally, for a test data point x ∈ Rn, the classification decision function is given
by Eq. 31.

5.4.1 THE NON-LINEAR FBTWSVM

In the non-linear FBTWSVM, the input data points x ∈ Rn are mapped to a high-
dimensional space H through ϕ(x). The kernel function κ(·, ·) calculates implicitly the
dot product of a pair of transformations, which is applied as κ(x1, x2) = 〈ϕ(x1), ϕ(x2)〉.
The non-linear dual proximal hyperplanes are:

κ(x, x>)ω+ + b+ = 0

κ(x, x>)ω− + b− = 0
(52)

and the primal problems used to obtain the dual proximal hyperplanes are:

min
ω+,b+,ξ−

1

2
C1(||ω+||2 + b2

+) + C3 s
>
− ξ−

+
1

2
||κ(X+, X

>)ω+ + e+ b+||2

s.t. y−(κ(X−, X
>)ω+ + e− b+) + ξ− ≥ e−, ξ− ≥ 0

(53)
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min
ω−,b−,ξ+

1

2
C2(||ω−||2 + b2

−) + C4 s
>
+ ξ+

+
1

2
||κ(X+, X

>)ω− + e− b−||2

s.t. y+(κ(X+, X
>)ω− + e+ b−) + ξ+ ≥ e+, ξ+ ≥ 0

(54)

The dual forms of Eq. 53 and 54 are:

max
α

e>− α−
1

2
α>S−(S>+S+ + C1I1)−1S>− α

s.t. 0 ≤ α ≤ C3s−

(55)

max
ν

e>+ ν −
1

2
ν>S+(S>−S− + C2I2)−1S>+ ν

s.t. 0 ≤ ν ≤ C4s+

(56)

where S+ = [κ(X+, X
>), e+] and S− = [κ(X−, X

>), e−].
The solutions of the primal problems of Eqs. 53 and 54 are υ∗± = [ω∗>± , b∗±]>,

which are the parametric relationships between the optimal υ∗± and the optimal solutions
α∗ and ν∗ of the dual forms of Eqs. 55 and 56:

υ∗+ = −(S>+S+ + C1I1)−1S>− α
∗

υ∗− = (S>−S− + C2I2)−1S>+ ν∗
(57)

Once Eqs. 55 and 56 are solved to obtain the surfaces (Eq. 52), a new data point
x ∈ Rn can be classified in a similar manner to the linear case by Eq. 31.

5.4.2 SOLVING THE FBTWSVM

The DCD method (CHANG; HSIEH; LIN, 2008), that was used by Shao and
Deng (SHAO; DENG, 2012) to solve the TWSVM, is used to solve the dual problem
of the FBTWSVM. The DCD leads to fast training by updating one variable at a time
through a single-variable sub-problem minimization. Such a fast training allows the
processing of large and incremental datasets (SHAO; DENG, 2012).

The dual problems of Eqs. 49 and 50 and Eqs. 55 and 56 are solved in the same
way. However, for convenience, we only present the solution of Eq. 49. We start by
considering Q=H−(H>+H+ + C1I1)−1H>− and Q′=(H>+H+ + C1I1)−1H>− . Consequently,
Q=H−Q

′, where qii and Q can be pre-computed and stored if necessary. The ma-
trix inversion is calculated with the Sherman-Morison-Woodbury formula. Assuming
αk,i=[αk+1,i

1 , . . . , αk+1,i
i−1 , αk,ii , . . . , α

k,1
X−+1], where i=(1, . . . , X−+1) is the index for the data
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points and k = (−1,+1) is the data label. We use the following problem updating from
αk,i to αk,i+1,

min
d

f(αk,i + d ei)

s.t. 0 ≤ αki + d ≤ C3s−

(58)

where ei=[0, . . . , 0, 1, 0, . . . , 0]> (the i−th position is 1), and di is an optimum solution to
the problem of minimizing f(αk,i + dei) subject to di ∈ Rn, i.e., f(αk,i + dei) achieves a
minimum at di only if ∇f(αk,i + dei)

>ei = ∇f(αk,i+1)>ei = 02. The objective function
of Eq. 58 is a quadratic function of d:

f(αk,i + dei) =
1

2
Qiid

2 +∇if(αk,i)d+ constant (59)

where ∇if is the i-th component of the gradient ∇f . Eq. 58 has an optimum at
d=0 iff:

∇P
i f(αk,i) = 0 (60)

where ∇P
i f(α) is the projected gradient which is defined as:

∇P
i f(α) =


min(0,∇if(α)), αi = 0,

∇if(α), 0 ≤ αi ≤ C3s−

max(0,∇if(α)), αi = C3s−

(61)

If Eq. 60 is satisfied, we can move to the next iteration (i+1) without updating
αk,ii in X−, .i.e., we only update αk,ii to temporally meet the optimal solution of Eq. 58.
The optimum of Eq. 59 is reached by introducing the Lipschitz continuity:

αk,i+1
i = min(max(αk,ii −∇if(αk,i)/Q′ii, 0), C3si−) (62)

In the update of Eq. 62, Q′i,i can be pre-calculated by Q′ii = H−iQi, and ∇if(αk,i)

can is obtained by:

∇if(α) = (Q′α)i − 1 =

X−∑
j=1

Q′ijαj − 1 (63)

2 The proof can be found in (CHANG; HSIEH; LIN, 2008)
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The computation of Eq. 63 is approximated as O(X−l), where l is the average
count of non-zero elements in Q′ per data point. To reduce the number of operations,
we can alternatively compute Eq. 63 as:

∇if(α) = −H−iu+ − 1 (64)

with a predefined u+ =−Qα and i is the row of the matrix H−, so the number
of operations is O(n). To maintain u+ throughout coordinate descent procedure, we
use:

u+i ← u+i −Qi(αi − αi) (65)

The complexity to maintain u+ iteratively is O(l). Starting with α0 = 0, the optimal
solution of u+ is obtained by iterative updating Eq. 65, and furthermore, the optimal
solution of Eq. 49. The cost per iteration for the whole process is O(X2n), and the
memory requirement is the size of H− and Q′.

5.4.3 IMPLEMENTATION

The dual problem of Eq. 49 has the constraint 0 ≤ αi ≤ C3s−, and if αi is either
0 or C3s−, it may achieve a steady state. Considering that our formulation produces
many bounded Lagrange multipliers, we apply the proposed shrinking technique to re-
duce the size of the optimization problem without considering some bounded variables
(JOACHIMS, 1999).

Considering Z as a subset of X after removing all data points that have non-
bounded Lagrange multipliers, and Z={1, . . . , X−}/Z its complement subset, the dual
of Eq. 49 can be represented by a smaller problem that consumes less time and
memory:

min
αZ

1

2
α>ZQ

′
ZZαZ + (Q′

ZZ
αZ − eZ)>αZ

s.t. 0 ≤ αZ ≤ C3s−Z

(66)

where QZZ and QZZ are sub-matrices of Z and αZ is a vector of Lagrangian
multipliers. To solve Eq. 66, we compute ∇if(α) as:

∇if(α) = Qi,ZαZ +Qi,ZαZ − 1 (67)

If i ∈ Z, and defining u1 as:

u1 = −(Q′i∈Zαi∈Z +Q′
i∈Zαi∈Z) (68)
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We have ∇if(α)=H−u1−1, which turns ∇if(α) easy to obtain. For a linear ker-
nel we only need to update (Qi∈Zαi∈Z), and we do not need to reconstruct all ∇f(α) to
implement the shrink step 3.

Considering the projected gradient ∇Pf(α) defined in Eq. 61, and following the
optimality condition of bound-constrained problems, α is optimal iff ∇Pf(α) = 0. During
the iteration procedure, the inequality ∇Pf(α) 6= 0 means either maxj∇Pf(α) > 0 or
minj∇Pf(α) < 0, and at the k−1 step, we obtain mk−1

max ≡ maxj∇Pf(α) and mk−1
min ≡

minj∇Pf(α). In this way, at each inner step of the k−th iteration, and before updating
α, the element is shrunken if one of the two conditions holds:

αk,ii = 0 and ∇Pf(αk,i) > m′
k−1
max

or

αk,ii = C3s− and ∇Pf(αk,i) < m′
k−1
min

(69)

where m′k−1
max must be strictly positive and m′k−1

min must be strictly negative, and they are
defined as:

m′
k−1
max =

mk−1
max, if mk−1

max > 0,

∞, otherwise
(70)

m′
k−1
min =

mk−1
max, if mk−1

min < 0,

−∞, otherwise
(71)

Next, we multiply both m′kmax−1 and m′kmin−1 by a shrinking rate smaller than one.
A tolerance ε indicates if the optimal value is satisfied after a finite number of iterations,
thus it is used as a valid stop criteria:

m′
k
max −m′

k
min < ε (72)

If in the k−th iteration the condition stated in Eq. 72 is satisfied for Eq. 66, we
can enlarge the active set Z to {1, . . . , X−+1}, and set m′kmax =∞ and m′kmin =−∞,
and continue with the regular iterations. We store the previous values of m′max and
m′min during the DCD process to avoid recalculation them during the incremental step.
Therefore, the shrinking technique is a key step to avoid calculating and storing all
training data during the training phase.

Our method process one class at each time, however, the inner processing can
be done in parallel, where one input is assigned to an available processor to calculate
3 The proof can be found in (HSIEH et al., 2008).
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Figura 16 – A 4-class classification problem based one the DAG topology.
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the fuzzy membership followed by the Lagrangian multiplier. We present the pseudo-
code of the FBTWSVM training algorithm (Alg. 2) for the positive class.

5.4.4 THE MULTICLASS FBTWSVM

The FBTWSVM is inspired by the TWSVM which considers only binary problems.
However, we can extend the FBTWSVM to multiple classes by building and combining
several binary classifiers instead of considering all data in one optimization formula
(HSU; LIN, 2002). The multiclass FBTWSVM is based on the Decision DAG, which
achieves better accuracy while requiring less training time than other multiclass ap-
proaches (TOMAR; AGARWAL, 2015; PLATT; CRISTIANINI; SHAWE-TAYLOR, 2000).
The DAG-based multiclass classifier was originally proposed by Platt et al. (PLATT;
CRISTIANINI; SHAWE-TAYLOR, 2000) for the multiclass SVM approach, and further
introduced by Chen and Ji (CHEN; JI, 2010) into the Twin approach as the Optimal
Directed Acyclic Graph to the Least Squares Twin Support Vector Machine (ODAG-
LSTSVM).

The multiclass approach is based on the DAG topology, hence for an u−class
classification problem, there are u(u−1)/2 sub-classifier nodes divided into u−1 layers.
During the classification process, there is no need for combining all sub-classifiers, so
to assign a class to a test data point it takes u−1 decisions. The classification process
starts at the root node, located in the first layer and includes all possible classification
labels (node 1v4 in Fig. 16). The decision-making step eliminates the most excluded
category at each sub-classifier decision, i.e., considering a 4-class problem with a
test data point with label yi =4 and the topology presented in Fig. 16. The root node
sub-classifier eliminates the possibility of yi = 1, following the Not 1 line. The next sub-
classifier eliminates the possibility of yi =2 following the Not 2, and the last sub-classifier
eliminates the possibility of yi =3, assigning class 4 to the test data point.
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Algorithm 2 Training procedure of FBTWSVM
Input: X, y, C1,C2,C3,C4

Output: u+

1: Compute Q = (H>+H+ + C1I)−1H>− and Q′ii = H−iQi
2: Let Z = {1, . . . , X−}
3: Given ε, α = 0 and u+ = 0
4: m′max =∞ and m′min = −∞
5: while do
6: Let mmax = −∞, mmin =∞
7: for ∀i ∈ Z, (a randomly and exclusively selected) do . this thread runs in parallel
8: ∇i f(α) = −H−iu+ − 1
9: ∇Pi f(α) = 0

10: if αi = 0 then
11: if ∇Pi f(α) > m′max then X = X/{i}
12: end if
13: if ∇Pi f(α) < 0 then ∇Pi f(α) = ∇if(α)
14: end if
15: if αi = C3s− then
16: if ∇Pi f(α) < m′min then X = X/{i}
17: end if
18: if ∇Pi f(α) > 0 then ∇Pi f(α) = ∇if(α)
19: end if
20: end if
21: else∇Pi f(α) = ∇if(α)
22: end if
23: mmax = max(mmax,∇Pi f(α))
24: mmin = min(mmin,∇Pi f(α))
25: if ∇Pi f(α) 6= 0 then
26: α = αi
27: αi = min(max(αi −∇if(α)/Q′ii, 0)C3si−)
28: u+i = u+i −Qi(αi − αi)
29: end if
30: end for
31: if mmax −mmin < ε then
32: if X = {1, . . . , l−}, then break
33: end if
34: else
35: X = {1, . . . , l−},m′max =∞,m′min = −∞
36: end if
37: if mmax ≤ 0 then m′max =∞
38: else m′max = mmax

39: end if
40: if mmax ≥ 0 then m′min = −∞
41: else m′min = mmin

42: end if
43: end while
44: return u+
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5.5 INCREMENTAL AND DECREMENTAL FBTWSVM

There are some properties of the FBTWSVM that suits the incremental learning,
as the generalization capability similar to SVM, the fast training (due to the formulation
and the solver choice), and mainly, it can continuously integrate new data points into the
already constructed model without reconstructing the model or degrading its accuracy.
The incremental FBTWSVM is based on the shrinking heuristic that can increment the
current model considering the fuzzy information of new values. We update the model
by selecting only new data points that extrapolate the minimum (m′min) and maximum
(m′max) values of the projected gradient from the previous training step. Therefore, we
do not need to process all the new incoming data points.

Considering a set of new data points asXnew, and the subsetsX ′new+ andX ′new−
denoting the positive and negative labeled data respectively. Since not necessarily both
subsets may exist, here we consider that Xnew = X ′new+ to maintain the notation. We
evaluate the projected gradient of the new set of data points as:

∇if(αnew) = X ′new+ ± u+ − 1 (73)

This operation is used to maintain u+ in the coordinate descent procedure in
Eq. 64. We set a new heuristic based on the Eq. 69 rule to select only new data
points that are more likely to become SVs. We consider the new data points as SVs
if the projected gradient values are bounded by (m′min < ∇if(αnew) < m′max). As our
method adheres structural and risk minimization principle, all Lagrangian multipliers
can be interpreted as SVs, and to let the evaluation of Eq. 73 be more permissive, we
can replace the max and min operators by the median, mean, or superior and inferior
quartiles.

Fig. 17 depicts four new data points (in green and numbered), two of each class.
The new data points must have projected gradient out of the bounds from the respective
model to be considered in the incremental procedure. For instance, the circle 1 has
a projected gradient lower than the (m′min) of class +1 model, and the circle 2 has a
projected gradient greater than (m′max) of class +1 model. The cross 3 has a projected
gradient greater than (m′max) of class -1, so it is not discarded, but the cross 4 is
bounded by the (m′min) and (m′min) of class -1 model, so it is discarded. The new data
points that have projected gradient lower than (m′min) should interfere in the model
shape and placement regarding only its own class, while the new data points that have
projected gradient greater than (m′max) interfere in the hyperplane placement regarding
the opposite class.

We calculate the fuzzy membership to each new data point from Xnew that extra-
polates the projected gradient bounds, where Xover is the data matrix that extrapolates
the bounds. Then, we start a new training iteration k → k + 1 to update the model by
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Figura 17 – Blue circles and red crosses represent the classes respectively, and the
green circles and crosses represent new data points from each class.
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enlarging the active set with Xover. The algorithm 3 presents the pseudo-code for the
incremental procedure.

Algorithm 3 Incremental procedure
Input: Xnew, ynew, C1,C2,C3,C4, and the previous model
Output: updated model
1: Let Znew− = {1, . . . , X−}
2: Given ε, αnew = 0 and u+new = 0
3: ∇if(αnew) = −H−iu+ − 1
4: if ∇if(αnew) > maxmmax or ∇if(αnew) < minmmin then . We check previous mmax and
mmin’s

5: Compute the fuzzy membership s
6: Compute Q = (H>+H+ + C1I)−1H>− and Q′ii = H−iQi
7: end if
8: while do
9: for ∀i ∈ Znew, (a randomly and exclusively selected in the case of batch) do . this

thread runs in parallel
10: Run algorithm 2 from line 8 to 31
11: end for
12: end while
13: return updated model← u+, α, mmax, mmin

The incremental procedure adds Xover data to the model at each iteration, re-
membering that we need to calculate beforehand the fuzzy membership value to each
data point in Xover, which increases the processing time. At the worst case we have
Xover = Xnew, so the model dimension grows linearly with the number of new data
points, as well as the processing time increases at each new training iteration. To avoid
the continuous growth of the model dimension caused by the incremental procedure,
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we introduce a decremental procedure to control the model dimension by removing
data that has low or no interference in the model accuracy. The proposed decremental
procedure is also based on the shrinking technique, where the SVs that have both
Lagrangian multipliers smaller than a threshold (φ) after (d) occurrences are removed.
The decremental procedure is executed before each incremental training (except for
the first training). We use the vector Zre = [01, . . . , 0q] (initially all points are assigned to
zero) to keep track of the number of occurrences per input data point.

Considering the current active set Z (without non-bounded Lagrangian multipli-
ers), for each training data point there are two sets of Lagrangians Zα = {α1, . . . , αq}
and Zν = {ν1, . . . , νq}, where q is the number of Lagrangian multipliers. After each
training iteration k→k+1, the inputs that result in (αm ∧ βm) < φ are updated (in its
corresponding position) in the vector Zre. When the number of occurrences reaches d,
the input and all related data are removed, so it will not be used in the next incremental
training. The algorithm 4 presents the pseudo-code for the decremental procedure.

Algorithm 4 Decremental procedure
Input: current model→ X, y, α
Output: updated model← X, y, α
1: Let Z = {1, . . . , X} . We assume that there is an existing classifier
2: Given d, φ , Zre, Zα, and Zν . Zre is initially zero
3: for do∀i ∈ Z
4: if Zαi < φ ∧ Zνi < φ then Increment Zre i
5: end if
6: if Zre i = d then Remove Zre i, Zα i, Zν i
7: end if
8: end for
9: return updated model← X, y, α

5.6 EXPERIMENTAL RESULTS

In this section we present the experimental protocol4 used to evaluate the
FBTWSVM on benchmarking datasets. The focus of our evaluation is in incremental
online learning, although we can use the FBTWSVM in offline mode. For comparison
purposes, we have used an experimental protocol similar to Losing et al. (LOSING;
HAMMER; WERSING, 2018), who compares a broad range of state-of-the-art on-line
classification algorithms, namely: ISVM with RBF kernel, LASVM with RBF kernel,
Online Random Forest (ORF) (SAFFARI et al., 2009), Incremental Learning Vector
Quantization (ILVQ) (SATO; YAMADA, 1996), Learn++ (POLIKAR et al., 2001), Incre-
mental Extreme Learning Machine (IELM) (LIANG et al., 2006), Naive Bayes (ZHANG;
LU, 2004), and Stochastic Gradient Descent (SGD). However, we have restricted to the
4 All tests were performed in a machine running Ubuntu 16.04 LTS with an Intel Core i7-7700HQ CPU

@ 2.80GHz and 16,144MB of RAM memory.
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evaluation of the methods that led to the best accuracy in the on-line learning experi-
ments for at least one of the datasets, which are the ISVM, LASVM, ORF, and ILVQ
(LOSING; HAMMER; WERSING, 2018). The ORF (SAFFARI et al., 2009) is an incre-
mental Random Forest algorithm that grows continuously from a pre-defined number of
trees by adding splits whenever enough data points are gathered within one leaf. It uses
Extreme Random Trees (GEURTS; ERNST; WEHENKEL, 2006) to optimize the split,
using a pre-defined number of random values. The ILVQ is a dynamic growth model
derived from the static Generalized Learning Vector Quantization (SATO; YAMADA,
1996), where the insertion rate is guided by the number of misclassified data points.
The ISVM and the LASVM were already described in Section 5.4.

The implementation used for comparison is from (LOSING; HAMMER; WER-
SING, 2015a), that introduces a prototype placement strategy to minimize the loss of
a sliding window of recent data points. The experimental procedure of Losing et al.
(LOSING; HAMMER; WERSING, 2018) for on-line methods uses a window/chunk size
from 500 to 2,000, and set all hyper-parameters using the Hyperopt library (BERGS-
TRA, J. et al., 2015) with the Tree-of-Parzen-Estimators (BERGSTRA, J. S. et al., 2011)
search algorithm, in which each parameter is individually adjusted within 250 iterations
of a 3-fold Cross Validation (CV) using only the training data. We have carried out
all our experiments with FBTWSVM using the approximated RBF kernel described in
Section 5.3.3, which enables the use of our linear formulation (Eqs. 42 and 43). We
optimized the model hyper-parameters using grid-search with a 3-fold cross validation
on the training set, and we set the Kernel approximation size following the strategy
proposed by Rahimi and Recht (RAHIMI; RECHT, 2008).

Considering that we do not need to process all data points to obtain a model,
the use of batches accelerates the training phase. In this way, we use different batch
sizes but with the constraint that it must encompass at least 5% of the data points of
the fold and the batch must contain at least one element from each class in the first trai-
ning. We evaluated the FBTWSVM with six different forgetting window sizes empirically
defined as ϕ={1, 2, 4, 10} and without the decremental procedure. We used publicly
available datasets without any preprocessing, although all attributes are numerical,
either integer or real values (LICHMAN, 2013) (CHANG; LIN, 2011b). The pre-defined
train-tests-splits were used when available. Otherwise, we adopted a stratified train-
test-split of 70-30%.Besides that, we have also created 15 synthetic datasets (HALL
et al., 2009)(WITTEN et al., 2016) to evaluate the scalability of the proposed method
as well as a very large dataset of 23M samples (SCHMIDT et al., 2018). However, for
such datasets, we have compared the FBTSVM just with other SVM-based methods.
We have used the following streaming generators (GOMES et al., 2017) with 10% of
noise added: (i) The LED generator (BREIMAN et al., s.d.) yields instances with 24
Boolean features that correspond to the segments of a seven-segment LED display
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and another 17 irrelevant features; (ii) The SEA generator (STREET; KIM, 2001) gene-
rates streams from two relevant continuous attributes f1, f2 and an irrelevant f3, with a
range of values within 0 and 10; (iii) The Random Tree Generator (RTG) (DOMINGOS;
HULTEN, 2000) builds a decision tree by randomly selecting attributes as split nodes
and assigning random classes to each leaf.The number of values per nominal is set to
5, the max three depth is 3, the first leaf value is 3, and the leaf fraction is 0.15; (iv) The
Radial Basis Function (RBF) generator creates 50 centroids at random positions and
associates them with a standard deviation value, a weight, and a class label. In this way,
new instances are set according to the random direction chosen to offset the centroid,
which forms a Gaussian distribution according to the standard deviation associated with
the given centroid; (v) The HYPER (DOMINGOS; HULTEN, 2000) generates instances
that are separable by a hyperplane. We consider 10% sigma percentage, and there
is no magnitude change or drift attributes. We have created three datasets from each
streaming generator with 10,000, 100,000, and 1,000,000 training instances and 3,000,
30,000, and 300,000 testing instances respectively. The datasets encompass genera-
ted, artificial and real-world problems with different number of classes (from 2 to 100),
data points (from 2,586 to 23M) and attributes (from 2 to 5,000), as shown in Tab. 185.

Tab. 19 shows the parameter setting used for each dataset which was defined in
a 3-fold CV, where the #Points stands for the initial training set size. For all datasets
we used a fixed fuzzy parameter µ = 0.1. Using the 4-D case (C1, C2, C3, C4 are inde-
pendent variables) for the hyperparameter tuning may result in a model with a better
generalization performance, i.e., the loss function may achieve a lower value during the
model selection compared to the 2-D case (we assume C1 = C3 and C2 = C4), however,
performing the hyperparameter tuning in a 2-D space may decrease substantially the
number of function evaluations needed, especially given that the grid search is essenti-
ally a brute force search strategy that takes. Other model selection strategies are able
to speed-up the hyperparameter tuning, however, this is not the scope of this paper. In
many cases, using the 2-D space instead of the 4-D is a valid heuristic estimation to
decrease the number of function evaluations needed, and using the Overlap dataset
as an example, Fig. 18 depicts that using the 2-D space it requires 34 function evaluati-
ons to achieve the accuracy loss value of 0.1732, while the 4-D space requires 5,143
function evaluations to achieve 0.1703.

Tab. 20 shows the accuracy of the incremental and decremental FBTWSVM
against the best on-line algorithms reported in (LOSING; HAMMER; WERSING, 2018).
The FBTWSVM achieved equal or better results in 9 out of 11 datasets (from Border to
Gisette, excluding the generated datasets) relative to the best on-line algorithms. The
SUSY dataset contains a significant amount of data and to train the FBTWSVM we
had limited the size of the kernel approximation based on the memory available, and
5 All datasets and algorithms are available at https://github.com/areeberg/FBTSVM

https://github.com/areeberg/FBTSVM
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Tabela 18 – The datasets and their characteristics

Dataset #Train #Test #Attrib. #Class
Border 4,000 1,000 2 3
Overlap 3,960 990 2 4
Letter 16,000 4,000 16 26
SUSY 4,500,000 500,000 18 2
Outdoor 2,600 1,400 21 40
COIL 1,800 5,400 21 100
DNA 1,400 1,186 180 3
USPS 7,291 2,007 256 10
Isolet 6,238 1,559 617 26
Mnist 60,000 10,000 784 10
Gisette 6,000 1,000 5,000 2
WESAD 21,668,504 1,537,900 8 3
LED 10k|100k|1M 3k|30k|300k 24 10
SEA 10k|100k|1M 3k|30k|300k 3 2
RTG 10k|100k|1M 3k|30k|300k 10 2
RBF 10k|100k|1M 3k|30k|300k 10 5
HYPER 10k|100k|1M 3k|30k|300k 10 2

Tabela 19 – Experimental settings

Dataset #Kernel γ C1 = C3 C2 = C4 #Points
Border 150 0.4 8 2 100
Overlap 150 0.4 8 2 100
Letter 350 0.01 8 2 1000
SUSY 300 0.2 10 2 100,000
Outdoor 500 0.001 10 1 300
COIL 400 20 4 4 500
DNA 500 0.003 4 4 50
USPS 1,000 0.007 8 2 1,000
Isolet 1,000 0.002 10 10 500
Mnist 2,400 0.0002 10 10 10,000
Gisette linear linear 8 2 500
WESAD linear linear 8 2 1,537,900
LED linear linear 8 2 5,000
SEA linear linear 10 1 5,000
RTG 1,400 0.6 2.5 2 5,000
RBF 300 0.45 8 2 5,000
HYPER linear linear 5 4 5,000
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this also reduces the accuracy. For instance, both the ISVM and the LASVM with RBF
kernel could not be trained with this dataset due to the uncontrolled growth of the kernel
matrix. We run an experiment using the SUSY full training set considering a kernel
approximation size of 600, resulting in 77.67%. The Outdoor is a visual dataset that
consists of objects recorded outdoors under lighting conditions (LOSING; HAMMER;
WERSING, 2015b). The dataset creation method has caused a difference between
training and test data (LOSING; HAMMER; WERSING, 2018), which reflects on the
performance of the learning algorithms. On-line algorithms with an adaptive learning
mechanism presented the accuracy of about 20% better than off-line methods (the best
result found was the off-line ISVM with 71.9% (LOSING; HAMMER; WERSING, 2018)).

Tabela 20 – On-line accuracy of the incremental and decremental FBTWSVM compa-
red to other incremental algorithms on several benchmark datasets. Statis-
tically significant differences are marked with ?.

Accuracy (%)
Dataset FBTWSVM Best Method

Best Mean/StdDev Best
Border 98.70 97.60/1.10 ISVM 98.50
Overlap 84.14? 82.58/1.49 ISVM 81.70
Letter 96.75? 96.68/0.07 LASVM 92.70
SUSY 77.67 76.00/1.20 ORF 79.30
Outdoor 74.44 73.72/0.42 ISVM 86.40
COIL 95.11? 94.99/0.14 ILVQ 79.10
DNA 93.59? 92.90/0.30 ISVM/LASVM 89.50
USPS 95.47 94.91/0.30 ISVM 96.70
Isolet 96.28? 95.88/0.37 ISVM 93.60
Mnist 97.80 97.00/0.12 LASVM 97.50
Gisette 96.50 96.40/0.01 LASVM 96.40

Figura 18 – Overlap dataset convergence plot considering the 4-D and 2-D cases.

0 1000 2000 3000 4000 5000 6000

Number of function evaluations

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

B
e

s
t 

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

a Convergence plot comparison.

0 20 40 60 80 100

Number of function evaluations

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

B
e

s
t 

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

b Convergence plot for the 2-D case.
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Tab. 21 shows the relation between accuracy and the number of SVs resulting
from different forgetting scores (d). The decremental procedure discards points that
are less likely to be SVs. Smaller d leads to classifiers with lower generalization per-
formance, and for most of the datasets, the best performance was achieved without
forgetting or with large forgetting scores. On the other hand, the number of SVs using
the decremental procedure is considerably smaller, so the forgetting score must be
chosen according to the application. Tab. 21 also presents the comparison between the
online and offline approaches, in which the online had better accuracy to all datasets
with a smaller number of SVs compared to offline. A smaller d also implies in a faster
training and classification time, and Tab. 22 shows that the difference in training time
can be substantial (check the SUSY dataset values for example).

Tabela 21 – On-line accuracy with different forgetting scores (d) and the corresponding
number of support vectors (nSVs).

Dataset d=1 / nSVs d=2 / nSVs d=4 / nSVs d=10 / nSVs d=∞ / nSVs Off-line / nSVs
Border 91.90 / 538 93.30 / 784 98.20 / 1.3k 97.20 / 2.8k 98.70 / 7k 98.50 / 8k
Overlap 76.97 / 1.9k 79.70 / 2.3k 82.22 / 3.5k 82.83 / 7k 84.14 / 11.8k 83.30 / 11k
Letter 93.38 / 83k 94.83 / 122k 96.10 / 204k 96.10 / 338k 96.63 / 361k 96.90 / 384k
SUSY 45.84 / 754k 45.85 / 1.5M 77.67 / 2.5M 73.78 / 3.4M 76.45 / 3.8M -
Outdoor 72.00 / 24k 72.25 / 39k 73.69 / 68k 74.44 / 83k 73.88 / 92k 74.00 / 93k
COIL 93.21 / 98k 94.01 / 100k 94.57 / 153k 95.11 / 156k 94.93 / 166k 95.00 / 178k
DNA 91.82 / 770 92.16 / 848 92.50 / 1.2k 93.78 / 1.9k 93.59 / 2.6k 93.50 / 2.7k
USPS 93.92 / 9k 94.32 / 21k 94.87 / 42k 95.36 / 60k 95.47 / 60k 95.30 / 65.5k
Isolet 95.19 / 61k 95.51 / 85k 95.32 / 128k 95.89 / 143k 96.28 / 143k 95.60 / 155k
Mnist 97.17 / 59k 97.48 / 169k 97.66 / 342k 97.91 / 455k 97.80 / 455k 97.80 / 540k
Gisette 96.50 / 1.3k 97.00 / 1.9k 96.90 / 2.9k 96.20 / 5.3k 96.50 / 6k 96.50 / 6k

Tabela 22 – Training and testing processing time with different forgetting scores (d) in
seconds.

Training | Testing Time (sec)
Dataset d=1 d=10 d=∞
Border 12.39 | 0.01 34.12 | 0.02 43.22 | 0.02
Overlap 22.96 | 0.02 82.58 | 0.02 94.37 | 0.02
Letter 88.14 | 0.68 179.18 | 0.72 192.36 | 0.70
SUSY 940.60 | 1.88 5264.41 | 2.62 -
Outdoor 111.00 | 0.73 153.09 | 0.80 153.55 | 0.81
COIL 154.63 | 5.00 169.10 | 5.29 179.12 | 4.51
DNA 6.89 | 0.03 8.63 | 0.03 8.53 | 0.03
USPS 21.59 | 0.25 41.59 | 0.24 41.67 | 0.23
Isolet 117.35 | 0.52 181.14 | 0.49 160.10 | 0.51
Mnist 349.47 | 1.21 419.49 | 1.19 435.48 | 1.26
Gisette 25.26 | 0.01 50.52 | 0.01 49.41 | 0.01

The accuracy of the COIL dataset with a forgetting score d=10 have similar ac-
curacy (95.11%) when compared to the offline implementation of the IFBTSVM (95%),
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the ISVM (96.5%), the LASVM (93.2%) (LOSING; HAMMER; WERSING, 2018), and
the multiclass SVM implemented with the Error-Correcting Output Codes (ECOC) from
MATLAB (96.52%). In this manner, the forgetting strategy does not discard crucial sup-
port vectors, keeping the accuracy score near the offline approach. Tab. 22 presents
the accuracy performance evolution when increasing the forgetting score, which cor-
roborates with the forgetting strategy, i.e., lower forgetting scores tend to have smaller
accuracy, however, by keeping the important SV the accuracy does not fall substantially
(the accuracy difference between d=1 and d=10 is 1.9%).

Tab. 23 compares the training time (in seconds), the real RAM consumed of
the current process and its children (in Gigabytes), and the accuracy of the FBTSVM
with the other SVM based methods (ISVM and LASVM). For these experiments we
split the dataset into the largest batches that we can (that fits on the available memory,
initially 15.4Gb), to reduce the reloading procedure of the dataset during the execution
(more loading implies in a larger training time). Both the IFBTSVM and the ISVM (the
ISVM multiclass adopt one-versus-one strategy) are implemented in MATLAB, thus
it requires more real RAM than the LASVM, that is for binary cases only and it is a
C++ implementation. We do not consider the LASVM in the multiclass cases (LED
and RBF), and we discard the situations that the training time took over 12 hours.
All methods present competitive accuracy, however, the FBTSVM is the only method
(compared to ISVM and LASVM) able to train all dataset sizes in an acceptable time,
having the smallest training time for almost all situations (the only exception is the
LASVM for the RTG10K). The FBTSVM forgetting strategy is one of the factors (the
kernel approximation also plays an important role) that makes the training into large
datasets possible, as Tab. 23 shows that the real RAM consumed difference between
the 100K and 1M datasets is not very expressive. The LED dataset has a bigger memory
difference between the datasets for the IFBTSVM, and this is caused by the use of the
multi-thread instead of the single processor version. In this way, the scalability of the
IFBTSVM is superior to other online SVM-based methods, as it requires a smaller
training time to process large datasets and can handle the memory consumption in
an efficient manner. To further explore the FBTWSVM potential for large datasets,
we have also evaluated the accuracy, training time, and memory consumption on the
WESAD dataset (SCHMIDT et al., 2018) considering three classes (baseline, stress,
and amusement), eight attributes acquired from a sensor attached to the chest, and
using the leave-one-subject-out cross-validation (in total we have 17 subjects). The
best result reported by (SCHMIDT et al., 2018) is 76.5% using a Linear Discriminant
Analysis, however, this is an offline approach and the authors do not present the training
time or memory consumption. Our method achieved the accuracy of 75.5% (23, with
training time of 6,789 seconds and peak memory consumption of 9.8GB.
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Tabela 23 – Comparison of the training time (TT) in seconds (s), real memory usage
(RMU) in Gigabytes (GB) and percentual accuracy (Acc) (%) for five synthe-
tic datasets and three different amount of data.

IFBTSVM ISVM LASVM
Dataset 10k|100k|1M 10k|100k|1M 10k|100k|1M

TT (s) RMU (GB) Acc (%) TT (s) RMU (GB) Acc (%) TT (s) RMU (GB) Acc (%)
LED 6|19|380 3.2|3.8|7.3 74.1|74.1|74.2 41|-|- 0.9|-|- 74.2|-|- - - -
SEA 0.7|2|63 0.8|0.9|1.3 89.0|87.1|89.1 8.8|4.5k|- 0.9|1|- 89.9|89.3|- 2.4|328|- 0.06|0.4|- 84.0|87.0|-
RTG 9.6|119|3.4k 1.8|10|10.6 95.8|95.5|96.0 63.9|-|- 0.9|-|- 90.0|-|- 2.4|546|- 0.034|0.4|- 88.0|95.7|-
RBF 11.4|164|5.3k 1.1|2.1|7.1 88.3|89.4|89.0 31.8|-|- 0.9|-|- 87.6|-|- - - -
HYPER 0.7|2.6|28 0.8|0.9|1.4 89.1|94.7|94.0 14.4|4.9k|- 0.8|0.9|- 94.1|93.0|- 2.2|519|- 0.05|0.374|- 91.7|93.8|-
WESAD 6.8k 9.8 75.5 - - - - - -
- "denotes the non-available results due to training times greater than 12 hours.

5.7 SUMMARY AND SYNTHESIS OF CONTRIBUTION

In this chapter we introduced a novel SVM approach suitable for incremental and
decremental on-line learning. The incremental and decremental FBTWSVM integrates
ideas coming from different SVM approaches such as the Twin SVM (JAYADEVA;
KHEMCHANDANI, R.; CHANDRA, 2007), the Fuzzy SVM (CHUN-FU LIN; SHENG-DE
WANG, 2002), the Bounded TWSVM (SHAO; ZHANG et al., 2011), the Fast and Robust
TWSVM (GAO; WANG et al., 2015; GAO; WANG, 2017), the Optimal DAG TWSVM
(CHEN; JI, 2010), and the dual coordinate descent method (CHANG; HSIEH; LIN,
2008). The FBTWSVM is flexible and both incremental and decremental procedures
can be configured according to the application, changing the threshold of adding new
SVs in the incremental step and the number of occurrences in the decremental step.
The FBTWSVM calculates a pair of nonparallel hyperplanes using two smaller QPPs,
rather than one large QPP as in the original SVM, but with adherence to structural
risk minimization principle. The dual form of the FBTWSVM leads to a pair of convex
quadratic programming problems with a unique solution and singularity avoidance. The
dual coordinate descent method with shrinking requires less memory storage than
the TWSVM, as it discards points that are less likely to be SVs. The fuzzy concept
enhances noise-resistance and generalization capability, while the use of a kernel
approximation shows a good generalization performance with our linear model. The
incremental solution follows the shrinking strategy and can run with different batch sizes,
from a single individual to the number of data points that fits the available memory. The
decremental procedure is fundamental to control the model complexity, keeping only the
most critical SVs in the model. According to the experimental results, the DAG strategy
showed a good generalization capability and a fast training speed, but for further studies
the use of training data structural and statistical information in the training process may
increase the generalization performance. A practical difficulty in the FBTWSVM is the
optimization of the six hyperparameters C1, C2, C3, C4, µ, γ and the kernel approximation
size, however, this problem will be addressed in the future. Therefore, as a future work,
we will evaluate the FBTWSVM use in the context of concept drift, novelty detection,
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and big data.
The contributions of this chapter are:

• It have a good generalization capability and a fast training speed compared to
traditional incremental SVM.

• The incremental solution follows the shrinking strategy and can run with different
batch sizes, from a single individual to the number of data points that fits the
available memory.

• It can adapt current models using the window strategy, or even add new models
(e.g. in case of new classes) without retraining.

• The fuzzy concept enhances noise-resistance and generalization capability, while
the use of a kernel approximation shows a good generalization performance with
our linear model.

• The dual coordinate descent method with shrinking requires less memory storage
than the TWSVM on the training procedure, as it discards points that are less
likely to be SVs.
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6 CONCLUDING REMARKS

The objective of machine learning is to extract information from data based on
past experience and build systems that can make a decision based on that information.
This capacity of turning raw data into information is a complex task that has attracted
interest from various domains of application, and many fields of science, business,
and engineering have used machine learning to improve its performance. It is well
known the advantages of using machine learning techniques to improve performance,
however, there are some data characteristics that must be considered before using
it. Nowadays, we are producing data faster than ever, so we need efficient algorithms
that can process a large amount of data. These algorithms must reach out the most
informative instances in the training data in a cost-efficient way, be able to train models
in a reasonable time, and build models that use less memory in both training and
classification phases. Frequently, the data may contain noise that degrades the data
quality, thus, it may decrease the computational efficiency of learning algorithms. The
data distribution is also an aspect that must be considered, as a significantly uneven
number of instance per class may lead to difficulties during the recognition phase.

This thesis presents methodologies that address the aforementioned issues with
the goal of improving scalability, computational and data efficiency, and generalization
performance of machine learning algorithms with a particular focus on Support Vec-
tor Machines. One way to deal with large datasets in learning problems is to use the
passive sampling, that presents the learning algorithm a smaller view of the entire
dataset that can be handled within time an computational resource constraints, main-
taining its generalization capability. Online learning algorithms are usually associated
with problems where the complete training set is not available beforehand, but large
scale problems can also benefit from the computational properties of online learning,
thus, online learning can be a solution to both problems. Despite the SVM formulation,
hyperparameters tuning is necessary and may be time-consuming depending on the
situation. The most common methods for hyperparameters tuning does not provide
mathematical convergence properties and dynamic stopping criteria, which may lead
to sub-optimal outcomes. In this way, an efficient model selection technique leads to an
outcome less susceptible to sub-optimal results and requires inferior processing time.

6.1 PUBLICATIONS

The following paper were published based on the research work whose outco-
mes are presented in this thesis:

Reeberg de Mello, A.; STEMMER, M. R.; Oliveira Barbosa, F. G. Support vector
candidates selection via Delaunay graph and convex-hull for large and high-dimensional
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datasets. Pattern Recognition Letters, North-Holland, v. 116, p. 43–49, dec 2018. ISSN
0167-8655.

6.2 FUTURE WORK

A list of suggestions for future work follows:

• Further explore the SV candidates selection for Delaunay sub-graphs or other
types of graphs, as the Relative Neighborhood graph, Urquhart graph, and Gabriel
graph. Using Delaunay sub-graphs may result in a smaller set of SV which reduces
the training time, whilst other types of graphs may result in different set sizes of
SV candidates that may be a better representative of the original set.

• Analyze the feasibility of Ortho-MADS with NM and VNS for SVM variations (that
may contain more than one hyperparameter) with different kernels. We expect to
improve the results even more when using the Ortho-MADS with NM and VNS
for hyperparameters tuning with more than three hyperparameters compared to
traditional methods.

• Expand the use of Ortho-MADS with NM and VNS to different machine learning
algorithms. The SVM is a sensitive algorithm to hyperparameters, however, other
methods may also benefit from the proposed model selection approach, as the
ensemble learning methods.

• Develop a new FBTWSVM formulation to make viable the inverse-free update for
online cases (inspired by (TIAN; JU et al., 2014)). This upgrade may result in a
less computational expensive model update.

• Extend the FBTWSVM to unsupervised and semi-supervised cases. Labeling
data is an expensive task, so using a smoothness, cluster, or manifold algorithm
to viable the unsupervised and semi-supervised increases the applicability of the
FBTWSVM to many other cases.

• Explore new approximate kernel types. Different types of approximation kernel
have distinct characteristics (as each approximation is related to a specific func-
tion), in this manner, to each application some kernel approximations are more
suitable than others.

• Propose a new multiclass architecture for the FBTWSVM to improve the perfor-
mance on imbalanced datasets.

• Expand the FBTWSVM to endless learning. Endless learning is tightly related
to memory efficiency, and to viable the use of FBTWSVM in real situations the
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endless learning is a must have. One possible direction is to implement the code
of the FBTWSVM to split the data when the available batch is larger than the
available memory, and to prune old SVs when the models get near available
memory size.

• Analyze the viability of using the FBTWSVM for cases with concept drift. A initial
direction is to use a drift-detector algorithm (as the Drift Detection Method by
(GAMA; SEBASTIÃO; RODRIGUES, 2013)) using the FBTWSVM as classifier.

• Propose a dynamic windowing method for the FBTWSVM. The windowing method
is closely related to training time, and have a high impact on the concept-drift
detection method. A possible solution is to explore the fuzzy values of FBTWSVM
to determine the window size.
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