
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO DA UFSC

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Luiz Henrique Zambom Santana

A MIDDLEWARE FOR WORKLOAD-AWARE MANIPULATION OF RDF DATA

STORED INTO NOSQL DATABASES

Florianópolis

2019

Luiz Henrique Zambom Santana

A MIDDLEWARE FOR WORKLOAD-AWARE MANIPULATION OF RDF DATA

STORED INTO NOSQL DATABASES

Tese submetida ao Programa de Pós-Graduação
em Ciência da Computação da Universidade
Federal de Santa Catarina para a obtenção do tí-
tulo de doutor em Ciência da Computação.
Orientador: Prof. Ronaldo dos Santos Mello, Dr.

Florianópolis

2019

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Santana, Luiz Henrique Zambom Santana
 A MIDDLEWARE FOR WORKLOAD-AWARE MANIPULATION OF RDF
DATA STORED INTO NOSQL DATABASES / Luiz Henrique Zambom
Santana Santana ; orientador, Ronaldo dos Santos Mello
Mello, 2019.
 96 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2019.

 Inclui referências.

 1. Ciência da Computação. 2. Semantic Web. 3.
RDF/SPARQL. 4. Databases. 5. NoSQL. I. Mello, Ronaldo dos
Santos Mello. II. Universidade Federal de Santa Catarina.
Programa de Pós-Graduação em Ciência da Computação. III.
Título.

Luiz Henrique Zambom Santana

A MIDDLEWARE FOR WORKLOAD-AWARE MANIPULATION OF RDF DATA

STORED INTO NOSQL DATABASES

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Prof. Dra. Vanessa Braganholo Murta

Universidade Federal Fluminense

Prof. Dr. João Eduardo Ferreira

Universidade de São Paulo

Profa. Dra. Carina Friedrich Dorneles

Universidade Federal de Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi

julgado adequado para obtenção do título de doutor em Ciência da Computação.

Prof. José Luís Almada Güntzel, Dr.

Coordenador do Programa

Prof. Ronaldo dos Santos Mello, Dr.

Orientador

Florianópolis, 18 de Agosto de 2019.

Este trabalho é dedicado aos meus pais Sonia e Luiz,

aos meus irmãos Bruna e Dr. Eduardo e a meu filhinho

lindo Vicente.

AGRADECIMENTOS

Agradeço aos meus pais, meus irmãos e meu filho pelo incentivo e paciência.

Ao meu orientador por muita paciência e aos sábios conselhos durante esses quatro

anos e meio. Aos colegas Geomar e Ângelo, aos professores do INE e à comunidade

da UFSC.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior- Brasil (CAPES) - Código de Financiamento 001

RESUMO

A Web Semântica tem quase 20 anos e muitos avanços foram propostos para atender
a essa visão desde o artigo seminal de Berners-Lee et al., publicado em 2001. Entre
esses avanços, os padrões propostos pelo W3C, como RDF e SPARQL, alcançaram
uma versão madura e atualmente são empregados em muitos projetos acadêmicos e
da indústria. Repositórios de grandes grafos RDF, chamados triplestores, são um tópico
importante na área de gerenciamento de informações e conhecimento. Os triplestores
evoluíram lado a lado com a pesquisa de banco de dados e, desde o advento dos
bancos de dados NoSQL, vários triplestores incluem essa família de bancos de dados
em suas arquiteturas. Esta tese apresenta um triplestore chamado WA-RDF, proposto
como um middleware para manipular dados no formato RDF, mantidos em bancos de
dados NoSQL, através de SPARQL. O WA-RDF propõe uma camada de armazena-
mento poliglota que fornece contribuições principalmente nas áreas de pesquisa de
fragmentação de dados, particionamento de dados e mapeamento de RDF para múlti-
plos bancos de dados NoSQL. Um componente de monitoramento da carga de oper-
ações (WAc) é o pilar central do WA-RDF. Ele permite que, de acordo com o formato
da consulta da carga de trabalho típica em um grafo RDF, o WA-RDF encontre a mel-
hor estratégia de mapeamento para reduzir o tempo de resposta da consulta. Três
rodadas diferentes de avaliações experimentais são descritas na tese. A primeira com-
para nossa proposta com um banco de dados multimodelo, demonstrando como uma
solução de persistência poliglota baseada em um único modelo de acesso pode facil-
itar o desenvolvimento de aplicações. Em seguida, o middleware é comparado com
trabalhos relacionados recentes usando o WatDiv, um benchmark RDF/SPARQL mod-
erno e popular. Por fim, analisa-se a aplicação do WA-RDF no domínio de trajetórias
semânticas de objetos em movimento.

Palavras-chave: NoSQL, RDF, middleware, workload, data fragmentation, data parti-
tioning.

RESUMO EXPANDIDO

Introdução

Este trabalho apresenta o WA-RDF, um triplestore que propõe um middleware para
armazenamento poliglota de dados no formato RDF em múltiplos bancos de dados
NoSQL. O WA-RDF propõe avanços nas áreas de fragmentação, particionamento e
mapeamento de dados RDF no contexto de bancos de dados NoSQL. Um componente
de monitoramento da carga de operações (WAc) é o pilar central do WA-RDF. Ele
permite que, de acordo com o formato de uma consulta típica executada sobre um
grafo RDF, o WA-RDF encontre a melhor estratégia de mapeamento para reduzir o
tempo de resposta desta consulta.

Objetivos

O objetivo geral desta tese é desenvolver um triplestore mais rápido e escalável que
as abordagens atuais. Para atingir esse objetivo, os seguintes objetivos específicos
foram considerados: projetar e desenvolver um componente dinâmico sensível à carga
de trabalho capaz de identificar e registrar os tipos de consultas SPARQL; especificar
uma arquitetura adequada para o middleware em termos de operações de manipu-
lação de dados suportadas sobre os bancos de dados NoSQL, de acordo com as
decisões baseadas no reconhecimento de carga de trabalho; projetar e desenvolver
um esquema escalonável de particionamento e replicação para dados RDF; projetar
e desenvolver uma estratégia de processamento de consultas sobre múltiplos bancos
de dados NoSQLs; projetar um conjunto de experimentos para avaliar o middleware;
executar os experimentos comparando o middleware com outros triplestores de úlltima
geração.

Metodologia

A metodologia utilizada permitiu o desenvolvimento iterativo de protótipos do WA-
RDF com posterior avaliação usando os benchmarks LUBM e WatDiv. Os protótipos
reusaram ferramentas como o Apache Jena e os bancos de dados NoSQL MongoDB,
Neo4j, Redis e Cassandra. Além disso, o WA-RDF foi comparado com o OrientDB para
validar sua escalabilidade em relação a uma solução proposta pela indústria. Final-
mente, o WA-RDF foi utilizado no contexto de uma aplicação que realiza manipulação
de trajetórias semânticas de objetos móveis.

Resultados e Discussão

Os experimentos de avaliação desta proposta de tese demonstraram que o desem-
penho das consultas executadas sobre o WA-RDF apresenta uma escalabilidade linear
em relação ao aumento de tamanho do volume de dados. O WA-RDF apresenta um
melhor tempo médio de resposta quando comparado ao S2RDF, que é o estado da arte
em termos de triplestore. Uma comparação em termos de facilidade de uso do WA-RDF
em relação à outra solução que realiza persistência poliglota (OrientDB) mostra que o

uso de padrões da Web Semântica reduz a complexidade das aplicações em relação
ao número de linhas de código. Além disso, o WA-RDF melhora consideravelmente o
tempo de resposta em relação a uma solução concorrente, denominada SECONDO,
no domínio de trajetórias semânticas.

Considerações Finais

A presente tese oferece evidências de que o uso de múltiplos bancos de dados NoSQL
pode aumentar a escalabilidade de triplestores. Ademais, ela também demonstra que
diferentes tipos de operações da carga de trabalho de uma aplicação podem se ben-
eficiar de procedimentos específicos em relação à fragmentação, particionamento,
mapeamento e armazenamento de dados. Em termos de trabalhos futuros, considera-
se o uso e avaliação de outros bancos de dados NoSQL, o desenvolvimento de um
triplestore que gerencia dados puramente em memória, a consideração de outras con-
struções da linguagem SPARQL, a utilização de técnicas de aprendizado de máquina
e a inclusão de bancos de dados NewSQL para a persistência de dados RDF.

Palavras-chave: NoSQL, RDF, middleware, workload, data fragmentation, data parti-
tioning.

ABSTRACT

The Semantic Web has almost 20 years and many advances were proposed in or-
der to meet this vision since the seminal paper of Berners-Lee et al., published in
2001. Among these advances, the standards guided by W3C, like RDF and SPARQL,
achieved a mature version and are currently employed in many academic and industry
projects. Repositories of large RDF graphs, called triplestores, are an important topic
on information and knowledge management area. The triplestores evolved hand-to-
hand with the database research, and since the advent of the NoSQL database, several
triplestores include this family of databases in their architectures. This thesis presents
a triplestore called WA-RDF (Workload-aware RDF), which is proposed as a middle-
ware to manipulate data maintained by NoSQL databases using RDF and SPARQL.
WA-RDF proposes a polyglot NoSQL storage layer that provides contributions mainly
on data fragmentation, data partitioning and RDF-to-NoSQL mapping research areas.
A Workload Awareness component (WAc) is the central pillar of WA-RDF. It allows that,
accordingly to the query shape of typical workload over a RDF graph, WA-RDF finds
the better mapping strategy in order to reduce the query response time. Three different
rounds of experimental evaluations are described in the thesis. The first one compares
our proposal to a multimodel database, demonstrating how a polyglot persistence so-
lution based on a single access model can facilitate the development of applications.
Then, the middleware is compared to recent baselines by using WatDiv, a modern and
popular RDF/SPARQL benchmark. Finally, it is analyzed the application of WA-RDF in
the domain of semantic trajectories of moving objects.

Keywords: NoSQL, RDF, middleware, workload, data fragmentation, triplestore.

LIST OF FIGURES

Figure 1 – Semantic Web Layers (Figure from https://www.w3.org/2001/12/semweb-

fin/w3csw) . 15

Figure 2 – An example of a e-commerce application with polyglot persistence . 16

Figure 3 – Architectures for Polyglot Access . 17

Figure 4 – NoSQL Data Models . 24

Figure 5 – Architecture of the Estocada Approach 26

Figure 6 – Pieces of a SPARQL Query . 27

Figure 7 – Main Types of SPARQL Query Shapes 27

Figure 8 – WA-RDF Architecture . 40

Figure 9 – Fragment Creation . 47

Figure 10 – Fragment Partitioning . 48

Figure 11 – WAc: Workload Monitoring . 50

Figure 12 – Fragment creation . 51

Figure 13 – WA-RDF with Apache Spark for fragmentation and triple cleaning

processing . 52

Figure 14 – Fragment distribution . 53

Figure 15 – Fragments redistribution . 53

Figure 16 – Internal Resource Mapping (IRM) . 56

Figure 17 – Overview of QProc . 60

Figure 18 – Merging of Fragments . 62

Figure 19 – Distributed Cache Management . 63

Figure 20 – Data Partitioning Scenario . 65

Figure 21 – Dictionary Design . 67

Figure 22 – Triple Update . 68

Figure 23 – WA-RDF with Apache Kafka for asynchronous processing 70

Figure 24 – Example of RDF Data for a Moving Object Trajectories Application . 70

Figure 25 – Triples insertion at time t1 . 71

Figure 26 – Query at time t2 . 71

Figure 27 – Triples insertion at time t3 . 72

Figure 28 – Chain shape query at time t4 and triples insertion at time t5 72

Figure 29 – Experiments with WA-RDF using WatDiv benchmark 76

Figure 30 – Rendezvous versus WA-RDF . 78

Figure 31 – WA-RDF and OrientDB comparison 78

Figure 32 – Comparison of Query Performance over BerlinMOD between Sec-

ondo and Rendezvous . 80

Figure 33 – Comparison of Query Performance between Secondo and Ren-

dezvous over a Larger Number of Nodes 81

LIST OF TABLES

Table 1 – Comparative of related work in the RDF/NoSQL Converter category . 33

Table 2 – Comparative of related work in the Polystore category 34

Table 3 – Comparative of related work in the In-memory category 36

Table 4 – Related Work Comparison . 37

Table 5 – Middleware Versions . 40

Table 6 – A Taxonomy for RDF-to-NoSQL Mapping Strategies 44

Table 7 – Processing Time of the Mapping Categories (milliseconds) 45

Table 8 – Mapping GeoSPARQL into MongoDB 64

Table 9 – Qualitative comparison of WA-RDF and OrientDB 74

CONTENTS

1 INTRODUCTION . 14

1.1 MOTIVATION . 14

1.1.1 Polyglot Persistence . 16

1.1.2 NoSQL-based Triplestores . 17

1.2 HYPOTHESIS . 18

1.3 OBJECTIVE . 19

1.4 SCOPE . 19

1.5 CONTRIBUTIONS . 20

1.6 THESIS ORGANIZATION . 21

2 BACKGROUND . 23

2.1 NOSQL DATABASES . 23

2.2 RDF AND SPARQL . 26

3 RELATED WORK . 29

3.1 RDF/NOSQL CONVERTER . 29

3.2 POLYSTORE . 32

3.3 IN-MEMORY . 34

3.4 WORKLOAD-AWARE TRIPLESTORES 36

3.5 FINAL REMARKS . 38

4 WA-RDF . 39

4.1 WA-RDF ARCHITECTURE . 40

4.1.1 Architectural Decisions . 42

4.1.1.1 NoSQL databases . 42

4.1.1.2 Mapping decisions . 43

4.2 STORAGE . 46

4.2.1 Workload-awareness monitoring 49

4.2.2 Fragmentation . 50

4.2.3 Mapping . 54

4.2.3.1 Internal Resource Mapping . 55

4.3 QUERYING . 56

4.3.1 Querying details . 59

4.3.2 Cache Management . 62

4.3.3 GeoSPARQL . 63

4.4 PARTITIONING . 64

4.4.1 Dictionary Design . 66

4.5 UPDATE AND DELETE . 67

4.5.1 Pending updates and delete . 68

4.5.2 Asynchronous Processing . 69

4.6 RUNNING EXAMPLE . 69

4.7 FINAL REMARKS . 73

5 EXPERIMENTAL EVALUATIONS . 74

5.1 QUALITATIVE ANALYSIS . 74

5.2 PERFORMANCE EVALUATION . 74

5.2.1 WatDiv Benchmark . 75

5.2.2 Comparison with a Industry Multimodel Database 77

5.2.3 Middleware Application in a Semantic Trajectory Domain 79

5.3 FINAL REMARKS . 81

6 CONCLUSION . 82

6.1 LIMITATIONS OF THE THESIS . 83

6.2 FUTURE WORKS . 83

6.3 PUBLICATIONS . 84

REFERENCES . 86

APPENDIX A – RDF TRIPLES FOR THE MAPPING EXPERIMENTS 95

A.1 LEHIGH UNIVERSITY BENCHMARK(LUBM) 95

APPENDIX B – CONFIGURATION APPENDIX 96

14

1 INTRODUCTION

In the last decade, the RDF data model, along with other Semantic Web tech-

nologies (BERNERS-LEE; HENDLER; LASSILA, et al., 2001), like OWL, RDFS, and

SPARQL, was affected by a range of data management challenges, like data integration,

search optimization, and information extraction. The main reason for that is the current

scale of Big Data applications (e.g., smart cities, sensor networks and eHealth), which

generates very large datasets and need to efficiently store massive RDF graphs that

goes beyond the processing capacities of existing RDF storage systems operating on

a single node (HOSE; SCHENKEL, 2013).

Moreover, recent data-centric applications often deal with diverse and heteroge-

neous datasets, some of them highly structured and some of them with a little structure.

For many scenarios, the biggest challenge is to transform a pile of information into

knowledge available to a massive number of users. For instance, a Smart City appli-

cation usually collects data from many sources, such as highly structured information

from official datasets, unstructured datasets from sensor networks, and geographical

datasets from GPS records (SANTANA; CHAVES, et al., 2016), which are processed

into actionable knowledge to governments and citizens. Other scenarios such as se-

mantic trajectory management (MELLO et al., 2019) can also benefit from the RDF

model usage, both by the facilities on describing the models and the possibility of using

scalable tools.

1.1 MOTIVATION

RDF is been around for almost 20 years already. However, it never got to the

mainstream of the software development industry. There are multiple reasons for that:

the verbosity, the low community engagement, but mainly, the lack of good tools to

support it. In the recent years, many tools are trying to bridge the gap between the

industry and the RDF standard. The Amazon cloud solution for RDF storage, called

Neptune1, for example, facilitates the access to a cloud-based triplestore. Products

like Ontobroker2, IQser3, and the consideration of RDF data by Volvo to represent its

autonomous car4 shows that the Semantic Web technologies are gaining more space

in the industry. On the other hand, RDF data management is still a very hot research

topic. Its abstraction power, reason possibilities and easiness on creating knowledge

representation, yet been simple to humans understand, is still very powerful. Recent

advances on the use of RDF, like the Florence project (BELLINI; NESI, 2018) and the
1 https://docs.aws.amazon.com/neptune
2 http://www.semafora-systems.com/en/products/ontobroker/
3 https://instantli.com/
4 https://www.youtube.com/watch?v=mpLcTSG7VPg

Chapter 1. Introduction 15

Figure 1 – Semantic Web Layers (Figure from https://www.w3.org/2001/12/semweb-
fin/w3csw)

recently proposed benchmark for RDF as the spatial data (HUANG; RAZA, et al., 2019),

show that the RDF usage is not only possible but desirable.

Traditionally, the Semantic Web is presented as a stack of layers where each

layer supports the lower ones, as presented in Figure 1. The results of this thesis can

benefit RDF and SPARQL layers and leverage other upper layers. In fact, this thesis

aims to unlock or leverage use cases that deal with RDF data at large scale, like:

• Storage layer of smart city applications;

• Unified RDF views generation from multiple databases;

• Software development using multiple databases;

• Scalable reasoning by permitting plug-and-play integration with Apache Spark

and other machine learning tools.

The research focus of this thesis is efficient management of RDF data persisted

into multiple NoSQL databases, given the increasing need for RDF-based solutions

and the benefits of polyglot persistence introduced by the several NoSQL data models

(SADALAGE; FOWLER, 2012). The crossing of these two research topics (RDF and

NoSQL-based data management) is still an open issue that can raise contributions,

like cross-database consistency control, data mapping between the RDF data model

and the NoSQL data models, and scalability improvement of NoSQL databases when

dealing with RDF data. All of these points are considered in this thesis. We discuss

more about polyglot persistence and NoSQL-based triplestores in the following.

Chapter 1. Introduction 18

garding RDF data management with workload-awareness that consider polyglot persis-

tence into NoSQL databases with more than one data model. Besides, the close-related

proposals present several limitations, as follows:

• None of the proposals is able to rearrange the RDF dataset already persisted

into the physical storages, when the workload changes, in order to improve query

processing;

• Lack of support to an efficient data fragmentation strategy, i.e., queries access

RDF data in a triple-based level, which leads to several join processings that limit

query performance;

• Naive support to partitioning and data replication, which leads to cross-partition

joins that also slow down the query response;

• Current indexing solutions are complex and, in most of the cases, generates index

structures for all the permutations of the RDF triple components;

• Related solutions, like S2RDF (SCHÄTZLE; PRZYJACIEL-ZABLOCKI; SKILEVIC,

et al., 2016) and Rainbow (GU; HU; HUANG, 2014), are optimized to only one

type of workload, usually star-shaped queries;

• No support for data reorganization in order to improve data localization for further

query processing;

• Most of related work do not support update and deletion processes. This is even

more evident among the workload-aware triplestores because data rearrange-

ment is required.

These limitations guided the design and implementation of a new triplestore. This

triplestore, materialized as a middleware that accesses multiple NoSQL databases, is

called WA-RDF. WA-RDF is based on a workload-awareness approach that rules RDF

data partitioning, fragmentation and caching strategies. Moreover, it considers well-

known Big Data frameworks that facilitate the processing and background operations,

as well as enable update, delete and data reorganization tasks.

1.2 HYPOTHESIS

As stated before, the motivation of this thesis is to enable the usage of multiple

NoSQL databases to manage RDF data in a more efficient way than the current state-

of-the-art proposals. We claim that such efficiency can be reached by considering that:

1. The performance of RDF-based applications can benefit of a dynamic workload-

aware triplestore. Such an approach permits to preprocessing query joins through

an efficient data fragmentation the partitioning of an RDF graph;

Chapter 1. Introduction 19

2. Multiple NoSQL databases with different data models can coexist in a triplestore;

3. A middleware connecting an RDF-data-centric application to multiple and hetero-

geneous NoSQL databases is a promising architectural solution for developing a

new triplestore.

1.3 OBJECTIVE

This thesis is related to the joint subjects of RDF data management and NoSQL

databases. The state-of-the-art reveals that this is an important and open topic. Thus,

the main objective of this thesis is to propose a workload-aware middleware for RDF

data manipulation based on multiple and heterogeneous NoSQL databases that be

faster and more scalable then the state-of-the-art approaches when measured by the

current Semantic Web benchmarks. In order to achieve this main objective, the following

specific objectives must be addressed:

• To design and develop a dynamic workload-aware component able to identify and

register the types of SPARQL queries;

• To specify a suitable architecture for the middleware in terms of the supported

data manipulation operations and the NoSQL databases mix, accordingly to the

workload-aware decisions;

• To design and develop a scalable partitioning and replication schema for RDF

data;

• To design and develop a query processing strategy that uses multiple and hetero-

geneous NoSQL databases;

• To design a set of experiments to evaluate the middleware with the WatDiv bench-

mark, which is the more frequent used benchmark for triplestores;

• To execute the experiments by comparing the middleware against the state-of-the-

art baselines.

1.4 SCOPE

The development of the proposed middleware can be achieved by many different

ways. However, this thesis have a limited scope due to several constraints, including

time and infrastructure. So, the following aspects constitute its scope:

• Mapping: effective ways to translate RDF data into the NoSQL data models;

Chapter 1. Introduction 20

• Workload-awareness: monitoring and registering the workload is crucial for ef-

fectively answer incoming queries;

• Fragmentation, partitioning and replication: these managements allow our

middleware be scalable as the dataset increases.

Based on this scope, this thesis presents results that expand the state-of-the-art.

However, other important aspects are out of the scope or are not deeply considered:

• Relational databases: traditional relational databases are not taken into consider-

ation in this thesis. There are multiple motivations for this decision, including its

limited scalability, its rigid schema, and the fact that the tabular model is satisfied

by a columnar NoSQL database;

• Indexing: indexing is an important topic for triplestores. Many options were studied

in the last years and this thesis option was to create a lightwheight index that is

used only as a support for activities such as fragmentation, and for responding the

simplier queries. This thesis do not evaluate the efficacy of the indexes proposed

for the middleware;

• In-memory: in-memory capabilities is a new trend for triplestores. The proposed

middleware explores it partially by using Apache Spark framework11;

• Caching: cache support for RDF data is another important topic that was not

completely explored in the middleware. An architectural contribution in that sense

could be to develop a cache manager that considers the middleware fragmentation

strategy to divide the cache into a local and remote cache. Some details about

this issue are given in Chapter 4;

• NewSQL movement: recent relational databases (e.g., Google Spanner and

VoltDB) comprise the so-called NewSQL movement (PAVLO; ASLETT, 2016).

The NewSQL database family aims at providing scalable and ACID-compliant

databases based on the SQL access interface. This thesis do not consider

NewSQL databases for two reasons: (i) their development was in an initial stage

during the beginning of this thesis; (ii) some NoSQL data models are more

suitable to represent RDF graphs than the relational data model.

1.5 CONTRIBUTIONS

We consider the main contribution of this thesis a set of strategies that are

joint-supported by a new middleware proposal responsible to process manipulation
11 https://spark.apache.org/

Chapter 1. Introduction 21

operations over RDF data stored into NoSQL databases. The middleware advocates for

an architecture where the data management is workload-awareness. These strategies

are the following:

• RDF-to-NoSQL mapping

RDF triples are converted into NoSQL document and graph data. Moreover, the

middleware considers the NoSQL key/value database for caching and the NoSQL

columnar database for the partitioning dictionary. Thus, the middleware defines

processes to convert RDF data into the NoSQL data models and vice-versa.

• Workload-awareness

The cornerstone of the middleware architecture is a workload-awareness compo-

nent (WAc) that monitors and registers information about each incoming SPARQL

query. WAc classifies a query into simple, star, chain and complex. The workload

information is considered during triple insertion.

• Multiple databases in the main storage

WA-RDF is the first workload-aware triplestore to employ two NoSQL databases

in the storage level. Systems like ScalaRDF and Rainbow consider multiple

databases (in both cases, they use a key-value database as cache) but only

one storage is responsible for maintaining the RDF data. Additionally, WA-RDF is

able to, during a triple storage, decides on translating a RDF triple into a NoSQL

document or graph database (or both) according to the usual query workload.

• Full data manipulation support

WA-RDF is the unique workload-aware triplestore that support all the data manip-

ulation operations over RDF data (insert, update, delete and query operations).

As presented in Section 4.5.1, this is possible due to its queuing strategy.

• Query processing

A query processing strategy aims at mainly avoiding joins between data partitions

to reduce the volume of intermediate query results and dynamically choose the

best NoSQL node to query.

All of these strategies are proven to be effective through a set of experiments that

compared performance and scalability of the middleware against close related work.

1.6 THESIS ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 provides a short back-

ground and chapter 3 discusses related work. Chapter 4 details the middleware, its

Chapter 1. Introduction 22

novel strategies, as well as some relevant design and implementation issues that con-

tributes to its good performance. Chapter 5 presents the set of experiments considered

to validate the proposal, and chapter 6 is dedicated to the conclusion.

23

2 BACKGROUND

This chapter introduces the necessary concepts to understand the rest of this

thesis. It begins with an overview of Big Data as a motivating scenario for NoSQL

databases and their related technologies. In the following, we focus on RDF data.

2.1 NOSQL DATABASES

The vast pile of data generated by persons and application systems today, avail-

able in several data sources, is a gold mine (CALDAROLA; PICARIELLO; CASTELLUC-

CIA, 2015). Modern enterprises, for example, are using them as an unlimited source

of knowledge and insights about the habits and preferences of their current and poten-

tial costumers. However, storing data and extracting information from these sources

is not a trivial task. By definition, Big Data is a moving target since today’s Big Data

is not the Big Data of tomorrow. Thus, the term Big Data itself is going to disappear

in the next years, or it will return to be called just data (CALDAROLA; PICARIELLO;

CASTELLUCCIA, 2015). In fact, when we talk about Big Data we mean the capability of

computational systems to generate, store and share large volumes of data with different

natures.

In the Big Data context, one of the first categories of database systems proposed

to deal with this tremendous amount of data with potential heterogeneous represen-

tations is called NoSQL. The standard features of these database systems are: no

relational data model; no join support; distribution; massive horizontal scaling; no fixed

and flexible schema; replication support; procedural query processing instead of a

standard declarative query language; and consistency guarantee within a node and

eventually consistent assurance across the cluster.

The term NoSQL was coined by Carlo Strozzi in 1998 to describe his database,

which offered an access interface not based on SQL. Eric Evans revisited the concept

in 2009 to describe non-relational and distributed databases that do not adhere to atom-

icity, consistency, isolation and durability, essential properties of relational databases.

During the subsequent years, many discussions set some formalization to this subject.

A consensus attempt, as defined by Sadalage and Fowler (MARZ; WARREN, 2015;

SADALAGE; FOWLER, 2012), is that NoSQL comprises database systems that use

more than one storage mechanism, including new types of which are not compatible

with the relational database model (RAMAKRISHNAN; GEHRKE, 2000). Moreover,

NoSQL databases are organized into four categories (see Figure 4) regarding their

data models:

• Key/Value: this type of database focuses on reducing the data search latency. Its

data structure is similar to a hash map, which limits the storage to simple and

Chapter 2. Background 25

range from Big Data processing to Big Data persistence in a distributed file system.

Thus, MapReduce and Hadoop are on the edge between a development tool and a data

management system. Although the focus of this thesis is not on software engineering,

MapReduce is essential not only because it is considered in the development of most

NoSQL databases, but also because many data management solutions employ it in

distinct ways (SCHÄTZLE; PRZYJACIEL-ZABLOCKI; NEU, et al., 2014; PAPAILIOU;

DIMITRIOS TSOUMAKOS, et al., 2015; PAPAILIOU; KONSTANTINOU; TSOUMAKOS;

KOZIRIS, 2012).

Nevertheless, the MapReduce paradigm and Hadoop cannot work for all the

use cases of the ever involving IT market needs. In this sense, there are applications

that regardless the definition of massive data repositories are also heavily accessed,

and perform in-memory most of the time. Some examples of such systems are social

networks, stock market analysis and telephony domains, network monitoring, fraud

exposure, and military environments. Due to it, several new architectures and frame-

works are been proposed to support the size and urgency of the Big Data (GRAY et al.,

2014; TOSHNIWAL et al., 2014). These solutions, primarily lead by Apache Software

Foundation, includes Apache Storm, Apache Spark and Apache Flume. The capabil-

ities of the applications based on these solutions are in-memory processing to avoid

reading to/from disk whenever possible, integration with distributed computing technolo-

gies, and real-time execution plans, being an alternative to the MapReduce ideas (LIU;

IFTIKHAR; XIE, 2014).

Additionally, it is important to point out the relation of NoSQL databases with

the concept of Cloud Computing. NoSQL databases are usually offered as part of

a cloud solution, which permits on-demand computational power, where processing,

storage, memory and network capabilities can grow (or reduce) with high elasticity,

optimizing costs and facilitating the application operation (KAOUDI; MANOLESCU,

2015). In such a context, the Lambda Architecture (PERERA; SUHOTHAYAN, 2015) is

the most recent advance in the integration of Big Data, NoSQL databases and Cloud

Computing. This architecture contributes to develop a suitable approach for NoSQL

databases application by introducing the idea of views over Big Data repositories, so it

is possible to slice and dice the data according to the necessary information retrieval.

Finally, the Polyglot Persistence is an important background concept of this thesis.

This concept, firstly coined by Marting Fowler3, argues that complex applications can

accomodate several data storage techniques, models and technologies for different

natures of data. For instance, as presented in Figure 2, an e-commerce application can

benefit of this issue to improve scalability and simplify the data management by using

more than one storage type.

Approaches like Estocada (BUGIOTTI et al., 2015), BigDAWG (DUGGAN et al.,
3 https://martinfowler.com/bliki/PolyglotPersistence.html

Chapter 2. Background 28

SELECT DISTINCT ?X ?Y ?Z

WHERE {

?Y rdf:type ub:Faculty.

?Y ub:teacherOf ?Z.

?X ub:advisor ?Y.

?X ub:takesCourse ?Z.

?X rdf:type ub:Student.

?Z rdf:type ub:Course.}

we have a star shape around the subject ?X and a chain shape composed of

?X ub:advisor ?Y, ?Y ub:teacherOf ?Z, and ?Z rdf:type ub:Course.

The development of systems capable of storing RDF and retrieving data via

SPARQL (usually called triplestores) has a long tradition. This kind of system figures

at multiple surveys, as presented in the next chapter. During this time, many advances

were presented like the pioneers AllegroGraph (CHANG; MILLER, 2009), Stardog

(CERANS et al., 2012), YARS (HARTH; DECKER, 2005), Hexastore (WEISS; KARRAS;

BERNSTEIN, 2008), 4store (HARRIS; LAMB; SHADBOLT, 2009), SPIDER (CHOI;

SON, et al., 2009), RDF-3X (NEUMANN; WEIKUM, 2010), SHARD (HUANG; ABADI;

REN, 2011), swStore (ABADI et al., 2009), SOLID (CUESTA; MARTINEZ-PRIETO;

FERNÁNDEZ, 2013), S2X (SCHÄTZLE; PRZYJACIEL-ZABLOCKI; BERBERICH, et al.,

2015), BigOWLIM (KIRYAKOV et al., 2010) and Sesame (BROEKSTRA et al., 2002).

As detailed in the next chapter, the works in the literature related to this thesis

comprise triplestores that uses NoSQL databases as the main storage.

29

3 RELATED WORK

Triplestores, also called RDF stores, is a database for the storage and retrieval

of triples. Many triplestore proposals use NoSQL databases for RDF storage, and it is

possible to group them in many different classifications. As the main focus of this thesis

is on NoSQL persistence and its implications, we organize the related work into three

categories that denote, in our opinion, the latest advances in NoSQL databases:

• RDF/NoSQL converter : this category is related to middlewares that convert RDF

data into NoSQL data models and vice-versa. Most of the seminal proposals (e.g.,

CumulusRDF (LADWIG; HARTH, 2011) and Jena-HBase (KHADILKAR et al.,

2012)) are included in this category.

• Polystore: polystore solutions are gaining momentum in the last few years. As

cited in Chapter 2, proposals like Estocada (BUGIOTTI et al., 2015), BigDAWG

(DUGGAN et al., 2015) and Presto (MAMMO; BANSAL, 2015) are expanding

the possibilities of the NoSQL databases to smartly decide which kind of storage,

with an specific data model, can better handle parts of the considered dataset.

In recent years, a handful of works were published to explain how polystore

databases can better manage the RDF data complexity;

• In-memory : in-memory databases is a current trend for Big Data management

(STOREY; SONG, 2017). This category comprises works that use structured in-

memory solutions (e.g., Parquet, Memcached and Redis) for storing data in one

of the NoSQL data models.

The related approaches on each category are detailed in the next sections, and

a comparison of them per category is shown in the Tables 1, 2 and 3, respectively. For

each category, we analyze, at least, the work focus, physical storage and NoSQL data

model. Also, for each category we added specific features. It is worth mentioning that

an approach may fit into more than one category. In this case, we decided to put it into

the category that it offers more contribution.

An extended version of this chapter was submitted as a survey to the Trans-

actions on Knowledge and Data Engineering (TKDE) journal and is currently under

review.

3.1 RDF/NOSQL CONVERTER

There are many proposals that fit into this category. RDFJoin (MCGLOTHLIN, J.;

KHAN, L., 2009), for example, uses vertical partitioning and sextuple indexing for storing

data on MonetDB and LucidDB databases. Their data model focus on performance

optimization of join queries. They also employ BitMat (ATRE; SRINIVASAN; HENDLER,

Chapter 3. Related work 30

2008) for speedup lookups and joins since each subject and object URI is converted to

an integer that represents the corresponding bit index in a bit matrix. Their tests using

LUBM benchmark show that RDFJoin outperforms Hexastore on join time. RDFKB

(Resource Description Framework Knowledge Base) (MCGLOTHLIN, J. P.; KHAN, L. R.,

2009) also uses MonetDB for RDF datasets, having focus on inference and knowledge

management. It supports reasoning at storage time instead of during query processing.

In comparison to RDFJoin, the queries are simplified and the performance is enhanced.

RDFKB and RDFJoin were proposed by the same research group.

Stratustore (STEIN; ZACHARIAS, 2010) is an RDF store implemented over

Amazon SimpleDB using Jena framework. It accomplishes a triple-oriented mapping,

i.e., a triple is mapped to a data item with the attributes subject, predicate and object.

AMADA (ARANDA-ANDÚJAR et al., 2012) is a platform for RDF persistence based

on the Amazon Web Services (AWS) that also considers SimpleDB. It operates in a

Software as a Service (SaaS) approach, enabling upload, index, store and query over

large volumes of Web data. The NoSQL usage is limited to data indexing since the RDF

triples are stored on Amazon S3 distributed filesystem.

The HBase NoSQL database is considered by many works. H2RDF (PAPAILIOU;

KONSTANTINOU; TSOUMAKOS; KOZIRIS, 2012) is a fully distributed RDF store that

combines the MapReduce processing framework with HBase. The main focus is on

simple and multi-joins. Vaibhav et al. (KHADILKAR et al., 2012) proposed Jena-HBase,

which stores RDF indices in HBase and directly carries out queries through HBase

APIs. Map-Side Index Nested Loop Join (MAPSIN join) (SCHÄTZLE; PRZYJACIEL-

ZABLOCKI; DORNER, et al., 2012) combines the scalable indexing capabilities of

HBase with MapReduce paradigm provided by Hadoop. The central goal of this work

is the large-scale join processing while maintaining the flexibility of commonly used

reduce-side joins, leveraging the effectiveness of map-side joins. The authors demon-

strate that, for most queries, MAPSIN join-based query execution outperforms reduce-

side join-based execution by an order of magnitude. RDFChain (CHOI; JUNG; LEE,

2013) also combines MapReduce and HBase. The storage scheme of RDFChain aims

to decrease the number of storage accesses. On confronted with the other proposals,

their cost-based map-side join reduces the number of map jobs since it uses statis-

tics to process several join strategies in a single map job. At last, Rainbow (GU; HU;

HUANG, 2014) manages RDF data with two layers aiming to deal with RDF in a scal-

able way. The bottom layer is represented by HBase, which is responsible for storing

the RDF data. The top layer is represented by an in-memory cache to speed up query

processing.

The Cassandra NoSQL columnar database is used by CumulusRDF (LADWIG;

HARTH, 2011). This work introduces hierarchical and flat layout types for mapping RDF

data to Cassandra data model. Another approach called SPOVC (MULAY; KUMAR,

Chapter 3. Related work 31

2012) organizes RDF data for efficient evaluation of SPARQL queries through three

types of indexes (subject, predicate, object) on top of any column oriented database.

The main techniques used by them are the horizontal partitioning of the logical indexes

and specific indexes for values and classes. SPOVC extends SW-Store (ABADI et al.,

2009), which uses vertical partitioning of PostgreSQL to respond SPARQL queries with

filter patterns having range conditions and regular expressions, obtaining a two/three-

fold performance improvement.

The work of Pham (PHAM, 2013; PHAM; BONCZ, 2016) proposes a self-

organizing RDF storage in MonetDB where on RDF ingestion time the system

automatically detects structure in the data. During the ingestion, MonetDB can be used

as a key/value or a document storage. This knowledge is then used to store the data in

a structured form to accelerate RDF joins for queries with star patterns.

Graph databases are considered by the work of Bouhali and Laurent(BOUHALI;

LAURENT, 2015), which defines transformation rules from RDF data to the graph

database model. They propose a direct RDF graph-database graph mapping, along with

other four mapping strategies (Literal Datatype Mapping, Literal Mapping, Resource

Type Mapping and Structural Mapping) to transform a RDF graph into a database

graph. During the evaluation, tests with real data over Neo4j graph database obtained

promising performance results.

There is a handful of works that is independent of storage but focuses only on

the translation between RDF and JavaScript Object Notation (JSON). As JSON is the

common storage format adopted by the NoSQL document databases, we consider

these works as following the document data model. The traditional Semantic Web

framework Apache Jena1 includes a component that has the capability of converting

RDF to JSON for persisting RDF data in NoSQL document databases. This work is

independent of database solution, and do not include partitioning or indexing solutions.

W3C RDF/JSON2 is a concrete syntax for RDF into JSON, as defined in the RDF

Concepts and Abstract Syntax W3C Recommendation. On considering also NoSQL

document databases, the work of Tomaszuk (TOMASZUK, 2010) adopts MongoDB

as a RDF triplestore by defining an alternative mean for serializing RDF triples using

JSON.

Rya (PUNNOOSE; CRAINICEANU; RAPP, 2012) uses a columnar NoSQL

database called Accumulo to develop a scalable system for storing and retrieving RDF

data in a cluster of nodes. It introduces a serialization format for storing RDF data, an

indexing method to provide fast access to data and query processing techniques for

speeding up the evaluation of SPARQL queries. Experimental evaluations show that

the system scales RDF data storage to billions of triples and provides millisecond query
1 https://jena.apache.org/
2 https://www.w3.org/TR/json-ld/

Chapter 3. Related work 32

times.

The Hive+HBase described in the survey of Cudre-Maurox et al. (CUDRÉ-

MAUROUX et al., 2013) uses Apache Hive, an SQL-like data warehousing tool that

allows querying using MapReduce. This proposal relies on the translation from SPARQL

to SQL and vice-versa. It is independent of database system and do not also cover par-

titioning or indexing solutions. The code implementation is available at Github author’s

profiles3.

TriAl (LIBKIN; REUTTER; VRGOČ, 2013) combines the idea of RDF triplestores

with that of graphs with data. This acronym for Triple Algebra introduces a language that

works directly over triples and it is closed, i.e., they produce sets of triples rather than

graphs. The closure is assured by replacing the cartesian product with a family of join

operations. The authors also provide examples of the usefulness of TriAl in querying

graph, RDF and social network data.

Table 1 presents the works classified as RDF/NoSQL Converters. The works are

compared according to its focus, storage and data model. Some works do not propose

a database system, but only a data model, so they are independent of a specific storage.

Its important to notice here the volume of the works in this category: fifteen published

since 2009, and none, to the best of our knowledge, since 2015. Moreover, most of

them focuses on join processing or RDF-to-NoSQL mapping, are based on Columnar

databases and some of them employ the MapReduce paradigm to process joins. This

is probably influenced by the sound success of SW-Store (ABADI et al., 2009), the first

approach to propose vertical storage for RDF triples.

As commented before, works that are mere RDF/NoSQL converters are getting

rare during the last years. Probably, the reason for that is the difficulty to achieve the

necessary scale using approaches that negligence partition, indexing, fragmentation

and caching. The following sections show that polystores and multimodel solutions,

alongside with an in-memory RDF manipulation, are the future for massive RDF data

management.

3.2 POLYSTORE

The Polystore category means works that persist RDF data into more than

one storage solution that usually hold different data models (multimodel solutions). In

general, the goal of this kind of approach is to exploit the structural differences between

parts of the RDF dataset in order to optimize the query response time. Two works fit

into this category.

The project Presto defines a storage layer for RDF called Presto-RDF (MAMMO;

BANSAL, 2015). Presto allows querying data in different NoSQL databases (e.g., Cas-
3 https://github.com/ahaque/hive-hbase-rdf

Chapter 3. Related work 33

Work Focus Proc. Storage Model

RDFJoin (2009) Join processing No MonetDB/
LucidDB

Columnar

RDFKB (2009) Join processing with rea-
soning

No MonetDB Columnar

Stratustore
(2010)

RDF-to-columnar
database mapping

No SimpleDB Columnar

Tomaszuk
(2010)

RDF-to-JSON mapping No Independent Document

Cumulus RDF
(2011)

RDF-to-columnar
database mapping

No Cassandra Columnar

Jena (2011) RDF-to-JSON mapping No Independent Document

AMADA (2012) RDF storage in the cloud No SimpleDB Columnar

H2RDF (2012) Join processing M/R HBase Columnar

Jena-HBase
(2012)

Jena-based processing No HBase Columnar

MAPSIN (2012) Join processing M/R HBase Columnar

SPOVC (2012) Horizontal data partitioning No Independent Columnar

Rya (2012) Scalable RDF storage and
querying

No Accumulo Columnar

Pham (2013) RDF structure analysis No MonetDB Columnar

Hive+HBase
(2013)

SPARQL-to-SQL mapping M/R HBase Columnar

RDFChain
(2013)

Join processing M/R HBase Columnar

TriAL (2013) RDF-to-graph database
mapping

No Independent Graph

RDF/JSON
(2014)

RDF-to-JSON mapping No Independent Document

Rainbow (2014) Scalable querying No HBase Columnar

Bouhali (2015) RDF storage into graph
databases

No Graph Graph

Table 1 – Comparative of related work in the RDF/NoSQL Converter category

Chapter 3. Related work 34

Work Focus Physical
Storage

Model Inter. In-
mem.

Presto-RDF
(2015)

Polystore queries Redis and
Cassandra

Key/Value
and Colum-
nar

No Yes

xR2RML (2016) Queries over views
of RDF data

Independent Independent Pivot No

Table 2 – Comparative of related work in the Polystore category

sandra, Redis), relational databases or even proprietary data stores. A single Presto

query can combine data from multiple sources, allowing multimodel queries. Presto

query execution is fast because of in-memory processing, so this work also fits as an

in-memory solution.

xR2RML (MICHEL; FARON-ZUCKER; MONTAGNAT, 2016a,b) describes how

native database entities can be mapped to RDF, and whereby an SPARQL query is

translated into a pivot abstract query language independent of the database. Then,

the pivot query is translated into the target database query language, considering the

particular database capabilities and query optimization that can be implemented at this

level. The pivot language is composed of clauses equivalent to the SPARQL language

and a set of rules to transform this language into the target database query language.

The focus of the work is the query mapping to document NoSQL databases, despite

the authors argue that any NoSQL database system could be considered.

Table 2 compares the works classified as polystore into physical storage, model,

intermediate structures and in-memory capabilities. Their purpose is either to define

a middleware that enables several NoSQL database access or to delegate the stor-

age task to a tool, like Presto. The only work that uses an intermediate structure for

representing data is xR2RML. This is an important gap in the state-of-art, since other

architectures like Estocada (BUGIOTTI et al., 2015) and other native triplestores, like

WARP (HOSE; SCHENKEL, 2013), already consider such a structure to reduce the

number of joins and therefore accelerate the query results.

3.3 IN-MEMORY

This category holds approaches whose main focus is on reducing query and

ingestion latency by using the memory as the main storage.

Trinity.RDF (ZENG et al., 2013) introduces a distributed, memory-based graph

engine for web scale RDF data on top of the Trinity NoSQL graph database. Instead of

managing RDF data in triplestores, the authors developed an RDF store in its native

graph form. The results show that it achieves better performance for SPARQL queries

than the state-of-the-art approaches. Furthermore, since the data is stored in its native

Chapter 3. Related work 35

graph form, the system can support other operations (e.g., random walks, reachability)

on RDF graphs as well.

Papailiou et al. (PAPAILIOU; DIMITRIOS TSOUMAKOS, et al., 2015) presents

a novel system that addresses graph-based, workload-adaptive indexing of large RDF

graphs by caching SPARQL query results. At the heart of the system lies an SPARQL

query canonical labeling algorithm that is used to uniquely index and reference SPARQL

query graphs as well as their isomorphic forms, and a dynamic programming planner

to generate the optimal join execution plan, examining the utilization of both indexed

primitive triples and cached query results. By monitoring SPARQL queries, the system

can identify and cache query results, substantially reducing the average response time

of a workload. This approach persists RDF data into HBase columnar database.

H2RDF+ (PAPAILIOU; KONSTANTINOU; TSOUMAKOS; KARRAS, et al., 2013)

is also based on HBase and uses six tables to store all possible triple permutations

(SPO, SOP, PSO, POS, OPS, OSP). It maintains index statistics to estimate triple

pattern selectivity as well as join output size and cost. From these estimations, H2RDF+

adaptively decides if queries are executed in a centralized way over a single node, or

in a distributed way via MapReduce processing. It offers merge and sort-merge joins

for both MapReduce and local execution. This work is an evolution of H2RDF.

A work that considers the in-memory capabilities of the NoSQL Key/Value Redis

is ScalaRDF (HU et al., 2016). It presents a novel protocol that extends the consistent

hashing protocol to achieve efficient data placement and elastic resource scale out/in.

It allows for low-cost data store in the event of RDF data update and powerful cluster re-

source joining or departing. In this context, merely local data redistribution is necessary,

avoiding the holistic data redistribution.

The columnar format Apache Parquet4 seems to be a trend on in-memory triple-

store proposals. Sempala (SCHÄTZLE; PRZYJACIEL-ZABLOCKI; NEU, et al., 2014)

is a SPARQL-over-SQL approach that provides interactive time for SPARQL query

processing on Hadoop. It stores RDF data in Parquet and uses Impala, a massively

parallel processing SQL query engine for Hadoop, as the execution layer on top of it.

SPARQL queries are translated into Impala SQL for improving performance. The work

of Schätzle et al. (SCHÄTZLE; PRZYJACIEL-ZABLOCKI; SKILEVIC, et al., 2016) uses

Parquet as storage solution and S2RDF (SPARQL on Spark for RDF), an SPARQL

processor based on the in-memory cluster computing framework Spark. It comes with

a novel partitioning schema for RDF called ExtVP (Extended Vertical Partitioning) that

accomplishes semi-join reductions. The optimizations of ExtVP are applicable to all

SPARQL query shapes regardless of its diameter.

A comprehensive experimental evaluation compares S2RDF with other state-of-

art SPARQL processors for Hadoop to demonstrate its superior performance on diverse
4 https://parquet.apache.org

Chapter 3. Related work 36

Work Focus Proc. Storage Inter. Data
Model

Trinity. RDF (2013) RDF data manager No Trinity No Graph

Sempala (2014) Parallel processing M/R Parquet No Columnar

H2RDF+ (2014) Triple indexing and
distributed query pro-
cessing

M/R HBase No Columnar

Papailiou et al.
(2015)

Workload-based
query caching

No HBase Yes Columnar

ScalaRDF (2016) Parallel processing No Redis No Key/ Value

S2RDF (2016) Data partitioning Spark Parquet No Columnar

PRoST (2018) Data partitioning Spark Parquet No Columnar

Table 3 – Comparative of related work in the In-memory category

query workloads using the recent synthetic WatDiv benchmark and the real-world YAGO

dataset. PRoST (COSSU et al., 2018) is an evolution of S2RDF that considers the same

tools but defines a multi strategy that replicates RDF data by using a vertical partitioning

approach and property tables. During the query processing, PRoST selects the partition

type to be accessed using an statistic-based optimization where the total number of

triples and the number of distinct subjects for each predicate are the main drivers.

Table 3 summarizes the works presented in this section. These works have

different manners to organize the RDF information into memory before flushing it to

disk. Apache Parquet is the rule for the papers using Spark and HDFS storage. HBase

is considered by two works mainly because it fits when using MapReduce (Hadoop)

jobs. Except the work of Papailiou et al., no other work considers an intermediate data

model to represent RDF data (column Inter.). The lack of an intermediate representation

forces the triplestore to manipulate each triple individually, which reduces the scalability

because this design ignore the graph nature of the RDF data, specially the connections

between the triples. So, data manipulation could consider a subgraph granularity instead

of a triple granularity.

3.4 WORKLOAD-AWARE TRIPLESTORES

Table 4 shows works that exploit workload-awareness to speed up SPARQL

queries or support polyglot storage of RDF data, including our proposal. The adopted

abbreviations are WA for workload-awareness support, S for storage type, F for data

fragmentation capabilities, L and IR for data localization and intermediate result pro-

cessing optimizations, respectively.

The AdaptRDF approach (MAHMOUDINASAB; SAKR, 2012) consists firstly of

a vertical partitioning phase that uses the workload information to generate an efficient

Chapter 3. Related work 37

Work WA S F L IR

AdaptRDF (2012) Query stream RDBMSs No Yes No
WARP (2013) Logs Independent Yes No No
Cerise (2014) History Native No Yes Yes
Rainbow (2014) Pre-calculated Columnar No No No
Papailiou et al. (2015) Query results Columnar No Yes No
Presto-RDF (2015) No K/V, Columnar No No No
xR2RML (2016) No Independent Yes No Yes
ScalaRDF (2016) No Graph No No No
S2RDF (2016) Star queries Columnar No No Yes
WA-RDF (2019) Monitoring NoSQL Yes Yes Yes

Table 4 – Related Work Comparison

relational schema that reduces the number of joins. Secondly, in the adjustment phase,

any change in the workload is considered to create a sequence of pivoting and unpivot-

ing operations to adapt the underlying schema and maintain the efficiency of the query

processing. WARP (HOSE; SCHENKEL, 2013) presents a replication method on top of

a graph-based partitioning that takes the workload into account to create a cost-aware

query optimization and provide efficient execution. Cerise (KOBASHI et al., 2014) is

a distributed RDF data store that adapts the underlying storage and query execution

according to the history of queries. It colocates (on the same data segment) data that

are accessed frequently together to reduce overall disk and network latency. In turn, the

work of Papailiou et al. (PAPAILIOU; DIMITRIOS TSOUMAKOS, et al., 2015) focuses

on monitoring SPARQL queries in order to cache the more requested query results.

As presented in Table 4, the fragmentation problem is discussed only by WARP

and xR2RML (MICHEL; FARON-ZUCKER; MONTAGNAT, 2016a), which define ex-

panded fragments to avoid unnecessary joins. On the other hand, the localization is the

main contribution of AdaptRDF, Cerise and the work of Papailiou et al., which monitor

query changes to better rearrange the localization of the underlying schema.

The more referenced approaches in the literature that propose triplestores based

on NoSQL as data storage are Rainbow (GU; HU; HUANG, 2014) (a query proces-

sor), ScalaRDF (HU et al., 2016) (an in-memory solution) and S2RDF (SCHÄTZLE;

PRZYJACIEL-ZABLOCKI; SKILEVIC, et al., 2016) (a query processor). Rainbow is

a distributed triplestore that uses the HBase columnar database and an in-memory

cache to speed up query processing. Based on a previous analysis of the dataset and

the expected workload, it decides where the RDF data will be maintained. ScalaRDF

introduces a distributed in-memory triple store that uses Redis as a fault-tolerant and

distributed RDF store. Additionally, S2RDF proposes a Spark-based SPARQL query

processor that offers very fast response time for star queries by extending the vertical

Chapter 3. Related work 38

partitioning. Their partition scheme uses the Apache Parquet5 columnar format to store

the triples excluding unnecessary data from query processing. In order to reduce the

intermediate results, S2RDF maintains statistics about the size of the dataset tables

and places the subqueries corresponding to the smallest tables at the beginning of

joining in order to reduce the intermediate result size.

According to Table 4, WA-RDF is the only work to address fragmentation, local-

ization and intermediate results. Also, WA-RDF monitors and classifies the workload

and store the triples into NoSQL databases.

3.5 FINAL REMARKS

The current scenario of the state-of-art NoSQL triplestores can be summarized

as an almost complete delegation of the storage mechanism to the NoSQL databases.

This limitation facilitates the development of the triplestore but considerably reduces the

opportunities inherent of the difference between the RDF data model and the NoSQL

data models.

Therefore, WA-RDF was designed and implemented as a workload-aware mid-

dleware. This middleware is able to rearrange the dataset storage in the NoSQL

databases when the workload is modified, and also avoids data manipulation at a

triple level. Instead, it defines fragments that reduces the number of joins at query

processing time. The partition and replication mechanisms avoid cross-partition ac-

cess, and the usage of cutting-edge processing frameworks facilitates the support for

update and deletion operations. Also, WA-RDF is a polyglot solution that deals with

different NoSQL databases and data models while considering a single abstraction for

manipulating RDF data. Next chapter details the proposed middleware.

5 https://parquet.apache.org/

39

4 WA-RDF

This chapter presents the solution proposed by this thesis, which is called WA-

RDF (Workload-Aware-based RDF data management). WA-RDF is a workload-aware

middleware for storing and querying RDF data in multiple NoSQL database nodes.

We published four papers with the ideas described in this chapter. In the SBBD

conference, we focus on the middleware architecture (SANTANA; SANTOS MELLO,

2017b). In the IRI conference, we focus on the polyglot access and RDF-to-NoSQL

mapping (SANTANA; SANTOS MELLO, 2019a). In the DEXA conference, we focus on

query processing (SANTANA; SANTOS MELLO, 2019b). In the ADBIS conference, the

focus is on the workload management (SANTANA; SANTOS MELLO, 2019c).

The implementation of WA-RDF is based on Java. The programming language

used for the development was the simplest decision of this thesis because the core

Semantic Web implementations are inherited from Jena. Apache Jena1 is implemented

in Java and it is the most popular framework for the Semantic Web. Jena is important

because it contains many components for parsing RDF data and SPARQL queries.

The current version of WA-RDF was developed using Apache Jena version 3.2.0

with Java 1.8, and we use MongoDB 3.4.3, Neo4J 3.2.5, Cassandra 3.11 and Redis

5.0.3 as the document, graph, columnar and key/value NoSQL databases, respectively.

The choice for these solutions was based on their current high popularity in DB-engines

ranking2. WA-RDF also employs Apache Spark 2.4.0 as the processing framework for

map/reduce algorithms and Apache Kafka 2.1.0 as the queue manager.

Four versions of the proposed middleware was implemented during the devel-

opment of this thesis. Table 5 presents the versions and the features contained on

each one. The first version, developed during 2015 and 2016, focused only on NoSQL

database integration, i.e., it accessed multiple NoSQL databases through a unique

interface and a unified data model, and used JSON for storing and querying data. The

second version, called Rendezvous (SANTANA; SANTOS MELLO, 2017b) included

Web Semantic standards and the workload-aware notion of query shapes. This version

considered document and columnar databases as the main storages, and a key/value

database as the cache. In the third version, renamed to WA-RDF, the storage database

for chain shaped queries was changed to the graph data model, and the columnar

database was used as the distributed dictionary. Finally, in the last version, Apache

Spark and Apache Kafka were added in order to increase the scalability of complex and

iterative algorithms (e.g., fragmentation and query result generation) and background

activities (e.g., deletion, update and replication).
1 https://jena.apache.org/
2 https://db-engines.com/en/ranking

Chapter 4. WA-RDF 41

this triple to a fragment FRDFi and maps FRDFi to the target NoSQL database(s). This

process is controlled by the WAc, which is the main component of our middleware.

During a triple storage, it decides on translating FRDFi to a NoSQL document or graph

database (or both) according to the usual query workload, and indexes it with the aid of

the Indexer component. Once FRDFi is created, the Partitioner registers this fragment

into the Dictionary repository (supported by a NoSQL columnar database) and stores

it in the NoSQL databases.

When an RDF-based Application submits a SPARQL query request, the Query

Evaluator component decomposes this query into subqueries and reports to the WAc

about them. In the following, the Query Evaluator verifies, with the aid of the Dictionary,

the partitions on which the triples for the query are potentially located. Based on this

information, it checks which triples are available in the Near Cache (a data structure in

the main memory of the server) and the Remote Cache (a remote NoSQL key/value

database), and sends the SPARQL subqueries for the missing triples to the Query

Processor component that, in turn, translates them to graph and/or document NoSQL

database queries. Finally, the Query Processor sends back the query results to the

Query Evaluator that translates them back to RDF triples with the aid of the Dictionary,

and returns the result to the RDF-based Application.

WA-RDF also supports update and deletion operations. In both cases, the op-

eration execution starts at the Query Evaluator, which verifies if the update or deletion

is valid. If so, it redirects the modification to the Partitioner. This component, in turn,

accesses the Dictionary to find out the fragments that will be affected by the operation

and finally performs the changes in the NoSQL databases.

In order to use WA-RDF, a programmer needs to deploy the servers accordingly

to the Appendix B. The RDF-based Application will call the servers using a RESTful

interface3. A store operation is mapped to a POST call with the triples in the body

specified by JSON-LD (JSON-based Serialization for Linked Data)4. A update opreation

is mapped to a PUT method, a query operation to a GET method, and a deletion

operation to a DELETE method.

The main purpose of WA-RDF is to store large RDF graphs. In such a sce-

nario, the number of RDF triples can easily surpass the performance capacity (e.g.,

disk, memory, CPU) of a single server. When it occurs, WA-RDF distributes the RDF

fragments among potentially many NoSQL nodes. A fragment is our smallest grain

of distribution, i.e., during the partitioning process we deal with fragments instead of

triples. Nevertheless, a query can eventually access data in multiple partitions, forcing

WA-RDF to join data from different partitions. Since a join operation is very costly, we

try to avoid join processes by replicating fragments that are potentially part of a join.
3 https://restfulapi.net/
4 https://www.w3.org/2001/sw/wiki/JSON-LD

Chapter 4. WA-RDF 42

In short, whenever the typical workload for a fragment spans more than one partition,

our partitioning scheme replicates the boundary fragments of the partition. Boundary

fragments hold triples that are connected to triples that are stored in other partitions.

WA-RDF also provides an RDF indexing strategy. In this context, a traditional

approach is to build indexes for the full set of permutations of each triple component

(subject (S), predicate (P) and object (O)). Although this method has been designed

to accelerate joins by some orders of magnitude, the overhead with large index space

limits its scalability and makes it heavyweight. Hence, we developed a hashmap index

with subject and object keys following the patterns S-PO and O-PS. In WA-RDF, the

Indexer component is responsible to manage these indexes. It is accessed in two

situations: (i) during the fragment creation and storage; and (ii) to process queries with

one triple pattern. We detail the storage and querying strategies in the following.

4.1.1 Architectural Decisions

During the development of the current version of WA-RDF, many decisions about

the organization of the components and tools that could help on each part of the

development and models were accomplished. This section presents two architectural

decisions regarding WA-RDF that were the result of several researches that culminate

with the following mix: the considered NoSQL databases and how to map RDF data to

the choosen NoSQL databases.

4.1.1.1 NoSQL databases

The best mix of NoSQL databases in the middleware was achieved only after a

few rounds of design and implementation trials. In the first version, the intended contri-

bution was to map and access RDF data through all the NoSQL database categories,

but after the initial thesis development, we figure out that the most important challenge

was on matching the dataset and workload characteristics to the best NoSQL database

features.

In the Rendezvous version, the columnar database was considered in order to

store the triples on which the typical workload is represented by chain shaped queries.

The vertical partitioning schema influenced this solution, as discussed in our SBBD

paper (SANTANA; SANTOS MELLO, 2017b). The objective of this mapping was quickly

discovering the triples through the predicates of the querying triple patterns. However,

this version had generated multiple database accesses by queries on which the triple

patterns have query variables in the join, instead of values. Due to it, the next version,

as presented in our ADBIS paper (SANTANA; SANTOS MELLO, 2019c), considered a

graph database.

This new solution (WA-RDF) solved the columnar problem of multiple accesses

and introduced two benefits: it was possible to map the fragments into a node-edge-

Chapter 4. WA-RDF 43

node format that summarizes the chain fragments, and it was possible to join multiple

chain fragments with only one access because RDF is also a graph. The columnar

database was considered in the design of the middleware dictionary as the usage of

column families allows a fast access to the content of each data partition (more details

are given in Section 4.4.1). Additionally, the document database fits as the best option

to star-shaped fragments. Its hierarchical querying capabilities facilitates queries that

have triple partners that are transversals. The best performance for the middleware

was extracted of these choices. Finally, the key/value database application was more

obvious because its common usage is for caching. Redis database was also used as

the indexer, as a common use case considered by other triplestores.

The design of WA-RDF allows to easily exchange databases, since the only

dependency is the database connectors. However, MongoDB, Neo4j, Cassandra and

Redis plays an important role in the middleware. As stated before, they were chosen

based on the DB ranking popularity. However, some important features of them facili-

tated the WA-RDF implementation, specially Neo4j and Redis. Neo4j more important

feature is the possibility of adding and querying properties in the edges. Redis, in turn,

is very useful for two reasons: (i) the expire solution5, which removes unused fragments;

(ii) to store complex serialized Java objects.

The usage of a graph database instead of the document database is a manner to

avoid deep hierarchical structures that would limit the querying power of the middleware.

In this case, we transform each chain fragment into a structure formed by two nodes

connected by an edge. The first node represents the first subject of the chain, and the

last node represents the last object of the chain. In the edge properties, we add the

triples of the chain in a list. This structure is only possible because the modern graph

databases (e.g., Neo4j, Titan) allows for queries over edge properties.

4.1.1.2 Mapping decisions

One of the most important and frequent processes accomplished by WA-RDF is

the mapping of RDF data to the data structures of the NoSQL databases. In order to

decide for the best mapping processes, we analyze related work that provides similar

solutions. We propose a taxonomy to organize the considered approaches accord-

ing to their mapping strategies, including the Rendezvous version. Table 6 shows the

categories of this taxonomy and the works that fit on each of them.

The first category is called Flat triple since the idea is to map each triple compo-

nent into a correspondent concept of a NoSQL data model, like a column or a JSON

key. In the work of Tomaszuk (TOMASZUK, 2010), for example, each triple is a docu-

ment with S, P and O keys, and the respective triple part value. This strategy can be

used only by document and columnar NoSQL databases because it needs a group-
5 https://redis.io/commands/expire

Chapter 4. WA-RDF 44

Mapping Strategy Approach

Flat triple (FT) Tomaszuk, Cumulus (flat strategy), Jena-HBase
(simple strategy)

Triple permutation (TP) Rya, ScalaRDF, Jena-HBase (index strategy), Rain-
bow (key/value)

Graph (G) Trial, Trinity.RDF, Bouhali, Papailiou
Vertical Partitioning (VP) Rendezvous (columnar), Pham, S2RDF, PRoST
Pre-processed joins (PPJ) Rendezvous (document), RDFJoin, RDFKB, Stratu-

store, AMADA, RDFChain, W3C RDF/JSON, Rain-
bow (columnar)

Hierarchical (H) Cumulus (hierarchical strategy), MAPSIN,
Hive+HBase

Table 6 – A Taxonomy for RDF-to-NoSQL Mapping Strategies

ing structure (e.g., document, table) that is not available at the key/value and graph

NoSQL databases. In this mapping strategy, each triple is mapped to one structure of

the NoSQL database.

The Triple permutation category includes works that consider some permuta-

tions of an RDF triple (SP-O, SO-P, OP-S, S-PO, P-SO, and O-SP). In the surveyed

approaches, this mapping is normally used by the key/value NoSQL stores, but it is also

present in JenaHBase and in the SQL-based system Hexastore (WEISS; KARRAS;

BERNSTEIN, 2008), commonly cited as one of the first to employ this strategy. Different

from it, the Graph category comprises approaches that accomplish a direct map from S,

P and O to nodes and edges of a graph, as used by Trinity.RDF, Bouhali, and Papailiou.

It reduces the complexity of the mapping process.

The Pre-processed joins category holds works that store S, P, and O in a way

that improves join processing. This strategy is adopted for all the NoSQL data models,

and usually brings a great improvement in the SPARQL query processing. The mapping

solutions in this category define structures (e.g., tables, documents) that store together

RDF data usually requested in the same queries. It avoids, for example, table scans

and joins of multiple documents.

The Vertical partitioning (VP) category can be understood as the opposite of

the Pre-processed joins category as it breaks the triple in smaller parts instead of

generating new structures. The most common mapping solution in this case is to de-

fine a two-column table for every RDF predicate. The SQL-based solution SW-Store

(ABADI et al., 2009) is one of the first works that employs this strategy, which is spe-

cially considered by the surveyed works based on columnar NoSQL databases. This

category includes different strategies. One example is S2RDF. Its ExtVP approach adds

pre-processed joins to the vertically partitioned tables in order to improve the query

response time.

Chapter 4. WA-RDF 45

Cat. Work t1 t2 t3 t4 t5 AVG

FT Tomaszuk 0.105 0.096 0.108 0.18 0.375 0.173
TP Rya 0.147 0.128 0.141 0.175 0.208 0.160
G Trinity.RDF 8.335 8.708 8.541 8.357 8.714 8.531
PPJ RDFJoin 3.728 5.287 4.845 4.374 5.287 4.608
VP S2RDF 0.69 0.466 1.971 2.09 2.268 1.497
H MAPSIN 4.148 0.698 3.381 0.699 4.013 2.588

Table 7 – Processing Time of the Mapping Categories (milliseconds)

Finally, the Hierarchical category considers nested structures to improve the

query response time. Different from flat triple strategy, each triple part is stored inside a

structure defined by another triple part (e.g., the P defines the key of a document, where

the values are the Os). In this strategy, each triple is mapped into many structures of the

NoSQL database in different permutations of the triple parts. In MAPSIN, for example,

a triple is mapped to the SPO table, which has S as row key, P as column name, O as

the column value, as well as the OPS table with O as row key, P as column name, and

S as the column value.

In order to evaluate the performance of these mapping categories in a fair way,

one representative of each category was implemented as a plain Java (i.e., without

frameworks) application based only on Apache Jena 3.10.0. Table 7 shows the category

and an implemented work for a given category. The processing time was measured

considering the creation of a triple, the execution of the mapping strategy over it and

the storage into the database. The triples sample used in this experiment are described

in Appendix A. They come from the LUMB (GUO; PAN; HEFLIN, 2005) benchmark, the

most cited one in the surveyed papers.

The experiments were run 1000 times for each triple and the average processing

time was collected. Our infrastructure is a Ubuntu 18, processor Intel Core i7 with 16

Gb of memory. All the databases are local to the Java client, and the source code for

the tests can be found in the authors’ GitHub6.

The graph strategy is more than twice slower than the other options. Although

the mapping is straightforward, the graph database (Neo4J) is slower than the other

NoSQL databases. It may be the reason why so few works fit into this category. The

second slower is the pre-processed joins strategy. This is due to the multiple calls to

Cassandra. Besides, the results for t2 and t5 shows that the more connected a triple

is the slower the pre-computed processing time will be. The hierarchical strategy is

dependent on the existence of the predicate column. In the experiments, the predicate

http://www.w3.org/2001/vcard-rdf/3.0FN is created for t1, so the times for t2 and t4 are

reduced. The VP strategy is three times faster than the hierarchical one mainly because
6 https://github.com/lhzsantana/er-mapping

Chapter 4. WA-RDF 46

it does not have to add new columns when a triple has a predicate that is not present

in Cassandra. The flat triple strategy is around ten times faster than VP since the last

one has to check if each table exists and creates new structures when they do not exist.

Finally, the triple permutation strategy is slightly faster than flat triple even with multiple

calls. The low latency of Redis makes it a very promising solution.

Based on this analysis, the design of the WA-RDF mapping strategy followed

these goals:

• Mappings must be performed in background;

• Redis is the right choice for caching due to its low latency even in a multiple triple

permutation;

• MongoDB can be used for storing the most common shapes, which are the star-

shaped queries in the considered benchmarks, and in general as presented in

Gallego et al. (GALLEGO et al., 2011);

• A direct mapping from RDF to Neo4j is too costly, so WA-RDF uses a simplification

approach to reduce the query time. This simplification allows returning multiple

chains in only one Neo4j access;

• Cassandra can be a bottleneck in multiple calls, so it can be used only for a limited

number of calls, which is the case of the middleware Dictionary.

4.2 STORAGE

When a new RDF triple tnew = (s, p, o) is inserted through WA-RDF, the hashmap

indexes are checked to decide if tnew is more frequent on star or chain-shaped queries.

Algorithm 1 shows the workload-based triple storage strategy. The input parameter

is tnew, and it generates an RDF fragment f that is stored in one or more partitions.

Suppose, for example, that we have two new triples C p10 M and C p2 D (Figure 9 (ii)

and Figure 9 (vi), respectively) to be inserted into the RDF graph of Figure 9 (i). An RDF

fragment represents an expansion of tnew (called core triple) with all of its neighbors

according to a n-hop replication horizon managed by WA-RDF. The n-hop replication

horizon is a value equivalent to the number of connected triples that WA-RDF considers

to expand new triple into a fragment. It is formally defined in the following.

Definition 4.2.1 (N-hop replication horizon). The n-hop replication horizon for a new

triple tnew = (snew, pnew, onew) is a value n equals to the length of the longest chain

of triple patterns in the current workload that is related to the predicate of tnew, i.e.,

ntnew
= max(length(WAc.get(tnew.pnew))), where WAc.get() is a function that get the

triple patterns related to the predicate of a triple.

Chapter 4. WA-RDF 49

Definition 4.2.4 (Partition Boundary). Given SP = {P1, P2, ..., Pn} the set of RDF

partitions, the partition boundary BPi
of a partition Pi ⊂ SP is the a set of RDF fragments

BPi
= FbP1

∪ FbP2
... ∪ FbPr

, where each FbPk
∈ BPi

has one or more RDF triples

tiFPk
= (si, pi, oi) with oi = sj, being sj the subject of other triple tjFPj

of a partition Pj

so that tjFPj
= (sj, pj, oj).

The Dictionary shown in Figure 10 registers each fragment location. It registers

in a columnar database information for each partition to keep track of the RDF elements

stored in each partition (represented by the tables P1 Fragments and P2 Fragments),

so during a query request we can avoid accessing unnecessary partitions that cannot

answer this query. If a WA-RDF node manages more than one partition of a NoSQL

database type, in face of a new core triple we have to decide which is the best partition

to store its fragments. For doing so, WA-RDF finds out the typical workload for the

triples that belong to the fragment generated by the core triple. With this information,

we can query the partition sets in the Dictionary to verify in which partition this fragment

can be more useful in sense that joins outside the fragment can be answered within a

single partition.

WA-RDF uses a boundary replication parameter to avoid unnecessary joins

between partitions. Thus, in Figure 10, the boundary replication (with size n = 1) is

presented between partitions P1 and P2. WA-RDF boundary replication will repeat the

fragment with core triple C p2 D in partitions P1 and P2. The fragment replication per-

mits that a query with triple patterns x? p8 H. x? p2 D. be responded only by querying

partition P1, and a query with triple patterns x? p2 D. D p12 L. be responded only by

partition P2, avoiding, in both cases, cross-partition joins.

It may happen that no workload information is available for a new triple. In this

case (we call it cold start) the storage is defaulted to the document database.

4.2.1 Workload-awareness monitoring

A workload-aware approach is the cornerstone of WA-RDF. Based on it, WA-RDF

decides where and how to place data, which influences fragmentation, mapping, parti-

tioning and querying strategies. First of all, it is essential to explain how this component

monitors the workload.

WA-RDF registers information about the triple patterns of each incoming

SPARQL query. For instance, if we have a SPARQL query SELECT ?x WHERE { ?x

p1 y?. y? p2 z?. z? p3 D } (q1) at time t1, and we have a query SELECT ?x WHERE

{ ?x p1 y?. x? p4 a?. x? p5 b?} (q2) at time t2 (t1 < t2), WA-RDF stores, with the

aid of WAc, information about the triple patterns, the BGPs and their shapes, the time

that the query was most recently received, and how many times WA-RDF received

this query, as illustrated in Figure 11. WAc is composed of the following in-memory

Chapter 4. WA-RDF 54

To deal with it, WA-RDF maintains only the most relevant queries in WAc. The relevance

R for each query is calculated by the sum of how frequent (f) this query is, the number

of placeholders (p) in the query (the more placeholders a query has, the more triples it

potentially matches), the size (s) of the query (the number of triple patterns), divided by

the novelty (n) of the query (how long since it was lastely received). During WA-RDF

development, other measures of relevance were considered. However, preliminary

experiments revealed that the following formula obtained the best results.

R = (f + p) ∗ s/n (1)

Instead of adding immediately the new queries in the WAc, WA-RDF keeps them

in a queue and waits until the size of this queue passes a soft dynamic threshold T. This

threshold is calculated by multiplying the number of querying threads (q) to the number

of queries in the last 10 seconds (t), divided by the average of queries in the last minute

(m). The relevance R is calculated if T is bigger than the number of querying threads.

This threshold is used to avoid the process to be fired for every new query.

T = q ∗ t/m (2)

Also, when the threshold is reached, WAc defines a new waid as well as deletes

and recreates all the fragments stamped with the old workload identifier. This change

leads to modifications on how the data is placed in the architecture by changing the frag-

ments, the partitions and the data storage in the NoSQL databases. During fragment

recreation, WA-RDF performs in a sub-optimum placement, i.e., the old and the new

fragments coexists in the architecture, and if a new query arrives, it can be responded

with an old version of the fragmentation schema. However, this task does not affect the

consistency of the architecture. It is important to notice that the workload version only

changes if queries with new structures gain relevance, which is usually seldom.

4.2.3 Mapping

RDF data is mapped to each one of the NoSQL databases by WA-RDF. A colum-

nar fragment is created when a new triple is registered to the Dictionary. Document and

graph fragments are used as main storages, as explained in Section 4.2.2. Finally, a

key-value fragment is registered in the cache after a query answer is returned.

We formally describe all of these mappings in the following, remembering that,

given an RDF triple a tRDF = (s, p, o) where tRDF .s is the subject, tRDF .p is the predicate

and tRDF .o is the subject, an RDF fragment is a set FRDFi = {tRDF} of connected RDF

triples.

Definition 4.2.5 (Columnar fragment). A columnar fragment is a tuple fcf = (kcf, C)

where fcf .kcf is the name (key) of the column family and fcf .C is a set of columns

Chapter 4. WA-RDF 55

(key-value pairs) fcf .C = {(nc : v)}, being nc the column name (or column key) and v an

atomic value. The mapping of an RDF fragment FRDFi to columnar fragments proceeds

as follows: for each predicate tk.p of a triple tk ∈ FRDFi: generate a columnar fragment

fcfi = (kcfi, {c1, c2}) such that fcf .kcfi← tk.p, fcf .C.c1← tk.s and fcf .C.c2← tk.o.

Definition 4.2.6 (Document fragment). A document fragment is a tuple fdf = (kd, A)

where fdf .kd is the JSON document key and fdf .A = {(kα : v)} is a set of attributes,

being kα the attribute key and v a value whose domain can be atomic, a list, a set

or a tuple. In short, the core triple tcore in the RDF fragment FRDFi is mapped to a

document whose key is tcore.s, and each outgoing predicate from the subject becomes

a document attribute with a key tcore.p. If FRDFi is 1-hop, the attribute value of each

outgoing predicate is the object tcore.o reached from it. Otherwise, the predicate value

is an inner document that maintains the target object as the inner document key, and

its outgoing predicates as attributes. If any of these outgoing predicates is, in turn, an

n-hop, n > 1, the generation of other inner documents proceeds recursively.

Definition 4.2.7 (Graph fragment). A graph fragment is a triple fgf = (sgf, T, ogf)

where sgf is a vertex representing the first subject of a chain, ogf is a vertex rep-

resenting the last object of a chain, and T = {tn} denotes an edge that holds a set

of triples as property, i.e., the intermediary triples between sgf and ogf , including the

object of the first triple and the subject of the last triple. A graph fragment summarizes

a chain of triples by transforming this chain into a triple where the subject of the first

triple and the object of the last triple are mapped to two vertexes, and the edge between

these two vertexes is created with a property that maintains all the triples of the chain.

Definition 4.2.8 (Key-value fragment). A key-value fragment is maintained in the WA-

RDF cache with the form of triples. The fragments are stored when there is a response

of a SPARQL query. So, a key-value fragment formed by each part of the triple, where

the key is the part (subject, predicate, object) and the value is the triple itself.

Examples of mappings for a columnar, document, graph and key-value fragment

are given, respectively, in Section 4.4.1, in the Figure 9 (v) for the star fragment of

Figure 9 (iv), in Figure 9 (viii) for the RDF triple of Figure 9 (vi) that is expanded to the

chain fragment of Figure 9 (vii), and in Section 4.3.2.

4.2.3.1 Internal Resource Mapping

RDF triples and triple patterns managed by WA-RDF on its different data struc-

tures (cache, dictionary, indexes and NoSQL databases) cannot be stored in raw format

so data replication would be prohibitive. Thus, in order to avoid this problem, WA-RDF

uses an internal binary format called Internal Resource Mapping (IRM) that maps a

triple resource (S, P, O) to a binary code stored in Redis.

Chapter 4. WA-RDF 57

the aid of the Dictionary, after the stars and chains sets are processed by the document

and graph databases, the algorithm returns the result set R (line 30).

Input: SPARQL query triple patterns = {tp1, tp2, ..., tpn}, where
tpi = (si, pi, oi)

Output: Result set R = {t1, t2, ..., tm}
if n == 1 then

R.add(getFromIndex(tp1));
else

for i = 1 to n do
mhtSPO.put(si, tpi);
mhtOPS.put(oi, tpi);

end
stars = {};
chains = {};
for i = 1 to n do

if mhtSPO.get(si).size() > 2 then
expandedStar = expandSubject(mhtSPO.get(si));
register(expandedStar, ’star’, expandedStar.hop);
stars.add(expandedStar);

else if mhtOPS.get(oi).size() > 2 then
expandedStar = expandObject(mhtOPS.get(oi));
register(expandedStar, ’star’, expandedStar.hop);
stars.add(expandedStar);

else
expandedChain = expandChain(tpi);
if expandedChain.horizon==1 then

R.add(indexSPO.get(si));
R.add(indexOPS.get(oi));

else
register(expandedChain, ’chain’, expandedChain.hop);
chains.add(expandedChain);

end
R.add(readFromDocument(stars));
R.add(readFromGraph(chains));

return R;
Algorithm 3: Workload-based triple querying

The input SPARQL queries are analyzed by the Query Evaluator component. It,

in turn, classifies a query into simple, star, chain or complex.

A query is called simple if it does not involves a join in any triple component,

like SELECT ?x WHERE { A p1 ?x .}, SELECT ?x WHERE { ?x p1 B .} or SELECT ?x

WHERE { A x? B .}. This type of query is out of our scope, but for sake of complete-

ness, we solve this query using the indexes S-PO and O-PS.

If the query is classified as complex, it is decomposed into one or more simple,

star or chain subqueries. The Query Evaluator then reports to the WAc in order to

keep the workload metrics up-to-date, and accesses the Dictionary to get the partitions

where the triples for these queries are potentially located.

Chapter 4. WA-RDF 58

In the following, the subqueries are forwarded to the Query Processor. Each

star-shaped (O-O or S-S join) query is converted to a query over a document database.

For instance, the O-O star-shaped query Q1 in the following is converted to the access

method D1 (MongoDB NoSQL database syntax) and the S-S star-shaped Q2 is

converted to the access method D2. The $exists function of MongoDB filters the

JSON documents that have all the predicates of each query, moreover in M2 we filter

also by the subject M.

Q1: SELECT ?x WHERE {x? p5 y? . z? p2 y? .}

Q2: SELECT ?x WHERE {x? p9 y? . x? p10 M .}

D1: db.partition1.find({p5:{$exists:true}, p2:{$exists:true}}})

D2: db.partition1.find({p9:{$exists:true}, object:M}})

The chain queries (O-S and S-O joins) are converted to queries over a graph

database. For example, given the query Q3 in the following, with O-S joins, WA-RDF

translates it to the query G1 according to the Cypher9 query language of the Neo4J

NoSQL database.

Q3: SELECT ?x WHERE { x? p1 y? . y? p2 z? . z? p3 w? . }

G1: MATCH (f:Fragment)

WHERE ANY(item IN f.p WHERE item = p1 AND

item = p2 AND item = p3)

RETURN p

The processing of joins occurs when a query as a whole cannot be executed

on a single partition, and it needs to be decomposed into a set of subqueries, being

each subquery evaluated separately and joined at the WA-RDF node. For instance, if

the query Q4 in the following is not able to be completed only querying the partitions

P1 or P2 alone. In this case, the component Query Decomposer divides it into sub-

queries SQ5 and SQ6, issues it to the partitions P1 and P2, respectively, and joins the

result sets by matching the predicate p5 (the boundary connection between P1 and P2).

Q4: SELECT ?x WHERE {x? p2 y?.y? p3 z?.x? p5 w?.w? p9 k?.M p11 k?.}

SQ5: SELECT ?x WHERE {x? p2 y?. y? p3 z?. x? p5 w?.}

SQ6: SELECT ?x WHERE {x? p5 w?. w? p9 k?. M p11 k?.}

A complex query is a combination of the star and chain patterns, potentially

connected by simple queries. Query Q5 in the following is an example, where the
9 https://neo4j.com/developer/cypher-query-language/

Chapter 4. WA-RDF 59

BGP x? p1 y? . y? p2 z? . z? p3 w? holds a chain pattern, the BGP z? p5 ?k is

a simple query, and the BGP k? p6 G . k? p7 I . k? p8 H holds a star pattern. In

this case, the decomposition process works as follows: (i) it first sorts the triple patterns

by subject and object; (ii) if it is identified a subset with two or more patterns with the

same subject or object, it is considered a star subquery, like the subquery P1 in the

following. Then, chains are identified in the remaining query patterns, i.e., (iii) for each

triple pattern, we navigate from object to subject creating chains, and we pick up the

longest chain and consider this a chain subquery, like subquery P2.

Q5: SELECT ?x WHERE { x? p1 y? . y? p2 z? .

z? p3 w? . z? p5 ?k . k? p6 G . k? p7 I . k? p8 H }

P1: {k? p6 G . k? p7 I . k? p8 H }

P2: {x? p1 y? . y? p2 z? . z? p3 w?}

P3: {z? p5 ?k}

WA-RDF repeat step (iii) until there are no more chains, or there are only simple

patterns, like the subquery P3. Each star and chain subquery is processed separately,

and the join of the results (along with the simple patterns) is performed at the WA-

RDF node. In case of ambiguity, i.e., a pattern that is presented in more than one

query type, we consider the following priority: (1) subject-based star query; (2) object-

based star query; (3) the longest chain query; and (4) simple queries. The star queries

are processed with high priority for two reasons: star queries are most common, and

the MongoDB translation permits that we query mostly the document keys, what lets

queries over documents much faster when compared to queries over graphs.

4.3.1 Querying details

In order to reduce the intermediate results during a query execution it is impor-

tant to be assertive in the querying process by returning only fragments that contain

the desired query answer. Moreover, ideally, the fragments retrieved from the NoSQL

databases should not have repeated triples. Thus, WAc profoundly influences on query-

ing and caching.

A query is processed by the WA-RDF component Query Processor (QProc),

as shown in Figure 17. Its design goal is to avoid joins between partitions, reduce

the unnecessary intermediate results and dynamically choose the best NoSQL

node to query. QProc is formed by a Decomposer, which uses WAc information to

decompose the query into star and chain queries. The Decomposer passes these

queries to Planner, which generates different plans for this queries execution and

send these plans to the Optimizer/Executor. Each query is tested in parallel against

the Cache by the Optimizer/Executor. For the queries that are not in the Cache,

Chapter 4. WA-RDF 61

Cache. WA-RDF also consider WAc information to manage caching. When it is time to

evict data from the Cache, it searches QMap to find out and remove the least common

fragments. If the query is not found, the Optimizer/Executor asks for the Cost compo-

nent to find out the less costly plan, and if it works, it asks for the Rewriter component

to modify it in order to improve the query processing.

The main strategy of the Optimizer/Executor is to foster the early execution of

triples with low selectivity to reduce the number of intermediate results. The selectivity

of a triple pattern is an estimation of the percentage of accessed data. This information

can be obtained with the aid of the Dictionary. As shown in Figure 17, the Dictionary

maintains, for each typical workload, the number of triples for each partition. For in-

stance, the selectivity of wa1 is 1000/54500, and 1500/54500 for wa2 (54500 is the

number of triples present in the Dictionary). When WA-RDF receives q1, it processes

wa1 first. Secondly, WA-RDF considers the historical latency and the number of queries

running for each NoSQL query in the table PhysicalCost maintained by the Cost compo-

nent. This component also maintains a matrix of joins between fragments. This matrix

is based on the work of Chawla, Singh, and Pilli (CHAWLA; SINGH; PILLI, 2017), but,

in our case, it contains joins of fragments instead of joins of triples. The cost matrix is

updated after each query. Finally, WA-RDF performs the join based on the cost of each

partial query.

With the fragmentation approach, WA-RDF has to assure that the client will not

receive additional triples. This checking is made after all resulting fragments come from

the partitions. Algorithm 4 is executed to remove unnecessary triples of the result set.

Its input is the list of fragments f = {f1, ..., fn} and the user query, and the output is

the final result set of triples R. The algorithm also follows the map-reduce paradigm.

During the map phase, all triples of each fragment that are not desired are removed by

matching to the query. During the reduce phase, the triples are deduplicated. Finally,

the result set is returned.

Input: f = {f1, f2, ..., fn}, q
Output: R = {t1, t2, ..., tn}
R = f
.map(match: (f, q))
.reduce((t1, t2), if => !t1.equals(t2));
return R;

Algorithm 4: Map-reduce-based fragment cleaning

In order to reduce intermediate results, every time a query is responded, WA-

RDF also tries to merge fragments. This necessity came from the storage problems of

the first middleware version (Rendezvous), where the storage would grow exponentially.

The merging process drastically reduces storage size. It occurs when a fragment has

only a small difference in their triples than another existing one. In our current version,

Chapter 4. WA-RDF 64

GeoSPARQL MongoDB

geof:intersection geoIntersects
geof:distance near

Table 8 – Mapping GeoSPARQL into MongoDB

the last WA-RDF version.

At insertion time, a polygon or a trajectory can include a geometry in the WTK for-

mat12. The current RDF triples can contain a Point, a Line or a Polygon. During a query,

WA-RDF translates GeoSPARQL functions into MongoDB functions, as presented by

Table 8.

4.4 PARTITIONING

Partitioning and replication processes are responsible to efficiently distribute the

fragments. The main data source for these processes is the Dictionary. Algorithms 5

and 6 start after WA-RDF determines the database routing, i.e., after the definition of

the partitions where a fragment can be stored.

For every new fragment that has to be inserted, the Algorithm 5 is executed.

Given a new fragment fnew, each one of its triples ti is queried in the dictionary (lines

1 and 2) through the queryDictionary() function, which returns a list of partitions (Pti =

{p1...pm}) and cardinalities (Cti = {c1...cm}) for each triple. In line 4, the new predicates

are added to a temporary hash map to be added in the replication algorithm. For each

predicate found in the Dictionary, the cardinality is summed in the hash map where the

key is the partition identification and the value is the sum of the cardinalities (in line 8).

In line 9, the triples are added to the partitions that have to be inserted to the dictionary.

Using the values of the addTriples hash, in line 12, the algorithm adds the triples that

have subject in a partition and object in another.

Moreover, it adds the triples that crosses the partitions, i.e., triples that have the

subject in a partition and the object in another partition. At the end of this loop, this hash

contains the sum of cardinalities for each partition (lines 3 to 5). Finally, the algorithm

returns a map of the partitions ordered by the highest cardinality, including the list of

the triples that are connected to this partition. The partitions are ordered by the highest

cardinality because the higher the cardinality is the more connected the fragment will

probably be to the rest of the partition fragments.

Figure 20 shows an example scenario for this task. Given a new fragment to be

stored, WA-RDF issues queries to the Dictionary for each fragment triple {(F, p6, A),

(A, p7, D), (A, p1, B)}. In this case, the answer for the triple (F, p6, A) is (P1, 10) and

(P2, 10). Also, the answer for (A, p1, B) is (P2, 15). So, the sum of cardinalities is 25 for
12 https://www.opengeospatial.org/standards/wkt-crs

Chapter 4. WA-RDF 66

bigger cardinality;

• To evenly distribute the fragments replicating the fragment, if more than one

partition have the same number of triples connected;

• To replicate the border of the partition by using a replication parameter set globally

for WA-RDF by a administrator.

In short, Algorithm 6 receives the new fragment to be stored and the tem-

pHashMaps as the input, and returns a list of partitions where the fragment must

be stored. In line 2, the algorithm finds the maximum value for the cardinalities. In lines

3 to 6, the new triple causes a new table to be created in the Dictionary. In lines 7-12

the algorithm iterates over the triples to be added and checks if, for any partition, the

fragment is equally or more connected to the highest cardinality partition. If so, this

partition also receives the fragment, i.e., the fragment is replicated into this partition.

Input: fnew = {t1, t2, ..., tn} , tempHashMaps
Output: Result set R = {P1, P2, .., Pn

Partitions.add(max(tempHashMaps.sumCardinality));
NewTriples = tempHashMaps.addNewPredicate;
for i = 1 to n do

createNewTableDictionary(NewTriple[i].predicate);
end
Triples = tempHashMaps.addTriples;
for i = 1 to n do

if Triples[i].size>=tempHashMaps.addTriples.get(Partition[0]).size then
Partitions.add(Triples[i].getPartition());

end

end
return Partitions;

Algorithm 6: Replication algorithm

In the example of Figure 20, the biggest cardinality is the partition P2. However,

the partition P1 is more connected to the fragment. So, the fragment is replicated into

both partitions P1 and P2. Moreover, a new table in the Dictionary is created for the

predicate p7 with a row for the subject A and object D.

4.4.1 Dictionary Design

The Dictionary is the component of the middleware responsible for maintain-

ing the distribution of the fragments over different partitions. The Dictionary is stored

into Cassandra database. The main reason for choosing a columnar database is the

possibility to model it as a family of columns, as exemplified in Figure 21.

Chapter 4. WA-RDF 69

similar reasoning, but instead of exchanging a value, the deleted triple is removed from

the result set.

Physically, each triple is marked with a prefix for the pending operations, n: for

new, u: for update and d: for delete. Thus, it is possible to use Redis for storing both

pending operations and the cache.

Fragment merging is different because it is executed at a fragment level instead

of a triple level. After the answer of a query, the fragments returned from the NoSQL

database(s) are added to a Kafka queue in order to be checked against a similarity

threshold. If the fragments are similar, a new fragment merging the similar fragments

is created and the merged fragments are physically deleted. This process also affects

the Dictionary and the Cache. Thus, the old fragments are only deleted after all the

components be updated.

Finally, it is important to mention that these checkings are performed in parallel

with the query processing. Thus, the results of the queries for pending operations are

usually processed faster than the result of the query itself because pending information

is available at Redis, which is a fast access database.

4.5.2 Asynchronous Processing

Before the latest version of WA-RDF, three important capabilities were missing:

data movement and replication, as well as update and delete operations. Their support

were delayed because the middleware did not hold an asynchronous processing com-

ponent. Due to the thesis time and scope limitations, we considered an existing Big

Data processing component: Apache Kafka14.

Apache Kafka is a real-time streaming messaging system and protocol built

around a publish-subscribe protocol. In this protocol, producers publish data to feeds

for which consumers are subscribed to. Kafka is connected to the components Frag-

menter/Mapper and Partitioner of the WA-RDF architecture, as shown in Figure 23.

Other options could be considered, like RabbitMQ (DOBBELAERE; ESMAILI,

2017), but Apache Kafka is currently the more scalable framework of this nature. More-

over, WA-RDF is not the only triplestore using this technology. Strider (REN; CURÉ,

2017), for instance, uses the capabilities of Kafka to create a streaming solution based

on RDF data.

4.6 RUNNING EXAMPLE

This section presents a running example to better understand how WA-RDF

works. We consider here an application that maintains data about trajectories of moving

objects, and the RDF graph of Figure 24. Suppose we have an user called John Smith

14 https://kafka.apache.org/

Chapter 4. WA-RDF 73

the middleware receives the same query of time t4. So, when the application updates

John Smith position with the triples t8 = (’XYZ-1234’, :isAt, ’Point 3’), t9 = (’Point 3’,

hasTime, ’time3’), t10 = (’Point 3’, :hasPosition, ’edvt10sr3mbk), WA-RDF stores them

in the graph database because the WAc contains now chain-shaped fragments (right

part of Figure 28).

4.7 FINAL REMARKS

This chapter presents the thesis proposal: the WA-RDF middleware. It first in-

troduces its architecture and, in the following, details its novel strategies for RDF data

manipulation based on a workload-aware approach. Additionally, RDF mapping to the

NoSQL data models, RDF data fragmentation and partitioning are discussed. Finally,

a running example shows how WA-RDF behaves in an application with trajectory data

specified in RDF.

This set of strategies makes WA-RDF a original triplestore based on a middle-

ware that deals with all NoSQL data models and provides all RDF data manipulation

operations. Next chapter presents the most important decisions regarding WA-RDF

design and implementation.

This chapter gives details of the design and implementation of the middleware

proposed for this thesis. The ideas and algorithms presented in this chapter are very

important to the thesis results.

We can organize the design and implementation decisions into four groups: (i)

the architectural decisions, guided by iterations over the state-of-the-art, such as se-

mantic technologies over a polystore abstraction, mapping, partitioning and data repli-

cation; (ii) architectural decisions, guided by limits over the triplestore solutions, such

as the asynchronous processing, the processing components, the map-reduce frag-

mentation and cleaning, and the usage of pending insertion, deletion and update; (iii)

implementations-time decisions, like the internal resource mapping, the GeoSPARQL

implementation, the database routing and the shape identification; (iv) decisions made

with the intention of exploring the maximum of the NoSQL databases technology, like

the dictionary and the caching algorithm.

These decisions were not explored in published papers yet. These ideas will be

summarized and organized as a future paper about WA-RDF.

74

5 EXPERIMENTAL EVALUATIONS

This chapter presents several evaluations regarding the proposed middleware.

First of all, a brief qualitative analysis compares the reuse of WA-RDF in an e-commerce

application against OrientDB, listed in DB-engines ranking1 as the most used mul-

timodel NoSQL database. Also, a quantitative analysis is performed using the more

modern RDF/SPARQL benchmark, called WatDiv. Finally, a comparison in a application

in the Semantic Trajectory domain is presented, comparing this thesis results with the

state-of-the-art in this domain.

In the following, we detail a set of experiments that evaluates the performance

of WA-RDF.

5.1 QUALITATIVE ANALYSIS

On considering the same data model of Figure 2, we developed a data layer

including insert and query operations for an e-commerce application using both WA-

RDF and OrientDB. On using a Java client, Table 1 shows that when the data layer uses

OrientDB, it was necessary almost twice as Java classes as the client using WA-RDF.

The code for this comparison is available on the authors’ GitHub2.

Work WA-RDF OrientDB
Classes 1 4
Lines of code 90 176
Calls for create User and Product 2 5
Calls for queries 1 4

Table 9 – Qualitative comparison of WA-RDF and OrientDB

More coding is required by OrientDB because it exposes to the programmer all

the complexity of multiple models. Although this is a preliminary study, it shows how a

single abstraction facilitates software development and maintenance.

5.2 PERFORMANCE EVALUATION

Several experiments were executed during the thesis development. During the

initial tests, the benchmark used was the Lehigh University Benchmark (LUBM) (GUO;

PAN; HEFLIN, 2005), very considered by related works. The results on using this

benchmark were published in our SBBD paper (SANTANA; SANTOS MELLO, 2017b)

and DEXA paper (SANTANA; SANTOS MELLO, 2019b). Now, we consider in this

chapter the WatDiv, a more modern and used benchmark (published almost 10 years
1 https://db-engines.com/en/ranking
2 https://github.com/lhzsantana/orientdb-wardf

Chapter 5. Experimental Evaluations 75

after LUBM) that provides a diverse dataset in terms of the RDF graph and the SPARQL

queries. Besides, we evaluate in this chapter the application of our middleware in a

domain of moving object trajectories.

5.2.1 WatDiv Benchmark

The WatDiv benchmark (ALUÇ; HARTIG, et al., 2014) was developed as an

evolution of LUBM, holding a more diversified dataset. It offers an RDF dataset in the

e-commerce domain, having concepts like Product, Purchase and Retailer.

The used dataset has three sizes: 10 million triples3, 100 million triples4, and 1

billion triples5. The workload consists of 20 query templates, which generates almost

10,000 queries at each experiment6. These queries are approximately 40% simple,

40% star and 20% chain or a combination of both shapes.

Figure 29 shows several experimental results based on the usage of the WatDiv

benchmark. Figure 29(a) compares our previous middleware version (Rendezvous),

which uses the columnar NoSQL database Cassandra, with our current version (WA-

RDF), which uses Neo4j as the graph NoSQL database. Each one of the 20 query

templates were executed 5 times (they are presented in the X axis in a compressed

way). It shows that WA-RDF is more than 300ms faster on average, mainly because

Rendezvous had to perform multiple calls to Cassandra. This change speeds up the

overall architecture in around 180ms.

We also evaluate the performance when using key/value, document and graph

NoSQL databases. The key/value database main problem is the need for executing

multiple calls during query response, and the unnecessary returned triples, mainly for

the limitations on filtering only by the key. The document database is not efficient to

solve queries with multiple chain subqueries given its hierarchical data access. The

graph database is slow for the simple and star queries, also due the multiple calls. This

result shows that using document and graph databases achieves the best mix in terms

of performance.

Figure 29(b) shows the average times for update and delete operations. They

were calculated from the time between the request and the return message of the oper-

ation. The workload for the update and delete was created by modifying the triples to

be inserted. During the deletion test, it was inserted all the triples and then they were

deleted one-by-one. In this experiment, it was not possible to compare WA-RDF with

related work because they do not support both of these operations. For the 1GB (i),

10GB (ii) and 100GB (iii) dataset sizes, the graph shows that the deletion time is uni-

form (around 1200ms on average), but the update time increases as the dataset grows
3 https://dsg.uwaterloo.ca/watdiv/watdiv.10M.tar.bz2
4 https://dsg.uwaterloo.ca/watdiv/watdiv.100M.tar.bz2
5 https://dsg.uwaterloo.ca/watdiv/watdiv.1000M.tar.bz2
6 https://dsg.uwaterloo.ca/watdiv/stress-workloads.tar.gz

Chapter 5. Experimental Evaluations 77

and the benefit of merging the fragments.

Figure 29(d) shows the spent time to merge fragments. The time calculation

starts after a query response until the old fragment is deleted. The experiments were

run for sizes of 500 thousand and 1 million triples. We show here the spent time for the

three main tasks accomplished by the merging process. The only task of this process

that is influenced by the size of the dataset is the merging analysis (when WA-RDF

compares the queries), mainly due to the memory usage. Even so, the processing time

is not prohibitive.

Figure 29(e) presents the time spent by each fragmentation creation phase:

temporary fragment creation, queue time, querying related fragments and translation

to the target NoSQL database. The times were collected for the dataset sizes of 500

thousand, 1 million and 10 million triples. The queue time is heavily influenced by the

dataset size, as well as the time spent on querying the fragments to expand the query.

However, the time spent in the 10M dataset is not prohibitive and scales linearly w.r.t.

the dataset size. As expected, there is a directly proportional relation between dataset

size and processing time for creating the fragment.

The next experiments compare WA-RDF with its previous version as well as

the most famous and fast baseline (S2RDF). Figure 29(f) shows the average time to

return an empty result. WA-RDF is much faster because it does not need to access the

NoSQL databases if the workload information is not present in the Dictionary. Figure

29(g) presents the dataset sizes generated for WA-RDF, Rendezvous and S2RDF. It is

considered here a dataset with a raw size of around 13GB. As illustrated, Rendezvous

uses around 35GB, S2RDF about 20GB and WA-RDF slightly more than 18GB. This

result is exclusively due to the merging process that avoids unnecessary replication of

triples. Figure 29(h) compares the average query processing time for WA-RDF against

the S2RDF baseline for 100 queries (each one of the 20 query templates executed

5 times). It shows the superior performance of WA-RDF for the great majority of the

queries. It is possible to see that WA-RDF average execution was around 400ms while

S2RDF average was around 600ms. However, S2RDF presented pretty larger standard

deviations (200ms to 1000ms) when compared to our proposal (200ms to 600ms).

Finally, Figure 30 compares WA-RDF to Rendezvous using the columnar NoSQL

database Cassandra to store chain fragments, as shown in Santana and Mello, 2017

(SANTANA; SANTOS MELLO, 2017a). WA-RDF is on average more than 300ms faster

in chain queries, and around 180ms average overall. This improvement is due to the

necessity of multiple calls to Cassandra in the previous version.

5.2.2 Comparison with a Industry Multimodel Database

This experiment evaluates the performance of WA-RDF against a industry multi-

model database: OrientDB. The purpose here is to compare our polyglot middleware

Chapter 5. Experimental Evaluations 79

GitHub7.

5.2.3 Middleware Application in a Semantic Trajectory Domain

This section evaluates the usage of our middleware as a data layer solution

for managing trajectory data modeled in RDF format. In particular, we consider here

trajectory data whose points can be enriched with semantic information (semantic

trajectories). The management of semantic trajectories is also an open issue in the

research area of Geographic Databases. This experiment contributed to a TGIS journal

paper of our research group that proposes a new data model for semantic trajectories

and considers our first version middleware (Rendezvous) as the data management

layer (MELLO et al., 2019).

Our focus here is on comparing the query performance of Rendezvous against a

state-of-art spatiotemporal database system for semantic trajectories proposed by Gut-

ing et al. (GÜTING; VALDÉS; DAMIANI, 2015), called Secondo (VALDÉS; DAMIANI;

GÜTING, 2013). We consider here a dataset called BerlinMOD8. BerlinMOD is a bench-

mark for spatiotemporal database management systems, created by the Secondo team,

which is able to generate semantic trajectories of vehicles. The benchmark provides

more than 25 types of spatial and/or temporal and/or semantic queries. Some examples

of BerlinMOD query types are: (i) What are the pairs of vehicles of type ”truck” whose

trajectories have ever been as close as ”10m” or less to each other? (a spatio-semantic

query); (ii) What vehicle of type ”passenger” has a trajectory that reached a point ”(X,Y)”

before all the trajectories of vehicles of the same type during the time interval ”[ts, te]”?

(a spatiotemporal semantic query). On using the BerlinMOD generator, we created a

19.45 GB dataset with around 53 million trajectories.

The dataset was converted to RDF and the queries to SPARQL. The total size

of the converted dataset is around 60 million triples. The SPARQL queries were trans-

formed into 6 simple, 5 star, 7 chain, and 7 complex queries.

We ran experiments considering both Rendezvous and Secondo as distributed

infrastructures in the cloud in order to obtain better performance for large data volumes.

For this experiment, Rendezvous uses MongoDB 3.4.3 and Neo4J 3.2.5. All the dis-

tributed data nodes are Amazon m3.xlarge spot instances9 with 7.5 GB of memory and

1 x 32 SSD capacity. For all the experiments, we define nodes that represent MongoDB

+ Neo4J servers, and the Rendezvous servers were also installed on each node. In

order to provide an equivalent test environment, we installed Secondo, following its

tutorial10, in a cluster with the same size of the Rendezvous installation (the same

number of nodes of Amazon m3.xlarge spot instances). In both cases, all the queries
7 https://github.com/lhzsantana/wa-rdf
8 http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html
9 https://aws.amazon.com/ec2/instance-types/
10 http://dna.fernuni-hagen.de/secondo/DSecondo/DSECONDO/Website/index.html

82

6 CONCLUSION

This thesis presents WA-RDF, a triplestore that explores the frequent SPARQL

query shapes to define the best NoSQL database to store parts of an RDF graph.

WA-RDF is proposed in terms of a middleware architecture that rises advances in

several aspects of RDF data management, including data fragmentation, partitioning,

workload-awareness and RDF-to-NoSQL mapping.

The results of this thesis fully assures the hypothesis presented in Chapter 1.

The experimental evaluations demonstrate that the performance of RDF-based applica-

tions can benefit of a dynamic workload-aware triplestore. In WA-RDF, multiple NoSQL

databases can coexist in a triplestore in a seamless way to the RDF-based application.

A middleware connecting an RDF-based application to NoSQL databases is a promis-

ing architectural solution for developing a new triplestore, since with a middleware

support it is possible to design and add several efficient processing strategies without

any impact in the application layer that uses the data. In the case of WA-RDF, it includes

workload-aware fragmentation, partitioning and replication; intelligent workload fitted

mapping layers; and support of efficient data processing frameworks, like Apache Spark

and Apache Kafka, to provide RDF data manipulation operations, including RDF data

update and deletion.

We argue that the main contribution of this thesis to the state-of-the-art is a new

reference architecture for storage and manipulation of large RDF graphs. As specific

contributions, we have new strategies for RDF data fragmentation, mapping, partitioning,

caching and storage. A workload-awareness approach is the basis for all of these

specific contributions. According to the typical shape of SPARQL queries, it defines

RDF fragments and decides the best NoSQL database (document and/or graph) to

map and store them in order to improve query performance and provides scalability.

Partitioning is considered when the RDF dataset is bigger than each server

capability. In this case, we define a replication boundary to avoid cross-server joins and

speed up the query response time. If WA-RDF notices that a fragmentation can benefit

of replication, it copies the data from a server to another. It is important to observe the

treatment of update and deletion operations by the middleware, which are uncommon

features in the researched triplestores. At a first glance, to support these operations

should be avoided as they could bring refragmentation of big portions of the graph.

However, on delaying the physical data change (the strategy adopted by WA-RDF), we

can consider the same replication procedure to update fragments in background.

In order to evaluate the thesis proposal, several rounds of experiments were

accomplished. The comparison with OrientBD, a multimodel database, demonstrates

how a polyglot persistence solution can facilitate the development of applications that

deal with RDF data. Moreover, on using the WatDiv benchmark, WA-RDF was more

Chapter 6. Conclusion 83

scalable than its competitors, including the faster baseline S2RDF, both in face of

frequent queries and bigger datasets. Finally, we present the application of the proposed

middleware in the domain of trajectory data, with very good results.

6.1 LIMITATIONS OF THE THESIS

The results of this thesis, although representing important advances to the state-

of-the-art, have limitations due to the choices made during its development. We consider

as main limitations:

• A more deep analysis of SPARQL queries in order to expand the potentiality of

the workload-awareness strategy. Only two types of query shapes were explored,

and other parts of a SPARQL query command, like projection and grouping, were

not considered;

• The lack of experiments to find out the limit of scalability of the middlware;

• The development of an in-memory triplestore was limited mainly by time. However,

this thesis could provide manners to use a workload-awareness strategy on the

top of Apache Ignite or other in-memory infrastructures.

6.2 FUTURE WORKS

Future works for this thesis include the discarded research paths, but also in-

cludes new opportunities that are been enabled by the advance of related technologies

such as new NoSQL databases, the dawn of NewSQL engines, and machine learning

techniques available as frameworks integrated with Big Data tools. Some possibilities

are given in the following.

• Consideration of other NoSQL databases

There is a number of NoSQL databases that could be used instead of MongoDB,

Neo4j, Redis and Cassandra. In special, OrientDB could be evaluated as a sub-

stitute for Neo4j.

• A Pure in-memory triplestore

On developing a pure in-memory triplestore on top of Apache Ignite or Apache

Spark could reduce the latency in the communication with the main storage. Many

of the developed strategies of this thesis could be reused in such a project, like:

– Workload monitoring, even with low-latency;

– Graph data modeling. For instance, Apache Spark holds a GraphX compo-

nent that has many graph capabilities. Another example is the Redis Graph1.
1 https://oss.redislabs.com/redisgraph/

Chapter 6. Conclusion 84

– Both Apache Spark and Apache Ignite support multiple data models. Another

thesis could explore this capability by considering the low-latency delivered

by these frameworks.

• Comparison with other related works

There are several other triplestores that were not compared against our solution,

and a detailed analysis of them could benefit the evolution of WA-RDF.

• To better explore SPARQL query patterns

The workload of SPARQL queries is not limited to star and chain queries. More-

over, specific domains can have very specific workload patterns, like snow flakes

and cyclic onea. A machine learning procedure could be used to discover new

patterns among the issued queries. This support could provide better results in

terms of performance and reduce the need for data replication.

• Machine learning techniques on top of the Workload-awareness component

The Workload-aware component could benefit of a machine learning algorithm to

classify the workload and find out the best way to store RDF data. It could bring

benefits as fine-grained precision on the fragment creation.

• Consideration of NewSQL databases

NewSQL databases is a very new category of scalable databases that could be

considered in a next version of WA-RDF.

6.3 PUBLICATIONS

As stated before, this thesis had produced or contributed to several papers that

were published in conferences or journals related to the Database area by our research

group. We present here the paper title and the vehicle name. More details are given in

the thesis references:

• Smart Crawler: Using Committee Machines for Web Pages Continuous Classifi-

cation. XXI Brazilian Symposium on Multimedia and the Web (WebMedia 2015).

(ZAMBOM SANTANA; SANTOS MELLO; ROISENBERG, 2015);

• Workload-Aware RDF Partitioning and SPARQL Query Caching for Massive RDF

Graphs stored in NoSQL Databases. XXXII Brazilian Symposium on Databases

(SBBD 2017). (SANTANA; SANTOS MELLO, 2017b);

• A Middleware for Polyglot Persistence of RDF Data into Multiple NoSQL

Databases. XXX International Conference on Information Reuse and Integration

for Data Science (IRI 2019). (SANTANA; SANTOS MELLO, 2019a);

Chapter 6. Conclusion 85

• Querying in a Workload-aware Triplestore based on NoSQL Databases. XXX

International Conference on Database and Expert Systems Applications (DEXA

2019). (SANTANA; SANTOS MELLO, 2019b);

• Workload-awareness in a NoSQL-based Triplestore. XXIII European Conference

on Advances in Databases and Information Systems (ADBIS 2019). (SANTANA;

SANTOS MELLO, 2019c);

• MASTER: A Multiple Aspect View on Trajectories. Transactions in GIS Journal

(TGIS). (MELLO et al., 2019);

• Persistence of RDF Data into NoSQL: A Survey and a Unified Reference Archi-

tecture. Submitted to IEEE Transactions on Knowledge and Data Engineering

(TKDE).

86

REFERENCES

ABADI, Daniel J et al. SW-Store: a vertically partitioned DBMS for Semantic Web data
management. The VLDB Journal—The International Journal on Very Large Data
Bases, Springer-Verlag New York, Inc., v. 18, n. 2, p. 385–406, 2009.

ABRAMOVA, Veronika; BERNARDINO, Jorge. NoSQL Databases: MongoDB vs
Cassandra. In: PROCEEDINGS of the International C* Conference on Computer
Science and Software Engineering. Porto, Portugal: ACM, 2013. (C3S2E ’13),
p. 14–22. DOI: 10.1145/2494444.2494447. Disponível em:
http://doi.acm.org/10.1145/2494444.2494447.

ALUÇ, Güneş; HARTIG, Olaf, et al. Diversified stress testing of RDF data
management systems. In: SPRINGER. INTERNATIONAL Semantic Web Conference.
[S.l.: s.n.], 2014. p. 197–212.

ALUÇ, Güneş; ÖZSU, M Tamer; DAUDJEE, Khuzaima. Workload matters: Why RDF
databases need a new design. Proceedings of the VLDB Endowment, VLDB
Endowment, v. 7, n. 10, p. 837–840, 2014.

ARANDA-ANDÚJAR, Andrés et al. AMADA: web data repositories in the amazon
cloud. In: ACM. PROCEEDINGS of the 21st ACM international conference on
Information and knowledge management. [S.l.: s.n.], 2012. p. 2749–2751.

ATRE, Medha; SRINIVASAN, Jagannathan; HENDLER, James. Bitmat: A
main-memory bit matrix of RDF triples for conjunctive triple pattern queries. In:
CEUR-WS. ORG. PROCEEDINGS of the 2007 International Conference on Posters
and Demonstrations-Volume 401. [S.l.: s.n.], 2008. p. 1–2.

BELLINI, Pierfrancesco; NESI, Paolo. Performance assessment of rdf graph
databases for smart city services. Journal of Visual Languages & Computing,
Elsevier, v. 45, p. 24–38, 2018.

BERNERS-LEE, Tim; HENDLER, James; LASSILA, Ora, et al. The semantic web.
Scientific american, New York, NY, USA: v. 284, n. 5, p. 28–37, 2001.

BOUHALI, Raouf; LAURENT, Anne. Exploiting RDF Open Data Using NoSQL Graph
Databases. In: SPRINGER. IFIP International Conference on Artificial Intelligence
Applications and Innovations. [S.l.: s.n.], 2015. p. 177–190.

BROEKSTRA, Jeen et al. Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema. In: SPRINGER. INTERNATIONAL Semantic Web Conference.
[S.l.: s.n.], 2002. p. 54–68.

BRUNOZZI, Simone. Big Data and NoSQL with Amazon DynamoDB. In:
PROCEEDINGS of the 2012 Workshop on Management of Big Data Systems. San

REFERENCES 87

Jose, California, USA: ACM, 2012. (MBDS ’12), p. 41–42. DOI:
10.1145/2378356.2378369. Disponível em:
http://doi.acm.org/10.1145/2378356.2378369.

BUGIOTTI, Francesca et al. Invisible Glue: Scalable Self-Tunning Multi-Stores. In: VII
Biennial Conference on Innovative Data Systems Research. [S.l.: s.n.], 2015.
Disponível em: http://cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper7.pdf.

CALDAROLA, Enrico Giacinto; PICARIELLO, Antonio; CASTELLUCCIA, Daniela.
Modern Enterprises in the Bubble: Why Big Data Matters. SIGSOFT Softw. Eng.
Notes, ACM, New York, NY, USA, v. 40, n. 1, p. 1–4, Feb. 2015. ISSN 0163-5948. DOI:
10.1145/2693208.2693228. Disponível em:
http://doi.acm.org/10.1145/2693208.2693228.

CATTELL, Rick. Scalable SQL and NoSQL data stores. ACM Sigmod Record, ACM,
v. 39, n. 4, p. 12–27, 2011.

CERANS, Karlis et al. Graphical Schema Editing for Stardog OWL/RDF Databases
using OWLGrEd/S. In: OWL: Experiences and Directions Workshop. [S.l.: s.n.], 2012.

CHANG, WW; MILLER, B. AllegroGraph RDF-Triplestore Evaluation. [S.l.], 2009.
Disponível em:
https://franz.com/agraph/cresources/white_papers/Adobe-Report_9-09.pdf.

CHAWLA, Tanvi; SINGH, Girdhari; PILLI, Emmanuel S. A shortest path approach to
SPARQL chain query optimisation. In: IEEE. 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI). [S.l.: s.n.], 2017.
p. 1778–1778.

CHOI, Hyunsik; SON, Jihoon, et al. SPIDER: a system for scalable, parallel/distributed
evaluation of large-scale RDF data. Proceeding of the 18th ACM conference on
Information and knowledge management, February 2016, p. 2087–2088, 2009.
DOI: 10.1145/1645953.1646315. Disponível em:
http://portal.acm.org/citation.cfm?id=1646315.

CHOI, Pilsik; JUNG, Jooik; LEE, Kyong-Ho. RDFChain: chain centric storage for
scalable join processing of RDF graphs using MapReduce and HBase. In: CEUR-WS.
ORG. PROCEEDINGS of the 2013th International Conference on Posters &
Demonstrations Track-Volume 1035. [S.l.: s.n.], 2013. p. 249–252.

COSSU, Matteo et al. PRoST: Distributed Execution of SPARQL Queries Using Mixed
Partitioning Strategies. In: XXI International Conference on Extending Database
Technology. [S.l.: s.n.], 2018. p. 469–472.

CUDRÉ-MAUROUX, Philippe et al. NoSQL databases for RDF: An empirical
evaluation. Lecture Notes in Computer Science (including subseries Lecture

REFERENCES 88

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8219 LNCS,
PART 2, p. 310–325, 2013. ISSN 3029743. DOI: 10.1007/978-3-642-41338-4{_}20.

CUESTA, Carlos E; MARTINEZ-PRIETO, Miguel A; FERNÁNDEZ, Javier D. Towards
an architecture for managing big semantic data in real-time. In: SPRINGER.
EUROPEAN Conference on Software Architecture. [S.l.: s.n.], 2013. p. 45–53.

DEAN, Jeffrey; GHEMAWAT, Sanjay. MapReduce: simplified data processing on large
clusters. Communications of the ACM, ACM, v. 51, n. 1, p. 107–113, 2008.

DOBBELAERE, Philippe; ESMAILI, Kyumars Sheykh. Kafka Versus RabbitMQ: A
Comparative Study of Two Industry Reference Publish/Subscribe Implementations:
Industry Paper. In: PROCEEDINGS of the 11th ACM International Conference on
Distributed and Event-based Systems. Barcelona, Spain: ACM, 2017. (DEBS ’17),
p. 227–238. DOI: 10.1145/3093742.3093908. Disponível em:
http://doi.acm.org/10.1145/3093742.3093908.

DUGGAN, Jennie et al. The bigdawg polystore system. ACM Sigmod Record, ACM,
v. 44, n. 2, p. 11–16, 2015.

FILALI, Imen et al. A survey of structured P2P systems for RDF data storage and
retrieval. In: TRANSACTIONS on large-scale data-and knowledge-centered systems iii.
[S.l.]: Springer, 2011. p. 20–55.

GALLEGO, Mario Arias et al. An empirical study of real-world SPARQL queries. In:
USEWOD workshop. [S.l.: s.n.], 2011.

GRAY, Ian et al. Architecture-Awareness for Real-Time Big Data Systems. In: ACM.
PROCEEDINGS of the 21st European MPI Users’ Group Meeting. [S.l.: s.n.], 2014.
p. 151.

GU, Rong; HU, Wei; HUANG, Yihua. Rainbow: A distributed and hierarchical RDF
triple store with dynamic scalability. In: IEEE. BIG Data (Big Data), 2014 IEEE
International Conference on. [S.l.: s.n.], 2014. p. 561–566.

GUO, Yuanbo; PAN, Zhengxiang; HEFLIN, Jeff. LUBM: A benchmark for OWL
knowledge base systems. Web Semantics: Science, Services and Agents on the
World Wide Web, Elsevier, v. 3, n. 2, p. 158–182, 2005.

GÜTING, Ralf Hartmut; VALDÉS, Fabio; DAMIANI, Maria Luisa. Symbolic trajectories.
ACM Transactions on Spatial Algorithms and Systems, ACM, v. 1, n. 2, p. 7, 2015.

HARRIS, Steve; LAMB, Nick; SHADBOLT, Nigel. 4store: The design and
implementation of a clustered RDF store. In: 5TH International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS2009). [S.l.: s.n.], 2009. p. 94–109.

REFERENCES 89

HARTH, Andreas; DECKER, Stefan. Optimized index structures for querying rdf from
the web. In: IEEE. WEB Congress, 2005. LA-WEB 2005. Third Latin American.
[S.l.: s.n.], 2005. 10–pp.

HOSE, Katja; SCHENKEL, Ralf. WARP: Workload-aware replication and partitioning
for RDF. In: IEEE. DATA Engineering Workshops (ICDEW), 2013 IEEE 29th
International Conference on. [S.l.: s.n.], 2013. p. 1–6.

HU, Chunming et al. ScalaRDF: a Distributed, Elastic and Scalable In-Memory RDF
Triple Store, 2016.

HUANG, Jiewen; ABADI, Daniel J; REN, Kun. Scalable SPARQL querying of large RDF
graphs. Proceedings of the VLDB Endowment, v. 4, n. 11, p. 1123–1134, 2011.

HUANG, Weiming; RAZA, Syed Amir, et al. Assessment and Benchmarking of
Spatially Enabled RDF Stores for the Next Generation of Spatial Data Infrastructure.
ISPRS International Journal of Geo-Information, Multidisciplinary Digital Publishing
Institute, v. 8, n. 7, p. 310, 2019.

KAOUDI, Zoi; MANOLESCU, Ioana. RDF in the clouds: a survey. The VLDB Journal,
Springer, v. 24, n. 1, p. 67–91, 2015.

KAUR, Karamjit; RANI, Rinkle. Managing data in healthcare information systems:
many models, one solution. Computer, IEEE, v. 48, n. 3, p. 52–59, 2015.

KHADILKAR, Vaibhav et al. Jena-HBase: A distributed, scalable and efficient RDF
triple store. CEUR Workshop Proceedings, v. 914, n. 2, p. 85–88, 2012. ISSN
16130073.

KIRYAKOV, Atanas et al. The Features of Bigowlim that Enabled the BBCs World Cup
Website. In: WORKSHOP on Semantic Data Management. [S.l.: s.n.], 2010.

KOBASHI, Hiromichi et al. Cerise: an RDF store with adaptive data reallocation. In:
ACM. PROCEEDINGS of the 13th Workshop on Adaptive and Reflective Middleware.
[S.l.: s.n.], 2014. p. 1.

KOLOMIČENKO, Vojtěch; SVOBODA, Martin; MLÝNKOVÁ, Irena Holubová.
Experimental Comparison of Graph Databases. In: PROCEEDINGS of International
Conference on Information Integration and Web-based Applications & Services.
Vienna, Austria: ACM, 2013. (IIWAS ’13), 115:115–115:124. DOI:
10.1145/2539150.2539155. Disponível em:
http://doi.acm.org/10.1145/2539150.2539155.

KUHLENKAMP, Jörn; KLEMS, Markus; RÖSS, Oliver. Benchmarking Scalability and
Elasticity of Distributed Database Systems. Proc. VLDB Endow., VLDB Endowment,

REFERENCES 90

v. 7, n. 12, p. 1219–1230, Aug. 2014. ISSN 2150-8097. Disponível em:
http://dl.acm.org/citation.cfm?id=2732977.2732995.

LADWIG, Günter; HARTH, Andreas. CumulusRDF: linked data management on
nested key-value stores. In: THE 7th International Workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS 2011). [S.l.: s.n.], 2011. p. 30.

LERNER, Reuven M. At the Forge: CouchDB. Linux J., Belltown Media, Houston, TX,
v. 2010, n. 195, July 2010. ISSN 1075-3583. Disponível em:
http://dl.acm.org/citation.cfm?id=1883478.1883486.

LIBKIN, Leonid; REUTTER, Juan; VRGOČ, Domagoj. Trial for RDF: adapting graph
query languages for RDF data. In: ACM. PROCEEDINGS of the 32nd ACM
SIGMOD-SIGACT-SIGAI symposium on Principles of database systems. [S.l.: s.n.],
2013. p. 201–212.

LIU, Xiufeng; IFTIKHAR, Nadeem; XIE, Xike. Survey of Real-time Processing Systems
for Big Data. In: PROCEEDINGS of the 18th International Database Engineering &
Applications Symposium. Porto, Portugal: ACM, 2014. (IDEAS ’14), p. 356–361. DOI:
10.1145/2628194.2628251. Disponível em:
http://doi.acm.org/10.1145/2628194.2628251.

LUO, Yongming et al. Storing and indexing massive RDF datasets. In: SEMANTIC
search over the web. [S.l.]: Springer, 2012. p. 31–60.

MA, Zongmin; CAPRETZ, Miriam AM; YAN, Li. Storing massive Resource Description
Framework (RDF) data: a survey. The Knowledge Engineering Review, Cambridge
University Press, v. 31, n. 4, p. 391–413, 2016.

MAHMOUDINASAB, Hooran; SAKR, Sherif. AdaptRDF: adaptive storage
management for RDF databases. International Journal of Web Information
Systems, Emerald Group Publishing Limited, v. 8, n. 2, p. 234–250, 2012.

MAMMO, Mulugeta; BANSAL, Srividya K. Presto-RDF: SPARQL Querying over Big
RDF Data. In: SPRINGER. AUSTRALASIAN Database Conference. [S.l.: s.n.], 2015.
p. 281–293.

MARZ, Nathan; WARREN, James. Big Data: Principles and best practices of
scalable realtime data systems. [S.l.]: Manning Publications Co., 2015.

MCGLOTHLIN, James P; KHAN, Latifur R. RDFKB: efficient support for RDF inference
queries and knowledge management. In: ACM. PROCEEDINGS of the 2009
International Database Engineering & Applications Symposium. [S.l.: s.n.], 2009.
p. 259–266.

REFERENCES 91

MCGLOTHLIN, JAMES; KHAN, L. RDFJoin: A scalable data model for persistence
and efficient querying of RDF datasets. Database, 2009.

MELLO, Ronaldo dos Santos et al. MASTER: A multiple aspect view on trajectories.
Transactions in GIS, 2019. DOI: 10.1111/tgis.12526. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.12526. Disponível em:
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12526.

MICHEL, Franck; FARON-ZUCKER, Catherine; MONTAGNAT, Johan. A generic
mapping-based query translation from SPARQL to various target database query
languages. In: 12TH International Conference on Web Information Systems and
Technologies (WEBIST’16). [S.l.: s.n.], 2016.

MICHEL, Franck; FARON-ZUCKER, Catherine; MONTAGNAT, Johan.
Mapping-based SPARQL access to a MongoDB database. 2016. PhD thesis –
CNRS.

MULAY, Kunal; KUMAR, P Sreenivasa. SPOVC: a scalable RDF store using horizontal
partitioning and column oriented DBMS. In: ACM. PROCEEDINGS of the 4th
International Workshop on Semantic Web Information Management. [S.l.: s.n.], 2012.
p. 8.

NEUMANN, Thomas; WEIKUM, Gerhard. The RDF-3X engine for scalable
management of RDF data. The VLDB Journal—The International Journal on Very
Large Data Bases, Springer-Verlag New York, Inc., v. 19, n. 1, p. 91–113, 2010.

NIEMEYER, Gustavo. Geohash. [S.l.: s.n.], 2008. Disponível em:
http://geohash.org/.

PAPAILIOU, Nikolaos; DIMITRIOS TSOUMAKOS, et al. Graph-Aware ,
Workload-Adaptive SPARQL Query Caching. Sigmod, p. 1777–1792, 2015. ISSN
7308078. DOI: 10.1145/2723372.2723714.

PAPAILIOU, Nikolaos; KONSTANTINOU, Ioannis; TSOUMAKOS, Dimitrios;
KARRAS, Panagiotis, et al. H 2 RDF+: High-performance distributed joins over
large-scale RDF graphs. In: IEEE. BIG Data, 2013 IEEE International Conference on.
[S.l.: s.n.], 2013. p. 255–263.

PAPAILIOU, Nikolaos; KONSTANTINOU, Ioannis; TSOUMAKOS, Dimitrios;
KOZIRIS, Nectarios. H2RDF: adaptive query processing on RDF data in the cloud. In:
ACM. PROCEEDINGS of the 21st International Conference on World Wide Web.
[S.l.: s.n.], 2012. p. 397–400.

PAVLO, Andrew; ASLETT, Matthew. What’s really new with NewSQL? ACM Sigmod
Record, ACM, v. 45, n. 2, p. 45–55, 2016.

REFERENCES 92

PERERA, Srinath; SUHOTHAYAN, Sriskandarajah. Solution patterns for realtime
streaming analytics. In: ACM. PROCEEDINGS of the 9th ACM International
Conference on Distributed Event-Based Systems. [S.l.: s.n.], 2015. p. 247–255.

PHAM, M. Self-organizing structured RDF in MonetDB. In: IEEE. DATA Engineering
Workshops (ICDEW), 2013 IEEE 29th International Conference on. [S.l.: s.n.], 2013.
p. 310–313.

PHAM, Minh-Duc; BONCZ, Peter. Exploiting Emergent Schemas to make RDF
systems more efficient. In: SPRINGER. INTERNATIONAL Semantic Web Conference.
[S.l.: s.n.], 2016. p. 463–479.

PUNNOOSE, Roshan; CRAINICEANU, Adina; RAPP, David. Rya: a scalable RDF
triple store for the clouds. In: ACM. PROCEEDINGS of the 1st International Workshop
on Cloud Intelligence. [S.l.: s.n.], 2012. p. 4.

RAMAKRISHNAN, Raghu; GEHRKE, Johannes. Database management systems.
[S.l.]: Osborne/McGraw-Hill, 2000.

REN, Xiangnan; CURÉ, Olivier. Strider: A hybrid adaptive distributed RDF stream
processing engine. In: SPRINGER. INTERNATIONAL Semantic Web Conference.
[S.l.: s.n.], 2017. p. 559–576.

SADALAGE, Pramod J; FOWLER, Martin. NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. [S.l.]: Pearson Education, 2012.

SAHOO, Satya S et al. A survey of current approaches for mapping of relational
databases to RDF. W3C RDB2RDF Incubator Group Report, p. 113–130, 2009.

SAKR, Sherif; AL-NAYMAT, Ghazi. Relational processing of RDF queries: a survey.
ACM SIGMOD Record, ACM, v. 38, n. 4, p. 23–28, 2010.

SANTANA, Eduardo Felipe Zambom; CHAVES, Ana Paula, et al. Software platforms
for smart cities: Concepts, requirements, challenges, and a unified reference
architecture. arXiv preprint arXiv:1609.08089, 2016.

SANTANA, Luiz Henrique Zambom; SANTOS MELLO, Ronaldo dos. A Middleware for
Polyglot Persistence of RDF Data into NoSQL Databases. In: 20TH International
Conference on Information Reuse and Integration for Data Science (IRI). [S.l.]: IEEE,
2019. p. 237–244. DOI: 10.1109/IRI.2019.00046.

SANTANA, Luiz Henrique Zambom; SANTOS MELLO, Ronaldo dos. Querying in a
Workload-aware Triplestore based on NoSQL Databases. In: 30TH International
Conference on Database and Expert Systems Applications (DEXA). [S.l.: s.n.], 2019.

REFERENCES 93

SANTANA, Luiz Henrique Zambom; SANTOS MELLO, Ronaldo dos.
Workload-Abellini2018performanceware RDF Partitioning and SPARQL Query
Caching for Massive RDF Graphs stored in NoSQL Databases. In: XXXII Simpósio
Brasileiro de Banco de Dados. [S.l.: s.n.], 2017. p. 184–195.

SANTANA, Luiz Henrique Zambom; SANTOS MELLO, Ronaldo dos. Workload-Aware
RDF Partitioning and SPARQL Query Caching for Massive RDF Graphs stored in
NoSQL Databases. In: XXXII Simpósio Brasileiro de Banco de Dados. [S.l.: s.n.], 2017.
p. 184–195. Disponível em:
http://sbbd.org.br/2017/wp-content/uploads/sites/3/2018/02/p184-195.pdf.

SANTANA, Luiz Henrique Zambom; SANTOS MELLO, Ronaldo dos.
Workload-awareness in a NoSQL-based Triplestore. In: 23TH International Conference
on Advances in Databases and Information Systems (ADBIS). [S.l.: s.n.], 2019.

SCHÄTZLE, Alexander; PRZYJACIEL-ZABLOCKI, Martin; BERBERICH, Thorsten,
et al. S2X: graph-parallel querying of RDF with graphX. In: SPRINGER. VLDB
Workshop on Big Graphs Online Querying. [S.l.: s.n.], 2015. p. 155–168.

SCHÄTZLE, Alexander; PRZYJACIEL-ZABLOCKI, Martin; DORNER, Christopher,
et al. Cascading map-side joins over HBase for scalable join processing. SSWS+
HPCSW, v. 59, 2012.

SCHÄTZLE, Alexander; PRZYJACIEL-ZABLOCKI, Martin; NEU, Antony, et al.
Sempala: interactive SPARQL query processing on hadoop. In: SPRINGER.
INTERNATIONAL Semantic Web Conference. [S.l.: s.n.], 2014. p. 164–179.

SCHÄTZLE, Alexander; PRZYJACIEL-ZABLOCKI, Martin; SKILEVIC, Simon, et al.
S2RDF: RDF querying with SPARQL on spark. Proceedings of the VLDB
Endowment, VLDB Endowment, v. 9, n. 10, p. 804–815, 2016.

SHAO, Bin; WANG, Haixun; LI, Yatao. The trinity graph engine. Microsoft Research,
p. 54, 2012.

SHARP, John et al. Data access for highly-scalable solutions: Using SQL, NoSQL, and
polyglot persistence. Microsoft patterns & practices, 2013.

SRIVASTAVA, Kriti; SHEKOKAR, Narendra. A Polyglot Persistence approach for
E-Commerce business model. In: IEEE. 2016 International Conference on Information
Science (ICIS). [S.l.: s.n.], 2016. p. 7–11.

STEIN, Raffael; ZACHARIAS, Valentin. Rdf on cloud number nine. In: 4TH Workshop
on New Forms of Reasoning for the Semantic Web: Scalable and Dynamic. [S.l.: s.n.],
2010. p. 11–23.

REFERENCES 94

STOREY, Veda C; SONG, Il-Yeol. Big data technologies and management: What
conceptual modeling can do. Data & Knowledge Engineering, Elsevier, 2017.

SUMBALY, Roshan et al. Serving Large-scale Batch Computed Data with Project
Voldemort. In: PROCEEDINGS of the 10th USENIX Conference on File and Storage
Technologies. San Jose, CA: USENIX Association, 2012. (FAST’12), p. 18–18.
Disponível em: http://dl.acm.org/citation.cfm?id=2208461.2208479.

TOMASZUK, Dominik. Document-oriented triplestore based on RDF/JSON. Studies
in Logic, Grammar and Rhetoric,(22 (35)), p. 130, 2010.

TOSHNIWAL, Ankit et al. Storm@ twitter. In: ACM. PROCEEDINGS of the 2014 ACM
SIGMOD international conference on Management of data. [S.l.: s.n.], 2014.
p. 147–156.

VALDÉS, Fabio; DAMIANI, Maria Luisa; GÜTING, Ralf Hartmut. Symbolic Trajectories
in SECONDO: Pattern Matching and Rewriting. In: MENG, Weiyi et al. (Eds.).
Database Systems for Advanced Applications. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013. p. 450–453.

WEISS, Cathrin; KARRAS, Panagiotis; BERNSTEIN, Abraham. Hexastore: sextuple
indexing for semantic web data management. Proceedings of the VLDB
Endowment, VLDB Endowment, v. 1, n. 1, p. 1008–1019, 2008.

WIESE, Lena. Polyglot Database Architectures=Polyglot Challenges. In:
PROCEEDINGS of the Lernen, Wissen, Adaption (LWA). [S.l.: s.n.], 2015. p. 422–426.

ZAHARIA, Matei. An architecture for fast and general data processing on large
clusters. [S.l.]: Morgan & Claypool, 2016.

ZAMBOM SANTANA, Luiz Henrique; SANTOS MELLO, Ronaldo dos;
ROISENBERG, Mauro. Smart Crawler: Using Committee Machines for Web Pages
Continuous Classification. In: PROCEEDINGS of Brazilian Symposium on Multimedia
and the Web. Manaus, Brazil: ACM, 2015. (WebMedia ’15). Disponível em:
http://dx.doi.org/10.1145/2820426.2820437.

ZENG, Kai et al. A distributed graph engine for web scale RDF data. In: VLDB
ENDOWMENT, 4. PROCEEDINGS of the VLDB Endowment. [S.l.: s.n.], 2013.
p. 265–276.

95

APPENDIX A – RDF TRIPLES FOR THE MAPPING EXPERIMENTS

A.1 LEHIGH UNIVERSITY BENCHMARK(LUBM)

Insert a university (LUBM):

University0.edu rdf:type ub:University

t1 - [http://University0.edu, http://www.w3.org/2001/vcard-rdf/3.0FN,

"University0.edu"]

Insert a department for the university (LUBM):

Department0.University0.edu rdf:type ub:Department

Department0.University0.edu ub:subOrganizationOf University0.edu

t2 - [http://Department0.University0.edu, http://www.w3.org/2001/vcard-rdf/3.0FN,

"Department0.University0.edu"]

t3 - [http://Department0.University0.edu,

http://www.w3.org/2001/vcard-rdf/3.0subOrganizationOf, "http://University0.edu"]

Insert a professor for the department (LUBM):

Professor0 ub:worksFor Department0.University0.edu

t4 - [http://Professor0, http://www.w3.org/2001/vcard-rdf/3.0FN, "Professor0"]

t5 - [http://Professor0, http://www.w3.org/2001/vcard-rdf/3.0worksFor,

"http://Department0.University0.edu"]

96

APPENDIX B – CONFIGURATION APPENDIX

The instructions to install a WA-RDF cluster are given in the following. For each

server:

1. Download the code from https://github.com/lhzsantana/wa-rdf;

2. In the root of project run mvn compile, in order to download the dependencies;

3. Change the configurations in .properties file, as explained below;

4. Run nohup ./gradlew -Pprod -Pswagger.

The following properties must be filled:

• Cassandra URL. Servers using the same Cassadra will share the dictionary;

• MongoDB URL;

• Neo4j URL;

• Redis URL. Servers using the same Cassadra will share the pending operations

and cache;

• Spark URL;

• Kafka URL.

	Title page
	Approval
	Dedication
	Agradecimentos
	Resumo
	Resumo expandido
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation
	Polyglot Persistence
	NoSQL-based Triplestores

	Hypothesis
	Objective
	Scope
	Contributions
	Thesis organization

	Background
	NoSQL databases
	RDF and SPARQL

	Related work
	RDF/NoSQL converter
	Polystore
	In-memory
	Workload-aware triplestores
	Final Remarks

	WA-RDF
	WA-RDF architecture
	Architectural Decisions
	NoSQL databases
	Mapping decisions

	Storage
	Workload-awareness monitoring
	Fragmentation
	Mapping
	Internal Resource Mapping

	Querying
	Querying details
	Cache Management
	GeoSPARQL

	Partitioning
	Dictionary Design

	Update and Delete
	Pending updates and delete
	Asynchronous Processing

	Running example
	Final Remarks

	Experimental Evaluations
	Qualitative Analysis
	Performance evaluation
	WatDiv Benchmark
	Comparison with a Industry Multimodel Database
	Middleware Application in a Semantic Trajectory Domain

	Final Remarks

	Conclusion
	Limitations of the thesis
	Future works
	Publications

	REFERENCES
	RDF triples for the mapping experiments
	Lehigh University Benchmark(LUBM)

	Configuration appendix

		2019-10-17T10:34:49-0300

		2019-10-17T11:12:47-0300

