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Pagnoncelli. Thank you for the patient reading and excellent recommendations. Special
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Oliveira and Juan Pablo Luna for the great classes in mathematical programming. Your
lessons (and notes) inspire me up to now.

I thank all my friends for the partnership in the doctorate’s track. Initially, to the
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RESUMO

O presente estudo explora métodos para utilizar conjuntos convexos em problemas com
Restrições Probab́ısticas de forma eficiente a fim de resolver aplicações de otimização com
precisão. No primeiro tópico da tese é proposto um método para resolver o problema
de Unit Commitment hidrotérmico estocástico por meio da Programação Linear Inteira
Mista. Este problema, em sua forma mais comum, procura definir para um dado sistema
o cronograma de geração hidrotérmico de suas unidades, considerando o acoplamento
temporal e espacial, com o objetivo de suprir a demanda e minimizando os custos de
despacho. Do ponto de vista das incertezas que podem ser levadas em conta no modelo
estão as fontes de energia alternativa, como a eólica e fotovoltaica, as afluências naturais e
as demandas de energia. Para resolver o problema, propomos o modelo de otimização por
Restrições Probabiĺısticas que define soluções obedecendo um limite de probabilidade. O
problema de progamação contém funções (cont́ınuas) anaĺıticas de distribuição que carac-
terizam a abordagem por Restrições Proabiĺısticas. Neste quadro, para o primeiro tópico
do trabalho, propõe-se um método de Restrições Probabiĺıstica por hiperplanos suportes.
Esse método oferece soluções fact́ıveis exatas quanto ao ńıvel de probabilidade, lidando
com conjuntos fact́ıveis não cont́ınuos que caracterizam o problema de Unit Commitment
hidrotérmico estocástico linear inteiro misto. A performance do algoritmo proposto foi
atestada por meio de comparações numéricas com estratégias alternativas de se lidar com
problemas de Restrições Probabiĺısticas. A eficácia do método também foi testadas em
um sistema de 46 barras, envolvendo 10.657 variáveis (1.512 binárias) e 25.618 restrições,
mostrando que o método também é apropriado para sistemas complexos. No segundo
tópico da tese, explora-se outra estrutura de Restrições de Probabilidade, caracterizada
por restrições que possuem variáveis aleatórias que multiplicam as de decisão. A litera-
tura define este tipo de estrutura como bilinear, comumente encontrada em aplicações de
gestão de portfólio de ativos, por exemplo. O estudo apresenta a comprovação de que
essas estruturas podem ser classificadas como um mapa localmente concavo generalizado,
possibilitando o uso de uma combinação de algoritmos próprios de programação convexa,
para assim resolver uma classe de problemas mais ampla. O algoritmo é testado em um
problema de portfólio de energia de uma distribuidora, onde os riscos de ganhos e perdas
de um cesta de contratos expostos aos preços de curto prazo foram controlados por uma
Restrição Probabiĺısticas bilinear e bilateral.

Palavras-chave: Restrições Probabiĺısticas. Unit Commitment Hidrotérmico. Pro-

gramação Linear Inteira Mista. Energia Renovável. Convexidade. Problema de Portfólio.





RESUMO EXPANDIDO

Introdução
As aplicações de programação estocástica em problemas de planejamento de energia têm
muitas ramificações, dependendo, por exemplo, do escopo, prazo, discretização, tamanho
e metodologia da solução. Na presente tese, analisamos duas dessas vertentes, explorando
os procedimentos matemáticos para superar as limitações enfrentadas pelas aplicações
em diferentes contextos. O primeiro tópico do trabalho resolve o despacho de geração
em um problema de Unit Commitment, lidando com o problema de tratamento das
descontinuidades dos conjuntos fact́ıveis que distinguem essas aplicações. A principal
contribuição deste tópico é um algoritmo que resolve um problema Unit Commitment
hidrotérmico capaz de incorporar a incerteza do vento. Para esse fim, usamos restrições
probabiĺısticas conjuntas nas restrições de balanço energético, incorporadas ao problema
original por um método de hiperplano de suporte. O processo resulta na resolução de prob-
lemas de programação linear misto inteiros que são iterativamente complementados até a
convergência do algoritmo. O segundo tópico da tese altera o escopo e concentra-se em
estender a aplicação da programação matemática com restrições probabiĺısticas em prob-
lemas de gerenciamento de portfólio de contratos de energia. A abordagem proposta visa
oferecer uma estratégia que minimize o risco de multas, mas também considere posśıveis
ganhos com o gerenciamento do portfólio, em um ńıvel controlado de risco. Além disso,
o método visa estender os conceitos de concavidade generalizada a estruturas bilineares
de restrições bilaterais. Problemas bilineares, t́ıpicos de aplicações em portfólios, são ca-
racterizados quando a variável de decisão multiplica a variável aleatória nas restrições do
problema de otimização.

Objetivos
O presente trabalho de doutorado propõe duas contribuições principais. Pelo melhor con-
hecimento do autor, um método exato de otimização de problemas de programação line-
ares inteiros mistos com restrições probabiĺısticas que fornece iterativamente uma solução
viável com gap de otimalidade ainda é desconhecido. Deste ponto de vista, uma tendência
atual de estudos estão nos problemas de Unit Commitment como estratégia para se lidar
com a aleatoriedade de curto prazo imposta pela introdução de energia renovável nos mer-
cados de eletricidade. Supondo que o modelo estocástico que descreve a energia renovável
seja definido a priori, o principal objetivo do primeiro tópico do trabalho é introduzir
uma abordagem de restrições probabiĺısticas que ofereça soluções exatas e viáveis. A
abordagem lida com o conjunto viável não cont́ınuo que distingue os problemas de Unit
Commitment estocásticos. Na mesma tendência de avaliações de convexidade de restrições
probabiĺısticas, o segundo tópico do presente trabalho de doutorado visa estender estudos
anteriores em mapas côncavos generalizados, possibilitando sua aplicação em uma classe
mais ampla de problemas.

Metodologia
A tese se inicia com a proposição de um pequeno problema de planejamento energético es-
tocástico com restrições probabiĺıstica, apelidado de toy problem, sendo resolvido por meio
de um algoritmo de hiperplano suporte clássico da literatura. Junto à resolução do toy
problem é discorrido sobre os instrumentos matemáticos necessários para a compreensão



dos algoritmos propostos pela tese. O problema de Unit Commitment hidrotérmico é ini-
cialmente proposto a partir da formulação do problema de programação matemática que
será resolvido. Deste último problema, as restrições de balanço energético são substitúıdas
pelas restrições probabiĺısticas, introduzindo a estocasticidade. Após a sua formulação,
são introduzidos os algoritmos utilizados para se resolver o problema proposto. Para
se auferir a eficiência do método, são discutidos resultados computacionais de métodos
alternativos acompanhados de diversas simulações de sensibilidade. Visando a melhora
da perfomance do algoritmo proposto, sugere-se ainda novas metodologias a serem in-
corporadas ao algoritmo original. O segundo tópido da tese, que trata de problemas
de restrições probabiĺısticas bilineares e bilaterais, e inicia conceituando-se as funções r-
côncavas. Na sequência, são verificadas as condições para que as funções possam preservar
a r-concavidade, de forma a serem utilizadas em algoritmos de programação matemática
garantindo a sua convexidade local. Os conceitos apresentados anteriormente são utiliza-
dos para compor um algoritmo que envolve uma etapa preliminar de programação cônica
de segunda ordem e um método iterativo de região de confiança, resolvendo problemas
do programação quadrática. Finalmente, o algoritmo é aplicado para se resolver um pro-
blema reduzido de portfólio de uma distribuidora de energia hipotética.

Resultados e Discussão
Em referência ao primeiro tópico da presente tese, os resultados iniciam-se com a res-
olução de um problema de Unit Commitment composto por cinco barras. Para este
problema de pequeno porte, observou-se que o algoritmo converge de forma exata para o
ńıvel de probabilidade requisitado após 73 iterações e um tempo computacional de 2942
segundos. Verifica-se também que, conforme o ńıvel de probabilidade aumenta, de 90%
a 97.5% o custo total também aumenta, ou seja, um despacho mais seguro em termos
de risco é acompanhado de um maior comissionamento hidrotérmico. Os experimentos
numéricos comparativos entre a metodologia proposta e os algoritmos baseados em re-
strições probabiĺısticas individuais demonstram que, apesar destes últimos terem ńıveis
de probabilidade suficientemente altos, violações de restrição ocorrem quando se considera
o horizonte de otimização total conjuntamente. Por exemplo, quando se configura o al-
goritmo com restrições probabiĺısticas individuais em probabilidades de 95%, nota-se que
quando as restrições são tomadas conjuntamente, o ńıvel de probabilidade auferido à pos-
teriori é de 83.42%, para uma das barras do problema. Este resultado demonstra a falta
de acurácia destes últimos algoritmos. Em seguida são feitas comparações numéricas para
uma abordagem de restrições probabiĺısticas baseadas em amostra, utilizando-se um algo-
ritmo Big-M simplificado. O objetivo é mensurar a qualidade da solução desses algoritmos
em relação ao ńıvel de probabilidade, custo total e tempo de convergência. Os resultados
mostram que quando os algoritmos Big-M são utilizados, procedimentos heuŕısticos auxil-
iares mais avançados são necessários para se controlar o ńıvel de probabilidade da solução
obtida. Nota-se também que, ao se elevar muito a precisão, a resolução torna-se inviável
computacionalmente. Por último, o algoritmo proposto na tese é testado para um pro-
blema composto por 46 barras. Para este problema a convergência é alcançada após 3852
segundos, demonstrando a sua viabilidade para sistemas de maior porte. Para o segundo
tópico da tese é proposto um algoritmo composto para resolução de problemas portfólio
com restrições probabiĺısticas. Os resultados mostram que a metodologia combinada pro-
posta alcança soluções ótimas para problemas que anteriormente eram inviáveis quando
empregados os métodos anteriores da literatura. Os tempos de convergência vão de 1 a
18 min., a depender do horizonte do problema, demonstrando a eficiência da metodologia.



Considerações Finais
Os resultados indicam que a falta de precisão em termos de ńıvel de probabilidade con-
junta dos algoritmos que resolvem problemas de restrições probabiĺısticas requer o uso
de estratégias ad-hoc que dificultam sua aplicação a outros problemas. Isto abre um
campo de pesquisa para o desenvolvimento de metodologias que exigem ńıveis precisão
mais altos em relação aos riscos. Sobre esse problema discorremos no primeito tópico da
tese. Quando comparado a outros algoritmos da literatura, verificou-se que o algoritmo
proposto possui um interessante compromisso entre precisão e velocidade convergência,
mesmo para problemas de maior escala. Nota-se também que a nova metodologia pro-
posta abre linhas de pesquisas no sentido de melhorar o tempo de convergência do al-
goritmo, além de dar os embasamentos matemáticos necessários para que novas funções
de distribuição, mais precisas com relação à variável randômica a ser modelada, sejam
incorporadas ao modelo. Os objetivos traçados para o segundo tópico da tese, que trata
de restrições probabiĺısticas bilineares e bilaterais, são endereçados inicialmente apresen-
tando o embasamento matemático necessário para a generalização do método, de forma
a alcançar um campo mais amplo de problemas que podem ser resolvidos nesta linha
de pesquisa. Como aplicação, foi proposto um problema de pequeno porte de portifólio
de energia. Como resultado, observamos que, para altos ńıveis de concavidade, como o
caso log-côncavo, o problema resulta em muitos casos inviável. Essa restrição é apro-
priadamente contornada usando um ńıvel mais baixo de r-concavidade, flexibilidade essa
somente posśıvel aplicando-se os desenvolvimentos da presente tese. Portanto, os recursos
fornecidos pela metodologia proposta cumprem os objetivos traçados de generalização da
aplicação de restrições probabiĺısticas para problemas bilineares e bilaterais.

Palavras-chave: Restrições Probabiĺısticas. Unit Commitment Hidrotérmico. Pro-
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ABSTRACT

The present work explores methods to efficiently make use of convex sets in Probabilistic
Constrained (PC) problems to solve energy optimization applications accurately. The
first topic is related to a method to deal with the stochastic Hydrothermal Unit Commit-
ment (HTUC) problem through Mixed-Integer Linear Programming (MILP). The stan-
dard stochastic HTUC problem intends to define the (hydrothermal) units’ generation
schedule for a given system, considering its time and space coupling, aiming at the load
demand supply with minimal dispatch costs. Regarding the uncertainties, the alternative
energy sources, like wind or photovoltaic, the natural river inflows and the load demand
can possibly be taken into account. To solve the problem, we propose a probabilistically
constrained (PC) optimization model finding solutions obeying a probability threshold.
The programming problem contains analytic (continuous) distribution functions that dis-
tinguish the PC approach. In this framework, by the first topic of the work, we propose
a supporting hyperplane PC method that offers exact feasible solutions in terms of the
probability level, handling the non-continuous feasible set that distinguishes the stochas-
tic HTUC MILP problems. We attest the performance of the proposed algorithm by
numerical comparisons with commonly used strategies that handle with PC problems.
The capabilities of the method are also tested in a 46-bus system, which involves 10,657
variables (1,512 binaries) and 25,618 constraints, showing that the method is also af-
fordable for complex systems. In the second topic of the thesis, we explore a different
structure of PC, when random variables multiply the decision ones. The literature defines
this type of structure as bilinear, commonly found among asset portfolio applications, for
instance. As a research contribution, we prove that such structures can be classified as a
locally generalized concave mapping, turning possible the use of a combination of proper
convex programming algorithms to solve a broader class of problems. We efficiently test
the algorithm in a utility energy portfolio problem, where a two-sided bilinear PC controls
the risks of gains and losses of a basket of contracts exposed to the short-term energy
price.

Keywords: Probabilistic Constraints. Hydrothermal Unit Commitment. Mixed Integer

Linear Programming. Renewable Energy. Convexity. Portfolio Problem.
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1 INTRODUCTION

Stochastic programming applications in energy planning problems has many branches

depending on, for instance, the scope, time frame, discretization, size and solution method-

ology (van ACKOOIJ et al., 2018). Throughout the present thesis, we explore two of these

branches, highlighting the mathematical procedures to overcome the limitations faced by

the applications in different contexts. The first topic solves the generation dispatch in a

power Unit Commitment (UC) problem, dealing with the discontinuity convexity issues

that distinguish such applications. The second topic changes the scope and focuses on

extending the uses of energy contract portfolio management by a generalization of the

convexity statements that define the constraint structures.

The first topic focus on UC, a classic problem on energy generation planning. The

most common approach aims at defining a schedule for the dispatch of generation units for

a short-term period to satisfy a distributed load with minimal costs, taking into account

the operational characteristics of the system and units in time and space. UC problems

commonly work with discrete variables to define the commitment of production decisions,

and thus, in the present work, when discrete variables are not taken into account for

the short term schedule problem, in the present work we use the terminology Economic

Dispatch (ED) problem or an Optimal Power Flow (OPF) problem (TAHANAN et al., 2015).

The UC problem is a branch of a broader field of study that comprises the energy

planning studies in general. As pointed out in (MACEIRA et al., 2002), a common approach

to deal with energy production planning in Brazilian system is to consider uncertainties in

the long and medium-term problems and consider a more detailed deterministic modelling

for the short-term. From the perspective of the short-term problem, the deterministic

approach possibly succeeds for their purposes in the prior studies. Nevertheless, the

increasing importance of renewable energy into the power systems turns unavoidable the

necessity to handle their stochastic characteristics also in this framework.
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With predominant hydro generation, the UC problem of the Brazilian system is

distinguished by an accurate modelling of the hydropower system. Interesting approaches

are given in (FINARDI; SILVA, 2006; FINARDI; SCUZZIATO, 2013, 2014) for purely hydro-

electric based systems, and in (BELLONI et al., 2003; TAKIGAWA; FINARDI; SILVA, 2013) for

a hydrothermal system. In these works, to deal with the complex hydro production func-

tions and the combinatorial aspects of the problem, the authors use different Lagrangian

Relaxation (LR) schemes and focus on comparisons between the approaches. Benders

decomposition (BENDERS, 1962) methods for large scale systems in different planning

horizons are found in (PINTO; BORGES; MACEIRA, 2013; SANTOS; DINIZ; BORGES, 2017).

Alternative methods, as semidefinite programming relaxations to solve the UC problem

are discussed in (PAREDES; MARTINS; SOARES, 2015) and Markovian stochastic dynamic

programming in (SCARCELLI et al., 2014). Several test cases for involving systems are

provided in (DINIZ, 2010).

As observed by those last works, in the Brazilian context a distinct branch of UC

studies are the hydrothermal unit commitment (HTUC) problem, where the main task

consists in defining the dispatch, taking into account the physical characteristics of units

and transmission system. In general, the objective function (and some specific constraints)

depend on the market regulatory framework. In a deregulated electricity market, where

free market forces define the spot prices by the compromise between demand, generation

and trading agents, the most common objective is related to the profit maximization

of the generation company, generally based on the definition of bidding strategies. On

the other hand, in a centralized dispatch framework, HTUC is used by the Independent

System Operator (ISO) for minimizing the expected production costs and also for the

day-ahead spot price definition.

Using the Brazilian framework, here we focus on the centralized dispatch, although

the methodology proposed can be directly applied in a deregulated market setting. Due

to its non-continuity, normally with complex nonlinear productions functions, several

systems and units coupling constraints, the HTUC is normally addressed as a large-

scale mixed-integer linear programming (MILP) or mixed-integer nonlinear programming
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(MINLP) problem (REDONDO; CONEJO, 1999; CHANG et al., 2001; BORGHETTI et al., 2008;

FRANGIONI; GENTILE; LACALANDRA, 2011; van ACKOOIJ; MALICK, 2016). As mentioned,

in this context, a particular trend is the growing importance of wind power generation,

which significantly increases the uncertainty in the system operation. Ignoring such un-

certainty can lead to unacceptable risks. To cope with the undesired effects promoted

by that variability, we handle the HTUC as a stochastic programming problem. In this

context, a crucial aspect is how to manage the uncertainty, which in turn has implications

on the form of stochastic HTUC, its potential accuracy, the expected cost of the com-

puted schedules, and on the computational burden (TAHANAN et al., 2015). Indeed, the

works (TAHANAN et al., 2015; van ACKOOIJ et al., 2018) offer extensive literature surveys

on the evolution of deterministic/stochastic large scale UC problems. For an overview in

deterministic hydro UC problem techniques, we refer to (TAKTAK; D’AMBROSIO, 2016).

As pointed by (FINARDI; TAKIGAWA; BRITO, 2016) and cited materials therein, the

volatility related to wind power can dominate the volatility of demand, mainly when con-

sidered the bus where the wind farm is connected. Therefore, the main contribution of the

first topic of the work is an algorithm that solves a HTUC problem capable of incorporat-

ing wind uncertainty. To this end, we use joint Probability Constraints (PC) (PRÉKOPA,

1995) on the load-requirement constraints, that are incorporated into the original prob-

lem by a supporting hyperplane method. The process results in the resolution of MILP

problems that are iteratively complemented up to the convergence of the algorithm. We

certify that the approach is capable of generating feasible solutions at each iteration, as

well as a quality-certificate of such solution.

It is clear that the discontinuity faced by MILP problems sets is due to their binary

variables. As discussed throughout the document, this discontinuity interferes on the

direct application of classical supporting hyperplane algorithms (PRÉKOPA, 2003) since

it is assumed continuous feasible sets for the PC formulation. The proposed supporting

hyperplane algorithm of the present work handles the usual discontinuity of feasible sets

of such stochastic HTUC problems by a convex combination strategy of the PC iterates.

It is important to remark that in the current stage, the proposed method is valid for the
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separated case under normality assumptions. The adopted procedure avoids the use of

complex heuristics schemes to deal with the stochasticities of the problem, as the ones

commonly found in Individual PC and Sample-based PC approach. The use of such

heuristics are discussed in Sections 2.1 and 2.2 respectively.

In a similar procedure as done in (van ACKOOIJ et al., 2014) the present work is

also concerned with comparing the level of accuracy obtained when employing Individual

PC rather than joint PC. We provide numerical experiments to put into evidence that,

despite taking a high enough probability level for the individual constraints, constraint

violations do occur when considering the entire optimization horizon. In (van ACKOOIJ et

al., 2014) it is verified that the insufficient accuracy of individual PC problems provides

unacceptable risk solutions. The present work also confirms this statement into a MILP

framework.

We also provide numerical comparisons to a sample-based PC approach, which is

given by a simplified Big-M algorithm. The objective is to check the solution quality

of these algorithms concerning the probability level, total cost and convergence time.

The advantage of the proposed algorithm, confirmed by experiments, is that the PC is

taken into account precisely in our case and leads to a feasible solution. This statement

contrasts with Big-M and similar sample-based approaches that may need heuristics or

more advanced procedures to control the probability level of the obtained solution.

As certified by numerical tests, depending on the number of samples of the sample-

based algorithms, these methods can offer swift solutions in terms of CPU time. Therefore,

it is essential to study ways to turn the supporting hyperplane model more competitive

in terms of convergence time. To this end, the present work also provides some strate-

gies to improve the algorithm convergence performance when compared with its original

formulation. These strategies include modifications to the interpolation method and also

ad-hoc strategies on the lower bound problem.

Another contribution of the present work is the suggestion of a new MILP formu-

lation for the hydro production function (HPF), where the power production is regarded

for the entire plant with still committing the dispatch by individual hydro units. This
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strategy aims at reducing the number of necessary piecewise linear approximations of the

HPF, and it is only possible if the outflow of the identical on-line turbines is conside-

red equal. Comparative simulations to motivate its effectiveness are briefly evaluated in

Section 4.6.

The second main topic of the present thesis document refers to the energy portfolio

selection, a challenging problem that is commonly found in PC constrained applications

(PAGNONCELLI; REICH; CAMPI, 2012). In its simplest version, it looks at maximizing the

profit of a basket of assets with a controlled level the risk by defining the optimal amount

of each component. Typically, the source of uncertainties is the asset prices, that when

multiplied by their volumes gives the total monetary exposition of the agent. A com-

mon approach to deal with this type of problems are the methods based on samplings,

as the Sample Average Approximation (SAA) methods e.g. (SHAPIRO, 2003; LUEDTKE;

AHMED, 2008), scenario-based algorithms (CAMPI; GARATTI, 2011) and integer program-

ming sample-based methods (LUEDTKE; AHMED; NEMHAUSER, 2010). These methods,

despite the versatility in terms of the random variable probability distribution and the

PC structure, suffers from the imprecision of the solution, regarding the probability level,

and deep dependence on the sample size. In many cases, the method ensures, with a

probability precision, an inner or outer solution to the problem, and the increasing of

the precision turns the problem intractable (van ACKOOIJ; FINARDI; RAMALHO, 2018). To

avoid such problem, in the present work, we pursue a classical approach of PC problems

(PRÉKOPA, 1995), based on exact solutions using convex programming algorithms.

Recent works in portfolio selection problem in the Brazilian energy contracting case

are discussed in (MATOS et al., 2017; RAMALHO et al., 2018). To solve the underlying

problem, the authors developed a two-stage programming problem, providing adherence

to the original problem by a sequential convex programming heuristic. In these cases,

since the primary objective of the utility that manages the portfolio is to avoid losses and

penalties, the possibility of gains are neglected in their model. The strategy adopted by

the authors can also be explained by the fact that the search for profits could expose the

utility to an unacceptable level of risk. The here proposed PC approach aims at offering
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a strategy that minimizes the risk of penalties, but alternatively also turns possible gains

with the portfolio management, in a controlled level of risk. Furthermore, the method

aims at extending the concepts of generalized concavity to bilateral PC bilinear structures,

extending the previous works (van ACKOOIJ, 2017; MINOUX; ZORGATI, 2017).

The main challenge of the previously cited works, which was clear from the proofs

of the statements, are the algebraic complexities of the equations. This issue is also

treated in the present work, which aims at finding straightforward conditions to ensure

r-concavity to the mappings. The former studies that inspired the second topic of the

thesis were (MINOUX; ZORGATI, 2016; van ACKOOIJ, 2017; MINOUX; ZORGATI, 2017). Sec-

tion 5.1 sets basic notions of generalized concavity that are used along the chapter and

motivates the problem. Aiming at turning possible the use of the convexity statements

of the work in real problems, we propose a composed algorithm involving a Second Order

Cone Programming (SOCP) step and an iterative Trust Region (TR) method that solves

Quadratically Constrained Quadratic Program (QCQP) problems. The results show that

the algorithm indeed achieves feasible optimal solutions to problems that were restricted,

or infeasible, when employed the methods of the literature.

1.1 OBJECTIVES

1.1.1 General Objective

The present thesis document proposes two main contributions. To the best of the

author’s knowledge, an exact PC optimization method in MILP problems framework

that provides iteratively a feasible solution and an optimality gap is still unknown. In

this view, a particular current trend of studies in the UC problems are in strategies to

deal with the short-term randomness imposed by the introduction of renewable energy

in electricity markets. Assuming that the stochastic model that describes the renewable

energy is defined a priori, the main objective of the first topic of the work is to introduce

a supporting hyperplane PC approach that offers exact feasible solutions in terms of the

probability level. The approach handles the non-continuous feasible set that distinguish
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stochastic HTUC problems defining the convex set of the PC iteratively.

In the same trend of PC convexity evaluations, the second topic aims at extend-

ing previous studies in generalized concave mappings, turning possible its application

in a broader class of PC problems. The studies focus on bilinear structures, i.e. when

the decision variable multiplies the underlying random variable in the constraints of the

programming problem.

1.1.2 Specific objectives

The specific objectives are:

• Propose an exact supporting hyperplane method for MILP with PC;

• Explore methods to improve the rate of convergence of the proposed algorithm,

testing these methods by numerical experiments;

• Propose an efficient HPF formulation that can be used as an UC alternative for

hydroelectric systems;

• Establish conditions to ensure that the mapping g(x) = P{a ≤ ξ̃⊤x ≤ b} is locally

r-concave, for ξ̃ ∼ N (µ,Σ);

• Propose an algorithm composed of a preliminary step that solves SOCP problems

and afterward finds the solution by quadratic approximations of the former problem,

using an iterative combined local TR-QCQP method.

1.2 AGENDA

The present thesis is organized as follows. A bibliography survey on applications of

PC into UC problems is provided in Chapter 2. The mathematical background necessary

to the application of the proposed algorithm, with a small scaled example, is furnished in

Chapter 3. The underlying stochastic HTUC problem is presented in Chapter 4, showing

details of the joint PC formulation associated with the load requirement constraints. This
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chapter also describes the proposed supporting hyperplane method for mixed-integer PC

problems and performs several comparative numerical experiments. The last part of

Chapter 4 provides strategies to improve the performance of the algorithm, followed by

the proposition of the HPF model.

We start the development of the second topic of the thesis in Chapter 5. The main

statements of the chapter are made in Section 5.3 where are developed necessary and

sufficient conditions and sufficient conditions to ensure generalized concavity properties

to the underlying PC mapping. The sufficient conditions are extended to implied terms in

Section 5.4, turning the former restrictions appropriate to be used as constraints within

standard optimization problem methods. All the steps of the TR-based algorithm are

presented in Chapter 6, followed by the application in a small scaled utility energy portfolio

problem in Section 6.1. The final remarks of the thesis are made in the conclusion Chapter

7. Appendix B starts an analysis that motivates the use of alternative distributions and

structures for the random vectors in PCs. Appendix C offers support for the analytical

developments of Chapter 5.
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2 UNIT COMMITMENT WITH PROBABILISTIC CONSTRAINTS

The first topic of the work focuses on the use of PC (PRÉKOPA, 1995) to handle wind

power uncertainty in HTUC problems. The method in this framework is motivated since

PCs allow, for instance, a reliable control on the trade-off between cost and accuracy based

on the probability level (or risk level) of the selected solution. Moreover, the results are

easy to understand and interpret, since the level of risk, chosen a priori, can be directly

linked to the solution’s schedule of generation and total cost. In a broad sense, a PC

programming problem can be written in the following form:

min
ẋ∈X

c(ẋ)

s.t.: P

[
he(ẋ, ξ̃) ≤ 0, e ∈ E

]
≥ p

(2.1)

where, ẋ is the decision variable vector that belongs to the set X (definition of the

constraints that distinguishes the UC problem) and c(·) is a cost function. In (2.1) the

term P[he(ẋ, ξ̃) ≤ 0, e ∈ E ] ≥ p is the representation of the PC, ξ̃ is the random vector,

P is the probability measure, as described in Section A.1, he(·) is a function that handles

the interaction between the decision and random vectors, e the individual index of the

constraint and E is an index set. Finally, in (2.1) p ∈ [0, 1] is the probability level. The

analytic description of each of these components is provided in Section 3.2.

In the context of problems that aim at making decisions dealing with uncertain data,

an interpretation of such PC problem (2.1) is also referred as a less conservative version

of the Robust Optimization problem (BEN-TAL; GHAOUI; NEMIROVSKI, 2009; BERTSIMAS;

BROWN; CARAMANIS, 2011). In this approach, after assumptions over a full knowledge of

uncertainty set and restrictions on the violation of the constraints that define the problem,

one looks at finding suitable solutions whatever the unknown information is revealed. This

last interpretation is inherently associated with finding worst-case-oriented solutions, then

avoiding any acceptable risk assumption, with the drawback to be generally linked with

expensive solutions, also known as the ”price of robustness” in the literature (BERTSIMAS;
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SIM, 2004). For a comprehensive two-stage adaptive robust UC problem, we refer to

(BERTSIMAS et al., 2013) and an adjustable robust OPF dealing with renewable sources

approach is found in (JABR, 2013). Here is essential to distinguish the differences from

the present work PC proposed method, where the probability is adjusted to the desired

level of exposition, turning the risk-return evaluation tangible.

We consider a stochastic HTUC in which we cope with the uncertainty of wind

generation through the use of a joint PC. The methodology could be easily extended

to deal with different sources of uncertain data, such as load demand variation or other

intermittent generations. In the next sections is discussed the evolution of the applications

of PC in optimization problems involving energy planning, focusing, when it is possible,

in UC problems. Section 2.1 presents works for the most straightforward approach, the

Individual PC, i.e. the cases commonly addressed by p-quantiles of the random variables.

The last is followed by sampling approaches in Section 2.2, where discrete approximations

substitute the use of analytic probability distribution functions. Finally, Section 2.3

depicts the status quo on strategies of PC when it is taken into account its original

formulation in UC and energy planning problems in a broad sense.

2.1 UNIT COMMITMENT WITH INDIVIDUAL PROBABILISTIC CONSTRAINTS

In probabilistically constrained optimization problems, it is usual, rather than take

the PC jointly, to consider each constraint separately. In these cases, one is aiming to

deal with PC of type P[he(ẋ, ξ̃) ≤ 0] ≥ p , for e ∈ E an index set, in (2.1), where e is the

index of the individual constraint. The most common use is when he(·) is separable (i.e

an affine function involving the random variable, decision variable and parameters) and

there is a single random variable for each constraint, meaning that the PC can be written

as an analytic distribution function involving quantiles, simplifying the implementation

in the optimization problem. In cases in which the constraint contains affine functions

of independent random variables, techniques as proposed in Appendix A.3 can also be

applied.
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The pioneering work (OZTURK; MAZUMDAR; NORMAN, 2004) applied individual PC

in a thermal UC problem, where the probability level is changed iteratively to approx-

imately solve a model with a joint PC in load requirement constraints. The strategy

involves manipulations on the quantile of the distribution function. The method also

uses LR to separate the dual problem into slave subproblems that define which genera-

tor must be online for each stage. With the on/off commitment established, the master

primal problem sets the schedule of generation. After the convergence of the primal-dual

problem, the solution is evaluated in a joint probability distribution pespective. This

calculation is performed with the use of the code of Genz (GENZ, 1992). If the probability

level is not met, given an acceptable deviation, heuristics update the quantile and the

algorithm restarts to provide another schedule.

In (DING et al., 2010) the focus is on the thermal UC with wind generation farms.

The paper considers uncertainties in demand, outages of generating units and wind farms

production. A PC is defined to ensure that the load requirement constraint is met, given

a probability level. A quantile approach is used to deal with the uncertainty of load, wind

power and energy prices. For wind generation modelling purposes, rather than use stan-

dard Cumulative Distribution Function (CDF) distributions, such as Gaussian or Weibull,

the authors used quantiles from an empirical table. The PC that considers outages of

generation units brought combinatorial explosion issues to the problem. To overcome this,

the authors studied the number of necessary units and the level of the normal moment

order that could substitute the original discrete distribution with acceptable error. In the

end, all PCs are transformed into affine constraints, using quantile approaches.

In a recent contribution, (WU et al., 2016) presented a UC system that deals with

uncertainty on loads and wind power to provide load supply with high reliability. In this

problem, PCs were used to model the loss of load probability, the wind power utilization

and the transmission lines overloading. Through a two-stage stochastic programming

problem, the dispatch is defined in the first stage. The second stage, for fixed scenarios of

load and wind power, the objective is to minimize the penalty cost of load shedding and

wasted wind power. The work has strategies on how to define correctly the quantiles since
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it deals with truncated and correlated normal distributions. To manage the issue in a way

that ensures the desired reliability level, the quantiles of a deterministic version of the PC

are iteratively updated into the two-stage stochastic problem, using the scenarios of load

and wind power from Monte-Carlo sampling to establish the quality of the solution.

By the presented studies, it is clear that if one aims at using individual PC to

control the joint probability level of the problem, it is necessary to use heuristic schemes

to manage the probability to the desired risk level. In many cases, it is hard to reproduce

these heuristics, usually combined with strategies that set very high individual probability

levels, which is a disadvantage of these methods. Another common characteristic is that

those methods ensure only feasible solutions to the joint PC problem, and so the advantage

of obtaining optimal costs is disregarded. On the other hand, the problem formulation

for these cases are much easier to be dealt with, and one does not have to work with

multidimensional probability functions embedded into the optimization problem. Here,

another advantage of these approaches is the lower computational burden, providing faster

solutions.

The accuracy of individual PC problems when compared to joint ones is checked

for the load requirement constraint in Chapter 4. Similar comparisons for applications in

hydro reservoir management are provided in (van ACKOOIJ et al., 2014).

2.2 PROBABILISTIC CONSTRAINTS WITH DISCRETIZED RANDOM VARIABLES

Another common approach for dealing with uncertainty using PC in UC frame-

work are the ones based on discretized distributions by sample approximation methods.

These procedures have their sources from SAA methods (SHAPIRO, 2003; PAGNONCELLI;

AHMED; SHAPIRO, 2009), where the authors propose solution for the following expectation

problem:

min
ẋ∈X
{c(ẋ) := E[h(ẋ, ξ̃)]} (2.2)

where h(·) compounds the objective function and establishes the relationship between the

decision variable ẋ and the random (vector) ξ̃. By this method, rather than using the
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real distribution of the random vector ξ̃, the strategy consists of solutions computation

submitted to Monte Carlo realizations of the random vector. After assumptions on the

generation of independent identically distributed (iid) and properties over the function

h(·) (including convexity and measurability) the authors ensure that the solution xN of

the approximation problem min
ẋ∈X
{ĉQ(ẋ) = 1

Q

∑Q
q=1 h(x, ξq)} is a statistical estimator of

the optimal solution of the original problem (2.2). In this last equation, Q is the number

of samples, and ξq is a sample realization of the random variables. Evolutions on SAA

methods by the use of importance sampling techniques are discussed in (BARRERA et al.,

2016).

Similarly to the strategy used by SAA methods, which deal with the uncertainty by

the objective function, the random variables can be moved to the constraints. An essential

work to address these sample based methods is (LUEDTKE; AHMED, 2008). The authors

propose a discretized form to deal with PC, where random samples are used to replace

the direct use of the underlying random vector. The method introduces the conditions

that the problem (2.1) can be approximated by:

min
ẋ∈X

c(ẋ)

s.t.: 1
Q

∑Q
q=1 I

[
he(ẋ, ξ̃q) ≤ 0

]
≥ psb

(2.3)

where I(·) is the indicator function that is equal to one when the constraint he(ẋ, ξ̃q) ≤ 0

is met and zero otherwise. On the method it is common the use of a higher probability

level psb > p, (where p is the former one), that under fairly general assumptions over

the funtions c(·), he(·) and the random vector ξ̃, the problem (2.3) offers inner and outer

solutions to the original PC problem (2.1). In these approaches, it is usual to simulate

the indicator function by the use of mixed-integer strategies, being necessary, therefore,

the use of solvers that deal with these type of problems. It is important to mention

that when psb is chosen in such a way that psb = 1, the method agrees with the scenario

approximation robust variant (CALAFIORE; CAMPI, 2005).

Many recent applications of sample-based methods for UC problems are inspired

by the cited works (SHAPIRO, 2003; CALAFIORE; CAMPI, 2005; LUEDTKE; AHMED, 2008).
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The paper (WANG; GUAN; WANG, 2012) considers the uncertainty of wind power within

an embedded PC problem into a two-stage model. In the first stage, the algorithm defines

the wind farm commitment, being the second stage reponsible to measure the differences

between the real generation, included the wind sampled scenarios, and the commited

energy. The shortage is penalized. The evaluation is set for three different generation

policies, defined by the type of used PC: (a) the first (less restrictive), establishes that the

sum of utilization of the wind power for the 24 hours period is greater than a percentage

of the total available wind power; (b) the second is equivalent to an individual PC for

each period; (c) the third, more restrictive, takes into account a joint PC for all periods.

The solution method involves heuristics in order to validate each candidate to optimal

solution, defining iteratively upper and lower bounds to the original problem. A similar

approach is considered in (ZHAO et al., 2014) where, combined with the PC that controls

the occurrence of load imbalances, there is also an expected value constraint that defines

the average amount of wind power usage for all periods.

The work (ZHANG et al., 2017) is an application of UC with uncertainty on the

load and wind generation in a two-stage, PC framework. The authors argue that the

method is adherent to the use of modern non-parametric wind forecast models. It is

proposed a bilinear reformulation for the classic Big-M method, that is introduced in

the MILP formulation by auxiliary variables and constraints (McCORMICK, 1976). Using

a variant of Benders decomposition (BENDERS, 1962), feasibility cuts are added to the

master problem to validate the first-stage decision variables into different scenarios of

the second-stage problem. The results show that the proposed bilinear method is more

efficient than the usual Big-M one. It is also stated that the use of the proposed variant of

Benders decomposition is more efficient than solve an equivalent large stochastic MILP.

Those analyzed works and the cited materials therein evidence that PC in program-

ming problems are regularly found in the literature to cope with UC problems. From

this analysis, the discretized version of PC is becoming popular by its more explicit in-

terpretation into the algorithms, since the PC is handled directly in the programming

problems by the use of indicator functions. Aids the wide spreading of the method the
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mainstream development of efficient MILP solvers, together with the versatility provided

by the use of samples of random variables into optimization problems. A drawback on the

use of the discretized version of PC is the fact that commonly the sample size that ensures

the desired probability is sometimes huge, generating problems that in many cases are

intractable in terms of the dimension of the problem. Another disadvantage is the current

use of ad-hoc strategies to the specific problem, reducing the flexibility of the method for

different applications.

We remark that there are methods to reduce the variance of the original random vec-

tor, as the linear controlling and importance sampling techniques (SHAPIRO; DENTCHEVA;

RUSZCZYŃSKI, 2009), which commonly involves operations with auxiliary (distribution)

functions in order to reduce the dispersion of the random vector. These techniques can be

an interesting procedure to reduce the sample size, ensuring that the statistical properties

of the random variable are well established in the optimization problem. The importance

sampling technique in PC problems framework is discussed in (BARRERA et al., 2016).

2.3 JOINT PROBABILISTIC CONSTRAINTS USING ORIGINAL DISTRIBUTION
FUNCTIONS

Initial applications of PC in energy planning optimization problems using the un-

derlying probability distribution goes back to Prékopa’s work on systems for controlling

natural inflows, e.g. (PRÉKOPA; SZÁNTAI, 1978). This study considers multivariate ran-

dom (normal and gamma) distributions for rivers streamflows, where graph theory is used

to design the river system mathematically. The problem aims at offering a tool to develop

a flood control system by using the reservoirs spread over the river. The central idea is

to minimize the total building costs. The optimization problem is solved by a supporting

hyperplane method (VEINOTT, 1967) defined over a convex polyhedral set, in a similar

research line as presented in Section 3.1. Further backtesting processes to validate the

solutions are provided in (PRÉKOPA; SZÁNTAI, 1979). For different applications of joint

PC we refer to (SZÁNTAI, 1988).

The procedures introduced by Prékopa were extended in many works that deal with
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hydro management for energy production planning. We find in literature, e.g. (PRÉKOPA,

1995), that strategies are commonly used in applications for hydro reservoir management

taking into account medium and long-term horizons, with time periods defined weekly or

even monthly, since the consequences of the policy strategies have cumulative properties

as, for instance, the analysis of the level of water in dams over time. Recent applications in

this field are provided in (van ACKOOIJ et al., 2011, 2014). In these last works, the authors

focus on hydropower production, comparing different ways of modelling the PCs, and

considering a 48-hours time frame. The hydro production function and the ED problem

are defined in a way that the feasible set is ensured to be continuous and convex, and

no other power generation sources are considered. For an application that establishes

policies that respect probabilistic surfaces of risk aversion for dams’ stored energy in a

hydrothermal ED problem context, we refer to (RODRIGUES; DINIZ; PRADA, 2017).

In the line of research of multistage stochastic programming problems applied to

energy management, a relatively recent topic in PC optimization problems deal with par-

tially known random process (ANDRIEU; HENRION; RÖMISCH, 2009). In contrast with

static PC, the decisions of these models are kept dynamic and depend both on the real-

izations of random variables (i.e. the past) and the still unknown ones. The method uses

conditional distribution functions, where the proposed model considers continuous (joint)

distribution functions and discretized decision variables. The application is considered for

a single water reservoir in two-stage and three-stage settings, where the authors establish

that the procedure can be efficiently treated up to three stages, due to the complexity of

the discrete treatment.

In the present work, the proposed algorithm to deal with HTUC by the use of PCs

under a non-continuous decision variable setting is presented in Chapter 4. A similar

approach is proposed in (ARNOLD et al., 2014) in a short-term UC system with hydro

and wind generation where the supporting hyperplane method is inserted into a branch-

and-bound framework. In this approach, during the iterations of the branch-and-bound

algorithm, the solution is currently tested in order to certify that the PC holds. If the PC

is not met it is chosen heuristically between add a supporting hyperplane or perform a
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branching for a fixed binary variable. The last procedure differs from algorithm proposed

by the thesis, where the MILP algorithm is taken separately from the process of adding

supporting hyperplanes. The advantage of the present process is that a single PC approx-

imation cutting plane is added per iteration, based on a feasible solution regarding the

remaining constraints of the UC problem. Therefore, the procedure tends to perform less

calculations of gradients, being a remarkable characteristic since the computational cost

is related with the dimension of the random variable. Another advantage of the proposed

method is that, at each iteration of the algorithm, it offers an upper bound to the problem

(and an optimality gap), and so a valid policy is always available.

The provided bibliography survey suggests that the use of PC (with different ap-

proaches) is a current trend in the study of UC problems. As stated, Individual PCs

presented in Section 2.1 have the advantage of the simplicity of their characterization

in the optimization problem. Nevertheless, commonly the risk associated with the pro-

vided optimal solutions are undervalued when the probability measure is taken jointly.

Sample-based methods presented in Section 2.2 are a fast evolution trend, supported by

the improvements of solvers that deal efficiently with their mixed integer-linearity. An

advantage of the sample-based methods is the flexibility in the establishment of the un-

certainty in the optimization problem. The use of sampled scenarios is an appealing

alternative when the random variable distribution functions are discrete or hard to be

defined analytically. The drawback is the lack of precision on their solutions in terms of

probability level when regarding their real original continuous distributions.

The present document sets its efforts in the development of HTUC problems taking

the PC modelled as in the works of Section 2.3. These algorithms have the common

characteristic of working with the probability distributions precisely, i.e. the optimal

solution respects an a priori defined probability level. A drawback of the method is the

complexity involving the use of these distributions functions since it commonly involves

working with multidimensional non-linear functions in the optimization problem. In the

following chapters, we handle these functions by a cutting plane method that approximates

the feasible set defined by the PC iteratively.
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3 MATHEMATICAL BACKGROUND FOR PROBABILISTIC
CONSTRAINED OPTIMIZATION PROBLEMS

Among the classes of optimization problem approaches that deal with uncertainty,

the present work focus on the use of PC programming. This chapter aims at introducing

mathematical instruments used by PCs, necessary to a better comprehension of the here

proposed methods.

In Section 3.1, we motivate the use of PC in programming problems by a simple

numerical application. It is presented a classic algorithm using the instruments discussed

in details in the subsequent sections. Section 3.2 depicts the two PC’s structures used by

the applications of the Thesis, specifically the affine and the bilinear ones. Section 3.3

presents the procedure to compute gradients of appropriate functions used to define the

supporting hyperplanes. Section 3.4 discusses the used affine structures, important also

in order to establish the uniformity of variables used in the PC.

Complementing the mathematical tools sections, elementary concepts used along

the Thesis are in Appendix A. Appendix A.1 is a brief revision of essential analysis tools

that currently are used in PC applications. Appendix A.2 presents notions of r−concave

functions. Appendix A.4 is an important section that links the supporting hyperplane

theory to the pattern of functions used by PCs. Appendix A.5 has some considerations

about the calculation of multivariate distribution functions. An important step in the

proposed algorithms are the interpolation procedure, explored in Appendix A.6, where

we describe the used bisection algorithm and others.

3.1 ALGORITHM FOR A TOY PROBLEM

The present section aims to present an algorithm to solve a simplified thermal ED

problem, designated as Toy Problem (TP). The main objective is to motivate its use,

clarifying the application of the mathematical instruments described in the next sections

of the chapter. These instruments, when used throughout the algorithm, are linked to
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the appropriate section for better comprehension. To achieve this, we model a thermal-

wind ED problem where it is asked to respect a lower threshold for the load requirement

constraints.

The TP system is composed of a single bus, where a load is supplied by eight thermal

plants and one wind farm. The dispatch is considered in a centralized framework, where

the ISO aims at minimizing the expected production cost over a two-hours planning

horizon. The operational characteristics of the thermal plants are presented in Table 1.

Table 1 – Thermal plants operational characteristics

Plant gt1 gt2 gt3 gt4 gt5 gt6 gt7 df

Max. gen. [MW ] 455 162 162 130 455 55 55 ∞
Un. Var. cost [$/MW ] 15 18 20 25 35 50 55 103

Source: Thesis results.

Where it is shown the maximum generation and the unitary variable costs for the thermal

plants. The thermal costs are represented in its simplest form, by a fixed price that

multiplies the productions. They possess null minimum generation limits. Furthermore,

df represents the slack variable, the deficit power generation.

The wind farm generation is given by the bivariate normal random vector that

establishes the temporal dependence over two stages. Its mean µor and covariance matrix

Σor are given by:

µor =




3.7 · 102

4.1 · 102


 Σor =




5.7 · 104 4.9 · 104

4.9 · 104 4.9 · 104


 . (3.1)

The load demand ld, in [MW ], for the two stages is given by the following vector:

ld = [1195.20 1394.40]⊤. (3.2)

Considering these characteristics, we provided the ED model by the following pro-

gramming problem:
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min
2∑

t=1

(
7∑

j=1

cj ġtj,t + cdf ḋf t

)
(3.3)

s.t.:

7∑

j=1

ġtj,t + g̃wt + ḋf t = ldt, ∀t (3.4)

ġtj,t ≤ gtmax
j , ∀t, j (3.5)

ḋf t, ġtj,t ≥ 0, ∀t, j, (3.6)

where ġtj,t is the decision variable representing the thermal generation of plant j in the

period t, ḋf t is the deficit generation, cj and cdf are the incremental thermal costs and

the deficit cost parameters [$/MW ]. The random variables g̃wt represent the wind farm

generation [MW ]. The parameter gtmax
j represents the maximum generation of a given

plant. The objective function (3.3) is composed by thermal costs cj and deficit cost

cdf over the optimization horizon. The load requirement constraints is given by (3.4).

Constraints (3.5) and (3.6) define limits on the decision variables.

The interpretation of the underlying problem (3.3)-(3.6) is that its solution depends

on the random variables g̃wt. A simple procedure to take into account the wind farm

generation would be setting a deterministic forecast value of g̃wt, turning them into fixed

parameters gwt. This procedure does not consider the possible deviations from the pre-

dicted values, thus a complete method that takes into account the stochasticity of the

wind farm generation is the PC framework, where the problem (3.3)-(3.6) has the con-

straints (3.4) replaced by the PC counterpart. For more information about this type of

PC, it has a complete description in the following Section 3.4.2 in (3.35). The TP via

joint PC modelling is expressed in a compact form as:

min
ẋ

cTẋ

s.t.: Ainẋ ≤ bin

φη̃(ẋ) := P[ldlow ≤ h(ẋ) + η̃] ≥ p,

(3.7)
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where the minimum threshold to supply is (freely) defined 10% greater than the predicted

load demand, i.e. ldlow = 1.1·ld. In this example, matrix Ain and vector bin are defined by

(3.5) and (3.6). Under certain conditions the setM(p) = {ẋ ∈ R
m|P[ldlow ≤ h(ẋ)+η̃] ≥ p}

is convex. If these conditions are met, the optimization problem (3.7) is also convex.

The conditions that make M(p) convex regard the class of the function h(ẋ) and the

distribution of η̃, that are met since h(ẋ) is affine and η̃ is normally distributed in the

TP. Further discussions about convexity of the set M(p) are made in Section 3.2.

The probability level for the problem (3.7) is initially fixed in p = 90%. The decision

variable vector ẋ ∈ R
m, that combines all decision variables, is given by:

ẋ = [ġ1,1, · · · , ġ7,1, ḋf 1, ġ1,2, · · · , ġ7,2, ḋf 2]
⊤.

We summarize the steps of the approach in Algorithm 1. The present version of

the supporting hyperplane method for (continuous) linear problems is derived from the

classic algorithm in (PRÉKOPA, 2003).

Algorithm 1 - Supporting Hyperplane Method for Continuous Problems

1: (Initialisation) Definition of correlation matrix R, the structure matrix B ∈ R
T ×R

m

and vector b ∈ R
T . Definition of the Slater Point xS ∈ Rm (feasible solution for

the problem (3.7) such that φη̃(ẋ) > p). Definition of stopping tolerance ǫ > 0 and
counter k ← 1.

2: (Lower bound) Solve the optimization problem (3.7) replacing the PC by its piecewise
linear approximation, a set of constraints, as follows:

min
ẋ∈X

cTẋ

s.t. Ainẋ ≤ bin
Gb(xi) · ẋ ≤ gb(xi), i ∈ I,

(3.8)

providing the solution xL
k , being the related objective function value Lk a lower bound

to the original problem (3.7).
3: (Interpolation) By the bisection procedure compute the largest λ such that xk :=

λxL
k + (1− λ)xS satisfies φ(xk) ≈ p. The solution xk attains the PC, being a feasible

solution for (3.7). Hence, we can define the solution xU
k = xk and we are able to define

the upper bound Uk = cTxk.
4: (Stopping test) Check if |Uk−Lk|

|Lk| < ε and then stop. The solution is the last feasible

solution xU
k . Otherwise go to the next step.

5: (Oracle call) Call an “oracle” to compute a gradient ∇φξ̃(x
U
k ), defining Gb(x

U
k ) and

gb(x
U
k ), adding a new constraint to the set of cutting planes in Step 2.

6: (Return) Set k ← k + 1; Go to Step 2



51

In Algorithm 1 - Step 1 (Initialisation) is computed the affine structures. Essentially,

the challenge is how to write the original PC P[ldlow ≤ h(ẋ) + η̃] ≥ p using the standard

form P[ξ̃ ≤ Bẋ + b], where ξ̃ ∼ N (0, R), being R = D · Σor · D′ a correlation matrix.

This convenient standard form is used in the PC algorithms and auxiliary functions of

the chapter. A complete description of the procedures to obtain the matrix parameters

from the original PC is discussed in the following Section 3.4.2.

The standardization starts evaluating the auxiliary matrix D by the coefficients of

the original wind generation covariance matrix Σor. We skip the procedures to define D

and the coefficients B and b, that are described in details in the following Section 3.4.2,

Remark 3.4.4. The structure matrix Hor ∈ R
2 × R

16 is defined as:

Hor =




1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1


 ,

where the series 1 · · · 1 are composed of 8 values, one for each generation unit ġm,t plus the

deficit load variable. By these matrix manipulations, rather than use the original wind

farm generation distribution η̃, the affine transformations described above allow us to use

its standard form ξ̃ ∼ N (0, R). The correlation matrix is given as follows:

R =




1 0.9284

0.9284 1


 . (3.9)

The ξ̃’s CDF is shown in Figure 1(a), with the coloured probability level curves

projection at p = 0 (y1 × y2 axis). Some of these last contours are highlighted in Figure

1(b), where in the present example we pick the level curve p = 90%.

Still in Step 1, we must define a Slater solution xS ∈ R
m. We can do it by forcing

a high generation to the thermal units heuristically. This is done, for example, by the

solution of the following optimization problem:
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Figure 1 – Cumulative distribution function of the standard random variable ξ̃.

(a) Cumulative distribution function. (b) Probability level curve contours.
Source: Thesis results.

min
ẋ∈X

cTẋ

s.t. Ainẋ ≤ bin

Horẋ = ld · 1.5− µor

. (3.10)

In this auxiliary linear problem, we establish a higher demand to be met, considering

the wind farm production as its mean. Solving problem (3.10), the optimal solution xS,

after the affine transformation yS = BxS + b, is presented in Figure 2(a):

Figure 2 – First iteration solutions of Steps 1 and 2 of Algorithm 1.

(a) Slater point yS . (b) Lower bound solution yL1 .
Source: Thesis results.

The probability level pS = P[h(xS) + η̃ ≥ ldlow] = 97.70%. This probability pS >

p = 90%, hence higher than the desired minimum probability and so being a valid Slater

solution. The last part of Step 1 (Initialisation) is the definition of the stopping tolerance

ǫ = 10−3.

Following the Algorithm 1 in Step 2 (Lower bound), in the first iteration k = 1 the
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linear programming problem (3.8) is solved unconstrained in terms of the load requirement

constraints, i.e. the index set I = ∅ and so no cuts are added to the problem. As a result,

it will produce the solution xL
1 , with optimal value L1 = 0 as a lower bound to problem

(3.7). Figure 2(b) plots the lower bound solution yL1 = BxL
1 + b, that has probability

P[h(xL
1 ) + η̃ ≥ ldlow] ≈ 0 and solution L1 ≈ 0. Once obtained the Slater solution xS and

the first lower bound solution xL
1 we can proceed to the next Step 3 (Interpolation).

The Step 3 employs the bisection procedure. The procedure is detailed in Appendix

A.6.1, by Algorithm 4. The scope is to find an iterate x1 such that P[h(x1) + η̃ ≥

ldlow] ≈ 90%. In the first interpolation step, after 12 iterations of the bisection method

reaches a λ = 0.1159, and so defining the iterate x1. Since this iterate satisfies all

constraints of problem (3.7), it is a (upper bound) solution xU
1 = x1, with optimal value

U1 = cTxU
1 = $2.50 ·105, and probability level pU1 = 0.9000. Figure 3 presents the result of

the interpolation iterate xU
1 by a convex combination of solutions xS and xL

1 . The dashed

red line represents all the possible interpolation solutions between these two last points,

noting that yU1 = BxU
1 + b rests on the p = 90% level curve.

Figure 3 – Bisection Procedure finding the upper bound solution yU1

Source: Thesis results.

The next step of Algorithm 1 is the stopping test analysis. |U1−L1|
|L1| = |2.50·105−0|

|0| > ε



54

, therefore the condition is not met and we can proceed to the Step 5 (Oracle call). In

this step, using the fixed point xU
1 , it is defined the gradient ∇φξ̃(x

U
1 ). The procedure to

compute gradients for PC are provided in the following Section 3.3, equation (3.16). The

knowledge of the point xU
1 on the boundary of the PC feasible set and ∇φξ̃(x

U
1 ) are the

necessary ingredients to calculate a local approximation of the PC feasible set limited by

the supporting hyperplane at point xU
1 . For further material in supporting hyperplane

theory see Appendix A.4. The supporting hyperplane representation in yU1 = BxU
1 + b is

presented in Figure 4(a). Note that as we are dealing with a bi-dimensional distribution

function, the supporting hyperplane is defined as a line.

Figure 4 – Supporting Hyperplanes on the boundary of the PC feasible set of level p =
90%, defining its local approximation.

(a) Supporting Hyperplane at point yU1 (b) Supporting Hyperplanes

after 8 iterations of Algorithm 1
Source: Thesis results.

In the last part of Step 5, we must add constraints Gb(xi) · ẋ ≤ gb(xi) to the lower

bound Problem (3.8) in Step 2. This is done calculating the cuts coefficients Gb(x1) and

gb(x1) employing Remark 3.4.2, described below in Section 3.3. By that, we are able to

go to Step 6 (Return) setting k ← 2, returning to Step 2 (Lower Bound). We restart the

loop solving (3.8) with the calculated cutting plane, and so i=1. We proceed with the

steps of the algorithm, and after #8 iterations it converges, stopping in Step 4 (Stopping

test) with the representation of the evaluated supporting hyperplanes given in Figure

4(b). Note that in the last figure, after obtaining yU1 and yU2 , the local search for further

solutions are confined to the set limited by the two associated supporting hyperplanes.
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As a result, all the subsequent lower bound solutions yLk are iteratively restrict to smaller

space, as can be seen by the concentration of dashed lines. Essentially this is the core

of the algorithm, i.e., incrementing iteratively the lower bound problem (3.8) defining a

local approximation of the PC, up to the convergence.

The evolution through the algorithm iterations are presented in Figure 5. In this

graph, it is shown that the algorithm converges to an upper bound U8 = $65.28 · 103

and an equivalent lower bound L8 = $65.28 · 103 reaching the optimality gap of |U8−L8|
|L8| =

|65.28−65.28|
|65.28| ≈ 0. Note that both, upper and lower probabilities, get close to p = 90%

after the iteration #3, resulting in an efficient algorithm for this simplified example. The

elapsed time, running the code in Matlab was 2.3 sec.

Figure 5 – Convergence of the supporting hyperplane PC problem

Source: Thesis results.

The optimal solution xU
8 is presented in Table 2 for the two periods. In this table

we find that the thermoelectric generation are ranked by crescent incremental costs, as

expected for an optimal solution, remembering that the costs are given in Table 1.

To establish the sensitivity of the model to the probability level, Table 3 presents

comparison results for three probabilities 75%, 90% and 95%. The second and third

columns display the total generation of the last thermal plant, in the merit order, for
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Table 2 – Optimal thermal generation

Thermal plant gt1 gt2 gt3 gt4 gt5 gt6 gt7 df

Per. t=1 [MW ] 455 162 162 130 384.37 0 0 0

Per. t=2 [MW ] 455 162 162 130 455 55 12.51 0

Source: Thesis results.

periods t = 1 and t = 2, where we observe that a higher probability level induces more

dispatch. This is only possible with the associated higher total costs. Note that, for the

case p = 95% the model requires more generation than available for the second stage, and

this situation is dealt with through the deficit cost slack variable, with total generation

df2 = 17.76 MW. We also verify that higher probability (risk) levels induce higher total

costs. Due to the problem simplicity, the simulations do not offer trends or conclusions

related to the elapsed time and number of iterations in relation to the risk level.

Table 3 – Probability Sensibility

Prob. L. Plant L. Plant Total #It. Elapsed

t = 1 [MW] t = 2 [MW] Cost [$] Time [sec.]

75% gt5 = 228.50 gt5 = 400.22 54.50 · 103 8 2.83

90% gt5 = 384.37 gt7 = 12.51 65.28 · 103 8 2.3

95% gt7 = 38.8 df2 = 17.76 92.73 · 103 6 1.86

Source: Thesis results.

Up to now, the proposed analysis has only a lower threshold to the PC, as shown in

equation (3.35) φη̃(ẋ) := P[ldlow ≤ h(ẋ) + η̃] ≥ p. Still, the strategy to obtain Slater solu-

tion described by problem (3.10) fits exclusively to the ones limited below. Contrasting,

it is interesting to check the behaviour of the algorithm when it is requested a rectangular

joint PC as Gη̃(ẋ) := P[ldlow ≤ h(ẋ)+ η̃ ≤ ldup] ≥ p. At this point we are interested in set

up visually how the solutions are interconnected during simulations. Therefore, Figure 6

is displayed.

This simple simulation in Figure 6 was performed setting p = 50% with ldlow = 0.5·ld

and ldup = 1.5 · ld. As checked in Section 3.4.1, each approximation iteration for the

bilateral probability distribution is given by a single constraint. If we work with the

linear transformation ẏ = Bẋ, only to make possible the visualization of the constructed
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Figure 6 – Supporting hyperplane method for rectangle PC problem after 6 iterations

Source: Thesis results.

cutting planes in a graph, we check the feasible region ẋ in light blue.

By this last figure, we certify that the feasible set defined by the cutting planes

is pointed to ”south-west”, contrasting with Figure 4 and its ”northeast” pattern. This

indicates that for this specific case of PCs with bilateral probability distributions, the

lower threshold constrains more the problem than the upper threshold. This situation

happens because, as establish by Remark 3.4.3 bellow, the matrix A and B become

negative in standardize process of the random vector η̃, since the random vector and

the decision variable vector have both the same signs in the original equation. Since

we are minimizing the programming problem, and the lower bound outer solutions are

pointed to ”northeast” in Figure 6, it is natural that the lower bounds of the probability

distribution were active more often. We would have a different situation if the random

vector and the decision variables had opposite signs in the original equation. In such

case, we would expect a figure similar to Figure 4(b). Further discussions of this type of

bilateral separable PC are made in Remark 3.4.3 in the following Section 3.3.
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3.2 CONVENIENT PROBABILISTIC CONSTRAINT STRUCTURES

Consider the generic formulation of a PC optimization problem:

min
ẋ∈X

c(ẋ)

s.t. P[he(ẋ, ξ̃) ≤ 0, e ∈ E ] ≥ p,

(3.11)

whereX ∈ R
m → R, a continuous set, ξ̃ is a T -dimensional random vector, P is probability

measure induced by the random vector ξ̃ in R
T , as established in Appendix A.1, he :

R
m×R

T → R, e ∈ E with |E| = E an index set, and p ∈ (0, 1] is the probability level, set

as parameter. In (3.11), the higher is the probability level p, more restrict is the feasible

set defined by PC.

To ensure that we are dealing with a convex feasible set when working with PCs,

we must analyse, besides the properties of the functions he, the properties of the random

vector ξ̃. In this sense, Theorem 10.2.1 in (PRÉKOPA, 1995) states that if he(ẋ, ξ̃) are

quasi-concave functions in R
m × R

T with ξ̃ a continuous distribution with log-concave

PDF, the mapping ẋ 7→ P[he(ẋ, ξ̃) ≤ 0, e ∈ E ] is a log-concave function in R
m. The

last result are used in the next subsections, where we present the two structures of the

function he(ẋ, ξ̃) that are covered in the present Thesis.

3.2.1 Separable Affine Probabilistic Constrained Case

In the first topic of the thesis, motivated by Section 3.1 and developed in Chapter

4, we are interested in the case that he(ẋ, ξ̃) has a separable affine structure, i.e. which

we write in the convenient formulation where the decision variables are separated from

the random vectors, as in he(ẋ, ξ̃) = ξ̃ − he(ẋ), where he(ẋ) is an affine function. The use

of such structures is justified since we work with load requirement constraints for the first

topic of the thesis, as will be clarified in the application Section 4.2, that comes up with

a separable constraint function naturally. In this case, he(ẋ, ξ̃) is affine in R
m × R

T , so a

concave function. We can conclude that the last function is also log-concave, applying the

results discussed in Appendix A.2. Applying Theorem 10.2.1 in (PRÉKOPA, 1995), we find
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that, if considered affine assumptions for he(·) and log-concavity for the density of ξ̃, the

PC mapping in (3.11) is log-concave. It is well known that the domain of (log)-concave

functions is convex, implying in a feasible set of the PC defined as:

M(p) = {ẋ ∈ R
m|P[ξ̃ ≤ he(ẋ), e ∈ E ] ≥ p}, (3.12)

being also convex. The convexity of feasible sets defined by log-concave PC is useful, for

instance, in the supporting hyperplanes definitions, as shown in Appendix A.4. Provided

the separated form of function he, we can define the CDF in such a way that:

Fξ̃(he(ẋ)) := P[ξ̃ ≤ he(ẋ), e ∈ E ], (3.13)

where this multidimensional distribution is taken jointly and so |E| = T has the same

size of the T−dimensional random vector ξ̃. Regarding the probability measure P[·], if

it is requested that the distribution function holds for equalities, i.e P[ξ̃ = he(ẋ), e ∈ E ],

we are asking the measure for a 1-point set, a countable set or at most in a set of lower

dimension R
T ′
, where T ′ < T . For all these cases, we are actually dealing with null sets,

as stated in Appendix A.1 and so P[ξ̃ = he(ẋ), e ∈ E ] = 0.

If ξ̃ has independent components, the CDF can be split into the marginal CDFs

Fξ̃(he(ẋ)) = Fξ̃1
(h1(ẋ))·Fξ̃2

(h1(ẋ)) · · ·Fξ̃e
(he(ẋ)), and the same procedure works for groups

of independent components of ξ̃. In some cases, it would be necessary to deal with sum

of stochastic variables. This is the case, for instance, when there are two or more random

sources injecting energy in the same bus. We introduce how to deal with these problems

in Appendix A.3.

The present material offers numerical experiments considering normally distributed

random vectors, as set in Sections 3.1 and Chapter 4. The following remark checks the

log-concavity of such structures:

Remark 3.2.1 Let ξ̃ be a normally distributed random vector such that ξ̃ ∈ R
T with

mean µ and positive definite covariance matrix Σ. Considering those assumptions, ξ̃ has

a log-concave PDF and CDF.
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Proof.

Given y ∈ R
T , the probability density function of ξ̃ is given by:

f(y) =
e−

1
2
(y−µ)⊤Σ−1(y−µ)⊤

√
det(Σ)(2π)T

. (3.14)

It is direct from this equation that:

log (f(y)) = log

(
1√

det(Σ)(2π)T

)
+ log

(
e−

1
2
(y−µ)⊤Σ−1(y−µ)⊤

)
⇔

⇔ log

(
1√

det(Σ)(2π)T

)
− (y−µ)⊤Σ−1(y−µ)⊤

2
,

where log

(
1√

det(Σ)(2π)T

)
is a constant. Given that Σ−1 is positive definite, the quadratic

term is convex, and by the negative sign, the whole expression is concave. It is known

that if log(f(y)) is concave, f(y) is log-concave. Applying Theorem 1, we conclude that

its CDF is also log-concave. �

In addition to the multivariate normal CDF, in (PRÉKOPA, 2003) and (DENTCHEVA,

2009) is provided a list of common distributions which the log-concavity or at least quasi-

concavity property are established. Among them, we find, for instance:

• Uniform distribution: If is defined in a convex subset of RT , its PDF is log-concave.

• Gamma distribution: Defined properly its multivariate distribution function, the

joint CDF of the components ξ̃ is log-concave.

• Wishart, Beta and Dirichlet distribution: With specific assumptions concerning the

fixed parameters and variables, their PDFs are proved to be log-concave.

• Cauchy and Pareto distributions: With proper assumptions on their parameters,

quasi-concave CDFs are defined.

The work (HENRION; STRUGAREK, 2008) defines conditions to ensure concavity

using specific PDFs having independent random components and considering a broader

class of functions he(·), where concavity holds for large enough probability levels. These

functions define what is called the eventual convex sets, being extended in (HENRION;
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STRUGAREK, 2011; van ACKOOIJ, 2015) to different classes of functions (Copulas). Among

functions with independent components that preserve the eventual concavity, we find the

Weibull PDF, commonly found to model the speed of wind in wind farms generation

studies. A bibliography survey on the use of alternative distributions functions is also

provided in the Appendix B.

3.2.2 Bilinear Probabilistic Constrained Case

In the second topic of the Thesis, developed in Chapter 5, we focus on the case

that he(ẋ, ξ̃) has a single bilinear structure, i.e., structures that e = 1 and the random

variables appear in a scalar multiplication with the decision ones, as in he(x, ξ̃) = ξ̃⊤x,

for instance. Specifically, the scope is to contribute in the extension of the concepts

that make the set M(p) = {x ∈ R
m|P[a ≤ ξ̃⊤x ≤ b] ≥ p]} (locally) convex, by looking

for properties that makes the CDF P[a ≤ ξ̃⊤x ≤ b] locally r−concave, a generalization

of the concept of concavity (HENRION; STRUGAREK, 2008). The r−concavity property

in the PC context is discussed in Appendix A.2. The former studies in problems of

such structures go back to the classical papers of (PANNE; POPP, 1963; KATAOKA, 1963),

verifying that the set Mu(p) = {x ∈ R
m|P[ξ̃⊤x ≤ b] ≥ p] is convex for p ≥ 50%, where

ξ̃ ∼ N (µ,Σ) being µ ∈ R
n and Σ ∈ R

n×n a nonsingular covariance matrix. The analysis

of these structures are extended in (HENRION, 2007), where the former concepts applied

to normal distributions are generalized to the class of elliptically symmetric distributions,

and a full characterization of the critical probability level above which compactness and

nonemptiness of the PC can be ensured.

3.3 GRADIENTS FOR AFFINE PROBABILITY CONSTRAINTS FUNCTIONS

The objective of the section is to provide the mathematics instruments to calculate

gradients, enabling the use of supporting hyperplanes, as discussed in Appendix A.4.

Supporting hyperplanes are used in the optimization algorithms of the first topic of the

present work. The next approach is established in Section 6.6.4 (PRÉKOPA, 1995) and
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for the case of multivariate standard normal distribution function in (PRÉKOPA, 1970).

We define the short notation of the distribution φξ̃(ẏ) := Fξ̃(he(ẋ)), where ẏ = he(ẋ) is

an affine transformation with components as in Section 3.2. By the following analysis,

we verify that the evaluation of the gradient ∇φ(ẏ) is reduced to the calculation of T

CDFs, each of them with dimension T − 1. As clarified below, these (T − 1) probability

distributions have mean and covariance matrix dependent from the original φ(ẏ). Lemma

1 in (van ACKOOIJ et al., 2010) summarizes the calculation of these gradient components.

Lemma 1 Assumed φξ̃(ẏ) the CDF of random vector ξ̃ ∼ N (µ,R) ∈ R
T , where R is

a R
T × R

T non-singular correlation matrix. Then, the partial derivative of φξ̃(ẏ) with

respect to the variable ẏi is given by:

∂φξ̃(ẏ)

∂ẏi
= φη̃(ẏ1, . . . , ẏi−1, ẏi+1, . . . , ẏT ) · fξ̃i(ẏi), (3.15)

where η̃ ∼ N (µ̂, R̂) is a (T − 1)-dimensional normally distributed random vector with the

jth component µ̂j = µj +σ−1
ii (ẏi−µi)σi∀j ∈ {1, . . . , i− 1, i+1, . . . , T} and R̂ being giving

by R − ρ−1
ii ρiρ

T
i deleting all the ith row and column components. The function fξ̃i is the

marginal probability density function of the component ξ̃i of the T -dimensional random

vector ξ̃.

Derives directly from the Lemma 1 the gradients for the distribution function φξ̃(ẏ),

being given by the following equation:

∇φξ̃(ẏ) =

(
∂φξ̃(ẏ)

∂ẏ1
, . . . ,

∂φξ̃(ẏ)

∂ẏT

)
, (3.16)

hence, a T-dimensional function with components derived from the calculus of (T − 1)-

dimensional CDFs and a marginal density function, as stated in the preamble. Up to now,

we highlight that we are dealing with probability distributions of type Fξ̃(ẏ) := P[ξ̃ ≤

ẏ, e ∈ E ]. In the present work, it is also necessary to introduce gradient calculations for

rectangle (also known as two-sided or bilateral) probability functions, i.e. for functions of

the following form:
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Gξ̃(ȧ, ḃ) := P

[
ȧ ≤ ξ̃ ≤ ḃ, e ∈ E

]
, (3.17)

where it is defined the affine transformations ȧ = ha(ẋ) and ḃ = hb(ẋ), being ha(·) and hb(·)

affine functions defined in Section 3.4.1. For these cases, we follow again (van ACKOOIJ et

al., 2010) in the following Lemma:

Lemma 2 With ξ̃ as in the Lemma 1, for each component of ȧi and ḃi, where i = 1, . . . , n,

it follows:
∂G

ξ̃
(ȧ,ḃ)

∂ḃi
= Gβ̃(ȧ

′(i), ḃ′(i)) · fξi(ḃi)
∂G

ξ̃
(ȧ,ḃ)

∂ȧi
= −Gα̃(ȧ

′(i), ḃ′(i)) · fξi(ȧi),
(3.18)

where β̃ ∼ N (µ̂, R̂) is a (T − 1)-dimensional normally distributed random vector with the

jth component µ̂j = µj + σ−1
ii (ȧi − µi)σi∀j ∈ {1, . . . , i− 1, i+ 1, . . . , T} (for ȧi case) and

the equivalent for ḃi. The formula components R̂, fξi(·) are considered as in Lemma 1,

and ȧ′(i) = (ȧ1, . . . , ȧi−1, ȧi+1, . . . , ȧT ) and ḃ′(i) in an equivalent procedure.

By means of Lemma 2, we compute the gradients for the rectangular probability distri-

bution, using the following notation:

∇ḃGξ̃(ȧ, ḃ) =

(
∂G

ξ̃
(ȧ,ḃ)

∂ḃ1
, . . . ,

∂G
ξ̃
(ȧ,ḃ)

∂ḃT

)
,

∇ȧGξ̃(ȧ, ḃ) =

(
∂G

ξ̃
(ȧ,ḃ)

∂ȧ1
, . . . ,

∂G
ξ̃
(ȧ,ḃ)

∂ȧT

)
,

(3.19)

where these gradient components are used in Section 3.4.1 in order to design the gradient

for the bilateral probability function.

3.4 APPROXIMATION CONSTRAINTS DEFINITIONS

The gradients calculation are essential to construct piecewise approximations of the

convex set defined by the log-concave PCs in optimization problems. This section aims

at summarizing the considerations to link the knowledge of the previous Section 3.3 to a

stochastic optimization problem.
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3.4.1 Affine approximations of probabilistic constraints

Let us consider the separable structure of an affine PC, using the short notation

φξ̃(ẋ) = Gξ̃(ha(ẋ), hb(ẋ)) in (3.17):

φξ̃(ẋ) := P

[
ha(ẋ) ≤ ξ̃ ≤ hb(ẋ)

]
≥ p, (3.20)

where ha : Rm → R
T and hb(·) in an equivalent way, such that ha(ẋ) = Aẋ + a and

hb(ẋ) = Bẋ + b, being the matrices A,B ∈ R
m × R

T and the vectors a, b ∈ R
T . We

remark:

Remark 3.4.1 The gradient of the bilateral probability distribution (3.20) is given by:

∇φξ̃(ẋ) = ∇ha(ẋ)Gξ̃(ha(ẋ), hb(ẋ))
⊤A+∇hb(ẋ)Gξ̃(ha(ẋ), hb(ẋ))

⊤B, (3.21)

where ∇ha(ẋ)Gξ̃(ha(ẋ), hb(ẋ))
⊤, and ∇hb(ẋ)Gξ̃(ha(ẋ), hb(ẋ))

⊤ are defined in Section 3.3,

equation (3.19).

Proof. From the chain rule for total derivatives, we obtain the partial derivative for

(3.20):

∂φξ̃(ẋ)

∂ẋn

=
T∑

i=1

∂Gξ̃(ha(ẋ), hb(ẋ))

∂ha(ẋ)i

∂ha(ẋ)i
∂ẋn

+
∂Gξ̃(ha(ẋ), hb(ẋ))

∂hb(ẋ)i
· ∂hb(ẋ)i

∂ẋn

, (3.22)

noting that the function ha(ẋ) has a dependent A component and a free component a,

∂ha(ẋ)i
∂ẋn

is given by matrix component Ai,n where n is a column index and line i. Using

then notation An representing the column n of A (and equivalent to Bn), and definitions

of the gradient ∇·Gξ̃(·, ·) in (3.19), we find that:

∂φξ̃(ẋ)

∂ẋn

= ∇ha(ẋ)Gξ̃(ha(ẋ), hb(ẋ))
⊤An +∇hb(ẋ)Gξ̃(ha(ẋ), hb(ẋ))

⊤Bn. (3.23)

Finally, the gradient of φξ̃(ẋ) is given by:
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∇φξ̃(ẋ) =

(
∂φξ̃(ẋ)

∂ẋ1

, · · · ,
∂φξ̃(ẋ)

∂ẋN

)
, (3.24)

where (3.21) has a matrix notation. �

Considering the above definitions, we evaluate the approximation of the set restricted

by the constraint (3.20) at point xi, using i ∈ I an index set, in such a way that:

〈
∇φξ̃(xi), (ẋ− xi)

〉
≥ 0, i ∈ I, (3.25)

where the last approximation follow the supporting hyperplane concepts presented in

Appendix A.4. In the optimization problem, we intend to, in practice, that constraints

(3.25) were added in the structured way:

G(xi) · ẋ ≤ g(xi), i ∈ I, (3.26)

where G(·) and g(·) are defined in the following Remark 3.4.2.

Remark 3.4.2 Let the approximation of feasible set defined by the PC at point xi being

given by (3.26). Then, for:

G(xi) = −∇φξ̃(ẋ)
⊤

g(xi) = −∇φξ̃(ẋ)
⊤ · xi,

(3.27)

(3.25) holds true.

Proof. The proof comes directly from opening in the primitives the dot product in (3.25).

�

Considering ha(ẋ) = −∞, the usual CDF structure with an upper boundary φξ̃(ẋ) =

P[ξ̃ ≤ hb(ẋ)] is established. In such case, by (3.16) we define the approximation of the

feasible set of following joint PC:

φξ̃(ẋ) := P[ξ̃ ≤ hb(ẋ)] ≥ p, (3.28)

by the set of supporting hyperplanes
〈
∇φξ̃(ẋ), hb(ẋ− xi)

〉
≥ 0, i ∈ I. This notation

is useful since we can project the linear approximations directly from the probability
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distributions, as in Figure 4 in Section 3.1. Opening the last dot product, one defines the

constraints G(xi) · ẋ ≤ g(xi), i ∈ I, as in constraints (3.26). For further information in

how to proceed to construct the supporting hyperplanes based on the gradient ∇φξ̃(ẋ),

proceed to Appendix A.4.

3.4.2 Affine structures coefficients

In cutting plane approximations of PCs, it is essential to have a well-established

procedure to define the coefficient components of the affine equations. As stated in Sec-

tion 3.3, to apply Lemmas 1 and 2 it is required that ξ̃ ∼ N (µ,R). Moreover, if ξ̃ is

standardized in µ = 0 (i.e. a zero-mean column vector), the application of these Lemmas

demands fewer calculations. Let us consider the original random vector η̃ ∼ N (µor,Σor),

where µor ∈ R
T is the original mean of the underlying random vector and Σor ∈ R

T ×R
T

is a positive definite covariance matrix. The idea is, starting from the original PC, make

clear the procedures to define a pattern linking to the cited Lemmas efficiently. The

original joint PC is given by:

Gη̃(ẋ) := P
[
ldlow ≤ h(ẋ) + η̃ ≤ ldup

]
≥ p, (3.29)

where ldlow ∈ R
T and ldup ∈ R

T are thresholds vectors as, for instance, the minimum and

maximum accepted load demand deviations. If the PCs are defined as load requirement

constraints of ED problems, for instance, it makes sense to work with η̃ as being wind

farms random power generation. The affine decision variable function h(ẋ) is defined as

follows:

h(ẋ) = Hor · ẋ, (3.30)

where the decision vector ẋ is the dispatch of sources for a given load requirement con-

straint, without the wind generation. Hor is a structure matrix where each line defines

the correspondent coefficient of the decision variables of ẋ for a given period t ∈ T , with

the following form (for example):
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Hor =




1 . . . 1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 1 . . . 1 . . . 0 . . . 0

...

0 . . . 0 0 . . . 0 . . . 1 . . . 1




ẋ = [ġ1,1, . . . , ġN,1, . . . , ġ1,T , . . . , ġN,T ]
⊤.

(3.31)

In this example, a group of ones 1 . . . 1 has N components, ġn,t represents the gener-

ation of the unit n in period t and Hor ∈ R
T×N ·T , being N the total number of generation

units and T the number of periods. Defining the covariance diagonal coefficient σt,t of the

covariance matrix Σor, we set the following auxiliary matrix D:

D =




1√
σ11

0 0

0
. . . 0

0 0 1√
σTT




, (3.32)

and it is well known the correlation matrix R of η̃ is given by:

R = D · Σor ·D′. (3.33)

Using these instruments, we propose the following remark:

Remark 3.4.3 Standardizing the original random vector η̃ ∼ N (µor,Σor), we establish

the equivalent version of the PC (3.29), considering h(ẋ) as in (3.30):

φξ̃(ẋ) := P

[
Aẋ+ a ≤ ξ̃ ≤ Bẋ+ b

]
≥ p,

where ξ̃ ∼ N (0, R) and the coefficients are defined as:

A = −D ·Hor

a = D · (ldlow − µor)

B = −D ·Hor

b = D · (ldup − µor).

(3.34)
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Proof.

P[ldlow ≤ Hor · ẋ+ η̃ ≤ ldup]⇔ P[ldlow −Hor · ẋ ≤ η̃ ≤ ldup −Hor · ẋ]

⇔ P[D · (ldlow − µor)−D ·Hor · ẋ ≤ ξ̃ ≤ D · (ldup − µor)−D ·Hor · ẋ]

⇔ P[Aẋ+ a ≤ ξ̃ ≤ Bẋ+ b],

where it is used the fact that ξ̃ = D · (η̃ − µor). �

Note that with the last statement we established the equivalences ha(ẋ) = Aẋ + a

and hb(ẋ) = Bẋ+ b of (3.20). The presented structure works if we want to limit the PC

between the upper and lower thresholds. A similar procedure is performed when the PC

respects a minimal threshold:

φη̃(ẋ) := P[ldlow ≤ h(ẋ) + η̃] ≥ p. (3.35)

By the following remark we manage with this PC:

Remark 3.4.4 Standardizing the original random vector η̃ ∼ N (µor,Σor), we establish

the equivalent version of the PC (3.35), considering h(ẋ) as in (3.30):

φξ̃(ẋ) := P[ξ̃ ≤ Bẋ+ b] ≥ p,

where ξ̃ ∼ N (0, R) and the coefficients are defined as:

B = D ·Hor

b = D · (µor − ldlow).
(3.36)

Proof.

P[ldlow ≤ h(ẋ) + η̃]⇔ P[−η̃ ≤ −ldlow +Hor · ẋ]

⇔ P[ξ̃ ≤ D · (µor − ldlow) +D ·Hor · ẋ]

⇔ P[ξ̃ ≤ Bẋ+ b]

,

where it is used the symmetry property of the standardized random vector ξ̃ ≡ −ξ̃ =

D · (µor − η̃). �

The standardization provided by Remarks 3.4.3 and 3.4.4 generalizes the use of Re-

mark 3.4.2 for affine separable structures of PC. This allows the iterative use of constraints
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(3.26) in the PC optimization problem as piecewise linear approximations of the original

PC (3.29).
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4 THE EXACT SUPPORTING HYPERPLANE METHOD FOR
SOLVING STOCHASTIC HTUC MILP PROBLEMS

This chapter discusses the first topic of Thesis, given by a stochastic HTUC system

and depicts alternatives employing PC programming problems to solve it. The main

contribution is the proposition of an algorithm that deals with the mixed-integer setting,

used to describe a complete UC system. To handle the random variables, the model

employs the original joint probability distribution functions that describe these variables,

maintaining their correlation effects.

Section 4.1 defines the underlying MILP problem, replacing the load requirement

constraint by the PC in Subsection 4.2.2. Section 4.3 describes the algorithms that are

used to solve the proposed HTUC MILP problem. The comparative computational results

among the methods are discussed in Section 4.4, with other sensibility simulations. Part

of the formulation and experiments of these last sections are presented in the paper (van

ACKOOIJ; FINARDI; RAMALHO, 2018). Additionally to this last work we provide in Section

4.5 suggestions of improvements to the original algorithm. The chapter ends in Section

4.6, where the used hydro production function model is compared to a standard model

from the literature.

4.1 PROBLEM DEFINITION

The section starts with the employed set of indexes, parameters and nomenclatures

employed to describe the system. In this formulation, we use the following notation:

Continuous decision variables has the dot notation as in ẋ, the bar notation x̄ denotes

integers, random variables are x̃ and parameters has no sign x. Those indexes are followed

by the underlying MILP problem description.
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4.1.1 Indices

t Index of time periods, where t ∈ T with |T | = T .

b Index of buses in the transmission system, where b ∈ B

and BW ⊂ B the subset of buses supplied by wind farms.

b′ Index of buses in the oriented transmission flow, where

b′ ∈ B(b)
+ ∪B(b)

− representing the set of buses that supplies

b and drains from b, respectively.

s Index associated with piecewise linear future cost func-

tion, where s ∈ S.

i Index of thermal plants, where i ∈ I, and I(b) ⊂ I the

subset of plants that supplies bus b.

l Index of hydro plants, where l ∈ L, and L(b) ⊂ L the

subset restricted to b.

w Index of wind farms, where w ∈ W , and W (b) ⊂ W the

subset restricted to b.

j Index of units of the hydro plants, where j ∈ Jl and l is

the referred hydro plant.

mo Index of upstream hydro plants, where mo ∈ Ml and l

is the downstream hydro plant.

n Index of piecewise linear hydro production function,

where n ∈ Nl and l is the referred hydro plant.

r Index of piecewise linear penstock head function, where

r ∈ Rl and l is the referred hydro plant.

k Index of the proposed supporting hyperplane method

iteration.

q Index of samples used in the sample based method,

where q ∈ Q with |Q| = Q.
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4.1.2 Decision Variables

ui,t Commitment status of thermal unit i and period t, ui,t =

1 if unit is online and 0 otherwise.

zj,l,t Commitment status of hydro unit j, plant l and period

t, zj,l,t = 1 if unit is online and 0 otherwise.

ġt
(b)
i,t Power of thermal unit i and period t, located at bus b

[MW ].

˙gh
(b)

l,t Hydro power output of plant l, period t, located at bus

b.

˙grh
(b)

l,t Gross head of plant l, period t, located at bus b [m].

v̇sj,l,t Gross head auxiliary variable for hydro unit j, plant l

and period t [m].

ḟ
(b,b′)
t Power flow from bus b to bus b′ in period t [MW ].

ḋf
(b)

t deficit load at bus b and period t [MW ].

v̇l,t Reservoir volume of plant l in the end of period t [hm3]

.

q̇j,l,t Turbined outflow of unit j, plant l and period t [m3/s].

ṡl,t Spillage of plant l and period t [m3/s].

q̇ll,t Penstock head loss of hydro plant l in period t [m].

˙qctl,t Auxiliary turbined outflow control variable of hydro

plant l in period t [m3/s].

θ̇
(b)
t Voltage angle of bus b and period t in the DC power-flow

model [rad].

K̇i,t Start-up cost of thermal unit i and period t [$].

Θ̇ Expected future operational cost [$].
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4.1.3 Random Variables

g̃w
(b)
w,t Power of wind farm w and period t located at bus b, with

variance-covariance matrix Σ(b) and mean µ(b) [MW ].
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4.1.4 Input Parameters

yl,t Incremental inflow of plant l and period t [m3/s].

V min
l Minimum (maximum) reservoir level of plant l [hm3].

qmin
j,l Minimum (maximum) turbined outflow of unit j of plant

l [m3/s].

smin
l Minimum (maximum) spillage of hydro plant l [m3/s].

ghmin
l Minimum (maximum) power of hydro plant l [MW ].

grhmin
l Minimum (maximum) gross head of plant l [m].

gtmin
i Minimum (maximum) power of thermal plant i [MW ].

Xk Reactance of line k [Ω].

Lk Power capacity of line k and period t [MW ].

SB Conversion constant [Ω·MW
rad

].

ld
(b)
t Load demand at bus b and period t [MW ].

ld
up(low)
b T-dimensional vector with upper (lower) limits of the

load at bus b [MW ].

CPi Start-up cost of unit i [$].

c Constant to convert m3/s to hm3 in one hour period

c = 60 ∗ 60/106.

cd(b) Cost of deficit parameter of bus b [$/MW ].

c0i, c1i Thermal cost parameters of unit i [$], [$/MW ].

p0l, p1l Upstream water level function parameters of hydro plant

l [ m
hm3 ], [m].

d0l, d1l Downstream water level function parameters of hydro

plant l [ m
m3/s

], [m].

h
(r)
0l , h

(r)
1l Penstock head loss function parameters of hydro plant

l, at index r [ m
m3/s

], [m].

n
(n)
0l ,

n
(n)
1l ,n

(n)
2l

Power production function parameters of hydro plant l,

at index k [MW
m3/s

], [MW
m

], [MW ].
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τml Water travelling time from hydro plant m to l.

τ+j,l Minimum up-time of unit j and hydro plant l [h].

τ+i / τ−i Minimum up/down-time of thermal unit i [h].

∆+
i / ∆−

i Maximum ramp-up/ramp-down rates [MW ].

GT∆
i Minimum production level in ramp functions of thermal

plant i [MW ].

µs
l , z

s Future cost function parameters of hydro plant l at index

s [ $
hm3 ], [$].

In0 Vector of initial condition parameters of the system.

4.1.5 Probabilistic Constraints Formulation

ẋ Vector ∈ X of size m = m1+m2 of all decision variables,

m1 are continuous and m2 binaries.

ξ̃(b) Standardized normal random variable with mean 0 and

R(b) ∈ R
T × R

T non-singular correlation matrix.

a(b), b(b) Auxiliary vectors ∈ R
T .

A(b), B(b) Auxiliary matrices ∈ R
T × R

m.

φ(b)(ẋ) Probabilistic constraint cumulative distribution func-

tion of bus b.

∇φ(b)(xi) Gradient vector at point xi of the probabilistic con-

straint of bus b.

4.2 PROBLEM FORMULATION

This section presents the problem formulation addressed in the present work. In

Section 4.3, the underlying nominal MILP given below is extended to include the specific

PC approaches.
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min
∑

t∈T

∑

i∈I
(c0iui,t + c1iġti,t + K̇i,t) +

∑

t∈T

∑

b∈B
cd(b)ḋf

(b)

t + Θ̇ (4.1)

s.t.:

∑

i∈I(b)

ġti,t +
∑

w∈W(b)

g̃ww,t +
∑

l∈L(b)

˙ghl,t+

+ ḋf
(b)

t +
∑

b′∈B(b)
+ ∪B(b)

−

ḟ
(b,b′)
t = ld

(b)
t , ∀b, t (4.2a)

ḟ
(b,b′)
t =

(θ̇
(b)
t − θ̇

(b′)
t ) · SB

Xb,b′
, ∀b, t; b′ ∈ B(b)

+ ∪ B(b)
− (4.2b)

−π
2
≤ θ̇

(b)
t ≤

π

2
, ∀b, t (4.2c)

− Lb,b′ ≤ ḟ
(b,b′)
t ≤ Lb,b′ , ∀b, t; b′ ∈ B(b)

+ ∪ B(b)
− (4.2d)

ġti,t ≤ ġti,t−1 + ui,t−1∆
+
i + (1− ui,t−1)GT∆

i , ∀t, i (4.3a)

ġti,t−1 ≤ ġti,t + ui,t∆
−
i + (1− ui,t)GT∆

i , ∀i, t (4.3b)

ui,t ≥ ui,r − ui,r−1, ∀t, r ∈ [t− τ+i + 1, t− 1], ∀i (4.3c)

ui,t ≤ 1 + (ui,r − ui,r−1), ∀t, r ∈ [t− τ−i + 1, t− 1], ∀i (4.3d)

K̇i,t ≥ CPi(ui,t − ui,t−1), ∀t, i (4.3e)

gtmin
i ui,t ≤ ġti,t ≤ gtmax

i ui,t, ∀i, t (4.3f)

v̇l,t+1 = v̇l,t + c[ẏl,t +
∑

mo∈Ml

(
∑

j∈Jmo

q̇j,mo,t−τml
+

− ṡmo,t−τmol
)−

∑

j∈Jl

q̇j,l,t − ṡl,t], ∀l, t (4.4a)

(4.16a)-(4.16g) (HPF formulation) (4.4b)

zj,l,t ≥ zj,l,r − zj,l,r−1, ∀t, r ∈ [t− τ+j,l + 1, t− 1], ∀j, l (4.4c)

Θ̇−
∑

l∈L
µ
(s)
l v̇l,T ≥ z(s), ∀s (4.4d)

V min
l ≤ v̇l,t ≤ V max

l , ∀l, t (4.4e)

smin
l ≤ ṡl,t ≤ smax

l , ∀l, t (4.4f)

ghmin
l ≤ ˙ghl,t ≤ ghmax

l , ∀l, t (4.4g)

ḋf
(b)

t , K̇i,t, Θ̇ ≥ 0, ∀l, t, b (4.5)

[v̇l,0, q̇j,l,0, zj,l,0, ṡl,0, ġti,0, ui,0] · 1 = In0, ∀l, j, i. (4.6)
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In (4.1)-(4.6), the objective function (4.1) consists of minimizing the operation cost

for T periods of a day-ahead horizon, which is composed of fixed, variable and start-up

thermal costs, load shedding cost and the expected future cost related to the usage of

the water, this last representing boundary conditions that establish a cost to the outflow

in the planning horizon. Constraints (4.2a) refer to the load requirement for each bus

of the transmission system, represented as a classic DC power flow model. Given that

the wind generation is present in (4.2a), the PC model replaces some of these constraints

for handling the uncertainty, according to Subsection 4.2.2. The relation between the

buses voltage angle and power flow is accomplished by (4.2b)-(4.2d). The variable ḟ
(b,b′)
t

is positive in the direction of power flow from bus b to the bus b′ and negative other-

wise. Thermal units ramp-up and ramp-down rates are explicit in (4.3a)-(4.3b) while

(4.3c)-(4.3d) express the minimum up-time and down-time. Thermal start-up costs are

accounted in (4.3e), followed by limits to their production in (4.3f). Constraints (4.4a)

detail the time and space coupling associated with the reservoirs operational characteris-

tics. The set of constraints (4.4b) refers to the hydro production function, as discussed

in 4.6. Constraints (4.4c) represents the minimum up-time of hydro units. A piecewise

linear model for the expected future cost associated with the use of the water over the

horizon is presented in (4.4d). Constraints (4.4e) - (4.5) define bounds on the variables,

and finally, (4.6) represents the set of initial conditions, where 1 is the all-one vector of

appropriate size and In0 is the vector of initial values themselves.

4.2.1 Hydro production function model

This section aims to detail the HPF model used by this work. The HPF is a

nonlinear, nonconvex and discontinuous function that depends on forebay and tailrace

levels, penstock head losses, turbine and generator efficiencies (GULLIVER; ARNDT, 1991).

The main idea of the proposed HPF formulation is instead of using a piecewise linear

approximations to the entire nonlinear productivity curve of each turbine, as addressed

in, for instance (TONG; ZHAI; GUAN, 2013; LI et al., 2014; FINARDI; TAKIGAWA; BRITO,
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2016), is to approximate the minor functions that compound the HPF and considers the

power production of the entire plant rather than of each turbine. In practice, we represent

a group of identical units by a single piecewise linear HPF.

By the bibliography survey, we clarify the differences between the proposed HPF

model and the literature. In (CONEJO et al., 2002) it is proposed an aggregated model for

each plant where the three dimensional HPF is simplified making use of two-dimensional

curves that establish the relation between the power production and the outflow, fixing

the reservoir volume to different levels. The authors use piecewise linear functions to

represent the original nonlinear hill charts, where the linear partitions are select by the aid

of binary variables. An advantage of the method is that it is not binding on assumptions

of limiting the solutions on partitions of the hill chart where convex simplifications could

be considered, as used by the present work. In this perspective, a drawback of the method

in (CONEJO et al., 2002) is the increasing number of binary variables necessary to control

the active block of the HPF slopes. Besides that, in our strategy where we aggregate by

groups of identical HPF, it is considered the dependence on the single unit outflow and

the total discharge (total outflow of the plant plus spillage) by the net head effect. As

stated, in (CONEJO et al., 2002), the head effect is simplified by the different discretized

curves, changing with the reservoir volume, then distinguishing from our approach.

In (LI et al., 2014) the focus is on a MILP model that deals with a hydro unit

commitment for the Three Gorges Project (TGP) in China. The formulation considers

the head variation over the operation and its effects on power generation. The units are

considered individually heterogeneous and are considered as nonlinear power generation

functions. To model the head effect for the unit power production, they use a linear

function to approximate the forebay water level, in a similar procedure as proposed by the

present work. However, the authors claim that TGP tailrace elevation cannot fallow the

same linear approximation procedure due to local particularities, hence being necessary

an ad-hoc procedure to define the tailrace elevation using sequential MILP executions

up to the convergence. At this point, their model differs from the here proposed work,

where additional MILP executions are not necessary since our model makes use of a linear
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approximation (that could be easily extended to a piecewise linear formulation) to define

the tailrace water level.

Rather than providing an analytic function to approximate the penstock head loss

function, as the piecewise linear function of the here proposed model, in (LI et al., 2014)

it is set constant, and so any dependence on the unit outflow was ruled out. The main

difference between our model and TGP is a triangular tessellation technique that defines

the values of the variables by a combination of predefined weighted points (vertex of the

triangles). This model makes necessary the addition of three binary variables per hydro

unit. The addition of binaries is a concern in our model since we try to reduce the number

of binaries to aid the CPU execution time of the MILP problems.

Among the works that use aggregated HPF functions, in (PAREDES; MARTINS;

SOARES, 2015) the authors assume the use of identical units efficiency and a quadratic

function linking the power to the water discharge, maintaining the penstock head losses

effects implicit to the function. In our approach, these losses are analytically conside-

red, since piecewise linear functions can precisely model the convexity of these functions

(quadratic in the unit outflow). In (BORGHETTI et al., 2008) it is used piecewise linear

partitions, controlled by binary variables, in order to establish the relationship between

power production and outflow. Each of these curves is related to a reservoir volume,

that is used to estimate the head effected of the unit hill chart. This model differs from

the here proposed since in our model, fewer binaries are necessary and the head effect is

analytically considered in the MILP formulation.

In (GUEDES et al., 2017) it is proposed a MILP model that makes use of an inter-

polation procedure of a discretized values of the power efficiency function. The heuristic

aims to enforce the turbines to work at the best operational points, known as “design

points”. The model defers from the here proposed since the power production functions

are not directly embedded into the MILP formulation. In (SANTO; COSTA, 2016) it is

proposed a solution of a hydroelectric based UC system solved by an MINLP model that

minimizes sources of production losses, namely, turbine operating points distant from ’de-

sign points’, tailrace elevation and penstock head. The nonlinearities of the model come
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from a three-dimensional polynomial curve that establishes the relationship between the

losses with unit production levels and the number of committed units. The proposed

model differs from the here stated since forebay elevation is considered fixed in the op-

timization horizon, and spillage is disregarded in the head effect. These differences can

also be justified when one observes that the main objective of this last work concerns at

finding good operational points for the turbines, that differs from costs reduction in an

integrated electric system, as the objective of the present chapter.

Simplifying the mathematical notation, the models in the present section consider

plants in which all units are identical. Nevertheless, the notation can be easily extended

for cases with different groups of identical units. Initially, we consider that the following

piecewise model is available for each generating unit:

˙guhj,l,t − n
(n)
0l ˙quj,l,t − n

(n)
1l ḣj,l,t − n

(n)
2l ≤ 0, ∀n, j, l, t. (4.7)

In (4.7) ˙guhj,l,t, ˙quj,l,t and ḣj,l,t are, respectively, the power (MW ), the turbined

outflow (m3/s) and the net head (m) of unit j, plant l and period t. On the other

hand,n
(n)
0l ,n

(n)
1l , n

(n)
2l are constants, and n is the index that represents the number of func-

tions used in the piecewise linear model. In our work, (4.7) is obtained applying convex

hull techniques over the operative zones of the unit. For instance, a standard nonlinear

formulation is provided in (GULLIVER; ARNDT, 1991) where the unit HPF is defined as:

˙guhj,l,t = G · η̇j,l,t · ḣj,l,t · ˙quj,l,t ∀n, j, l, t, (4.8)

where G is a constant and η̇j,l,t is the turbine efficiency of the hydro unit l. In this formu-

lation, we consider only the loss of efficiency provided by the turbine, being disregarded

the small losses coming from the generator group. The following curve gives the efficiency

of the turbine:
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η̇j,l,t = e0l + e1l · ˙quj,l,t + e2l · ḣj,l,t + e3l · ḣj,l,t · ˙quj,l,t+

+ e4l · ˙qu2
j,l,t + e5l · ḣ2

j,l,t ∀n, j, l, t, (4.9)

where e0l, . . . , e5l are constants. Combining (4.8) and (4.9) we have the nonlinear HPF,

that is approximated locally by the set of piecewise linear functions (4.7). We rewrite

(4.7) as follows:

˙guhj,l,t − n
(n)
0l ˙quj,l,t − n

(n)
1l (

˙grhl,t − ˙qulj,l,t)− n
(n)
2l ≤ 0, ∀n, j, l, t, (4.10)

where ˙grhl,t and ˙qulj,l,t are, respectively, the gross head (m) and the unit j penstock

head loss (m) of plant l and period t. When it is considered identical units assumption,

we easily check via classic optimality conditions that ˙quj,l,t of online units must also be

identical. As a result, we can join the inequalities (4.10) in a single group, resulting in

the following piecewise linear model with |Nl| constraints:

˙ghl,t − n
(n)
0l

∑

j∈Jl

zj,l,t · q̇j,l,t − n
(n)
1l

∑

j∈Jl

zj,l,t( ˙grhl,t − ˙qulj,l,t)+

− n
(n)
2l

∑

j∈Jl

zj,l,t ≤ 0, ∀n, l, t, (4.11)

where ˙ghl,t is the power of plant l and period t (MW ) and zj,l,t defines the on/off status

of the unit j, plant l and period t. In (4.11) , when compared to (4.10), we use the

notation ˙quj,l,t = zj,l,t · q̇j,l,t for the commitment of the unit. The nonlinearity due to the

multiplication between two decision variables zj,l,t · ˙grhl,t, is addressed replacing them by

the auxiliary variable v̇sj,l,t = zj,l,t · ˙grhl,t and including the following constraints:

grhmin
l,t zj,l,t ≤ v̇sj,l,t ≤ grhmax

l,t zj,l,t, ∀j, l, t

grhmin
l,t (1− zj,l,t) ≤ ˙grhl,t − v̇sj,l,t ≤ grhmax

l,t (1− zj,l,t), ∀j, l, t
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where grh
min(max)
l,t are the gross head limits. Hence, (4.11) can be rewritten as:

˙ghl,t − n
(n)
0l

∑

j∈Jl

zj,l,t · q̇j,l,t − n
(n)
1l

∑

j∈Jl

v̇sj,l,t+

+ n
(n)
1l

∑

j∈Jl

zj,l,t · ˙qulj,l,t − n
(n)
2l

∑

j∈Jl

zj,l,t ≤ 0, ∀n, l, t (4.12a)

grhmin
l,t zj,l,t ≤ v̇sj,l,t ≤ grhmax

l,t zj,l,t, ∀j, l, t (4.12b)

grhmin
l,t (1− zj,l,t) ≤ ˙grhl,t − v̇sj,l,t ≤ grhmax

l,t (1− zj,l,t), ∀j, l, t. (4.12c)

To address the nonlinearity zj,l,t · q̇j,l,t, it is essential to remember that we are considering

identical units and, therefore, the identical turbined outflow is enforced by the use of

the auxiliary variables qctl,t, and the inclusion of the following constraints to the model

(4.12a)-(4.12c):

qmin
j,l · zj,l,t ≤ q̇j,l,t ≤ qmax

j,l · zj,l,t∀j, l, t

qmin
j,l (zj,l,t − 1) ≤ ˙qctl,t − q̇j,l,t ≤ qmax

j,l (1− zj,l,t), ∀j, l, t,

where q
min(max)
j,l are limits of the turbined outflow of units (m3/s). We note that the last

constraints also deal with the nonlinearity zj,l,t · q̇j,l,t and, as a result, we have:

˙ghl,t − n
(n)
0l

∑

j∈Jl

q̇j,l,t − n
(n)
1l

∑

j∈Jl

v̇sj,l,t + n
(n)
1l

∑

j∈Jl

zj,l,t · ˙qull,t+

− n
(n)
2l

∑

j∈Jl

zj,l,t ≤ 0, ∀n, l, t (4.13a)

grhmin
l,t zj,l,t ≤ v̇sj,l,t ≤ grhmax

l,t zj,l,t, ∀j, l, t (4.13b)

grhmin
l,t (1− zj,l,t) ≤ ˙grhl,t − v̇sj,l,t ≤ grhmax

l,t (1− zj,l,t), ∀j, l, t (4.13c)

qmin
j,l · zj,l,t ≤ q̇j,l,t ≤ qmax

j,l · zj,l,t∀j, l, t (4.13d)

qmin
j,l (zj,l,t − 1) ≤ ˙qctl,t − q̇j,l,t ≤ qmax

j,l (1− zj,l,t), ∀j, l, t. (4.13e)

Next, we handle with zj,l,t · ˙qull,t. Since the penstock head loss is typically addressed as

a (convex) quadratic function (GULLIVER; ARNDT, 1991), we can approximate it by the
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following piecewise linear function:

˙qull,t − h
(r)
0l · q̇j,l,t − h

(r)
1l ≥ 0, ∀r, j, l, t,

where h
(r)
0l and h

(r)
1l are constants, and r is the index that represents the number of functions

used in the piecewise linear model composed of |Rl| constraints. Considering equal losses

to online units, the same procedure as in (4.10) is used, which results in following penstock

head loss of the plan l:

q̇ll,t −
∑

j∈Jl

zj,l,t

(
h
(r)
0l · q̇j,l,t + h

(r)
1l

)
≥ 0, ∀r, l, t, (4.14)

where q̇ll,t represents the penstock head loss of the entire plant l. Given that the nonlinear-

ity zj,l,t · q̇j,l,t = q̇j,l,t was already addressed previously, we join (4.14) to the (4.13a)-(4.13e)

formulation, establishing:

˙ghl,t − n
(n)
0l

∑

j∈Jl

q̇j,l,t − n
(n)
1l

∑

j∈Jl

v̇sj,l,t + n
(n)
1l q̇ll,t

− n
(n)
2l

∑

j∈Jl

zj,l,t ≤ 0, ∀n, l, t (4.15a)

q̇ll,t − h
(r)
0l

∑

j∈Jl

q̇j,l,t − h
(r)
1l

∑

j∈Jl

zj,l,t ≥ 0, ∀r, l, t (4.15b)

grhmin
l,t zj,l,t ≤ v̇sj,l,t ≤ grhmax

l,t zj,l,t, ∀j, l, t (4.15c)

grhmin
l,t (1− zj,l,t) ≤ ˙grhl,t − v̇sj,l,t ≤ grhmax

l,t (1− zj,l,t), ∀j, l, t (4.15d)

qmin
j,l · zj,l,t ≤ q̇j,l,t ≤ qmax

j,l · zj,l,t∀j, l, t (4.15e)

qmin
j,l (zj,l,t − 1) ≤ ˙qctl,t − q̇j,l,t ≤ qmax

j,l (1− zj,l,t), ∀j, l, t. (4.15f)

Finally, we need to define the net head variable ˙grhl,t. To that end, the functions repre-

senting the forebay and tailrace levels can be approximated by a linear or piecewise linear

model1. Indeed, in our formulation we express the ˙grhl,t by the following constraints,

1Those functions can also be obtained using Convex Hull techniques over classic polynomial formula-
tions (GULLIVER; ARNDT, 1991)
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which accounts on a linear model for the forebay and tailrace water levels2:

˙grhl,t − p0lv̇l,t − p1l + d0l

(
∑

j∈Jl

zj,l,t · q̇j,l,t + ṡl,t

)
+ d1l = 0, ∀l, t,

p0l, p1l, d1l and d1l are constants, v̇l,t is the reservoir volume (hm3) and ṡl,t is the spillage

(m3/s) in period t. In these last constraints we once again set that zj,l,t · q̇j,l,t = q̇j,l,t,

establishing the final formulation for the HPF model:

˙ghl,t − n
(n)
0l

∑

j∈Jl

q̇j,l,t − n
(n)
1l

∑

j∈Jl

v̇sj,l,t + n
(n)
1l q̇ll,t+

− n
(n)
2l

∑

j∈Jl

zj,l,t ≤ 0, ∀n, l, t (4.16a)

q̇ll,t − h
(r)
0l

∑

j∈Jl

q̇j,l,t − h
(r)
1l

∑

j∈Jl

zj,l,t ≥ 0, ∀r, l, t (4.16b)

˙grhl,t − p0lv̇l,t − p1l + d0l

(
∑

j∈Jl

q̇j,l,t + ṡl,t

)
+ d1l = 0, ∀l, t (4.16c)

grhmin
l,t zj,l,t ≤ v̇sj,l,t ≤ grhmax

l,t zj,l,t, ∀j, l, t (4.16d)

grhmin
l,t (1− zj,l,t) ≤ ˙grhl,t − v̇sj,l,t ≤ grhmax

l,t (1− zj,l,t), ∀j, l, t (4.16e)

qmin
j,l · zj,l,t ≤ q̇j,l,t ≤ qmax

j,l · zj,l,t∀j, l, t (4.16f)

qmin
j,l (zj,l,t − 1) ≤ ˙qctl,t − q̇j,l,t ≤ qmax

j,l (1− zj,l,t), ∀j, l, t. (4.16g)

4.2.2 Formulation with joint probability constraints

In the stochastic version of (4.1) - (4.6), the main idea is to consider wind power in

(4.2a) as a random variable. Consider, for the brevity of notation, the wind generation

random vector g̃w(b)
w = [g̃w

(b)
w,1, . . . , g̃w

(b)
w,T ], where g̃w

(b)
w ∈ R

T is a Gaussian random vector

with the variance-covariance matrix Σ(b) and mean µ(b), for each wind farm w at bus b.

The vector related to thermal power is defined as ġt
(b)
i = [ġt

(b)
i,1 , . . . , ġt

(b)
i,T ] and likewise for

the other variables. With this notation, for each bus b ∈ BW , we define the function

2Linearity considerations for the forebay function are reasonable in the day ahead operation scheduling.
However, it is also possible to include a piecewise linear model for this function, and especially for the
tailrace case, since this last has a greater impact in the short-term horizon, when compared to the
variation of the forebay level.
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h(ẋ, g̃w(b)
w ) : Rm × R

T → R
T as follows:

h(ẋ, g̃w(b)
w ) =

∑

i∈I(b)

ġti +
∑

w∈W(b)

g̃ww +
∑

l∈L(b)

˙ghl + ḋf
(b)
+

−
∑

b′∈B(b)
−

ḟ (b′,b) +
∑

b′∈B(b)
+

ḟ (b,b′), (4.17)

where ẋ ∈ X is of appropriate size m and denotes all decision variables in a generic

notation.

To model the uncertainty, constraints (4.2a) become the following joint PC:

P

[
ldlowb ≤ h(ẋ, g̃w(b)

w ) ≤ ldupb

]
≥ p, ∀b ∈ BW , (4.18)

where p is a user-defined probability representing the desired safety level (for instance,

p = 95%), ldlowb and ldupb are R
T boundary parameters. Hence, we want to meet the

load with a probability level of p, and the interpretation of equation (4.18) is to offer a

policy ẋ such that the probability of “deviation” of the load, induced by the uncertainty

of g̃w(b)
w is not smaller than p. This deviation should fall in between the lower ldlowb

and upper ldupb thresholds, for all the stages T (taken jointly). Discussions about the

motivation on the use of bilateral inequalities (4.18) rather than a “direct interpretation”

such as P

[
h(ẋ, g̃w(b)

w ) = ld(b)
]
≥ p are made in (van ACKOOIJ, 2013) for the separable

case of h(·) and (HENRION, 2007; LUBIN; BIENSTOCK; VIELMA, 2016) for specific cases

when the random variables multiply the decision variables. Indeed, if the random vector

g̃w(b)
w admits a probability density function concerning to the Lebesgue measure, (e.g., the

Gaussian case), for a given policy ẋ ∈ X the probability P

[
h(ẋ, g̃w(b)

w ) = ld(b)
]
= 0 and,

hence, no safe policy exists.

As observed in (4.17), the decision variables and random vector are kept in the

separable structure h(ẋ, g̃w(b)
w ) = h(ẋ) + g̃w(b)

w . For buses which are not supplied by

wind farms, the load requirement constraint is assumed to hold deterministically, i.e.

h(ẋ) = ld(b). Using the separable property, and following Section 3.4.2, after matrix

manipulation, it is possible to rewrite (4.18) in a rectangle pattern which has a two-sided
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decision variable dependent structure, i.e.:

φ(b)(ẋ) =P

[
a(b) + A(b)ẋ ≤ ξ̃(b) ≤ b(b) +B(b)ẋ

]
≥ p, (4.19)

where b ∈ BW and ξ̃(b) is a random vector ξ̃(b) ∼ N (0, R(b)) with R(b) the R
T × R

T a

non-singular correlation matrix. Indeed, the vectors a(b), b(b) ∈ R
T and T × m matrices

A(b) and B(b) are algebraically manipulated to standardize the original g̃w(b)
w into ξ̃(b).

Given that ξ̃(b) has a log-concave probability distribution, it follows from (PRÉKOPA,

1995, Thm 10.2.1), that the CDF φ(b)(ẋ) is log-concave and, as a consequence, the con-

straint (4.19) defines a convex set M = [ẋ ∈ R
m|φ(b)(ẋ) ≥ p] for any probability level

p ∈ [0, 1]. Based on these considerations, HTUC in problem (4.1) - (4.6) under wind

power uncertainty via joint PC modelling is expressed in the following compact form:

min
ẋ∈Rm1×{0,1}m2

{cTẋ : s.t. Ainẋ ≤ bin , φ(b)(ẋ) ≥ p, ∀b ∈ BW}, (4.20)

where Ain and bin represents the constraints (4.2a) - (4.6) except for the load requirement

constraints (4.2a) supplied by wind farms, i.e. b 6∈ BW . Additionally m1 and m2 are

integers of appropriate size such that m = m1 +m2.

4.3 ALGORITHMS FOR MILP WITH PROBABILITY CONSTRAINTS

The feasible set of (4.20) is not convex since it is the intersection of a convex set

with a partially discrete set X. Hence, the usage of a classic algorithm of stochastic

programming with PC such as the supporting hyperplane method, e.g., (PRÉKOPA, 1995)

is ruled out. In its original form, this method constructs iteratively an outer polyhedral

approximation of the convex set defined by the joint PC, see Algorithm 1. The polyhedral

approximation is built from the intersection of supporting half-spaces at iterate points

ẋk on the boundary of the PC feasible set, as discussed in Section A.4. An essential

step in this method, is a bisection procedure that, starting from a Slater point xS (i.e.

φ(xS) > p) and a lower bound solution xL
k , takes advantage of the convexity of the problem

to find the feasible point ẋk by a convex combination of these last two points. The main
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difficulty in applying this classic algorithm in the proposed MILP is that, since the set

X is nonconvex, due to its non-continuity, it is not ensured that the bisection procedure

would find a feasible solution to the problem. However, to overcome this limitation, this

work proposes a new algorithm that, using the information provided by the bisection

procedure, defines an upper bound solution to (4.20). Moreover, at each iteration, an

estimation of the optimality gap is available, and convergence of the algorithm to an

optimal solution is also guaranteed. We provide the algorithm in the next section.

4.3.1 The exact supporting hyperplane method for MILP with probability
constraints

We will employ the short notation h
(b)
α (ẋ) = a(b) + A(b)ẋ and h

(b)
β (ẋ) = b(b) + B(b)ẋ

to abbreviate elements in (4.19).

In Algorithm 2 the Slater point xS can be obtained with a heuristic procedure or

by the use of a sample method as explained in Section 4.3.3 with high enough probability

psb > p. The gradient ∇φ(b)(ẋk) is computed by the procedures that are shown in Sec-

tion 3.4.1, and the Genz code (GENZ, 1992) which evaluates the multivariate Gaussian

distribution functions with high precision. Indeed, following (van ACKOOIJ et al., 2010),

computing φ(b)(ẋ), ∇φ(ẋk) can be analytically lead back to evaluating multivariate Gaus-

sian distribution functions. The algorithm provides a feasible solution at each iteration,

contrary to (ARNOLD et al., 2014) where only the outer approximation is used. Conver-

gence of the algorithm is ensured by classic approaches of convex optimization and cutting

plane methods (e.g., (van ACKOOIJ; OLIVEIRA, 2016)). Figure 7 illustrates two iterations

of the algorithm, showing the relationship between the solutions. Light blue area and

points (integer solutions) represent the non-continuous feasible set of the relaxed problem

in Step 2. The purple area defines the convex set defined by the PC, not known a priori

at the start of the algorithm. The red solid lines represent the cutting planes of the poly-

hedral approximations of the PC calculated by the Step 6, traced over ẋk found by the

bisection procedure between xS and xL
k in Step 3.

The here used interpolation method is a classic bisection algorithm that starts from
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Algorithm 2 - Supporting Hyperplane Method for MILP Problem

1: (Initialisation) Let xS ∈ R
m a Slater point for (4.20). Set k ← 1 and the stopping

tolerance ε > 0.
2: (Lower bound) Solve the MILP (4.20) replacing the joint PC by the following set of

constraints: 〈
∇φ(b)(xi), ẋ− xi

〉
≥ 0, i = 1, . . . , k − 1, ∀b ∈ BW

to compute xL
k . The objective function value is a lower bound Lk on the optimal value

of (4.20).
3: (Interpolation) Use a bisection procedure to compute the largest λ such that ẋk :=

λxL
k + (1 − λ)xS satisfies φ(b)(ẋk) ≈ p for each bus b ∈ BW . Thus ẋk attains the PC

defining the parameters α
(b)
k := h

(b)
α (ẋk) and β

(b)
k := h

(b)
β (ẋk), for ∀b ∈ BW .

4: (Upper Bound) With α
(b)
k and β

(b)
k as fixed parameters, solve the following problem:

min
ẋ∈{x∈Rm1×{0,1}m2 :Ainx≤bin},λ̇(b)

v ≥0,
∑k

v=1 λ̇
(b)
v =1,∀b∈BW

cTẋ

s.t.−
k∑

v=1

λ̇(b)
v α(b)

v ≤ −h(b)
α (ẋ), ∀b ∈ BW

+
k∑

v=1

λ̇(b)
v β(b)

v ≤ +h
(b)
β (ẋ), ∀b ∈ BW (4.21)

which provides a feasible solution xU
k and an upper bound Uk for (4.20).

5: (Stopping test) If |Uk−Lk|
|Lk| < ε, stop. The solution is xU

k . Otherwise, go to the next
step.

6: (Oracle call): Call an “oracle” to compute gradients ∇φ(b)(ẋk), where ẋk is the point
of the last Interpolation Step 3. Using the gradient values, built new constraints and
add them to the set of cutting planes of Step 2. Set k ← k + 1 and return to Step 2.
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tracing a linear segment between the lower bound solution iterate xL
k and the Slater xS.

This segment is divided into two equivalent sized sections in order to certify where the

root is located, i.e. the ẋk such that φ(b)(ẋk) ≈ p. This information is provided by

the evaluation of the underlying function on the limits of the segments, defining which

segment passes through the root. Once the segment is found, it is again divided into two

smaller sections and the bisection algorithm runs up to the convergence (φ(b)(ẋk) ≈ p)

and ẋk is defined. Note that ẋ2 found by the bisection procedure is not feasible, since it

is not inside the blue area. However we still use it to compute and add a new supporting

hyperplane. The blue pointed lines are the boundaries of the convex combination of the

bisection procedure iterates ẋk, forming a convex set that limits the set of feasible points

xU
k in Step 4.

In Step 4 is interesting to realize that the coefficients α
(b)
v , for v = 1, . . . , k, represent

solutions to the ”lower” partition of the PC. When we establish the constraint h
(b)
α (ẋ) ≤

∑k
v=1 λ̇

(b)
v α

(b)
v in (4.21), we are asking that the PC constraint is met in the optimization

problem at least for the probability p achieved by the interpolation steps. The same is

done for the ”upper” partition of the PC, by the coefficients β
(b)
v , for v = 1, . . . , k. Since

in problem (4.21) the original UC problem is defined by the constraints Ainx ≤ bin, the

solution of (4.21) attains the UC constraints and the PC, being so a feasible solution for

(4.20).

4.3.2 Problem using individual probability constraints

Aiming at comparing the results obtained by the Algorithm 2, this section presents

a popular (approximation) problem replacing (4.19) by the associated individual PCs.

In the present reformulation of the former problem, for each bus b, the joint PCs are

approximated by the individual counterparts P

[
a
(b)
t + A

(b)
t · ẋ ≤ η̃

(b)
t

]
≥ p, ∀b ∈ BW and

P

[
η̃
(b)
t ≤ b

(b)
t +B

(b)
t · ẋ

]
≥ p, ∀b ∈ BW , ∀t ∈ T . The index t in a

(b)
t is the t-th component

of the vector a(b) ∈ R
T and the tth line of the matrix A(b) ∈ R

T ×R
m. Note that η̃

(b)
t is a

standard Gaussian random one-dimensional variable, and hence any dependencies in ξ̃(b)
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Figure 7 – Iterations of the exact supporting hyperplane method for MILP with PC.

Source: Thesis results.

are ruled out. Now, we consider the following version of model (4.20):

min
ẋ∈{x∈Rm1×{0,1}m2 :Ainx≤bin}

cTẋ

s.t. a
(b)
t + A

(b)
t · ẋ ≤ F−1(1− p), ∀b ∈ BW , ∀t ∈ T (4.22)

− b
(b)
t − B

(b)
t · ẋ ≤ −F−1(p), ∀b ∈ BW , ∀t ∈ T ,

where F−1(p) and F−1(1− p) represent the inverse of a standard Gaussian CDF at level

p and 1− p, respectively.

4.3.3 Sample based algorithm

Introducing another approach to compare the results, this section derives the popular

sample-based (i.e., discretized) version of (4.20). Following (LUEDTKE; AHMED, 2008;

LUEDTKE; AHMED; NEMHAUSER, 2010), the strategy starts with the generation of Q

samples ξ̃
(b)
q of size T , associated binary variables zq and the big-M parameter M . The
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discretized version of (4.20) is:

min
ẋ∈{x∈Rm1×{0,1}m2 :Ainx≤bin},zq∈{0,1}Q

cTẋ

s.t. a
(b)
t + A

(b)
t · ẋ ≤ +ξ̃

(b)
t,q + zq ·M (4.23)

− b
(b)
t − B

(b)
t · ẋ ≤ −ξ̃(b)t,q + zq ·M

∀b ∈ BW , ∀t ∈ T , ∀q ∈ Q
Q∑

q=1

zq ≤ Q · (1− psb),

where psb is a higher probability level than the desired probability level p, as explained

in the bibliography survey in Section 2.2 and in the simulation Section 4.4.2. It is im-

portant to highlight that (4.23) can be strengthened with additional inequalities, e.g.,

(KUCUKYAVUZ, 2012). However, since the objective is to perform a comparison, this

work have opted for a simple variant.

4.4 COMPUTATIONAL RESULTS

The numerical results consider a day ahead horizon, discretized in hourly steps. The

hydrothermal system, based on a reduced variant of the Brazilian system, is composed

of 21 units (12 hydro units located in 3 reservoirs, 7 thermal and 2 wind farms). The

transmission system has 6 lines, 5 buses and connects the generating units to 4 load

demands. Figure 8 depicts the system, where hydro unit gh1 is upstream to gh2 with a

fixed one hour water travelling delay. The total installed capacity of each generation type

is: Hydro - 4335 MW, Thermal - 1392 MW and Wind - 500 MW.

The wind farms information comes from a proprietary database of Labplan-UFSC,

which were rescaled to provide a proportion of wind generation similar to the Brazilian

system (close to 8% of the total generation for the 5-bus system). The data comprises

3 months of hourly observations of generation, from June to August, of each wind farm.

Since the two sets of information refer to wind farms located in distant parts of Brazil,

they have a very low spatial correlation between them, close to 0.36, and so, for the sake of
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Following the steps of the Algorithm 2 presented in Section 4.3.1, the Slater point xS ∈ R
m

of Step 1 was empirically computed by solving the following MILP:

min
ẋ∈{x∈Rm1×{0,1}m2 :Ainx≤bin}

cTẋ

s.t. h(ẋ) = ld(b) − µ(b), ∀b ∈ BW . (4.24)

The solution xS of (4.24) evaluates the CDF φ(b)(xS) in 98.10% for bus 1 and 98.83%

for bus 3. Step 2 of the algorithm is performed solving (4.20), observing that in the first

iteration the set of cutting planes is still empty. The solution xL
1 evaluates the CDF

φ(b)(xL
1 ) ≈ 0% for both buses 1 and 3 and a lower bound of L1 = $3.60 · 106 . In Step 3

the bisection procedure uses the solutions xL
1 and xS. For bus 1 the bisection procedure

converges after 10 iterations, resulting in a λ ≈ 0.07 and φ(b)(ẋ1) ≈ 95.00%. Bus 3

converges after 11 iterations, with λ ≈ 0.03 and φ(b)(ẋ1)
(b) ≈ 95.03%. Keeping these

solutions, we compute α
(b)
1 and β

(b)
1 for bus 1 and 3.

Step 4 solves the MILP, setting α
(b)
1 and β

(b)
1 as parameters, defining the solution

xU
1 , and providing an upper bound of U1 = $5.66 · 106. The stopping test of Step 5 results

in (5.66 − 3.60)/3.60 ≈ 57% > ε = 0.5%, hence the algorithm does not stop. In Step 6,

the oracle is called to enrich the cutting plane model for the subsequent next iteration

of the algorithm. Convergence is reached in 49.03 min. after 73 iterations with an upper

bound of U73 = $5.57 · 106 and a probability level of φ(b)(xU
73) ≈ 95.00% and 95.00% for

bus 1 and 3, respectively. Figure 9 details the convergence of the algorithm, observed by

the approximation between Uk and Lk, and the upper and lower joint probability of the

solutions for both buses. This figure also shows that a feasible solution xU
k is provided in

all iterations (i.e., p ≥ 95%).

Table 4 presents the total time of each step, in % of total time. The L.Bound step

comprises the sum of the total time spent to calculate all the Lower bound solutions in

Step 2 of algorithm 2. The Bisection P. is the total time of Step 3, U.Bound is the total

time of Step 4 and Gradients is the total time of Step 6. From this table we note that

the two costly steps are the Lower Bound evaluation and the calculation of gradients,
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Figure 9 – Supporting Hyperplane Results at probability level of 95%.

Source: Thesis results.

Table 4 – Supporting hyperplane method at p=95% - Time per step

Step L. Bound Bisection P. U. Bound Gradients

Time (%) 37.93 13.04 17.67 28.79

Source: Thesis results.

both are in common with the former Algorithm 1, what is a compelling result in the

perspective that the new algorithm does not increase the computational burden sharply

with the additional steps.

To understand the sensitivity of the proposed supporting hyperplane method, we

have conducted a series of experiments varying the probability level p. The Slater point

is the same for all simulations. The summary of the results is in Table 5, where the

small deviations from the desired probability level are due to the precision level of the

bisection procedure. This table reveals that with the increasing probability level, the

cost to dispatch the system also increases, going from $5.50 · 106 at p = 90% to $5.64 ·

106 at p = 97.5%. The increasing cost stems from two contributions: more thermal

generation reflected in a higher immediate cost and more hydroelectric generation with

higher associated future costs captured by the expected future cost function. Table 5

also reveals that the algorithm tends to converge faster, with fewer iterations and a lower

time per iteration when the probability increases. We explain this intuitively by the fact

that the two MILPs that are solved per iteration are simpler when the probability level is
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Table 5 – Sensitivity to probability level for the mixed integer supporting hyperplane
method: 5-bus System

Probability level 90% 95% 97.5%

CPU time [sec] 3,463 2,942 2,321

# of iterations 72 73 66

Joint Prob. bus = 1 90.0% 95.0% 97.5%

Joint Prob. bus = 3 90.0% 95.0% 97.5%

Tot. Cost [$106] 5.50 5.57 5.64

CC Converged Gap 4.9 · 10−3 4.9 · 10−3 4.8 · 10−3

Source: Thesis results.

Table 6 – Sensitivity of Individual PC Method

Probability level 90% 95% 97.5% 99%

CPU time [sec] 10.13 28.95 10.33 7.49

Joint Prob. bus = 1 63.75% 78.14% 87.33% 93.87%

Joint Prob. bus = 3 71.33% 83.42% 90.65% 95.51%

Tot. Cost [$106] 5.33 5.41 5.48 5.55

Source: Thesis results.

higher, since the number of options to dispatch diminishes. In practice, the system has to

dispatch more and more on-stack to reduce the risk level, with direct effects on the B&B

algorithm of each MILP.

4.4.2 Comparative results with Individual Probabilistic Constraints

This section compares the model with individual PC with the proposed (joint) mo-

del. The results of sensitivity simulations are presented in Table 6.

Even though the requested individual probability level is, for instance, 95% it be-

comes apparent from Table 6 the actual probability level at buses 1 and 3 for all time steps

is significantly lower than requested. Therefore, the solution appears to be of lower cost

(close to 3% lower for p = 95%), when compared to the solution given by the supporting

hyperplane method, but this is only so since the PC is strongly violated. An alternative

strategy is to use heuristics to set a higher individual probability level, for example, 99% in

table, to reach the desirable joint probability level close to 95%. Nevertheless, it demands

ad-hoc strategies for the specific application if the precision in joint probability level is

desired, and optimality is hardly ensured. As an advantage of the individual method is

the lower CPU time, which can make this solution a nice initial guess for the supporting
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hyperplane method. The strategy of incorporating initial solutions to the exact joint PC

algorithm is explored in Section 5.4.

In Figure 10 we show 250 (out of 1,000) a posteriori Monte-Carlo simulations of

load constraints in bus b = 1 and b = 3. The red dashed lines are the load limits

set as parameters, and the black dashed lines are the total net generation (including

transmission) and not including the random wind generation. The solid coloured lines

are the total generation, including wind samples. Table 8 summarizes the results of

out-of-sample verifications of the supporting hyperplane method at probability level of

p = 95% (the same simulation as in Table 5) giving results of 94.2% and 95.9% for buses

b = 1 and b = 3, respectively. The same analysis for the individual case at probability of

p = 99% in Table 6 results in 92.8% and 95.9%, reinforcing the topic of lack of precision

of the individual method when the probability is taken jointly, especially for bus b = 1. In

Figure 10 the spatial discrepancies of buses 1 and 3 appear distinctly through the different

volatilities, which were the result of the specific variance-covariance matrices Σ(b).

Figure 10 – Out-of-sample simulations of the power balance between methods having
obtained a similar a posteriori probability level. Dashed red lines are upper and lower load
thresholds. Dashed black lines are the total power due to generation and transmission,
excluding (random) wind generation. Coloured continuous lines are the whole generation
including wind Monte-Carlo simulations.

(a) Sup. Hyperplane Mtd. (b) Individual Mtd. (c) Sample Based Mtd.

at p=95% - Bus 1 at p=99% - Bus 1 at p=98% - Bus 1

(d) Sup. Hyperplane Mtd. (e) Individual Mtd. (f) Sample Based Mtd.

at p=95% - Bus 3 at p=99% - Bus 3 at p=98% - Bus 3

Source: Thesis results.
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Table 7 – Sensitivity to sample size and probability level of Sample Based Method [Results
on average of 10 simulations]

# of samples 100 250 500 500

Probability level (psb) 99% 99% 99% 98%

CPU time [sec] 53 121 442 4904

# Resampling tries 1.1 1.5 2.5 1.1

Joint Prob. bus = 1 91.68% 94.53% 96.64% 94.75%

Joint Prob. bus = 3 93.54% 96.03% 97.17% 95.69%

Tot. Cost [$106] 5.56 5.58 5.63 5.57

Source: Thesis results.

4.4.3 Comparative results with Sample Based Probabilistic Constraints

Following (LUEDTKE; AHMED, 2008), the sample based method uses a higher proba-

bility level psb (for instance, 99%) than the desired probability level, to have the confidence

to achieve feasible solutions with a level close to p = 95%. We have moreover evaluated the

conservative theoretical minimum number of samples necessary to offer an upper bound

with 90% of confidence and found this number to be 70, 000. Such a large sample size

was found to be impractical for computations on standard computer workstations. One of

the main difficulties observed in the here analysed sample-based method is to define the

number of samples and the safe probability level psb to have confidence to obtain solutions

close to desired probability level p = 95%. In order to evaluate the practically needed

number of samples we conducted a series of experiments with the method of Section 4.3.3.

For a test with 1000 samples, the memory consumption went over 6 GB RAM in the ded-

icated server, which provoked memory issues and no solutions could be retrieved when

tested in a typical computer workstation (8 GB RAM).

The summary of the results with the average values of 10 simulations of each case are

presented in Table 7. We note that the number of resampled scenarios to get a feasible

solution increases with the higher number of samples, going from 1.1 to 2.5 sampled

scenarios tries, when the probability level (i.e, psb = 99%) is maintained. The average

CPU time tends to increase with the number of samples in the simulation. The table shows

the average CPU time of the last simulation (not accounting for resampling simulation

time). An additional observation is the difference in CPU time in the simulations with
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Figure 11 – Box-plot of a posteriori probability of Sample Based Method simulations.

Source: Thesis results.

#500 samples when psb = 99% and psb = 98%, where a slight change in the probability

level changed the MILP time for convergence in 11× on average.

Figure 11 shows a box-plot chart where the probability value of the sample based

solutions are evaluated. The range of possible probabilities diminishes with a larger

number of samples. For instance, in 10 simulations of 100 samples at a probability level

psb = 99% for bus b = 1 (bus1 100 psb = 99% in the figure) the a posteriori joint

probability verification ranges from 87.7% to 96.4%, while for 500 samples at the same

psb this range is much tighter. With this figure, we could assert empirically, for example,

that the sample-based method with 500 scenarios and a psb = 98% lead to solutions with

a joint probability level near the desired level p = 95% for both buses.

Comparing the overall results between the supporting hyperplane method of Table 5

with a probability level of p = 95% and Table 7 we observe that if high accuracy is desired,

large sample size is required. Another strategy would be to evaluate many simulations

with fewer samples, for instance, 250, and pick up the best solutions. In any case, some

heuristic strategy is required to handle the solutions. In terms of total cost, both methods

(in Tables 5 and 7), provide an optimal approximate cost of $5.57 · 106 when at close (a

posteriori) probability levels. Figure 10 shows an out-of-sample simulation of the power

balance of the three methods with similar a posteriori joint probability level of nearly
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Table 8 – Comparative results between algorithms - Commitment strategy

Method Supporting Individual Sample

Hyperplane Based

Probability level 95% 99% 98%

Out-of-sample (Bus 1) 94.20% 92.80% 94.50%

Out-of-sample (Bus 3) 94.90% 95.90% 95.50%

Thermo Gen. [GW] 28.40 28.40 28.15

Hydro Gen. [GW] 45.55 45.34 46.00

Source: Thesis results.

95%. Table 8 reveals that in terms of total thermoelectric and hydroelectric generation

the three methods have similar results, with the individual PC slightly prioritizing thermal

production rather than hydro, when compared with the others methods.

When examining Table 7, the sample-based method appears to be roughly faster

than supporting hyperplane method, depending on the number of sampled scenarios and

the probability level psb . Still, this hides the fact that due to sampling, the true proba-

bility level of the given solution is only known in a posteriori verification. Moreover, as

reinforced by Figure 11, the results depend on the set of drawn samples, and sometimes

even the model can be infeasible for a given set, yielding the need for resampling. In

particular, if the desired probability level is fixed in p = 95% the solution can be slightly

infeasible given a too optimistic view of the optimal cost (case of #100 samples in Ta-

ble 7) or strictly feasible yielding a pessimistic view of the optimal cost (case of #500

samples and psb = 99%). In this aspect, the method deeply differs from the proposed

supporting hyperplane method, which allows one to set exactly the desired probability

level. Moreover, the obtained solutions do not depend on “a drawn set of scenarios”.

4.4.4 Case study: 46-bus system

In this section, we apply the algorithm to a large-scale computational instance,

based on the Southern Brazilian system, with 16 hydro plants (52 units), 11 thermal

plants, and two wind farms. The power capacities are 11.82, 3.47, and 0.5 GW for hydro,

thermal and wind, respectively. The demand fluctuates around 10 and 12.5 GW over the

24-hours planning horizon, and it is distributed in an electrical network with 46 buses
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Figure 12 – Hydro plants data - 46-Bus system: Triangles indicate reservoirs with regu-
larization capacity and circles indicate run-of-river plants.

Source: Thesis results.

and 95 lines. For illustrative purposes, the hydro system is presented in Fig. 12. To

understand it, consider the only plant in Chapecó River. This plant has 3 units, each

one with 40 MW capacity, and a reservoir with 26 hm3 useful volume. All units in the

same plant are identical, and water travelling between two consecutive reservoirs is 1 or 2

hours depending on the distance. As a result, the MILP (4.1)-(4.6) has 10,657 variables

(1,512 binaries) and 25,618 constraints. Due to the hydro predominance, the piecewise

linear model of the HPF corresponds to approximately 64% of the constraints.

Table 9 presents the optimal solutions with different probability levels. As expected,

this instance needed more CPU time for convergence, although, on average, the computa-

tional effort is 1.31 times greater in comparison with the small system instances. Table 10

presents the CPU time in each step of the algorithm, where approximately 60% is related

to the solution of the upper and lower bounds MILP problems. As the number of wind

farms is identical in the computational instances, similar CPU time is spent on computing

the interpolation and gradients in each iteration. Based on these results, we see that the

number of wind farms is not the bottleneck of the approach. If the dimension of random
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Table 9 – Sensitivity to probability level for the mixed integer supporting hyperplane
method : 46-bus system

Probability level 90% 95% 97.5%

CPU time [sec] 4,117 3,852 3,869

# of iterations 94 91 88

Joint Prob. bus = 1 89.99% 94.96% 97.47%

Joint Prob. bus = 3 90.04% 94.95% 97.50%

Tot. Cost [$106] 1.07 1.10 1.13

CC Converged Gap 4.7 · 10−3 4.7 · 10−3 4.2 · 10−3

Source: Thesis results.

Table 10 – Supporting hyperplane method at p=95% - Tps - 46-bus system

Step L. Bound Bisection P. U. Bound Gradients

Time (%) 38.00 11.56 21.68 26.38

Source: Thesis results.

variables is maintained, one would expect a linear time complexity in computing interpo-

lation and gradients, since they are strictly related to the number of considered PC in the

problem. This linearity in time cannot be ensured for the whole method since the lower

and upper bound steps are concerned. However, the use of decomposition techniques

could allow a far more efficient solution (SCUZZIATO; FINARDI; FRANGIONI, 2017).

In Figure 13, we present the optimal solutions for the 46-bus system in terms of

the thermal dispatch with different levels of probability. From these, it is clear that the

requirement to ensure that the level of probability holds induces higher generation for the

thermal plants. Note that at probability p = 90% at most 9 thermal units are committed

for just 2 hours, while at probability p = 97.5% 10 units are committed for 7 hours. The

relationship between generation and demand for whole 46-bus system is shown in Fig. 14,

where we note how the optimal dispatch meets the load demand, within thresholds that

take into account the uncertainty of the wind farms generation. By those last figures, we

observe that the hydro generation changes slightly from the level of 9 GW and the thermal

generation sources adapt themselves to the required level of probability. Depending on

the expected future cost of the water function, i.e., how the system is in terms of water

availability, this flexibility can also happen for the hydro dispatch.
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Figure 13 – Optimal thermal dispatch for the 46-bus system.

(a) Thermal dispatch (b) Thermal dispatch (c) Thermal dispatch

at p = 90% at p = 95% at p = 97.5%
Source: Thesis results.

Figure 14 – Relashionship between generation and demand for the 46-bus system.

(a) Relationship (b) Relationship (c) Relationship

at p = 90% at p = 95% at p = 97.5%
Source: Thesis results.

4.5 IMPROVING THE ALGORITHM’S PERFORMANCE

Although the algorithm performance as presented has already an interesting trade-

off between the quality of the solution and computation time, this section aims to explore

some strategies to improve the CPU time performance for the proposed supporting hyper-

plane method for MILP problems. The first strategy that we follow is the investigation on

the influence of changing the bisection procedure in the interpolation step of Algorithm 2.

After that, we check some strategies for dealing with the step of the lower bound MILP

problem.

4.5.1 Interpolation Procedure

One of the most known procedures to find a root of a function is the bisection

method. It is due to its versatility, easy implementation and guaranteed convergence.

In Section A.6, we presented some alternative methods that are found in the literature.

As shown in Table 4, the interpolation procedure takes around 13% of the total running

time of the algorithm. The objective of this section is to study the performance of those
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Table 11 – Interpolation method - Comparative results

Prob. Bisection Regula Falsi Ridders

CPU time [min] 90% 61.70 57.88 56.33

Iterations[#] 90% 72 71 75

Elapsed Time 90% 11.58% 11.00% 8.51%

Int. Inter. [in average #] 90% 9.19 7.80 2.86

Tot. Cost [$106] 90% 5.50 5.49 5.50

CPU time [min] 95% 47.47 45.64 46.02

Iterations[#] 95% 73 75 74

Elapsed Time 95% 13.48% 17.22% 9.96%

Int. Inter. [in average #] 95% 7.94 9.61 2.77

Tot. Cost [$106] 95% 5.57 5.57 5.57

CPU time [min] 97.5% 39.83 43.10 40.27

Iterations[#] 97.5% 66 70 72

Elapsed Time 97.5% 11.71% 19.95% 9.95%

Int. Inter. [in average #] 97.5% 6.33 11.93 2.53

Tot. Cost [$106] 97.5% 5.64 5.64 5.64

Source: Thesis results.

methods when it substitutes the bisection method in Step 2 of Algorithm 2. Table 11

summarizes the comparative simulations for the 5-bus system.

From those simulations, we note that the Regula Falsi interpolation method seems

to perform worse than the other methods when regarded the Elapsed Time (in % of total

time) of the interpolation procedure, mainly for the cases of p = 95% and p = 97.5%.

This can be explained due to the fact that its heuristics to defined the bracket position

seems to perform more iterations than the other methods. The simulations also make

clear that the elapsed time necessary for the interpolation method, is consistently lower

when applied the Ridder’s method for all probability levels. Note that the optimal total

cost does not change much between methods, but the total CPU time changes as the

different points found by each root method have effects on the MILP Branch and Bound

convergence for each iteration. This last situation ”masks” the advantage on the use

of the Ridders method when it is highlighted the total time, but if it is regarded only

the interpolation relative time, the Ridder’s presents, in average, 22.71% lower time for

convergence than the bisection method and 41.00% lower time when compared with the

Regula Falsi method.

As shown in Section A.6.3, a drawback on the use of the Ridder’s method is that for

each iteration of interpolation method it is necessary to compute the underlying function
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(i.e. the probability distribution by the code of Genz) two times, when for the other

methods it is necessary just once. If we consider that there is no reason to the Genz’s

code response varies between methods, since the evaluated function is the same in all

cases, the use of Ridder’s method starts to become more attractive when the interpolation

procedure converges in less than the half of iterations of the others methods. As shown

in Table 11, the number of iterations of the interpolation method at a probability level

of 95%, when it is used the Ridder’s method, is 2.77 iterations on average. The bisection

and Regula Falsi methods converge 7.94 and 9.61 iterations on average, respectively. For

both cases, they are higher than 2 × 2.77 = 5.54 iterations, and hence the faster rate of

convergence of the the Ridder’s method induces a faster convergence for our system. The

same trend was noted for simulations with probability levels of 90% and 97.5%. These

gains could justify the use of the Ridder’s method on our problem, replacing the bisection

procedure.

4.5.2 Heuristics on the lower bound problem

As suggested by Table 4, during simulations, the lower bound MILP problem is the

step that demands the highest CPU time consumption on average, in the whole algorithm

process. This section aims to investigate some strategies to reduce this proportion, or at

least diminish the number of necessary lower bound MILP problem evaluations.

The first followed strategy is made noting that the problem that offers feasible

solutions to the problem is the upper bound MILP. As the lower bound problem only

limits the optimal value from below, the idea was to relax the binary variables, hence

defining them in [0, 1] on the lower bound MILP problem, solving so a LP problem. The

objective here is to take advantage of the usual faster convergence of LP algorithms when

compared to MILP ones. The advantage is understandable since the basic MILP problem

algorithm, the Branch and Bound, is basically composed of solving several LP relaxed

problems to provide bounds to the original problem (WOLSEY, 1998). On simulations

tests with a probability level of 95%, even though the average time for an iteration of
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the supporting hyperplane method has decreased, the generated cutting planes has poor

quality when compared to one provided by the MILP lower bound problem. It makes the

rate of convergence for the whole problem slower than the initially proposed algorithm,

making the use of the LP relaxation not attractive, and so this strategy was abandoned.

Through Table 6, it is shown that, despite the lower quality of answers, the indi-

vidual PC problem provides fast solutions, since it is solved only one MILP per running.

The idea of the second tested heuristic is to precompute solutions using the individual PC

algorithm, setting in the initial steps of the supporting hyperplane method, cutting planes

based on these ”good” initial solutions. It is done by computing Individual PC solutions

for high enough probability levels. For instance, if the underlying problem has a desired

probability level of 95%, pre-compute solutions using the individual problem for the cor-

respondent quantile of the percentiles 95% or 97.5% (if individual solution not feasible to

the joint one). These solutions are then plugged into the lower bound problem achieving

lower bound solutions for the proposed supporting hyperplane MILP method. Fixing the

Slater solution, one can use the interpolation method to compute feasible solutions for

the PC, solution that is used to support a cutting plane in this iteration.

The idea behind the last strategy is to help the algorithm, in its starting iterations,

to generate active cutting planes that would eventually be constructed only in advanced

iterations, and then providing higher lower bounds on early iterations. In test simulations,

the settlement of artificial solutions has provided high lower bound solutions at the start

of the algorithm, but they did not stay active for long on the subsequent iterations, with

the lower bound eventually decreasing over iterations. Therefore, this strategy, in its

initial conception was not appealing either.

An alternative strategy that we pursue to this last one is, rather than use initial

solutions to plug active constraints, to add the correspondent constraints of the individual

PC problem in the lower bound problem of the MILP supporting hyperplane method. It

is done by a precomputing step that defines the quantiles that will be used to parametrize

the constraints, as set in Individual PC problem (4.22). The advantage of this procedure

is that the solution of lower bound MILP problem is at least as high as the individual PC
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Table 12 – Sensitivity to probability level with Individual PC added to the lower bound
MILP problem

Probability level 90% 95% 97.5%

Ind. prob. level 95% 97.5% 99%

CPU time [sec] 413 754 745

# of iterations 11 23 26

Joint Probability b = 1 90.0% 95.1% 97.5%

Joint Probability b = 3 90.0% 95.0% 97.5%

Tot. Cost [$106] 5.49 5.56 5.64

CC Converged Gap 4.8 · 10−3 4.9 · 10−3 4.9 · 10−3

HPF prod. PP1 -0.15 % 0.23 % 0.00 %

HPF prod. PP2 -1.11 % -1.12 % -1.06 %

HPF prod. PP3 -1.44 % -1.49 % -1.49 %

Source: Thesis results.

problem. Using a high enough individual probability level, it indeed makes the supporting

hyperplane algorithm converge faster than its former formulation (2).

The summary of the results of the strategy of adding individual PC to the supporting

hyperplane MILP method is in Table 12. The correspondent joint probability of the

individual probability level is presented in Table 6, meaning that for the supporting

hyperplane algorithm, the first iteration of the lower bound MILP problem has at least

joint probability of 78.14% for Bus b = 1 and 83.42% for b = 3. Comparing the results

with the initially proposed problem of Table 5 we note that for all cases the total CPU

time decreased sharply without significant changes on the converged optimal total cost.

For instance, for the joint probability level of 95% the total time decreased 74.4% going

from 2942 sec. to 754 sec., with a difference in the total cost of 0.09%. These results

support the use of this strategy to improve the algorithm performance in terms of time

for convergence, maintaining the quality of the solution.

4.6 HYDRO PRODUCTION FUNCTION COMPARATIVE RESULTS

Motivating the use the proposed HPF formulation proposed in Section 4.2.1, we

perform comparative simulations regarding a traditional HPF modelling, i.e. several

linear piecewise approximation to the nonlinear HPF of each unit. In Table 13 we present

a set of simulations using a convex hull technique that traces planes over points of the

original nonlinear HPF function. For details of the piecewise linear HPF function, we
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Table 13 – Sensitivity to probability level using the linear piecewise production function

Probability level 90% 95% 97.5%

Ind. prob. level 95% 97.5% 99%

CPU time [sec] 1010 1149 1505

# of iterations 21 27 29

Joint Probability b = 1 90.0% 95.1% 97.5%

Joint Probability b = 3 90.0% 95.0% 97.5%

Tot. Cost [$106] 5.53 5.60 5.67

CC Converged Gap 5.0 · 10−3 4.9 · 10−3 4.9 · 10−3

HPF prod. PP1 -0.79 % -0.79 % -0.60 %

HPF prod. PP2 7.66 % 7.75 % 6.15 %

HPF prod. PP3 -6.03 % -6.77 % -6.11 %

Source: Thesis results.

refer to (DINIZ; MACEIRA, 2008). For classic algorithms of the convex hull method we

refer to (GRAHAM, 1972; BARBER; HUHDANPAA, 1996).

Comparing the Table 12, where it was used the formulation of Section 4.2.1, with

Table 13 we note that the time for convergence for the proposed model is, in general, lower

for all simulations. The last part of those tables make the comparison considering fixed

the policy of outflow (
∑

j∈Jl
q̇j,l,t+ ṡl,t) of each plant for the optimal solution. Meaning, it

is established how much the simulated hydropower production deviates from the nonlinear

HPF (GULLIVER; ARNDT, 1991) of each plant (taken by unit), since this last is supposed to

be the best approximation for the real plant production. Table 13 presents a much higher

deviation from the nonlinear formulation in general, with worse responses for plants l = 2

and 3. This higher error rate is also reflected in the optimal total costs when we note that

the piecewise linear approximation simulations have offered higher costs for all cases. An

explanation to these higher costs is that the higher level of errors on the production level

turns the production of the turbines less efficient, hence it is necessary a higher thermal

generation level to meet the load requirement constraint (in PC form), reflecting in higher

costs.
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5 GENERALIZED CONCAVITY OF BILATERAL PROBABILISTIC
CONSTRAINED FUNCTIONS

Throughout this chapter we aim at discussing the second topic of the Thesis. We

explore a particular case of the PC optimization problem of the following type:

min
ẋ

k0(ẋ) (5.1)

s.t. A · ẋ = beq (5.2)

P

[
ae ≤ he(ẋ, ξ̃) ≤ be, e ∈ E

]
≥ p, (5.3)

where ẋ ∈ R
m, is defined in a continuous set, ξ̃ is a n-dimensional random vector, P is the

cumulative distribution function induced by the random vector ξ̃ on R
n, he : R

m×Rn → R,

e ∈ E with |E| = E an index set, and p ∈ [0, 1] is the probability level, set as a parameter.

The inequality ae ≤ he(ẋ, ξ̃) ≤ be in (5.3), where ae, be ∈ R, is called two-sided (or

bilateral) structure in the present work, that confronts with the (simpler) one-sided (or

unilateral) he(ẋ, ξ̃) ≤ be version. A direct interpretation of (5.3) define that the higher is

the probability level p, more restrict is the feasible set defined by the PC.

In the present chapter, we focus on the case that he(ẋ, ξ̃) has a single bilinear struc-

ture, i.e., structures that e = 1 and the random variables appear in a scalar multiplication

with the decision ones, as in he(x, ξ̃) = ξ̃⊤x, for instance. The last structure was intro-

duced in Section 3.2.2.

A necessary and sufficient condition to ensure the local concavity of a given indi-

vidual and one-sided Gaussian PC is provided in (MINOUX; ZORGATI, 2016), which also

develop a sufficient condition for the bilateral case. The proofs in this last work are based

on the search of the conditions that make the Hessian matrix of the probability function

f(x) = P[ξ̃⊤x ≤ b] be negative semi-defined, being as a result locally concave. The authors

extend their works in (MINOUX; ZORGATI, 2017) defining necessary and sufficient condi-

tions to ensure that the bilateral is locally concave. Finally, in (van ACKOOIJ, 2017) the

unilateral case is extended in terms of the conditions to ensure that the unilateral case of
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the probability function is r-concave, providing as a result a concept that potentially en-

larges the convex set M(p) when compared to the concave proof in (MINOUX; ZORGATI,

2016), indeed an interesting property in applications of PC in programming problems.

Further discussions on the challenges of dealing with PC in programming problems are

found in the former classical works (BRASCAMP; LIEB, 1976; PRÉKOPA, 1995; RINOTT,

1976; DENTCHEVA, 2009), active lines of research involving convexity of PC constraints are

also found in (HENRION; STRUGAREK, 2008, 2011; ZADEH; KHORRAM, 2012; van ACKOOIJ,

2015; van ACKOOIJ; MALICK, 2018; FARSHBAF-SHAKER; HENRION; HOMBERG, 2018). We

commonly find those bilinear structures in problems that deal with assets portfolio def-

inition, where x, for instance, is the vector representing the amount of underlying asset

through time and ξ̃ are the random variables representing its future prices. This pattern

of constraint is extended in the next sections, showing its potentialities in a real based

energy portfolio problem.

5.1 PRELIMINARIES, NOTATIONS AND MOTIVATION

The present section makes use of r-concave functions, a generalization of concave

functions that plays an important role to define convexity of feasible sets for PC problems.

Following the definition of generalized concave functions, as explored in Section A.2 by

the Definition A.2.1 regarding r-concave mappings. As checked in (DENTCHEVA, 2009,

Lemma 4.8), an important property in such mapping r 7→ mr(a, b, λ) is that it is a

nondecreasing and continuous one. As a result, for r1 ≤ r2, if f is r2-concave, it is also

r1-concave.

So the work extends generalized concavity properties for bilateral probability dis-

tributions P{a ≤ ξ̃⊤x ≤ b}, where ξ̃ ∼ N (µ,Σ) being the mean µ ∈ R
n and Σ ∈ R

n×n a

nonsingular covariance matrix. To generalize the approach, we make use of standardized

normal distributions, this way we define the following functions:

g(x) := P[a ≤ ξ̃⊤x ≤ b] = Φ(hb(x)) + Φ(ha(x))− 1 fr(x) := gr(x) (5.4)
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where,

Φ(x) :=

∫ x

−∞

e−
u2

2√
2π

du (5.5)

ha(x) :=
µ⊤x− a√
x⊤Σx

hb(x) :=
b− µ⊤x√
x⊤Σx

. (5.6)

The advantage of the development of generalized concepts of concavity for such

probabilistic functions as g(x) is straightforward when one observes the effects in the

level sets defined by the constraints (5.3). Indeed, as demonstrated in (van ACKOOIJ,

2017) for the unilateral case of g(x), computable generalization of r−concave functions

implies in larger (locally) convex feasible sets. A backlash of these generalizations is the

fact that, differently from concave functions, r−concavity does not preserve the additive

property. As a result, the sum of two r−concave functions does not define necessarily a

r−concave function, turning a direct application of the concepts in (van ACKOOIJ, 2017)

to bilateral functions nontrivial. Nevertheless, we generalize the concavity properties of

the mapping g(x), and the capabilities of the method are motivated, for instance, by the

comparison Figure 15. In Figure 15(a) the small black image results from the application

of the conditions of Theorem 1 in (MINOUX; ZORGATI, 2017) to Example 5.4.3 below to

ensure local convexity of the level set {x : g(x) ≥ p}. In contrast, we apply the here

proposed conditions in Figure 15(b), for p̄ = 100%, where p̄ is a parameter linked with

the threshold p, and the advantage in terms of enlargement of the ensured convex set is

clear.

5.2 FUNCTIONS DEFINITIONS AND DERIVATIVES

Throughout the present chapter, it is used the differentiations of functions (5.4)-

(5.6). Firstly, we offer the ones for h•(x) functions, where ∇xh•(x) and ∇2
xh•(x) are the
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Figure 15 – Comparison between methods. Lighter colour areas corresponds to different
lower r-concavity levels.

(a) Reference. (b) p̄ = 100%.
Source: Thesis results.

gradient and Hessian matrix respectively:

∇xha(x) =
−1√
x⊤Σx

(−µ+
(µ⊤x− a)Σx

x⊤Σx
), (5.7)

∇xha(x)∇xha(x)
⊤ =

1

x⊤Σx
(µµ⊤ − (µ⊤x− a)

x⊤Σx
[µx⊤Σ+ Σxµ⊤]

+

(
(µ⊤x− a)

x⊤Σx

)2

Σxx⊤Σ), (5.8)

∇2
x
ha(x) =

1

(x⊤Σx)
3
2

[
−Σxµ⊤ − µ(Σx)⊤ − (µ⊤x− a)Σ + 3

(µ⊤x− a)

(x⊤Σx)
Σxx⊤Σ

]
. (5.9)

∇xhb(x) =
−1√
x⊤Σx

(µ+
(b− µ⊤x)Σx

x⊤Σx
), (5.10)

∇xhb(x)∇xhb(x)
⊤ =

1

x⊤Σx
(µµ⊤ +

(b− µ⊤x)

x⊤Σx
[µx⊤Σ+ Σxµ⊤]

+

(
(b− µ⊤x)

x⊤Σx

)2

Σxx⊤Σ), (5.11)

∇2
x
hb(x) =

1

(x⊤Σx)
3
2

[
Σxµ⊤ + µ(Σx)⊤ − (b− µ⊤x)Σ + 3

(b− µ⊤x)

(x⊤Σx)
Σxx⊤Σ

]
. (5.12)

And the cross products:
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∇xhb(x)∇xha(x)
⊤ =

1

x⊤Σx

(
−µµ⊤ +

(µ⊤x− a)

x⊤Σx
µ(Σx)⊤ − (b− µ⊤x)

x⊤Σx
Σxµ⊤

)

+
1

x⊤Σx

(
(µ⊤x− a)(b− µ⊤x)

(x⊤Σx)2
Σxx⊤Σ

)
, (5.13)

∇xha(x)∇xhb(x)
⊤ =

1

x⊤Σx

(
−µµ⊤ − (b− µ⊤x)

x⊤Σx
µ(Σx)⊤ +

(µ⊤x− a)

x⊤Σx
Σxµ⊤

)

+
1

x⊤Σx

(
(µ⊤x− a)(b− µ⊤x)

(x⊤Σx)2
Σxx⊤Σ

)
. (5.14)

For the g(x) function, we calculate the following differentiations:

∇g(x) = ∇Φ(hb(x)) +∇Φ(ha(x)) =
e−

1
2h

2
b
(x)

√
2π

∇hb(x) +
e−

1
2h

2
a
(x)

√
2π

∇ha(x), (5.15)

∇2g(x) =
e−

1
2hb(x)

2

√
2π

(−hb(x)∇hb(x)∇hb(x)
⊤ +∇2hb(x))

+
e−

1
2ha(x)

2

√
2π

(−ha(x)∇ha(x)∇ha(x)
⊤ +∇2ha(x)). (5.16)

We define fr(x) := gr(x). And we extend its derivatives:

∇fr(x) = rgr−1(x)∇g(x) = rgr−1(x)

(
e−

1
2h

2
a
(x)

2π
∇ha(x) +

e−
1
2h

2
b
(x)

2π
∇hb(x)

)
. (5.17)

And so defining:

∇fra(x) := rgr−1(x)
e−

1
2
h2
a(x)

2π
∇ha(x), (5.18)

∇frb(x) := rgr−1(x)
e−

1
2
h2
b
(x)

2π
∇hb(x). (5.19)

Then, ∇fr(x) = ∇fra(x) +∇frb(x). Establishing ∇2fr(x) = ∇2fra(x) +∇2frb(x), where:
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∇2fra(x) = rgr−1(x)
e−

h
2
a
(x)

2√
2π


 (r − 1)e−

h
2
a
(x)

2

g(x)
√
2π

∇ha(x)∇h⊤

a
(x)− ha(x)∇ha(x)∇h⊤

a
(x)




+ rgr−1(x)
e−

h
2
a
(x)

2√
2π


∇2ha(x) +

(r − 1)e−
h
2
b
(x)

2

g(x)
√
2π

∇hb(x)∇h⊤

a
(x)


 , (5.20)

∇2frb(x) = rgr−1(x)
e−

h
2
b
(x)

2√
2π


 (r − 1)e−

h
2
b
(x)

2

g(x)
√
2π

∇hb(x)∇h⊤

b
(x)− hb(x)∇hb(x)∇h⊤

b
(x)




+ rgr−1(x)
e−

h
2
b
(x)

2√
2π


∇2hb(x) +

(r − 1)e−
h
2
a
(x)

2

g(x)
√
2π

∇ha(x)∇h⊤

b
(x)


 . (5.21)

5.3 CONVEXITY ANALYSIS

This section provides conditions to certificate that the function g(x) preserves locally

r−concave properties. Initially, in Section 5.3.1, it is developed necessary and sufficient

conditions, followed by Section 5.3.2 which uses more straightforward sufficient conditions

that are appropriate to be applied in the subsequent sections.

5.3.1 A necessary and sufficient condition

In the following theorem, we define a necessary and sufficient condition to ensure

the convexity for the feasible set of the underlying mapping g(x).

Theorem 5.3.1 Let Φ : R → [0, 1] be the one dimensional Gaussian CDF. For n ≥ 1,

let b ∈ R, µ ∈ R
n and positive definite n × n matrix Σ be given. Considering b − a > 0

for any x such that µ⊤x ∈ [a, b], and for any r < 0 the mapping g(x) defined in (5.4) is

locally r-concave around x, if and only if the following condition holds:

(C) µ⊤Σ−1µ ≤ gr − 2hr
µ⊤x√
x⊤Σx

+ c2r

(
µ⊤Σ−1µ− (µ⊤x)2

x⊤Σx

)
, (5.22)

where, considering ha = ha(x), hb = hb(x), πa = e−
h2a
2

g(x)
√
2π

and πb =
e−

h2
b
2

g(x)
√
2π
, the variables
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gr, hr and cr are established below:

gr =
r(π2

ah
2
a + π2

bh
2
b)− (πaha + πbhb)

2 + πaha(2− h2a) + πbhb(2− h2b)

πaha + πbhb − (r − 1)(π2
a + π2

b ) + 2πaπb
, (5.23)

hr =
(πaha(−(r − 1)πa + ha + πb) + πbhb((r − 1)πb − hb − πa)− πa + πb)

πaha + πbhb − (r − 1)(π2
a + π2

b ) + 2πaπb
, (5.24)

c2r = 3 +
(r(π2

ah
2
a + π2

bh
2
b)− (πaha − πbhb)

2 − h3aπa − h3bπb)

πaha + πbhb
(5.25)

+
(πaha(−(r − 1)πa + ha + πb) + πbhb((r − 1)πb − hb − πa)− πa + πb)

2

((πaha + πbhb)− (r − 1)(π2
a + π2

b ) + 2πaπb)) · (πaha + πbhb)
. (5.26)

Proof.

From the calculations performed in Section 5.2, where the gradients ∇ha(x), ∇hb(x)

and the Hessian matrix ∇2ha(x), ∇2hb(x) and ∇2fr(x) are established, we define the

auxiliary matrix ∇2fr(x) = Hr := Hra +Hrb +Hrab . Where:

Hra
(x) = rgr(x)

e−
h
2
a
(x)

2

g(x)
√
2π


 (r − 1)e−

h
2
a
(x)

2

g(x)
√
2π

∇ha(x)∇h⊤

a
(x)− ha(x)∇ha(x)∇h⊤

a
(x) +∇2ha(x)


 , (5.27)

Hrb
(x) = rgr(x)

e−
h
2
b
(x)

2

g(x)
√
2π


 (r − 1)e−

h
2
b
(x)

2

g(x)
√
2π

∇hb(x)∇h⊤

b
(x)− hb(x)∇hb(x)∇h⊤

b
(x) +∇2hb(x)


 , (5.28)

Hrab
(x) = rgr(x)

e−
h
2
a
(x)

2

g(x)
√
2π

e−
h
2
b
(x)

2

g(x)
√
2π

(
(r − 1)∇hb(x)∇h⊤

a
(x) + (r − 1)∇ha(x)∇h⊤

b
(x)
)
. (5.29)

Using the definitions sr(h•) := (r − 1) e−
1
2h2•

g(x)
√
2π
, this implies that sr(ha) = (r − 1)πa and

sr(hb) = (r − 1)πb and we replace these definitions in the following mappings:

Hra
(x) = rgr(x)πa

(
(r − 1)πa∇ha(x)∇h⊤

a
(x)− ha(x)∇ha(x)∇h⊤

a
(x) +∇2ha(x)

)
, (5.30)

Hrb
(x) = rgr(x)πb

(
(r − 1)πb∇hb(x)∇h⊤

b
(x)− hb(x)∇hb(x)∇h⊤

b
(x) +∇2hb(x)

)
, (5.31)

Hrab
(x) = rgr(x)πaπb

(
(r − 1)∇hb(x)∇h⊤

a
(x) + (r − 1)∇ha(x)∇h⊤

b
(x)
)
. (5.32)

Defining the following notation for the values inside the brackets, as in:

Ĥra :=
(
(r − 1)πa∇ha(x)∇h⊤

a (x)− ha(x)∇ha(x)∇h⊤
a (x) +∇2ha(x)

)
,

we rewrite the matrix Hr:
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Hr = rgr(x)
(
πaĤra + πbĤrb + πaπbĤrab

)
. (5.33)

Opening in their primitives, as in Section 5.2, and after rearrangements we have:

Ĥra
=

(sr(ha)− ha)

x⊤Σx

[
µµ⊤ − (µ⊤x− a)

x⊤Σx
[µx⊤Σ+ Σxµ⊤] +

(
(µ⊤x− a)

x⊤Σx

)2

Σxx⊤Σ

]

+
1

(x⊤Σx)
3
2

[
−Σxµ⊤ − µ(Σx)⊤ − (µ⊤x− a)Σ + 3

(µ⊤x− a)

(x⊤Σx)
Σxx⊤Σ

]
, (5.34)

Ĥrb
=

(sr(hb)− hb)

x⊤Σx

[
µµ⊤ +

(b− µ⊤x)

x⊤Σx
[µx⊤Σ+ Σxµ⊤] +

(
(b− µ⊤x)

x⊤Σx

)2

Σxx⊤Σ

]

+
1

(x⊤Σx)
3
2

[
Σxµ⊤ + µ(Σx)⊤ − (b− µ⊤x)Σ + 3

(b− µ⊤x)

(x⊤Σx)
Σxx⊤Σ

]
, (5.35)

Ĥrab
=

1

x⊤Σx

(
−2µµ⊤ +

(µ⊤x− a)− (b− µ⊤x)
x⊤Σx

[µ(Σx)⊤ +Σxµ⊤] +
2(µ⊤x− a)(b− µ⊤x)

(x⊤Σx)2
Σx⊤xΣ

)
.

(5.36)

Considering that the positive semidefiniteness of (5.33) is ensured, for r ≤ 0, if H̄r

below is negative semidefinite:

H̄r =
x⊤Σx

πaha + πbhb

Σ− 1
2

(
πaĤra + πbĤrb + πaπbĤrab

)
Σ− 1

2 . (5.37)

Making the necessary rearrangements, we get:

H̄r = γ̄ · Σ
1
2 xx⊤Σ

1
2

(x⊤Σx)
+ β̄ ·

[

Σ− 1
2 µx⊤Σ

1
2 +Σ

1
2 xµ⊤Σ− 1

2

(x⊤Σx)
1
2

]

+ ᾱ · Σ− 1
2 µµ⊤Σ− 1

2 − σ̄ · I. (5.38)
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Using sr(ha) = (r − 1)πa and sr(hb) = (r − 1)πb we make the simplifications:

ᾱ =
sr(ha)πa − haπa + sr(hb)πb − hbπb − 2πaπb

(πaha + πbhb)

= (−1 + (r − 1)(π2
a
+ π2

b
)− 2πaπb

πaha + πbhb

), (5.39)

β̄ =
−sr(ha)haπa + h2

a
πa − πa + sr(hb)hbπb − h2

b
+ πb + πaπb(ha − hb)

πaha + πbhb

=
πaha(−(r − 1)πa + ha + πb) + πbhb((r − 1)πb − hb − πa)− πa + πb

πaha + πbhb

, (5.40)

γ̄ =
(((r − 1)πa − ha)h

2
a
+ 3ha)πa + (((r − 1)πb − hb)h

2
b
+ 3hb)πb + 2hahbπaπb

πaha + πbhb

= 3 +
(r(π2

a
h2
a
+ π2

b
h2
b
)− (πaha − πbhb)

2 − h3
a
πa − h3

b
πb)

πaha + πbhb

, (5.41)

σ̄ =
πaha + πbhb

πaha + πbhb

= 1. (5.42)

Using the convention V = Σ
1
2x and W = Σ− 1

2µ, we write (5.38):

H̄r = γ̄
V V ⊤

‖V ‖2 + β̄
[WV ⊤ + VW⊤]

‖V ‖ + ᾱWW⊤ − I. (5.43)

Considering Z = dr
V

‖V ‖ + frW and Y = cr
V

‖V ‖ , we write (5.43) as follows:

H̄r = −ZZ⊤ + Y Y ⊤ − I, (5.44)

where ZZ⊤ = d2r
V V ⊤

‖V ‖2 + drfr
[VW⊤+WV ⊤]

‖V ‖ + f 2
rWW⊤ and Y Y ⊤ = c2r

V V ⊤

‖V ‖2 . From (5.44), we

have:

H̄r = (c2r − d2r)
V V ⊤

‖V ‖2 + (−drfr)
[
VW⊤ +WV ⊤]

‖V ‖ − f 2
rWW⊤ − I. (5.45)

And so, comparing (5.43) with (5.45), we establish the values of the auxiliary vari-

ables fr, dr and cr.

For fr:
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−f2
r =

(
−1 + (r − 1)(π2

a + π2
b )− 2πaπb

πaha + πbhb

)
⇔ f2

r = 1− (r − 1)(π2
a + π2

b )− 2πaπb
πaha + πbhb

fr =

√

1− (r − 1)(π2
a + π2

b )− 2πaπb
πaha + πbhb

. (5.46)

For dr:

−dr ·

√

1−
(r − 1)(π2

a + π2
b
)− 2πaπb

πaha + πbhb

=
πaha(−(r − 1)πa + ha + πb) + πbhb((r − 1)πb − hb − πa)− πa + πb

πaha + πbhb

d2r ·
(

1−
(r − 1)(π2

a + π2
b
)− 2πaπb

πaha + πbhb

)

=
(πaha(−(r − 1)πa + ha + πb) + πbhb((r − 1)πb − hb − πa)− πa + πb)

2

(πaha + πbhb)2

d2r =
(πaha(−(r − 1)πa + ha + πb) + πbhb((r − 1)πb − hb − πa)− πa + πb)

2

((πaha + πbhb)− (r − 1)(π2
a + π2

b
) + 2πaπb)) · (πaha + πbhb)

dr =

√

(πaha(−(r − 1)πa + ha + πb) + πbhb((r − 1)πb − hb − πa)− πa + πb)2

((πaha + πbhb)− (r − 1)(π2
a + π2

b
) + 2πaπb)) · (πaha + πbhb)

.

(5.47)

For cr:

c2r = 3 +
(r(π2

ah
2
a + π2

bh
2
b)− (πaha − πbhb)

2 − h3aπa − h3bπb)

πaha + πbhb
+ d2r . (5.48)

Considering the procedures clarified in Appendix C.1, we know that in order to have

(5.45) negative semidefinite the highest eigenvalue of the matrix (5.45) must be given by

the following equation:

‖Y ‖2 − ‖Z‖2 + ‖Y ‖2 × ‖Z‖2 − (Z⊤Y )2 ≥ 1, (5.49)

where:
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‖Y ‖2 = c2r
V ⊤V
‖V ‖2 = c2r , (5.50)

‖Z‖2 = d2r + 2drfr
µ⊤x√
x⊤Σx

+ f2
r µΣ

−1µ, (5.51)

(Z⊤Y )2 = d2rc
2
r + 2drfrc

2
r

µ⊤x√
x⊤Σx

+ f2
r c

2
r

(µ⊤x)2

x⊤Σx
. (5.52)

So we are able to discuss the left side of (5.49):

‖Y ‖2 − ‖Z‖2 + ‖Y ‖2 × ‖Z‖2 − (Z⊤Y )2 = c2r − d2r − 2drfr
µ⊤x√
x⊤Σx

− f2
r µ

⊤Σ−1µ+ d2rc
2
r+

+2drfrc2r
µ⊤x√
x⊤Σx

+f2
r c

2
rµ

⊤Σ−1µ− d2rc
2
r − 2drfrc2r

µ⊤x√
x⊤Σx

− f2
r c

2
r
(µ⊤x)2

x⊤Σx

= c2r − d2r − 2drfr
µ⊤x√
x⊤Σx

− f2
r µ

⊤Σ−1µ+

+f2
r c

2
rµ

⊤Σ−1µ− f2
r c

2
r
(µ⊤x)2

x⊤Σx

= c2r − d2r − 2drfr
µ⊤x√
x⊤Σx

− f2
r µ

⊤Σ−1µ+

+f2
r c

2
r

(

µ⊤Σ−1µ− (µ⊤x)2

x⊤Σx

)

.

(5.53)

After algebraic manipulations, we observe that if we divide both sides of (5.49) by

1
f2
r
from (5.53) we get:

c2r − d2r − 1

f2
r

− 2
dr

fr

µ⊤x√
x⊤Σx

− µ⊤Σ−1µ+ c2r

(
µ⊤Σ−1µ− (µ⊤x)2

x⊤Σx

)
≥ 0. (5.54)

Defining gr and hr, after some algebraic manipulation:

gr :=
c2r − d2r − 1

f2
r

=
r(π2

ah
2
a + π2

bh
2
b)− (πaha + πbhb)

2 + πaha(2− h2a) + πbhb(2− h2b)

πaha + πbhb − (r − 1)(π2
a + π2

b ) + 2πaπb
, (5.55)

hr :=
dr

fr
=

(πaha(−(r − 1)πa + ha + πb) + πbhb((r − 1)πb − hb − πa)− πa + πb)

πaha + πbhb − (r − 1)(π2
a + π2

b ) + 2πaπb
. (5.56)

Inequality (5.54) is rewritten as follows:

µ⊤Σ−1µ ≤ gr − 2hr
µ⊤x√
x⊤Σx

+ c2r

(
µ⊤Σ−1µ− (µ⊤x)2

x⊤Σx

)
, (5.57)

where we reach condition C in (5.22).

�
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5.3.2 Sufficient condition

We also achieve a milder condition.

Lemma 5.3.1 Let Φ : R → [0, 1] be the one dimensional Gaussian CDF. For n ≥ 1, let

b ∈ R, µ ∈ R
n and positive definite n × n matrix Σ be given. Considering b − a > 0

for any x such that µ⊤x ∈ [a, b], and for any r < 0 the mapping g(x) = P{a ≤ ξ̃⊤x ≤

b} = Φ( b−µ⊤x√
x⊤Σx

)− Φ( a−µ⊤x√
x⊤Σx

) is locally r-concave around x, if the following conditions hold

simultaneously:

(C1) µ⊤Σ−1µ ≤ θa (δr(θa)− 1)− 2θ
1
2
a δr(θa)

(
µ⊤x√
x⊤Σx

)
+ (δr(θa) + 2)

(
µ⊤x√
x⊤Σx

)2

, (5.58)

(C2) µ⊤Σ−1µ ≤ θb (δr(θb)− 1) + 2θ
1
2
b δr(θb)

(
µ⊤x√
x⊤Σx

)
+ (δr(θb) + 2)

(
µ⊤x√
x⊤Σx

)2

, (5.59)

(C3) µ⊤Σ−1µ ≤
(

µ⊤x√
xΣx

)2

. (5.60)

where θa = h2
a(x) =

(
µ⊤x−a√
x⊤Σx

)2
, θb = h2

b(x) =
(

b−µ⊤x√
x⊤Σx

)2
, δr(θa) = θa − θ

1
2
a sr(θa) − 1 and

sr(θa) = (r − 1) e−
1
2 θa√

2πg(x)
. For δr(θb) and sr(θb) we proceed in a equivalent way.

Proof.

We define ∇2fr(x) = ∇2fra(x) +∇2frb(x) := Ha +Hb +Hab. Where:

Ha(x) = rgr−1(x)
e−

h
2
a
(x)

2√
2π


 (r − 1)e−

h
2
a
(x)

2

g(x)
√
2π

∇ha(x)∇h⊤

a
(x)− ha(x)∇ha(x)∇h⊤

a
(x) +∇2ha(x)


 , (5.61)

Hb(x) = rgr−1(x)
e−

h
2
b
(x)

2√
2π


 (r − 1)e−

h
2
b
(x)

2

g(x)
√
2π

∇hb(x)∇h⊤

b
(x)− hb(x)∇hb(x)∇h⊤

b
(x) +∇2hb(x)


 , (5.62)

Hab(x) = rgr−1(x)(r − 1)
e−

h
2
a
(x)

2

g(x)
√
2π

e−
h
2
b
(x)

2√
2π

(
∇hb(x)∇h⊤

a
(x) +∇ha(x)∇h⊤

b
(x)
)
. (5.63)

The idea of the proof is to verify for which case ∇2fr(x) is positive semidefinite for

r < 0. We will analyse this with a sufficient condition, such that each of the matrices

Ha, Hb, Hab � 0. This is done splitting the analysis in the individual terms:
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• Term Ha(x):

Working with Ha(x), we know that its positive definiteness depends on the negative

definiteness of:

Ĥa(x) =


(r − 1)e−

h2a(x)

2

g(x)
√
2π

∇ha(x)∇h⊤a (x)− ha(x)∇ha(x)∇h⊤a (x) +∇2ha(x)


 . (5.64)

We make the definitions sr(θa) = (r − 1) e−
1
2 θa√

2πg(x)
, ha = µ⊤x−a√

x⊤Σx
and θa = h2

a(x). And

opening Ĥa(x) on their primitives, we have:

Ĥa(x) =
(sr(θa)− ha)

x⊤Σx

[
µµ⊤ − (µ⊤x− a)

x⊤Σx
[µx⊤Σ+ Σxµ⊤] +

(
(µ⊤x− a)

x⊤Σx

)2

Σxx⊤Σ

]

+
1

(x⊤Σx)
3
2

[
−Σxµ⊤ − µ(Σx)⊤ − (µ⊤x− a)Σ + 3

(µ⊤x− a)

(x⊤Σx)
Σxx⊤Σ

]
. (5.65)

We use Ĥa(x) to define the auxiliary matrix H̄a(x), that has equivalent definiteness

than Ĥa(x). Therefore, H̄a(x) =
x⊤Σx
ha(x)

Σ− 1
2 Ĥa(x)Σ

− 1
2 and we establish:

H̄a(x) = (
sr(θa)

ha

− 1)

[
Σ−

1
2µµ⊤Σ−

1
2 − h2

a

µ⊤x− a
[Σ−

1
2µx⊤Σ

1
2 +Σ

1
2xµ⊤Σ−

1
2 ] +

(
(µ⊤x− a)

x⊤Σx

)2

Σ
1
2xx⊤Σ

1
2

]

+

[
−Σ

1
2xµ⊤Σ−

1
2

µ⊤x− a
− Σ−

1
2µx⊤Σ

1
2

µ⊤x− a
− I +

3Σ
1
2xx⊤Σ

1
2

(x⊤Σx)

]
, (5.66)

H̄a(x) = (
sr(θa)

ha

− 1)Σ−
1
2µ⊤µΣ−

1
2 + (

−sr(θa)ha + h2
a
− 1

(µ⊤x− a)
)[Σ−

1
2µx⊤Σ

1
2 +Σ

1
2xµ⊤Σ−

1
2 ]

+
hasr(θa)− h2

a
(θ) + 3

x⊤Σx
(Σ

1
2xx⊤Σ

1
2 )− I. (5.67)

Making the substitutions V := Σ
1
2x, W := Σ− 1

2µ, ‖V ‖2 := x⊤Σx, we have:

H̄a(x) = (
sr(θa)

ha

− 1)WW⊤ + (
−sr(θa)ha + h2

a − 1

(µ⊤x− a)
)[WV ⊤ + VW⊤] +

hasr(θa)− h2
a(θ) + 3

‖V ‖2 (V V ⊤)− I. (5.68)

Defining Za = α(θa)
V

‖V ‖ + γ(θa)W and Ya = β(θa)
V

‖V ‖ , we establish the following
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coefficients:

γ(θa) =

√
1− sr(θa)

ha

, (5.69)

−α(θa)
√

ha − sr(θa)

ha

=
(−sr(θa)ha + h2

a − 1)

ha‖V ‖
⇔ α(θa) =

sr(θa)ha − h2
a + 1√

h2
a − hasr(θa)

, (5.70)

β(θa) =
√
hasr(θa)− h2

a + 3 + α2(θa) =

√
h2
a − hasr(θa) + 1

h2
a − hasr(θa)

. (5.71)

And so we rewrite (5.68) in terms of Za and Ya, being H̄a = −ZaZ
⊤
a + YaY

⊤
a − I:

H̄a(x) = −
(
γ2(θa)

‖V ‖2 V V ⊤ − α(θa)γ(θa)[VW⊤ +WV ⊤] + γ2(θa)WW⊤
)
+

β2(θa)

‖V ‖2 V V ⊤ − I,

H̄a(x) = −γ2(θa)WW⊤ − α(θa)γ(θa)[VW⊤ +WV ⊤] +
β2(θa)− α2(θa)

‖V ‖2 V V ⊤ − I. (5.72)

Comparing (5.68) and (5.72) it is clear that the coefficients (5.69)-(5.71) hold. From

the results from Appendix C.1, we observe that the negative semi-definiteness of (5.72)

is guaranteed if the highest eigenvalue obey:

‖Ya‖2 − ‖Za‖2 + ‖Ya‖2 × ‖Za‖2 − (Z⊤
a Ya)

2 ≤ 1. (5.73)

It is clear that:

‖Ya‖2 = β2(θa),

‖Za‖2 = α2(θa) + 2γ(θa)α(θa)
µ⊤x√
x⊤Σx

+ γ2(θa)µ
⊤Σ−1µ,

Z⊤
a Ya = α(θa)β(θa) +

γ(θa)β(θa)W
⊤V√

x⊤Σx
.

After algebraic manipulations, we get:
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β2(θa)− α2(θa) + µ⊤Σ−1µγ2(θa)(β
2(θa)− 1)− 2γ(θa)α(θa)

µ⊤x√
x⊤Σx

+

−γ2(θa)β
2(θa)(µ

⊤x)2

x⊤Σx
≤ 1.

Opening in their primitives from (5.69)-(5.71), we have:

hasr(θa)− h2a + 3 + α2(θa)− α2(θa) + µ⊤Σ−1µ

(
1− sr(θa)

ha

)
(β2(θa)− 1)+

+2

√
1− sr(θa)

ha

sr(θaha − h2a + 1)√
h2a − hasr(θa)

µ⊤x√
x⊤Σx

−
(
1− sr(θa)

ha

)
β2(θa)

(
µ⊤x√
x⊤Σx

)
≤ 1. (5.74)

Making the substitution ha(x) =
√
θa, and after some algebraic manipulation then:

θ
1
2
a sr(θa)− θa + 3 + µ⊤Σ−1µ


θ

1
2
a − sr(θa)

θ
1
2
a


 (β2(θa)− 1)−

+2


sr(θa)θ

1
2
a − θa + 1

θ
1
2
a



(

µ⊤x√
x⊤Σx

)
−


θ

1
2
a − sr(θa)

θ
1
2
a


β2(θa)

(
µ⊤x√
x⊤Σx

)2

≤ 1. (5.75)

Multiplying both sides by θa:

θ
3
2
a sr(θa)− θ2a + 3θa + µ⊤Σ−1µ

(
θa − θ

1
2
a sr(θa)

)
(β2(θa)− 1)+

−2
(
θasr(θa)− θ

1
2
a + θ

− 1
2

a

)(
µ⊤x√
x⊤Σx

)
−
(
θa − θ

1
2
a sr(θa)

)
β2(θa)

(
µ⊤x√
x⊤Σx

)2

≤ θa. (5.76)

Making the substitutions from β(θa) as in (5.71) we have the following equivalences:
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(
θa − θ

1
2
a sr(θa)

)
θa − θ

1
2
a sr(θ) + 1

θa − θ
1
2
a sr(θa)

− 1


 = 1,

(
θa − θ

1
2
a sr(θa)

)
θa − θ

1
2
a sr(θ) + 1

θa − θ
1
2
a sr(θa)

= θa − θ
1
2
a sr(θ) + 1.

Which simplifies (5.76) in the following sequence:

θ
3
2
a sr(θa)− θ2a + 3θa + µ⊤Σ−1µ− 2

(
θasr(θa)− θ

1
2
a + θ

− 1
2

a

)(
µ⊤x√
x⊤Σx

)
−

+

(
θa − θ

1
2
a sr(θa) + 1

)(
µ⊤x√
x⊤Σx

)2

≤ θa,

−θa
(
θa − θ

1
2
a sr(θa)− 2

)
+ µ⊤Σ−1µ+ 2θ

1
2
a

(
θa − θ

1
2
a sr(θa)− 1

)(
µ⊤x√
x⊤Σx

)
−

+

(
θa − θ

1
2
a sr(θa) + 1

)(
µ⊤x√
x⊤Σx

)2

≤ 0.

Finally, defining δr(θa) = θa − θ
1
2
a sr(θa)− 1:

µ⊤Σ−1µ ≤ θa (δr(θa)− 1)− 2θ
1
2
a δr(θa)

(
µ⊤x√
x⊤Σx

)
+ (δr(θa) + 2)

(
µ⊤x√
x⊤Σx

)2

. (5.77)

from last inequality we reach condition C1 (5.58).

• Term Hb(x):

The negative semidefinitess of Hb(x) is verified in Lemma 1 (van ACKOOIJ, 2017) in

similar procedures as for Ha(x), if the following inequality is verified:

µ⊤Σ−1µ ≤ θb (δr(θb)− 1) + 2θ
1
2
b δr(θb)

(
µ⊤x√
x⊤Σx

)
+ (δr(θb) + 2)

(
µ⊤x√
x⊤Σx

)2

, (5.78)

where θb = h2
b(x) =

(
b−µ⊤x√
x⊤Σx

)2
, δr(θb) = θb − θ

1
2
b sr(θb)− 1 and sr(θb) = (r − 1) e−

1
2 θb√

2πg(x)
.

From last inequality we reach condition C2 (5.59).



125

• Term Hab(x):

Working with Hab(x), we define Ĥab(x) = ∇hb(x)∇h⊤
a (x) + ∇ha(x)∇h⊤

b (x), and

noting that for r < 0 the term r(r − 1)gr−1(x) e
−h2a(x)

2

g(x)
√
2π
· e−

h2
b
(x)

2√
2π

is always positive. For

r ∈ [0, 1], the term r(r − 1) is nonpositive and so in order to obtain Hab(x) negative

semi-definite we must have Ĥab(x) positive definite. Hence, the objective here is to verify

in which cases Ĥab(x) is indeed positive definite. Opening Ĥab(x) in its primitives we

obtain:

Ĥab(x) =
1

x⊤Σx

(
−2µµ⊤ +

(µ⊤x− a)− (b− µ⊤x)
x⊤Σx

[µ(Σx)⊤ +Σxµ⊤] +
2(µ⊤x− a)(b− µ⊤x)

(x⊤Σx)2
Σx⊤xΣ

)
.

(5.79)

If we make H̄ab = x⊤Σx · Σ− 1
2 ĤabΣ

− 1
2 , defining V := Σ

1
2x and W := Σ− 1

2µ then we

have:

H̄ab = −2WW⊤ +
(µ⊤x− a)− (b− µ⊤x)]

x⊤Σx
[WV ⊤ + VW⊤] +

2(µ⊤x− a)(b− µ⊤x)

(x⊤Σx)2
V V ⊤. (5.80)

Considering the two vectors:

Zab = z1 ·
V

‖V ‖ + z2 ·W , Yab = z3 ·
V

‖V ‖ . (5.81)

where, using the following notation α = µ⊤x− a and β = b− µ⊤x we establish:

H̄ab = −2WW⊤ +
(α− β)

x⊤Σx
[WV ⊤ + VW⊤] +

2αβ

(x⊤Σx)2
V V ⊤. (5.82)

Considering H̄ab = −ZabZ
⊤
ab + YabY

⊤
ab , after some algebraic manipulation we have:

H̄ab = −z2WW⊤ +
(−z1z2)
‖V ‖ [WV ⊤ + VW⊤] + (z23 − z21)

V V ⊤

(‖V ‖)2 , (5.83)
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using the vectors in (5.81), we use the notation z1 = − (α−β)
2

, z2 =
√
2 and z3 =

√
2αβ + (α−β)2

2
.

In order to establish the conditions for H̄ab being positive semi-definite, from the

Appendix C.1 we know that the eigenvalue must observe the following condition:

λ− =
‖Yab‖2 − ‖Zab‖2

2
−
√
(‖Yab‖2 + ‖Zab‖2)2 − 4(Z⊤

abYab)2

2
≥ 0,

that after algebraic manipulations, reduces to the following inequality:

‖Yab‖2‖Zab‖2 − (Z⊤
abYab)

2 ≤ 0. (5.84)

Determining the factors, we get:

‖Yab‖2 = z23 (5.85)

‖Zab‖2 = z21 + 2z1z2(
µ⊤x√
x⊤Σx

) + z22µ
⊤Σ−1µ (5.86)

Z⊤
abYab = z1z3 + z2z3

W⊤V√
x⊤Σx

. (5.87)

Its clear from (5.84) and simplifying:

z23

(
z21 + 2z1z2(

µ⊤x√
x⊤Σx

) + z22µ
⊤Σ−1µ

)
−
(
z1z3 + z2z3

W⊤V√
x⊤Σx

)(
z1z3 + z2z3

W⊤V√
x⊤Σx

)
≤ 0,

z23z
2
1 + 2z1z2z

2
3(

µ⊤x√
x⊤Σx

) + z22z
2
3µ

⊤Σ−1µ− z21z
2
3 − 2z1z2z

2
3(

µ⊤x√
x⊤Σx

)− z22z
2
3

(
µ⊤x√
x⊤Σx

)2

≤ 0,

µ⊤Σ−1µ ≤
(

µ⊤x√
x⊤Σx

)2

. (5.88)

With the last inequality and the above developments of the terms Ha(x) and Hb(x),

we establish the conditions (5.58)-(5.60). �
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5.4 IMPLIED CONDITIONS

This section aims at developing conditions that turn possible the application of the

statements of Section 5.3.2. The final objective is to define thresholds, θ̂a and θ̂b that

entails the sufficient conditions (5.58)-(5.60). In view of this, we propose the following

implied condition:

Proposition 5.4.1 If it holds:

(D1) δr(θa) ≥ 2, δr(θb) ≥ 2, µ⊤Σ−1µ ≤
(
µ⊤x+ a√
x⊤Σx

)2

,

µ⊤Σ−1µ ≤
(
b+ µ⊤x√
x⊤Σx

)2

and µ⊤Σ−1µ ≤
(

µ⊤x√
x⊤Σx

)2

, (5.89)

then conditions established in (5.58)- (5.60) from Lemma 5.3.1 are ensured.

Proof. From (van ACKOOIJ, 2017) we know that after algebraic manipulations in (5.59)

we verify that δr(θb) ≥ 2 and µ⊤Σ−1µ ≤
(

b+µ⊤x√
x⊤Σx

)2
implies (5.59). Considering θa =

(
µ⊤x−a√
x⊤Σx

)2
, we replace µ⊤x√

x⊤Σx
=
√
θa+

a√
x⊤Σx

in (5.58) and after manipulations we establish

that:

µ⊤Σ−1µ ≤
(

2a√
x⊤Σx

+
√

θa

)2

+ (θa −
√

θasr(θa)− 3)
a2

x⊤Σx
. (5.90)

In order to ensure the positiveness of the second term in (5.90), we hold that θ −
√
θasr(θa) − 3 = δr(θa) − 2 ≥ 0, then δr(θa) ≥ 2. Keeping the last inequality, from the

first term in (5.90) we establish that µ⊤Σ−1µ ≤
(

a+µ⊤x√
x⊤Σx

)2
ensuring that condition (5.58)

holds. � Intending to use the results of Proposition 5.4.1 in programming problems,

such as in Section 6.1, we define the thresholds θ̂a and θ̂b on which the first to conditions

of (5.89) hold, i.e. if θ̂a ≤ θa and θ̂b ≤ θb then δr(θa) ≥ 2, δr(θb) ≥ 2 are ensured. In this

view, it is useful to define:

Definition 5.4.1 From the definitions of Lemma 5.3.1, we define the following auxiliary
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functions:

sr,p(t) = (r − 1)
e−

1
2
t

√
2πp

, (5.91)

δr,p(t) = t− t
1
2 sr,p(t)− 1, (5.92)

where t takes place of θa and θb indiscriminately.

Taking the definitions of δr(θa) and sr(θa) (and for equivalence the θb case) from

Lemma 5.3.1 we observe that δr(θa) is not only dependent of parameter a but also b by

the CDF g(x) := Φ(hb(x))+Φ(ha(x))−1. In applications of PC problems, it is commonly

requested that 1 ≥ g(x) ≥ p, where p is a minimal probability limitation. Regarding the

function δr(θa) (and θb) and its dependence on both parameters a and b, we dispose the

following proposition:

Lemma 5.4.1 Giving the definitions from Lemma 5.3.1 and Definition 5.4.1 we establish

the limits over the function δr(t) as δr,p(t) ≥ δr(t) ≥ δr,1(t), where p is a minimum

probability threshold.

Proof. Since r ≤ 1 and t ∈ R
+, it is easily verified that δr,pr(t) ≥ δr(t) ≥ δr,1(t) by the

dominance sr,1(t) ≥ sr(t) ≥ sr,pr(t) and the positiveness of the term −t 1
2 sr,p(t) in (5.92).

�

The next results derive properties for the inequality δr,p(t) ≥ 2, especially in terms

of defining the roots of the equality δr,p(t) = 2.

Lemma 5.4.2 The function δr,p(t), for t ∈ R
+, has a single inflection point. It occurs at

t = 1+
√
2 and it is independent from r and p. For fixed p and r, in the parametrization

over t, we distinguish the two cases:

1. if δ′r,p(1 +
√
2) ≥ 0 or r = 1 : Then δr,p(t) = 2 occurs just once.

2. if δ′r,p(1 +
√
2) < 0 : Then δr,p(t) = 2 occurs at most 3 times.
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For a fixed p, for r ≥ rch(p) we are in case (1) and for r < rch(p) we are in case

(2), where rch(p) := −
√

1+
√
2√

2
2
√
2π · p · e (1+

√
2)

2 + 1. Trivially, we also have the change of

pattern for a fixed r, which changes for probability pch(r) =
(1−r)

√
2√

(1+
√
2)2π·2e

(1+
√

2)
2

.

Proof. We check by the differentiation of the function δr,p(t). Indeed, we observe by the

first and second derivatives:

δ′r,p(t) = 1 +
(r − 1)e−

1
2
t

2
√
2πp

(
t− 1√

t

)
, (5.93)

δ′′r,p(t) =
(r − 1)e−

1
2
t

2
√
2πp

(
−1

2
t
1
2 + t−

1
2 +

1

2
t−

3
2

)
. (5.94)

On the search for the roots of (5.94), δ′′r,p(t) = 0, for r < 1 one observes that

t = 1+
√
2 is the only root for t ∈ R

+, being the single extreme point of δ′r,p(t). For r = 1,

δ′′r,p(t) = 0 ∀t. Considering the nontrivial case, i.e. p > 0 and r > 1, since limt→0 δ
′
r,p(t) =

∞ and limt→∞ δ′r,p(t) = 1 (and also δ′′′r,p(t) > 0) the extreme point δ′r,p(1 +
√
2) is minima,

and related to the function δr,p(t), depending on r and p, we face two possibilities:

1. δ′r,p(1 +
√
2) ≥ 0 or r = 1: Hence δ′r,p(t) ≥ 0 ∀t and δr,p(t) is a non-decreasing

function with at most one extreme point (at t = 1 +
√
2). Since limt→0 δr,p(t) < 2

and limt→∞ δr,p(t) > 2 so it crosses δr,p(t) = 2 just once.

2. δ′r,p(1 +
√
2) < 0: Hence δr,p(t) has two extreme points. We can define the two

extreme points of δr,p(t) as td < 1 +
√
2 < tu, where td establishes a local maximum

and tu a local minimum. If δr,p(td) < 2 or δr,p(tu) > 2 than δr,p(t) = 2 occurs just

once. If δr,p(td) = 2 or δr,p(tu) = 2 than δr,p(t) = 2 occurs twice. If δr,p(td) > 2 and

δr,p(tu) < 2 than δr,p(t) = 2 occurs three times.

In the second case, the assertion of local maximum and minimum is easily proved

if we study the function δ′r,p(t). Since limt→0 δ
′
r,p(t) = ∞ and δ′r,p(1 +

√
2) < 0 on the

extreme point td the derivative of δr,p(t) changes its signal from positive to a negative

value, defining a local maximum. An equivalent thought is used to qualify tu as a local

minimum.
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The two last assertions of the Lemma are proved using (5.93), when we establish

δ′r,p(1 +
√
2) = 0. We easily check that for r(p) = −

√
1+

√
2√

2
2
√
2π · p · e 1

2
(1+

√
2) + 1 the

function δr,p(t) changes from pattern 1 to pattern 2 in the two possibilities. The last

assertion of the lemma is easily checked isolating p instead of r. �

Lemma 5.4.2 is useful on the track of finding the limits θa ≥ θ̂a and θb ≥ θ̂b on which

δr(θa) ≥ 2 and δr(θb) ≥ 2 of Proposition 5.4.1 holds. From the functions of Lemma 5.4.1

we define:

Definition 5.4.2 We define t̂p,r := max{t : δr,p(t) = 2}. In this sense we also define

θ̂a,p,r := max{θa : δr,p(θa) = 2} and θ̂b,p,r := max{θb : δr,p(θb) = 2} for the singular cases.

By the Definition 5.4.2, we remark:

Remark 5.4.1 Using the properties of the functions δr,p(t) studied in Lemma 5.4.2 re-

garding t̂p,r and the relationship δr,p(t) ≥ δr(t) ≥ δr,1(t) of Lemma 5.4.1 we develop the

relationship θ̂a,p,r ≤ θ̂a ≤ θ̂a,1,r ≤ θa (and for equivalence the same for θ̂b). Indeed all the

proof is based on the fact that δr,p(t) for t̂p,r ≤ t is non-decreasing, therefore δr,p(θa) ≥ 2

(and for equivalence δr,p(θb) ≥ 2) is ensured.

Aiming at deriving estimations for thresholds θa and θb in order to use, for instance,

in programming problems, one defines the values θ̂a,p̄,r and θ̂b,p̄,r, being more conservative,

for p̄ = 1 or more flexible for p̄ = p, where p is the original probability threshold from

the programming problem. We observe that only the case p̄ = 1 ensures a conservative

feasibility in relation to the former thresholds θ̂a and θ̂b. The procedure to define these

limits are illustrated by Example 5.4.3.

Example 5.4.3 To understand the results, we exemplify the mapping P{a ≤ ξ̃⊤x ≤ b}

for ξ̃ defined as a multivariate normal distribution N (µ,Σ). Considering the coefficients

a = −15, b = 10, µ and Σ are displayed below:

µ =




2

1


 Σ =




9 3

3 16


 .
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Aiming at defining the feasible set of the mapping, we use Lemma 5.4.2 to drive a

dichotomy procedure to define the maximum t such that the condition δr,p(t) = 2 is met.

Example of functions for different r parameters are defined in Figure 16. As stated in

Lemma 5.4.2, we note that rch(90%) = −15.57, implying that for r ≥ rch(90%), δr,p(t)

is a non-decreasing (cases r = 1 and r = −14 in Figure 16) and so by a dichotomy

procedure on δr,p(t) function changing the t, the t for which δr,p(t) = 2 is unique. Since for

r < rch(p) the function δr,p(t) has two extreme points, with a simple dichotomy procedure

starting from t = 0 we cannot ensure that there is no greater t such that δr,p(t) = 2.

Nevertheless, as stated in the proof of Lemma 5.4.2, looking for the extreme point tu (by

a second dichotomy procedure, for example) we have all the ingredients to ensure that

δr,p(t) = 2 is unique or not, and in the negative case, we find the greatest t ∈ {t : t ≥ t u}

such that δr,p(t) = 2. Visually we observe that for r = −40 in Figure 16 we also have a

single δr,p(t) = 2.

Figure 16 – δr,p(t) behavior for p = 90% (in blue) and p = 100% (in red), changing the r
parameter. The red dashed line refers to δr,p(t) = 2.

Source: Thesis results.

Checking Figure 16 we also observe that for a lower r, the t such that δr,p(t) = 2

decreases (if just one root is ensured), implying in a broader feasible set. We present the

relationship between the r parameter and t is for two probability levels in Figure 17.

We are now able to distinguish the set defined by the intersection of the two first
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Figure 17 – Cumulative distribution function of the standard random variable ξ̃.

(a) p = 30% (in red) p = 100% (in blue). (b) p = 90% (in red) p = 100% (in blue).
Source: Thesis results.

conditions of Proposition 5.4.1, i.e., by X = {x : θa ≥ θ̂a and θb ≥ θ̂b}, where θ̂a and θ̂b

are the highest roots such that δr(θa) = 2 and δr(θb) = 2. In order to have approximations

of θ̂a and θ̂b we make use of Remark 5.4.1, defining thresholds where we guarantee that the

limits are sufficiently met. Graphically, we show the feasible sets for different r parameter

levels in Figure 18. By these figures, considering that the inequalities θ̂a ≤ θ̂a,1,r ≤ θa and

θ̂b ≤ θ̂b,1,r ≤ θb hold, we note that the initially presented Figure 15(b) defines the feasible

set X = {x : θa ≥ θ̂a,1,r and θb ≥ θ̂b,1,r} and as a result the first two inequalities

δr(θa) ≥ 2, δr(θb) ≥ 2 of condition D1 of Proposition 5.4.1.

Figure 18 – Feasible sets for different r parameters. The most inner (dark) area corre-
sponds to r = 1 and the most outer (light) area corresponds to r = −59.

(a) p = 30% (b) p = 90%
Source: Thesis results.

In Figure 18(a) and 18(b) we note the feasible sets established by the thresholds

defined by X = {x : θa ≥ θ̂a,p,r and θb ≥ θ̂b,p,r} for p = 30% and 90%. Comparing
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those figures with Figure 15(b) we note the feasible sets that are potentially missed, by the

loss of generalization when contrasted with former thresholds θ̂a and θ̂b. So, we note that

the loss of information when using the mapping δr,p(t) instead of the former δr(t) for high

levels of p tends to be marginal.

The next results aim at simplifying Proposition 5.4.1 in the view of applications, preparing

its use in Algorithm 3 of Chapter 6.

Remark 5.4.2 If [a, b] ⊂ R
+ and µ⊤x ∈ [a, b], then condition (5.89) can be simplified

by:

(D2) δr(θa) ≥ 2, δr(θb) ≥ 2, and µ⊤Σ−1µ ≤
(

µ⊤x√
x⊤Σx

)2

. (5.95)

Proof. As 0 ≤ a ≤ b, and from µ⊤Σ−1µ ≤
(

µ⊤x√
x⊤Σx

)2
, we observe:

√
µ⊤Σ−1µ ≤ µ⊤x√

x⊤Σx
≤ µ⊤x+ a√

x⊤Σx
≤ µ⊤x+ b√

x⊤Σx
. (5.96)

So, µ⊤Σ−1µ ≤
(

µ⊤x√
x⊤Σx

)2
trivially implies the other inequalities. �

Proposition 5.4.2 If a ∈ R, b ≥ 0 and it holds:

(D3)
θa (δr,p(θa)− 2)

(δr,p(θa) + 2)
≥ µ⊤Σ−1µ, (5.97)

(D4)
θb (δr,p(θb)− 2)

(δr,p(θb) + 2)
≥ µ⊤Σ−1µ. (5.98)

then conditions established in (5.58)- (5.60) from Lemma 5.3.1 are ensured.

Proof. Condition (5.98) comes directly from the procedures applied in (van ACKOOIJ,

2017, Corollary 1)(MINOUX; ZORGATI, 2016, Corollary 1) for the function δr,p(t) as as-

signed in Definition 5.4.1 and ensures the condition (5.59). In the same line, finding the

minimal value in terms of the quadratic function over a on the right side of inequal-

ity (5.90), we achieve (5.97), ensuring the former condition (5.58). Remembering that
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θb = h2
b(x) =

(
b−µ⊤x√
x⊤Σx

)2
=
(

µ⊤x−b√
x⊤Σx

)2
, and since δr,p(θb) ≥ −1, raising both sides of (5.98)

to the power of 1
2
and replacing θb it follows:

√
µ⊤Σ−1µ ≤ µ⊤x− b√

x⊤Σx

√
δr,p(θb)− 2

δr,p(θb) + 2
≤ µ⊤x√

x⊤Σx
, (5.99)

where the last inequality comes from the fact that
√

δr,p(θb)−2

δr,p(θb)+2
≤ 1 and b ≥ 0. This last

inequality implies the former condition (5.60). �

Defining ϑr,p(t) := t(δr,p(t)−2)

(δr,p(t)+2)
, where t is indistinctly defined t = θa or θb, then we

remark:

Remark 5.4.3 For a fixed p in the mapping ϑr,p(t), we can use the results established in

Lemma 3 and Lemma 4 in (van ACKOOIJ, 2017) to ensure that exists a unique solution for

the equation ϑr,p(t) = γ, where γ ≥ 0. Making use of a dichotomy procedure, then we can

define the solution t̂p,r, considering γ = µ⊤Σ−1µ. By the properties of the mapping δr,p(t)

in Remark 5.4.1, we observe that for p ≤ p′ we can ensure (δr,p(θa)−2)

(δr,p(θa)+2)
≥ (δr,p′ (θa)−2)

(δr,p′ (θa)+2)
. A

direct implication for that is the relationship θ̂a,p,r ≤ θ̂a ≤ θ̂a,1,r ≤ θa (and for equivalence

the same for θ̂b), where p is a minimum probability threshold. Still making use of Lemma

4 in (van ACKOOIJ, 2017), being t̂p,r a strictly decreasing sequence in r, the results are

easily extended to prove that lim
r↓−∞

t̂p,r = µ⊤Σ−1µ.

We use the results related to Remark 5.4.3 in Section 6.1 in order to define a convex

feasible set for the proposed problem. Indeed, working with the thresholds θ̂a,p,r and θ̂b,p,r

in a way that conditions (5.97) and (5.98) hold, we have all the necessary ingredients to

ensure that the conditions of Lemma 5.3.1 are met, and so the mapping g(x) = P{a ≤

ξ̃⊤x ≤ b} is locally r-concave around x. The next section proposes an algorithm that

appropriately uses the achievements of the chapter.
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6 TRUST REGION BASED ALGORITHM FOR BILINEAR PC
PROBLEMS

In this chapter we aim at solving the former PC programming problem defined in

(5.1)-(5.3), where we consider g(x) = P{a ≤ ξ̃⊤x ≤ b}. Using fr(x) = gr(x), for r < 0,

raising both sides of (5.3) to the power of r, we define:

kr(x) := fr(x)− pr ≤ 0. (6.1)

As discussed in Section 5.3, respecting conditions the function g(x) is locally r-

concave around x, being so the function fr(x) locally convex. It is easily seen that this

property also implies the local convexity for kr(x). The idea is to work with the constraint

kr(x) ≤ 0 in the programming problem, approximately reformulating it by a second-order

Taylor’s expansion in a barrier method (BOYD; VANDENBERGHE, 2006).We observe that:

∇kr(x) = ∇fr(x) = rgr−1(x)

(
e−

1
2
h2
a(x)

2π
∇ha(x) +

e−
1
2
h2
b
(x)

2π
∇hb(x)

)
, (6.2)

∇2kr(x) = ∇2fra(x) +∇2frb(x). (6.3)

where ∇2fra(x) +∇2frb(x) are developed in (5.20)-(5.21):

We define the auxiliary functions to the barrier method:

φ(x) := − log(−kr(x)), ∇φ(x) := ∇kr(x)−kr(x)
,

∇φ2(x) :=
∇kr(x)∇kr(x)⊤

k2
r(x)

+
∇2kr(x)

−kr(x)
. (6.4)

Considering the optimization problem (5.1)-(5.3), we know that the barrier method

aims at solving the following problem:

min
ẋ

t · k0(ẋ) + φ(ẋ) (6.5)

s.t. A · ẋ = beq, (6.6)

where t > 0 is a parameter that changes iteratively and sets the accuracy of the approx-
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imation. For each iteration of the barrier method, we solve iteratively problem (6.5) -

(6.6) by the following Taylor approximation of the function φ(x) around x̂, established as

a QCQP problem:

min
v̇

t ∗ k0(x̂+ v̇) + φ(x̂) +∇φ(x̂)⊤v̇ + 1

2
v̇⊤∇2φ(x̂)v̇ (6.7)

s.t. A(x̂+ v̇) = beq (6.8)

‖v̇‖ ≤ δ (6.9)

where the constraint (6.9) controls the local search of the programming problem.

The algorithm that iteratively solves (6.7)-(6.9) is based on a Trust Region method as

discussed in (DENNIS; LI; TAPIA, 1989). We summarize the method in Algorithm (3).

Algorithm 3 - TR algorithm for bilinear r−concave PC programming problem

1: (Preliminary) For fixed p in (5.3) and r in (6.1), find a conservative probability thresh-
old pmin

r .
2: (Initialisation) Let xS a Slater point for (5.1)-(5.3). Set the fixed values µ > 0,

ρ, c0 ∈ (0, 1), update t← t0, x̂← xS and stopping tolerances εb > 0 and εtr > 0.
3: (Barrier loop) If 1/t < εb, then quit. Otherwise, δ ← δ0, ver2 = 1 and continue.
4: (TR loop) If ver2 < εtr, then quit. Otherwise, continue.
5: (Computation) Solve the programming problem (6.7) - (6.9) around x̂. Getting the

candidate solution v∗.
6: (TR update) Define: ared := φ(x̂) − φ(x̂ + v∗), pred := ∇φ(x̂)⊤v∗ + 1

2
v∗⊤∇2φ(x̂)v∗

and ver = ared
pred

.

If ver 6∈ R or ver ≤ c0 or g(x̂+ v∗) ≤ pmin
r , (Failed) then δ ← δ · ρ and x̂← x̂.

otherwise, (Succeed) then x̂← x̂+ v∗. ver2 = ‖v∗‖
Return to Step 4.

7: (Barrier update) t← t · µ and return to Step 3.

The Step 1-Preliminary in Algorithm 3 is solved by a SOCP problem, being the

SOC constraints defined in Remark 5.4.3.
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min
ẋ

k0(ẋ) (6.10)

s.t. A · ẋ = beq (6.11)

θ̂a,p,r ≤ θa(ẋ) (6.12)

θ̂b,p,r ≤ θb(ẋ) (6.13)

For each r, the solution x̂cv of (6.10)-(6.13) defines a conservative probability pmin
r =

g(x̂cv) on which the convexity of the feasible set of (5.1)-(5.3) is locally observed. This

solution furnish us a minimal probability threshold p ≥ pmin
r , that must be met as a

necessary condition along the next steps of the algorithm.

The strictly feasible solution xS of Step 2 - Initialization can be found choosing a suf-

ficient high r ≤ 1 parameter in (6.10)-(6.13), since, as observed in Example 5.4.3, as much

higher the r, narrower is the associated feasible set (and higher is pmin
r ). The loop that

starts in Step 3 - Barrier loop is an interior-point method that produces 1/t−suboptimal

central path solutions based in the version of (BOYD; VANDENBERGHE, 2006), that goes

back to (FIACCO; MCCORMICK, 1987).

The TR loop starts at Step 4 - TR loop and ends at Step 6 - TR update, solve

the programming problem iteratively (6.7)-(6.9), an approximation of the former problem

(5.1)-(5.3), inside the radius defined by the parameter δ. Briefly, the algorithm is based

on performing trial iterations that verifies, in a posteriori evaluation, if the proposed

predicted reduction (identified as pred) is not much higher (or even smaller) then the

actual reduction (ared). We make this verification in Step 6 - TR update. When the

predicted reduction is not accepted (depending on c0), or ver 6∈ R (due to the update

x̂+v∗ leading to imaginary values in φ(x̂+v∗) = − log(−kr(x̂+v∗))), or even the solution

leads to a lower probability g(x̂ + v∗) then pmin
r (i.e. where the convexity is not ensured)

then the radius δ is reduced by ρ and it is performed a new trial solution v∗ in Step 5 -

Computation. If the predicted reduction is accepted, then the fixed solution is updated

x̂ ← x̂ + v∗. The TR loop is performed up to the moment that the vector solution v∗
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is small enough, measured by εtr. When this solution meets the last criterion, then the

barrier method parameter t is updated by µ in the last Step 7 - Barrier update, and so

restarting the loop in Step 3 - Barrier loop. The solution x∗ = x̂ is achieved when Step 3

condition holds.

The convergence of the TR algorithm is extensively discussed in (DENNIS; LI; TAPIA,

1989). The central path performed by the Barrier method converges to the optimal point,

as observed in (BOYD; VANDENBERGHE, 2006), since the algorithm starts its search in a

feasible convex set and the criterion of convexity is always met by the inclusion of the

constraint (6.9) which turns possible, at each iteration, to identify if it is a valid solution.

6.1 ENERGY PORTFOLIO APPLICATION

As an application, we work with a simplified version of a portfolio problem faced

by energy utility companies. In general, utility companies in Brazil intend to reduce the

penalization that they are exposed if they retained an undercontrated energy position,

keeping under control the short-term exposition to the spot price of energy. Its energy

consumption is backed by pre-contracted energy, measured by the value vpt, for each

stage t, and for new candidate contracts which have their amounts ṗrd, for each product

d, defined as the output of the programming problem. The underlying programming

problem is defined as follows:

min
ṗn,ṗr,ẋp

ct⊤ṗn (6.14)

s.t. vpt +
∑

p∈P
ṗrd · dtd,t + ẋpt = dmt ∀t ∈ T (6.15)

P{a ≤ ẋp⊤(pm− p̃c) ≤ b} ≥ p (6.16)

ṗnt − ẋpt ≥ 0, ṗnt ≥ 0 ∀t ∈ T, ṗrp ≥ 0 ∀d ∈ D (6.17)

where the decision variables are: ṗrd ∈ R+ the amount (in units) of contracted product

d, ẋp ∈ R
T the amount (in MWh) of exposition by overcontracted (if negative) or un-

dercontracted (if positive) energy and ṗn ∈ R
T
+ amount (in MWh) of penalization by the
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undercontracting exposition for each stage t = 1, . . . , T . The parameters are: ct ∈ R
T
+

the penalization cost vector (in $/MWh), vpt the amount of pre-contracted energy (in

MWh), at each stage t, already in the portfolio of the distribution company. dtd,t ∈ R
T is

the energy distribution profile (in MWh) over the period t, dmt the energy load demand

(in MWh), a, b upper and lower financial thresholds (in $), pm ∈ R
T is the fixed average

energy price in the company portfolio, and p the probability or desired level of risk. The

energy spot price is defined as a normal random variable p̃c ∼ N (µ,Σ), where µ ∈ R
T

and Σ ∈ R
T×T is a positive semidefinite covariance matrix.

The objective function (6.14) minimizes the total cost of penalization of the com-

pany. The balance equations (6.15) establish that for each stage of time t = 1, . . . , T , the

sum of the pre-contracted energy, the contracted energy within the optimization horizon

and the short-term exposition is equal to the energy demand. In these last equations,

note that for a given product p the vector dtp can assume negative terms, simulating

energy selling products. The PC (6.16) is based on the fact that we are in a minimiza-

tion problem (since we are reducing the risk of penalization), hence it is viewed in the

opposite way of a common portfolio problem. In view of that, considering an overcon-

tracted position for a time t, ẋpt is negative and the company is selling energy to the

spot market. In this case, the company gains money if the spot price p̃c is greater than

the average price paid for the energy of its portfolio pm. The opposite happens in the

undercontracted position, since in this case the company sells energy to its consumers by

the average price of its portfolio buying it from the spot market. In this constraint, a is

the lower accepted exposition (typically, but not restricted, to be negative) and b is the

upper accepted exposition (usually positive). The first constraint in (6.17) defines how

much energy is undercontracted, regarding to evaluate the penalization properly.

Simulations were performed in a common workstation (Intel Core i7 1.9 GHz, 8GB

Ram), solving the SOCP and QCQP problems in Matlab equipped with CVX toolbox

(M.C., 2018). The scenarios are based on two time horizons t = 5 and t = 10 years.

The d = 1, . . . , 5 possible products, the pre-contracted portfolio vpt and the portfolio

average prices pm were freely setted. The random prices p̃c were estimated from Brazilian
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Table 14 – Main results of the portfolio application

Sim. Dem. Horz. pmin
r=−∞ pr=0 pmax Steps Conv. Cost

[yrs] [min] [$]

1 # 1 5 48.04 % 95.56 % 96.04 % 30 1.1 101.75

2 # 1 10 62.57 % NaN % 91.39 % 31 15.4 238.23

3 # 2 5 48.04 % NaN % 90.00 % 39 1.6 165.28

4 # 2 10 67.36 % 93.48 % 93.92 % 37 18.5 350.43

Source: Thesis results.

spot price historical data (18 years of weekly provided prices). For all simulations, it

was fixed the minimal probability threshold p = 85% in (6.16). We tested the demand

profiles dmt for two different scenarios. The simulations main results are provided in

Table 14, where the second column indicates the demand pattern, defined by parameter

dmt, the third column is the considered horizon, in years, meaning that, for instance, the

problem has 5 stages for the first simulation. The next columns are sorted as pmin
r=−∞ is the

minimum conservative probability, pr=0 is the minimum probability threshold for the log-

concave case, prmax is the probability to find Slater solution xS in Step 2 - Initialization

in Algorithm 3. The Steps column is the number of steps necessary for convergence of the

algorithm (for both Barrier and TR loops altogether), followed by the convergence CPU

time, in minutes, and the final total cost due to penalizations.

The #1 demand pattern has a regular rate of growth, turning the problem of port-

folio definition easier and leading to fewer chances of short term expositions and penal-

izations. As a result, we have less total costs for both time horizons, when compared

to the demand pattern #2. The convergence CPU time is intrinsically related to the

number of stages, since the calculation of gradients and Hessians, as in (6.4), become

computationally costly for higher dimensions. The probability pmin
r=−∞ is defined as a re-

sult of the SOCP (6.10)-(6.13) using the procedures suggested in Remark 5.4.3 to define

θ̂a,p=85%,r=−∞ and θ̂b,p=85%,r=−∞. Comparing pmin
r=−∞ with pr=0 we note how low can be

the minimal conservative threshold, showing the advantages achieved by the use of the

proposed method. Furthermore, for simulations 2 and 3 no feasible solutions were found

for the log-concave case pr=0, showing how restrictive are the solutions provided so far.
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7 CONCLUSIONS

As a motivation for the first topic of the thesis, in Chapter 2, we started discussing

the status quo on the use of stochastic programming with PC to solve UC problems. By

this analysis, it is clear that the use of PC applications in the short-term problem, for

instance, stochastic HTUC with use of renewable energy sources, as the wind generation,

is a mainstream field of research. Nevertheless, it was found that the provided algorithms

commonly uses strategies that work with individual PC or discrete approximations of

the underlying random vector. The lack of accuracy in terms of joint probability level

of these last algorithms makes necessary the use of ad-hoc strategies that hinders their

applications to other (similar) problems. This situation opens a field of research to develop

a methodology that one applies to a more general set of MILP problems, with probability

levels handled precisely.

In Chapter 3, we offer a brief introduction to some mathematical instruments used

by standard PC problems algorithms. The chapter starts with a simple application of a

classic PC problem algorithm, in order to clarify how the instruments that are present

throughout the chapter are linked and how it performs over iterations. It was emphasised

the assumed properties of the constraints and the relationship between decision and ran-

dom variables of the approach. It was also introduced the ”hidden” motivation behind

the use of the supporting hyperplanes in the algorithms. Section A.6 of this chapter in-

troduces alternative interpolation algorithms that were tested by numeric simulations in

the subsequent chapter. Visual insights, by figures, are also provided.

After the introductory chapters the present work pursued five main objectives. The

first objective is accomplished by Chapter 4, where we have proposed a new variant of

the supporting hyperplane method for mixed integer PC optimization problems. We

have moreover benchmarked this algorithm on instances from stochastic UC with an

alternative model based on using individual PC and an alternative solution method based
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on the popular sample-based methodology. We illustrated that the solution coming from

the model with individual PC does not satisfy the requested probability level. The sample

based approach was found to be highly sensitive on the number of scenarios, in particular,

to obtain feasible solutions. The model was found infeasible in several experiments, and

resampling had to be used. Moreover, when the number of scenarios was too large (here

1000), a conventional computer workstation presented memory overflows. Aiming at

verifying the impact of the method in a more complex system, a test with a 46-bus

system was performed. The algorithm achieved convergence in a reasonable time, close

to 1 hour, showing that scalability of the bus system is not necessarily a bottleneck of the

method.

When comparing to other steps of the algorithm, the time for computing gradients

and values of the probability functions were not very expensive during simulations. Nev-

ertheless, we did observe the high impact on the MILP sub-problems resolution times.

The latter depends strongly on the requested MILP optimality and the state of the sim-

ulated system itself. This scenario motivates the second objective of this work, that was

to offer strategies to reduce its computation time. The first idea was to test the effect

on changing the interpolation procedure. This last experiment found that the algorithm

could offer faster optimal solutions, maintaining its quality, if the Ridder’s method of root

finding is used. Another strategy that was followed, and tested by numerical results, is

the use of individual PCs into the lower bound problem of the proposed algorithm. This

simple strategy makes the convergence speed up, reducing the CPU time to achieve opti-

mal solutions in about 74.4% in some occasions, when compared to the original algorithm

proposition, justifying its use.

Still in the domain of UC Problems, the third objective of the work intended to

offer a practical engineering contribution by the proposition of a new HPF formulation.

In Section 4.2.1 all the proposed formulation is described, with numerical experiments

in Section 4.6, showing that it has brought gains when compared to linear piecewise

counterparts. Simulations performed to different probability levels has shown advantages

on its use by a faster rate of convergence and more accuracy on the power generations when
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both methodologies are benchmarked to the nonlinear HPF simulations. Disadvantages

of its use are the need for binary variables, making the model not proper for LP problems.

Another disadvantage is that eventually ad-hoc calculations for the definition of the minors

piecewise functions, as the joint turbine function ˙ghl,t, the upstream and downstream

levels and the hydraulic losses. These functions depend on pre-calculations regarding the

operational region where the problem will work. In an equivalence between accuracy and

flexibility, our formulation is less adaptable than the linear piecewise one since this last

is typically used maintaining the set of approximations regardless of the initial state.

The second main topic of the thesis starts in Chapter 5, with the presentation of the

fourth objective where it is discussed conditions to ensure that the probabilistic function

P{a ≤ ξ̃⊤x ≤ b} ≥ p is locally r-concave. Initially, hard to verify necessary and sufficient

conditions are provided. Subsequently, in the view of making use of these conditions for

real PC problems, more straightforward conditions are stated. These last conditions are

extended to implied ones, being so reduced to thresholds that are appropriate to be stated

as SOCP constraints.

By the achievements of the last chapter, the fifth and final objective of the thesis

is the proposition of a TR algorithm that implies a SOCP problem resolution and iter-

ative QCQP problems, aiming at exploring the defined convex feasible set, and through

this, solving the former PC problem exactly. A real reduced case of use, involving an

energy portfolio problem, was problematized, that was efficiently solved by the proposed

algorithm. As a result, we observe that for high levels of concavity, such as 0-concave

(log-concave) case, the problem results in many instances infeasible, but this restriction is

appropriately bypassed using a lower r-concavity level. So, the features provided in this

chapter accomplishes the previous condition.

For the first topic of the thesis, suggestions for extensions of the present work are in

consider less generic wind power random model, using appropriate distributions. Indeed

in this thesis the mathematical convenience of using normality assumptions predomi-

nated. Some challenges on dealing with these appropriate distributions are traced in

Appendix B. In this line of research, an involving and compelling trend is in the use
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of Copulas in eventual convex feasible sets, as motivated in Appendix Section B.1. An-

other path is on the study of the performance of the algorithm when imposed to more

complex systems, requiring possibly the use of decomposition methods as provided in

(TAKIGAWA; FINARDI; SILVA, 2013; van ACKOOIJ; MALICK, 2016; SCUZZIATO; FINARDI;

FRANGIONI, 2017). There are also interesting lines opened by the dynamic PC program-

ming (ANDRIEU; HENRION; RÖMISCH, 2009), offering perspectives that approximate the

use of PC problems to standard multi-stage stochastic programming strategies (SHAPIRO;

DENTCHEVA; RUSZCZYŃSKI, 2009).

For the second topic of the present thesis, that find the conditions to extend the two-

sided bilinear PC structures to the class of local general concave functions, future works

can be addressed on evolutions of the method to joint bilinear PC problems, where the

challenge is on working with harsh algebraic chain rule manipulations. Another possibility

is the extension of the statements to a more general class of probability distributions, such

as the symmetric ones.
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Available at: <https://tel.archives-ouvertes.fr/tel-00978519/>.

van ACKOOIJ, W. Eventual convexity of chance constrained feasible sets.
Optimization (A Journal of Math. Programming and Operations Research),
v. 64, n. 5, p. 1263–1284, 2015.

van ACKOOIJ, W. Convexity statements for linear probability constraints with
gaussian technology matrices and copulæ correlated rows. Researchgate, p. 1–16, 2017.

van ACKOOIJ, W.; FINARDI, E. C.; RAMALHO, G. M. An exact solution method for
the hydrothermal unit commitment under wind power uncertainty with joint probability
constraints. IEEE Transactions on Power Systems, p. 6487 – 6500, 2018. Available
at: <https://ieeexplore.ieee.org/document/8387479/>.

van ACKOOIJ, W. et al. On probabilistic constraints induced by rectangular sets and
multivariate normal distributions. Mathematical Methods of Operations
Research, v. 71, n. 3, p. 535–549, 2010.

van ACKOOIJ, W. et al. Chance Constrained Programming and Its
Applications to Energy Management. In (DRITSAS, 2011) (Chapter 13).
INTECH, 2011. 291-320 p. Available at:
<http://www.intechopen.com/articles/show/title/chance-constrained-programming-
and-its-applications-to-energy-management>.

van ACKOOIJ, W. et al. Joint chance constrained programming for hydro reservoir
management. Optimization and Engineering, v. 15, p. 509–531, 2014.

van ACKOOIJ, W. et al. Large-scale unit commitment under uncertainty: an updated
literature survey. Annals of Operations Research, v. 271, p. 11–85, 12 2018.

van ACKOOIJ, W.; MALICK, J. Decomposition algorithm for large-scale two-stage
unit-commitment. Annals of Operations Research, v. 238, n. 1, p. 587–613, 2016.

van ACKOOIJ, W.; MALICK, J. Eventual convexity of probability constraints with
elliptical distributions. Mathematical Programming, p. 1–18, Jan 2018.

van ACKOOIJ, W.; MINOUX, M. A characterization of the subdifferential of singular
Gaussian distribution functions. Set Valued and Variational Analysis, v. 23, n. 3,
p. 465–483, 2015.



152

van ACKOOIJ, W.; OLIVEIRA, W. de. Convexity and optimization with copulæ
structured probabilistic constraints. Optimization: A Journal of Mathematical
Programming and Operations Research, v. 65, n. 7, p. 1349–1376, 2016.

VEINOTT, A. The supporting hyperplane method for unimodal programming.
Operations Research, v. 15, p. 147–152, 1967.

WANG, Q.; GUAN, Y.; WANG, J. A chance-constrained two-stage stochastic program
for unit commitment with uncertain wind power output. IEEE Transactions on
Power Systems, v. 27, n. 1, p. 206–215, 2012.

WOLSEY, L. A. Integer Programming. 1. ed. [S.l.]: Wiley, 1998. ISBN
9780471283669.

WU, Z. et al. A Solution to the Chance-Constrained Two-Stage Stochastic Program for
Unit Commitment With Wind Energy Integration. IEEE Transactions on Power
Systems, v. 31, n. 6, p. 4185–4196, nov. 2016. ISSN 0885-8950, 1558-0679. Available at:
<http://ieeexplore.ieee.org/document/7384775/>.

ZADEH, Z. M.; KHORRAM, E. Convexity of chance constrained programming
problems with respect to a new generalized concavity notion. Annals of Operations
Research, v. 196, n. 1, p. 651–662, 2012.

ZHANG, Y. et al. Chance-constrained two-stage unit commitment under uncertain load
and wind power output using bilinear benders decomposition. IEEE Transactions on
Power Systems, 2017. ISSN 0885-8950, 1558-0679. Available at:
<http://ieeexplore.ieee.org/document/7822944/>.

ZHAO, C. et al. Expected value and chance constrained stochastic unit commitment
ensuring wind power utilization. IEEE Transactions on Power Systems, v. 29, n. 6,
p. 2696–2705, nov. 2014. ISSN 0885-8950, 1558-0679. Available at:
<http://ieeexplore.ieee.org/document/6810870/>.



APPENDIX A -- Mathematical Background





155

In this appendix we review some mathematical tools used throughout the document.

A.1 NOTIONS OF MEASURE THEORY

In this section, we offer a non-self-contained introduction to notions of measure
theory that we use currently along this work. For further introdutory material in measure
theory, we refer to (PATA, 2007) and for a complete material on real and functional analysis
we refer to (CAROTHERS, 2000; ELSTRODT, 2011). Given a metric space (Ω,M, λ), where
Ω is a topological space andM is a σ-algebra over Ω. The function λ :M→ [0,∞]
is a measure in this metric space iff it agrees with Countable Additivity, and so for all
countable collections of pairwise disjoint sets En ∈M, we have λ(∪nEn) =

∑
n λ(En),

where ∪n represents a countable union of sets. We also have the following properties for
the measures:

•λ(∅) = 0;

•λ is finitely additive, i.e. given E, F ∈M with E ⊂ F , then λ(E) ≤ λ(F );

•λ is monotone, i.e. given E, F ∈ M with E ⊂ F , if λ(E) < ∞, then λ(F −
E) = λ(F )− λ(E);

•λ(En)→ λ(E) if E = ∪En, En ∈M;

•if λ(E ∩ F ) <∞, then λ(E ∪ F ) = λ(E) + λ(F )− λ(E ∩ F ).

One important concept to introduce is the Lebesgue measure. Given a metric space
(R,L(R), λ), where L(R) is a σ-algebra of R, an interval is given by I = (a, b) ⊂ R,
and we define ℓ(I) = b−a as the length. ConsideringE ∈ L(R), the external measure in
R is the measure that respects the property λ(E) = infE⊂UnIn

∑
n ℓ(In). The meaning

is that the external measure of E, or λ(E), is the infimum of the union of countable
intervals that contains E.

Following (PATA, 2007), we define some useful terms in respect to measurability of
sets.

Definition A.1.1Given a metric space (Ω,M, λ) as defined above, if E is a collection
of subsets of Ω, there is the smallest σ-algebraM∗ over Ω such that E ⊂ M∗. This
σ-algebra is said generated by E.

Definition A.1.2(Borel set) The σ-algebra generated by the open sets of Ω is called
the Borel σ-algebra and it is indicated by B(Ω). The elements of B(Ω) are said Borel
sets, and so the open and closed sets, the intersection of countable open sets and union of
countable closed sets are Borel sets.

The family of sets E ∈ L(R) that respects the condition λ(T ) = λ(T
⋂
E) +

λ(T
⋂
Ec), for ∀T ∈ L(R) forms a σ-algebra of R, called the σ-algebra of Lebesgue

and indicated simply by L. The settlement of the external measure λ over L is called
the Lebesgue measure. Some properties of Lebesgue measures are:

•It is complete over a set, i.e. for E ⊂ N and λ(N) = 0 implies that E ∈ L, and
λ(E) = 0;
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•Invariant to translation, i.e., λ(E + a) = λ(E) with E ⊂ R and a ∈ R;

•Agrees with the interval measure λ(a, b) = b− a with a and b ∈ R;

•Measures all the Borel sets (over R), so all the σ-algebras of open sets;

•Assigns a finite measure for all the bounded sets;

•Assigns a null measure for all countable sets.

As presented, the Lebesgue measure can be understood as the standard procedure
of assigning length to a set. Using the theory for higher dimension sets ∈ R

n, one defines
areas or volumes of subsets in Euclidean spaces.

Another important concept is of null sets. A subset N ⊂ R has null Lebesgue
measure and is considered to be a null set in R if, given any positive number ǫ, there is
a sequence In of intervals in R such that N is contained in the union of the In and the
total length of the union is less than ǫ. This condition can be generalised to R

n, using
n-cubes instead of intervals. For instance:

•With respect to R
n, all 1-point sets are null, and therefore all countable sets are

null. In particular, the set Q of rational numbers is a null set, despite being dense
in R;

•All the subsets of Rn whose dimension are smaller than n have null Lebesgue mea-
sure in R

n. For instance straight lines are null sets in R
2;

•Sard’s lemma: the set of critical values of smooth functions has measure zero.

Finally, linked to the idea of Lebesgue measure we have the probability measure.
Consider the metric (probability) space (Ω,M, P) and the random vector ξ̃ that takes its
value in ξ̃ : Ω→ R

T , where Ω is the space of events. We define the probability measure
induced by a random variable ξ̃ in such a way that: Pξ̃(B) := P[w ∈ Ω : ξ̃(ω) ∈ B] for

any B ∈ B(RT ), where B(RT ) is the Borel σ-algebra. A direct property of probability
measures is that the measure of the whole set in which it is defined is 1, i.e. if RT is the
whole probability space, Pξ̃(R

T ) = 1. This notation and concept of probability measure
P will be used throughout this document.

A.2 RELATIONS BETWEENR−CONCAVE PROBABILITY DISTRIBUTION FUNC-
TIONS

This section presents some concepts about r-concave functions, which is a general-
ization of concave functions and plays a vital role to establish the convexity of feasible sets
of PC problems. Following the definition of generalized concave functions (DENTCHEVA,
2009):

Definition A.2.1Let f(x) ≥ 0 be a function defined on a convex set Ω ⊂ R
n. This

function is said to be r−concave, where r ∈ [−∞,+∞] if for ∀x, y ∈ Ω and ∀λ ∈
[0, 1] it holds:

f(λx+ (1− λ)y) ≥ mr(f(x), f(y), λ), (A.1)

where the map mr : R+ × R+ × [0, 1] is given by:
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•if a · b = 0:
mr(a, b, λ) = 0, (A.2)

•else if a > 0, b > 0, 0 ≤ λ ≤ 1:

mr(a, b, λ) =





aλb1−λ if r = 0,
max{a, b} if r =∞,
min{a, b} if r = −∞,
(λar + (1− λ)br)1/r otherwise.

(A.3)

One observes that when r = 0, f(x) is said to be log-concave, i.e. log(f(x)) is a
concave function. When r = −∞, f(x) is said to be quasi-concave and r = 1 is the
classic definition of concavity. From this definition, it is clear that for r > 0 the mapping
fr is concave and r < 0 it is convex. For example, we can observe that the function
h(x) = 1

x2 is not concave, but it is −1-concave, since h−1(x) = x2 is convex.
The mapping r 7→ mr(a, b, λ) is nondecreasing and continuous, as proved by

Lemma 4.8 in (DENTCHEVA, 2009). As a result, a direct consequence of this lemma is
the fact that if a function is concave, it will also be log-concave and quasi-concave. The
opposite is not valid, i.e. a quasi-concave function is not necessarily log-concave and so
on.

Expanding these concepts to probability measures, a probability measure P is said
to be r−concave if, for any Borel measurable sets A,B ⊂ Ω, we can assert the following
inequality, for all λ ∈ [0, 1]:

P (λA+ (1− λ)B) ≥ mr(P (A), P (B), λ), (A.4)

where the sum over sets is the Minkowski sum, i.e., is the set defined by λA+(1−λ)B =
{λx + (1 − λ)y : x ∈ A, y ∈ B}. A random vector ξ̃ ∈ R

T has an r−concave
distribution if the probability measure Pξ̃ induced by ξ̃ on R

T is r−concave (PRÉKOPA,
2003). From this definition, (DENTCHEVA, 2009) establishes the relation between the
concavity of the PDF fξ̃(·) and its CDF Fξ̃(·). This is summarized by the following
theorem.

Theorem 1The probability measure P defined on the set Ω ∈ R
T is γ-concave with

γ ∈ [−∞, 1/T ] iff its PDF with respect to the Lebesgue measure on Ω is r−concave,
with r defined as follows:

r =




γ/(1− Tγ) if γ ∈ (−∞, 1/T ),
−1/T if γ = −∞,
+∞ if γ = 1/T.

This important theorem states that, for instance, if the PDF of a given random
vector ξ̃ is log-concave then it implies that its CDF will also be log-concave. The rela-
tionship established by Theorem 1 is remarkable since it usually is much easier to verify
the r−concavity of PDFs than that of CDFs.

A.3 OPERATIONS WITH RANDOM VARIABLES

Eventually, it is necessary to deal with operations of random variables. It is the
case of , for instance, when one must include two renewable energies in the same bus. To
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motivate such analysis, we consider the random vectors ξ̃1, . . . , ξ̃I ∈ R
T . Considering

normal random distributions assumptions, in (JOHNSON; WICHERN, 2007) we find:

Proposition A.3.1Let ξ̃1, . . . , ξ̃i, . . . , ξ̃I ∈ R
T be independent, with ξ̃i distributed as

N(µi,Σ) (Note the covariance matrix Σ is fixed). The following random vector:

V = c1ξ1 + . . .+ cIξI,

is distributed as N(
∑I

i=1 ciµi, (
∑I

i=1 c
2
i )Σ).

The last proposition allows us to work with affine operations of normal random
vectors in PCs.

For log-concave distributions, as also stated in (van ACKOOIJ, 2015), we observe that
in Theorem 4.2.3 (PRÉKOPA, 1995) is verified that the convolution of log-concave densities
results in a log-concave density. If we consider the individual e-component of the random
vectors ξ̃1e and ξ̃2e following log-concave distributions, in this sense we can ensure that
the marginal CDF Fe(he(ẋ)) = P[ξ̃1e + ξ̃2e ≤ he(ẋ)], is a log-concave function if he(·)
is quasi-concave. This last case can potentially be explored with the use of Copulas, as
the cases provided in Appendix B.2.

A.4 APPROXIMATION OF CONVEX SETS BY SUPPORTING HYPERPLANES

A fundamental concept to the optimization algorithms of the present work is the
supporting hyperplane to a given set, a classic tool of convex programming. In (BOYD;

VANDENBERGHE, 2006) the supporting hyperplane is defined as follows:

Definition A.4.1Let the convex set X ⊆ R
T and a point x0 ∈ R

T in the boundary of
set X. If we have a 6= 0 such that a⊤(x − x0) ≥ 0, ∀x ∈ X, then the hyperplane
defined by {x|a⊤(x − x0) = 0} is called the supporting hyperplane to X at the point
x0.

The last definition is equivalent to say that there is a hyperplane tangent to the set
X (red line in Figure 19) at the point x0 that separates the space into two half spaces. One
half-space containing the set X and the other without intersections with it. The vector a
is the normal vector that defines the hyperplane at the point x0. Definition A.4.1 states
that if we can find a such that the dot product a⊤(x−x0) = ‖a‖‖(x−x0)‖ cos θ ≥ 0,
hence x ∈ X is such that −π

2
≤ θ ≤ π

2
for all x, the supporting hyperplane is established.

A direct result of the supporting hyperplane theorem (BOYD; VANDENBERGHE, 2006) is
that for a nonempty convex set X and any point x0 on its boundary, there exists a
supporting hyperplane to X at x0. This concept is frequently used throughout Section
3.1 and the proposed MILP PC in Chapter 4.

Regarding the supporting hyperplane concept, one challenge consists in determining
the procedure to evaluate the normal vector a, which defines the supporting hyperplane
of a set for a given point. For a calculus intuition, we follow (STEWART, 2012). For a
given function φ : RT → R, and the expression φ(ẋ) = p, where p ∈ R, we define the
level curve surface S by the function F : RT ×R→ R by F (ẋ, p) = φ(ẋ)− p. Here ẋ
is a R

T -vector ẋ = (ẋ1, ẋ2, . . . , ẋT )
⊤. Choosing a generic level curve as F (ẋ, p) = 0,

we assume the point (x0,p0), where x0 = (x01, . . . , x0T )
⊤ is fixed, belonging to the

domain of F (·), and lying on the surface S.



159

Figure 19 – Supporting hyperplane to set X at the point x0.

Source: Thesis results.

Assuming also that there is a parametric curve over S described by the vector func-
tion c(q) = (ẋ(q), p(q)) = (ẋ1(q), . . . , ẋT (q), p(q))

⊤, where q ∈ R, and the func-
tions ẋt(q) and p(q) are generic functions that describe the trajectory of c(q) through
S. We want to certificate that the derivative of the vector function c(q) is a tangent
vector to the surface S.

Definition A.4.2(Tangent vector) If we consider the generic parameters q0 ∈ R and
q1 = q0 + h, where h is a scalar, by construction it is clear that y = c(q1) − c(q0)
is a vector that passes through c(q1) and c(q0). The distance between c(q1) and c(q0)
decreases when h gets smaller, and so intuitively we approach to a tangent line of c(q0).
The vector y

h
has the same direction of the vector y. Taking h → 0, we have the

ingredients to find the derivative of c(q) on q0:

dc(q0)

dq
= lim

h→0

c(q0 + h)− c(q0)
h

, (A.5)

we define (A.5) as the tangent vector c′(q) to the surface S at q0.

Assume that c(q) passes through (x(q0), p(q0)) = (x0, p0) at q = q0. Since the
curve C respects the function F (·) over S it satisfies the original equation F (c(q)) = 0.
Assuming continuity and differentiability assumptions for the functions φ(·) and c(·), we
assume that exists a family of points q̂ such that:

(∇φ(ẋ),−1)⊤ · c′(q)|q∈q̂ =
∂φ

dẋ1

dẋ1

dq
|q∈q̂ + · · ·+ ∂φ

dẋT

dẋT

dq
|q∈q̂ −

∂p

dp

dp

dq
|q∈q̂ = 0, (A.6)

where ∇φ(ẋ) is the gradient vector of φ(ẋ). If we are on the point (x0, p0) ∈ q̂ on the
surface S, consider the tangent vector to the parametric curve C at q0, i.e. c

′(q0). Equa-
tion (A.6) states that the dot product between the vector (∇φ(x0),−1) and the vector
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c′(q0) equals 0. If none of them is zero, this is only possible if they are perpendicular.
From that, it allows us to conclude that (∇φ(x0),−1) is normal to the level surface
S at point (x0, p0). Keeping this normal vector, we construct a tangent hyperplane
T(x0,p0)(x, p) at (x0, p0), using its standard equation (STEWART, 2012):

(∇φ(ẋ0),−1)⊤ · (ẋ1 − x01, . . . , ẋT − x0T , p− p0) = 0, (A.7)

where the vector (ẋ1 − x01, . . . , ẋT − x0T , p − p0) = (ẋ, p) − (x0, p0). Recovering
the supporting hyperplane definition, it is clear that any point of the tangent hyperplane
can always be described by a linear combination of the tangent vector c′(q0) chosen an
appropriate curveC that passes through (x0, p0). If we compare (A.7) to Definiton A.4.1,
we note that for a = (∇φ(ẋ0),−1), and T(x0,p0)(x, p) is the supporting hyperplane of
the set {(ẋ, p) : (ẋ, p) ∈ X × R} at the point (x0, p0). Applying the dot product to
the last term in (A.7), it results:

∇φ(ẋ0)
⊤ · (ẋ− x0) = p− p0, (A.8)

note that, on plugging p = p0 we are still in a point of the supporting hyperplane
T(x0,p0)(ẋ, p) where φ(ẋ) = p0. We also certify that p ≥ p0 ⇔ φ(ẋ0)

⊤ ·(ẋ−x0) ≥ 0.
Considering an appropriate function φ(ẋ), we can assume convexity to the domain

ẋ ∈ X. In the case of a log-concave function with domain set X = M(p0), as defined
in(3.12) at a probability level p = p0. In this case, we may also say that the vector
(∇φ(x0),−1) defines a hyperplane that supports the epigraph of function φ(·) at the
point (x0, p0), and if it happens for any point (ẋ, p) in the boundary of X, we ensure
that X is convex.

For a given point x0, suppose that φ(ẋ0) is known and finite, and we know how to
compute gradients ∇φ(ẋ0), but the only knowledge that we have about the domain set
X is that it is convex by a direct result of (3.12). Choosing p ≥ p0, by the inequality
∇φ(ẋ0)

⊤·(ẋ−x0) ≥ 0 we are in practice defining a half-space of RT ⊃ X limited by the
supporting hyperplane T(x0,p0)(ẋ, p) at point (x0, p0). This half-space can be regarded
as a local approximation of the domain X by the use of the supporting hyperplane as in
Definition A.4.1.

Maintaining the probability level p0, we use similar procedures as described in this
section to compute another local approximation (half-space) of X for different a different
point x1. This provides us a new supporting hyperplane T(x1,p0)(ẋ, p). Then, we can
request that the ẋ respects inequalities limited by T(x0,p0)(ẋ, p) and by T(x1,p0)(ẋ, p),
defining the following set:

Xapx(p0, x0, x1) = {ẋ : ∇φ(ẋ0)
⊤ · (ẋ−x0) ≥ 0,∇φ(ẋ1)

⊤ · (ẋ−x1) ≥ 0}. (A.9)

This procedure can be repeated for more iterates x2, . . . , xi, where i ∈ I is an
index, creating the family of sets Xapx(p0, x0, . . . , xi). As a result, the sets

Xapx(p0, x0, · · · , xi) are iterative local approximations to the original convex set
X, for a fixed p0. In practice, the set Xapx(p0, x0, · · · , xI) represents the intersection
of half-spaces limited by T(xi,p0)(ẋ, p), for i = 1, . . . , I.

We illustrate the above procedure by the schematic representations in Figures 20(a)
and 20(b). The setXapx(p0, x0) is coloured in light red in Figure 20(a) as a local approxi-
mation ofX limited by T(x0,p0)(ẋ, p). Figure 20(b) we have the setXapx(p0, x0, x1, x2, x3)
as an approximation of X made by the intersection of half-spaces limited by four sup-
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porting hyperplanes at points x0, x1, x2 and x3, keeping fixed p0. The applications of
these iterative approximations in the context of the present work are explored in Section
3.4.

Figure 20 – Representation of the approximation of the convex set X by the intersection
of half-spaces limited by supporting hyperplanes.

(a)One supporting hyperplane (b)Four supporting hyperplanes
Source: Thesis results.

A.5 CALCULATION OF MULTIVARIATE DISTRIBUTIONS

To deal with joint PC, it is essential to be equipped with methods to evaluate
multivariate CDFs for a given point. As establish in Section 3.3, these instruments are
used to calculate the probability level itself, and also for gradients evaluations (∇φ(·),
∇G(·, ·)), since for multivariate normal random vectors these calculations are reduced to
lower dimensional normal CDFs. The calculation of distribution functions is a complex
field of study by itself, and the present section aims at pointing out remarks on this
complexity and the instruments used by the here discussed algorithms.

In (HENRION, 2004) is traced two lines of research in methods of CDF calculations.
One is on the use of simulation with bounding techniques (e.g.(PRéKOPA, 1988)). Another
approach is on the use of numerical computation of multiple integrals, in the line of
research of (GENZ, 1992).

The last approach, that was used in the main applications of the thesis, is of par-
ticular interest by the precision and the capability of computing, in reasonable time,
multivariate normal distributions in rectangular sets, as found in (3.17). The method
is based on a sequence of transformations that, starting from the multivariate normal
distribution function integral defined in the original set, transforms it into an integral
over a unit hypercube. Dealing with a T -dimensional random vector, the basic algorithm
requires the generation of T − 1 Monte-Carlo uniformly distributed random samples for
each iteration.

In the work (PRÉKOPA, 1995), pointing back to (SZÁNTAI, 1985) and (PRÉKOPA;

SZÁNTAI, 1978), it is discussed an algorithm to calculate bidimensional multivariate nor-
mal distributions, based on series expansions and Hermite polynomials. These methods
are used to calculate unilateral distribution functions in the form of (3.13). Combin-
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ing these methods with combinatorial strategies, as pointed out in (van ACKOOIJ et al.,
2010), it is also possible to derive the calculation of rectangular distribution functions
as in equation (3.17). This is done by a composition of unilateral CDFs of form (3.13).
The drawback here is the combinatorial explosion, of an order of 2T terms (where T is
the dimension of the random vector), reducing the effectiveness of the technique to small
dimension sizes.

A.6 INTERPOLATION STEP - ROOTS ESTIMATION

The final fundamental step in the here used PC algorithms is the interpolation step.
Once fixed the desired probability level, this procedure aims to find solutions targeting this
probability level, using an iterative process. Hence, this section will introduce the bisection
procedure, a popular technique that takes its origin from early numerical calculus, and it
is still frequently used in algorithms which root-finding is requested.

This section also presents algorithms for alternative procedures to find solutions
given the desired probability, where numerical comparisons are provided in Section 4.5.1.
In the context of programming PC applications, in the present section we use the following
convention of functions and parameters: φξ̃(ẋ) is the distribution function of ξ̃, p is the
(minimum) probability level (e.g. p = 95%), the mapping gξ̃ : Rm → R is defined as

gξ̃(ẋ) := φξ̃(ẋ)− p, xL is a lower bound solution (i.e. φξ̃(x
L) ≤ p) and xS is a Slater

solution (i.e. φξ̃(x
S) > p). The next subsections present the used algorithms for the

bisection method, the Regula Falsi and Ridders method. The section ends with remarks
on the application of other bracketing methods.

A.6.1 Bisection method

The former basic algorithm is, for each iteration, divide the section between two
iterates into two equivalent sized segments and certify where the root is located. This
information is provided by the evaluation of the underlying function gξ̃(·) in the extremes
and analysing in which segment the function changes its sign. The procedure is provided
by the Algorithm 4.

The bisection method is an accurate procedure, with guaranteed linear convergence.
A property of the method is that it depends on the evaluation of the function just once
per iteration, this is an advantage when the function that one is dealing with requires a
hard computational burden, as our case with multivariate CDFs.

A.6.2 Regula Falsi method

Another standard algorithm that belongs to the bracketing methods is the Regula
Falsi. It is very similar to the bisection procedure, but rather than use the middle point
at each iteration, it defines the next iterate by the point (solution) where a secant line, or
an affine function, between the last two iterates cross the abscissa (or the domain basis).
The algorithm is defined in Algorithm 5.

Note that the control at stage 4 (Reset) always certificate that the two brackets
have opposite signs, ensuring the convergence of the method.
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Algorithm 4 - Bisection method

1: (Initialisation) Definition of the lower limit xa = xL with gξ̃(xa) < 0. Definition

of upper limit xb = xS with gξ̃(xb) > 0. Definition of λ = 0.5, λaux = 0.5.
Definition of stopping criteria ǫ and counter k = 0.

2: (Iterate)Definition of iterate xt =
xa+xb

2
; Calculate gξ̃(xt) ; λaux ← λaux/2;

3: (Stopping test)

If
|g

ξ̃
(xt)|

p
< ǫ : STOP, the answer is xt with a λ parameter;

Else: go to next step;
4: (Reset)

If (gξ̃(xt) · gξ̃(xa) ≤ 0)
xb = xt; gξ̃(xb) = gξ̃(xt); λ← λ+ λaux

Else If (gξ̃(xt) · gξ̃(xb) ≤ 0)
xa = xt; gξ̃(xa) = gξ̃(xt); λ← λ− λaux

5: (Return) k← k + 1; Go to Step 2

Algorithm 5 - Regula Falsi method

1: (Initialisation) Definition of the lower limit xt−1 = xL with gξ̃(xt−1). Definition

of upper limit xt = xS with gξ̃(xt). Definition of stopping criteria ǫ and counter
k = 0.

2: (Iterate)Definition of iterate:

xt+1 = xt−1 +
g
ξ̃
(xt−1)(xt−xt−1)

g
ξ̃
(xt)−g

ξ̃
(xt−1)

; Calculate gξ̃(xt+1) ;

3: (Stopping test) If
|g

ξ̃
(xt+1)|

p
< ǫ : STOP, the answer is xt+1;

Else : go to next Step;
4: (Reset)

If (gξ̃(xt−1) · gξ̃(xt+1) ≤ 0)
xt = xt+1; gξ̃(xt) = gξ̃(xt+1)

Else If (gξ̃(xt) · gξ̃(xt+1) ≤ 0)
xt−1 = xt+1; gξ̃(xt−1) = gξ̃(xt+1);

5: (Return) k← k + 1; Go to Step 2
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A.6.3 Ridders method

The Ridders’ method is due to C. Ridders (RIDDERS, 1979). Similarly to the Regula
Falsi, rather than use an affine function between the two brackets, it uses an exponential
function. It is also computed the bisection iterate, using so, at each iteration, two iterates,
the bisection and the modified Regula Falsi ones.

Algorithm 6 - Ridders method

1: (Initialisation) Definition of the lower limit xt = xL with gξ̃(xt). Definition of upper

limit xqt = xS with gξ̃(xqt). Definition of stopping criteria ǫ and counter k = 0.
2: (Iterate)Definition of iterate:
xbase = xt+xqt

2
; Calculate gξ̃(xbase) ;

If (gξ̃(xt) ≥ 0): xt+1 = xbase +
(xbase−xt)gξ̃(xbase)

2
√

g
ξ̃
(xbase)2−g

ξ̃
(xt)gξ̃(xqt)

Else: xt+1 = xbase −
(xbase−xt)gξ̃(xbase)

2
√

g
ξ̃
(xbase)2−g

ξ̃
(xt)gξ̃(xqt)

Calculate gξ̃(xt+1) ;
3: (Stopping test)

If
|g

ξ̃
(xt+1)|

p
< ǫ : STOP, the answer is xt+1;

Else : go to next Step;
4: (Reset)

If (gξ̃(xbase) · gξ̃(xt+1) ≤ 0)
xqt = xbase; gξ̃(xqt) = gξ̃(xbase)

Else If (gξ̃(xt) · gξ̃(xt+1) ≤ 0)
xqt = xt; gξ̃(xqt) = gξ̃(xt);

Else If (gξ̃(xqt) · gξ̃(xt+1) ≤ 0)
xqt = xqt; gξ̃(xqt) = gξ̃(xqt);

5: (Return) k← k + 1; Go to Step 2

As the Regula Falsi and bisection, the Riders’ has ensured convergence. In a unidi-
mensional analysis, if the function is well represented by a third order Taylor’s expansion,
in (RIDDERS, 1979) the author establish that the rate of convergence is at least quadratic.
Since in the present experiments frequently we are dealing with log-concave functions,
it is expected a faster convergence than the bisection procedure. A drawback is the fact
that for each iteration of the interpolation method it is necessary to compute two function
solutions to compare them. If the function evaluation is not an enough cheap process, the
use of the method may not be worthwhile.

A.6.4 Others Root Finding Methods

By the numerical simulations, we checked that the secant method, presented below,
did not converge for some iterations, even though the underlying function was relatively
well behaved. In the following scheme, we present some common root finding methods
and limitations faced on their applications in the present context:

•Secant Method: In Regula Falsi and Ridder’s methods, there is a stabilization step
that selects the bracket where the change of the sign of the underlying function
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is verified. By this procedure, one is defining where the root is set, and so the
search is reduced to a smaller domain. The secant method does not have this
stabilization step and so eventually, depending on the behaviour of the function, the
secant algorithm can select a portion of the domain where the root is not localized,
reflecting in the non-convergence of the method. When applying the secant method
in our model, numerical simulations show that convergence issues do occur for some
iterations, inducing an infinite loop where the convergence test was not met, and so
compromising the entire simulation.

•Newton Method: Since it is based on Taylor’s expansion, it requires the calculation
of gradients or partial derivatives of higher level (Jacobian matrix). As explained
in Section 3.3, gradients calculation involves the evaluation of at most T similar
functions of lower dimension of the underlying function. As the process to obtain
the function value is relatively expensive (CDFs calculations), the use of gradients
in the interpolation method would make it impractical.

•Muller’s Method: Similarly to the secant method, rather than use a secant function
over the underlying function to get the next iterates, it uses a quadratic equation to
interpolate the function in 3 points. It was developed for one-dimensional function
interpolation, so its use in the present framework would require additional devel-
opments to compute the required parameters for each iteration. Even though the
method seems to be promising, these studies escape from the focus of the present
work.
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APPENDIX B -- The Use of Alternative Distributions
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Figure 21 – QQ plots from 6:00 to 14:59 of Bus 1.

Source: Thesis results.

The model to the wind generation random vector g̃w(b)
w was defined in Section 4.2.2,

where it is established normality assumptions to these variables. To motivate the analysis
on the adherence of the used wind generation data set to hypothesis of normality, we offer
sketches where we present quantile-quantile plots from the random variables. In Figure
21, we display nine QQ-plots from the random variables that represent the generation
hour by hour from 6:00 to 14:59 of Bus 1 of the 5-bus system. We also reproduce the
procedure to Bus 3 in Figure 22. The remaining hours have similar behaviour.

The interpretation of Figures 21 and 22 is that as better the blue signals (repre-
senting the quantiles of the sample) are supported by the red line (quantile of a standard
Normal distribution), more we have evidence that we can not reject the normality hy-

pothesis of the random vector g̃w(b)
w . In practice, one accepts the normality hypothesis

if the blue signals are over the red line. The first observation of these figures is that the
extremes of the blue signal shapes are limited by the maximum and minimum wind gener-
ation sources, and they are not well modelled by standard Gaussian approaches. A direct
solution should be on the use of truncated distributions, what could be done imposing the
wind random variable g̃w(b)

w to be restricted to a polyhedral set, blow ≤ A1g̃w
(b)
w ≤ bup,

where blow and bup define the minimum and maximum limits to the wind farm generation
and A1 is an identity matrix. In a such case, the PC (4.18) is modified as follows:

P

[
ldlow

b ≤ h(ẋ, g̃w(b)
w ) ≤ ldup

b

blow ≤ A1g̃w
(b)
w ≤ bup

]
≥ p · P[blow ≤ A1g̃w

(b)
w ≤ bup]. (B.1)

As discussed in (DINIZ; HENRION, 2016), convexity for this PC still holds, but even-
tually, it would be necessary to work with singular distributions, and so in such case
inclusion of technical procedures are required in order to achieve (sub)gradients for the
non-smooth probabilistic constraints, as shown in (van ACKOOIJ; MINOUX, 2015).

In both Figures 21 and 22, checking that the red line supports the blue signals, we
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Figure 22 – QQ plots from 6:00 to 14:59 of Bus 3.

Source: Thesis results.

may note that in the main partition of the distribution there are good adherences from
hour 11 to hour 14 for both buses. Nevertheless, mainly for Bus 1, from 6:00 to 10:59,
the wind did not behave so well, which could motivate the use of alternative distribution
functions to describe them. In the context of defining alternative better distributions, we
must observe some points, as follows:

1.The first one is regarding the concavity of the alternative distribution. This concern
is to ensure that the PC defines a feasible convex set. Section 3.2 has more comments
about this issue;

2.If it is well established its multivariate distribution function, and if it disposes of
efficient methods to evaluate the CDF for a given point, as shown in Section A.5 to
the Normal counterparts;

3.If the distribution disposes of appropriate formulas for its gradients. These are
necessary, for example, to establish the cutting planes that bounds the PC feasible
sets (Step vi of Algorithm 2);

4.If one aims at working with different distributions in a single joint PC, how to
establish analytically the relationship between these random variables in a single
CDF. One method that offers some flexibility in this sense is by the use of Copulas,
as stated in Appendix Section B.2.

All those points are challenging lines of research in the stochastic programming com-
munity by themselves. The Section B.1 aims at providing a brief discussion on Copulas,
that are important in the following Section B.2 that are related to the items 1 and 4
above regarding the use of alternative distributions to describe uncertainties in the PC
programming problem.
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B.1 NOTIONS ON COPULAS

This section provides a non self-contained introduction to Copulas. For a complete
one we refer to (NELSEN, 2006). Here we follow the lines traced by (HENRION; STRU-

GAREK, 2011).

Definition B.1.1A copula is defined as a distribution function (CDF) C : [0, 1]E →
[0, 1] of a random vector that has its marginals uniformly distributed in [0, 1].

A fundamental concept in copulas theory is provided by the Sklar theorem, which
states that for any CDF F : RE → [0, 1], with marginal components Fe, e ∈ E, |E| =
E, there exists a copula C for F such that:

F (x) = C(F1(x1), . . . , FE(xE)), ∀x ∈ R
E. (B.2)

In the case of a continuous CDF Fe , then the copula C is uniquely defined:

C(u) = F (F−1
1 (u1), . . . , F

−1
E (uE)); F−1

e (t) := inf
Fe(r)≥t

r. (B.3)

This theorem gives us the instruments to define a distribution function by its copula
counterpart, adjusting it to fit to a given distribution. Examples of copula:

•Independent Copula: C(u) =
∏E

i=1 ui;

•Maximum Copula: C(u) = min
e∈E

ue ;

•Normal Copula: CΣ(u) = ΦΣ(Φ−1(u1), . . . ,Φ
−1(uE)), where ΦΣ is the nor-

mal CDF with zero mean and correlation matrix Σ, and Φ is the one-dimensional
standard Gaussian CDF;

•Archimedean Copula: C(u) = ψ−1(
∑E

e=1 ψ(ue)), where ψ is the generator of

the Archimedean Copula, a continuous decreasing function ψ : [0, 1] → R
+, with

ψ(1) = 0.

The independent Copula is a joint CDF with independent components. An inter-
esting property of the Maximum Copula is that it dominates any other copula C, in
such a way that C(u) ≤ min

e∈E
ue. Special cases of Archimedean Copulas are: The

independent copula that has generator ψ = −log(t); The Clayton copula that has
generator ψ(t) = θ−1(t−θ − 1), with θ > 0; The Gambel copula that has generator
ψ(t) = (−log(t))θ, with θ ≥ 1.

B.2 GENERALIZED CONCAVITY AND EVENTUAL CONVEXITY

As discussed in Chapter 3, especially in Section 3.2, to ensure that the PC, e.g.
P[he(ẋ, ξ̃) ≤ 0, e ∈ E] ≥ p, defines a convex feasible set, one must to analyse the
concavity of the map he(·) and the distribution of the random variable ξ̃. As far the
research of the author goes, the pioneering work (HENRION; STRUGAREK, 2008) defines
conditions to ensure concavity for specific PDFs with independent random components,
where concavity holds for large enough probability levels. In their paper, it is considered



172

separated structures as the particular case h(ẋ, ξ̃) = h(ẋ)− ξ̃, allowing the feasible set
of PC to be described directly from the distribution function of ξ̃, such that, M(p) =
{ẋ ∈ R

m|F (h(x)) ≥ p}. The authors look at finding the properties that make possible
ensuring convexity of the set M(p) for all p ≤ p∗, with p∗ < 1. The question imposed
here is how to establish the convexity of the set M(p) when we can not guarantee the
concavity of the components he(ẋ) and the variable ξ̃ distribution function.

Still in (HENRION; STRUGAREK, 2008), relating to general r−concavity Definitions
A.2.1, r ∈ R , the authors define the r−decreasing functions as the continuous functions
f : R → R that have trf(t) strictly decreasing for all t > t∗, for some t∗ > 0. The
central result of the work is following theorem:

Theorem B.2.1Considering M(p) as in (3.12), for e ∈ E, Fe the CDF of ξ̃e, t
∗
e the

inferior limit of (re + 1)-decreasing PDF fe and the additional assumptions:

1.∃re > 0 such that components he are (-re)-concave.

2.The components ξ̃e of ξ̃ are independently distributed with (re +1)-decreasing den-
sities fe.

Then, M(p) is convex for all p > p∗ := max{Fe(t
∗
e)|e ∈ E}.

This theorem is based on the relationship of the (r + 1)-decreasing density fe to
the concavity of the mapping F (z−1/r) for z ∈ (0, (t∗)−r). The property of allowing
convexity to the setM(p) depending on the level of the probability level p is called even-

tual convexity in the literature. Among distributions with independent components that
preserve r-decreasing densities (with correspondent t∗ values), we find Normal, Exponen-
tial, Gamma, χ and χ2. Moreover, the authors verify that Weibull PDF, very commonly
found to model the speed of wind in wind farms generation studies, belongs to this class
of functions.

The same authors of the previous work extend it in (HENRION; STRUGAREK, 2011)
providing conditions to establish concavity properties when instead of imposing random
variables with independent components it is allowed correlated structures through the
use of copulas. One advantage in the use of copulas is the possibility to set correlation
between random variables based on their marginal distributions. Then, it is discussed the
convexity of the set:

M(p) = {x ∈ R
E|C(F1(h1(x)), . . . , FE(hE(x))) ≥ p}, (B.4)

where he : RE → R, Fe is a one dimensional marginal CDF of the distribution function
F , and C is a Copula as in Section B.1. The use of (B.4) is quite flexible and for general
applications Fe it is known exactly. C can be a Copula that well establish, heuristically,
the relationship between the marginals. To present the main result of the paper, the
authors introduce the following definition:

Definition B.2.2A Copula C : [0, 1]E → [0, 1] is called log exp-concave on the
set

∏E
e=1[qe, 1), for q ∈ (0, 1)E if the mapping C̃ : R

E → R such that C̃(u) =

logC(eu1, . . . , euE) is concave on
∏E

e=1[log qe, 0).

Borrowing the definitions from Theorem B.2.1, the main result of (HENRION; STRU-

GAREK, 2011) is given by the following theorem:
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Theorem B.2.3Considering (B.4), for e = 1, . . . , E, we assume that:

1.∃re > 0 such that components he are (-re)-concave.

2.The marginal CDFs Fe are related to (re + 1)-decreasing densities fe.

3.The Copula C is log exp-concave on the set
∏E

e=1[Fe(t
∗
e), 1).

Then, M(p) is convex for all p > p∗ := max{Fe(t
∗
e)|e ∈ E}.

For the application of the Theorem B.2.3, the first two assumptions are directly
verified from the maps he(·) and density fe, where many examples for (re+1)-decreasing
densities fe are provided in Table 1 of (HENRION; STRUGAREK, 2008). Less trivial is
to ensure the third assumption, i.e. Copula C being log exp-concave. In (HENRION;

STRUGAREK, 2011) it is checked that the independent, maximum and Gambel Copula
are log exp-concave. Nevertheless, the Clayton Copula is not.

In the same line of research, in (van ACKOOIJ, 2015) the author extends the Theorem
B.2.3 for a larger family of Copulas C. The extension of the log− exp-concave Copula
C is provided by the concept of δ − γ−concave Copula. This last is defined as follows:

Definition B.2.4Let γ ∈ R and the set X(γ) defined as X(γ) = [0, 1]E for γ > 0,
X(0) = (−∞, 0]E and X(γ) = [1,∞)E for γ < 0. Let σ ∈ [−∞,∞] be equally
given. We define the Copula C[0, 1]E → [0, 1] a γ − δ-concave Copula, if :

•the mapping C(u1/γ) is δ-concave , if u ∈ X(γ) and γ 6= 0;

•the mapping C(eu) is δ-concave , if u ∈ X(0) and γ = 0.

By this last definition, we verify that the log− exp-concave definition in B.2.2 is
in effect a 0 − 0-concave mapping. Still in (van ACKOOIJ, 2015), the author extendeds
this definition by the concept of δ-γ -q-concave Copula C, where the q turns out to be
the parameter that defines the set X(q, γ) where u takes place. Then, the Definition
B.2.4 has its sets redefined, such that: X(q, γ) =

∏
e∈E [q

γ
e , 1] for γ > 0, X(q, 0) =∏

e∈E [log(qe), 0] and X(q, γ) =
∏

e∈E [1, q
γ
e ] for γ < 0. The main result of (van

ACKOOIJ, 2015) is given by the following theorem, which is indeed an extension of Theorem
B.2.3:

Theorem B.2.5Considering (B.4), for e = 1, . . . , E, we assume that:

1.∃re > 0 such that components he are re-concave;

2.The marginal CDFs Fe are γe−concave, for γe ∈ (−∞,∞], be > 0 on the
following sets: For re < 0 and (0, bree ] ∋ z 7→ Fe(z

1/re); For re = 0 and
[log be,∞) ∋ z 7→ Fe(exp z); For re > 0 and [bree ,∞) ∋ z 7→ Fe(z

1/re);

3.The Copula C is δ − γ-concave or δ − γ − F (b)-concave for γ ≤ γe ≤ ∞.

Then, M(p) is convex for all p > p∗ := max{Fe(be)|e ∈ E}.
In this theorem proof is stated that in the case which re ≥ 0, Fe being γe-concave

everywhere (and so it is not limited for some bi) andC being a δ−γ−concave Copula, the
setM(p) is convex for all p ∈ [0, 1]. Using the monotonicity of the Copula, one achieves
a even sharpen (i.e. lower) p∗ := C(F1(b1), . . . , Fn(bn)). Complementing (HENRION;

STRUGAREK, 2011) that has shown that the Clayton Copula is not log− exp-concave,
in (van ACKOOIJ, 2015) it is shown that this Copula is indeed γ−δ-concave for all γ > 0
and δ ≤ −θ < 0.
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APPENDIX C -- Support to bilinear structures
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C.1 EIGENVALUES OF SQUARE MATRIX

To establish the eigenvalues of the matrix Y Y ⊤ − ZZ⊤, we first observe all the
eigenvalues and eigenvectors of the matrix Y Y ⊤. To achieve that we verify:

Y Y ⊤a = λa⇔ Y ⊤Y Y ⊤a = Y ⊤λa

⇔ ‖Y ‖2Y ⊤a = Y ⊤λa⇔ λ = ‖Y ‖2.

And so one eigenvalue of Y Y ⊤ is ‖Y ‖2. Verifying that:

Y Y ⊤a = λa⇔ Y Y ⊤Y = λY ⇔ Y ‖Y ‖2 = λY.

We note that the eigenvector related to the eigenvalue ‖Y ‖2 is the vector Y . Also noting
that considering an orthogonal vector b to Y , we have Y ⊤b = 0 and so Y Y ⊤b = λb = 0
and then orthogonal vectors are eigenvectors with trivial eigenvalues λ = 0. If Y Y ⊤ is
a n × n matrix, finding n − 1 orthogonal vectors to Y we define a base to Y Y ⊤ and
so the only non-trivial eigenvector is Y (and their parallel correspondents). Equivalent
discussion is made for the matrixZZ⊤. From that, we observe that non-trivial eigenvalues
of the matrix Y Y ⊤ − ZZ⊤ are given on the vector space defined by the bases made of
the vectors Y and Z. So, we have the following equivalence:

(Y Y ⊤ − ZZ⊤)(aY + bZ) = λ(aY + bZ).

Opening (Y Y ⊤ − ZZ⊤)(aY + bZ), and being the scalars Y ⊤Z = Z⊤Y :

(Y Y ⊤ − ZZ⊤)(aY + bZ) = aY Y ⊤Y + bY Y ⊤Z − aZZ⊤Y − bZZ⊤Z

= ‖Y ‖2aY + bZ⊤Y Y − aZ⊤Y Z − ‖Z‖2bZ,
(Y Y ⊤ − ZZ⊤)(aY + bZ) = (‖Y ‖2a+ Z⊤Y b)Y + (−‖Z‖2b− Z⊤Y a)Z

= λ(aY + bZ).

The last equality is equivalent to the following system of equalities:

‖Y ‖2a+ Z⊤Y b = λa,

− ‖Z‖2b− Z⊤Y a = λb.

That can be rewritten in following matrix:

(
‖Y ‖2 Z⊤Y
−Z⊤Y −‖Z‖2

)
· [a b]⊤ = λ[a b]⊤. (C.1)

We are in grade to verify the eigenvalues of that matrix. We observe that the
characteristic polynomial is given by:

λ2 + λ(‖Z‖2 − ‖Y ‖2)− ‖Y ‖2‖Z‖2 + (Z⊤Y )2 = 0
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From the Bhaskara formula we find the highest eigenvalue is:

λ+ =
‖Y ‖2 − ‖Z‖2 +

√
(‖Y ‖2 + ‖Z‖2)2 − 4(Z⊤Y )2

2
,

and the lowest:

λ− =
‖Y ‖2 − ‖Z‖2 −

√
(‖Y ‖2 + ‖Z‖2)2 − 4(Z⊤Y )2

2
.
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