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RESUMO

As tecnologias de fabricação de chips contemporâneas tornam possível a fabricação de sistemas
embarcados extremamente complexos compostos de hardware e software que são muito difí-
ceis de serem verificados e testados. Como a evolução tecnológica tende a seguir, tal dificuldade
deverá crescer nos próximos anos. Apesar dos notáveis avanços dos algoritmos e técnicas de
Electronic Design Automation (EDA) nos últimos anos, as ferramentas de projeto e verificação
não evoluíram no mesmo ritmo que a capacidade de fabricação de chips, o que deu origem aos
chamados gap de projeto e gap de verificação. Neste contexto, novas técnicas que tornem pos-
sível a verificação de sistemas embarcados complexos são necessárias, de forma a reduzir o gap
de verificação, aumentando assim a produtividade e reduzindo os custos. Buscando contribuir
para mitigar tal situação, a indústria vem liderando uma iniciativa para padronizar os proces-
sos de verificação a qual resultou na Metodologia de Verificação Universal (UVM). A UVM
define regras e diretrizes para melhorar o desenvolvimento de testbenches e a execução da si-
mulação através do reúso de código e outras características relevantes. Ela também viabiliza a
reutilização de componentes. Na última década, a linguagem SystemC tornou-se amplamente
utilizada tanto para o projeto quanto para verificação de sistemas no alto nível de abstração,
uma vez que tal nível permite lidar com a complexidade dos sistemas embarcados contempo-
râneos. Entretanto, as ferramentas de síntese de alto nível não estão suficientemente maduras
para produzir descrições no nível de transferência entre registradores (RTL) com boa qualidade
e por isso, a indústria ainda lança mão de conversões semiautomáticas para gerar descrições
RTL em VHDL ou verilog, ao invés de usar somente SystemC ao longo de todo o fluxo. Tal
procedimento causa um problema ao fluxo de verificação, uma vez que os modelos de injeção
de falhas desenvolvidos para o alto nível raramente são reutilizados no RTL. Além disso, ape-
sar do grande número de técnicas de injeção de falhas que existem, a maioria delas são difíceis
de serem integradas aos testbenches e ao projeto. Dadas as limitações e dificuldades mencio-
nadas anteriormente, este trabalho propõe uma nova técnica não-intrusiva de injeção de falhas
batizada de UVM-FI, integrada à UVM. UVM-FI consiste em uma biblioteca de código livre,
escrita em C++/SystemC que contém tipos básicos de falhas, gatilhos e localizações de falhas.
A integração da UVM-FI com a UVM baseia-se no mecanismo de compartilhamento de dados
da UVM e viabiliza o reúso. Como segunda contribuição importante, este trabalho também
propõe uma Linguagem de Domínio Específico (em inglês, Domain-Specific Language - DSL)
que permite a criação automática de modelos de falhas em SystemC. A adoção de SystemC
permite a descrição de todos os componentes de verificação em uma mesma linguagem, incluso
o próprio projeto. A capacidade do injetor de falhas proposto e sua facilidade de integração no
ambiente UVM foram avaliadas e comparadas para diversos cenários distintos. Desta forma,
este trabalho contribui para o avanço da área de verificação por meio da criação de ambientes
de verificação reutilizáveis, capazes de levar a cabo a injeção de falhas.

Palavras-chave: Injeção de falhas. Metodologia Universal de Verificação. SystemC. Lingua-

gem Específica para um Domínio.





RESUMO ESTENDIDO

Introdução

A simulação de falhas consiste em injetar falhas no sistema e, em seguida, exercitá-lo para
observar o impacto gerado pelas falhas. A técnica de injeção de falhas pode ser aplicada ao
hardware e ao software para medir o desempenho do sistema e validar mecanismos de tolerância
a falhas.
A complexidade dos sistemas tem aumentado constantemente e nesse contexto, metodologias
para criar testes e técnicas para melhorar a confiabilidade dos sistemas foram propostas para
otimizar ou até tornar viável o processo de verificação. A Metodologia de Verificação Universal
(UVM) surgiu nesse contexto, como um esforço de padronização conduzido pelo consórcio
Accellera 1.
Entretanto, integrar modelos de falhas à UVM não é uma tarefa fácil. Como a injeção de falhas
em si não é padronizada, sua integração deve ser feita manualmente, o que resulta em custos
extras. Portanto, um novo método para automatizar os modelos de injeção de falhas, facilitando
sua integração ao UVM, poderia melhorar todo o processo de verificação.

Objetivos

O principal objetivo deste trabalho é apresentar, validar e avaliar uma nova técnica de injeção
de falhas que permita a fácil integração de modelos de injeção de falhas na UVM e que também
facilite a reutilização de componentes em um ambiente de testes. Como objetivo secundário,
este trabalho procura aprimorar a descrição do modelo de falhas em termos de facilidade de uso
e expressividade.

Contribuições

Os objetivos foram alcançados com o desenvolvimento de uma extensão da UVM com novos
componentes que permitam a injeção de falhas de forma não intrusiva, sendo essa nova técnica
batizada de UVM-FI. Além de estender a UVM disponibilizada pela Accellera, a UVM-FI foi
implementada em SystemC e ao contrário da maioria dos trabalhos correlatos, seu código é
aberto e pode ser baixado em https://gitlab.com/lohmann/uvm-fi.
As principais contribuições deste trabalho são:

• Uma nova técnica, escrita em SystemC, não intrusiva de injeção de falhas que permitem
a reutilização de componentes para criar testes de injeção de falhas com a UVM ;

• Uma biblioteca de modelos de falha que podem ser integrados a um ambiente UVM
usando o princípio plug-and-play;

• Uma Linguagem de Domínio Específico (em inglês, Domain-Specific Language - DSL)
metaprogramável implementada em SystemC combinada com a UVM para descrever
modelos formais de falhas.

Metodologia

1. Condução de uma Revisão Sistemática da Literatura com escopo em técnicas de injeção
de falhas;

2. Análise das principais técnicas de injeção de falha em SystemC e C++;

1 http://accellera.org/



3. Análise das ferramentas e técnicas disponíveis para permitir a introspecção em código na
liguagem SystemC;

4. Implementação da biblioteca UVM-FI;

5. desenvolvimento da DSL;

6. Desenvolvimento de experimentos de injeção de falhas utilizando a UVM-FI;

7. Avaliação e validação da UVM-FI;

8. Avaliação da capacidade de expressividade da descrição dos modelos de falhas utilizando
a DSL;

9. Desenvolvimento de estudos de caso para aplicação da UVM-FI em sistemas mais com-
plexos e mais semelhantes aos sistemas reais;

10. Avaliação dos resultados obtidos através de estudos de caso.

Proposta

A técnica proposta, chamada de UVM-FI, agrega capacidades de injeção de falhas à UVM. Tal
integração evita a reimplementação desnecessária de componentes que são equivalentes entre
as duas técnicas (como monitores, geradores de sequencias e analisadores de dados) e permite
a análise de confiabilidade mais cedo na fase de verificação.
O ambiente de injeção de falha se baseia na UVM, adicionando um mecanismo ECA (Event-
Condition-Action) e uma DSL (Domain-Specific Language) para descrição do modelo de falha.
Além disso, a UVM-FI fornece uma interface para conectar-se ao DUT via recursos já disponi-
bilizados pela UVM.
A entrada para a UVM-FI é uma descrição do modelo de falha. Com base na especificação
de falha desejada, o mecanismo (ECA) gerenciará as ações e os tipos de falha registrados para
executar a injeção de falha no momento pretendido.

Resultados e Discussão

A proposta foi avaliada por meio de experimentos controlados para validar a injeção de falhas
e analisar o modelo de descrição de falhas utilizando a DSL. Além disso, foram desenvolvi-
dos cenários envolvendo sistemas mais complexos e reais. Primeiramente, é apresentado um
exemplo de injeção de falha em um contador de 8 bits, o qual foi comparado com trabalhos cor-
relatos. Uma vez validado o exemplo e avaliado seu comportamento, constatou-se que o injetor
foi capaz de injetar falhas em modelos SystemC conforme o esperado. Em seguida, foi reali-
zada uma avaliação de injeção de falha em termos de expressividade da descrição do modelo de
falha para três cenários diferentes. Por fim, a UVM-FI foi aplicada para injetar falhas em dois
cenários; um multiplicador de matriz com mecanismo tolerante a falhas e a uma plataforma vir-
tual com simulador de conjunto de instruções (ISS) do microcontrolador MSP430 com modelo
de memória transacional (em inglês Transaction-Model Modeling - TLM). Nos dois cenários,
foi possível aplicar a técnica proposta com sucesso e validar a versatilidade e capacidade da
UVM-FI.
A UVM-FI não requer nenhuma alteração no DUT original. Além disso, não é necessário
sobrescrever ou estender o código-fonte SystemC, pois a UVM-FI é uma técnica completamente
não intrusiva. O modelo de falha é descrito apenas no ambiente de teste e muitos locais, eventos
e tipos de falhas podem ser desenvolvidos e executados com eficiência no DUT.



Considerações Finais

Este trabalho de mestrado, propôs, validou e avaliou uma nova técnica de injeção de falha não
intrusiva e totalmente integrada à UVM, essa técnica foi batizada de UVM-FI.
UVM-FI consiste em uma biblioteca de código-fonte aberto, escrita em C++/SystemC, con-
tendo tipos, eventos e locais de falhas que podem ser integrados a um ambiente UVM usando
o princípio plug-and-play. Os experimentos e estudos de caso validaram esse novo injetor e
demonstraram sua capacidade, permitindo uma comparação com outras abordagens.
A descrição dos modelos de falhas na UVM-FI é feita utilizando SystemC DSL. Os estudos de
caso desenvolvidos neste trabalho demonstraram que a DSL é menos verbosa e mais legível do
que as outras abordagens baseadas em XML.

Palavras-chave: Injeção de falhas. Metodologia Universal de Verificação. SystemC. Lingua-

gem Específica para um Domínio.





ABSTRACT

Current chip fabrication technologies render possible the implementation of extremely complex
embedded systems composed of hardware and software that are very difficult to verify and test.
As long as technology evolution tends to continue, such difficulty will continue to grow in the
next years. Despite the remarkable advances in Electronic Design Automation (EDA) algo-
rithms and techniques in the past years, design and verification tools have not evolved in the
same pace as chip fabrication capability, giving rise to the so-called design and verification gaps.
In this context, new techniques to make possible the verification of complex embedded systems
are demanded, so as to reduce the verification gap and thus increase productivity and reduce
costs. Looking to mitigate this situation, industry has been leading an initiative to standard-
ize the verification procedure that resulted in the Universal Verification Methodology (UVM)
which sets rules and guidelines for enhancing testbench development and simulation execution
through code reusability and other relevant features, and allows for component reuse as well.
In the last decade, SystemC language has become widely used for design and verification at the
high levels of abstraction, since such level allows to handle the complexity of current embedded
systems. However, high-level synthesis tools are not mature enough to produce good quality
Register-Transfer Level (RTL) descriptions and thus industry still relies on semi-automated con-
version to generate RTL descriptions in VHDL or Verilog instead of using SystemC all along
the design flow. Such procedure poses a problem in the verification flow, since fault injection
models developed for the high level are seldom reused in the RTL. Moreover, despite the great
number of existing fault injection techniques, most of them are challenging to integrate with
the testbench and with the design. Given the previously mentioned limitations and difficulties,
this work proposes a novel non-intrusive fault injection technique named UVM-FI that is fully
integrated into UVM. UVM-FI consists of an open-source library, written in C++/SystemC,
containing basic fault types, triggers and fault locations. The integration of UVM-FI into UVM
relies on the UVM data share mechanism and enables reusability. As a second important contri-
bution, this work also proposes a metaprogrammed Domain-Specific Language (DSL) to allow
for automatic creation of fault models in SystemC. The adoption of SystemC allows for describ-
ing all verification components in the same language including the design itself. The capacity
of the proposed fault injector and its ease of integration into the UVM environments were evalu-
ated and compared in several distinct scenarios. Therefore, this work contributes to the advance
in the verification area by creating reusable verification environments capable of performing
fault injection.

Keywords: Fault injection. Universal Verification Methodology. SystemC. Domain Specific

Language.
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In order to deal with the increasing complexity of electronic systems, engineers and

researchers from industry and academia have devised new levels of abstraction for design repre-

sentation and behavior modeling, being the Electronic System Level (ESL) (RIGO; AZEVEDO;

SANTOS, 2011) (MARTIN; BAILEY; PIZIALI, 2007) the highest one. At the ESL it is pos-

sible to model complex systems using a high level language, such as C++ and Java. However,

to better integrate the ESL with the Register-Transfer Level (RTL), paving the way for high-

level synthesis, specific languages to model both hardware and software in a more appropriate

manner have been developed. The most relevant ones are SystemVerilog and SystemC.

Created and standardized by the IEEE (ASSOCIATION et al., 2012), SystemC is a

system design and modeling language that extends the C++ language with a set of macros and

class libraries, making possible hardware and software modeling with the same language. With

SystemC, engineers can develop and verify complex systems composed of both hardware and

software possibly at different levels of abstraction. However, it has been used mainly at the high

levels of abstraction because high-level synthesis tools are not mature enough to provide RTL

descriptions with a quality equivalent to that an experienced designer can produce. Due to that,

so far the industry still relies on a semi-automated conversion to generate RTL descriptions in

VHDL or Verilog from SystemC or SystemVerilog, which increases the risk of introducing new

errors. In addition, the gap between high-level and RTL renders verification extremely difficult.

Thus, despite the potential offered by the language, currently SystemC-based verification is

not performed all along with the design steps and generally, the coverage and test are checked

manually (GROSSE; DRECHSLER, 2010).

The number of faults and the difficulty in verifying a system correlate with its complex-

ity. Indeed, complex systems tend to have more faults and less observability and controllability

for verification. Therefore, design and verification methodologies that cover all design steps

are needed to increase the quality of the system. Particularly, to increase reliability the system

behavior must be exercised in the presence of faults, and not only in expected cases. This is

accomplished by fault simulation.

Fault simulation consists in injecting faults in the system and then exercising it to ob-

serve the impact of faults on its behavior. Faults are described in a fault model, containing the

fault type, fault trigger, and the fault location. The fault injection technique can be applied to

both hardware and software to measure the system performance and to validate fault-tolerant

mechanisms. It can be performed by simulating a system model, by exercising a system pro-

totype or even by executing directly in the real system (BENSO; PRINETTO, 2003). The

environment to perform system verification and fault simulation is named Testbench. A Test-

bench is composed of a stimulus generator, a monitor, a scoreboard, and the Design Under Test

(DUT) (BERGERON, 2003).

While the complexity of systems has steadly increased, methodologies to create Test-

benches and techniques to improve the dependability of systems have been proposed to opti-

mize or even to make the verification process viable. The Universal Verification Methodology

(UVM) has emerged in this context as a standardization effort conducted by the consortium Ac-
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cellera 1. UVM sets rules and guidelines for enhancing testbench development and simulation

execution through code reusability, modular Testbenches, stimuli generation and transaction-

level communication between the verification environment and the DUT, among other features

(ROSENBERG; KATHLEEN, 2013). Lately, UVM is being widely adopted by industry.

1.1 MOTIVATION

In the last years, several fault injection techniques have been proposed, each one de-

voted to different types of faults at different levels of abstraction and making use of differ-

ent languages (SHAFIK; ROSINGER; AL-HASHIMI, 2008), (BELTRAME et al., 2008), (LU;

RADETZKI, 2013). Although those techniques are already used and validated in many projects,

they are not integrated with UVM or with any other standard methodologies. In addition, the

majority of them have complex frameworks that hamper their integration into other verification

methodologies to build efficient Testbenches.

As already mentioned, SystemC offers excellent potential for both design and verifica-

tion of complex systems and for this reason it is widely used. Nonetheless, the way fault models

are described in existing SystemC-based fault injection tools raises some issues. Many fault in-

jection tools are based on the Extensible Markup Language (XML) or use a run-time console.

The use of manual interactions through consoles precludes tests from running in batch, making

it difficult to replicate experiments. The use of XML makes it difficult to setup system veri-

fication under fault injection because XML description of fault models is verbose. Moreover,

the XML format is quite distant from SystemC. In addition, by using XML each tool requires a

specific structure to describe fault models which must be learned by the designer. Application

Programming Interface (API)-based approaches could avoid the limitations of XML but still

yield complex setup code that is difficult to maintain.

Before the efforts to standardize verification methodologies promoted by Accellera,

different methods for verification were created to perform similar tasks, which resulted in extra

costs to retrain designers and convert codes. The adoption of UVM can reduce such problem, al-

lowing verification based on reusable Testbenches and components. However, the integration of

fault injection models into UVM is not an easy task. As fault injection itself is not standardized,

its integration must be done manually, which results in extra costs. Therefore, a new method

to automate fault injection models making their integration into UVM easier could im-

prove the whole verification process and thus is highly desirable. It is also desirable that all

components of such method are built with the same language used to model the system under

verification, which in the context of UVM may be either SystemC or SystemVerilog. This way,

designers will not have to deal with different languages and different syntaxes.

1 http://accellera.org/



32

1.2 GOALS

Given the limitations of existing approaches described in the previous section, the

main goal of this work is to propose, validate, and evaluate a new fault injection technique

that allows the easy integration of fault injection models into UVM and that is able to

provide reusability. As secondary goal, this work looks for enhancing fault model description

in terms of ease of usage and expressivity.

1.3 CONTRIBUTIONS

The two goals proposed for this master degree work were met. In particular, the main

goal was met by extending the Accellera UVM standard with a new non-intrusive fault injection

technique for the high levels of abstraction, giving rise to a novel technique named UVM-FI.

Besides relying on Accellera UVM, UVM-FI was implemented in SystemC and unlike most

of the state-of-the-art correlate works, its code is open and can be downloaded from https:

//gitlab.com/lohmann/uvm-fi.

The main contributions of this work are:

• A new non-intrusive fault injection technique written in SystemC that allows reusing of

components to create fault injection campaigns in a similar fashion as UVM allows for

reusing verification components to build Testbenches.

• An easily extensible library of fault models that can be integrated into an UVM environ-

ment using the plug-and-play principle. The library includes basic fault types, triggers

and fault locations.

• A metaprogrammed Domain Specific Language (DSL) in SystemC to be combined with

the UVM to describe formal fault models without the need for specific compilers or pre-

processed code. Unlike current fault injection techniques, there is no need to create fault

injection environment manually or to describe the system in the XML format. Moreover,

the use of a DSL enhances the capability of describing more sophisticated fault injection

tests by providing a better way to describe the fault model.

1.4 ORGANIZATION

The remainder of this text is organized as follows. Chapter 2 presents the main con-

cepts about libraries and techniques used in this dissertation. Chapter 3 discusses the related

work, the main fault injection techniques already proposed and their capabilities. Chapter 4

details the contributions of this work which are a new fault injection technique, the DSL im-

provements and the facilities to integrate fault injection with UVM. Chapter 5 discusses the

results. Finally, Chapter 6 draws the conclusions and proposes some future works.
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2 BACKGROUND

This chapter describes the basic concepts and tools related to this research. Section 2.1

presents the definition of failure, error, and fault for system verification and introduces the con-

cept of dependability as well. Section 2.2 describes the basics of fault injection, its concepts and

techniques. Section 2.3 shows the fundamentals of Universal Verification Methodology (UVM).

Section 2.4 briefly describes the main concepts of SystemC, the language that encompasses all

this work. Section 2.5 presents a brief discussion of Domain-Specific Languages (DSLs).

2.1 FAILURE, ERROR, AND FAULT

A system failure occurs when the system does not perform as specified. A failure is

caused by an error, where an error is a fault manifestation that causes the system to enter an

incorrect state. The causes of an error may be an imperfection or a defect within some hardware

or software component, which is called a fault (AVIZIENIS et al., 2004). The presence of a fault

in a system may not generate a failure. This happens if the system execution does not activate

the fault. The fault, error, and failure are called the factors or the threats to dependability.

Faults in a system can occur either by hardware/physical defects or software incorrect

design. Hardware or physical faults can be grouped by their duration as permanent, transient,

or intermittent faults. Permanent faults are those caused by irreversible component damages.

Transient faults are caused by the environmental conditions such as the electromagnetic inter-

ference or radiation effects. Intermittent faults are caused by the unstable hardware or varying

hardware states (BENSO; PRINETTO, 2003). Software faults are a consequence of a bad de-

sign and can be introduced in all phases of the software development process. According to

Benso & Prinetto (2003), software faults can be categorized as follow:

• Function faults: Require a design change to correct the fault due to an incorrect or missing

implementation;

• Algorithm faults: Incorrect or missing implementation that can be fixed without design

modifications;

• Timing/serialization faults: Absence or incorrect serialization of shared resources. Can

be solved by implementing a mechanism to protect the data, like mutexes or semaphores;

• Checking faults: Incorrect data validation and incorrect conditional statements;

• Assignment faults: Values assigned incorrectly or not assigned.

Fault models are descriptions of the fault attributes. A fault model contains the fault

location, the time that the fault should be injected (also called trigger) and the type of the

injected error. The location of a fault is where the fault should be introduced (e.g. memory

space or interconnections). Timing describes when the fault should be activated in the system,
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this attribute represents the duration and persistence of a fault. Type of perturbation is the

type of fault. Some examples of physical faults are open transistors, shorting lines that are

physically close to each other, and broken wires (BUSHNELL; AGRAWAL, 2004). Usually,

software faults are corrupted instructions or wrong operations in the code. The fault model

description depends on the set of faults supported by the fault injection tool and the means used

to implement them.

Dependability is defined as the ability to deliver service that can justifiably be trusted

(LAPRIE, 1992). However, it is necessary to define a criterion for deciding if the service is

dependable. In this context, another definition of dependability is the ability to be tolerant for

the most frequent and critical failures for the acceptable system behavior (AVIZIENIS et al.,

2004).

Specifically, dependability of a system can be defined as a set of attributes that assess

the system safety. According to Avizienis et al. (2004) dependability is defined as the set of

following attributes:

• Availability: Readiness for correct service.

• Reliability: Continuity of correct service.

• Safety: Absence of catastrophic consequences on the user(s) and the environment.

• Integrity: Absence of improper system alterations.

• Maintainability: Ability to undergo modifications and repairs.

• Confidentiality: Absence of unauthorized disclosure of information.

Many techniques have been developed over the last years to increase system depend-

ability. The main means for achieving dependability are Fault Prevention, Fault Tolerance, Fault

Removal, and Fault Forecasting. Fault Prevention aims to avoid the presence of a fault into the

system or prevent that fault to occur. Fault Tolerance mechanisms prevent a system failure:

even if a fault does occur, the system will continue behaving correctly. Fault removal consists

of methods to reduce the presence of faults, at least the most usual faults in a system. Fault fore-

casting provides the means of tracking the number and the consequences of faults (AVIZIENIS

et al., 2004).

2.2 FAULT INJECTION

To increase the system’s dependability, validation of fault injection techniques can be

used. The purpose of fault injection is to introduce artificial faults into systems and observe

their behavior under those faults. This technique can be used for both hardware and software to

measure the system tolerance to failures particularly, when fault tolerant mechanisms are used

in the design. It can be performed on either simulations models, prototypes, or directly at the

real system. (BENSO; PRINETTO, 2003).
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Fault injection techniques can be categorized by how much they modify the original

system to introduce a fault. Non-invasive approaches are transparent to the system under test;

invasive techniques require modifications of the original system, by introducing more code

or changing some components. The non-invasive approaches are desired because changes in

the original system usually require a lot of effort, and manually work can modify the system

behavior.

Fault injection can also be implemented and categorized by whether they are imple-

mented (BENSO; PRINETTO, 2003), as follows:

• Hardware-implemented fault-injection: A special hardware to allow the injection of faults

is created and connected to the model under test;

• Software-implemented fault-injection: Additional code/software is created to manipulate

objects of the original model;

• Simulation-implemented fault-injection: Faults are injected to the model by a simulator

or debugger;

• Emulation-fault injection: Performed by a simulation based fault injection system in FP-

GAs to emulate the circuit behaviour at hardware speed;

• Hybrid fault injection: Combine software-implemented fault injection and hardware mon-

itoring.

The simulation-based fault injection do not operate at the physical hardware; the sys-

tem is simulated using a simulation language like VHDL or SystemC. The faults are deliberately

injected to the model and its behavior is observed. For instance, a virtual platform developed to

simulate an autonomous vehicle test what happens when a real memory fault occurs.

Usually, the main strategies for implementing simulated fault injection are based on

mutants, saboteurs or simulator command. The mutant technique replaces a component by

another one to enable faults. Such component works like the original one; when activated, the

mutant introduces faults. The saboteurs technique introduces a new component in the model.

The component can be inactive like the mutant. When activated, the saboteur changes the data

or time properties of a signal. The simulator command technique issues commands to control

fault injection time, replacing the variables and signals values. The drawbacks of saboteurs and

mutants are that both require modifications of the design and introduce overhead in simulations.

The main drawback of simulator command technique is the need of simulator that supports

such commands. Fault injection environments, as defined in (HSUEH; TSAI; IYER, 1997), are

those where a fault injector can be used to introduce faults according to multiple fault models

into a design that is under evaluation in a controlled testbench. Figure 2 illustrates the basic

components of such environment. It usually consists of the following components:

• Fault injector: Inject fault into the target system and execute commands from the work-

load generator;
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2.4 SYSTEMC

SystemC is a system design and modeling language built up from a set of macros and

class libraries extended from the C++ language to enable both software and hardware modeling.

Since SystemC is based on C++ language and the Standard Template Library (STL) framework

the software modeling is an intrinsic part and the notability of SystemC is the addition of hard-

ware concepts, such as time model, hierarchy and structure, and hardware data types.

Figure 4 illustrates the main SystemC components. All the language execution is based

on an event-driven simulation kernel that performs the processes simulation. An process is

implemented as Methods or Threads instances. Moreover, the framework offers mechanisms

to control the simulation execution, by events and notifications, communication between pro-

cesses, hierarchy structure organization, and data types interfaces and extensions.

Figure 4 – SystemC language architecture.

Source: The author, adapted from (BLACK et al., 2009)

Channels and Interfaces are provided for communication between concurrent pro-

cesses using events. For example, the class sc_signal is a primitive channel to model the be-

haviour of single wires carrying a digital electronic signal between modules.

Usually, a hardware design is composed by hierarchical blocks, like the entity/archi-

tecture components in VHDL. In SystemC, blocks are components encapsulated as modules,

and they are represented by the sc_module base class. A module may contain processes, com-

munication channels, and other modules.

An important concept of SystemC that surrounds this work is the implementation of

concurrency by the simulator. SystemC is an event-driven simulator that uses simulation pro-

cess to model concurrency; as consequence, the concurrency is simulated and not real concur-

rent executed. Since SystemC is an event-driven simulator, the events are important to control

the kernel simulation execution. The sc_event class is the base representation of an event in

SystemC. By definition, an SystemC event is the occurrence of an sc_event notification that

happens at single instant in time.

When the SystemC is coupled with verification libraries (such as the SystemC Veri-

fication library (SCV)), it provides mighty features for systems verification. Besides the veri-

fication, many other innovations are in development to increase the powerful of SystemC for
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systems design and verification, like the SystemC Universal Verification Methodology (UVM).

The SystemC, SCV and the SystemC-UVM are developed and maintained by Accellera Sys-

tems Initiative (Accellera) 2

2.5 DOMAIN-SPECIFIC LANGUAGES

Domain-Specific Languages (DSL) are programming languages designed for usage in

a specific domain (HUDAK, 1998) such as parsing, document and media authoring or hard-

ware description. Having a specific and well-defined domain allows such languages to incorpo-

rate powerful and versatile abstractions that ultimately increase programmer productivity and

decrease the effort required for debugging and maintenance. A particular class of DSLs are

Domain-Specific Embedded Languages which reuse capabilities of an existing general-purpose

programming language in order to create an abstraction layer with its own syntax and semantics,

which can be seamlessly integrated with code written in the host programming language.

C++, the language that SystemC extends, contains two mechanisms that can be used

for meta-programming (i.e., code that is able to generate code): the C preprocessor and tem-

plates. Unlike the C preprocessor, template-based meta-programming is Turing-completeness

(VELDHUIZEN, 2003), a feature that opens several possibilities of application, including

the design of embedded DSLs by overriding C++ operators (ABRAHAMS; GURTOVOY,

2004). Examples are the Boost.Range3 adaptors. With operator overloading and template meta-

programming, an expression such as copy(vec | filtered(is_person(_1) | reversed)

is correctly processed by the C++ compiler and has the semantics of iterating vec discard-

ing any object for which the function is_person returns false, in reverse order. In contrast,

the plain C++ code using standard library containers would require a loop with an inner if,

amounting to at least three lines of code.

2 www.accellera.org
3 http://www.boost.org/doc/libs/1\_66\_0/libs/range/doc/html/index.html
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Shafik, Rosinger & Al-Hashimi (2008) proposed a less intrusive fault injection simula-

tion technique for SystemC models. The approach consists in replacing original C++/SystemC

types with versions that have faulty behavior. For instance, the sc_logic type can be replaced

for other fault injection enabler type LogicReg; this type has faults enabled by the manager

mechanism. The advantage of this approach is less intrusive than the other techniques, but it

is not entirely non-intrusive because the original types need to be modified by the fault types.

One of the main advantages of (SHAFIK; ROSINGER; AL-HASHIMI, 2008) is that it does

not require the sc_start method replacement to avoid undesired initialization as was replaced

by sc_initialize and sc_cycle in (MISERA; VIERHAUS; SIEBER, 2007).

Lu & Radetzki (2011) showed an efficient and comparative fault simulation method in

SystemC, based on datatype extension on SystemC kernel. The difference between this work

and (SHAFIK; ROSINGER; AL-HASHIMI, 2008) is the injection method. Lu & Radetzki

(2011) implemented a kernel extension instead of source code modifications, and the structure

of simulation is made as a concurrent and comparative simulation(CSS) to speed up the simu-

lation. Although no new representation format and no new simulator have to be created, this

method needs source code transformations in the SystemC kernel to extend the data type. The

approach presented in (LU; RADETZKI, 2011) is extended with more examples and explana-

tions in (LU; RADETZKI, 2013). However, the focus of the articles was not the description

of the fault model, but the fault injector mechanism and its optimization in terms of execution

time.

Beltrame et al. (2008) introduced a new technique for fault injection based on reflec-

tive properties of programming languages. Beltrame et al. (2008) created a non-intrusive re-

flective simulation platform (ReSP) that enables SystemC and Python interoperability through

automatic Python wrapper generation. ReSP makes it possible to query, examine and mod-

ify the internal status of the SystemC models. Bolchini, Miele & Sciuto (2008) developed a

platform with ReSP to present a fault injection environment and a fault model to explore a

multi-processor based platform. The paper showed the versatility of ReSP platform developing

for injecting transient and permanent faults. The drawback of this approach is the complexity

to extend the fault injector, and it is necessary the Python language integration.

In the ReSP environment, faults can be described by the console, which is useful dur-

ing debugging. To conduct fault injection campaigns or to perform many runs on the same

architecture, it is necessary to describe the fault models in an XML file, in the same way as

other fault injectors. Neither (BELTRAME et al., 2008) nor (BOLCHINI; MIELE; SCIUTO,

2008) presented the XML syntax for fault model description or example descriptions. The XML

description introduces repeatability of fault injection testing. However, as seen in (MICHAEL;

GROSSE; DRECHSLER, 2011), fault model descriptions in XML are more verbose than fault

model description contained in SystemC itself.

Another example of work using XML for fault model description is (YAN et al., 2017).

In their approach, the authors generate SystemC faulty components from XML descriptions.

Thus, each component can be configured to have a faulty behavior in the simulation. The fault
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injector is characterized as a saboteur technique as it creates faulty components to perform

the fault injection. The difference from this approach to the other saboteurs presented is the

automatic generation of components using the XML descriptions.

Albertini, Rigo & Araujo (2012) implemented a white-box introspection mechanism.

Since SystemC does not have reflexive capabilities, the authors implemented a white-box in-

trospection mechanism by porting Reflex-SEAL (ROISER; MATO, 2005) library to SystemC.

Although the authors did not use the technique to test fault injection and did not perform the test

for bus developing, this work can be extended to perform fault injection tests and also supports

bus design and verification.

In addition to the techniques presented, several tools were developed for injecting

faults into simulations, but the majority of tools are designed for VHDL language and rarely for

SystemC models, such as VERIFY (VHDL-based Evaluation of Reliability by Injection Faults

Efficiently) (SIEH; TSCHACHE; BALBACH, 1997) and MEFISTO (ARLAT et al., 2003).

There are a few tools to automate the fault injection into SystemC-based models, one of them

is the SCEMIT. Proposed by (LISHERNESS; CHENG, 2010), this tool aims the automated

injection of errors into C/C++/SystemC models using the mutants approach. Although this tool

improves the fault injection, turning the process more automatic than other approaches, the

mechanism to perform fault injection is the same mutant approach presented first in (MISERA;

VIERHAUS; SIEBER, 2007).

3.2 SUMMARY OF RELATED WORK

Several techniques and tools for fault injection in SystemC models have been pro-

posed, most of them adapted from approaches that were initially designed for VHDL at a low

level of abstraction. With the increasing complexity of systems, the need for high levels of

design abstraction and new techniques for system verification has arisen. Although there are

many approaches for fault injection in SystemC, each one has advantages and drawbacks. The

previous presented state-of-art fault injection techniques are complicated to use when the en-

gineer desires to integrate them with another verification methodology because they require

considerable manual effort to make a sample fault injection experiment and to implement the

testbench. Table 1 summarizes the main techniques with their characteristics and compare with

our proposed technique.

Although the fault injection techniques presented in literature were successfully ap-

plied for system dependability validation, it is challenging to attach and synchronize them

with other verification methodologies such as UVM. Our approach suppresses this complex-

ity of integration with UVM, and consequently takes all the advantages of the UVM’s structure.

Our technique is based on simple data sharing mechanism implemented by UVM. This prop-

erty turns fault models feasible and straightforward implementation to cover all fault model

attributes and the majority of fault perturbations presented in Section 2.1. Besides, most of the

works do not focus on user-friendly formal fault model description, an essential requirement
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for designing fault injection and the possibility of easy fault description and expressiveness for

testers.
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Table 1 – Existing fault injection techniques and our proposal.

Related

work
Method

Injection

methods
Fault location

Fault model

description

Intrusiveness

level

(ROTHBART et al., 2004)
(CHANG; CHEN, 2007)

Fault injectons modules
(sabouter)

Source code
modifications

Interconnections
Inside

fault modules
DUT

Sabouter
Source code

modifications
Signal

stuck-at
Inside

fault modules
DUT

Mutant
Source code

modifications
Any

Inside
fault modules

DUT
(MISERA; VIERHAUS; SIEBER, 2007)

Simulator commands
Suspend, continue, stop

get/set
Public

variables
External

Commands
Overload DUT
objects/types

(SHAFIK; ROSINGER; AL-HASHIMI, 2008) Data type extension
Source code

modifications
Extended
variables

External
Commands

Overload DUT
objects/types

(BELTRAME et al., 2008)
(BOLCHINI; MIELE; SCIUTO, 2008)

Reflective wrapper
Suspend, continue, stop

get/set
All SystemC

elements
XML and
Console

Non
Intrusive

(MICHAEL; GROSSE; DRECHSLER, 2011)
TLM

mutants
Extend SystemC

TLM-2.0
TLM XML

SystemC
TLM library

(LU; RADETZKI, 2011)
(LU; RADETZKI, 2013)

Data type extension Kernel extension
Extended type variables

and signal
Not

given
SystemC
Kernel

(ALBERTINI; RIGO; ARAUJO, 2012) Reflective wrapper
white-box introspection

mechanism
Public variables

and signals
Console

Non
Intrusive

(YAN et al., 2017) Sabouter
Source code

modifications
Any XML DUT

Proposed approach
UVM data sharing

mechanism

UVM resources/configuration

databases

Public

variables

and signals

DSL
Non

Intrusive

Source: The author.
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4 THE PROPOSED FAULT INJECTION TECHNIQUE AND ITS INTEGRATION

INTO THE UVM

This chapter presents our Fault Injection (FI) technique that is fully integrated into

the Universal Verification Methodology (UVM). Section 4.1 introduces the UVM-FI, which

allows for performing fault injection upon a UVM testbench. Section 4.2 presents the details

of the proposed Domain-Specific Language (DSL), designed to describe formal fault models.

Section 4.3 shows details of the UVM and UVM-FI integration, in order to facilitate further

improvements and extensions. Section 4.4 presents the conclusion remarks that surround the

proposed UVM-FI.

4.1 UVM-FI

In last years, designers are relying more and more on the Universal Verification Method-

ology (UVM) to verify very complex embedded systems. Meanwhile, fault injection is recog-

nized as a key technique in the verification process. However, the integration of fault injection

and UVM in the same design flow is very complex. Although there are many tools to enable

fault injection, they do not reuse previously created UVM components. Figure 2 and Fig-

ure 3 (Chapter 2) show components, such as monitors, data analyzers, and stimuli generators

which, despite existing independently in UVM and in fault injection environments, assume

similar roles. The envisage integration between UVM and fault injection avoids unnecessary

re-implementation of those components and enables dependability analysis earlier in the verifi-

cation phase.

Figure 7 illustrates the layered architecture of UVM-FI, from the specification to the

DUT signal interfaces. The left-hand side of the figure shows the components belonging to the

UVM (light blue) whereas the right-hand side shows the fault injection components created for

the UVM-FI (salmon). Besides modeling the design itself, the specification also provides the

requirements to create the test cases that are used to design the sequences for a UVM testbench

scenario. The functional layer contains the data analyzer, which is the the lowest abstraction for

sequences and monitors. The monitors and drivers provide the interface between the layer above

and the DUT through the signal layer. On the right-hand side of Figure 7, the FI components

can be organized following the same layered architecture. Fault models can be created from

the specification, based on the desired dependability evaluation. Fault models consist of high

abstractions for fault scenarios. A fault library is a set of fault triggers, fault locations, and fault

types. Many scenarios can be expressed using the fault library. In a fault injector, the driver

component is responsible for interfacing the fault model representation from the functional layer

to the DUT interfaces.

The Accellera UVM-SystemC 1 class library uses the standard UVM patterns con-

structors for test and sequence creation, verification components and testbench configuration

1 http://www.accellera.org/downloads/drafts-review
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but they are not maintained by Accellera group, such as (VENTROUX; SASSOLAS, 2016) and

(CHANDRAN et al., 2009).

4.2 A DOMAIN-SPECIFIC LANGUAGE TO AUTOMATE FAULT INJECTION IN SYS-

TEMC MODELS

A number of tools are capable of injecting faults, but there is lack of improvements

on the fault models description languages. Consequently, many of those fault injection tools

require a considerable manual effort to describe fault models. In this work, we improve the fault

models description by developing a Domain-Specific Language (DSL) that helps designers to

create fault models in SystemC. The main goal of a DSL in the context of the present work

is to describe expressions mixing any C++ value and variables with C/C++/SystemC variables

and objects (e.g., signals). When the compiler processes such expressions, the resulting code

does not execute them but instead, outputs an Abstract Syntax Tree (AST). This AST can be

later inspected and executed several times, at run-time, both for determining if a fault injection

condition has been satisfied and as part of the fault injection.

The output produced by compiling the DSL expressions is always an AST; therefore,

the DSL itself is comprised of nodes that can be combined with all C++ logical and arithmetic

operators. There are three types of terminal nodes on the AST: constants, captures, and vari-

ables. Constants have their value assigned during the parsing of the expression (at run-time,

when the AST is constructed); captures are initialized at the same moment, from C/C++ vari-

ables and store a reference to their value, being subject to change; finally, variables represent

objects accessed at evaluation time through UVM introspection mechanisms. Every C++ log-

ical and arithmetical operator is also a node type in the DSL, containing one or two children

(e.g., ! is unary and + is binary).

Figure 11 – Example of DSL expression and corresponding AST.

>

var<int>("a", "*") 2

&&

type: BOOL

type: BOOL

evt<sc_in>("in", "*") 

Source: The author.

Figure 11 shows an example of DSL expression and the corresponding AST, where "*"

is the UVM variable scope in the UVM database and "a" and "in" are variable names. The

leftmost and rightmost leaves are variable nodes and refer through introspection to objects inside

the DUT. The middle leaf is simply a constant. This expression evaluates to true whenever the

default event of in occurs and, at that moment, a > 2 holds. For efficient detection of when

the expression becomes true, the leaf nodes of the AST are visited in order to create watcher
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objects. These objects exploit UVM introspection mechanisms in order to promptly notify any

interested party when the expression must be re-evaluated.

The atomic elements of the DSL, whose presence allows the C++ compiler handling

the whole expression as a DSL expression, are var, and evt. A var object stores the name

of a DUT object registered in the UVM configuration database. An evt object is similar to a

var object, but refers to the default event of SystemC ports and signals. For the built-in C++

operators, var behaves like the referred object and evt behaves as a Boolean (true after the

event occurs).

In addition to var, evt, and the built-in C++ operators, the DSL includes other helper

constructs. The cap(x) function allows the DSL expressions to bind to a C++ variable x by

reference, instead of copying its value. The unif(a, b) function represents a random value

uniformly distributed between a and b. The call(f, a1, ...) function represents the return

of function f if called with arguments a1, ..., which may themselves be a DSL expression.

This provides an escape hatch for any situation where complex or stateful calculations are re-

quired as part of the DSL (e.g., coordinate transformations or finite impulse filters).

The UVM-FI fault model conditions are expressed using the DSL. The expression is

parsed to generate the AST that will be an input to the engine. For example, if it is desired

to inject a fault every time that some event (event_x) occurs with probability of 50%, such

scenario can be expressed using the DSL as "event_x && (50 > unif(0, 100)", where a

logical AND (&&) condition is used to express the relation between the event occurrence and

its probability of 50%. Another functionality provided by the DSL is the helper function “unif”

which describes a uniform probability. Appendix B describes the complete list of DSL C++

overloaded operators and functions implemented in this dissertation. Other functions can be

implemented to improve the UVM_FI capabilities.

4.3 INTEGRATION INTO THE UNIVERSAL VERIFICATION METHODOLOGY

The capacity of integration with UVM is one of the main advantages of the UVM-

FI. The dependability analysis can be developed in early phases of the project, complementing

the verification step instead of being performed only in the final tests. For the UVM-FI be

completely compatible with UVM, it needs an interface component that extends from the UVM

components and can be included in the testbench. Besides, the library has to provide an efficient

fault model description in terms of capability of expressiveness and effort necessary to describe

a fault that will be injected in the system.

Figure 12 depicts the fault injection coupled with the UVM environment where the

UVM-FI is represented as a new component of the UVM, such as a new type of UVM Verifi-

cation Component (UVC). By this representation, the UVM-FI is in the same testbench level

of the other UVCs. The SystemC-UVM provides a base UVM environment class (uvm_env)

to create hierarchical containers of other components that together complete the entire environ-

ment. The “Testbench” component in Figure 12 represents the UVM environment component.
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The fault injector should be create in the “Testbench” at same level of other verification blocks.

Although in Figure 12 the environment represents the entire testbench, later it can be reused as

a sub-environment in the system integration phase.

Figure 12 – UVM-FI Testbench architecture.
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Source: The author.

The fault injection component is an instance of an object that contains a fault injection

environment. In the fault environment, all properties to perform the fault injection are defined,

such as the fault trigger, location, and type. It is worth mentioning that the user may create types

of faults that are not implemented in the UVM-FI. For example, the designer can implement a

method to flip bits in a memory and invoke it with the method call() previously described in

Section 4.2.

Listing 1 shows the testbench fault injector environment component. The component

extends from the uvm_base_fault_env the base UVM-FI external interface class. The fault in-

jector is integrated with the UVM-FI, but the fault models need to be registered in the engine.

For that, it is necessary to define a condition and a fault function. The uvm_base_fault_env has

a public engine object that is accessible to create interfaces at the UVM testbench level. The en-

gine allows the registration of fault model calling the method register_fault_condition(condition,

fault).

The register_fault_condition ECA engine method is used to register a fault model at

the Testbench. To make the DSL more compact, the << operator is overloaded to be used in
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class fault_env : public uvm_base_fault_env {

...

void build_phase(uvm::uvm_phase& phase) {

...

int value = 0;

evt<sc_out<bool>*> condition("evt_trigger","*");

*engine << fm(condition,

var<int*>("location", "*").set(cap(value)));

}

UVM_COMPONENT_UTILS(fault_env);

};

Source: The author.

Listing 1: UVM fault environment.

place of the aforementioned method. When this operator is used with C++ output streams, fault

models can be repeatedly streamed into the ECA engine. A helper function, fm (from “fault

model”) is defined to group a fault trigger (as the first argument) and a fault injector (as the

second argument), both described using the DSL.

The UVM provides a mechanism that allows storing DUT public objects, such as vari-

ables, signals, and ports. This mechanism is the base of the proposed fault injector technique.

With the store and restore capability provided by UVM, DUT objects can be stored in the test-

bench and then they can be restored in a UVM-FI environment.

The UVM configuration database and the resources database are two important fea-

tures to allow fault injection without extra tools. The UVM configuration database is a data

sharing mechanism where one can also include the DUT configuration and share it with fault

injector components. The uvm_resource_db can also be used for that, but the difference is

that the uvm_config_db is built on top of the uvm_resource_db and provides a model hierarchy

support (COOPER; MARRIOTT, 2014).

Listing 2 shows a fragment of code to add an object (dut_if_in) to the UVM database.

To do that, the database provides a method set(). The first argument is the context, the local

to begin the search for the object in the database. The second argument is the scope, in the

Listing 2 the parameter “*” meaning the global scope. The third argument is a unique name of

the variable in the database. The last argument is the object instance. Any object can be stored

in the database, including pointers to internal DUT elements.

vip_if* dut_if_in = new vip_if();

uvm::uvm_config_db<vip_if*>::set(0, "*", "vif", dut_if_in);

Source: The author.

Listing 2: Store variable in UVM data share.

At any moment of the simulation, the stored variables can be restored from the database
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using the method get(). Listing 3 retrieves the object added to the database by the code in

Listing 2. The method has the same structure for the arguments of set(), but the last argument

is an object that the retrieved value is assigned to.

vip_if* vif_in;

uvm::uvm_config_db<vip_if*>::get(0, "*", "vif", vif_in)

Source: The author.

Listing 3: Restore objects from the UVM data share.

The UVM-FI interfaces the DUT variables stored in the data share mechanism through

uvm_var (var in DSL abstraction). For example, in Listing 1 the fault location is var<int*>("lo-

cation", "*"). The variable is an int stored in the data share mechanism with the name “location”

and at the global scope (“*”). The uvm_var will handle the variable internally in UVM-FI

library and whenever an action for that location is triggered the UVM-FI modifies the variable

using the UVM database to access it.

The fault injector parameter from DSL fm represents both the fault type (which fault is

to be injected) and the fault location (where the fault is to be injected). The UVM-FI provides

a set() method as fault type. This method assigns the argument value to the location. Line 8

in Listing 1 shows an example with method set(). A local variable “value” is assigned to the

stored variable “location”. Although the method set() can be used to express most of fault

types, the UVM-FI can be easy extended to other types of faults, such bit-flip.

The ECA engine creates a watcher to monitor the DUT elements (Figure 9). The

UVM-FI needs to check the current condition for each watcher created. For that, the UVM-

FI implements a component that frequently requests, from the engine, an evaluation for each

available watcher. Such component is called uvm_poller. The component starts to run at the

beginning of the simulation and notifies the engine every 1 nanoseconds. The uvm_poller noti-

fication time can be configurable, according to the precision required to evaluates the watchers,

some fault events can not be triggered if the notification time interval is too long.

4.4 UVM-FI CONCLUDING REMARKS

Unlike most of the state-of-the-art correlate works, its code is open and can be down-

loaded from https://gitlab.com/lohmann/uvm-fi. The new components inserted in UVM are

extended from the uvm_component class. This class provides interfaces for hierarchy, phasing,

factory, process control reporting and recording. Although the fault injection is not part of the

UVM flow, with this extension one can easily control the fault injection and synchronize the

tests with the UVM environment.

The integrated UVM-SystemC fault injection allows access the DUT components in a

non-intrusive approach using UVM database resources. Also, the simulation is controlled by
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UVM resources, such as UVM phasing, and events. Providing an easy fault injection integration

with Testbench both the fault injection complexity and the effort to test the design are reduced.
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5 EVALUATION OF THE PROPOSED FAULT-INJECTION TECHNIQUE

This chapter describes the case studies to validate and evaluate the proposed fault injec-

tion technique integrated with UVM, the UVM-FI. Firstly, Section 5.1 presents a fault injection

example performed in an 8-bit counter. Then, Section 5.2 shows a fault injection evaluation

in terms of fault model description for three different scenarios. Lastly, Section 5.3 demon-

strates the fault injector capabilities applied to a matrix multiplier with fault-tolerant mechanism

and a virtual platform with the MSP430 microcontroller Instruction Set Simulator (ISS) with

Transaction-level Modeling (TLM) memory model.

5.1 UVM-FI VALIDATION

We performed fault injection in an 8-bit counter designed by (SHAFIK; ROSINGER;

AL-HASHIMI, 2008). We compared the proposed technique with those presented in (MISERA;

VIERHAUS; SIEBER, 2007) and (SHAFIK; ROSINGER; AL-HASHIMI, 2008), in terms of

intrusiveness and simplicity. Besides, results for a fault injection execution using the UVM-FI

are shown to validate the proposed fault injection technique.

Figure 13 depicts the block diagram with interfaces of the 8-bit synchronous counter

adopted as a DUT. It has an enable, a reset, and a clock as inputs; an 8-bit port as output. The

enable input is used to activate it whereas the reset forces its output to zero. The counter starts

at zero and is incremented at every positive clock event, being 256 its maximum value. There

are many ways to implement an 8-bit counter in SystemC, using flip-flops or with fault-tolerant

mechanism; however, this experiment uses the original code from (SHAFIK; ROSINGER; AL-

HASHIMI, 2008).

Figure 13 – 8-bit counter DUT.
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Source: The author.

Listing 4 presents the 8-bit counter from Shafik, Rosinger & Al-Hashimi (2008) with

no fault injection modifications. The module “counter8bit” runs a thread incr_count() method

that increments the output value. The thread method is sensitive (called) by reset and posi-

tive clock edge event. The count value is stored in a class variable type of sc_uint<8> called

“count”. If the variable enable is set up and the reset value is set to zero, the counter increments

the value and writes it in the module output port (counter_out) each time that the incr_count()
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is called. This implementation is a high-level abstraction of 8-bit counter developed in Sys-

temC. It does not contain any fault tolerance mechanism nor considers the time in operations to

perform as real counter. Therefore, many improvements can be made to this implementation to

increase the system dependability and reliability.

SC_MODULE (counter8bit) {

sc_in_clk clock ;

sc_in<bool> reset, enable;

sc_out<sc_uint<8> > counter_out;

sc_uint<8> count;

void incr_count() {

while(true) {

if (reset.read() == 1) {

count = 0; counter_out.write(count);

} else if (enable.read() == 1) {

count = count + 1;

counter_out.write(count);

}

wait();

}

}

SC_CTOR(counter8bit) {

SC_THREAD(incr_count);

sensitive << reset << clock.pos();

}

};

Source: The author. Adapted from (SHAFIK; ROSINGER; AL-HASHIMI, 2008).

Listing 4: 8-Bit counter SystemC implementation.

Misera, Vierhaus & Sieber (2007) show a mutant component applied to SystemC lan-

guage. Mutant is a well-known strategy to perform fault injection in systems described in a

Hardware Description Language (HDL, such as VHDL and Verilog). In this technique, a modi-

fied component replaces the original component, the mutant. The mutant component allows for

changing the behavior of the original system. Listing 5 shows a mutant implementation for the

previously present 8-bit counter. The mutant implementation inserts an additional control input

(fault_activate) that enables the fault in the output counter. This method is highly customized

and many types of faults can be applied. The drawback of mutant fault injection is its intru-

siveness. A new component is implemented with a different logic from the original code and

thus, new errors that were not present in the original code can be introduced due to the code

modifications needed to create the mutant component.

Besides the mutant approach, Misera, Vierhaus & Sieber (2007) show a simulated

command fault injection technique. The simulated command technique adds new commands

to the simulation that allow signal and variable modification. To implement this approach,

the authors overwrote some SystemC library classes. For this approach, the ports, signals,

and variables must be converted into type vectors. For instance, a variable sc_logic has to be
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SC_MODULE (sabouter) {

sc_in<sc_logic> fault_activate;

sc_in<sc_logic> reset;

sc_in<sc_logic> enable;

sc_out<sc_logic> counter_out;

sc_lv<8> count;

void incr_count() {

while(true) {

if (reset.read() == 1) {

count = 0;

} else if (enable.read() == 1) {

count = count.to_int() + 1;

}

if (fault_activate.read() == 1) {

counter_out.write(0);

} else {

counter_out.write(count);

}

wait();

}

}

SC_CTOR(counter8bit) {

SC_THREAD(incr_count);

sensitive << reset << clock.pos();

}

};

Source: The author.

Listing 5: 8-Bit counter using mutant fault injection presented in (MISERA; VIERHAUS;
SIEBER, 2007).

modified to sc_lv<8>. This conversion can be automated by scripts, decreasing the manual

effort necessary.

Listing 6 shows the modification needed to perform fault injection in the 8-bit counter

using simulator command. Although the authors use a (perl-) script to convert the SystemC

data types, it requires original code modification which results in extra manual effort. In List-

ing 6 the original variable sc_uint<8> count was converted into an logic vector type sc_lv<8>

due to the limitation of Misera, Vierhaus & Sieber (2007) approach (SHAFIK; ROSINGER;

AL-HASHIMI, 2008). Although the simulation command needs less code modification, it is

an intrusive technique and also requires high effort to extend SystemC. Besides, the (MIS-

ERA; VIERHAUS; SIEBER, 2007) simulator has some limitations, such as the modification of

sc_uint data type.

Another simulator command technique is presented in (SHAFIK; ROSINGER; AL-

HASHIMI, 2008). This other approach replaces the original C++/SystemC data, and signal

types to fault enabled types; then, it uses commands to control the fault injection. For instance,

in Listing 7 the sc_uint<8> count variable type is swapped to a fault type UIntReg<8>. By

the command “FIMgr::getInstance().setFaultLocation(loc)” a fault location is set, where the
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SC_MODULE (counter8bit) {

sc_in<sc_logic> reset ;

sc_in<sc_logic> enable;

sc_out<sc_logic> counter_out;

sc_lv<8> count;

void incr_count() {

while(true) {

if (reset.read() == 1) {

count = 0;

counter_out.write(count);

} else if (enable.read() == 1) {

count = count.to_int() + 1;

counter_out.write(count);

}

wait();

}

}

SC_CTOR(counter8bit) {

SC_THREAD(incr_count);

sensitive << reset << clock.pos();

}

};

Source: The author. Adapted from (SHAFIK; ROSINGER; AL-HASHIMI, 2008).

Listing 6: 8-Bit counter using simulator command presented in (MISERA; VIERHAUS;
SIEBER, 2007).

“loc” parameter represents the fault location object from DUT, the fault model is described as

a sequence of commands. Although this technique does not have fault type limitations, such

as the variable types present in (MISERA; VIERHAUS; SIEBER, 2007), it also requires DUT

source code modifications and manual effort to extend the SystemC language.

To perform fault injection using the technique proposed, it is necessary to create a

UVM Testbench environment. Although it is a specific requirement for our fault injection

approach, the works discussed so far in this section also require the development of a Testbench

in order to run the tests, that could be a simple Testbench or other standard methodologies such

as UVM. UVM improves the system tests with modular Testbench components and decreases

the time and effort to create the test environment.

First, we created a Testbench with UVM to run the original counter (Listing 4), along

10 ns of simulation. In this test environment, the clock period is 1 ns; initially, the reset value

is 0, and the enable value is 1. Figure 14 shows the waveform diagram for the simulation. In

such simulation no fault injection was performed. Instead, it simply exercises the designed 8-bit

counter with UVM in normal operation.

With a UVM setup ready, we integrated the proposed fault injector (Section 4). We

envisaged to set the DUT internal counter variable to 0 along with a specific interval which

means setting a stuck-at-0 fault in the counter. For that, we created a method FaultTrigger-

Timer(from_time, to_time) that returns true if the simulation time, in nanoseconds, is between
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which was published in (LOHMANN et al., 2018b). It is worth noting that this version does

not employ the proposed DSL. The third one is the proposed technique improved by using the

proposed DSL.

Scenario A consists of data modification. Listing 9, adapted from (MICHAEL;

GROSSE; DRECHSLER, 2011), specifies such scenario. In this example, one byte, starting

at position 200, is modified. As the modification is an or mask, the effect is an assignment of

that byte.

<data>

<transfer start pos="200" length="1">

<or mask="0xff"/>

</transfer>

</data>

Source: The author. Adapted from (MICHAEL; GROSSE; DRECHSLER, 2011).

Listing 9: Scenario A: XML fault model.

Listing 10 shows the same fault model description using the proposed fault injection

technique without the DSL. Therefore, before the fault condition is defined, the objects used

in the description must be in the UVM database. Any accessible DUT component from the

Testbench can be stored in the UVM config database, such as signals, ports, and other SystemC

types.

bool truth = true;

engine->register_fault_condition(new uvm_var_ct_tpl<bool>(1),

new uvm_fault_set(new uvm_var_tpl<bool>("tgt", "*"),

&truth, 0, 1));

Source: The author.

Listing 10: Scenario A: fault model without DSL.

The size of the code in Listing 10 hinders its readability. Listing 11 shows the fault

model description from scenario A expressed in the DSL. The proposed DSL generates the

same effects but with a more compact and intuitive syntax. As the condition true alone is not

a DSL expression, it requires wrapping. The fault type is to set a char value to a variable tgt of

type char. In general, any DSL expression, in addition to C++ values, can be used as argument

of set(). For example, var<char>("x") & var<char>("y").

*engine << fm(cnst(true), var<char>("tgt").set('\xff'));

Source: The author.

Listing 11: Scenario A: fault model with the proposed DSL.



64

Scenario B presents a more complex fault condition, introducing a probability. In this

scenario, the variable is set in a certain percentage of its triggers occurrences. To describe

this type of conditions, we use the unif function, that creates a uniform random distribution.

Listing 12 uses random value in such distribution to build an expression whose value is true

90% of the situations the expression is evaluated.

*engine << fm(unif(1,10) <= 9, var<char>("tgt").set('\xff'));

Source: The author.

Listing 12: Scenario B (probabilistic): DSL description.

Faults with probability can also be created using the XML approach presented in

(MICHAEL; GROSSE; DRECHSLER, 2011). To do that, the XML attributes random=1 and

percentage=90, must be added to the transfer tag at the second line of Listing 9.

Scenario C sets the value of a variable tgt to the average of the last 3 values observed

for the signal m_out1. Listing 13 shows the DSL fault mode description for this scenario. This

scenario relies on the call helper to compute the moving average with a user-defined function

mov_avg. The moving average is updated every time the m_out1 signal changes. In the code,

mov_avg is a template function that computes the moving average from a history vector pointer

(&hist), a window size (3) and a sample value (m_out_1 current value). This scenario can

not be implemented in the approach of Michael, Große & Drechsler (2011). Furthermore, the

ability to call user-defined stateful functions as part of fault injection is not present in any fault

injection tool, to the best of our knowledge.

*engine << fm(evt<sc_signal<sc_int<32> >*>("m_out1"),

var<sc_int<32> >("tgt").set(call(&mov_avg<sc_int<32> >,

cnst(&hist), cnst(3), var<sc_int<32> >("m_out1"))));

Source: The author.

Listing 13: Scenario C (Moving average): DSL description.

There are no absolutely fair metrics to compare XML and C++, as the languages do

not share common elements such as statements, declarations or expressions. Comparing line

numbers is also not fair as C++ lines are often longer than XML ones. A reasonable metric

is character count (ignoring all optional spaces and line breaks), which is shown in Table 2

for each scenario and technique combination. In all scenarios, the DSL shows the smallest

value. The main advantages of the DSL, however, become clear in a qualitative comparison.

First, expressions (for fault trigger or fault type specification) are more compact and readable in

C++, especially for expressions with more than a single operator. In XML, expressions must be

represented in the form of a tree. In contrast, the DSL automates the generation of a similar tree

implicitly. Second, var and evt objects, as well as whole DSL expressions, can be stored in
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local variables and reused across several fault models. Third, call and the ability to mix C++

and DUT objects in the fault model allows for greater flexibility, and allows the test engineer to

program highly specific fault models which cannot be foreseen by fault injection tool designers.

Table 2 – Character count per Technique per Scenario

Technique Scenario A Scenario B Scenario C

Characters
(MICHAEL; GROBE;
DRECHSLER, 2011)

78 104 -

Without DSL 141 183 381
DSL 55 60 159

Source: The author.

5.3 FAULT INJECTION SCENARIOS

This section demonstrates the capabilities of the proposed fault injection technique

performing in two scenarios. The first scenario is a matrix multiplication with and without fault

tolerant mechanism. In the second scenario, we perform fault injection in a virtual platform

with MSP430 microcontroller Instruction Set Simulator (ISS) with a TLM memory model. For

both scenarios, we successfully applied our technique and validate the versatility and capability

of our technique.

5.3.1 Matrix Multiplication

In this section, we perform a fault injection test in a matrix multiplier algorithm with

and without triple modular redundancy (TMR) mechanism. For that, we implement a 4x4

matrix multiplier module that receives two input matrices and returns the resulting multiplied

matrix. For the TMR example, we replicate the matrix multiplier module and connect the output

of each module to a voter that chooses the most frequent matrix result, as a strategy for fault

tolerance.

For both matrix examples, the input and output elements of matrices are vectors of

sc_dt::sc_int<16> numbers, each vector represents a 4x4 matrix. The connections between

the matrix multiplier and other modules are made using sc_signal standard communication.

Figure 16 shows the matrix DUT with one matrix multiplier module and a printer used to show

the matrix result. No fault tolerant mechanism was applied in this case.

Firstly, the DUT shown in Figure 16 was tested using the UVM Testbench without

any fault injection tool. After creating the UVM Testbench the fault injection mechanism pro-

posed in this dissertation was easily added to the Testbench. The first step to integrate the fault

injection was compiling and linking the FI fault injection library developed and presented in

Chapter 4. Secondly, we added the DUT resources needed to perform the fault injection to
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Figure 16 – Matrix multiplier DUT.
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Source: The author.

the UVM database. Listing 14 shows the addition of a trigger input_b[15] and the fault loca-

tion sig_data[15] of DUT. Finally, we integrate the fault model into the UVM architecture, for

which we create a new component class vip_fault_env that extends from uvm_base_fault_env.

The vip_fault_env contains all the fault injection model description.

sc_in<sc_int<16> > *trigger = &(my_dut->matrix_multiplier.input_b[15]);

uvm_config_db<sc_in<sc_int<16> > **>::set(0, "*", "input_b_event", &trigger);

sc_signal<sc_int<16> > *f_locale = &(dut_if_in_B->sig_data[15]);

uvm_config_db<sc_signal<sc_int<16> > **>::set(0, "*", "dut_input_b", &f_locale);

Source: The author.

Listing 14: Registering fault model resources.

Listing 15 shows the fault model described in vip_fault_env class. For the simple ma-

trix example, we set a fixed integer value to the du_input_b signal every simulation execution.

The fault model is composed of a fault trigger, fault location, and a fault type. In this example,

we set as trigger the event of writting in the 15 element (recovered from the data share mecha-

nism as input_b_event) of the input matrix B, and the fault will be the same input element. The

fault type is described by the function “set” that inserts the value in the desired fault location

(dut_input_b).

sc_int<16> a = 777;

evt<sc_in<sc_int<16> >*> input_evt("input_b_event","*");

*engine << fm(input_evt,

var<sc_signal<sc_int<16>>*>("dut_input_b", "*").set(cap(a)));

Source: The author.

Listing 15: Registering a fault condition.

In the matrix multiplication example without any fault tolerant mechanism, an injected

fault is propagated to the output, meaning that a system failure occurs when a fault is introduced.

Table 3 shows the tests results for our fault injection. Since the simple matrix does not have

any tolerance mechanism, all effective faults injected are propagated to the output. For this
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example, we defined that for each simulation, one fault occurs, and no fault trigger probability

was set. Due to this fault model, Table 3 shows the relation of one fault injected for simulation,

which demonstrates the expected behavior of our fault trigger implementation.

Table 3 – Fault injection results for a simple matrix multiplier.

Sim. length Injected faults Failures Success

50 50 50 -
100 100 100 -
500 500 500 -

1000 1000 1000 -

Source: The author.

Figure 17 illustrates the block diagram for the triple modular redundancy (TMR) ma-

trix multiplier. The DUT receives as input two matrices, performs three independent multipli-

cation algorithms and chooses the most frequent matrix result.

Figure 17 – TMR matrix multiplier DUT.
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Table 4 shows the fault model applied in our example. Each fault registered is com-

posed of a fault trigger, a fault type, and a fault location. In our example, a fixed value “fixed n”

is set at signals connecting the matrix multipliers (“A”, “B” and “C”) to the voter component,

for each multiplier input event with a uniform probability of 33%. This means that each matrix

multiplier has the probability of 33% of a fault occurs independently, in one execution instance

faults can be injected in multiples outputs.

Listing 16 shows a fault condition expression for the fault model in the first line of

Table 4. The unif is a factory function for a random variable, and is part of the DSL.

After registering the entire fault model of Table 4, we run the experiment for simula-

tions with length of 50, 100, 500, and 1000. Besides, we perform the test for simple matrix

with the same fault model trigger of TMR matrix. For each simulation the fault injector set a
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Table 4 – Fault model specification.

Fault trigger Fault type Fault location

evt<output_a>(“output_a”,scp) unif(0,100) <0.33 set_value(n) sg1[12]
evt<output_b>(“output_b”,scp) unif(0,100) <0.33 set_value(n) sg2[12]
evt<output_c>(“output_c”,scp) unif(0,100) <0.33 set_value(n) sg3[12]

Source: The author.

sc_int<16> a = 323;

*engine << fm(evt<sc_out<sc_int<16> >*>("output_a", "*")

&& 33 > unif(0,100),

var<sc_signal<sc_int<16> >*>("sg1", "*").set(cap(a)));

Source: The author.

Listing 16: Registering a fault condition.

fault in a probability of 33 %. Table 5 presents the results for those experiments. In this table,

a failure is determined by a DUT output matrix (after the voter in TMR case) that is different

from the correct multiplication of the input matrices. Success is a correct multiplication matrix

output, even when faults are injected. From those results, one can note that the fault injector

was able to apply the faults and the tolerant matrix algorithm is able to tolerate around 84% of

all introduced faults.

Table 5 – Fault injection results

Sim. length Injected faults Failures Success

4x4 matrix multiplier
50 16 16 34
100 33 33 67
500 166 166 334
1000 330 330 670

TMR 4x4 matrix multiplier
50 41 8 42
100 85 16 84
500 484 94 406
1000 1001 187 813

Source: The author.

This example shows that performing fault injection using the DSL is effective and

intuitive. Many other fault models can be described using this technique with the SystemC

modeling. Different kinds of triggers, fault types, and locations can be combined to create more

efficient fault injection campaigns.
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5.3.2 Virtual Platform Target Application

A virtual platform is a piece of software that can run a software for a target hardware

in another system (AARNO; ENGBLOM, 2014). For example, a hardware model of ARM

processor can be simulated and the software for that model can be run on another host computer

that may not have the same hardware architecture. A virtual platform is not restricted to a single

processor but also has interconnection protocols and peripherals.

The development of virtual platforms made possible to establish different abstraction

levels, from more accurate such as cycle-accurate to untimed models, i.e. models without asso-

ciated time information. The virtual platform is useful because the binaries of software can run

until the real hardware is available allowing for embedded software development early, and even

faster than the real hardware. The hardware model can offer access to register and variables,

making possible to observe and control the hardware execution, thus facilitating the verification

task.

There are many virtual platforms available and many tools to help virtual platform

development. Garanhani (2015) developed a toolset called MPSoCBench that provides a com-

pletely open source simulation infrastructure including scalable hardware and software compo-

nents. With MPSoCBench one can create virtual platforms for multiprocessors with data and

instructions caches, shared memory, and several IPs. MPSoCBench is implemented in Sys-

temC, and is integrated with the MiBench (GUTHAUS et al., 2001) benchmark suite. There are

four processors available (ARM, MIPS, SPARC, and PowerPC) to create and test Multiproces-

sor Systems on Chip (MPSoCs) examples.

Zijlstra (2015) presents a virtual platform to validate the system architecture and to

support the embedded software development for a Cubesat type nanosatellite. The virtual plat-

form was developed in SystemC and the TI MSP430 microcontroller model was generated by

the architecture description language ArchC, and I2C communication module. Cubesat plat-

form is based on MPSoCBench and also has common peripheral, such as the TLM memory.

For this scenario, we change the virtual platform presented in (ZIJLSTRA, 2015) to support the

new target architectures. Our focus is on the UVM-FI capabilities and not in the fault modeling.

Although we applied a simple and not realistic fault model, other fault models can be design

and performed for both the MPSoCBench and the Cubesat virtual platform, once this example

shows that the integration with those platforms is feasible .

Memory faults can be injected directly in the simulated memory cell array or in the

memory decoder circuit. In this preliminary tests, we focus on memory cell arrays in order to

corrupt data by randomly or specific flipping bits to simulate overheating, radiation and other

physical factors that can effect memory content. We categorized the faults in two types, as

follows:

• Bit-flip Fault: Memory bits states are changed;

• Coupled-Fault: When one memory address is changed, other memory address can be
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influenced. Coupling faults occur because of the mutual capacitance between cells or the

current leakage from one cell to another.

In addition to the types of faults, we need to specify when the fault should be activated.

A fault trigger can be based on simulation time, on events or random. At high-level models,

timestamp trigger approach is not easy to monitor and control. We recommend for this type of

simulation model the event triggers, where the faults are injected when a specific event occurs.

For instance, the memory access event that changes a memory value when a specific memory

bit is triggered.

To perform the experiments, we used a virtual platform built with an MSP430F249

processor and a TLM memory model. The virtual platform was implemented with SystemC

and TLM communication. The processor Instruction Set Simulator (ISS) was implemented

using the architecture description language, ArchC.

The MSP430 memory space is designed as a von-Neumann architecture (INSTRU-

MENTS, 2015). Figure 18 shows the MSP430 family memory map structure. The start address

of ROM depends on the amount of Flash/ROM contained in each device. Besides, the ROM

memory is divided in two sections. The first section represents the main code memory, includ-

ing the interrupt vector memory space. The second part of ROM memory is for information and

boot memory.

Figure 18 – MSP430 memory map.
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Source: The author. Adapted from (INSTRUMENTS, 2015).

Table 6 shows the memory map address for MSP430 processor specifically used in

these experiments. We run the experiments in ROM code section that starts at 0xFFFF and ends

at 0x1100. The RAM start address is 0x0200 and the end address is 0x09FF (INSTRUMENTS,

2012). The memory position from 0x0000 up to the RAM initial address is reserved for 8- and

16-Bit Peripheral Modules and Special Function Registers. We denoted this memory section as

SFR/PM.
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Table 6 – MSP430F249 Memory Organization.

- -
MSP430F249

MSP430F2491

Memory
Main: interrupt vector
Main: code memory

Size
Flash
Flash

60KB
0xFFFF to 0xFFC0
0xFFFF to 0x1100

Information memory
Size
Flash

256 Byte
0x10FF to 0x1000

Boot memory
Size

ROM
1KB

0x0FFF to 0x0C00

RAM Size
2KB

0x09FF to 0x0200

Peripherals
16 bit
8 bit
SFR

0x01FF to 0x0100
0x00FF to 0x0010
0x000F to 0x0000

Source: The author.

The target application is the Advanced Encryption Standard (AES) algorithm with a

block size of 128 bits, and Cyclic Redundancy Check (CRC). Both algorithms are used in

embedded applications, especially by systems that require a strong fault tolerance mechanism

or high security, such as satellites or autonomous vehicles.

The experiments are performed for aleatory bit-flip and specific coupling addresses.

For the bit-flip test, the faults are injected at three different memory regions: only data stored,

code section and for the whole memory. The bit-flip faults are injected per program instance in

a proportion of 100 and 200 bits flipped each execution. The coupling faults are triggered when

a write operation occurs: 2 randomly bits are flipped in a specific space address (RAM and all

memory) per write event in all memory.

Firstly, the MSP430 executes the AES algorithm to encrypt 128 bits, the first 8 bits are

generated by UVM sequence and received at digital I/O for the processor. The other 120 bits

and the AES key are stored as a local variable in the MSP430 memory. The output of the first

8 bits is stored in P3 output register. The algorithm is only checked the first 8 bits of encrypted

data. So if the algorithm performs the encryption of the 8 bits received by digital input correctly,

it succeeds; otherwise, the scoreboard asserts an error. When the system is not able to return

the value due to a segmentation fault we count it as a crash of the system.

Listing 17 shows the fault condition expression for couple faults. For each write in the

P1 input an event trigger is set by the TLM memory (“p1_input_event”). The faults are applied

by the “rand_bit_flip” method, called in the fault model. The method responsible for the flip

bits receives as arguments the number of bits to flip, the range memory addresses (from_adr

and to_adr) and the TLM memory pointer (extracted from the data share mechanism). To insert

coupling faults or implement new type of faults it is necessary to change the method called by

the fault injector, Listing 18 demonstrates the modification.

Table 7 presents the simulation results for fault injection tests in the AES algorithm.
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evt<sc_event*> mem_evt("p1_input_event", "*");

*engine << fm(mem_evt,

var<tlm_memory*>("mem_test").set(call(&rand_bit_flip, cnst(100), cnst(from_adr),

cnst(to_adr), var<tlm_memory*>("mem_test"))));

Source: The author.

Listing 17: Registering a fault condition for bit-flip scenario.

evt<sc_event*> mem_evt("men_write_event", "*");

*engine << fm(mem_evt,

var<tlm_memory*>("mem_test").set(call(&couplin, cnst(100), cnst(from_adr),

cnst(to_adr), var<tlm_memory*>("mem_test"))));

Source: The author.

Listing 18: Registering a fault condition for coupling faults.

Fault injection at RAM memory for 100 and 200 faults per program did not cause crashes on

the system, although the increase of faults causes more failures on the AES results. The most

significant crashes happened for modifications of the ROM section. As the ROM represents

a huge amount of space in memory, the probability of system crashes increase. When faults

are distributed in the whole memory, the system had an increased number of crashes and AES

correct results decreased. Besides, the number of coupling faults depends on the number of

writes in the memory, when the system crashes the number of writes can not be estimated as

the program does not return from the execution.

Table 7 – AES algorithm results.

Fault type Location

Number

of

Faults

Wrong Right Crash

Bit-Flip

RAM 100 52.3% 47.7% 0%
RAM 200 78.2% 21.8% 0%

SFR/PM 100 19.5% 80.2% 0.2%
SFR/PM 200 68.5% 31.3% 0.4%

ROM 100 34.2% 0% 65.8%
ROM 200 14.1% 0% 85.9%
ALL 100 21.5% 9% 77.6%
ALL 200 12.3% 0% 87.7%

Coupling
RAM 1244* 7.9% 92.1% 0%
ALL -* 4% 0% 96.0%

* The number of faults depends on the execution, the table shows only the number of faults when the execution
gave a correct result. In case of no successful results, the number of faults is not estimated.

Source: The author.

The second fault injection campaign made with the CRC algorithms was designed
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in the same way as the AES experiment. The CRC receives as input two 8-bit numbers, the

MSP430 receives these numbers as a digital input on through ports P1 and P2, the output is a

unique 8-bits value and is stored in P3 register.

For the CRC, since the algorithm is not using many local variables and the amount of

RAM data space is not that large, it is more difficult for a bit-flip fault to cause a failure, as

shown in Table 8. However, when we use more ports for data input, the bit-flip faults in digital

I/O ports cause an increase in incorrect CRC results.

Table 8 – CRC algorithm results.

Fault type Location

Number

of

Faults

Wrong Right Crash

Bit-Flip

RAM 100 0% 100% 0%
RAM 200 0% 100% 0%

SFR/PM 100 85.5% 14.3% 0.2%
SFR/PM 200 94.3% 5.4% 0.3%

ROM 100 8.3% 85.4% 6.3%
ROM 200 28.1% 62.2% 9.7%
ALL 100 13.9% 77.3% 8.8%
ALL 200 20.3% 60.2% 19.5%

Coupling
RAM 284* 0% 100% 0%
ALL 284* 4.6% 88.5% 6.9%

* The number of faults depends of the execution, the table show only the
number of faults when the execution gave a right result.

Source: The author.

The coupling faults depend on the execution flow of each algorithm. In both cases, the

coupling fault injector algorithm introduces more faults than we test for bit-flip, and the AES

and CRC algorithms result in more hits than the bit-flip. We only test for one specific coupling

faults and this result can be better adapted to more accurate trigger events.

Table 9 shows the simulation performance of coupling fault injection example in vir-

tual platform. Our fault injection does not result in significant overhead for this simulations.

The injector works based on events notification and it only actives the fault function, in this

case “coupling” method. Most of our examples cannot compare time because it simulations run

too fast hampering accurate run-time measures and thus, run time comparisons.

Table 9 – UVM and UVM-FI simulation time for coupling fault execution.

Experiment
UVM

Sim. time (ns)

UVM-Fi

Sim. time (ns)

AES 69245000 69366900
CRC 14925000 14925001

Source: The author.
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The results show what happens with AES and CRC algorithms in the presence of mem-

ory faults for MSP430 microcontroller. Both algorithms have failures and the designers have

to consider using fault-tolerant mechanisms, especially in safety-critical applications. More

fault models can be implemented based on our approach to test other systems, even for systems

designed without an ISS or for another level of abstraction, such as SystemC RTL models.

With the modular UVM-FI, the created Testbench components could be used in both

examples and to perform different fault models just the base fault injection component (ex-

tended from our UVM-FI) was modified, showed in Listing 17 and Listing 18. The UVM-FI

extends from the UVM the capacity to create modular and reusable Testbench to the perform

fault injection. Moreover, another types of faults can be easy created just by modifying the

function called in our fault model. The fault type method is the Testbench level and it is not

necessary to change the UVM, SystemC or any library.
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6 CONCLUSION

This Master work proposed, validated and evaluated a new non-intrusive fault injec-

tion technique named UVM-FI that is fully integrated with UVM. UVM-FI consists of an open-

source library, written in C++/SystemC, containing basic fault types, triggers and fault locations

that can be integrated into a UVM environment using the plug-and-play principle. The integra-

tion of UVM-FI into UVM relies on the UVM data share mechanism and enables reusability.

The case studies validated this new fault injector and demonstrated its capability, allowing a

comparison with other approaches. Faults can be injected in DUT public variables and signals,

as shown in Chapter 5. The UVM-FI can be easily connected to UVM environments. As shown

in Chapter 4, the addition of the fault module component does not require modifications in the

Testbench.

Moreover, the UVM-FI has an efficient fault models description with the SystemC

DSL. The case studies developed in this work demonstrated that the DSL is less verbose and

more readable than the other XML-based approaches. Notwithstanding, this work also evalu-

ated the same fault injector framework with and without the DSL, and demonstrated that the

DSL is more usable than directly creating C++ objects that describe a fault model. The DSL

improves the fault injection tests, providing a better way to describe the fault model. This ap-

proach contributes to improving system dependability evaluation and system verification. The

tests performed on case studies demonstrate the intuitiveness and effectiveness of our approach.

Although the various advantages, the proposed technique presents some limitations.

Template metaprogramming is widely known to provide additional strain to the compiler. An-

other possible limitation is that our approach uses polymorphism relying on heap memory (new

operator). However, as the Testbench typically runs on high-end PC systems instead of embed-

ded systems, these characteristics have negligible effect. Furthermore, our approach requires

no changes to the DUT and therefore, the same code that yields the synthesized final system

can be tested on the Testbench. However, if for any reason the Testbench is required to run in

an embedded system, the use of the DSL should be avoided.

6.1 SUMMARY OF THE RESEARCH ACHIEVEMENTS

During the development of the software related to this Master work, two papers were

published, as summarized in Appendix A. The first paper describes a simple UVM component

developed to allow the fault injection and its use to build UVM Testbenches. The second paper

describes the proposed Domain-Specific Language (DSL) targeting the creation of compact and

readable fault model descriptions. Both contributions were essencial for this work to achieve

the final status described in this dissertation. The next paragraphs briefly discuss both of them.

The lack of available techniques that perform system dependability tests associated

with Testbench generation methodologies motivated the development of the first UVM-FI ver-

sion, which was presented in (LOHMANN et al., 2018b). That paper also presented the vali-
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dation of such approach that served as basis for this Master work. Starting from the standard

UVM environment, the paper shows a fault injector component and a monitor to analyze the

injected faults. The fault injector class was extended from the uvm_component class. This class

provides interfaces for hierarchy, phasing, factory, process control reporting and recording. Al-

though the fault injection is not part of the UVM flow, this extension allows for easy control

of fault injection and synchronization of tests with the UVM environment. The paper explores

the UVM data share mechanism that allows for storing data pointers from the DUT and restore

them in the fault injector component.

The extension of UVM for fault injection was successfully applied to the first im-

plementation of a hybrid fault-verification methodology to the following algorithms: Advanced

Encryption Standard (AES) and Cyclic Redundancy Check (CRC). In those cases, memory fail-

ures were simulated in a virtual platform developed for the MSP430 microcontroller Instruction

Set Simulator (ISS) and a TLM memory model. The results showed that the fault injection can

be applied with UVM extension (LOHMANN et al., 2018b). However, the fault injector inte-

gration was not a plug-and-play implementation, that is, it was not optimized to generate the

fault injector models. In addition, it required manual effort to do it.

In order to increase the compatibility between the UVM and the fault injection, this

Master work further improved the library implementation, so as to reduce the effort to integrate

the fault injection into the UVM. The implementation is based on an Event-Condition-Action

(ECA) engine that receives fault models from the test engineer and manages the fault injection.

The framework was baptized as UVM-FI.

Fault model description is an important issue in the existing fault tools that use Sys-

temC. Many fault injection tools are based on the Extensible Markup Language (XML) or use

a run-time console. The XML description of fault models is verbose, making it difficult to

setup system verification under fault injection. To overcome this issue, the second publication

(LOHMANN et al., 2018a) proposes a SystemC template metaprogrammed Domain-Specific

Language(DSL) that helps designers to create fault models in SystemC, reducing programming

effort and taking advantage of SystemC/C++ expressiveness. The fault model description with

DSL improvements were also presented in that publication.

6.2 FUTURE WORK

The UVM-FI supports perfectly the most commonly used fault models, but new DUT

locations can be supported by the fault injector, which can make the UVM-FI even more versa-

tile. In the current version, the majority of the faults were injected in public signals, variables,

and sc_in input ports. New methods to access and drive other types of ports can be explored.

Besides that, TLM channels can be easily included in UVM-FI.

The DSL can be improved at the automation of the DUT variables insertion in the

UVM database, and the ability to verify at compile time if all variables used in a DSL expression

were inserted in the database.
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Furthermore, more experiments with dense fault models should be conducted in order

to provide a comparison in terms of simulation time. Exploration of such measure allows opti-

mizations in our library and also other related work comparisons. Although our project is built

with CMake 1 tool, there is not an automated unit test or continues integration, these features

can be included in the library to improve the library code quality and prevent further problems.

Also, Accellera provides a UVM in SystemVerilog that aims to be compatible with

UVM-SystemC. Due to some reserved keywords in C++, a few functions and methods dif-

fer. The UVM-FI can be extended for SystemVerilog without much effort and thus, the same

concepts of this Master work can be used for SystemVerilog.

Finally, more studies should be conducted in order to investigate methods to extract

SystemC DUT information and create automated fault injection executions. For example, a

system that receives a DUT and returns possible faulty points or maybe returns the DSL fault

model ready to be performed. Modules for fault coverage and statics can be included as well.

With these features, the dependability analysis is complete from the design specification up to

the automated dependability analysis.

1 https://cmake.org/
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APPENDIX A – PUBLICATIONS

A.1 PUBLISHED PAPERS DIRECTLY RELATED TO THE DISSERTATION SUBJECT

The proposal evaluation resulted in publications directly related to this dissertation

subject. This Section describes the details of each publication.

A.1.1 2018 IEEE 9th Latin American Symposium on Circuits & Systems (LASCAS)

• Qualis CC 2016: B2

• Title: Extending Universal Verification Methodology with Fault Injection Capabilities

• Authors: Douglas Lohmann, Fabrizio Maziero, Elço João dos Santos Jr, and Djones

Lettnin

• DOI: https://doi.org/10.1109/LASCAS.2018.8399945

• Abstract: Embedded Systems verification has become a major challenge in recent years

due to the increased hardware and software complexity and to the shorter time to mar-

ket. In order to overcome these issues, new verification methodologies and fault injec-

tion techniques are strongly recommended to increase safety quality of complex systems.

In this paper, we propose an integration methodology to extend the Universal Verifica-

tion Methodology (UVM) with fault injection capabilities. For that, we extend the UVM

components and use the UVM’s data share resources to manipulate data. We have suc-

cessfully applied this optimized hybrid fault-verification methodology to the algorithms:

Advanced Encryption Standard (AES) and Cyclic Redundancy Check (CRC). Memory

failures were simulated in a virtual platform developed for MSP430 microcontroller In-

struction Set Simulator (ISS) and a TLM memory model. The results show that our ap-

proach scales to increase the system’s dependability validation creating reusable Test-

benches with fault injection test in UVM.

A.1.2 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS)

• Qualis CC 2016: B1

• Title: A Domain-specific Language for Automated Fault Injection in SystemC Models

• Authors: Douglas Lohmann, Alexis Huf, Djones Lettnin, Frank Siqueira and José Luís

Güntzel

• DOI: https://doi.org/10.1109/ICECS.2018.8617838
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• Abstract: With the evolution of technology, electronic systems have become significantly

more complex. As a consequence, design and verification of these systems evolved no-

tably. Fault injection is a dependability evaluation technique that is strongly recommend

during the verification step. Although there are a number of tools capable of inject-

ing faults, many of them do not have a simple fault model description language and

require considerable manual effort. In this paper, we propose a SystemC template me-

taprogrammed Domain-Specific Language (DSL) integrated with Universal Verification

Methodology (UVM) to describe formal fault models that requires neither specific com-

pilers nor code preprocessing tools. Unlike current approaches for fault injection, there

is no need to create fault injection environment manually or to describe the system in an

XML format. We evaluate our approach in terms of readability and effort required from

a designer to describe a fault injection test. Our case study illustrates how the DSL helps

designers to create fault models in SystemC, decreasing programming effort and taking

advantage of SystemC/C++ expressiveness.
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APPENDIX B – DSL

The following tables lists the SystemC DSL capability. Table 10 shows the DSL op-

erators that are overloaded from C++. Table 11 presents the functions provided by the DSL to

help engineers.

Table 10 – UVM-FI SystemC DSL operators.

Operator Description UVM-FI representation

> greater than uvm_gt
== equals uvm_eq
!= different uvm_neq
>= greater than or equal to uvm_gte
< less than uvm_lt

<= greater than or equal to uvm_lte
&& AND uvm_and

|| OR uvm_or
& logical AND uvm_band
| logical OR uvm_bor
ˆ XOR uvm_xor
+ plus uvm_plus
- minus uvm_minus
/ division uvm_divide
* multiplication uvm_mult

Source: The author.

Table 11 – UVM-FI helper functions provided by DSL.

Operator Description

call(f, a1, ...) returns of function f if called with arguments a1, ...

cap(x) binds a C++ variable x by reference
evt(x) represents a event x for ECA

fm(condition, injector) creates a fault model with the condition trigger
and the injector function

unif(a, b) calculates the random value uniformly distributed between a and b

var(x) represents a variable x for ECA

Source: The author.
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