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“Perhaps consciousness arises when the

brain’s simulation of the world becomes so

complex that it must include a model of itself.”

(Richard Dawkins, 1976)



RESUMO

Com o avanço da tecnologia, métodos baseados em dados tornaram-se cada vez mais relevantes

tanto na academia quanto na indústria, sendo isso também válido para a área de controle de

processos. Um processo específico que se beneficia de modelagem e controle baseado em dados é

o de produção de petróleo, devido à composição do escoamento multifásico e do reservatório não

serem totalmente conhecidas, assim dificultando a obtenção de um modelo fidedigno. Levando

isso em consideração, neste trabalho há o objetivo de testar e aplicar diversas estratégias de

controle utilizando Redes de Estado de Eco (Echo State Networks, ESN) em modelos de poços

de produção de petróleo. O primeiro controle consiste em usar uma ESN para obter o modelo

inverso online de um processo e usá-lo para computar uma ação de controle de seguimento de

referência. Nesta planta, há dois poços de petróleo com elevação por gás conectados em um riser

por um manifold no qual não há perda de carga. Este primeiro controlador com ESN obteve

êxito em efetuar seguimento de referência em três diferentes combinações de entradas e saídas,

sendo algumas com multiplas variáveis de entrada ou de saída. No segundo método proposto,

utiliza-se uma ESN para servir de modelo numa estratégia de Controle Preditivo Não-linear

Prático (Practical Nonlinear Model Predictive Control, PNMPC), onde obtém-se uma resposta

livre computada de forma não-linear, e uma resposta forçada através da linearização do modelo.

Como a ESN é um modelo analítico, é possível obter facilmente os gradientes para a linearização.

Esse controle ESN-PNMPC efetua seguimento de referência na pressão de fundo de um poço

de petróleo com elevação por gás, também levando em conta restrições operacionais tais como

saturação, limitação de variação, e limites na pressão da cabeça do poço. Este trabalho contribui

à literatura ao mostrar que ambas as estratégias de controle com ESN são efetivas em sistemas

dinâmicos complexos como os modelos de poços de petróleo utilizados, assim como uma prova

de conceito da proposição de utilizar uma ESN no PNMPC.

Palavras-Chave: Redes de Estado de Eco. Controle Preditivo. Aprendizagem de Modelo Inverso.

Poços de Produção de Petróleo.



RESUMO EXPANDIDO

Introdução

Com o avanço da tecnologia, métodos baseados em dados tornaram-se cada vez mais relevantes

tanto na academia quanto na indústria, acompanhando as novas tecnologias tanto de proces-

samento quanto de aquisição de dados. A grande vantagem de se utilizar modelagem baseada

em dados (data-driven) é de não depender do conhecimento da fenomenologia física de um

sistema, visto que os modelos levantados são puramente obtidos pela aquisição de dados. Para

o contexto de controle de processos, abordagens baseadas em dados podem ser benéficas, pois

modelos fenomenológicos estão geralmente sujeitos a incertezas paramétricas e/ou estruturais, ou

podem não ser representativos com relação ao processo a ser controlado. Além disso, utilizando

modelos data-driven pode-se executar o controle de uma planta com o mínimo necessário de

informação prévia. Um dos processos os quais potencialmente se beneficiam de abordagens

baseadas em dados é o de extração de petróleo, devido à composição do escoamento multifásico

e do reservatório não serem totalmente conhecidas, o que aumenta severamente as incertezas

estruturais envolvidas em qualquer modelo fenomenológico, podendo assim resultar em um

modelo pouco representativo do processo. Utilizar metodologias data-driven para controle em

plataformas de petróleo é vantajoso, pois evita a necessidade de saber o tipo exato de escoamento

dentro de um reservatório. A ideia de controle data-driven está intimamente ligada com as

disciplinas de Inteligência Artificial e Aprendizado de Máquina. Nessas áreas de conhecimento,

existem ferramentas convenientes para aplicações de identificação de sistemas e controle, entre

elas as Redes Neurais Recorrentes (RNN), que são modelos simplificados de um cérebro e que

servem principalmente como aproximador universal de sistemas dinâmicos. A desvantagem

de uma RNN está em seu treinamento (Backpropagation Through Time) não ser um problema

de otimização convexo, implicando em mínimos locais e uma aprendizagem mais lenta. Além

disso, há outros problemas como o Vanishing Gradient, que leva um mau condicionamento

numérico devido ao gradiente ser quase nulo em certos pontos. Diversas formas de mitigar essas

desvantagens foram desenvolvidas na literatura, uma delas é através das Redes de Estado de Eco

(Echo State Network, ESN), um subtipo de RNNs onde apenas os pesos de saída são treinados,

mantendo as capacidades de aproximação de uma RNN dado que a parte interna da rede possua a

propriedade de “estado de eco”. Nessas condições, o treinamento da rede passa a ser a resolução

de um problema de mínimos quadrados, possuindo apenas um ótimo global. As redes de estado

de eco são adequadas para aplicações de controle data-driven, seja em Controle Preditivo (MPC),

ou controles onde o modelo precisa ser atualizado online.

Objetivos

Os objetivos gerais desta dissertação incluem montar, aplicar e implementar estratégias de con-

trole data-driven utilizando Redes de Estado de Eco em sistemas de produção de petróleo. A

primeira estratégia, encontrada na literatura, utiliza redes de estado de eco para obter o modelo

inverso online de um processo, utilizando-o para computar uma ação de controle para seguimento



de referência. Esse controle online por modelo inverso é aplicado em um sistema de dois poços

e um riser conectado por um manifold, resolvendo problemas de seguimento de referência e

rejeição de perturbação. O segundo controlador utilizado consiste em um Controle Preditivo

Não-Linear Prático (Practical Nonlinear Model Predictive Control, PNMPC), onde a ESN é

utilizada como modelo de predição. Esse, por sua vez, é aplicado em apenas um poço de petróleo

com elevação por injeção de gás, resolvendo problemas de seguimento de referência.

Metodologia

O controle online por modelo inverso utiliza duas ESNs, uma delas responsável pela obteção de

dados através do algoritmo de Mínimos Quadrados Recursivos (Recursive Least Squares, RLS),

recebendo como saída desejada uma ação de controle aplicada em um instante de tempo no

passado, e como entrada a saída atual e a saída no mesmo instante de tempo da ação de controle

passada; a outra rede é responsável por traduzir os dados obtidos pela rede de treinamento em

ação de controle, tendo como entrada a saída atual e uma saída desejada futura. A rede de treina-

mento transfere a informação através dos pesos que, a partir de um certo valor de saída passada e

ação de controle passada, o valor de saída atual do sistema foi atingido, e com essa informação a

rede de controle deve calcular a ação de controle necessária para colocar o sistema num valor de

saída futura desejado a partir da saída atual. No PNMPC, um modelo não linear é capaz de ser

divido entre uma resposta livre, obtida por simulação do sistema não-linear dado uma ação de

controle mantida no valor corrente, e uma resposta forçada, obtida por aproximação em série

de Taylor com respeito à ação de controle. O método original utiliza o método de diferenças

finitas para calcular o gradiente do modelo, por assumir que o mesmo não está presente ou

é difícil de calcular. Como uma ESN está sendo usada como modelo de predição, a derivada

analítica é facilmente obtida, evitando os problemas de explosão combinatória inerentes no

método de diferenças finitas. Para a implementação dos dois sistemas de controle, é utilizado a

linguagem de programação Python e, no caso do PNMPC, a biblioteca CVXOPT para resolução

dos problemas de otimização quadrática. Os testes se dão por simulações de modelos das plantas

propostas, estes descritos utilizando a linguagem Modelica e interpretados em Python. Para a

primeira aplicação, é utilizado um modelo composicional entre dois poços com elevação via gás

de injeção, um riser e um manifold. O poço é representado por um modelo complexo de ordem

reduzida que utiliza dois volumes de controle, o ânulo, onde se armazena e se transfere o gás

de elevação, e a tubulação, onde se transfere o fluido de produção junto com o gás de elevação.

Possui como condições de contorno a pressão no reservatório, a pressão na cabeça do poço,

e a pressão na entrada do gás de elevação, sendo o poço manipulado através de uma válvula

na entrada de gás e uma válvula choke na cabeça do poço. O modelo do Riser considera dois

volumes de controle, o de uma tubulação horizontal, e o de uma tubulação vertical perpendicular,

onde o fluido é elevado, além de uma válvula no topo referida como “choke de produção”. Suas

condições de contorno são as vazões mássicas de gás e líquido na entrada, e a pressão na saída.

Ambos os modelos possuem comportamento qualitativo similar ao simulador comercial OLGA

(Oil and Gas simulator), e utilizam perda de carga em sua formulação, deixando o sistema



bastante não linear. O manifold conecta a cabeça dos dois poços com a entrada do riser, sem

que a perda de carga seja considerada. Neste trabalho, o controle online por modelo inverso

resolve três problemas de controle distintos relativos a esse sistema: O controle de pressão de

entrada do riser através do choke de produção do mesmo, o controle da pressão de entrada do

riser através das válvulas de gas-lift do poço, e o controle de pressão de fundo de cada poço

utilizando seus respectivos chokes de cabeça. No caso da segunda aplicação, apenas o modelo

de poço com elevação por gás de injeção é utilizado, em um problema que envolve o controle

da pressão de fundo do poço utilizando tanto o choke da cabeça de poço quanto a válvula de

elevação por gás. O controlador também obedece restrições tanto nos valores e nas variações das

variáveis manipuladas, quanto na pressão de topo do poço.

Resultados e Discussões

O controle online por modelo inverso obteve êxito ao efetuar seguimento de referência nas

três tarefas propostas. Nas três configurações de controle propostas, as redes de estado de eco

foram capazes de aprender o modelo inverso do sistema, e o controlador resultante foi capaz

de efetuar o seguimento de referência em cada um dos casos. Também foi efetuada uma busca

de parâmetros em grade para decidir os melhores parâmetros a serem utilizados no controlador

para os três casos, com resultados diversos. Esse controlador se saiu bem em um caso SISO com

uma forte não linearidade no ganho, MISO onde as entradas (válvula de gás de elevação) estão

fisicamente distantes da saída (pressão de entrada do riser), e um caso MIMO onde há um certo

acoplamento entre as variáveis. No caso dos poços, houve também rejeição de perturbação, que

é uma mudança paramétrica no modelo ao longo do tempo, do ponto de vista das ESNs. Para o

controle ESN-PNMPC, ele efetua o seguimento de referência em diferentes pontos de operação,

mesmo com uma pequena discrepância entre o comportamento dinâmico da ESN e do modelo

real do poço. Além disso, o controlador não violou nenhuma das restrições propostas, inclusive

o limite superior na pressão de cabeça do topo, que era medida utilizando as predições da ESN.

Esse seguimento de referência se deu pelo fator de correção da resposta livre, o qual corrige

erros de modelagem e perturbações no sistema.

Considerações Finais

Este trabalho contribui à literatura ao mostrar que ambas as estratégias de controle com ESN são

efetivas em sistemas dinâmicos complexos como os modelos de poços de petróleo utilizados,

assim como uma prova de conceito da proposição de utilizar uma ESN no PNMPC. Levanta

também a ideia de utilizar abordagens data-driven para tais aplicações, que se beneficiam mais

do levantamento de modelos através da obtenção de dados. Como a pesquisa considera mo-

delos simplificados sem ruídos, um trabalho futuro interessante seria aplicar essas metologias

desenvolvidas no contexto de processos reais, para assim avaliar sua tolerância a ruídos e outros

fatores.

Palavras-Chave: Redes de Estado de Eco. Controle Preditivo. Aprendizagem de Modelo Inverso.

Poços de Produção de Petróleo.



ABSTRACT

As technology advances over time, data-driven approaches become more relevant in many

fields of both academia and industry, including process control. One important kind of process

that benefits from data-driven modeling and control is oil and gas production, as the reservoir

conditions and multiphase flow composition are not entirely known and thus hinder the synthesis

of an exact physical model. With that in mind, control strategies utilizing Echo State Networks

(ESN) are applied in an oil and gas production plant model. In the first application, an ESN is

used to obtain online the inverse model of a system where two gas-lifted oil wells and a riser are

connected by a friction-less manifold, and use the resulting model to compute a set-point tracking

control action. Setpoint tracking is successfully performed in three different combinations of

input and output variables for the production system, some multivariate. In the second method,

an ESN is trained to serve as the model for a Practical Nonlinear Model Predictive Control

(PNMPC) framework, whereby the ESN provides the free response by forward simulation and

the forced response by linearization of the nonlinear model. The ESN is an analytical model,

thus the gradients are easily provided for the linearization. The ESN-PNMPC setup succesfully

performs reference tracking of a gas-lifted oil well bottom-hole pressure, while considering

operational constraints such as saturation, rate limiting, and bounds on the well top-side pressure.

This work contributes to the literature by showing that these two ESN-based control strategies

are effective in complex dynamic systems, such as the oil and gas plant models, and also as a

proof of concept for the ESN-PNMPC framework.

Keywords: Echo State Networks. Model Predictive Control. Inverse Model Learning. Oil Pro-

duction Wells.
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Ŷ Prediction vector of a model predictive controller.

∆U Control increment vector of a model predictive controller.

|x| Absolute value of x.

N Normal distribution.

Wto
from Weight matrices in an Echo State network, where from refers to the variable

the weight matrix pre-multiplies, and to is the output.



f r
i Scaling factor of the input weights of the ESN reservoir.

f r
b Scaling factor of the bias weights of the ESN reservoir.

ρ Spectral radius of the ESN reservoir weight matrix. In chapter 4, it also

represents densities when indexed.

ψ Sparseness of the ESN reservoir.

γ Leak rate of the ESN.

ω Mass flows in chapter 4.

α Fluid volume fraction in chapter 4.

γ Correction factor of the PNMPC.

δ Time Step Delay prediction in the Online Learning Controller.

eT Mean Trajectory Error.

∆U Total Control Variation (when not bold).

∇x Gradient of vector x.

x∗ Optimum decision variables vector of objective function f(x).

R
n Set of n-th dimensional vectors whose elements are real numbers.

L Lagrangian.

D Lagrangian dual.

λ Equality constraints lagrangian multipliers (when bold).

µ Inequality constraints lagrangian multipliers.
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1 INTRODUCTION

In this section, the dissertation is introduced. Section 1.1 describes the motivation to

this work, Section 1.2 presents to the reader the objectives of this work, Section 1.3 exposes the

scientific contribution of this dissertation, and 1.4 describes the dissertation organization.

1.1 MOTIVATION

Nowadays, model-based control is widely used both in academia and in industry. A

variety of methods in control recquires a process model so that one can design the control law

(CAMACHO; BORDONS, 1999; HOU; WANG, 2013). However, using analytical, physics-

based models is not without drawbacks. For example, a model that has high accuracy is generally

harder to tune a controller for, and obtaining a high-accuracy model tends to be harder than

designing the controller itself. Also, every model-based controller is susceptible to unmodeled

plant behavior during its run time. There are some types of processes with variables that are

difficult to model exactly, such as an oil and gas reservoir (JAHN; COOK; GRAHAM, 2008).

Another problem is that plants tend to change their behavior over time (e.g. aircraft-related

control), which is difficult to incorporate in a model (HOU; WANG, 2013). Industrial plants

become ever more complex with the progression of years (e. g. industry transition to 4.0),

which hinders the application of model-based control since the synthesis of a model becomes

increasingly difficult. With the recent advances in technology, an alternative is data-driven

modeling and control.

As information science and technology is becoming more developed along the years,

devices are being deployed to collect data in real time from diverse plants such as chemical

processses, metallurgy, machinery, electronics, electricity and transportation (HOU; WANG,

2013). Therefore, it is now even more viable to use data for control design, hence the rise

of Data-Driven Control. Data-driven control has various definitions (HOU; WANG, 2013),

however they more or less include the fact that a controller is designed based on input/output

data information, and no physical information is used. The implementation of data-driven control

should be considered when (HOU; WANG, 2013):

• The model is unavailable;

• The uncertainties involved in the model are difficult to express mathematically;

• The process is difficult to model;

• The possible models are too complex in terms of number of variables, parameters and

algebraic equations for control design.
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Data-driven control is closely related to artificial intelligence and machine learning

(HOU; WANG, 2013; BISHOP, 2006) and black-box system identification (NELLES, 2001),

which seek to obtain a model purely from input-output data. Science and technology in those

fields have advanced significantly in recent years as a result of industrial and academic research,

and many machine learning and system identification methods and tools were developed along

the years. One of such tools from the fields of artificial intelligence and machine learning is the

Recurrent Neural Network (RNN) (GOODFELLOW; BENGIO; COURVILLE, 2016), which

is widely used as universal approximators for nonlinear systems. When given a sufficiently

representative training set, RNNs can reproduce the behavior of a wide variety of nonlinear

plants. However, one issue with these networks is that they tend to be hard to train, for being a

nonlinear model on the training parameters, and complex algorithms such as the backpropagation

through time (BPTT) have to be used for their parameter tuning. Also, due to its nonlinearity,

local optima abound. For data-driven control applications, a learning model that is simpler to

train can ease the calculation of the control law. In the specific case of a system that has least

squares training, one can apply fast-convergent online algorithms such as the Recursive Least

Squares (RLS) for adaptive control.

One possible solution that retains the abstraction power of the RNNs while being simple

to train is the Echo State Network (ESN) (JAEGER et al., 2007). The ESN is basically an RNN

where only the state-output weights are trained, and the recurrent layer of the network provides a

rich variety of dynamical behavior which the output is a linear combination of. For this very rea-

son, the set of all the neurons in the recurrent layer of the network is referred to as the “reservoir”,

and they are connected to each other by fixed weights that are randomly initialized. Because the

relation between the neurons in the recurrent layer and the neurons in the output layer is linear,

the Least Squares algorithm can be used to train an ESN. Meanwhile, the fixed dynamic reservoir

provides a large pool of dynamics to the ESN when there is a sufficiently large number of neurons

in it. The state-output Least Squares training is effective as long as the reservoir has the “echo

state property” (JAEGER, 2001), which will be explored further in this work. Some examples

of successful uses of Echo State Networks are: learning complex goal-directed robot behaviors

(ANTONELO; SCHRAUWEN, 2015), grammatical structure processing (HINAUT; DOMINEY,

2012), short-term stock prediction (technical analysis) (LIN; YANG; SONG, 2009), predic-

tive control (PAN; WANG, 2012; XIANG et al., 2016), wind speed and direction forecasting

(CHITSAZAN; FADALI; TRZYNADLOWSKI, 2019), blast furnace gas production forecasting

(MATINO et al., 2019), and noninvasive fetal detection (LUKOŠEVIČIUS; MAROZAS, 2014).

In oil and gas, ESNs have shown promising results in identifying the complex dynamics involving

a slugging flow riser (ANTONELO; CAMPONOGARA; FOSS, 2017), which is considered

a difficult task in system identification. Also, the ESN has outperformed wavelet networks in

autonomous vehicle applications (KHODABANDEHLOU; FADALI, 2017) There are also works

proposing methods to treat noise in Echo State Networks, such as (XU; HAN; LIN, 2018), which

use the ESN alongside the wavelet denoising algorithm.
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Echo State Networks are convenient for online control because of its linear training. Since

the ESN can be trained with Least Squares, then RLS can also be deployed. A remarkable use of

ESN in on-line learning control is applied by (WAEGEMAN; WYFFELS; SCHRAUWEN, 2012),

where an ESN is trained online by RLS to obtain a process inverse model and use this model to

directly calculate the control action. In (WAEGEMAN; WYFFELS; SCHRAUWEN, 2012), a

variable delay heating tank, a steady cruise plane and an inverted pendulum model are used to

test the methodology. The strategy presented in (WAEGEMAN; WYFFELS; SCHRAUWEN,

2012) was also used for an industrial hydraulic excavator (JAHN; COOK; GRAHAM, 2008), and

expanded and used in a robotic manipulator (WAEGEMAN; HERMANS; SCHRAUWEN, 2013).

Another work applying ESN for online learning control is (BO; ZHANG, 2018), where they are

used in a reinforcement learning actor-critic framework where each ESN performs training online

to solve a dynamic programming problem for wastewater treatment. The controller developed

in (WAEGEMAN; WYFFELS; SCHRAUWEN, 2012) is referred to as the “Online Learning

Controller” for the rest of this work. Another work (CHOI et al., 2017) also utilizes the ESN as an

inverse model for control. The application is a lower extremity exoskeleton, however the training

is applied offline. An example of the use of a trained online ESN for system identification is

the work of (YAO; WANG; ZHANG, 2019), where a variation of the ESN for online learning

is presented and a different algorithm is proposed based on the new structure. Another work

which deals with time series prediction and system identification using ESNs is (YANG et al.,

2019), where a variation of the RLS is proposed that outperforms de regular one. The proposed

variation includes ℓ0 and ℓ1 norm into the RLS formulation and boosts the algorithm performance

significantly. There are, however, other alternatives to boost performance in a RLS algorithm

applied to an ESN, such as (ZHOU et al., 2018), where a kernel is incorporated to the readout

layer of the ESN.

Another control field that benefits from Echo State Networks is Nonlinear Model Pre-

dictive Control (NMPC). There are works in the literature combining Echo State Networks and

MPC, such as (PAN; WANG, 2012; XIANG et al., 2016; HUANG et al., 2016). The first, (PAN;

WANG, 2012), uses state space per time step linearization to compute the control action, however

the model-plant correction is done using a time-variant parameter and without integration. The

second, (XIANG et al., 2016), does only one linearization of the ESN at a certain operating point.

The third, (HUANG et al., 2016), utilizes an online-trained Echo State Network as a predictor for

the control of a pneumatic muscle. The controller itself is a single-layered feedforward neural

network trained by particle swarm optimization. The proposal of this work is to use the ESN

together with the PNMPC (Practical Nonlinear Model Predictive Control, (PLUCÊNIO et al.,

2007)) strategy. The PNMPC performs only input linearization to separate the response into a

free and a forced response, and uses a filtered integral error as model correction factor. The only

issue is that, since PNMPC assumes that the model derivative is not possible to obtain, it uses

Finite Differences to calculate the gradients for linearization, which hinders its performance due

to combinatorial explosion. The advantage of using an Echo State Network in this context is that
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since a clear analytical model is present, the gradients are easier to obtain. Also, the ESNs are

powerful identification tools, hence the idea to use an ESN as the prediction model for PNMPC.

An application that would benefit from the types of data-driven controllers described are

dynamic oil production related applications. More specifically, applications related to Flow Assur-

ance (JAHANSHAHI, 2013), which aims to maintain flow integrity in the oil and gas produced.

In the literature, there are many solutions to flow assurance problems that use model-based feed-

back control, such as (JAHANSHAHI, 2013), (OLIVEIRA; JÄSCHKE; SKOGESTAD, 2015),

(CAMPOS et al., 2015), and (STASIAK; PAGANO; PLUCENIO, 2012). Since in model-based

control one has to specifically model the flow that is being produced inside the production system,

a lot of uncertainties are present since the flow nature is not generally known (JAHANSHAHI,

2013). It is then proposed the use of data-driven control in Oil and Gas applications, as the exact

flow may not be known.

Both tasks include the Echo State Network in the form of parallel system identification

(NELLES, 2001) and as such, the ESNs do not receive direct information of the processes

previous outputs (control actions, in terms of the online learning controller), only calculating the

network output by using the previous inputs.

1.2 OBJECTIVES

In this work, the main objective is to apply the Online Learning Controller (WAEGE-

MAN; WYFFELS; SCHRAUWEN, 2012) and the proposed ESN-based PNMPC into the context

of Oil and Gas production systems. For that end, experiments are performed applying these two

controllers into reduced-order models of oil and gas production platform components. All the

models used were compared to OLGA (Oil and Gas Simulator) and deemed sufficiently accurate

(JAHANSHAHI; SKOGESTAD, 2011; JAHANSHAHI; SKOGESTAD; HANSEN, 2012).

This work consists into these two main applications:

• Application of the Online-Learning Control (WAEGEMAN; WYFFELS; SCHRAUWEN,

2012) into a system containing two gas-lifted oil wells, whose models are developed by

Jahanshahi et al. (JAHANSHAHI; SKOGESTAD; HANSEN, 2012), and one riser, whose

model was conceived by Jahanshahi and Skogestad (JAHANSHAHI; SKOGESTAD, 2011).

These components are connected by a manifold where no pressure drop due to friction is

present. The Online Learning Controller is simulated with the resulting system using three

different input-output configurations.

• Application of the ESN-PNMPC framework into a single gas-lifted oil well model, from

(JAHANSHAHI; SKOGESTAD; HANSEN, 2012). The controller has the objective to

follow bottom-hole pressure setpoints while avoiding constraints relatated to the top-side

pressure, by using both the gas-lift choke and the top-side production choke.
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In the end, by succesfully applying these two ESN-based controllers into oil and gas

production plaftorm problems, it is shown the viability of data-driven methods for control and

proxy modeling in these fields.

1.3 SCIENTIFIC CONTRIBUTIONS

The work in this dissertation has also contributed to the literature in the form of:

• Publication in the Proceedings of the Brazilian Symposium on Intelligent Automation

(SBAI), 2017 (JORDANOU et al., 2017).

• Publication in the Proceedings of the 3rd IFAC Workshop on Automatic Control in

Offshore Oil and Gas Production (OOGP), 2018 (JORDANOU et al., 2018).

• Paper published in the journal “Engineering Applications of Artificial Intelligence” (JOR-

DANOU; ANTONELO; CAMPONOGARA, 2019).

1.4 ORGANIZATION OF THE DISSERTATION

The remainder of this dissertation is organized as follows:

• Chapter 2 describes the fundamental concepts to better understand this research work,

such as optimization, dynamic systems, system identification and control theory.

• Chapter 3 describes Artificial Neural Networks, going from Feedforward NNs to Echo

State Networks.

• Chapter 4 explains oil and gas platforms, and also shows the models used to describe a

gas-lifted oil well and a pipeline-riser system.

• Chapter 5 introduces the reader to the Online-Learning Control Strategy, while reporting

experiments on its application to a system of two wells and one riser, connected by a

manifold.

• Chapter 6 describes the strategy developed in this work, the ESN-based Practical Nonlinear

Model Predictive Control (ESN-PNMPC). Also, the chapter under consideration shows

experiments of the application of the ESN-PNMPC to a single gas-lift oil well.

• Chapter 7 then concludes this dissertation.
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2 FUNDAMENTALS

This Chapter discusses fundamental concepts, found in literature, essential for the under-

standing of this work. It goes through:

• Dynamic Systems (Section 2.1);

• System Identification (Section 2.2); and

• Control Theory (Section 2.3).

These are the three pillars for the development of this work. If the reader is familiar with the

theories mentioned, then this chapter can be skipped without further compromising reading. It

is assumed that the reader has a small familiarity with multivariate and vector calculus, linear

differential equation solutions and linear algebra. Some of these theory utilize optimization in

the background. A brief review on optimization models and algorithms appear in Appendix A.

2.1 DYNAMICAL SYSTEMS

A system is defined as a relation between an input and an output, where an unique output

response is generated by the input (CHEN, 1998). A dynamical system is a system that depends

not only on current input, but also on past inputs (CHEN, 1998).

Generally, a dynamical system response at the current time t depends on all inputs applied

from time −∞ to t. To avoid computing that, which is impractical if not impossible, either a

differential equation representation (input-output representation) or state equations representation

is used.

A state is a variable that, when paired up with the input, defines uniquely the value of the

output (CHEN, 1998). The state depends on the current input and recursively on itself, so it is a

representation of all the inputs applied to the system from time −∞ to t.

In practice, inputs are variables which can be manipulated directly, such as the opening

of a tank valve or the steering wheel of a car. Outputs are the data that can be gathered by human

beings or instruments, such as the speed-reading pointer at a car or a temperature measurement

from a thermometer.

Memory (the dependence on past information) is what defines a dynamical system, but a

system can have other classifications regarding a few properties:

• Causal or non-causal: A causal system does not depend on future inputs to compute the

output. All physical dynamical systems are causal (CHEN, 1998).



Chapter 2. Fundamentals 26

• Continuous-time or discrete-time: A continuous-time (discrete-time) system has its

input, state and output signals in continuous-time (discrete-time). A discrete-time signal

is a signal that, when computed from −∞ to ∞, has an infinite but countable number of

values. When a continous-time signal is computed on a small interval [t, t+ δ], with δ in

this case being an arbirarily small number, it has infinitely uncountable points.

• Linear or non-linear: A function f is linear, if and only if αf(x)+βf(y) = f(αx+βy),

for any arbitrary (α,β,x or y). This is analogue to systems. Several mathematical tools are

avaiable in the literature, such as in (CHEN, 1998), to deal with linear systems. The systems

used for this work, along with almost all physical systems in the real world, are always

non-linear. When the non-linearity is weak, a non-linear system can be approximated

locally by a linear system. These approximations are used to define stability properties of

a nonlinear system, as seen below.

• Time-variant or time-invariant: If a system is time-invariant, its behavior will never

change over time. As with linearity, this assumption can also facilitate calculations, but

systems tend to have time-variance, which is ignorable or not, depending on how slow the

effect is. A slow time variant parameter such as the pressure in a oil and gas reservoir can

be considered to be time-invariant for control purposes.

It is difficult to find an exact mathematical representation of a real life system. This

limitation is circunvented through the use of models. A model is a less complex, easier to

understand approximation of the real world system. The model’s complexity is directly related

to its precision. The more complex a model is, the harder its computing becomes, so it is ideal to

specify the model as simple as an application needs it to be.

There are several ways to represent a dynamic system by models. If the model is

continuous and non-linear, it can be represented as an O.D.E (Ordinary Differential Equation),

as follows:

f(y(t), ẏ(t)...,y(n)(t)) = g(u(t), u̇(t), ....u(n)(t)) (2.1)

where y(t) is the output vector and u(t) is the input vector. For a generic function x(t), ẋ(t) is

defined as the 1st derivative of x in time. x(n)(t) is defined as the n-th derivative of x in time. Or

it can be represented as a system of first order ODEs, called state equations:

ẋ(t) = f(x(t),u(t)) (2.2)

y(t) = g(x(t),u(t)) (2.3)

with x(t) being the state vector at time t.

In case the model is in discrete time, the model can be represented by n-th order difference

equations:

f(y[k],y[k − 1], ...,y[k − n]) = g(u[k],u[k − 1], ...,u[k − n]) (2.4)
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or by a system of n first order difference equations:

x[k + 1] = f(x[k],u[k]) (2.5)

y[k] = g(x[k],u[k]) (2.6)

If a system is linear, there are additional representations for the system, such as:

• Transfer Function: An input-output representation described by the Impulse Response of

the system in the Laplace domain. The impulse response is the response of the system to

an impulse-type excitation (CHEN, 1998). It is easily obtainable by applying the Laplace

transform into a differential equation representation of the system and assuming null state

(initial condition 0 for the differential equation). Generally has the following form:

Y (s)

U(s)
=
B(s)

A(s)
(2.7)

where Y (s) is the Laplace transform of the output and U(s) is the Laplace transform of

the input. As this transform can draw information on the system response for a sinusoidal

signal at any given frequency, the Laplace transform of a system is also referred to as

the Frequency Domain. The roots for the polynomial A(s) are referred to as poles, and

contain relevant information about the dynamical response of the system, such as the

transient speed, and oscillations. The roots for the polynomial B(s) are the zeroes, which

also provide information of the system response. When s = 0, the steady state gain K of

the system can be obtained. Exciting the system with a unitary step input will bring its

output to K at steady state. As the transfer function representation is simple, and easy to

deal with algebraically because of the Laplace transform properties, it is widely used in

the context of control theory. An ARX (Autoregressive with Exogenous Output) model

(NELLES, 2001) can also be seen as a discrete-time transfer function, providing enough

information about the identified system behavior.

• State-Space Representation: If a system is linear, it is represented only by a linear combi-

nation of the system states and inputs. Thus, it is possible to obtain a matrix representation

of the system. A state space system has the following structure:

ẋ = Ax + Bu (2.8)

y = Cx + Du (2.9)

where x is the state vector, u is the input vector, and y is the output vector. The Eigenvalues

of A provide information on the system dynamics the same way as the poles of a transfer

function. In fact, a transfer function can be converted to state-space form. This conversion

is referred to as the realization of a system (CHEN, 1998). A transfer function has infinite

state-space realizations. It is also possible to obtain the information whether the system
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is controllable or not through matrices A and B, and observable through A and C. In a

rough definition, a system is controllable if the state can be set to any value by an arbitrary

input, and a system is observable if every system state can be obtained given the output.

The state-space representation is a more general representation of the system, providing

information of the system, and it is widely used in robust control and optimal control

applications (MACKENROTH, 2013).

An important concept related to non-linear systems is the equilibrium point, which for

continuous systems is a state vector x that satisfies the following condition:

0 = f(x,u) (2.10)

whereby ẋ = 0 means that the state is constant over time. Equilibrium points can be stable or

unstable. This is easily analyzed if the eigenvalues of the Jacobian of f(·) are all nonzero and

finite. The Jacobian is utilized to linearize the system in the neighborhood of the operating points.

If one of the Jacobian’s Eigenvalue is either zero or infinite, the linearized system’s behavior

does not represent the nonlinear system.

An equilibrium point being stable means that, for any state at an instant t, x(t) = x+ δ,

with δ being a vector of sufficiently small numbers, the dynamic system state will converge to x

at t → ∞. An unstable equilibrium point has the opposite behavior. Any x(t) = x + δ for small

δ will diverge from x.

2.2 SYSTEM IDENTIFICATION

As explained in Section 2.1, there is a difference between a mathematical model and a

real-life system. A model is almost always a simpler approximation of a system which is present

in real life.

When reffering to a real-life application, three levels of prior knowledge of a certain

physical system are considered in the literature (NELLES, 2001):

• White-Box Model: Sufficient information of the physical phenomena involved in the

system modeling is known. Requires identification of very few, if any, parameters.

• Grey-Box Model: A certain amount of information about the system is known. Some

dynamics are unknown or too hard to model, needing identification.

• Black-Box Model: No prior knowledge of system is avaiable or it is too hard to model.

The identification problem extends for all dynamics of interest in the desired application.

System identification consists in using data driven information so as to find a model that

behaves the closest possible to the real-life system in a certain operating region. Ideally, it would
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be desirable that the model behaves just like the system in all possible regions of operation but,

if that task is not impossible, its difficulty is impracticably high and the model would have to be

too complex to be tractable. A simple model would be easier to control and/or optimizing.

There are two ways to gather data for model identification: online or offline. A model is

identified offline when all the data is given at once, from a separate runtime of the process. The

model is identified online when data is given to the model and the model is validated all at the

same time the data is output by the plant.

According to (NELLES, 2001), a system identification problem consists in these eight

steps:

1. Choice of Model Inputs: In a control context, usually the inputs of an identified model

are all the manipulated variables available.

2. Choice of Excitation Signal: The excitation signal in a linear system is easily defined by

a Pseudo Random Binary Signal (PRBS), due to this signal class having a well defined

frequency spectra, even though being pseudo-random in the time domain. For a non-linear

system, this choice is nontrivial, due to the fact that a PRBS takes advantage of the constant

input-output gain of a linear system, which does not happen on a non-linear system. In

(NELLES, 2001), there is an introdution to the vast theory that is nonlinear system

excitation for identification. A common example of signal utilized in nonlinear system

identification is the APRBS (Amplitude-modulated Pseudo-Random Binary Signal), which

is merely the PRBS, but varying in amplitude as well.

3. Choice of Model Architecture: The model architecture depends on the intended use, the

problem type, the problem dimensionality, the avaiable amount of data, time constraint,

memory restrictions, or if the model is learned online and offline.

4. Choice of Dynamics Representation: Problem dependent, since it consists of which

variables will be used to represent the dynamics of the system.

5. Choice of Model Order: Trial and error by grid-search could be applied, however in the

literature (NELLES, 2001) there are several methods available. For instance, the forward

selection, where the search starts from the lowest order model and the order rises until

there is no more gain in performance.

6. Choice of a Model Structure: Trial and error by grid-search could be applied, but there

are more sophisticated methods available in the literature (NELLES, 2001). For instance,

(BILLINGS, 2013) present a strategy utilizing Orthogonal Least Squares (OLS) in the

context of selecting a structure for a NARMAX (Nonlinear Autoregressive Moving-

Average with exogenous output) model. Criteria such as the Error Reduction Ration

(BILLINGS, 2013) can be used to define the ideal structure in a NARMAX model.



Chapter 2. Fundamentals 30

7. Choice of Model Parameters: Generally the parameter choice can be reduced to opti-

mization problems. If the parameters are linear, then the optimization problem that is

solved is a linear least squares problem. The fitting of the model is also called “training”,

and the data used for fitting is called “training data”.

8. Model Validation: The criteria to evaluate a certain model’s performance is application-

dependent. The easiest metric to evaluate performance is the training error of the model,

which is the error between the system and the model, evaluated at the training points

(NELLES, 2001). A model not having low enough training error is called “underfitting”,

which means that the model is not complex enough to fit the data and a more intricate

model should be chosen. The opposite of underfitting would be “overfitting”, when the

model is too complex and can fit almost perfectly the training data, but it is not capable of

generalization. In other words, it has high “test error”, error of approximating acquired

data which are not used for fitting the model. Both problems are structural by nature, but

could be solved by regularization (BISHOP, 2006).

The higher a model order and the more complex a structure, the higher the capacity of

fitting the data. High complexity models can lead to overfitting problems, which can be avoided

through grid search and cross-validation strategies for parameter decision (NELLES, 2001;

BISHOP, 2006).

2.2.1 Least Squares Problem

The least squares problem is ubiquous in linear system identification problems. The

objective is to minimize the following cost function:

J =
N∑

k=0

‖ŷ[k] − y[k]‖2
2 (2.11)

This cost function represents the quadratic error between the identification model’s

estimated output ŷ[k] and the real output y[k] at time k, for the N samples. Here, it is assumed

that both y[k] and ŷ[k] are scalars. However, in case of a multi-output identification problem, this

problem is solved for each output. The model can be described, for instance, as ŷ[k] = θT x[k].

The linear parameter vector θ is the decision variable in this problem and is multiplied by the

input vector x[k], which contains all features that are used to describe a model (e.g., x[k] =

(u[k], y[k], y[k − 1])T , with u[k] being an input to the system and y[k],y[k − 1] being two values

of the output at different instants of time).

Since the cost function is quadratic and the model is linear, it has one global minimum

that can be analytically found if devoid of constraints. This implies that there is a value for θ that

brings ŷ[k] as close as possible to y[k].
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In matrix form, J is represented as:

J = (Xθ − Y)T (Xθ − Y) (2.12)

with X being evaluated as xT [k] in line k and Y is defined as the vector that the element at

line k equals to y[k]. If a symmetric, positive definite weight matrix Q is added in a way that J

becomes:

J = (Xθ − Y)T Q(Xθ − Y) (2.13)

This version of the problem is known as “Weighted Least Squares”. Since a row belonging

to matrices X and Y represents the sample collected at time k in a system identification training

process, the importance of each observation at time k can be scaled. This is actually used in the

Recursive Least Squares algorithm.

The Least Squares Problem applies not only to purely linear functions, but to functions

which are linear in the parameters, such as an Echo State Network or any n-degree polynomial.

All it needs to be done is treating the non-linear terms multiplying the linear parameters as new,

separate inputs (NELLES, 2001). (e.g., to fit a model θ1u
2 + θ2u+ θ3, all it needs to be done is

letting x[k] be (u[k], u2[k], 1)T in the point of view of the cost function).

As mentioned in section 2.2, a model which has a large number of parameters can

perform better at the minimization of the “training error”, which is the error that this problem is

trying to minimize, but will not be able to fit points outside the training region. One way to work

around this problem is with the Tikhonov regularization (ANTONELO; CAMPONOGARA;

FOSS, 2017), (NELLES, 2001), which consists in penalizing the magnitude of the decision

variables. This boosts the capacity of a model to generalize and is easier than optimizing the

model structurally (NELLES, 2001). Adding regularization, the cost function would be:

J = (Xθ − Y)T (Xθ − Y) + βθT θ (2.14)

with β being a scalar whose purpose is to penalize the ℓ2-norm of θ.

2.2.2 Least Squares Analytic Solution

The derivation to the solution of the Least Squares Problem is in (NELLES, 2001). To

analytically solve a convex problem, θ must satisfy ∂J(θ)
∂θ

= 0. Since J is quadratic, this implies

solving a linear system. Below is the solution to the three versions of the least squares problem

presented:

Least Squares:

θ = (XT X)−1XT Y (2.15)
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Weighted Least Squares:

θ = (XT QX)−1XT QY (2.16)

Regularized Least Squares (Also known as Ridge Regression):

θ = (XT X + βI)−1XT Y (2.17)

where I is the identity matrix.

The inverse shown in the solution of all the Least Squares version is not actually computed

in a numerical least squares solver. A cheaper way to compute the solution is to find θ as a

solution to the following linear system:

XT Xθ = XT Y (2.18)

This way, the computation of the inverse matrix of XT X is avoided.

2.2.3 Recursive Least Squares

The derivation of the Recursive Least Squares (RLS) form the Analytic Solution of the

Least Squares problem is in (NELLES, 2001). This version of the Recursive Least Squares is

derived from a Weighted Least Squares Problem where:

Q =




λn 0 · · · 0

0 λn−1 · · · 0
...

...
. . .

...

0 0 · · · λ0




(2.19)

and λ is called the forgetting factor which is generally 0.9 ≤ λ ≤ 1 (NELLES, 2001). If λ = 1,

then Q would be the identity matrix, so it would be equivalent to a normal Least Squares problem.

λ is called the forgetting factor due to the fact that, if λ < 1, and assuming each training example

corresponds to a time step in a simulation or the sample time of a generic data acquisition system,

then the quadratic error of recent samples receives more consideration during optimization. The

result would then perform better for these selected points. In a sense, the optimizer is “forgetting”

older samples.

Another way to represent the Weighted Least Squares cost function is:

J =
N∑

k=0

λN−k‖ŷ[k] − y[k]‖2
2 (2.20)
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To derive the least squares problem for the Recursive Least Squares algorithm, some

auxiliary definitions are recursively made:

X[k + 1] =


 X[k]

xT [k + 1]


 (2.21)

Y[k + 1] =


 Y[k]

y[k + 1]


 (2.22)

Y[0] = y[0] (2.23)

X[0] = xT [0] (2.24)

Naturally, the value of θ at time step k must be defined, which would be:

θ[k] = (XT [k]QX[k])−1XT [k]QY[k] (2.25)

θ[k + 1] = (XT [k + 1]QX[k + 1])−1XT [k + 1]QY[k + 1] (2.26)

Then, the following definition is applied:

P[k] = (XT [k]QX[k])−1 (2.27)

which is known as the correlation matrix and carries all the runtime information that the system

has learned. Due to it being defined as the inverse of XT X, the computation of an inverse matrix

is avoided.

Using these definitions, a way to compute θ[k] from θ[k − 1] is derived from (NELLES,

2001), as follows:

P[0] =
1

α
I (2.28)

e[k] = θT [k − 1]x[k] − y[k] (2.29)

P[k] =
P[k − 1]

λ
− P[k − 1]x[k]xT [k]P[k − 1]

λ(λ+ xT [k]P[k − 1]x[k])
(2.30)

θ[k] = θ[k − 1] − e[k]P[k]x[k] (2.31)

The e[k] is called the “a priori error”, since it computes the error using θ[k − 1] (the

parameters of the previous iteration’s model).

The α is the “learning rate”. If a priori data for the system is already provided, then P[0]

could be (XT QX)−1 with X being the data already gathered about the system. If not, P[0] is,

for simplicity purposes the identity matrix multiplied by 1
α

. The smaller the parameter α is, the

more it is assumed that the system is unknown to the algorithm. It would be ideal that α = 0.01

or α = 0.001 (NELLES, 2001), for leading to high corrections on the error.
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2.3 CONTROL THEORY

This section gives a brief introduction of control theory. Control theory is ubiquous in

techonology, such as industrial processess, robotics, and even household appliances such as an

air conditioner. To control is to bring a certain set of variables (referred to as controlled variables

(CV)) to a certain value (called the setpoint), by using a manipulated variable (MV) that one can

directly define the value, such as a valve opening, a regulated voltage source, or a car’s brake

and accelerator.

In this work, system identification and neural networks theory is used to control an oil

and gas production plant with no prior information.

2.3.1 Problem Definition

A control problem is: given a certain dynamical system with input u(t), state x(t) and

output y(t), and a desired output trajectory ŷ(t), what input trajectory should be applied so that

y(t) = ŷ(t)? The set of rules defining u(t) is also referred to as “control law”, and a “control

strategy” is a structure from which the control law is derived from.

There are two main types of control strategies:

• Feedforward control: No information from the output y(t) is used to compute the control

action. Also called “open-loop” control.

• Feedback control: Information from the output is used to compute the control action.

Also called “closed-loop” control.

Generally in industry, ŷ(t) is a constant signal. In this case, the control problem is about

maintaining a dynamical system (also called a plant) at a certain operation point.

“Open-loop” control could be applied, but if the dynamical system suffers some slight

parametric change, it would deviate further from the setpoint. Even with this change, called

“disturbance”, the setpoint could be determined if the closed-loop control strategy has certain

properties. For more information, refer to (CHEN, 1998). There are two main subtypes of control

problems:

• Setpoint Tracking: Assuming that the system’s output is not ŷ(t), could the system be

brought into the operating point so that y(t) = ŷ(t)? If so, how fast?

• Disturbance Rejection: Assuming that the the system output y(t) is y(t) = ŷ(t), if a

parametric change in the model occurs, could y(t) still equal ŷ(t) at steady state? How

quick would the system come back to its current setpoint?

When a control problem has only one manipulated variable and one controlled variable,

it is called a Single Input, Single Output (SISO) Control Problem. When it has multiple
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variables involved, the control problem is referred to as a Multi Input, Multi Output (MIMO)

problem.

2.3.2 Model Predictive Control

Model Predictive Control (MPC) is very popular within the process industry because of

one does not need advanced knowledge on process control and dynamical systems to apply it in

industrial processess (CAMACHO; BORDONS, 1999). MPC consists in a family of methods

originated in the late seventies which continues to be developed constantly nowadays.

Three main ideas define an MPC (CAMACHO; BORDONS, 1999):

• The use of a plant model for prediction of the future response to some input.

• The minimization of an objective function using the control action as a decision variable.

• Both the prediction and the control are computed over a discrete-time receding horizon, an

arbitrary number of time steps into the future.

Essentially, the MPC uses a model to predict the future outputs in Ny time steps, and

that prediction is part of a cost function optimization. The Ny is normally referred to as the

prediction horizon. The decision variables in the cost function are the control actions at each

time instant k inside a control horizon Nu. Also, MPC algorithms commonly have ways to

account for model-plant mismatch, and disturbances in the plant. What differs MPC algorithms

from one another is the cost function and process model utilized in each method (CAMACHO;

BORDONS, 1999).

A common example of cost function used in MPC applications is the quadratic error

function:

(Ŷ − Yref )T Q(Ŷ − Yref ) + ∆UT R∆U (2.32)

where the elements of Ŷ are the output predictions at each instant in time, up until the prediction

horizon, namely:

Ŷ =




ŷ[k + 1|k]
...

ŷ[k +Ny|k]


 (2.33)

The elements of ∆U are the control increments along the control horizon, in the almost

the same fashion of Ŷ.

∆U =




∆u[k|k]
...

∆U[k +Nu − 1|k]


 (2.34)
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Q and R are diagonal matrices, with the prediction and control weights, respectively.

They govern how conservative the control action will be and how fast is the reference tracking.

The Yref is the setpoint over the prediction window. Whenever a MPC does not deal with a

quadratic reference tracking cost function as the one presented, and instead uses cost functions

related to a real-life economic variable, such as minimizing energy consumption or maximiz-

ing profit, they are referred to as Economic Model Predictive Control (EMPC) (CAMACHO;

BORDONS, 1999).

The advantage of using a quadratic cost function is that, given a linear model, calculating

∆U is a QP. Saturation and rate limiting can naturally be included in the problem as linear

constraints (Ax = b). In most methods, only the calculated control action for the current time

step is used, and the rest is discarded.

In linear MPC methods, it is usual to divide the prediction into a free response and a

forced response. This division is possible because of the linearity principle. The free response is

how the plant would respond if no increment in the control action is applied. The forced response

is the pure effect of the control action on the system. That is, the variation on the output that will

be brought about by a variation on the input.

These are examples of linear MPC algorithms:

• Model Algorithmic Control (MAC):Created by (RICHALET et al., 1978). Utilizes the

Impulse Response as predictive model:

ŷ[k + j|k] =
N∑

i=1

hiu[k + j − i] + n̂[k|k] (2.35)

where:

n̂[k + j|k] = ym[k] −
N∑

i=1

hiu[k − i] (2.36)

with ym[k] as the measured output.

The term n̂[k + j|k] is a correction term between measured output and current output

calculated by the model, used to measure disturbances. It is assumed to be constant along

the whole prediction horizon. To obtain an impulse response model, just apply an impulse

excitation into the system (a change of 1 time step in the control action). Each coefficient

hi of the impulse response model is merely the unit impulse response value at time k = i

up until a truncated limit N . Different of other MPC methods, MAC uses the whole control

action, instead of the increments, as decision variable.

• Dynamic Matrix Control (DMC): The DMC was developed within Shell Oil Co (CA-

MACHO; BORDONS, 1999). DMC is widely used in petrochemical industries. As the

MAC uses coefficients obtained from an impulse response, the DMC uses coefficients
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from the step response, up until a certain number of time steps N :

ŷ[k + j|k] =
N∑

i=1

gi∆u[k + j − i] + n̂[k|k] (2.37)

The term n̂[k+ j|k] follows the same logic as in MAC: a correction term between expected

output and measured output, constant along the whole horizon. To separate the step

response model into a free response and a forced response, (CAMACHO; BORDONS,

1999):

f [k + j] = ym[k] +
N∑

i=1

(gj+i − gi)∆u[k − i] (2.38)

fo[k + j] =
j∑

i=1

gi∆u[k + j − i] (2.39)

ŷ[k + j|k] = f [k + j] + fo[k + j] (2.40)

where f [k + j] is the free response prediction for time k + j and fo is the forced response

prediction. It is possible (and rather convenient for a QP formulation) to aggregate every

ŷ[k + j|k] from j = 1 to j = Ny in matrix form. This is described in the following

equation:

Ŷ = G∆U + F (2.41)

G =




g1 0 . . . 0

g2 g1 . . . 0
...

...
. . . g1

...
...

. . .
...

gNy
gNy−1 . . . gNy−m+1




(2.42)

the vector Ŷ contains all the predicted responses in the prediction horizon, the vector

∆U is all control increments within the control horizon, and F is the vector of all free

responses within the prediction horizon. By substituting Equation (2.41) into (2.32), it is

obtained:

J = (G∆U + F − Yref )T Q(G∆U + F − Yref ) + ∆UT R∆U

J = (∆UT GT + FT − YT
ref )Q(G∆U + F − Yref ) + ∆UT R∆U

By eliminating the terms independent of ∆U, the cost function is put in the following

form:

J = ∆UT H∆U + bT ∆U

H = GT QG + R

b = 2(F − Yref )QG
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If the optimization problem is unconstrained, as a QP it has an analytical solution in the

form of

∆U = −H−1b (2.43)

• Generalized Predictive Control (GPC): Both MAC and DMC used models classified as

non-parametric models, as they use the direct impulse response and step response of the

process, respectively. In the case of GPC, it is different, because GPC uses an ARIMAX

(Autoregressive Integrated Moving Averages with Exogenous Inputs) (NELLES, 2001;

CAMACHO; BORDONS, 1999) model as prediction model. Non-parametric models

imply the need to store a large amount of information (directly proportional to the settling

time of the system), and only work as long as the controlled plant is stable.

An ARIMAX model has the following form:

A(z−1)ŷ[k] = B(z−1)z−du[k − 1] + C(z−1)
e[k]

1 − z−1
(2.44)

where z−1 is the delay operator (z−1x[k] = x[k−1]) for some arbirary x, andA(z−1), B(z−1)

and C(z−1) are polynomials on z−1. The perturbation e[k] is a white noise. For simplicity,

consider C(z−1) = 1. Also, a more convenient form of expressing the ARIMAX is:

Ã(z−1)ŷ[k] = B(z−1)z−d∆u[k − 1] + e[k] (2.45)

where Ã(z−1) = (1 − z−1)A(z−1). As (1 − z−1)u[k] = u[k] − u[k− 1], the equations can

be expressed in function of the control increment by multiplying every term with 1 − z−1.

To calculate the free response and the forced response of the model, consider the following

Diophantine equation (CAMACHO; BORDONS, 1999):

1 = Ej(z
−1)Ã(z−1) + z−jFj(z

−1) (2.46)

The polynomails Ej(z
−1) and Fj(z

−1) are the quotient and remainder, respectively, of

the polynomial division 1/Ã(z−1), when the remainder can be factorized by z−jFj(z
−1).

Equation (2.45) is then multiplied with Ej(z
−1)zj to obtain:

Ã(z−1)Ej(z
−1)ŷ[k + j] =

Ej(z
−1)B(z−1)z−d∆u[k − 1 + j] + Ej(z

−1)e[k + j]
(2.47)

which can also be expressed as:

ŷ[k + j] = Fj(z
−1))ŷ[k]+

Ej(z
−1)B(z−1)z−d∆u[k − 1 + j] + Ej(z

−1)e[k + j]
(2.48)

As e[k] is supposedly a white noise (CAMACHO; BORDONS, 1999), then the term related

to it can be dropped, as the white noise has zero mathematical expectation E(e[k]) = 0.

The result is:

ŷ[k + j] = Fj(z
−1))ŷ[k] +Gj(z

−1)∆u[k − 1 + j − d] (2.49)
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where Gj(z
−1) = Ej(z

−1)B(z−1). Each polynomial Gj+1(z
−1) contain the same coeffi-

cients as Gj(z
−1), so they are labeled as:

Gj(z
−1) = g0 + g1z

−1 + g2z
−2 + . . .+ gjz

−j (2.50)

Matrices in the form Ŷ = G∆U + F are also calculated in GPC. More precisely, they

are computed as (CAMACHO; BORDONS, 1999):

Ŷ = G∆U + F(z−1)ym[k] + G′(z−1)∆u[k − 1] (2.51)

G =




g0 0 . . . 0

g1 g0 . . . 0
...

...
...

...

gN−1 gN−2 . . . g0




(2.52)

F(z−1) =




Fd+1(z
−1)

Fd+2(z
−1)

...

Fd+N(z−1)




(2.53)

G′(z−1) =




Gd+1(z
−1 − g0)z

(Gd+2(z
−1 − g0 − g1z

−1))z2

...

(Gd+1(z
−1 − g0 − g1z

−1 − . . .− gN−1z
−(N−1)))zN




(2.54)

where N is the prediction horizon and ym[k] is the current measured output. Then, the

same optimizing procedure done in the DMC can be applied.

2.4 SUMMARY

This chapted reviewed fundamental concepts related to this work. Unconstrained and con-

strained optimization, system identification, dynamic systems and control theory were discussed.

The fundamental concepts for understanding this work are present in this chapter.
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3 ARTIFICIAL NEURAL NETWORKS

This chapter gives a brief review Artificial Neural Networks, an important tool in nonlin-

ear system identification and machine learning nowadays. In section 3.1 the concept is introduced.

Section 3.2 presents the most used type in pattern recognition, feedforward neural networks

(BISHOP, 2006). Section 3.3 showcases recurrent neural networks, and section 3.4 introduces

Echo State Networks.

3.1 INTRODUCTION

Artificial Neural Networks (ANNs) have been coined as such from biological sciences,

as an attempt to find a mathematical model of the brain (BISHOP, 2006). Although these

brain models spark interest in medicine, biology and psychology, they are mostly seen as a

statistical universal approximatior by engineers (NELLES, 2001). As this work concerns data-

driven control in oil and gas production, artificial neural networks are approached merely as an

engineering tool.

As a statistical model, an ANN has the following characteristics (NELLES, 2001):

• Large number of simple units;

• highly paralel units;

• densely connected units;

• fault tolerance of single units.

These networks utilize a heavily distributed setting to serve as an universal function

approximator, and have easy hardware implementation (NELLES, 2001).

Each unit in a Neural Network is referred to as a “neuron”. A neuron is represented by an

activation funcion f mapping an input into an output. In most tasks, it is usual to use activation

functions such as tanh(·) or the sigmoid, which is defined as:

f(z) =
1

1 + e−z
(3.1)

Figure 1 is the plot of a hyperbolic tangent and a sigmoid, respectively. Both the hyper-

bolic tangent and and the sigmoid function are bounded from above and below, which makes

them ideal for logistic regression applications (BISHOP, 2006). Due to the fact that both these

functions are bounded to some assymptotes, their gradient becomes closer as the function input

magnitude |z| increases. This is commonly referred to as a “fading gradient”. To circunvent
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Figure 1 – Plot of an hyperbolic tangent and a sigmoid.

−1.0

−0.5

0.0

0.5

1.0

y
 (

ta
n
h
)

−3 −2 −1 0 1 2 3
z

0.0

0.2

0.4

0.6

0.8

1.0

y
 (

si
g
m

o
id

)

Source: Author.

“fading gradient”, the deep learning literature (GOODFELLOW; BENGIO; COURVILLE, 2016)

proposes another activation function for the neural networks: the Rectifier Linear Unit (ReLu)

(GLOROT; BORDES; BENGIO, 2011).

f(z) = max(0, z) (3.2)

John et al. (GLOROT; BORDES; BENGIO, 2011) argue that the most important property

of a biological neuron is the retification (the diode effect of nulling negative stimuli). This,

combined with the fact that biological neurons rarely reach the maximum firing magnitude,

leads to the proposal of ReLu, which is ubiquous in image recognition and computer vision

applications (GOODFELLOW; BENGIO; COURVILLE, 2016).

In a neural network, each neuron is linked through weighted connections. Each neuron

input is a linear combination of other neuron outputs. The composition of many instances of the

activation function, together with the tuning of the weights, is what defines a neural network as

a universal approximator (CYBENKO, 1989). For regression applications, which are the main

concern of this work, the weights are tuned by minimizing the quadratic error of some desired

values, solving a nonlinear least squares problem.

Neural Networks, overall, are convenient when the application in question has a large

amount of data available and the patterns are not trivial enough to be identified through a linear

regression model. The resulting combination of multiple neurons is a complex, nonlinear model,

so it is prone to overfitting. Regularization, then, is advisable when trying to tune a neural network.

Viable strategies for regularization in an ANN include the Tikhonov Regularization present in

Section 2.2.1 or the LASSO (least absolute shrinkage and selection operator) regularization
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Figure 2 – Representation of a Feedforward Neural Network with 3 inputs, 2 hidden layers with 4 neurons each,
and 2 outputs. Each arrow represents a weighted connection between each neuron, represented by a
circle.
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Source: Author.

(TIBSHIRANI, 1996). While Tikhonov utilizes ℓ2-norm, LASSO utilizes ℓ1-norm and is able to

obtain networks with sparse weights, significantly reducing model complexity.

3.2 FEEDFORWARD NEURAL NETWORKS

The most basic type of neural networks are the Feedforward Neural Networks (also

referred to as Multilayer Perceptron (MLP)). The main characteristic of these networks is that,

since the value of each neuron does not depend on itself in previous instants in time, they are

memoryless, or static. To ease gradient calculation and function evalutation, it is rather common

to see the neurons organized in layers.

Figure 2 depicts a generic feedforward neural network. A neural network is described by

the following equations:

ŷ = f(Wnl
znl

) (3.3)

znl = f(Wnl−1znl−1) (3.4)

zn = f(Wn−1zn−1) (3.5)

z1 = f(W0u) (3.6)

where zn corresponds to the vector where each element is a neuron of layer n. The network has

nl layers. u is the input and ŷ is the output vector. The matrix W0 define the weights between the

input layer and the first hidden layer. The matrix Wn gives the weights between layer n and layer

n+ 1. The vector function f(·) is the element-wise activation function, which is considered to be
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generic for this analysis, but functions such as tanh()̇ or the sigmoid as presented in Equation

(3.1). Bias can be naturally added to this formulation by concatenating the input vector u and

each layer vector zn with 1 and adding a corresponding weight vector to it. A neural network

that has a large nl, that is, a large number of layers, is considered a Deep Neural Network.

In a neural network, the trainable weights are represented by the elements in each matrix

Wn where the index n = {0, 1, ..., nl}. For the purpose of optimization, consider a vector w

that is essentially every matrix Wn flattened. For regression, the task of interest in this work,

the objective is to minimize the quadratic error between the desired output y and the expected

output ŷ(w,u) (for simplicity, assume there is only one output):

E(w,u) =
1

2
(y − ŷ(w,u))2 (3.7)

Calculating the gradient in a neural network was an impeding task in the early years, up

until the error Backpropagation algorithm was invented (NELLES, 2001). Backpropagation is

essentially the use of the chain rule to calculate the gradient, facilitated by the layered structure

of the network. The derivative of the cost function with respect to w is:

∂E

∂w
= (y − ŷ(w,u))

∂ŷ

∂w
(3.8)

The value for ∂ŷ

∂w
depends on which layer the weights are. If the weights are at the output

layer, then the answer is trivial (since ŷ, Wnl
is a row vector):

∂ŷ

∂Wnl

= f ′(Wnl
znl

)zT
nl

(3.9)

For ŷ with respect to an arbitrary hidden layer weight matrix Wn it is:

∂ŷ

∂Wn

=
∂ŷ

∂an

zn
T (3.10)

with an = Wnzn. The calculation of ∂ŷ

∂an
can be done recursively:

∂ŷ

∂an

=
∂an+1

∂an

T ∂ŷ

∂an+1

= f ′(an)Wn+1
T ∂ŷ

∂an+1

(3.11)

It is known that ∂ŷ

∂an
l

= f ′(anl), so this information is used to calculate the gradient of

the previous layer, so on and so forth. To initialize the algorithm, it is advisable that the weights

are started randomly. Since the algorithms solve a nonlinear optimization problem, a random

initialization could lead the network to a better local minimum, as starting all the weights as 0

could bind the network to a bad local optimum (BISHOP, 2006).
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3.3 RECURRENT NEURAL NETWORKS

Recurrent Neural Networks are Neural Networks whose neurons depend on previous val-

ues in time. They are necessary to predict time series (GOODFELLOW; BENGIO; COURVILLE,

2016) and solve system identification problems (NELLES, 2001). Since these networks are de-

pendent on time, their training is harder than static network, but they serve as potential universal

approximators to nonlinear systems. The general equation for a recurrent neural network is:

x[k + 1] = f(Wx[k] + Wuu[k] + b) (3.12)

ŷ[k] = Wox[k] (3.13)

with x[k] being the vector containing the hidden neurons, u[k] the input vector, and b the bias

vector. The function f is the activation function. It is needed to train each parameter W, Wo, b

and Wu to minimize a quadratic error over time. This problem is solved by Backpropagation

Through Time algorithm (GOODFELLOW; BENGIO; COURVILLE, 2016), which is essentially

an error backpropagation algorithm, but for a Recurrent Neural Network which is unfolded in

time.

As in the case of the feedforward neural network, it is desirable to minimize the following

cost function (again, the output is assumed to be scalar):

E(w,u) =
1

2

N∑

k=1

(ŷ[k] − y[k])2 (3.14)

where w are W,Wu,Wo and b flattened into a column vector and concatenated. The objective

of Backpropagation through time is to calculate ∂E
∂w

. By using the chain rule:

∂E

∂w
=

N∑

k=1

∂x[k]

∂w

T ∂E

∂x[k]
(3.15)

The term ∂E
∂x[k]

represents the effect that the state of the network at a given time k has at

the quadratic error function. When k = N , x[N ] appears only once, so:

∂E

∂x[N ]
=

∂E

∂ŷ[N ]

∂ŷ[N ]

∂x[N ]
= (ŷ[N ] − y[N ])Wo

T (3.16)

For an arbitrary k, as the gradient for k = N is already given, it is convenient to express

the gradient in terms of ∂E
∂x[k+1]

. The algorithm starts evaluating from ∂E
∂x[N ]

and backpropagate

until k = 1.

∂E

∂x[k]
=
∂x[k + 1]

∂x[k]

T ∂E

∂x[k + 1]
+

∂E

∂ŷ[k]

∂ŷ[k]

∂x[k]
(3.17)

∂E

∂x[k]
= (ŷ[k] − y[k])Wo

T + WT f ′(a[k])
∂E

∂x[k + 1]
(3.18)

a[k] = Wx[k] + Wuu[k] + b (3.19)



Chapter 3. Artificial Neural Networks 45

What is left now is the calculation of ∂x[k]
∂w

. Since w is W, Wu, b and Wo flattened

into a column vector and concatenated, the respective gradients must be calculated separately

separately. First, the bias weight vector b:

∂x[k]

∂b
=
∂a[k − 1]

∂b

T ∂x[k]

∂a[k − 1]
+
∂x[k − 1]

∂b

T ∂x[k]

∂x[k − 1]
(3.20)

∂x[k]

∂b
= f ′(a[k − 1]) +

∂x[k − 1]

∂b

T

WT f ′(a[k − 1]) (3.21)

when k = 2, the second term is dropped, since k = 1 is defined as the initial condition in this

formulation, and does not depend on b. The value for k = 2 would be:

∂x[2]

∂b
= f ′(a[1]) (3.22)

which is propagated forward until x[N ].

For an arbitrary input weight row vector wu(i), where i is the correspondent line in Wu,

the calculations are analogous:

∂x[k]

∂wu(i)
=

∂x[k]

∂ai[k − 1]

∂ai[k]

∂wu(i)
+

∂x[k]

∂x[k − 1]

∂x[k − 1]

∂wu(i)
(3.23)

∂x[k]

∂wu(i)
= f ′

i(ai[k − 1])uT [k] + WT f ′(a[k − 1])
∂x[k − 1]

∂wu(i)
(3.24)

where f ′
i is a column vector with only row i non-zero. For an arbitrary state row vector wx(i),

where i is the corresponding line in W, the following equations hold:

∂x[k]

∂wx(i)
=

∂x[k]

∂ai[k − 1]

∂ai[k]

∂wx(i)
+

∂x[k]

∂x[k − 1]

∂x[k − 1]

∂wx(i)
(3.25)

∂x[k]

∂wx(i)
= f ′

i(ai[k − 1])xT [k] + WT f ′(a[k − 1])
∂x[k − 1]

∂wx(i)
(3.26)

For the output weights, the calculation is trivial, as they do not depend on the state x:

N∑

k=1

(ŷ − y)x[k]T (3.27)
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To finally obtain ∂E
∂w

, the weight vector and matrices are concatenated:

∂E

∂w
=




∂E
∂Wo

T

∂E
∂b

∂E
∂wu(1)

T

∂E
∂wu(2)

T

...
∂E

∂wu(nu)

T

∂E
∂wx(1)

T

∂E
∂wx(2)

T

...
∂E

∂wx(nx)

T




(3.28)

where nu is the number of inputs and nx is the number of states in the network.

3.4 ECHO STATE NETWORKS

An ESN is a type of recurrent neural network with useful characteristics for system

identification (JAEGER et al., 2007), as it represents nonlinear dynamics well and the training

consists in solving a linear least squares problem of relatively low computational cost (The

analytical solution to the least squares problem has the cost of solving a linear system, as demon-

strated in Equation (2.18), which is significantly lower than the cost of nonlinear optimization).

Proposed by (JAEGER; HAAS, 2004; JAEGER, 2001), the ESN is governed by the following

discrete-time dynamic equations:

a[k + 1] = (1 − γ)a[k]

+ γf(Wr
ra[k] + Wr

i i[k] + Wr
b + Wr

oo[k])
(3.29)

o[k + 1] = Wo
r a[k + 1] (3.30)

where: the state of the reservoir neurons at time k is given by a[k]; the current values of the input

and output neurons are represented by i[k] and o[k], respectively; γ is called leak rate (JAEGER

et al., 2007), which governs the percentage of the current state a[k] that is transferred into the

next state a[k + 1]. The weights are represented in the notation Wto
from, with "o" meaning the

output neurons, "r" meaning the reservoir, and "i" meaning the input neurons. “b” represents

the bias; and f is the activation function also called a base function in system identification

theory (NELLES, 2001). Normally, tanh(·) is used as an activation function. Figure 3 depicts

the schematic of an echo state network.

The network has N neurons, which is the dimension of a[k] that must be several orders

higher than the number of network inputs. As long as regularization is used, N can be as big as

needed, but at the expense of increased computation time when generating the reservoir states
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Figure 3 – Representation of an Echo State Network. Dashed connections (from Reservoir to Output Layer) are
trainable, while solid connections are fixed and randomly initialized.
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Source: Extracted from (JORDANOU et al., 2017), made by author.

according to Equation (3.29). According to (JAEGER, 2002), the ESN has a memory capacity

(MC) bounded by the number of neurons in the reservoir (MC ≤ N ), assuming that linear

output units are used.

The recurrent reservoir should have the so-called Echo State Property (ESP) (JAEGER,

2001), i.e., a fading memory of its previous inputs, meaning that influences from past inputs

on the reservoir states vanish with time. The ESP is guaranteed for reservoirs with tanh(·) as

the activation function when the singular values of Wr
r < 1. However, this restriction limits the

richness of the reservoir dynamical qualities, and is not used in practice. Note that all connections

going to the reservoir are randomly initialized, usually according to the following steps:

1. Every weight of the network is initialized from a normal distribution N (0, 1).

2. Wr
r is scaled so that its spectral radius ρ (Eigenvalue with the largest module) is at a certain

value which is able to create reservoirs with rich dynamical capabilities. It has been often

observed that setting ρ < 1 in practice generates reservoirs with the ESP (JAEGER et al.,

2007). However, reservoirs with ρ > 1 can still have the ESP since the effective spectral

radius may still be lower than 1 (OZTURK; XU; PRíNCIPE, 2007; VERSTRAETEN;

SCHRAUWEN, 2009).

3. Wr
i and Wr

b are multiplied by scaling factors f r
i and f r

b , respectively, to determine how

the input will influence the network.

These scaling parameters, ρ and f r
i , f r

b are crucial in the learning performance of the
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network, having an impact on the nonlinear representation and memory capacity of the reservoir

(VERSTRAETEN et al., 2010). Also, low leak rates allow for higher memory capacity in

reservoirs, while high leak rates should be used for quickly varying inputs and/or outputs. The

settings of these parameters should be such that the generalization performance of the network

(loss on a validation set) is enhanced.

While in standard RNNs all weights are trained iteratively using backpropagation through

time (MOZER, 1995), ESNs restrict the training to the output layer Wo
r . In this work, reservoirs

have no feedback from the output, i.e., Wr
o = 0. Note that when the output feedback Wr

oo[k] is

present, the properties that guarantee ESP are different.. Also, the inputs do not interfere directly

in the output, as systems with direct transmission are less smooth and more sensitive to noise.

3.5 SUMMARY

This section presented Neural Networks and their Recurrent Counterparts. The static,

feedforward case was shown and backpropagation was introduced. The section also discussed

Recurrent Neural Networks and Backpropagation Through Time. In the end, a subtype of

Recurrent Neural Network was shown that does not need to use a complex algorithm such as

the Backpropagation Through Time: The Echo State Network. The ESN is ubiquous in this

work, as it is used as the inverse model to be learned in the Online Learning Controller and the

identification model for the Practical Nonlinear Model Predictive Controller.
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4 OIL PRODUCTION SYSTEMS

This chapter introduces the reader to the notion of Oil and Gas platforms, while also

presenting the models utilized in the applications of this work and other oil and gas control

applications.

4.1 OFFSHORE OIL PRODUCTION SYSTEMS OVERVIEW

This section describes general components present in oil production facilities. Figure

4 shows an example of a complete platform, which was considered in the work of (AGUIAR;

CODAS; CAMPONOGARA, 2015).

Figure 4 – Example of a diagram of an offshore production facility. GLM stands for Gas Lift Manifold. There are
two risers and separators due to the fact that one of the separators is used for testing purposes (JAHN;
COOK; GRAHAM, 2008).

Source: Figure from (AGUIAR; CODAS; CAMPONOGARA, 2015).
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4.1.1 The Wells

A well is an apparatus responsible for conducting oil and gas from the reservoir to the

surface. Figure 5 shows the example of an offshore oil well. The tubulation in the well needs

to have the flow capacity for production (or injection) and be robust facing problems such as

sand production, corrosion, high pressures or temperatures, mechanical failure and production

chemistry issues such as waxes, scales and hydrates (JAHN; COOK; GRAHAM, 2008). A

production platform can have one or more wells. This number is obtained during tests on the

appraisal phase of the oil field. A well which is able to produce oil at a commercial rate without

help from a lifting system is called a natural flowing well (JAHANSHAHI, 2013).

This work considers a vertical, offshore well, operated using gas lift. Gas lift consists

in reinjecting produced gas into the well, thus lowering the density of the produced fluid and

easening its ascent, increasing the production flow (JAHN; COOK; GRAHAM, 2008; AGUIAR;

CODAS; CAMPONOGARA, 2015). A gas-lifted well can be split in two different parts: the

annulus, which is the medium where the gas for gas lift is injected, and the tubing, where flows

the produced fluid. The gas used for gas lift comes from a valve which controls the amount of

gas injected, passes through the annulus and goes to the tubing through an injection valve.

In each well, production tests are performed at least once per month by diverting the

production for certain measurements in the test separator. Measurements for testing include the

tubing head pressure, the flow, the velocity distribution, the consistency with the used simulation

model, and other factors.

4.1.2 Subsea Processing

Some wells are included with subsea processing. Wells tend to also produce water, which

is undesirable for commercial applications, so a separator is used to inject water back into the

ocean (JAHANSHAHI, 2013). Sand and other undesirable substances are also handled by the

subsea separator. This has shown improvements both in the production and in the top separation

efficiency (JAHANSHAHI, 2013).

4.1.3 Manifolds

If more than one well is used, it is expensive to directly send their production to the

surface, so they are connected directly to each other using a manifold. A manifold is the

component that connects the different wells associated with an oilfield, merging their flows into

one. This tubulation gathers all fluids which are being produced by the wells and direct the

mixture into a pipeline-riser system. This equipment must be properly designed to resist the

intensity of the flow coming from the most productive well.
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Figure 5 – Schematic representation of the well considered in this work.
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4.1.4 Pipeline-Riser

This is the structure responsible for bringing the produced reservoir fluid into the surface.

This structure can be considered as the blood vessel of an offshore oil platform (JAHANSHAHI,

2013).

In this work, it consists of a horizontal pipeline that receives fluid from the manifold as

inflow, and the outlet flow goes to what is called the Riser. The Riser is a vertical tubulation used

to transport fluid from the pipeline into the surface. These components incur a major cost in the

implementation of an oil field, due to the need to be specifically designed to certain temperature

and depth configuration (JAHANSHAHI, 2013). Figure 6 shows an example of pipeline-riser

system.
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Figure 6 – Representation of a pipeline-riser system. Pout represents the pressure in the separator.

Source: Obtained from (JAHANSHAHI; SKOGESTAD; GRØTLI, 2013a).

4.1.5 Separator and Top-side Processing

The flow of a riser can come in three (or more) different phases: oil, gas or water. The

separator receives the flow as inlet and has the purpose of separating the flow into oil, gas or

water. The outflow will then be sent to the other processes in the top-side processing, and then

transported for selling and/or refining, or being discarded in an (ideally) environmental friendly

way.

Separators are classified into two-phased, if they separate the flow into gas and liquid, or

three-phased, if they separate crude oil into gas, water and oil.

The other units in the top-side processing are defined by a process engineer, which must

find the minimum necessary steps to turn crude oil into refinable products. Other processes

can include, degassing, dehydration (for oil), dew point conditioning, contaminant removal,

compression (for gas), and de-oiling (for water to be disposed).

4.1.6 Flow Assurance Issues

Assuming a complete production platform, there are several factors which can affect

production, costing millions of dollars to the oil company. This subsection is based on the

information from (JAHANSHAHI, 2013). Below is a list of effects that can affect the quality of

the fow in production.

• Hydrates: Crystaline materials where water molecules are mixed with certain gases or

gas mixtures, forming where the temperature is low and there is elevated pressure. This

substance can block gas flowlines. What is generally used is applying MEG (Mono-

ethylene Glycol) at the blocked area.

• Wax: A natural constituent in any crude oil and most gas condensates that increases the

oil viscosity, increases wall roughness, lessens flow and compromise storage. The most

usual strategy for Wax removal is pigging (JAHANSHAHI, 2013). Pigs is an entity used

to clean oil platform pipes, being described at (JAHN; COOK; GRAHAM, 2008).

• Asphaltenes: The heaviest fractions of crude oil. They can precipitate during production

due to changes of pressure, temperature and fluid composition. The precipitated particles
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are then deposited in the pipeline, causing production rate decline and other operational

problems. The industrial solution to this problem is avoiding the operation point at which

asphaltene is precipitated.

• Scales: Deposits of inorganic salts, reducing capacity of the flowline. To deal with scales,

chemicals named “scale inhibitors” and “scale dissolvers” are applied.

• Corrosion: In fields which produce large quantities of water, pipe corrosion can be a

possible issue. Carbon steel is considered an economic solution for this problem.

• Emulsions: Emulsions can compromise separation efficiency and the processing facilities,

which can cause loss in production. The solution to this is using de-emulsifiers.

• Slugging Flow: Happens due to gas and liquid being transported at the same time, more is

explained below.

4.1.7 Slugging Flow

Gas and liquid phases normally do not travel at same velocity in the pileline. This is due

to differences in density and viscosity. For an upward flow, such as in a riser, the gas phase flows

at a higher velocity than the liquid phase. Also, predicting how a multiphase composition will

flow is a complex task, even in a simple pipeline geometry.

Slug flow can be caused by either of these factors (JAHANSHAHI, 2013):

• Hydrodynamics,

• The upward flow within a riser,

• Irregular surface of seabeds,

• Induction by pigging,

• Gas compression in the annulus of a gas lifted well,

• Accumulation of gas at the bottom of a long well.

The slugging induced by the presence of a riser is one of the most important flow as-

surance challanges. In slugging, liquid accumulates in the entrance to the riser, blocking gas

entrance, leading to the compression of the gas in the pipeline. Each instance of this accumulation

is called a slug. This happens if gas and liquid velocities are sufficiently low. The slug continues

to grow as the hydrostatic head of the liquid in the riser is higher than the pressure drop over the

riser (JAHANSHAHI, 2013). When the pressure drop over the riser exceeds the hydrostatic head

due to slug accumulation, the liquid is pushed out of the riser and, when all liquid has left the

riser, liquid falls back into the bottom due to low velocity and starts to accumulate again.
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The presence of slugging depends on inflow conditions, the topside chocke valve, ge-

ometry and dimensions of the riser as well as the separator pressure. If a riser is designed to

avoid slugging, only problems related to the separator pressure, topside choke valve and inflow

conditions remain. A slug can be detected as a pressure oscillation in a sensor.

The conventional anti-slug solutions available have either operational problems or no

economic viability, so studies have arisen for feedback control solutions. In this case, the con-

trolled variable would be the pressure in the pipeline, though existing anti-slug control systems

are not operating in practice due to robustness problems because of changes in the model and

disturbances. The dynamics involved in the slug are represented in Figure 7.

Figure 7 – Representation of a slug flow.

(1) Slug Formation (2) Slug Production

(3) Blowout(4) Liquid Fallback

Source: Obtained from (JAHANSHAHI, 2013).

4.2 WELL MODEL

This section describes the well model which is considered for the experiments in this

work. This model originates from (JAHANSHAHI; SKOGESTAD; HANSEN, 2012). The model

considers only the liquid and gas phases, treats oil and water as the same phase, and is a system

of state equations consisting in:

ṁG,a = ωG,in − ωG,inj (4.1)

ṁG,tb = ωG,inj + ωG,res − ωG,out (4.2)

ṁL,tb = ωL,res − ωL,out (4.3)

• x is the nature of the variable, with m being the mass and ω the mass flow.

• y is phase represented by the variable, with G being the gas and L the liquid/oil phase,

since the model assumes no water phase.

• z is the location of the variable in the well, where tb is the tubing and a is the annulus.
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If y is absent and the variable is in the form xz, then the variable does not describe a

specific phase. mG,a, mG,tb and mL,tb are the state variables considered in this model (in kg).

This model is also described in Figure 5. mG,a is the total mass of gas that is currently in the

annulus of the well. This is the gas that comes from the gas lift source, as represented by its state

equation: ωG,in is the mass flow (kg/s) of the gas coming from the source into the annulus. ωG,inj

is the mass flow (kg/s) of the annulus gas coming into the tubing. mG,tb is the total mass of gas

that is currently in the tubing of the well. It has two sources, ωG,inj and ωG,res, which is the gas

mass flow that comes from the reservoir. ωG,out is the outlet gas mass flow, which leaves the well

tubing into the platform or a manifold. mL,tb is the mass of liquid in the well tubing. The liquid

comes from the reservoir with mass inlet flow (kg/s) ωL,res and leaves with outlet mass flow

ωL,out.

These mass flows are computed using Bernouilli’s orifice equation:

ωGin = Kgsu2

√
ρG,in max(Pgs − Pat, 0)

ωGinj = Kinj

√
ρG,ab max(Pab − Ptb, 0)

ωout = Kpru1

√
ρmix,t max(Ptt − P0, 0)

ωres = PI max(Pres − Pbh, 0)

ωL,res = (1 − αm
G,b)ωres

ωG,res = αm
G,bωres

ωL,out = (1 − αm
G,t)ωout

ωG,out = αm
G,tωout

These variables follow the notation according to Figure 5. Kgs,Kinj , and Kpr are experi-

mental variable parameters which depend on the practical application. P0 is the outlet pressure.

αm
G,b is the mass fraction of the bottom flow, and αm

G,t is the mass fraction of the outlet flow. αm
G,b

is assumed to be constant and u1 and u2, the choke valve opening and gas lift valve opening,

respectively, are the model inputs and manipulated variable candidates. αm
G,t is calculated as:

αm
G,t =

(1 − αL,t)ρG,t

αL,tρL + (1 − αL,tρG,t)

αL,t = 2αL − αL,b

αL,b =
ωL,resρG,tb

ωL,resρG,tb + (ωG,inj + ωG, res)ρL

αL =
mL,tb − ρLVbh

VtρL

where αL is the average liquid fraction inside the tubing, Vbh is the assumed volume at the

bottomhole, Vt is the volume in the tubing, and ρL, the liquid density, is assumed to be constant.

The other densities present in the previous equations are variable and calculated as follows,

derived from either the ideal gas law or the definition of density:
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ρG,ab =
PabMG

RTa

ρG,in =
PgsMG

RTa

ρG,t =
mG,tb

Vt + Vbh −mL,bh/ρL

ρmix =
mG,tb +mL,tb − ρLVbh

Vt

ρG,tb =
PtbMG

RTt

ρmix,t = αL,tρL + (1 − αL,t)ρG,t

with ρmix being the average mixture density inside the tubing, Ta and Tt the temperatures in

the annulus and tubing, assumed to be constant, R the universal gas constant, and MG the gas

molecular weight. The valve equations depend on the pressures, which are calculated as follows:

Pat =
RTamG,a

MGVa

Pab = Pat +
mg,agLa

Va

Ptt =
ρG,tRTt

MG

Ptb = Ptt + ρmixgLt + Ft

Pbh = Ptb + Fb + ρLgLbh

The pressure Pat and Ptt are derived from the ideal gas law. Pab is Pat plus the gas’s

hydrostatic pressure. Pbh and Ptb contain not only the hydrostatic pressure imposed by the

liquid, but Fb and Ft, which are the pressure loss due to friction in the bottom-hole and the

tubing. La is the length of the annulus, Lt is the length of the tubing, and Lbh is the assumed

length of the bottom hole. Pres, Pgs and P0 are considered to be disturbances in this work.

These pressures depend on exogenous factors such as the reservoir, the gas lift source, and the

manifold, respectively, and can be potentially variable, but are considered to be initially constant

for modeling purposes. The pressure loss in the bottom-hole Fb is assumed to be constant, but

the pressure loss due to friction in the tubing Ft is calculated as:
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Ft =
λbρLU

2
l,bLbh

2Dt

1√
λt

= −1.8 log10

((
ǫ

3.7Dt

)1.11

+
6.9

Ret

)

Ret =
ρmixUm,tDt

µ

Um,t = U sl,t + U sg,t

U sg,t =
4(ωG,in + αm

G,bωres)

ρG,tπD2
t

The above equations are derived from Haaland’s solution to the Colebrook-White equa-

tion (1983) for the calculation of the friction factor of the tubing λt. Ret is the Reynolds number

of the flow at the tubing. Um,t is the average velocity in the tubing, U sg,t is the average superficial

velocity of the gas phase. U sl,t is the average superficial velocity of the liquid phase, assumed to

be constant. Dt is the tube’s diameter, µ is the viscosity of the fluid. ωres is the assumed average

inlet flowrate, which is obtained experimentally and is constant for dynamics simplification

purposes.

The parameter values are set as follows for the simulation:

4.3 RISER

The pipeline-riser model utilized in this work was idealized in (JAHANSHAHI; SKO-

GESTAD, 2011). The same notation as the well model is used for the pipeline-riser model. This

model uses the same consideration as the well model: the model considers only a biphasic flow

consisting of liquid (oil and water) and gas phases. Since slugging is related to the velocity

difference between the gas and liquid phase, for anti-slug control applications, this model is rea-

sonable. The liquid phase is also assumed to be incompressible. This model approximates well to

an equivalent riser modeled in the OLGA commercial simulator (JAHANSHAHI; SKOGESTAD,

2011). The following state equations are considered:

ṁG,p = ωG,in − ωG,lp (4.4)

ṁL,P = ωL,in + ωL,lp (4.5)

ṁG,r = ωG,lp − ωG,out (4.6)

ṁL,r = ωL,lp + ωL,out (4.7)

(4.8)

The states represent:

• The total gas mass in the horizontal piping, mG,p.
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Table 1 – Parameter values for the oil well

Parameter Value
Mg: Molecular Gas Weight 0.0195 kg/mol
µ: Viscosity 3.64 × 10−3 Pa.s
ρL: Liquid Density 970 kg/m3

ǫ: Piping Superficial Roughness 2.8 × 10−5 m
Ta: Annulus Temperature 350 K
Va: Annulus Volume 30.16 m3

La: Annulus Lenght 1500.0 m
Da: Annulus Diameter 0.16 m2

Tt: Tubing Temperature 350 K
Vt: Tubing Volume 18.11 m3

Lt: Tubing Lenght 1500.0 m
Dt: Tubing Diameter 0.124 m2

U sl,t : Tubing Avarage Liquid Phase Velocity 0.163 m/s
Fb: Friction Loss in Bottom Hole 313 Pa
Lbh: Length below Injection Point 75 m
αm

G,b: Gas Mass Fraction at Bottomhole 4.58 × 10−2

ωres: Average Production Mass Flow 2.0 kg/s
Pr: Reservoir Pressure 250 × 105 Pa
PI: Reservoir Production Index 2.47 × 10−6 kg/(s.Pa)
Kgs: Gas-Lift Choke Constant 1.6 × 10−4 kg/(s.Pa)
Kinj: Injection Valve Constant 1.6 × 10−4 kg/(s.Pa)
Kpr: Production Choke Constant 1.4 × 10−3 kg/(s.Pa)

Source: Obtained from (JAHANSHAHI; SKOGESTAD; HANSEN, 2012).

• The total liquid mass in the horizontal piping, mL,p.

• The total gas mass in the riser, mG,r.

• The total liquid mass in the riser, mL,r.

ωG,in is the inlet gas mass flow rate. ωG,lp is the gas mass flow rate of the fluid leaving the

pipeline and entering the riser. ωL,in is the inlet liquid mass flow rate. ωL,lp is the liquid mass

flow rate of the fluid leaving the pipeline and entering the riser. The acronym lp stands for “low

point”. ωG,out and ωL,out are the gas and liquid outlet mass flowrate, respectively, which then

goes to a top-side separator.

In the simulations featured in this work, ωG,in and ωL,in are boundary conditions assumed

to be constant, though these variables could be the outflow of a manifold connected to multiple

wells.

To calculate the outlet flow of the riser, the following equations are used:
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ωout = Kpcz
√
ρt max(Pr − P0), 0

ωL,out = αm
L,tωout

ωG,out = (1 − αm
L,t)ωout

z is the production choke opening, which is the only possible manipulated variable in this model.

ωout is the total mass outlet flow. Pr is the pressure at the riser. αm
L,t is the mass fraction at the

top of the riser. ρt is the density of the fluid at the top of the riser. P0 is the outlet pressure. Kpc

is a tuning parameter, regulated to approximate the dynamic of the model to a real life riser. The

top of the riser could be connected to a separator. To calculate αm
L,t, ρt and Pr, these equations

are used:

αm
L,t =

αL,t

ρt

ρt = αL,tρL + (1 − αL,t)ρG,r

Pr =
ρG,rRTr

MG

where R is the universal gas constant, Tr is the assumed constant temperature in the riser. MG is

the gas molar weight. αL,t is the volume fraction of liquid at que top of the riser. ρG,r is the gas

density at the riser. ρL is the liquid density. To calculate αL,t and ρG,r these equations are used:

αL,t =
2mL,r

VrρL

− AL

πr2
p

ρG,r =
mG,r

Vr −mL,r/ρL

Vr = πr2
r(Lr + Lt)

Vr is the total volume of the riser; Lr represents the length of the riser; Lt is the length

between the top of the riser and the choke valve; AL is the area of liquid that is “blocking” gas

passage at the low-point; rp is the radius of the pipeline; rr is the radius of the riser; AL is

modeled as:

AL = πr2
p − AG

AG =




πr2

p

(
hp−hc

hc

)2
hp < hc

0 hp ≥ hc

The area Ag represents the area free for gas passage in the low-point, hp represents the

height of liquid in the pipeline, and hc represents the critical height in which gas cannot pass
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from the pipeline into the riser. As demonstrated by this equation, gas passage is not allowed in

the model when the height in the pipeline become higher than the critical height. hp is calculated

as follows:

hp = KhhcαL,p +

(
ml,p − ρLVpαL,p

πr2
p(1 − αL,p)ρL

)
sin(θ)

αL,p =
ρG,pωL,in

ρG,pωL,in + ρLωG,in

ρG,p =
Pp,nomMG

RTp

Vp = πr2
pLp

The variable αL,p is the average liquid volumetric fraction in the pipeline; Vp is the

volume of the pipeline; θ is the inclination angle of the pipeline in relation to the low-point; ρG,p

is the average gas density in the pipeline, assumed to be constant and calculated using Mg, which

is the gas molecular weight, R, the universal gas constant, Tp, the assumed constant temperature

of the pipeline, and Pp,nom, the assumed nominal pressure of the pipeline, obtained through

steady state experiments.

For calculation of the flows at the low-point, the following equations hold:

ωL,lp = KLAL

√
ρL∆PL

ωG,lp = KGAG

√
ρG,p∆PG

ρG,p =
mg,p

Vp −mL,p/ρL

The parameters KG and KL are tunable gains to tune the model to behave as an experi-

mental application. ρG, p is the real gas density at the pipeline; ∆PL and ∆PG are the liquid and

gas pressure difference at the low point, respectively, and are calculated as follows:

∆PL = Pp − ∆Pfp + ρLghp − Pr − ρmgLr − ∆Pfr

∆PG = Pp − ∆Pfp − Pr − ρmgLr − ∆Pfr

Pp =
ρG,pRTp

MG

ρm =
mL,r +mG,r

Vr

in which Pp is the pressure at the pipeline; ρm is the average mixture density at the riser; g is

the gravity acceleration; ∆Pfr and ∆Pfp are the pressure loss due to friction for the riser and

pipeline respectively, and are calculated as:
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∆Pfr =
αL,rλrρmU

2
m(Lr + Lt)

4rr

∆Pfp =
αL,pλpρLU

2
sl,inLp

4rp

αL,r =
mL,r

VrρL

U sl,in =
ωL,in

πr2
pρL

Um =
ωL,in

πr2
rρL

+
ωG,in

πr2
rρG,r

The variable αL,r is the average liquid fraction at the riser. U sl,in is the average superficial

velocity of the inlet liquid. Um is the average superficial velocity of the mixture in the riser. λp

and λr are the friction factor of the pipeline and riser, respectively. They are calculated by the

following equation:

λx = 0.0056 + 0.5Re−0.32
x (4.9)

in which x is either p, which stands for pipeline, or r, which stands for riser. Notably, the

calculation of the friction factor needs the Reynolds Number Re of the mixture in both the

pipeline or the riser. Re for each part of the system is calculated as follows:

Rep =
2ρLU sl,inrp

µ

Rer =
2ρmUmrr

µ

µ is the viscosity of the fluid, which is assumed to be constant. The model’s parameters

used are exactly the same as (JAHANSHAHI, 2013) and (JAHANSHAHI; SKOGESTAD, 2011),

due to it ensuring that the riser will endure severe slugging in these conditions. The inlet mass

flow is assumed to be 9 kg/s, in which 8.36 kg/s are from the liquid phase and 0.64 kg/s comes

from the gaseous phase. This implies gas accumulation in the low point due to the low velocity of

the gas phase. In these conditions, it is shown in (JAHANSHAHI; SKOGESTAD, 2011) that the

riser is only capable of attaining open loop production stability (detected by a constant pressure,

with the choke opening z ≤ 0.05). This low value for production is not adequate. According to

the biffurcation diagrams in (JAHANSHAHI; SKOGESTAD, 2011), this model’s limit cycle has

larger amplitude than the reference model from the commercial software OLGA used.

4.4 SYSTEM MODEL: TWO WELLS AND ONE RISER

The entity that connects the two wells and the riser is the Manifold. The manifold

considered in this work has no load loss due to friction, so the outlet pressure is equal to the two
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Figure 8 – Schematic of the complete oil and gas production system.

inlet pressures. This essentially means that the pressure at the outlet of both wells is equal to the

riser inlet pressure Pin, as defined in Eqn. (4.10):

Pin = Pw,out,1 = Pw,out,2 (4.10)

Given the conservation of mass, the sum of the outlet mass flow from the wells is equal

to the inlet flow of the riser.

ωG,in,r = ωG,out,w1 + ωG,out,w2 (4.11)

ωL,in,r = ωL,out,w1 + ωL,out,w2 (4.12)

where ωx,y,r is a mass flow in the riser and ωx,y,wi is a mass flow in well i.

The presence of the manifold then brings the complete system to possess: 10 state

variables, 110 algebraic variables, and 5 input variables. Due to the junction of the two wells

and the riser, the riser inlet flow and both well outlet pressures can no longer be considered

boundary conditions. In the end, the boundary conditions left for the complete system are: both

well gas-lift pressures Pgs,1 = 200 bar, and Pgs,2 = 200 bar, both well reservoir pressures Pr,1,

and Pr,2, and the riser outlet pressure, which is connected to the surface of a platform. As in

(JAHANSHAHI; SKOGESTAD, 2011), the outlet pressure is assumed to be 50.1 bar.

Figure 8 depicts a schematic representation of the complete plant, where the manifold

connects the two wells and the riser.

4.5 CONTROL APPLICATIONS IN OIL WELLS AND RIS-

ERS

In the literature, a lot of applications of control strategies involving production platform

plants can be found.
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An example of a systemwide control, involving all the variables of the whole platform

in a simplified model, is (AGUIAR; CODAS; CAMPONOGARA, 2015). They sucessfuly use

optimal control theory applied in a whole oil production platform to maximize production

and reduce flare. The production maximization (using an economical objective function as

the performance function of the controller) and the smart tracking (a tracking cost function

penalizing the flare) manage to maintain optimal production with no need for flaring the gas. The

model of the platform used also assumes the scheduled maintenance of the compressor.

Another work, (PETIT, 2015), exposes examples of systems from the oil industry that

have variable delays and proposes an initial method on how to solve them.

In (CAMPOS et al., 2015), a real application of anti-slug control in both the Campos and

Santos basin is presented. The controller proposed in this paper is divided into three components:

• Diagnostic Module - For detection of severe slugs. Detected by oscillating pressures.

• Protection Module - For minimizing the damage done by slugs into external equipment. A

data-driven emergency choke-closing strategy.

• Anti-Slug Control - Module Responsible for minimizing or eliminating the slugs.

The work also proposes the use of some advanced control strategies such as the ONFC

(Online Neuro-Fuzzy COntroller), the gamma algorithm, and the commutational use of three

PIDs (Proportional - Integral - Differential) controllers.

In (OLIVEIRA; JÄSCHKE; SKOGESTAD, 2015), an adaptive control strategy is utilized

alongside supervisory control. The supervisory control consists in basically an oscillation detector

which increases the bottomhole pressure in presence of oscillations, and decreases the setpoint in

the abscence of oscillation, therefore driving the oil platform close to its limit. For the oscillation

detection, the algorithm checks if the frequency components of a fast Fourier transform (FFT)

have more energy at the neighborhood of the slug frequency. The adaptive control strategy

utilized is derived from the Model-Reference adaptive control, which is called Robust Adaptive

Control (OLIVEIRA; JÄSCHKE; SKOGESTAD, 2015). The controller assumes a state-space

linear model and uses a closed loop LQR controlled system as the reference model.

There is also the use of a control strategy which uses the derivative of the pipeline

pressure to supress the slug (PLUCENIO; CAMPOS; TEIXEIRA, 2015). The resulting strategy

is a simple, linear controller whose purpose is to bring the derivative of the bottom pressure

to zero. The aforementioned work also shows a mathematical proof on why a stable bottom

hole pressure is equivalent to no slug flow. They also estimate the variation in the bottom-hole

pressure based on a linear filter of the choke pressure, thus eliminating the need to measure the

pressure at the low-point.
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Besides introducing the well model used in this work, (JAHANSHAHI; SKOGESTAD;

HANSEN, 2012) presents a robust control design for unstable regions in the well. The idea for

this controller is to find the linear parameters by solving an H∞ problem. Also, a controllability

analysis is made, which finds that the best performance of disturbance rejection in a SISO

(Single Input, Single Output) controller is when the bottomhole pressure is used as the controlled

variable and the well choke opening is used as the manipulated variable.

The work (JAHANSHAHI; SKOGESTAD; GRØTLI, 2013a) utilizes the same riser

model as (JAHANSHAHI; SKOGESTAD, 2011), but the parameters are changed so the limit

cycle happens when z = 0.15, in which z is the production choke opening at the top of the riser.

It focuses on the use of nonlinear observers for the task of estimating the states of the system

based on the riser top pressure, so that control could be applied directly to the system states,

testing techniques such as the Unscented Kalman Filter( UKF), which proved to be not robust

enough for the application. The use of a high-gain Luenberger observer is also tested, as an

alteration of the UKF which is called Fast Unscented Kalman Filter. The fast UFK is simply the

use of a coordinate transformation which Pr, the measured variable, is used as a state instead of

mgr. This is shown to increase robustness of the UKF. The control of the riser utilized in this

work managed to stabilize the pressure at an operation point at which z = 0.2. This was the

maximum production that could be achieved according to the paper.

Another work (JAHANSHAHI; SKOGESTAD; GRØTLI, 2013b) utilizes the same

model as (JAHANSHAHI; SKOGESTAD, 2011) with the same biffurcation diagram as (JA-

HANSHAHI; SKOGESTAD; GRØTLI, 2013a) (open-loop stability at z = 0.15). This paper

tries using output feedback linearization to stabilize the slugging flow in the riser, managing to

successfully stabilize the riser at z = 0.6, which is a good result.

For the control strategy of the well, this work uses the results from the controllability

analysis featured in (JAHANSHAHI; SKOGESTAD; HANSEN, 2012), which argues that the

best controllability happens when u1, the well outlet choke opening is used as the manipulated

variable, and pbh, the bottom-hole pressure, is used as the controlled variable. u2, the gas-lift

valve in which gas in injected into the annulus, is fixed at u2 = 0.4, as per (JAHANSHAHI;

SKOGESTAD; HANSEN, 2012). This also serves as a rough comparison to the performance

shown in (JAHANSHAHI; SKOGESTAD; HANSEN, 2012), though the parameters used for

this work are slightly different. The capacity of reference tracking and disturbance rejection in

this model using the control strategy depicted in Chapter 5 will be tested.

For the control strategy involving the pipeline-riser system, the controlled variable

used is the pp, which is the pressure at the pipeline, and the manipulated variable is z, the

production choke valve. The slug flow in the configuration of the model in (JAHANSHAHI;

SKOGESTAD, 2011) is more severe than in (JAHANSHAHI; SKOGESTAD; GRØTLI, 2013a)

and (JAHANSHAHI; SKOGESTAD; GRØTLI, 2013b), with maximum open-loop stability at

z = 0.05. The controller will test the lowest pressure in which the riser can be stabilized with,
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in turn, testing the maximum choke opening z in which a maximum operating point can be

maintained.

4.6 SUMMARY

This chapter introduced the concept oil platforms and also the simulation models used

for application of both the Online Learning Controller and the ESN-based Model Predictive

Controller. Each component of an offshore oil platform is described, and were also exposed an

oil well and a riser model previously used in literature. For Chapter 5, the two wells - one riser

system is used as an application. For Chapter 6, only one gas-lifted oil well is utilized.
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5 ON-LINE LEARNING CONTROL

This chapter introduces the online learning control. The online learning controller is a

black-box adaptive control strategy that uses Echo State Networks to identify an inverse model of

a plant, using no previous knowledge on physical information of the system. The inverse model

calculates the plant control action which is updated online through Recursive Least Squares.

The control methodology is applied in the two wells and one riser system described

in the previous chapter. First, this chapter describes the structure used in this control strategy.

Then, the challenges involving the application are shown, setting up different combinations

of manipulated variables and controlled variables. Lastly, this chapter presents the results of

applying the online-learning control into each application described, through diverse experiments.

5.1 DESCRIPTION

Originally proposed by Waegeman, Wyffels e Schrauwen (2012), the online-learning

controller is an adaptive control framework composed of two recurrent neural networks:

• ESN-L, the “ Learning Network ”, which learns parameters in an online way, and is

analogue to the “adaptive law” concept in an adaptive control framework (ASTROM;

WITTENMARK, 1994). The “ESN-L” takes both the present plant output (denoted as y[k]

in Figure 9) and a past plant output shifted δ timesteps to the past (denoted as y[k − δ]) as

the network input. Aiming at finding the inverse model, the output weights of the learning

network are trained at each timestep with such a data sample, by using the Recursive Least

Squares algorithm. The desired output of the network is fixed as u[k − δ], the control

action applied into the plant δ time steps before.

• ESN-C, the “ Control Network ”, computes the control action u[k], and is analogue

to the concept of the standard controller whose parameters are defined by the adaptive

law (ASTROM; WITTENMARK, 1994). The ESN-C output weights are copied from

ESN-L, and thus they correspond to the same inverse model (WAEGEMAN; WYFFELS;

SCHRAUWEN, 2012), which guarantees that, given that the plant current output is y[k],

the future output at time k+δ is y[k+δ] = ŷ[k+δ], where ŷ is the reference signal. Since

information learned from ESN-L is copied, ESN-C is essentially an approximation to the

inverse model which is used to compute u[k]. The input to ESN-C are the present plant

output y[k] and the desired plant output at δ time-steps into the future, which is referred

to as ŷ[k + δ]. This is essentially the input to ESN-L, but displaced δ time-steps into the

future.
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Figure 9 – Block diagram of the ESN-based control framework. Figure extracted from (JORDANOU et al., 2017).
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Source: Designed by the author. Used in (JORDANOU et al., 2017) and (JORDANOU; ANTONELO;
CAMPONOGARA, 2019)

Figure 9 shows a block diagram representation of the control loop, which is composed of

the two aforementioned Echo State Network blocks. As shown in Figure 9, after being computed

by ESN-C, the unconstrained control action is processed by the constraint block S(x) block

before being input as u[k] to the plant and the Recursive Least Squares algorithm as illustrated in

Figure 9. This block represents the system constraints, such as saturation and rate limiting. The

timestep delay represented by δ is a tunable parameter of the framework, which is proportional to

the time constants of the system. A proof of convergence of this type of control loop is found in

(WAEGEMAN; WYFFELS; SCHRAUWEN, 2012). For inverse model training, the Recursive

Least Squares algorithm is used.

5.2 CONTROL CHALLENGES

The online-learning control was applied at the two wells - one riser system described in

Chapter 4, through the following control problems, which are all non-linear:

• Anti-Slugging Flow Control: The problem of controlling slugging flow consists mainly

in manipulating the riser choke in order to keep the riser inlet pressure constant (JAHAN-

SHAHI, 2013). The feedback control aims to avoid gas-liquid oscillations in the plant

outlet, which otherwise would bring about fluid flows that are difficult to process by the

FPSO (Floating Production Storage and Offloading) and even incur equipment damage in

extreme conditions. Preliminary simulations showed that an oscillatory regime can be in-

duced when the well gas-lift valves have choke openings with small differences. In Figure

10a, an open-loop test was carried out to qualitatively assess the dynamic properties of the
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Figure 10 – Open loop test of the two wells, one riser system where the riser choke (blue line) is varied, and both
well chokes (red and green line) are fully opened in a stable and an unstable case, dependent on the
gas-lift choke openings

(a) Unstable case, where ugs,1 = 0.05 and ugs,2 = 0.00
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Source: Obtained by the author from simulations.

system at ugs,1 = 0.05 and ugs,2 = 0.0, where ugs,i stands for the gas-lift choke opening

of well number i. The results in this figure shows that the plant reaches stability only for a

riser choke opening z = 0.1, which is 10% of total production, or lower. In comparison,

the stable regime of ugs,1 = ugs,2 = 0, depicted in Figure 10b, was also tested. In this

case, although the system is stable, a control challenge arises from its highly nonlinear
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behavior, as shown by the high variation of the static gain per operating point—the inlet

pressure increases exponentially as the choke opening becomes more constrained, as is

demonstrated in Figure 11. In the two conditions shown in Figure 10, only the riser choke

opening z is used to stabilize the riser inlet pressure Pin. The general objective of the

anti-slug control is to test the controller capacity to stabilize systems with oscillations.

• Super-Actuated Pressure Control: The gas-lift choke opening configuration is influential

on whether the plant will undergo pressure oscillations or not. In the previous control

problem, the plant was forced into a highly oscillatory regime to be suppressed by an

anti-slug controller, which manipulates only the riser choke opening. Instead in this task,

the anti-slug controller is allowed to manipulate the gas-lift choke openings (ugs,1 and

ugs,2) but not the production choke (z), which is fixed as fully open. This characterizes

a super-actuated control for having more manipulated variables than control variables.

Besides being easier to attain stability in the available setpoint range, due to the degrees of

freedom, the design of a black-box controller is challenging for having to avoid unstable

operating points, which might pose an issue since the model is previously unknown. In a

sense, this task serves as a test whether or not the controller can avoid unstable settings

and reach equilibrium for a wide variety of setpoints.

• Coupled Well Control: the objective is to control the two wells separately. Both wells

are coupled due to the presence of the manifold, which equates both well outlet pres-

sures. The well production choke valves are manipulated to control the bottom-hole

pressure of each well, but the gas-lift choke openings are held fixed at the value 0.4. In

real life, the measurement of the bottom-hole pressure is another problem by itself (JA-

HANSHAHI; SKOGESTAD; HANSEN, 2012) due to the low reliability of the involved

sensors. However, this can be mitigated by estimating the bottom-hole pressure (JAHAN-

SHAHI; SKOGESTAD; HANSEN, 2012), as done in (JAHANSHAHI; SKOGESTAD;

GRØTLI, 2013a) with a slugging riser. The challenge in this task emerges from the coupled

multivariate aspect of the problem, which was not explored in the previous tasks.

5.3 EXPERIMENTS AND RESULTS

This section showcases the experiments from the on-line learning controller of the oil

production plant (with two wells and one riser), which aims to test the controller capacity in

following setpoints and rejecting disturbances. Each of the control problems proposed in the

previous section was individually showcased.
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Figure 11 – Static curve of the SISO-stable case, where the choke opening z is plotted against Pin in steady state.
Each value of z brings the system to its correpondent value of Pin at the steady state.
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5.3.1 Implementation

The plant model was implemented using Jmodelica, an open source dynamic system

modeling language which has an interface with Python 2.7. The Python libraries numpy and

scipy were used to implement both the Echo State Networks and the on-line learning controller.

The results were displayed using the matplotlib library. In all three cases, a sample time of 60

seconds was utilized.

5.3.2 Metrics and Experimental Setup

The metrics utilized in this work were defined in (HAFNER; RIEDMILLER, 2011), who

argue that a viable control metric is the average trajectory error eT of the controller:

eT =
1

N

N∑

k=0

‖ŷ[k] − y[k]‖1 (5.1)

where N is the total runtime in time steps, y[k] is the actual output and ŷ is the predicted output.

Actually, this error metric is a term in the cost function for linear predictive control strategies

(CAMACHO; BORDONS, 1999), which uses the 2-norm instead of the 1-norm. Notice that the

average error eT is larger the longer the system takes to settle at a setpoint, being an indirect

evaluation of convergence time.

Because this metric fails to capture the transient behavior in the controller, such as

oscillations, it is proposed the use of the mean variation of the control action as an aditional
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metric, which is also widely used in predictive control:

∆U =
N∑

k=0

‖u[k] − u[k − 1]‖1 (5.2)

u[−1] = u0 (5.3)

In this metric, the variation ∆U increases if the control action differs between consecutive

timesteps, e.g. when system undergoes oscillations or during transients. In process control

applications, the behavior of the system must be as conservative as possible while respecting

process time constraints. So, the mean variation of the control action should be as low as possible.

In all experiments, the reference signal consists of three parts, each part having the

duration of 2000 time steps:

• the first part was designed to test the controller performance in different stable set points,

that vary gradually from one operating point to the next, and with no prior knowledge

of the model. This enables the controller to have more information about the different

operating points of the system and the step responses. Other setpoints could be used, such

as a sinusoidal setpoint or brown noise;

• the same setpoint signal was applied in the second part to test how the model evolves in

executing the same task, however now the controller uses the model that was learned in

the first part; and

• the third part applies a completely random signal, whereby both the amplitude and the

frequency of the signal vary. In the literature, this kind of signal is known as APRBS

(Amplitude modulated Pseudo-Random Binary Signal) (NELLES, 2001), where a PRBS is

modulated over a random amplitude, achieving, in the end, a random stair signal composed

of steps with random duration.

In control, better results are expected if the deviation from one setpoint to the next is

small, as advocated by the linear systems approximation theory (CHEN, 1998). So poor control

performance should be expected when the distance between one setpoint and the next is high.

The mean trajectory error eT and the total control variation ∆U are computed, for each

part of the simulation, which provides insights into how the controller has progressed. At each

time k, the metrics eT and ∆U are plotted over the 100 previous time steps, which shows how

the controller continuously progresses over time.

The metric eT is related to the IAE (Integral Absolute Error), which is a metric widely

applied in the literature (ASTROM; WITTENMARK, 1994; CAMACHO; BORDONS, 1999).
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While the mean trajectory error eT describes a mean of absolute error, the IAE corresponds to a

summation. Therefore:

IAE =
N∑

k=0

‖ŷ[k] − y[k]‖1 = N × eT (5.4)

5.3.3 On Parameter Selection

Seven parameters of the ESN-based controller should be tuned: the prediction timestep

δ, the echo state network leak rate γ, the spectral radius ρ, the scaling of the network input and

bias weights, f r
i and f r

b , respectively, the forgetting factor λ of the RLS algorithm, and α which

defines the initial RLS covariance matrix. The forgetting factor λ should be small enough so that

the RLS is sensitive to changes in the model, but large enough so that the covariance matrix P

does not degenerate. The value λ = (1 − 10−6) was chosen by trial and error. The behavior of

the main diagonal of the covariance matrix over time was analyzed and used as criteria to select

a value for λ sufficiently high to guarantee that P does not diverge, which otherwise causes

numerical instability, while maintaining the “forgetfulness” of past data by the RLS. A possible

hypothesis for the coveriance matrix diverging for values not as close to 1 as λ = (1 − 10−6)

is due to the large number of the inputs to the RLS (the number of ESN states, by the order of

hundreds). In normal filter applications for the RLS, a small forgetting factor (λ ≈ 0.94) would

be recommended for faster systems, but in this work, this was not shown to be the case.

When prior knowledge on the covariance matrix is unavailable, small values should be

selected for α in order to induce high covariance values, wich in turn express a high degree of

uncertainty. Notice also that a small value for α leads to a faster convergence rate of the RLS

algorithm. For the simulations herein α was set at 10−3. For each experiment the rest of the

parameters are described in Table 2. SISO corresponds to the experiments where the controlled

variable is the riser inlet pressure Pin and the manipulated variable is riser choke opening z,

for both the stable and the unstable case. MISO refers to the Pin control using both gas-lift

valves ugs,1 and ugs,2. MIMO refers to the control of both well downhole pressures Pbh,i by

manipulating the well production choke valves uch,i. For a fair comparison between parameters,

the reservoir is first initialized with random weights which are then fixed for parameter testing.

In all cases, 300 neurons proved to be enough to perform all the proposed tasks, consider-

ing learning and control of the system. A larger number of neurons requires more computational

power to calculate the control action, so it is desirable to keep the number of neurons sufficiently

low for the controller to learn the system.

A spectral radius ρ of of the reservoir weight matrix Wr
r that is close to one, but not

outside the unit circle of the complex plane, is desirable to provide a large pool of dynamics

from the reservoir. The ESN state equation (3.29) is a linear system nested inside a nonlinear

piecewise activation function. If Wr
r has eigenvalues larger the one, then the linear system inside
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Table 2 – Parameter Values for the Experiments.

Parameter SISO MISO MIMO
γ: Leak Rate 0.2 0.5 0.2
ρ: Spectral Radius of Wr

r 1.0 1.0 1.0
δ: Prediction Timesteps 2 10 5
ψ: Sparseness of Wr

r 0 0 0
N : Number of Neurons 300 300 300
f r

i : Scaling Factor of Wr
i 0.3 0.3 0.3

f r
b : Scaling Factor of Wr

b 0.2 0.1 0.1
Ts: Sampling Time 60 s 60 s 60 s

Source: Author

the activation function becomes unstable (CHEN, 1998). Experimentally, in all cases, a value

of ρ = 1 for the spectral radius ensued less oscillatory behavior than what is obtained with

ρ = 0.999, or lower, in terms of both tracking error and the sum of the control action variation,

even though ρ = 1 brings the linear system inside the marginal stability region (CHEN, 1998).

Lower values for f r
i are desirable since the controller behaves less aggressively. Also,

the system behaves more like a linear system when the value of f r
i is small, since the input effect

on the network becomes small.

Figure 12 depicts the result of a experiment where, while maintaining the ESN weights

at a fixed value and the other parameters as fixed in Table 2, the mean trajectory error eT (top

subplot) and total control variation ∆U (bottom subplot) are measured for different value of δ

from 1 to 30. The time step delay δ is the only degree of freedom present in the on-line learning

control, as other parameters are either related to the ESN or the RLS algorithm. Some remarks

on the experiments follow for the following cases:

• SISO Case: the experiment, shown in Figure 12a, was not very informative, since the

performance shows a wide range of variation along the whole range of 1 ≤ δ ≤ 30, even

though the mean absolute error eT varies less when δ > 15. The value with minimum eT

was δ = 2.

• MISO Case: as shown in Figure 12b, a subpar performance for the Super-Actuated control

is obtained when δ < 9, either with the system failing to learn a model at all (cases where

∆U = 0 imply a constant control action, where no learning or control is taking place),

or when the control network outputs a nonconservative control action (∆U > 150) while

still having undesirable performance (eT > 3.0). For δ ≥ 9, the values for eT and ∆U are

more randomized and harder to predict. The best performance happens when δ = 10, in

terms of eT , hence its choice in Table 2.

• MIMO Case: Figure 12c, however, shows that δ has a more predictable effect on the

Coupled Well Control Problem: starting from δ = 2, the mean trajectory error eT gets
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Figure 12 – Plot for eT (y axis of topmost plot) and ∆U (y axis of bottom plot) for different values of δ (x axis).

(a) δ variation experiment for the SISO case.
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(b) δ variation experiment for the MISO case.
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(c) δ variation experiment for the MIMO case.
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Source: Obtained by the author from simulations.

higher with δ. For 0 < δ < 10, the total control variation ∆U remains within an acceptable

range of [20, 40]. For the controllers where eT ≤ 0.5, δ = 5 induced the smallest ∆U .

The controller was not able to track the set points without the presence of bias (f r
b = 0), invariably

incurring low performance. An analysis of bias values revealed that f r
b = 0.2 produces better

results for the anti-slug cases, whereas a bias value f r
b = 0.1 leads to good performed for the

super-actuated and coupled wells cases.

The SISO and MIMO applications were given a leak rate γ of 0.2, for having fast

dynamics, so there is no retardation of the controller dynamics related to the plant, and a spectral

radius ρ of 1.0, which ensure a long-lasting memory for the reservoir (slow dynamics are present).

The only parameters left to decide are ρ and γ for the MISO case, and δ for all three cases.

For the MISO case, the leak rate γ and spectral radius ρ were chosen by performing a

grid search for 0.3 ≤ ρ ≤ 1.2 and 0.1 ≤ γ ≤ 1 on discrete intervals of 0.1, considering both ∆U
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Figure 13 – Color Grid for eT (a) and ∆U (b) for different values of γ (leak rate, y axis) and ρ (spectral ra-
dius, x axis). Experiment done for the MISO case with the metrics evaluated during validation and
generalization stages (last 4000 time steps).

(a) Mean Trajectory Error eT per grid element.
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(b) Total Control Variation ∆U per grid element.
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and eT evaluated during the last 4, 000 time steps (validation and generalization phases) after the

initial training phase of 2, 000 time steps. Other parameters were fixed as shown in the Table 2.

The results of this batch of experiments are presented in Figure 13, where black corresponds to

high errors and white to low errors. For visualization purposes, we cut off points where eT > 3

and ∆U > 200 from the plot, where the performance was subpar, to better visualize the points

that performed good in terms of the two metrics. From the plot, we can notice that the optimal

combination of leak rate and spectral radius for the metric eT (where ∆U can be up to 100) is

located at γ = 0.5 and ρ = 1.0 (where eT < 0.6), while other parameter combinations have

led to more oscillatory behaviors in our analysis – represented by grey and black areas in the

total control variation plot in Figure 13b. Another view on the plot of ∆U is that, in general,

as ρ gets higher, the dynamics of the ESN is enriched with more nonlinearity and short-term

memory, causing the controller to behave more aggressively as well (darker areas of the plot).

However, the interplay between the spectral radius and the leak rate in this application is not

so evident, as the best blend of parameters takes place at γ = 0.5 and ρ = 1.0, suggesting a

nonlinear relationship between parameters for the best learning and control performance.

In addition, for γ < 0.5, the ESN state dynamics slows down too much for the controller

to effectively control the system – reflected by the top darker area with high error in Figure 13a.

We have also noticed that when γ > 0.7, the controller demonstrates behavior too aggressive to

properly stabilize the plant – verified by the darker area with high ∆U in Figure 13b. Although

the bottom left sections of the plots in Figure 13 (where 0.7 ≤ γ ≤ 0.6) have a greyish aspect

suggesting reasonable control performance, we have noticed that for these cases the covariance

matrix P has not decreased over time, i.e., the output weights learned by the RLS method have

high associated uncertainty (given by P) in the premature convergence of the RLS training.

As a result, the norm for Wo
r goes up over time, bringing about numerical instability for long

simulations.



Chapter 5. On-line Learning Control 76

There are other ways to tune the hyperparameters of a system, such as the Bayesian

Optimization (BROCHU; CORA; FREITAS, 2010).

5.3.4 Riser Inlet Pressure Stable SISO Control

The experiments herein concern the control of the riser inlet pressure Pin by manipulating

only the riser choke valve, arguably the simplest of the control problems for having only one

plant input and one plant output (SISO). The design of a linear controller for this problem is

particularly hard, since the static gain varies significantly from one operating point to another. Put

another way, a linear controller designed for an operating point can become unsuitable for another

point, however a static gain controller might solve that issue (ASTROM; WITTENMARK, 1994),

even though the dynamics are still nonlinear. No gas-lift is injected into the wells (ugs,1 = 0 and

ugs,2 = 0).

Before computing the control action, the network receives the feasible range of the inlet

pressure Pin scaled from [88.8, 95.0] bar to [−1, 1], for better numerical conditioning, whereby

88.8 bar is the riser inlet pressure for a fully open choke, and 95.0 bar is the pressure when the

choke is about 10% open. The control action is defined within the set [0.1, 1.0] to prevent the

well from being shut in. The control action set is then scaled to [−1, 1] to be in the same range as

the controlled variable.

The parameters for this case study are defined on the second column of Table 2, under

the heading SISO.

The third part of the simulation (from 4000 to 6000 time steps) was designed to have

low pressure setpoints, whereas high pressures were set for the first two parts of the simulation

(from 0 to 4000 time steps), as shown on the top plot of Figure 14. Within the third part of

the simulation, large changes in the riser choke opening imply small changes in the riser inlet

pressure. This behavior is shown in the top two plots of Figure 14. It can be noticed that the

controller can track the pressure profile within the third part, even though tracking was not

consistently kept at low pressures in the first two parts of the simulation. This happens due to

the fact that the models are being trained online, so the new data is being consistently fed to the

RLS.

Figure 14 shows the results of the stable SISO Pin control experiment. In the first subplot,

the red dashed line is the reference signal Pin and the blue solid line corresponds to the plant

output signal. After approximately 1000 time steps, the Echo State Network converged1 and was

able to thoroughly learn the system operating points. The ESN learning led the controller to

track the setpoints afterward with more damped dynamical behavior. This behavior is seen in the

first plot of Figure 14: the controller performs in the second part of the simulation the same task

of the first, however in a smoother manner, arguably because the RLS algorithm has processed
1 The Echo State Network converges when the weights of the output layer stop changing drastically.
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Figure 14 – Results for the stable SISO case with z as plant input and Pin as plant output, where ugs,1 = ugs,2 = 0.
The top most plot consists of the controlled variable Pin (full line), and the desired Pin value (dashed
line). The second plot is the manipulated variable. The third plot gives the mean trajectory error eT

over the 100 previous time steps at each time step. The fourth plot is total control variation ∆U over
the 100 previous time steps, at each time step.
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Source: Obtained by the author from simulations.

more system data and thereby improved the plant inverse model.

The third plot presents the mean trajectory error eT of the 100 previous time steps, at

each time step2. Error peaks correspond to system saturation and oscillations (e.g., at time step

100, eT has a peak when Pin reaches its maximum value). The error in the first simulation part is

higher than in the second part, possibly because the tracking signal is the same, but in the second

part the ESN has accumulated knowledge on the plant inverse model. The ESN learning ability

is also demonstrated in the third part: despite a random tracking trajectory, the error induced by

the controller is smaller than the previous parts.

The fourth plot is the sum of the control variation ∆U over the 100 previous time steps,

at each time step. As expected, the signal ∆U has higher values in the first 2000 time steps due

to the presence of oscillatory regimes. The magnitude of the control variation signal is higher in

the third than the second simulation part. This behavior is attributed to the higher variation of the

control action, which is required for the controller to track the setpoints defined at random. Table

3 gives the mean trajectory error eT for each simulation part, as defined in Eq. (5.1), likewise the

control variation ∆U as defined in Eq. (5.2), and the IAE as given in Eq. (5.4). These metrics

corroborate the results shown in Figure 14.
2 For time steps k < 100, the missing samples are assumed zero.
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Table 3 – Results for the mean trajectory error, integral absolute error, and maximum control variation of the stable
SISO Pin control manipulating the production choke z.

time steps
0-2000 2000-4000 4000-6000

eT 0.35 0.13 0.046
IAE 700 260 92
∆U 28.88 3.078 12.70

Source: Obtained by the author from simulations.

Figure 15 – Internal variables related to the Echo State Network and the RLS algorithm. The first plot consists of
the first three terms of a Principal Component Analysis (PCA) applied over the main diagonal of P[k]
over time. The second and the third plots are the PCA applied to the states of the training and control
ESNs over time.
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Figure 15 refers to a PCA (Principal Component Analysis) applied to the main diagonal

of P[k], and the states of the training and control networks over time. The PCA allows us to

express data with a large number of features, such as the 300 ESN states and main diagonal of

P[k], with a reduced number of dimensions (BISHOP, 2006). PCA reduces dimensionality by

applying the Singular Value Decomposition (SVD) on the data, whereby the left-singular vectors

associated with the largest singular values are selected for a linear transformation that minimizes

information loss.

The second and third plot of Figure 15 expose how the ESN reservoir reacts to each

change in the controller. The first plot illustrates how the main diagonal of P[k] converges over

time. As P is proportional to the covariance associated with the output weights (NELLES, 2001),

the smaller the values in P, less uncertainty is associated with the trained parameters. The first
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Figure 16 – Result for the Anti-Slug Control with the riser choke valve z as manipulated variable and Pin as
controlled variable in an unstable case, where gas-lift valves are fixed at ugs,1 = 0; ugs,2 = 0.05. The
first plot consists on the controlled variable Pin (full line), and the desired Pin reference value (dashed
line). The second plot is the manipulated variable, the third plot is the mean trajectory error eT over the
100 previous time steps at each time step, and the fourth plot is the total control variation over the 100
previous time steps, at each time step.
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Source: Obtained by the author from simulations.

principal component of P only gets below a certain threshold after 1000 time steps, which is

when we consider that the covariance matrix has converged.

5.3.5 Anti-Slug Control

This experiment corresponds to the first control problem proposed in the previous section:

the SISO control of an unstable system. The variables are the same, the only difference is that

one of the gas-lift valves has an opening of 0.05 instead of 0. Figure 10 shows that a stable

operation should have a small riser choke opening (under 10%) and, even then, the damping is

slow, which entails a system that is very difficult to smoothly control.

As in the previous case, the controlled variables are scaled as follows: the riser inlet

pressure Pin, from [88.8, 102] to [−1, 1], and all the manipulated variables from [0.05, 1] to

[−1, 1]. The second column of Table 2 describes the parameters used in this experiment. From

Figure 16, it is inferred that the controller tries to alternate between two unstable regimes to

induce a stable regime and follow the reference signal. Due to the established sample time of 1

minute, which is imposed by real world operational constraints, the alternating control action

identified by the echo state networks fails to cancel out the oscillations.

Despite the oscillations shown in the first plot of Figure 16, the fact that eT is decreasing

over time indicates that the controller is improving. However, the error eT remains above 1 bar
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which is considered high for the application. Table 4 reports the mean trajectory error, total

Table 4 – Results for the mean trajectory error, integral absolute error, and maximum control variation of the
unstable SISO Pin control manipulating the production choke z.

time steps
0-2000 2000-4000 4000-6000

eT 3.63 1.85 1.91
IAE 7260 3700 3820
∆U 158.53 158.76 177.22

Source: Obtained by the author from simulations.

control variation, and the integral absolute error for the three simulation parts.

By limiting the controller to manipulate only the riser choke valve, the controller failed

to stabilize the plant and track the reference signals. To fully overcome the oscillations, as other

stable configurations such as ugs,1 = ugs,2 = 0 exist, the controller needs to manipulate other

variables, which then would bring about more degrees of freedom. These super-actuated strategies

are more complex to learn, since many unstable operating points arise with the manipulation of

the gas-lift choke openings.

5.3.6 Super-Actuated Control

This section considers a controller with two manipulated variables, namely the gas-lift

chokes (ugs,1, ugs,2) while holding the riser choke fully open (z = 1) to sustain full oil production.

The goal is to track a reference signal for the riser inlet pressure Pin, being a control problem in

the MISO class.

Multiple solutions for reaching a given setpoint emerge from the additional degrees of

freedom, posing a challenge to learn the ESN-based inverse model. For example, a pressure of

120 bar can be achieved with multiple combinations of (ugs,1, ugs,2). As the input-output relation

is not bijective, the inverse model is not invertible and the controller must find an approximation

that works. Another challenge to control design stems from the slow system dynamics, since

a change on the gas-lift choke opening can take considerable time to influence the riser inlet

pressure.

The range for the riser pipeline pressure [100, 120] bar was scaled to [−1, 1], in which

100 bar is the lowest allowed pressure and 120 bar is the upper limit. The gas-lift choke opening

[0, 1] was likewise scaled to [−1, 1] for both valves.

The third column of Table 2 presents the parameters for this experiment. Figure 17

depicts the results of this experiment. Notice that the controller asymptotically stabilizes the

plant for nearly all setpoint once the RLS algorithm converges (showcased by the decrease of

eT , approximately after 1000 time steps, achieving better performance in the second simulation
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Figure 17 – Results for MISO control with ugs,1 (blue line) and ugs,2 (green line) as the plant input and Pin as the
plant output, with the riser choke fully open at z = 1. The first plot consists on the controlled variable
Pin (full line), and the desired Pin value (dashed line). The second plot gives the manipulated variables,
i.e. both gas-lift choke opening. The third plot is the mean trajectory error eT over the 100 previous
time steps at each time step. The fourth plot is the total control variation over the 100 previous time
steps, at each time step.
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part than in the first). These results show that the controller can effectively learn the inverse plan

model, despite the additional degrees of freedom and potential oscillatory regimes.

The controller also tracked the riser inlet pressure in the third part of the simulation, as

shown in Figure 17, where the setpoints are set at random. The few instances of heavy oscillatory

behavior took place after an abrupt change in the setpoint which, as argued before, hinders

controller performance. In the second plot, the blue line represents ugs,1 and the green line ugs,2.

The third and fourth plots are consistent with the previous experiments as measured by

eT and ∆u. The performance in the second and third simulation parts are better than in the first

part, which is devoid of prior knowledge of the inverse model. The higher error in the third plot

can be attributed to the random nature of the setpoints, as the set point varies more between one

point and another. Despite the results showing that there is no setpoint error at steady state in the

third plot, eT is still nonzero, which is atributed to the plotted eT being the mean absolute error

of the previous 100 time steps.

Because there is no feedback from the outputs to the state of the ESN (Wr
o = 0), the

control signals ugs,1 and us,2 are fully independent and computed by separate weight combina-

tions of network states. Since both control signals are affecting the riser inlet pressure Pin, each

control action is seen as a disturbance to one another. This control structure can be seen as two
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separate controllers manipulating the same variable and rejecting disturbances in the form of

multivariate coupling. Table 5 presents the metrics eT , ∆U , and IAE for each of the three parts

Table 5 – Results for the mean trajectory error, integral absolute error and maximum control variation of the Pin

control, manipulating the well gas-lift valves ugs,1 and ugs,2

time steps
0-2000 2000-4000 4000-6000

eT 1.57 0.33 1.06
IAE 3140 660 2120
∆U 101.2 34.89 119.99

Source: Obtained by the author from simulations.

of the simulation. These metrics endorse the conclusion that were drawn above. For instance,

the control variation is higher in the third simulation part, which is a result of the control action

required to track a random changing set point.

5.3.7 Coupled Well Control

This experiment is the control of a MIMO plant consisting of both wells bottom-hole pres-

sure Pbh,i as controlled variables and each well production choke uch,i as manipulated variables,

which makes it the most complex experiment in terms of learning. Due to the multivariate nature

of the problem, some desired set-point combination might not be feasible, as the physics in the

plant impose operational constraints. The controller must find a feasible control action for each

pair of desired value related to the Pbh,i of each well. However, each input-output steady-state

gain varies less than in the riser per operating point, and the dynamics are well-behaved.

In this experiment, each well bottom-hole pressure is scaled from [170, 220], which are

the minimum and maximum bottom-hole pressure each well can reach, to [−1, 1]. Each well

production choke opening is scaled from [0.1, 1] to [−1, 1], with 0.1 being the lowest allowable

value for the well production chokes opening.

The fourth column of Table 2 shows the parameters utilized in this experiment. Figure

18 depicts the set-point tracking experiment. It took 500 time steps for the RLS to converge and

the inverse model to be learned. After the learning has converged, the controller tracked all the

proposed set-points with few oscillations in the control action, without prior knowledge, and even

considering coupling. Table 6 shows the total control variation and mean trajectory error over

the three phases of the simulation. These metrics corroborate the results previously discussed. In

Figure 19, the simulation applies a disturbance in the gas-lift source pressure of well 2 (Pgs,2),

which is shown on the bottommost plot. A step disturbance is an abrupt parametric change

in the model, occurring on a certain instant in time. The values for the disturbed variable are:

Pgs,2 = 200 bar until k = 3600, Pgs,2 = 170 bar until k = 3900, Pgs,2 = 230 bar until k = 4300,

and Pgs,2 = 200 for the rest of the simulation. A 30 bar disturbance is usually considered large for

linear control application. Even though the RLS algorithm converged, which leads the learning
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Figure 18 – Result for MIMO control with uch,1 (blue line) and uch2 (green line) as input and Pbh,1 (blue line)
and Pbh,2 (green line) as output. The first plot consists on the controlled variable Pbh (full line), and
the desired Pbh value for both wells (dashed line). The second plot is the manipulated variables, both
gas-lift choke opening, the third plot is the mean trajectory error eT over the 100 previous time steps at
each time step, and the fourth plot is total control variation over the 100 previous time steps, at each
time step.
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Table 6 – Results for the mean trajectory error, integrated absolute error and maximum control variation of the
MIMO coupled wells control, without disturbances.

time steps
0-2000 2000-4000 4000-6000

eT 2.96 0.421 1.62
IAE 5920 842 3240
∆U 28.2 3.84 27.9

Source: Obtained by the author from simulations.

algorithm to be less sensitive to changes in the plant, the controller still managed to compensate

for the parametric change in the model. This means that the on-line learning controller adapts

to model change with little to no hindrance in performance. Table 7 shows the result of this

Table 7 – Results for the mean trajectory error, integral absolute error and maximum control variation of the MIMO
coupled wells control, with disturbances.

time steps
0-2000 2000-4000 4000-6000

eT 2.96 0.52 1.65
IAE 5920 1040 3300
∆U 28.2 7.11 23.8

Source: Obtained by the author from simulations.

experiment with disturbance applied. The disturbance is applied at the end of the second phase
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Figure 19 – Result for MIMO control where a disturbance in Pgs,2 is applied, with uch,1 and uch2 as input and Pbh,1

and Pbh,2 as output, where z = 1 and ugs,1 = ugs,2 = 0.4. The first plot consists on the controlled
variable Pin (full line), and the desired Pbh value for both wells (dashed line). The second plot is the
manipulated variables, both gas-lift choke opening, the third plot is the mean trajectory error eT over
the 100 previous time steps at each time step, and the fourth plot is total control variation over the
100 previous time steps, at each time step. The fifth plot represents the step disturbance in the gas-lift
source pressure Pgs,2.
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and beginning of the third phase. The fact that, in terms of error, the result did not change much,

means that the change of controlled system did not affect the performance very much. The higher

error in the second plot was due to poor reaction to the abrupt system change, which led to high

frequency oscillation.

5.4 SUMMARY

The on-line learning control framework from (WAEGEMAN; WYFFELS; SCHRAUWEN,

2012), based on Echo State Networks as substrate for learning an inverse model of a nonlinear

plant, is able to control complex simulated dynamical systems in a diverse set of scenarios

with no physical modeling information. The ESN-based controller was used to control an oil

production platform consisting of one riser and two wells connected by a manifold, where

complex dynamics were present such as steady-state gain variation, multiple degrees of freedom,

and coupled multi-variable control. Three control problems (SISO, MISO, and MIMO) involving

different plant variables were tackled, extending substantially previous work. The ESN-based

controller learned each different input-output dynamical behavior and performed set-point track-

ing and disturbance rejection, either explicitly or implicitly in multivariate coupling. Despite

the remarkable challenge of controlling a plant without a model, the online learning framework

has succeeded in all three proposes cases. Furthermore, the application of the learning controller
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using a single flat ESN architecture has proved effective also for multivariate problems as shown

here, even when coupled variables were involved. For future works, stopping the updates of the

RLS mid simulation is also possible.
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6 PRACTICAL NONLINEAR MODEL

PREDICTIVE CONTROL WITH

ECHO STATE NETWORKS

This chapter describes the control topology developed in (JORDANOU et al., 2018),

consisting in the practical nonlinear model predictive control (PLUCÊNIO et al., 2007) utilized

together with an Echo State Network as the predictive model. Echo State Networks have well

defined derivatives with respect to input signals, thus avoiding the on-line computation of the

finite difference algorithm to obtain the gradient, which was proposed in (PLUCÊNIO et al.,

2007). The advantage of the practical nonlinear model predictive control in relation to other

nonlinear approaches is that, even though the predictive model is nonlinear, the control action is

still computed by solving a Quadratic Programming (QP) problem, with satisfactory performance

(PLUCÊNIO et al., 2007). The approach can also be applied to any type of plant, without any

prior information, as long as the Echo State Network is able to provide a suitable model of it.

This control strategy was first tested in a gas-lifted oil well (JORDANOU et al., 2018).

6.1 PRACTICAL NONLINEAR MODEL PREDICTIVE CON-

TROL

Developed by Plucênio et al. (2007), the Practical Nonlinear Model Predictive Controller

(PNMPC) is a method that, through a first order Taylor expansion, separates a nonlinear generic

model into a free response and a forced response. The PNMPC has a computational advantage

over a generic Nonlinear MPC because the resulting control problem to be solved per iteration is

guaranteed to be a QP, similar to a linear MPC, whereas in the full nonlinear case a NLP would

be solved. This approach is advantageous when time constraints are in place. The PNMPC is

more or less akin to performing a one-step SQP in a quadratic cost function problem using a

nonlinear model. Assuming a dynamic system in the form:

x[k + i] = f(x[k + i− 1],u[k + i− 1]) (6.1)

y[k + i] = g(x[k + i]) (6.2)

u[k + i− 1] = u[k − 1] +
i−1∑

j=0

∆u[k + j] (6.3)
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The prediction vectors in the PNMPC are:

Ŷ = G · ∆U + F

∆U =




∆u[k]

∆u[k + 1]
...

∆u[k +Nu − 1]




F =




g(f(x[k],u[k − 1]))

g(f(x[k + 1],u[k − 1]))
...

g(f(x[k +Ny − 1],u[k − 1]))




G =




∂y[k+1]
∂u[k]

0 . . . 0
∂y[k+2]

∂u[k]
∂y[k+2]
∂u[k+1]

. . . 0
...

...
. . .

...
∂y[k+Ny ]

∂u[k]
∂y[k+Ny ]
∂u[k+1]

. . . ∂y[k+Ny ]
∂u[k+Nu−1]




where Ny is the prediction horizon and Nu is the control horizon. The derivatives inside G are

taken with respect to ∆u[k + i] = 0,∀i < Nu, and u represents the manipulated variable vector.

The vector ∆U consists in a concatenation of each control increment applied for calculation

of the prediction up until k = Nu. This structure is a vectorized form of the prediction along

the horizon, and is similar to the one depicted in Section 2.3.2 for the DMC and GPC, where

a similar vectorization of the prediction is made. The vector Ŷ contains all the predictions

calculated by the model from k = 0 to k = Ny. As a consequence, the vector F contains all the

free responses calculated along the horizon, and the term G · ∆U is the forced response over

the prediction horizon. One possible alternative to the presented formulation is to concatenate

different prediction vectors for each input or output, which has the advantage of being able to

easily atribute a prediction and/or a control horizon to each variable, though in this work the

current formulation is preferred because it is more compact.

The equations above derive from the first-order Taylor series expansion in relation to

the manipulated variables, whereby the free-response F retains the nonlinearity, but the forced-

response is linearized so that the control increment is calculated through a quadratic program.

The matrix G is a result of that linearization, as each line corresponds to the first order term of

the Taylor approximation with respect to the control increment at a certain instant in time.

As Plucênio et al. (2007) assume a generic nonlinear system, they use a finite-difference

method to estimate the derivatives, which inherently suffers from combinatorial explosion when

multiple variables are involved. Having instead a system model whose derivatives are calculated

analytically, drastically reduces the computation time by mitigating this distavantage of finite
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differences, hence making the solution of the QP the only computationally expensive aspect of

the proposed algorithm.

To calculate the derivatives, the chain rule is applied:

∂y[k + i]

∂∆u[k + j]
=

∂g

∂x[k + i]

∂x[k + i]

∂∆u[k + j]
(6.4)

∂x[k + i]

∂∆u[k + j]
=

∂f

∂∆u[k + j]
+

∂f

∂x[k + i− 1]

∂x[k + i− 1]

∂∆u[k + j]
(6.5)

The implication in Equation (6.5) is that G is recursively built by forward propagating

from i = 0 to i = Ny. Considering that the dynamic matrix is evaluated at ∆U = 0, it can

also be stated that all the derivatives along the horizon are evaluated at u[k − 1], therefore
∂f(x[k+i])

∂∆u
= ∂f(x[k+i])

∂u
. As long as i > j, when the control increment ∆u[k + j] has influence on

the output in time instant k + i because it occurred in a previous instant, each control increment

∆u[k + j] has equal influence in the state equation for state x[k + i], so ∂f(x[k+i])
∂∆u[k+j]

has the same

value independent of j. Therefore the notation ∂f(x[k+i])
∂∆u

can be simplified as J(i), and ∂f(x[k+i])
∂x

as S(i).

By adopting the above definitions in Eqs. (6.4)-(6.5), the following recursions result:

Gij =
∂g

∂x

∂x[k + i]

∂∆u[k + j]
(6.6)

∂x[k + i]

∂∆u[k + j]
=





J(i − 1) + S(i − 1)∂x[k+i−1]
∂∆u[k+j] i > j

J(i − 1) i = j

0 i < j

(6.7)

where Gij represents the block element of G at row i and column j. The construction of G starts

when i = 1, where the initial condition ∂g

∂x
J(0) is input to G(1, 1). As i < j for the rest of the

row, all terms G1,(j 6=1) = 0. For the subsequent rows, information used to calculate the previous

row is used for the next, until i = j, where Gi,j = ∂g

∂x
J(i− 1) and i < j, where Gi,j = 0. This

calculation ends when i = Ny.

As an ESN trained offline is used as the prediction model, the model derivatives are well
defined (PAN; WANG, 2012; XIANG et al., 2016), being given as follows:

∂g

∂x
= Wo

r

J(j) =
∂f

∂zj
Wr

i

S(j) = (1 − γ)I + γ
∂f

∂zj
(Wr

r + Wr
oWo

r )

zj = Wr
ra[k + j] + Wr

i u[k − 1] + Wr
oWo

r a[k + j] + Wr
b

Since, in this work, f = tanh(·), ∂f
∂zj

is a diagonal matrix with all nonzero elements

being [1 − tanh2(zj)].
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Summarizing, the trained ESN is used to calculate online both the free-response predic-

tions and the Taylor approximation is calculated on-line to formulate the QP, which is solved

at the current iteration. Since a Taylor expansion is used, an associated error is present in the

predictive model. Also, errors inherent to disturbances and modeling are involved. In (PAN;

WANG, 2012), the NMPC is presented on a supervised learning strategy to estimate the Taylor

expansion error, using the actual and predicted outputs as information. On the PNMPC, the

Taylor expansion error is considered part of the disturbance model.

To treat disturbances and modeling errors, Plucênio et al. (2007) advocate the use of a low

pass discrete filter on the error between the current measured output and the current prediction,

which is computed as part of the free response. If the model were exactly equal to the plant and

no disturbances were applied, the presence of the filter and the proposed closed-loop framework

would be not different than an open-loop implementation. A slower filter could slow down the

disturbance response, though it also increases the robustness of the controller. In practice, this is

merely a different perspective to the problem, since the approach taken by Pan e Wang (2012) is

equivalent to utilizing a variable static gain as a filter.

Adding the filter, the free- and forced-response become as follows:

F =




g(f(x[k], u[k − 1]))

g(f(x[k + 1], u[k − 1]))
...

g(f(x[k + Ny − 1], u[k − 1]))




+ 1η[k]

∆η[k] = K(1 − ω)(ŷ[k|k − 1] − ym[k]) + ω∆η[k − 1]

ŷ[k|k − 1] = g(f(x[k − 1], u[k − 1])) + η[k − 1]

in which ym[k] is the measured variable, K is the filter gain, which is how much the error

correction affects the free response, and ω is the filter pole, respectively, used to enhance the

robustness capability of the controller.

To compute F, the initial state x[k] is recorded, and the forward simulation is then exe-

cuted to obtain the uncorrected term in the free response. After finishing the forward simulation,

the model state is reset to x[k]. Then, after the error is input to the filter, calculating η[k], the

full, integrated correction term is calculated by:

η[k] = ∆η[k] + η[k − 1]

When the quadratic error is used as the cost function, as shown in Section 2.3.2, the
equations in matrix form are as follows:

J = (Yref − Ŷ)T Q(Yref − Ŷ) + ∆UT R∆U

The diagonal matrices Q and R are the output and control weighting, whose utility is to express

the importance of a variable in the cost function.
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Since the predicted output is stated in a form akin to the GPC and DMC strategies for
MPC (CAMACHO; BORDONS, 1999), the cost function is formulated as follows:

J = ∆UT H∆U + cT ∆U

H = GT QG + R

c = GT QT (Yref − F)

In receding horizon control problems, it is natural to include saturation and rate limiting
constraints in the optimization problem. The saturation constraints are formulated as follows:

1umin − 1u[k − 1] ≤ T∆U ≤ 1umax − 1u[k − 1]

where 1 is a vector composed only of ones which matches the dimension and form of ∆U. If
the problem was structured as a SISO (Single-Input Single-Output), T would be a lower triangle
matrix. In this case, since a MIMO (Multi-Input Multi-Output) formulation is used where each
variable is directly concatenated, T is postulated as follows:

T =




Inin
0nin

0nin

Inin

. . . 0nin

Inin
Inin

Inin




where Inin
is a nin sized identity matrix, 0nin

is a nin sized square matrix of zeros, and nin

being the number of inputs to the system. Summarizing, T is a block triangular matrix of

nin-dimensional square matrices, where each column of the block matrix represents an instant in

the prediction horizon.

The rate limiting constraints are stated as follows:

∆Umin ≤ I∆U ≤ ∆Umax

where I is the identity matrix, with dimension ninNu.

As long as Q and R contain only positive values, H is positive definite, for being

composed by a lower triangular matrix and its transpose. The conditions on these matrices

guarantee that the constraints and objective function, along with any other linear constraints,

compose a convex quadratic programming problem, thus being more easily solvable.

6.2 PROBLEM FORMULATION: GAS-LIFTED OIL WELL

This work tackles the control problem of reference tracking and disturbance rejection of

a gas-lifted oil well described in the Chapter 4. The objective of the control problem is to track a

reference signal for the well tubing bottom hole pressure Pbh, using both the gas-lift choke u2

and the production choke u1. To formulate the control problem, some considerations must be

made:
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• As the manipulated variables are the opening of choke valves, where 0 is fully closed

and 1 is fully open, then Umax = 1 and Umin = (0.02, 0)T . In the case of the production

choke, the controller limits the lower bound u1,min to 0.02 to avoid pressure instability in

the system, also not allowing the well to be fully shut.

• The choke valves have a limit on how much they can be abruptly changed. Also, the larger

the control increment is, the larger the magnitude of the error, so an increment limit must

also be applied. To limit the increment of the control action, the values ∆Umax = 0.2 and

∆Umin = −0.2 are used.

• The pressure at the top of the well tubing Ptt has an upper bound safe value Pmax which

must not be exceeded.

The problem is divided in two parts. First, to identify an echo state network where u1

(production choke opening) and u2 (gas-lift choke opening) serve as input, and the pressures

Pbh (bottom-hole) and Ptt (well-head) serve as output. For training, an APRBS (Amplitude-

modulated pseudo-random binary signal) is applied in a simulation run of the plant to gather

information on these four variables. This identification setup can be viewed as two separate

ESNs, one with Pbh as the output, and the other using Ptt as the output, as there is no output

coupling in the network formulation.

The second part consists in solving the predictive control problem itself using the ESN.
The problem is formulated as the following QP:

min
∆U

J(∆U) = ∆UT H∆U + cT ∆U

s.t. I∆U ≤ ∆Umax

−I∆U ≤ −∆Umin

T∆U ≤ 1umax − 1u[k − 1]

−T∆U ≤ −1umin + 1u[k − 1]

G2∆U ≤ 1Pmax − F2[k − 1]

(6.8)

H = G1
T QG1 + R (6.9)

c = G1
T QT (Yref − F1) (6.10)

where G1 (G2) and F1 (F2) correspond to the dynamic matrix and free response of the Pbh

(Ptt) echo state network respectively, according to the PNMPC framework. In the experiments,

Pmax is set to 110 bar, and Nu, Ny, Q and R are left as tuning parameters.

6.3 RESULTS: GAS-LIFTED OIL WELL

This section presents the results of the experiments. The algorithms were implemented

in Python. The well model was implemented using Jmodelica (for more information, refer to
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(ÅKESSON; GÄFVERT; TUMMESCHEIT, 2009)), and the solver used for quadratic program-

ming was CVXOPT (https://cvxopt.org/).

6.3.1 Identification

For the identification of the ESN prediction model, 40, 000 simulation samples are used

for offline training and 10, 000 for validation, which in practice can be obtained if the data log of

the sensors and actuators in the plant are avaiable.

The first step is to tune the Echo State Network. Since obtaining a good model for the

application suffices, the ESN parameters were heuristically tuned. By setting γ = 0.8, ψ =

0.05, f r
i = 0.2, f r

b = 0, ρ = 0.999, N = 300, λ = 0.1 (refer to (JAEGER et al., 2007) for

more information on tuning), not using output feedback and normalizing the training data, The

ESN obtained mean squared errors (MSE) by the order of 2 · 10−3 for both Ptt and Pbh, in

both training and validation phases, which is considered sufficient for the gas-lifted oil well

application, as every variable involved was scaled into [0, 1]. The excitation signal was an APRBS

signal, since it operates using random amplitudes and duration, capturing the most representative

system behavior. The APRBS minimum and maximum values were based on scalings used

for normalization of u1, u2, Pbh and Ptt, which were respectively: [0.02, 1], [0, 1], [150, 250],

[90, 150]. The signal was designed to wait 100 time steps before changing step, with no upper

limit considered. A sampling time Ts of 10 s was used both during the system identification task

and afterwards in the predictive control experiment.

The ESN was used without inherent output feedback in its structure to test the robustness

of the method for larger modeling errors, since the model is then less efficient in capturing

oscillatory dynamics (JAEGER, 2001; ANTONELO; CAMPONOGARA; FOSS, 2017). The

presence of output feedback would enable the echo state network to perform better, however it

would be harder to tune and train.

6.3.2 Tracking Experiment

To test the application of the proposed predictive controller, it was applied in the plant

by setting Nu = 6, Ny = 40, control weights R are twice as large as the prediction weights Q,

and K = 0.001 and ω = 0.3 for both measured variables Pbh and Ptt. These parameters were

decided by trial and error. The size of the control horizon must be at least 3 times smaller than

the prediction horizon (CAMACHO; BORDONS, 1999), which was validated by good results

obtained with the chosen values for Nu and Ny. The weights were chosen so that the controller

behaves more conservatively, which is more important than having a fast settling time. As for the

filter parameters, a low value for ω was chosen so that the system becomes more robust, albeit

slower. Also, the controller yilded a better behavior for small values of K.
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The goal of the experiment is to assess if the controller can solve the proposed problem.

To this end, a stair reference signal is applied at different points of operation.

Figure 20 depicts the result obtained during 1500 time steps of the experiment. The top

plot consists of the control signal, representing the production choke valve u1 and the green line

represents the gas-lift valve u2. The middle plot gives the pressures Pbh (solid and thick blue

line), Ptt (solid green line), the desired value for Pbh (red dashed line), and the hard constraint

on Ptt (light blue dashed and thick line). The bottom plot represents the percentage relative

estimation error of the ESN for Pbh and Ptt, which assess the model accuracy at each sample

time:

e[k] = 100 · |ŷ[k] − ym[k]|
|ym[k]| (6.11)

where ŷ in this case correponds to the current prediction by the ESN, and ym corresponds to

the measured output. In Eqn. (6.11), the absolute value operator | · | is element-wise. In the

problem formulation, the bound on the well topside pressure Ptt is modeled as a constraint and

the reference error as a penalization factor in the cost function. So naturally the priority for the

optimization solver is to maintain the constraint, and the cost function penalization comes in

second, though the controller still manages to obtain a good tracking response.

All the setpoint change responses where super-critically damped (no presence of over-

shoot), except for the third, which might be related to the operating point. Only on the first

setpoint was the bottom-hole pressure constraint active. There was setpoint error in the fourth

setpoint. One possible hypothesis is due to the saturation constraint being reached, as the forced

response prediction comes from a linear approximation model, which is not capable of finding a

better solution, as the constraint on the gas-lift valve is active, and locally the objective function

Figure 20 – Bottom-hole pressure (Pbh) tracking experiment.
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cannot decrease in any direction.

Even though a large estimation error is present when the system is not at steady state,

the controller succeeds in controlling the well with satisfactory transient behavior, even in the

last setpoint, where larger relative modeling errors are involved. This was due to the presence

of the filter, which has the role of increasing controller robustness (PLUCÊNIO et al., 2007)

and estimating a correction factor for the modeling error. Though, in this case, larger values for

K would lead to infeasibility of the optimization solver. Small K values lead to more robust

filter designs (PLUCÊNIO, 2013), which is why a smaller gain, such as the one used, seemed to

work. The filter tuning managed to successfully correct estimation errors between the echo state

network and the plant.

6.4 SUMMARY

This chapter proposed the ESN-PNMPC framework for MPC whose advantages are

two-fold: first, ESN provides efficient data-driven capability for efficient system identification

without prior knowledge (ANTONELO; CAMPONOGARA; FOSS, 2017); second, the PNMPC

formulation linearizes only the forced response from the ESN for use in MPC, while keeping the

free response of the ESN model fully nonlinear (PLUCENIO; CAMPOS; TEIXEIRA, 2015),

and thus more precise. Further, ESN-PNMPC eliminates the need of finite difference algorithms,

enhancing computational efficiency for multivariable control problems. ESNs were shown to be

suitable approximators for oil and gas production systems, to a great extent because offshore

production platforms are subject to structural model uncertainties.
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7 CONCLUSION

In this work, different control strategies involving Echo State Network were applied for

the operation of oil and gas plants. More specifically, a gas-lifted oil well for the ESN-based

PNMPC, and a system with two wells and one riser for the online-learning controller. Both

controllers managed to perform tracking and disturbance rejection satisfactorily, without using

model knowledge for tuning each controller.

Each task included complex nonlinear models involving load loss due to friction, per-

fectly abstracted by using the Echo State Networks. The gas-lifted oil well and riser models

(JAHANSHAHI, 2013) utilized in this work were reduced-order models designed for the purpose

of control applications, with accuracy well-suited for our ends. The two-well and one-riser

system was a compositional model of the riser (JAHANSHAHI; SKOGESTAD, 2011) and the

gas-lifted oil well model (JAHANSHAHI; SKOGESTAD; HANSEN, 2012), assuming no load

loss in the manifold.

In each control task involving the two-well and one-riser system presented in Chapter 5,

the online-learning controller managed to susccesfully capture the plant behavior in the form of

an inverse model without using prior information for its design, showing that the online-learning

controller is a viable data-driven alternative for oil production applications.

In the predictive control task for the gas-lifted oil well described in Chapter 6, an Echo

State Network served as a proxy model for the gas-lifted oil well, in a PNMPC-based strategy.

Because the Echo State Network is defined in analytical form, the controller managed to control

the plant without using finite differences as in (PLUCÊNIO et al., 2007), and without using

physical information from the plant. The predictive control strategy was successful even though

the black-box model did not directly correspond to the gas-lifted oil well.

These positive results have implication on data-driven approaches for control applications,

since it was proven that they are possible. This type of controller can apply into a wide variety

of scenarios by only posessing information on the data. A control system can be implemented

without having physical information of any plant in question. This affirmation holds even

considering that the ESN-PNMPC has the prediction model obtained offline, and the Online

learning controller has the inverse model obtained online, as in both cases only data information

is considered to obtain the model/execute the controller. Such is the power of tools like the Echo

State Network.
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FUTURE WORKS

In both the online-learning controller, and the ESN-PNMPC, a reduced order model

was used to test each control strategy. A possible future work is to test the controller on a more

precise simulator, such as OLGA, or in a real application. As the models in (JAHANSHAHI;

SKOGESTAD, 2011) and (JAHANSHAHI; SKOGESTAD; HANSEN, 2012) use algebraic

equations to approximate momentum convervation and load loss due to friction, they follow an

OLGA model behavior well qualitatively, but not quantitatively.

With respect to the Online Learning Controller, we plan to compare the current framework

with other control approaches in literature as well as to devise methods for reducing significantly

the initial transients when controlling a plant, an actual hindrance for real-world application. For

instance, we can train a second ESN model beforehand as a proxy forward model (ANTONELO;

CAMPONOGARA; FOSS, 2017; ANTONELO; SCHRAUWEN; CAMPENHOUT, 2007) of

the plant to be controlled, and initialize the output layer of the ESN-based controller by running

the initial steps of the control loop using the previously trained proxy model as a simulated plant

instead of the real plant. It might be interesting in the future to incorporate regularization in the

RLS formulation or kernel tricks, as was done in (YANG et al., 2019) and (ZHOU et al., 2018),

as the ordinary RLS does not deal with regularization.

For the ESN-PNMPC, the results have shown that given a predictive control optimization

problem formulation, the proposed ESN-PNMPC controller is able to respond satisfactorily to

the given objectives and constraints. However, a more detailed parameter search and study of

the ESN for system identification, as well as a more thorough study on filtering and controller

tuning are directions for future studies. Also, more realistic real-time optimization and predictive

control problems can be proposed. Integrating this controller with online system identification

is also a valid idea, since it would eliminate the need to have prior data on the model for the

controller. Also, as the ESN-PNMPC is a general-purpose controller, it can be tested against

other applications found in renewable energy industry, microgrids, and oil production plants, to

name a few.

For the online-learning controller, grid-search was partially applied for deciding the

tuning of the parameters, and the parameters in the ESN-MPC controller were all decided

heuristically. Therefore, a proposal for a future work is to test tuning from algorithms such

as bayesian optimization or evolutionary computing for the hyperparameters involved. Also,

regularization for the online-learning controller RLS could be implemented, as it might improve

performance and avoid overfitting. The use of alternatives for the Tikhonov regularization such

as LASSO in the ESN-PNMPC was not yet tested. The implementation of both these controllers

into FPGA boards or microcontrollers could be considered and analyzed.
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APPENDIX A – OPTIMIZATION

Optimization is a branch of applied mathematics, widely used in engineering. From

a simplified standpoint, optimization is the act of solving optimization problems. That is, to

minimize (maximize) a certain cost (performance) function, subject to certain constraints imposed

by several factors, such as physical, economical and operational. Performance and cost functions

are referred to in general as objective functions. An optimization problem can be either single-

objective or multi-objective. The following formulation only regards the single-objective case.

Optimization problems have a high applicability, being essential in applications such as:

• Civil and Mechanical Engineering (ARORA, 2017);

• System Identification (NELLES, 2001) and other statistics-based fields;

• Control theory in general, including Predictive (CAMACHO; BORDONS, 1999) and

Adaptive (ASTROM; WITTENMARK, 1994) Control;

• And many others.

Every theory present in this work, either directly or indirectly, has optimization embedded.

Mathematically, a single-objective optimization problem is expressed as:

min
x

f(x)

s.t. g(x) ≤ 0

h(x) = 0

(A.1)

where x ∈ R
n is a vector with the decision variables, f : Rn 7→ R is the objective function, The

operator minx denotes the vector x that minimizes the scalar multivariate function f(x), which

is known as the objective function, and g : Rn 7→ R
p and h : RN 7→ R

q are vector functions

with the inequality and equality constraints. A decision variable x ∈ X is labeled as a feasible

solution to the problem, with X being the feasible solutions set (x,h(x) = 0,g(x) ≤ 0, in this

case).

Other alternate forms of stating an optimization problem are present in the literature

(NOCEDAL; WRIGHT, 2006; BOYD; VANDENBERGHE, 2004). However, if the objective

function f(x) and set X of the problem can be analytically represented and separated in equations

and inequations, reduction to this formulation is possible. For instance, maximizing a given

function f is equivalent to minimizing −f . Any inequation can be converted to gi(x) ≤ 0,

with gi defined as an element of g, through algebraic manipulation. The same is valid for the

conversion of an equality constraint to hi(x) = 0.
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The solution to an optimization problem, x∗, is called an optimum. Since it is assumed,

without loss of generality, that a function is minimized, x∗ is also referred to as a minimum. An

optimization problem potentially has local optima and a global optimum. A global optimum

is the smallest value for f(x) from a given optimization problem, for all feasible x. A local

optimum consists in a x∗ which, for a given pair (p, r) where ‖x∗ + p‖ < r (inside an open ball

with radius r), then f(x∗) ≤ f(x∗ + p). An optimization problem with the constraint set closed

and bounded has a global optimal solution, as stated in the Weierstrass theorem (ARORA, 2017).

Unfortunately, there is no easy mathematical property to distinguish a local optimum

from a global optimum (NOCEDAL; WRIGHT, 2006).

A.1 UNCONSTRAINED OPTIMIZATION

In an unconstrained optimization problem, X = R
n. In other words, there is no presence

of equality or inequality constraints.

Unconstrained single-objective optimization problems are well solved, as long as the

objective function is continuous and differentiable. Results from calculus show how to calculate

the derivative given the analytical form of the function.

Assume that f is a continuous function and apply a second-order Taylor expansion in

f(x), then:

f(x + p) ≈ f(x) + ∇f(x)T p +
1

2
pT ∇2f(x)p (A.2)

with small enough p ∈ R
n. Now suppose a point x∗ minimizes f , either locally of globally.

If ∇f(x∗) 6= 0, a p is easily chosen where t∇f(x∗)T p < 0 for a sufficiently small t, namely

p = −∇f(x∗). There is then a lower value for f than f(x∗), which is absurd, since x∗ is an

optimum. Using these arguments, it is concluded that ∇f(x∗) = 0 and the Hessian ∇2f(x∗) is

positive semidefinite.

A matrix H is positive semidefinite if and only if

pT Hp ≥ 0 (A.3)

always holds for any p. A positive semidefinite matrix H has that property that When ∇f(x∗) =

0 and ∇2f(x∗) is not positive semidefinite, then pT ∇2f(x∗)p < 0 for some p, so x∗ is not an

optimum according to Equation (A.2).

Another interesting theorem of unconstrained optimization is the second order sufficient

condition. Assume that ∇f(x∗) = 0, and pT ∇2f(x)p > 0 (∇2f(x) is positive definite). If that

holds, it is inferred from Equation (A.2) that f(x∗) < f(x∗ + p) for any p sufficiently small,

and therefore x∗ is a local minimum.
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The Hessian of the objective function tells if the decision variables are either at a

minimum, a maximum (pT ∇2f(x)p ≤ 0), or a saddle point (Hessian is indefinite). As in this

case the minimum is the optimum, maximum points and saddle points are undesirable.

These mathematical properties are all defined over local minimum. In the general case,

any local minimum is a potential global minimum. The problem of finding an optimum in an

unconstrained optimization problem is then reduced to solving for x∗ the following equation:

∇f(x∗) = 0 (A.4)

If a point that satisfies Equation (A.4) is found, then the Hessian must be checked. When

it is positive semidefinite, then x∗ is a minimum.

A.2 UNCONSTRAINED OPTIMIZATION ALGORITHMS

There are several numerical algorithms to find the optimum in optimization problems

(NOCEDAL; WRIGHT, 2006). The most prominent consist in repeatedly computing:

x[k + 1] = x[k] + αp (A.5)

until convergence in which x[k] is the tentative solution of the iteration, and k is the iteration

number. This algorithm class centers around finding a step direction vector p and a step length α

to perform a search in the decision variable space.

There are two approaches to defining p and α: line search and trust region. The line search

selects first the direction p, and then decides α. The trust region methods solve a subproblem

around the neighborhood of x[k], where it is trusted that the model is accurate. The solution is p

and the amplitude of the trust region is α. Although the trust-region subproblems have analytical

solutions (NOCEDAL; WRIGHT, 2006), the line search methods are still generally easier to

compute (α and p are decided separately).

For a line search method, any p that satisfies:

0 < − ∇f(x[k])T p

‖∇f(x[k])‖ · ‖p‖ ≤ 1 (A.6)

brings x to a point where ∇f(x∗) = 0, as long as α is small enough. The middle term in Equation

(A.6) corresponds to a cosine of the angle between p and the opposite direction of the objective

function gradient. As the gradient direction corresponds to where f(x) varies the most, any p

that follows this property is denominated a descent direction (NOCEDAL; WRIGHT, 2006).

To define the step length α, there are methods classified into “exact line search” and

“inexact line search”. The former consists in solving an (univariate) optimization subproblem

to find the α that minimizes f(x[k] + αp), given x[k] and p. Solving an optimization problem

just to find the step length might be too expensive, as minimizing α is unnecessary to reach the
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optimum. The inexact line search, on the other hand, relies on choosing a large α and decreasing

its value while a certain condition does not hold. A commonly used condition for “backtracking”

α is (NOCEDAL; WRIGHT, 2006):

f(x[k] + αp) ≤ f(x[k]) + cα∇f(x[k])T p (A.7)

where 0 < c < 1.

A generally used method for deciding p in a line search method nowadays in machine

learning, because of its simplicity, is the steepest descent (also known as gradient descent)

(BISHOP, 2006). It consists in setting p = −∇f(x[k]). If p = −∇f(x[k]), then it is easily

observed that:

− ∇f(x[k])T (−∇f(x[k]))

‖∇f(x[k])‖ · ‖ − ∇f(x[k])‖ = 1 (A.8)

Eqn. (A.8) guarantees that p = −∇f(x[k]) is always a descent direction. The problem with

steepest descent is that the step is too agressive when x[k] is close to the optimum, so it makes

unnecessarily long steps to reach convergence.

An alternative is the Newton method, used to find nonlinear equation solutions which

has quadratic convergence (NOCEDAL; WRIGHT, 2006). In the context of optimization, it is

used to find the solution for Equation (A.4). For the Newton method, p must solve the following

linear system:

−∇f(x[k]) = ∇2f(x[k])p (A.9)

It is observed that, as the solution is expressed as −∇2f(x[k])−1∇f(x[k]), and substituting it in

Equation (A.6):

− ∇f(x[k])T (−∇2f(x[k])−1)∇f(x[k])

‖∇f(x[k])‖‖ − ∇2f(x[k])−1∇f(x[k])‖ (A.10)

which means that, since the norm is always nonnegative, as long as the Hessian is positive

definite, p is always a descent direction.

The Newton method converges quadratically (NOCEDAL; WRIGHT, 2006), but the

backtracking must be more carefully implemented, as this algorithm diverges more easily when

compared to steepest descent. Another problem is associated with the computation of the Hessian.

The Hessian is, if avaiable, too expensive to obtain, so there are methods in the literature that

are capable of estimating the Hessian using gradient information. These methods are refferred

to as “quasi-Newton” methods, and are widely used for unconstrained problems (NOCEDAL;

WRIGHT, 2006).

If an unconstrained optimization algorithm converges, a solution close to a local optimum

is found in a finite number of steps.
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A.3 CONSTRAINED OPTIMIZATION

In real life, a myriad of interesting optimization problems require that X ⊂ R
n (that is,

the set is strictly contained in R
n, for a certain finite n).

It is first defined the Lagrangian of an optimization problem with objective function f(x),

inequality constraints g(x), and equality constraints h(x):

L(x,λ,µ) = f(x) + h(x) ◦ λ + g(x) ◦ µ (A.11)

The terms λ and µ are the vectors whose elements contain the Lagrangian multipliers

of the equality and inequality constraints, respectively. The ◦ operator is called the “Hadamad

Product”, and corresponds to an elementwise multiplication of equally sized vectors.

A function named the Lagrangian Dual is also defined:

D(λ,µ) = min
x

L(x,λ,µ) (A.12)

The Lagrangian Dual has the interesting property of giving lower bounds for the objective

function (BOYD; VANDENBERGHE, 2004). When that bound is defined by a finite value

(D(λ,µ) > −∞), The Lagrangian Dual is referred to as dual-feasible. Also, the Lagrangian

Dual is always concave (BOYD; VANDENBERGHE, 2004), which means that it has only a

global maximum.

In another point of view, the Lagrangian imposes linear penalties in the violation of

equality and inequality constraints, which occur when h(x) 6= 0 or g(x) > 0. The optimal

Lagrangian multipliers µ and λ tells us, intuitively, “how much” one constraint is being violated.

The Lagrangian multipliers being “violation coefficients” also have implication in Sensitivity

Analysis (BOYD; VANDENBERGHE, 2004).

Lagrangian Duality can be either Weak, when D(λ∗,µ∗) < f(x∗) or Strong, when

D(λ∗,µ∗) = f(x∗). For an optimization problem to have a Strong Lagrangian Dual, certain

conditions must hold. These conditions are called “Constraint Qualilification”. One such con-

dition is the Linear Independence Constraint Qualification (LICQ), which corresponds to the

gradient of the each inequality and equality constraints being linearly independent (NOCEDAL;

WRIGHT, 2006). For a mechanical interpretation, imagine a mountain. That mountain has a ball

running towards its valley, due to the conversion of potential energy into kinetic energy. A wall

is impeding the ball to take its course. The gradient of the constraints corresponds to the forces

that make the ball stop its conversion from potential to kinetic energy.

The first-order optimality conditions (also referred to as the Karrush-Kuhn-Tucker, or

K.K.T. conditions), a direct consequence of the LICQ (NOCEDAL; WRIGHT, 2006), are:
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∇f(x∗) + ∇h(x∗)T λ + ∇g(x∗)T µ = 0 (A.13)

h(x∗) = 0 (A.14)

g(x∗) ≤ 0 (A.15)

µ ≥ 0 (A.16)

h(x∗) ◦ λ = 0 (A.17)

g(x∗) ◦ µ = 0 (A.18)

where ∇h(x∗)T and ∇g(x∗)T denote the Jacobian of h(x) and g(x). The condition represented

by Equation (A.13) derives directly from the Lagrangian gradient ∇xL(x,λ,µ). Equations

(A.17) and (A.18) are referred to as the complementarity conditions. The set of inequality

constraints with index i where gi(x) = 0 holds for a certain x is referred to as the active set

(NOCEDAL; WRIGHT, 2006).

The K.K.T. conditions are a direct implication of the Farkas Lemma (NOCEDAL;

WRIGHT, 2006), which, in turn, leads to the conclusion that either Equation (A.13) is satisfied

with condition from Eqn. (A.16) holding, or there exists a descent direction d and a step α where

x[k] + αd < x∗ ∈ X , which contradicts the fact that x∗ is a minimum.

In the complementarity conditions (A.17) and (A.18), each Lagrangian multiplier λi or

µi is paired with a certain constraint function. An inequality constraint Lagrangian multiplier

has value µi = 0 whenever the correspondent inequality strictly holds (That is, gi(x
∗) < 0).

When x∗ is at the border of the constraint (gi(x
∗) = 0), then the constraint is said to be active.

Strict Complementarity is when each constraint in the active set (the set of all active inequality

constraints) has nonzero Lagrangian multipliers. Whenever a constraint in the active set has

µi = 0, it is said that the constraint has weak complementarity. This definition is important for a

number of unconstrained optimization algorithms.

Like the unconstrained case, there are second order necessary and sufficient conditions

for the optimality of a certain x∗. These conditions use the ∇xxL(x), the Lagrangian Hessian

with respect to x, instead of just the cost function. A fully mathematical proof of these optimality

conditions is present in (NOCEDAL; WRIGHT, 2006). If x∗ is a minimum, then ∇xxL(x) is

positive semidefinite. On the other hand, if ∇xxL(x) is positive definite, then x∗ is a minimum.

A.4 CONVEX OPTIMIZATION PROBLEMS

An optimization problem is considered convex when its objective function is convex and

its feasible set X is convex (BOYD; VANDENBERGHE, 2004).
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Figure 21 – Example of a bidimensional convex set, with a line drawn from an arbitrary point A to an arbitrary
point B, in a generic euclidean space.

A B

x

y

Source: Made by the author.

For the constraint set X to be convex, the following must hold:

∀x1,x2 ∈ X ,
θx1 + (1 − θ)x2 ∈ X ,∀θ ∈ [0, 1]

(A.19)

From a geometrical standpoint, each pair of points inside the constraint set X is connected

by a line inside the set.

For the objective function f to be convex, the following must hold:

∀x1,x2 ∈ X ,
f(θx1 + (1 − θ)x2) ≤ θf(x1) + (1 − θ)f(x2),∀Θ ∈ [0, 1]

(A.20)

A constraint set composed by inequality constraints expressed by convex functions and

equality constraints expressed by affine functions (Ax − b = 0) is convex (BOYD; VANDEN-

BERGHE, 2004). Figure 21 depicts an example of a convex set, where it is not possible to draw

a line from two points inside the polygon containing one point from outside.

A convex differentiable function has the following properties (BOYD; VANDEN-

BERGHE, 2004):

∇f(x + p) ≥ f(x) + ∇f(x)T p,∀(x,p) (A.21)

pT ∇2f(x)p ≥ 0,∀(x,p) (A.22)
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These properties can be inferred from the definition of convexity. They naturally imply

that a function f has one minimum, which is true for any convex optimization problem (BOYD;

VANDENBERGHE, 2004).

Several interesting applications are present in the literature (BOYD; VANDENBERGHE,

2004), such as:

• Least Squares Problem (NELLES, 2001): minu ‖ŷ − y‖2 where y is a given vector, u are

parameters of the model and f(u) is affine in u.

• Quadratic Programming (NOCEDAL; WRIGHT, 2006): See the next section.

• Linear Model Predictive Control (CAMACHO; BORDONS, 1999): Normally, it is the

interest of Model Predictive Control applications to minimize the quadratic norm of the

error, which befalls into a problem similar to the Least Squares. The most usual constraints

can be presented in the affine form (Ax = b).

A.5 QUADRATIC PROGRAMMING

Quadratic Programing (QP) is the field for solving quadratic optimization problems. A

quadratic optimization problem is defined by a quadratic objective function and linear constraints,

being given in the general form:

min
x

1

2
xT Gx + xT c (A.23)

s.t. Ax ≥ b (A.24)

Cx = d (A.25)

Quadratic Programming has applications in portfolio optimization (NOCEDAL; WRIGHT,

2006), where the quadratic term corresponds to the variance of the funds, the linear terms corre-

sponds to the mean, and the constraints are related to the fund rules.

Quadratic optimization problems also appear as subproblems in Nonlinear Programming,

such as when Sequential Quadratic Programming (SQP) is used.

By inspection, it is observed that whenever G is positive semidefinite, the QP is convex.

Derived from the K.K.T. conditions, the solution of an equality constrained only QP is the

solution of the following linear system (NOCEDAL; WRIGHT, 2006):

G −CT

C 0




x∗

λ∗


 =


−c

d


 (A.26)

where x∗ and λ∗ are the solution and Lagrangian multipliers that satisfy the K.K.T. conditions of

the QP. The matrix in Equation (A.26) is referred to as the KKT matrix (NOCEDAL; WRIGHT,

2006).
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Most algorithms for solving equality constrained QPs center around numerical solutions

for the linear system described in equation (A.26).

In inequality constrained QPs, the solution is found through active-set or interior-point

methods. The former being more effective in small-scale and medium-scale quadratic problems.

The algorithms used differ if the QP is convex (G is positive semidefinite) or non-convex

(G is indefinite) (NOCEDAL; WRIGHT, 2006).

For inequality constrained convex QP, the following K.K.T. conditions (NOCEDAL;

WRIGHT, 2006) hold at the minimum:

Gx − AT µ + c = 0 (A.27)

Ax − b ≥ 0 (A.28)

(Ax − b) ◦ µ = 0 (A.29)

µ ≥ 0 (A.30)

By following an interior-point approach in solving quadratic problems (NOCEDAL;

WRIGHT, 2006), a slack vector is defined:

y = Ax − b (A.31)

y ≥ 0 (A.32)

Given a decision variable vector x, the slack vector indicates the distance between the

decision variables and the boundaries of each individual inequality constraint. Adding the slack

variables, the K.K.T. condition become:

Gx − AT µ + c = 0 (A.33)

Ax − b − y = 0 (A.34)

y ◦ µ = 0 (A.35)

(µ,y) ≥ 0 (A.36)

To find a solution to these K.K.T. conditions, they must first be put into matrix form:



Gx − AT µ + c

Ax − b − y

y ◦ µ


 = 0 (A.37)

(µ,y) ≥ 0 (A.38)

The Jacobian of the matrix in equation (A.37) is (NOCEDAL; WRIGHT, 2006):



G 0 −AT

A −I 0

0 diag(µ) diag(y)


 (A.39)
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where diag(y) is a diagonal matrix composed by the elements of y. With the Jacobian, it is

possible to solve the system iteractively in (A.37) using the Newton’s method:



G 0 −AT

A −I 0

0 diag(µ) diag(y)







∆x

∆y

∆µ


 =




−Gx + AT µ − c

−Ax + y + b

−µ ◦ y


 (A.40)

Theoretically, the full Newton method brings the K.K.T. quadratic system to a solution.

However, the steps computed (often called affine step) through the Newton’s method are often too

agressive to be practical, and the constraint (µ,y) ≥ 0 must be held into account, so interior point

algorithms tend to specify a modified version of the Netwon’s method (NOCEDAL; WRIGHT,

2006): 


G 0 −AT

A −I 0

0 diag(µ) diag(y)







∆x

∆y

∆µ


 =




−Gx + AT µ − c

−Ax + y + b

−µ ◦ y + σβ1


 (A.41)

where σ = [0, 1] is a positive scalar (σ = 0 representing the pure Newton’s method) and β is

defined by:

β =
yT µ

m
(A.42)

where m is the number of constraints, and is defined as a measure of complementarity (NO-

CEDAL; WRIGHT, 2006). This version of the algorithm guarantees that the direction leads to a

feasible point (NOCEDAL; WRIGHT, 2006).

After solving the system in (A.41), the next step is computed:

x[k + 1] = x[k] + α∆x[k] (A.43)

y[k + 1] = y[k] + α∆y[k] (A.44)

µ[k + 1] = µ[k] + α∆µ[k] (A.45)

For the performance of the algorithm, the choice of σ and α is crucial, and several

algorithms have different ways of defining these values. It is the setting of these parameters

that ensure whether the constraint (µ,y) ≥ 0 will still hold or not. Several algorithms have

convergence guaranteed from a feasible starting point.

A.6 SEQUENTIAL QUADRATIC PROGRAMMING

Sequential Quadratic Programming consists in converting a generic nonlinear optimiza-

tion problem into a series of Quadratic Optimization problems. Consider the optimization

problem depicted in equation (A.1). The problem can be approximated near a point x[k] in the
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following form (NOCEDAL; WRIGHT, 2006):

min
p

∇f(x[k])T p +
1

2
pT ∇2

xxL(x[k])p

s.t. − ∇g(x[k])T p ≥ g(x[k])

− ∇h(x[k])T p = h(x[k])

(A.46)

where p, the variable to be minimized, is the step direction and ∇2
xxL(x[k]) is the second

derivative of the Lagrangian with respect to x. Expressing the form as a quadratic problem is a

direct derivation of the K.K.T. conditions (NOCEDAL; WRIGHT, 2006).

The subproblem depicted in Equation (A.46) is then solved as a QP to define the step

direction. In SQP, there are two ways of handling the constraints present in a QP:

• Inequality-Constrained QP: Every constraint of the Nonlinear problem is linearized and

present in the quadratic problem.

• Equality Constrained QP: The non-active inequality constraints are dropped, so that the

QP approximation becomes only equality-constrained, by considering the active inequality

constraints as equality constraints.

Similar to Newton’s Method in the unconstrained optimization case, the Hessian of the

Lagrangian is normally difficult to obtain. However, finding approximations through damped

BFGS (Broyden-Fletcher-Goldfarb-Shanno) methods (NOCEDAL; WRIGHT, 2006) is possible.

SQP algorithms can use either a line search or a trust region procedure to define the step

length and direction. In line-search, the step direction is decided by solving the QP subproblem,

and the step-length by algorithms such as the Armijo backtracking. For trust-region methods,

an additional constraint is added as a norm-2 bound over the magnitude of the solution p∗ to

the subproblem. However, this can lead to problems as the trust-region constraints may come

into conflict with the constraints of the QP. Some methods to tackle this issue are described in

(NOCEDAL; WRIGHT, 2006).

Applying SQP by solving only the pure quadratic approximation shown in Equation

(A.46) guarantees local convergence (NOCEDAL; WRIGHT, 2006). However, it does not ensure

global convergence, which is essential for an optimization method to be practical. Thus, when

the pure quadratic subproblem is applied in Equation (A.46), the method applied is labeled a

Local Method.

To obtain global convergence, some modifications are needed to be made to the Local

Method. Methods with these modifications implemented are called Global Methods.

The possible modifications to obtain a global converging SQP algorithm are (NOCEDAL;

WRIGHT, 2006):
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• Handling Inconsistent Linearizations: Sometimes, the QP subproblem is infeasible. It

tends to happen in trust-region based SQP. To handle this issue, the original non-linear

problem is reformulated as the penalty problem:

min
x,v,w,t

f(x) + µ[1T (v + w) + 1T t]

s.t. g(x) ≤ t

h(x) = v − w

v,w, t ≥ 0

(A.47)

where v,w, t are slacks, and µ is the penalty parameter. The quadratic subproblem associ-

ated with this reformulation is always feasible (NOCEDAL; WRIGHT, 2006). Supposing

µ is large enough, then the optimal solution to a feasible non-linear problem that has x∗ as

a solution is (x = x∗,v = 0,w = 0, t = 0)

• Full Quasi-Newton Approximations: To guarantee convergence, the Hessian of the

Lagrangian must always be positive definite. When the Hessian is approximated using

BFGS or other methods, it can be easily guaranteed that the Hessian approximation is

always positive definite, by applying some modifications in the update. The update is

applied as follows, where Bk is the Hessian approximation, which must be initialized as a

symetric, positive definite matrix:

sk = xk+1 − xk (A.48)

yk = ∇xL(xk+1,λk+1) − ∇xL(xk,λk) (A.49)

rk = θkyk + (1 − θk)Bksk (A.50)

θk =





1 if sT
k yk ≥ 0.2sT

k Bksk

0.8sT
k

Bksk

sT
k

Bksk−sT yk
if sT

k yk < 0.2sT
k Bksk

(A.51)

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
rT

k rk

sT
k rk

(A.52)

These update equations guarantee that the Hessian approximation Bk is always positive

definite by damping the BFGS update.

• Merit Functions: To decide whether a step is accepted or not, SQP algorithms tend to

utilize merit functions. Merit Functions are similar to penalty function, as they penalize

the constraint violation by the decision variables. An example of a merit function for an

equality constrained problem is:

min
x

f(x) + µ‖h(x)‖1 (A.53)

In line search SQP, the idea is to use the merit function instead of the original cost function

or the Lagrangian for the step-length decision through Armijo backtracking. In trust-region

SQP, merit functions are used to define if the trust-region size should be adjusted and to

accept or reject a step (NOCEDAL; WRIGHT, 2006).
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