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RESUMO

Neste trabalho nós revisamos a construção de soluções de monopo-
los magnéticos em teorias de Yang-Mills-Higgs com um campo es-
calar na representação adjunta e com um grupo de gauge G simples
e simplesmente conexo. Nós revisitamos a solução do monopolo de ’t
Hooft-Polyakov e revemos como obter monopolos SU(2) embutidos em
teorias com grupos de gauge arbitrários. Nós analisamos alguns as-
pectos de monopolos não-abelianos, tais como os padrões de quebra
de simetria e o chamado problema de “Global Color”. Na sequên-
cia, nós usamos as nossas ferramentas anteriores para construir uma
solução de monopolo com grupo de gauge G = SU(n) quebrado em
G0 = [SU(p) × SU(n − p) × U(1)]/Z por um campo de Higgs na ad-
junta. Nós obtemos soluções de monopolo cujo campo magnético não
está na subálgebra de Cartan. E, como esse campo magnético é nulo na
direção do gerador do grupo eletromagnético U(1)em, nós chamamos
estes monopolos de Monopolos Escuros. Estes Monopolos Escuros de-
vem existir em algumas Teorias de Grande Unificação (GUTs) sem
a necessidade de introduzirmos um setor escuro. Nós calculamos a
hamiltoniana e equações de movimento (EoMs) para estes monopolos,
assim como obtemos as soluções aproximadas nos limites r → 0 and
r → ∞. Nós também mostramos que sua massa clássica é dada por
M = 4πv Ẽ(λ/e2)/e, onde Ẽ(λ/e2) é uma função monotonicamente
crescente de λ/e2. Para o caso particular de G = SU(5), nós resolve-
mos as equações radiais numericamente e obtemos os limites inferior e
superior da massa, dados por Ẽ(0) = 1.294 e Ẽ(∞) = 3.262. Por fim,
nós damos uma interpretação geométrica para a carga magnética não-
abeliana destes monopolos e discutimos alguns problemas em aberto.

Palavras-chave: Teorias de Gauge, Monopolos Magnéticos, Quebra
Espontânea de Simetria, Carga Magnética.





RESUMO EXPANDIDO

Introdução
Neste trabalho nós revisamos a construção de soluções de monopolos
magnéticos em teorias de Yang-Mills-Higgs (YMH) com um campo de
Higgs φ real na representação adjunta e com um grupo de gauge G
simples e simplesmente conexo. Também discutimos alguns aspectos
de monopolos não-abelianos, tais como os padrões de quebra de simetria
e o problema de Global Color. Na sequência, nós construímos soluções
de monopolos com carga magnética na direção abeliana nula. Para
isso, consideramos uma teoria de Yang-Mills-Higgs com grupo de gauge
G = SU(n), n ≥ 3, quebrado em

G0 = [SU(p)× SU(n− p)× U(1)]/Z ,

por um campo escalar na representação adjunta. Pelo fato de não pos-
suírem uma carga magnética na direção abeliana, nossos monopolos
não interagem com o campo eletromagnético U(1)em e, por tal motivo,
serão chamados de Monopolos Escuros. Por fim, discutimos uma inter-
pretação geométrica para a carga magnética não-abeliana dos nossos
monopolos e analisamos alguns problemas em aberto.

Objetivos
Revisar a construção de monopolos magnéticos em teorias de Yang-
Mills-Higgs com um campo escalar φ na representação adjunta e com
um grupo de gauge G simples e simplesmente conexo. Além disso,
pretendemos investigar alguns aspectos das soluções de monopolos em
teorias cujo grupo “não-quebrado” G0 é não-abeliano. Contudo, nosso
principal objetivo é usar estas ferramentas para construir uma solução
de monopolo não-abeliano para o grupo de gauge G = SU(n) com um
campo magnético que não esteja na direção da subálgebra de Cartan
H, mas sim na direção de operadores escada Eα.

Metodologia
Durante a realização deste trabalho utilizamos de ferramentas matemáti-
cas fornecidas pela teoria de grupos e álgebras de Lie. Também fizemos
uso do software MATLABR© para resolver as equações radiais numerica-
mente no caso particular dos Monopolos Escuros com G = SU(5).



Resultados e Discussões
Durante nossa revisão sobre monopolos em teorias de Yang-Mills-Higgs,
mostramos que a configuração assintótica das soluções de monopolo
pode ser construída ao escolhermos um φ0 = u · H e uma subál-
gebra su(2) com geradores Mi, i = 1, 2, 3, tal que M3 ∈ L(G0) e
M1, M2 /∈ L(G0), onde L(G0) denota a álgebra de Lie do grupo não-
quebrado G0. A configuração assintótica é obtida a partir de uma
configuração de vácuo (φ0,W

(0)
i ), por uma transformação de gauge as-

sociada ao elemento g ∈ G dado por

g(θ, ϕ) = exp (−iϕM3) exp (−iθM2) exp (+iϕM3) .

Adicionalmente, construímos um ansatz bastante geral que é usado ao
longo de toda a dissertação. Na sequência, discutimos o monopolo
de ’t Hooft-Polyakov e analisamos aspectos de soluções de monopolos
não-abelianos.

Todavia, nossos principais resultados são relacionados aos Monopo-
los Escuros construídos para o grupo de gauge G = SU(n). Nós
mostramos que estes monopolos podem ser construídos com os ger-
adores Mi definidos como combinação linear de operadores escada Eα.
Ademais, provamos que estes monopolos não possuem uma carga mag-
nética na direção U(1)em. Nós calculamos a hamiltoniana e equações
de movimento para estes monopolos, assim como obtivemos as soluções
aproximadas nos limites r → 0 e r → ∞. Mostramos que sua massa
clássica é dada por

M = 4πv
e

Ẽ(λ/e2) ,

onde Ẽ(λ/e2) é uma função monotonicamente crescente de λ/e2. Para
o caso particular dos monopolos escuros com G = SU(5), encontramos
os limites inferior e superior de massa dados por Ẽ(0) = 1.294 e
Ẽ(∞) = 3.262. Por fim, nós damos uma explicação geométrica para a
carga magnética não-abeliana destes monopolos, mostramos que ela é
quantizada em unidades de 8π/e e está associada à uma simetria ass-
intótica das configurações dos campos de gauge e Higgs.

Considerações Finais
Esta solução de Monopolos Escuros deve existir em algumas Teorias de
Grande Unificação (GUTs), onde o campo de Higgs está na adjunta.
Além disso, como nosso monopolo não possui uma carga magnética na
direção U(1)em, ele pode ter uma pequena contribuição à Matéria Es-
cura no Universo. Contudo, ainda que tenhamos construído as soluções
de Monopolos Escuros, existem algumas questões em aberto. Elas são



referentes à estabilidade dessas soluções e às implicações cosmológicas
destes monopolos.

Palavras-chave: Teorias de Gauge, Monopolos Magnéticos, Quebra
Espontânea de Simetria, Carga Magnética.





ABSTRACT

In this work we review the construction of magnetic monopole so-
lutions in Yang-Mills-Higgs theories with an adjoint scalar field and a
simple and simply-connected gauge group G. We revisit the ’t Hooft-
Polyakov monopole solution and review how one can construct SU(2)-
embedded monopoles in theories with larger gauge groups. We analyze
some aspects of non-abelian monopoles, such as the symmetry break-
ing pattern and the so-called “Problem of Global Color”. Then, we
use our previous tools to construct a monopole solution with gauge
group G = SU(n) broken to G0 = [SU(p) × SU(n − p) × U(1)]/Z
by a Higgs field in the adjoint representation. We obtain monopole
solutions whose magnetic field does not lie in the Cartan subalgebra.
And, since their magnetic field vanish in the direction of the generator
of the U(1)em electromagnetic group, we call them Dark Monopoles.
These Dark Monopoles must exist in some Grand Unified Theories
(GUTs) without the need to introduce a Dark sector. We calculate the
hamiltonian and equations of motion (EoMs) for these Dark Monopoles.
We obtain approximate solutions when r → 0 and r → ∞. We also
show that their classical mass is M = 4πv Ẽ(λ/e2)/e, where Ẽ(λ/e2)
is a monotonically increasing function of λ/e2. For the particular case
of G = SU(5), we numerically solve the radial EoMs and obtain the
lower and upper bounds for the mass, given by Ẽ(0) = 1.294 and
Ẽ(∞) = 3.262. Finally, we give a geometrical interpretation to their
non-abelian magnetic charge and discuss some open problems.

Keywords: Gauge theories, Magnetic Monopoles, Spontaneous Sym-
metry Breaking, Magnetic Charge.
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1. INTRODUCTION

In 1931, Dirac analyzed whether it was possible to have a mag-
netic monopole in ordinary electrodynamics [1]. This elusive particle
was believed to be banned from electromagnetism by the sourceless
Maxwell’s equations ∂µ ∗Fµν = 0, which, in principle, forbid the exis-
tence of a magnetic charge. However, because of some arguments of
symmetry, which we shall discuss in section 2.1, Dirac insisted that
this “outlaw” particle was compatible with Maxwell theory. He showed
how one could construct the vector potential of a monopole and how
this would lead to a spherically symmetric magnetic field of a point-like
magnetic source. In fact, this vector potential had a singularity, the
so-called Dirac string, which was a theoretical artifact corresponding
to an infinitely long and thin solenoid. This was not a problem to
classical electrodynamics, since only the field strengths E and B are
measurable. However, in order for this monopole to be consistent with
Quantum Mechanics, i.e., for the Dirac string to be undetectable in the
Aharonov-Bohm experiment, Dirac showed that the electric and mag-
netic charges in nature should satisfy a quantization condition. This
was an impressive result, since it implied that even if there is only one
magnetic monopole in the whole universe, all electric charges should
be quantized. Actually, Dirac gave the first theoretical explanation to
the experimentally observed quantization of electric charge. The only
problem in this story is that no monopole was ever detected1.

Nevertheless, more than four decades later ’t Hooft and Polyakov
[3, 4] have independently found a magnetic monopole solution in the
SO(3) Georgi-Glashow model. But this time, the monopole was indeed
a finite-energy solution to the equations of motion (EoMs) and its field
configuration was regular at the origin. The monopole classical mass
had upper and lower bounds and the magnetic charge g was conserved
for topological reasons. This was the starting point for a new era in
monopole theory, where monopoles were no longer ad hoc constructions,
but topological solutions in Yang-Mills-Higgs theories.

From that point on, there have been many generalizations for these
monopoles, for theories with larger gauge groups G. In many of these
theories, there is a Higgs field in the adjoint representation, which can
produce a symmetry breaking of the form [5–7] G→ G0 = “K×U(1)”,
with a compact U(1), which allows for the existence of topological

1Even though there were claims from Cabrera [2] of a possible monopole detection
in 1982, which was later regarded as inconclusive.
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monopoles. In general, these monopoles have magnetic charge in the
abelian subalgebra of the unbroken group G0, which can give rise to a
non-vanishing magnetic charge for the electromagnetic U(1)em gauge
group. It is interesting that these non-abelian monopoles also satisfy a
generalized quantization condition, so that they also provide an expla-
nation to the quantization of electric charge.

Now, there is another relevant point in this story. In 1974, the
same year of the seminal papers of ’t Hooft and Polyakov, Georgi and
Glashow [8] proposed a Yang-Mills-Higgs theory where they conjec-
tured that the strong, weak and electromagnetic forces have arisen from
a single fundamental interaction based on the gauge group G = SU(5).
This theory was one of the first Grand Unified Theories (GUTs) to
be proposed. These GUTs are based in the fact that the Standard
Model, whose gauge group is GSM = SU(3)C × SU(2)L × U(1)Y , can
be conveniently embedded in a theory with a larger simple gauge group.
Moreover, the fact that G is simple both implies that there is only a
single gauge coupling constant and that it explains the quantization of
electric charge [9]. It also turns out that the current observed parti-
cles could be accommodated in a relatively simpler multiplet structure.
Some other examples of GUTs are the Pati-Salam model [10], the Trini-
fication model [11] and also the E6 and SO(10) models.

The interesting point is that we expect that this larger gauge sym-
metry of nature was broken in the early universe after one (or some)
stages of spontaneous symmetry breaking (SSB). This agrees with the
fact that there are indications that the running gauge coupling con-
stants for the weak, electromagnetic and strong interactions tend to
the same value when evaluated at sufficiently high unification temper-
ature2 Tc ∼ 1016 GeV [9,12].

Now, one can ask what is the role of magnetic monopoles in face
of GUT theories. Well, one of the consequences of these GUTs is that
they have topological magnetic monopoles. One example is the SU(5)
monopole of Dokos and Tomaras [13], associated to a SSB by a Higgs
field in the adjoint representation. Thus, magnetic monopoles and
grand unification are connected. The observation of such monopoles
may be one of the few possibilities to obtain experimental support to
the unification hypothesis [9].

In this work, we shall review the general construction of non-abelian
magnetic monopoles from first principles. For simplicity, we shall work
with theories with an adjoint Higgs field φ and with a simple and
simply-connected gauge group G. We shall construct a quite general

2Note that we are working with units where the Boltzmann constant KB = 1.
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ansatz, that will be used throughout this dissertation. Then, we will
revisit the ’t Hooft-Polyakov monopole with a new perspective.

After that, we shall discuss some aspects of these non-abelian monopoles.
This will involve an analysis of the symmetry breaking patterns and on
the way one can embed ’t Hooft-Polyakov monopoles in theories with
larger gauge groups. We shall also investigate the generalized quanti-
zation condition and the "Problem of Global Color".

In the sequence, we shall tackle our main goal, which is to construct
monopole solutions with vanishing abelian magnetic charge [14]. This
implies that our monopoles do not interact with the U(1)em electro-
magnetic field, so that we shall call them Dark Monopoles. Moreover,
it is well-known that the nature of Dark Matter is one of the biggest
open problems in physics. In the last decades, many candidates have
been proposed (see, for instance, [15, 16] and references therein) in a
variety of distinct theories. Magnetic monopoles happen to be one of
these candidates [17–23], usually associated to a dark (or hidden) sec-
tor coupled to the Standard Model. But, since our Dark Monopoles
do not have a U(1)em electromagnetic field, we need not introduce a
dark sector. This is an interesting feature, since we can have these
monopoles contributing to dark matter in the standard Grand Unified
Theories. And, even if future analysis shows that they do not have a
relevant contribution to Dark Matter (due to inflation), they are still
an interesting solution since they are a new type of GUT monopoles.

We emphasize that monopoles with a magnetic flux in a non-abelian
direction have been constructed for a Yang-Mills-Higgs theory withG =
SU(3) broken to U(2) [24] (see also [6, 25, 26]). They were associated
to the su(2) subalgebra generated by the Gell-Mann matrices λ2, λ5
and λ7 and an ansatz was constructed using some general arguments of
symmetry. On the other hand, in the present work we shall consider a
Yang-Mills-Higgs theory with an arbitrary gauge group SU(n), n ≥ 3,
broken to3

G0 = [SU(p)× SU(n− p)× U(1)]/Z ,

by a scalar field in the adjoint representation. We shall use our tools
from chapter 2, which are based on the general procedure of [27, 28],
in order to construct the ansatz for our Dark Monopoles. Its asymp-
totic configuration will be associated to some su(2) subalgebras with
generators Ma, which we choose to be given by linear combinations of
some step operators. Then, we shall see that the asymptotic form of
the gauge and magnetic fields are linear combinations of the generators

3In the case p = 1 or p = n, G0 is given by G0 = SU(n−1)×U(1)
Z

.



22

Ma, while the asymptotic form of the scalar field is a linear combina-
tion of generators S and Qa, a = 0, ±1, ±2 , which form, respectively, a
singlet and a quintuplet under the su(2) subalgebra. As a consequence,
the Dark Monopole cannot satisfy the BPS condition Bi = Diφ.

From these asymptotic configurations, we construct an ansatz for
the whole space and calculate the Hamiltonian. Then, we obtain the
second order differential equations for the profile functions. Addition-
ally, we obtain the numerical solution for these equations in the case
G = SU(5), for some particular coupling constant values.

Furthermore, we show that the classical mass of a Dark Monopole
is a monotonically increasing function of λ/e2, given by

M = 4πv
e

Ẽ(λ/e2)

where in the particular case of the SU(5) Dark Monopoles, Ẽ(0) =
1.294 and Ẽ(∞) = 3.262.

We shall also construct a Killing vector ζ associated to an asymp-
totic symmetry of the Dark Monopole and show that these monopoles
have a conserved current in a non-abelian direction. The associated
magnetic charge QM is quantized in multiples of 8π/e and we give a ge-
ometrical interpretation to this charge. And, although Dark Monopoles
are associated to the trivial sector of Π1(G0), the conservation of QM
could prevent them to decay. Finally, we expect that our construction
can be generalized to other gauge groups.

This dissertation is organized as follows. In chapter 2, we present
the aforementioned construction of non-abelian monopoles in Yang-
Mills-Higgs theories, while we also revisit the ’t Hooft-Polyakov monopole.
In chapter 3, we discuss symmetry breaking patterns, SU(2)-embedded
monopoles and the generalized quantization condition. In the same
chapter, we investigate some particularities of monopoles with a non-
abelian unbroken symmetry. Finally, in chapter 4 we present our orig-
inal construction of the Dark Monopoles in SU(n). We conclude with
a summary of the results and with a discussion on the possible cosmo-
logical implications of Dark Monopoles.



2. MAGNETIC MONOPOLES FROM FIRST PRINCIPLES

In this chapter we shall approach the construction of non-abelian
magnetic monopoles from first principles. However, in order to do so we
need to introduce the Dirac Monopole first, since we will need to borrow
some concepts from ordinary electrodynamics. Then, we shall present
our Lie algebra conventions, which will be used throughout this disser-
tation. In the sequence, we shall start the actual construction making
use of some physical constraints, such as finite energy and spherical
symmetry. After the final asymptotic configuration is obtained, we use
our results in order to revisit the ’t Hooft-Polyakov monopole under a
new perspective.

2.1. THE DIRAC MONOPOLE

It is well-known that in the absence of sources Maxwell’s equations
can be written as complex equations of the form

∂µ (Fµν + i ∗Fµν) = 0 , (2.1)

which are invariant under the duality transformation

Fµν + i ∗Fµν → eiα (Fµν + i ∗Fµν) , (2.2)

where α is a constant phase. Now, since F0i = Ei and Fij = −εijkBk,
we can also write this transformation in terms of the electric and mag-
netic fields

E + iB→ eiα(E + iB) .

However, when sources are present the equations turn out to be

∂µF
µν = Jν , ∂∗µF

µν = 0 (2.3)

and the symmetry under (2.2) is lost. This happens because only elec-
tric charges and currents appear. In order to restore the symmetry
of (2.2) we must introduce a magnetic current (Kµ) = (σ,k) so that
equations (2.3) take the form

∂µF
µν = Jν , ∂∗µF

µν = Kν . (2.4)

Now, it is trivial to see that these equations can be written as

∂µ (Fµν + i ∗Fµν) = (Jν + iKν) ,

23
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and that they are invariant under (2.2) as long as the currents transform
as

Jν + iKν → eiα (Jν + iKν) .

The addition of this magnetic current naturally leads to the idea of a
magnetically charged particle, i.e., a magnetic monopole. This object
would be the source of a Coulomb magnetic field of the form

Bm = g

r3 r , (2.5)

where g is the magnetic charge. Note that from eq. (2.5)

∇ ·Bm = 4πg δ3(r) ,

where δ3(r) is the usual Dirac delta function. Thus, we should be
careful, since the introduction of Kµ in standard electromagnetism im-
plies that B is no longer divergenceless. This poses problems to the
global definition of the magnetic field as B = ∇ ×A, where A is the
vector potential. Nonetheless, this is not a surprise, since the addi-
tion of Kµ spoils the very own definition of the field strength Fµν as
Fµν = ∂µAν − ∂νAµ, where Aµ is the 4-potential.

However, Dirac realized that the vector potential A need not be
globally well-defined [29]. If magnetic charges were point-like, or at
least confined to a finite volume, one could try to write B as a curl in
the regions were magnetic charges were absent.

Let us suppose we have a point-like monopole at the origin with
magnetic charge g. Let us define a vector potential A such that

A · dr = g (cos θ − 1) dϕ . (2.6)

This potential has a singularity, the so called Dirac string, along the
negative z-axis. But one should note that, away from the singularity,
∇×A = Bm. Besides that, the location of the string is arbitrary, since
we could have chosen another vector potential yielding the same Bm,
for instance,

A′ · dr = g (cos θ + 1) dϕ . (2.7)

which has a Dirac string in the positive z-axis. The potentials A and
A′ are related by a singular gauge transformation

A′ −A = ∇α ,

with α = 2gϕ. Also note that ∇α is single-valued, while α is not. In
fact, by an appropriate gauge transformation, the Dirac string can be
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made to coincide with an arbitrary curve starting at the origin and
running out to spatial infinity [30]. But, it cannot be gauged away in
a U(1) gauge theory.

Now, we have to consider what are the implications of a singular
vector potential. First, let us recall that in classical electrodynamics
only the field strengths are measurable. Thus, we do not expect a
singularity in A to have any consequences.

On the other hand the situation in the quantum theory is the oppo-
site, since the vector potential can affect the phase of a wavefunction.
Let us suppose that a particle with electric charge q travels around a
closed circle C that enclose a region of non-zero magnetic flux. It is
known from Quantum Mechanics that after a full turn, the particle’s
wavefunction is multiplied by the Aharonov-Bohm phase [30]

U [C] = exp
(
iq

∫
C

dl ·A
)
. (2.8)

If we choose a convenient loop, with θ fixed, in the case of a monopole
whose Dirac string lies along the south pole, then

q

∫
C

dl ·A = q

∫
dϕAϕ = 2π qg (cos θ − 1) . (2.9)

If C is contracted so that it turns into an infinitesimal curve around the
string, then θ → π and the line integral in eq. (2.9) becomes −4π qg.
Now if we want the string to be undetectable, i.e. U [C] = 1, it follows
from eq. (2.8) that1

qg = n

2 , n ∈ Z .

This result is the famous Dirac quantization condition and it has deep
consequences. It states that even if there is only one magnetic monopole
with magnetic charge g0 in the whole universe, all electrically charged
particles possess a quantized electric charge such that q = n

(
1

2g0

)
.

This is a remarkable fact, since it was the first possible explanation to
the observed quantization of electric charges.

Finally, it is necessary to say that there is another approach to the
Dirac monopole that we have avoided here. It is based in the Wu-
Yang procedure and it divides R3 − {0} in two regions that can be
chosen to be the North and South patches. We can use the potentials
A and A′, in eqs. (2.6) and (2.7) to define AN and AS , respectively.
The single-valuedness of the gauge transformation that relates both

1Considering ~ = 1.
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potentials, where the two regions intersect, leads (not surprisingly) to
the same quantization condition. A nice explanation of this procedure
is available at [31].

From now on, we will discuss more sophisticated theories, but we
will have to keep in mind the concepts of the Dirac string singularities
and that of the quantization condition.

2.2. LIE ALGEBRAS CONVENTIONS

In this section, we shall fix some conventions that will be used
throughout this dissertation. Here, we do not intend to review the
topic of Lie groups and Lie algebras, which can be found in [32–34].

Let G be a Lie group of rank r and L(G) its d-dimensional Lie
algebra. In the orthogonal basis of L(G), the d generators Ta satisfy

Tr (TaTb) = y δab ,

where ψ2y is the Dynkin index of the representation and ψ is the highest
root of L(G).

We shall also use the Cartan-Weyl basis with Cartan elements Hi,
which form a basis for the Cartan subalgebra H, and step operators
Eα, satisfying the commutation relations

[Hi, Hj ] = 0 ,
[Hi, Eα] = α(i)Eα ,

[Eα, Eβ ] =


Nα,β Eα+β if α+ β is a root,
2α·H
α2 if α = −β,

0, otherwise.

(2.10)

Moreover,
Tr (HiHj) = y δij ,

Tr (EαEβ) = y
2
α2 δα,−β ,

Tr (HiEα) = 0 .

(2.11)

For an arbitrary root α we define the generators

Tα1 ≡
Eα + E−α

2 ,

Tα2 ≡
Eα − E−α

2i , (2.12)

Tα3 ≡
α ·H
α2 ,
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which form an su(2) subalgebra. The weight states are such that

Hi |µ〉 = µi |µ〉 . , (2.13)

where µi are the components of a r-dimensional vector µ, which is an
arbitrary weight. We will denote by αi, i = 1, 2, . . . , r, the simple
roots, and by λi, i = 1, 2, . . . , r the fundamental weights of L(G),
which satisfy the relation

2αi · λj
α2
i

= δij . (2.14)

The Cartan matrix and its inverse are defined to be

Kij = αi · α∨j and
(
K−1)

ij
= λi · λ∨j , (2.15)

where α∨i = 2αi/α2
i and λ∨i = 2λi/α2

i are the coroots and coweights
of L(G), respectively. It follows from the definition (2.15) and the
orthogonality relation (2.14) that

α∨l = λ∨i Kil ,

λ∨l = α∨i
(
K−1)

il
.

(2.16)

Now, since any root can be written as a linear integer combination of
the simple roots αi, so that

α =
r∑
i=1

niαi , ni ∈ Z , (2.17)

the simple roots span the root lattice. The coefficients ni will be all
positive or all negative depending whether the root is said to be positive
or negative. Similarly, the weights µ can be written as

µ =
r∑
i=1

miλi , mi ∈ Z , (2.18)

so that the fundamental weights span the weight lattice. Furthermore,
the lattices spanned by α∨i and λ∨i are called coroot and coweight lat-
tices, respectively.

2.3. MAGNETIC MONOPOLES IN NON-ABELIAN GAUGE THE-
ORIES

Let us consider a Yang-Mills-Higgs theory in 3 + 1 dimensions with
a gauge group G, of rank r, which is compact and simple. Without loss
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of generality we can take G to be simply-connected. For simplicity, we
shall consider a real scalar field φ = φaTa in the adjoint representation.
The vacuum configuration of the Higgs field breaks G down to the
subgroup G0, the unbroken gauge group.

The action S is given by

S =
∫
d4x

{
− 1

4yTr(GµνG
µν) + 1

2yTr[(Dµφ)(Dµφ)]− V (φ)
}
,

(2.19)
where V (φ) is the potential term, with V (φ) ≥ 0. Besides that,

Gµν = ∂µWν − ∂νWµ + ie[Wµ,Wν ] , (2.20)
Dµφ = ∂µφ+ ie[Wµ, φ] , (2.21)

where Gµν , Wµ and Dµ are the field strength, the gauge field and
the gauge covariant derivative, respectively, while e denotes the gauge
coupling constant for the theory.

The equations of motion (EoMs) are given by

DµG
µν = −ie[φ,Dνφ] ,

(Dµ (Dµφ))a = − ∂V
∂φa

.
(2.22)

Furthermore, we have the Bianchi identities

Dµ
∗Gµν = 0 . (2.23)

Now, since we want to construct a static magnetic monopole solu-
tion, we can work in a reference frame where the particle, with a mass
M , is at rest. This is always possible, as long as M 6= 0.

The static solution will be characterized by the lack of time depen-
dence in the fields, i.e., the gauge and Higgs fields will be of the form
Wµ = Wµ(r) and φ = φ(r). In addition, we can use the gauge freedom
to choose W0 = 0. This implies that

D0φ = ∂0φ+ ie[W0, φ] = 0 .

Recalling that [Dµ, Dν ]φ = ieGµν φ, we will have that G0i = 0. This
means that, in the monopole rest frame, there will only be non-abelian
magnetic fields. In fact, we can use the action in eq. (2.19) to obtain
the hamiltonian for the monopole, which is

E =
∫
R3
d3x

{
1
2y Tr (BiBi) + 1

2y Tr (DiφDiφ) + V (φ)
}
. (2.24)
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And, in the case we want to obtain a moving monopole, we only need
to Lorentz transform the fields Wµ and φ. Moreover, the finite energy
constraint will give us much more details on how to construct monopole
solutions.

Nevertheless, before we end this section it is interesting to present a
“trick”, due to Bogomolny [35], so that we can find the global minimum
of the hamiltonian. First, note that eq. (2.24) can be written as

E =
∫
R3
d3x

{
1
2y Tr (Bi ∓Diφ)2 ± 1

y
Tr (BiDiφ) + V (φ)

}
. (2.25)

Since the first and third terms in eq. (2.25) are necessarily positive, we
see that

E ≥ 1
y

∫
R3
d3xTr (BiDiφ) . (2.26)

Now, making use of

Di (Biφ) = (DiBi)φ+Bi (Diφ) , (2.27)

and the Bianchi identity DiBi = 0, we see that Bi (Diφ) = Di (Biφ).
Moreover, from the cyclicity of the trace, it follows that Tr (Di(Biφ)) =
∂iTr (Biφ). Thus, eq. (2.26) can be conveniently written as

E ≥ 1
y

∫
R3
d3x ∂iTr (Biφ) . (2.28)

Then, from the divergence theorem, it follows that the energy of a
monopole solution in its rest frame, which is the classical mass of the
particle, is always greater than

E ≥ 1
y

∫
S2
∞

d2SiTr (Biφ) . (2.29)

We shall see in section 2.4.1 how this integral is associated to the abelian
magnetic charge of a monopole. On the other hand, note that the
equality holds if

V (φ) = 0 , (2.30a)
Bi = ±Diφ . (2.30b)

The condition (2.30a) is the Prasad-Sommerfield limit [36], while the
eqs. (2.30b) are the Bogomolny equations [35]. The set of eqs. (2.30a)
and (2.30b) are called BPS equations. Note that the condition V (φ) = 0
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must be understood as a limit, so that the boundary conditions for φ
when r →∞ remain the same. This is essential in order for the spon-
taneous breaking of gauge symmetry to happen. Besides that, one can
show that eqs. (2.30a) and (2.30b) are compatible with the second order
equations (2.22). Monopole solutions satisfying eqs. (2.30a) and (2.30b)
are called BPS monopoles.

Although they are quite important, in this work we shall be con-
cerned with monopole solutions that satisfy the second order equations
of motion, but not necessarily the first order ones. This is because
the second order field equations (for static fields) are the condition
for a stationary point of the energy functional, whereas the first or-
der Bogomolny equation is the condition of the global minimum of the
energy [29]. Then, we will focus on the more general solutions rather
than the BPS ones. Additionally, we will see later on that our Dark
Monopoles construction does not satisfy the BPS equations.

2.3.1 Finite Energy Solutions

In order for the static solution to have finite energy, we need the
integrand in eq. (2.24) to have an appropriate behavior, since the inte-
gral is evaluated in a region where both r = 0 and r →∞ are included.
That is, we seek for solutions which are regular at the origin and that
fall sufficiently fast when r →∞. Thus, in this limit,

Bi → 0 , (2.31)
Diφ→ 0 , (2.32)
V (φ)→ 0 . (2.33)

One solution that satisfies all these constraints is the trivial field con-
figuration, i.e., φ = φ0 = constant so that V (φ0) = 0 and Wi = 0.
However, this is not physically interesting. But, an important concept
in what follows is that of the Higgs vacuum. We shall say that the
fields in a certain region are in the Higgs vacuum if equations (2.32)
and (2.33), but not necessarily (2.31), are satisfied.

Now, it is relevant to recall that the values of φ which minimize
the Higgs potential V (φ) lie on a manifoldM. Then, we can consider
a nontrivial vacuum configuration φ0 ∈ M, which produces a spon-
taneous symmetry breaking (SSB) of the form G → G0. From the
invariance of V (φ) under the action of G, i.e. V (g φ g−1) = V (φ) for
any g ∈ G, it follows that

φ = g φ0 g
−1 , (2.34)
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is also a vacuum configuration lying in M. To be more specific, this
relation characterizes the so-called G-orbit of φ0, which is defined to
be [32]

O(φ0) = {φ ∈M|φ = g φ0 g
−1, for some g ∈ G} .

In the special case M consists of a single orbit, then the action of G
in M is said to be transitive [32]. Moreover, to any such φ0 of M,
one associates a subgroup of G, the isotropy subgroup or stabilizer G0,
defined to be

G0 = {g ∈ G | g φ0 g
−1 = φ0} ,

which is the remaining gauge symmetry after the SSB, i.e., G0 is the
unbroken gauge group. Then, one can show that the generators Ta of
the Lie algebra of G0, which we shall denote by L(G0), satisfy

L(G0) = {Ta ∈ L(G)|[Ta, φ0] = 0} . (2.35)

Besides that, different points in the orbit O(φ0) will have stability
groups which are isomorphic, but different, subgroups of G. If we move
from one point of the orbit to another by means of eq. (2.34), we can get
the generators of the isomorphic stability groups by conjugation. In the
mathematical literature [32] is said that stabilizers of elements in the
same orbit are conjugate subgroups. This means that the isomorphic
unbroken subgroups will be given by g G0 g

−1.
Therefore, from the discussion above, we see that two elements g

and g′ will give the same φ if

g′ = gg0, (2.36)

where g0 denotes an element of G0. Thus, because of eqs. (2.34) and
(2.36) the set of all vacuum configurations lying in M which produce
a SSB of the form G→ G0, may be identified with the quotient space
G/G0. And, from now on, we shall refer to G/G0 as the vacuum man-
ifold associated with the desired symmetry breaking G→ G0.

Therefore, from the analysis above, for the energy to be finite, the
Higgs field must take values in G/G0 when r →∞. This means that

φ(θ, ϕ) ≡ lim
r→∞

φ(r, θ, ϕ) , (2.37)

gives a smooth map from the two-sphere at spatial infinity (S2
∞) to

the vacuum manifold G/G0. Without loss of generality we can use
the available gauge freedom to impose that φ(θ = 0, ϕ) = φ0. In
mathematical language, this is our choice of a base-point.
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If two configurations φ(θ, ϕ) and φ′(θ, ϕ) can be deformed into each
other while keeping the value at θ = 0 fixed, then they are said to be in
the same homotopy class. That is, if there exists a continuous function
T (θ, ϕ, t) such that

T (θ, ϕ, 0) = φ(θ, ϕ) ,
T (θ, ϕ, 1) = φ′(θ, ϕ) ,

T (θ = 0, ϕ, t) = φ0 .

Moreover, the set of homotopy classes of maps from the n-sphere to
a topological space X , with a group structure, defines the n-th homo-
topy group πn(X ) [37]. Then, from what we have discussed earlier,
if we want topological monopole solutions to arise in a certain theory,
we need π2(G/G0) to be non-trivial. Of course, this is a necessary,
but not sufficient, condition for finding topologically stable monopoles.
Furthermore, we should emphasize that in the physically-oriented lit-
erature, homotopy classes are usually called topological sectors. And
this is a term we might use from now on.

From the above discussion, in order for the configuration to have
finite energy, one can see that the asymptotic configuration of the Higgs
field φ(θ, ϕ) can be conveniently constructed as

φ(θ, ϕ) = g(θ, ϕ)φ0 g
−1(θ, ϕ), (2.38)

with g(θ = 0, ϕ) = 1. However, note that for a given φ(θ, ϕ), the choice
of g(θ, ϕ) is not unique. Besides that, even though φ(θ, ϕ) must be
single-valued, g(θ, ϕ) can be multiple-valued, as long as the ambiguity
corresponds to right multiplication by an element of G0. One can show
that [28] g(θ, ϕ) can always be chosen so that it is multiple-valued only
when θ = π, which means that

g(π, ϕ) = g(π, 0)g0(ϕ) , (2.39)

where
g0(ϕ+ 2π) = g0(ϕ) . (2.40)

The function g0(ϕ) maps the circle into G0 and thus corresponds to
an element of the first homotopy group π1(G0). Two configurations
φ(θ, ϕ) and φ′(θ, ϕ) belong to the same homotopy class if and only if
the corresponding g0(ϕ) and g′0(ϕ) correspond to the same element
of π1(G0) [28]. In other words, this is the well-known result that
π2(G/G0) ∼= π1(G0), where ∼= denotes an isomorphism, when G is
compact and simply-connected. Therefore, monopoles with nontrivial
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topological charges might arise only if π1(G0) is not trivial. We rein-
force that this is a necessary, but not sufficient, condition. Through-
out this work, it will be clear that this constraint implies that only
monopoles with a non-trivial abelian magnetic charge, i.e., a charge in
the abelian direction of φ0, can be topologically stable.

Similarly, we can think of what must happen to the gauge field
Wi(r). Due to the finite energy constraint, we also need to impose that

Wi(θ, ϕ) = lim
r→∞

Wi(r, θ, ϕ) (2.41)

and that the asymptotic configuration Wi(θ, ϕ) is a gauge transforma-
tion of some W (0)

i , so that

Wi(θ, ϕ) = g(θ, ϕ)W (0)
i g−1(θ, ϕ) + i

e
(∂ig(θ, ϕ)) g−1(θ, ϕ) . (2.42)

In fact, W (0)
i must be a solution to the equations of motion in the

absence of sources, i.e., DiG
ij = 0. But, we shall discuss this issue in

more details in section 2.3.3.
Finally, we recall that the finite energy constraint requires Diφ→ 0

when r →∞, i.e., in this limit the Higgs and gauge fields must be such
that

∂iφ+ ie[Wi, φ]→ 0 .

Then, we should keep in mind for further analysis that any chosen field
configuration must satisfy this constraint.

2.3.2 Spherical Symmetry

Firstly, the considerations we have done so far assure us that the
monopole solution will be static and have finite energy. However, we
can also demand it to have spherical symmetry, in order to be a single
monopole instead of a bound state. Moreover, we expect more sym-
metric solutions to have lower energy.

Let
Ji = −iεijkrj∂k +Mi (2.43)

be the generator of generalized angular momentum, where Mi are the
generators of a su(2) subalgebra of G. A configuration involving φ(r)
and Wi(r) is spherically symmetric when [6, 38]

[Ji, φ] = 0 , (2.44)
[Ji,Wj ] = iεijkWk . (2.45)
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The first condition implies that φ is a scalar under generalized rotations,
while the second means that the gauge field transform as a vector under
Ji. Even though one can be interested in monopoles with no spherical
symmetry, in this work we shall only discuss spherically symmetric
solutions.

2.3.3 The String Gauge Construction

Up to this point we have discussed how to construct the asymptotic
configuration of the scalar and gauge fields. Our main result was that
the finite energy constraint led the field configurations over S2

∞ to be
a gauge transformation of an original set up, which must lie in the
Higgs vacuum. And even though we have postponed the choice of such
configurations, we shall analyze it in this section. We will adopt an
approach similar to [27], which is based on [39] and frequently called
the Dynamical (or GNO) Classification.

Nevertheless, before this we have to analyze what happens to the
scalar field φ. In fact, our choice of φ0 determines the SSB pattern (see,
for instance, [7, 40]). Since we are working with a real adjoint Higgs
field, we can write that

φ = φaTa , (2.46)

where Ta are hermitian generators of L(G). However, any normal gen-
erator of a compact Lie group can be rotated into the Cartan subalgebra
H, i.e., for any φ there is a g ∈ G such that [40]

φ′ = g φ g−1 =
r∑
i=1

φiHi , (2.47)

where r denotes the rank of L(G) and the Hi are the Cartan generators.
The components of φi are not unique and, in fact, the ambiguity is given
by the Weyl group. However, the discussion of the Weyl chambers is
out of the scope of this work. For more details, please, see [40].

We shall write φ0 in a more convenient form

φ0 = u ·H , (2.48)

where u denotes a constant vector. Based on this choice and making
use of the commutation relations between Cartan generatorsHi and the
step operators E±α, one can determine the gauge symmetry breaking
pattern, just with the information of the Dynkin diagram of L(G) [40].
However, we shall discuss this topic in more details in section 3.1. In
summary, we know that φ0 must be constant while it has to minimize
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the potential V (φ), such that V (φ0) = 0. We also needDiφ0 = 0, which
implies that any chosen configuration for W (0)

i will satisfy [W (0)
i , φ0] =

0.
Now, we shall concentrate on the gauge field configurations. Far

from the monopole "core", in a gauge where φ = φ0 = constant [30], we
only need to deal with the sourceless field equations DµG

µν = 0. In
other words we shall look for monopole-like solutions in a specific gauge,
called the string gauge. The reason for this name will be clear soon. It
is also important to emphasize that we will not attempt to construct a
complete series of solutions to these equations, but we will just try to
find the non-abelian generalization of the magnetic monopole field.

As we have discussed previously, the fact that our solution is static,
together with our choice of W0 = 0, implies that G0i = 0. However, we
have the freedom to make time-independent gauge transformations.

Our first step is to make Wr = 0. The way we can do this is quite
simple. Since the gauge fields transform as

W ′i = U Wi U
−1 + i

e
(∂iU)U−1 , (2.49)

we can find a transformation U (with U†U = I) such that the i-th
component W ′i = 0, i.e.

∂iU = ie U Wi. (2.50)

The formal solution to this problem is given by the Dyson series [41].
Then, in order to set Wr = 0, the necessary transformation is of the
form

U(r, θ, ϕ) = P exp
[
−ie

∫ r

R

dr′W ′r(r′, θ, ϕ)
]
, (2.51)

where P indicates that the terms in the expansion of the exponential
should be ordered so that the smallest argument r appears on the left.
Note that we have excluded the region r < R from the integration,
where R stands for some convenient distance from the core. We shall
neglect a possible singularity at the origin (where radial lines intersect),
since we have focused on the asymptotic behavior only.

The next step is to make Wθ = 0 by means of a gauge transforma-
tion, independent of t and r, in a way similar to eq. (2.51). In this
transformation we integrate along lines of fixed θ, meridians, starting
from the north pole. This choice of gauge can lead to an artificial
singularity at the place where all meridians intersect, the south pole.
In particular, it can lead to a non-zero (and ϕ dependent) Wϕ(π, ϕ),
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i.e., to a Dirac string singularity. We will see later on that despite the
abelian case, this singularity can be removed in non-abelian theories.

Then, we can finally use the field equations. The only non-vanishing
component of the field strength tensor is

Gθϕ = ∂θWϕ . (2.52)

In curvilinear coordinates, the sourceless Yang-Mills equations take the
form

∂µ
(√
−g Gµν

)
+ ie

[
Wµ,
√
−g Gµν

]
= 0 . (2.53)

In our specific case,

√
−g Gθϕ = 1

r2 sin θ ∂θWϕ , (2.54)

where [gµν ] = diag
(
1,−1,−r2,−r2 sin2 θ

)
and, as a consequence,

√
−g =

r2 sin θ.
Thus, there are two non-trivial field equations. One of them hap-

pens when ν = ϕ, and it is given by

∂θ

(
1

sin θ ∂θWϕ

)
= 0 , (2.55)

where we have, once more, considered that r 6= 0. We can look for a
general solution under the boundary condition Wϕ(0, ϕ) = 0, in agree-
ment with our construction where the north pole has no singularities.
The general solution is of the form

Wϕ(θ, ϕ) = (1− cos θ)Q(ϕ) , (2.56)

where Q(ϕ) is a matrix-valued function. On the other hand, when
ν = θ the field equation is

∂ϕ (∂θWϕ) + ie
���

���
�:0

[Wϕ, (∂θWϕ)] = 0 , (2.57)

which implies that
∂ϕQ(ϕ) = 0 . (2.58)

Therefore, Q must be a constant. However, we should also remember
that, in this string gauge, for φ = φ0 to be covariantly constant we
need Q to take values in the Lie algebra of the unbroken gauge group
G0.
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Thus, a magnetic monopole configuration in the string gauge is
given by

φ = φ0 , (2.59)
W (0)
ϕ = (1− cos θ)Q , (2.60)

with Q ∈ L(G0). Note that the name of this gauge is due to the
existence of a string singularity in eq. (2.60) along the negative z-axis,
which is similar to the abelian gauge field of eq. (2.6), in the case of a
Dirac monopole. But, in the non-abelian case, we will show that under
a convenient gauge transformation we can obtain a smooth asymptotic
configuration for both φ(θ, ϕ) and Wi(θ, ϕ).

2.3.4 The final asymptotic configuration

Since we have already found a general form for the field configura-
tions in the string gauge, we are now able to use eqs. (2.38) and (2.42),
together with eqs. (2.59) and (2.60), to construct a smooth asymptotic
configuration for a magnetic monopole and then, propose an ansatz
for the whole space. We want our non-abelian monopole to be regular
everywhere, which implies that we shall be able to remove the Dirac
string singularity. We will present a method for this construction here.

Let the generator Q be

Q = 1
e
M3 , (2.61)

with M3 ∈ L(G0). Now, let us consider that there exists two other
generators M1,M2 ∈ L(G), but not in L(G0), such that

[Mi,Mj ] = i εijkMk . (2.62)

We will call the Mi, i = 1, 2, 3, as the monopole generators. Then,
with the commutation relations of eq. (2.62) together with the Baker-
Campbell-Hausdorff (BCH) formula [32], we obtain that

eiβTjTie
−iβTj = (cosβ)Ti + (sin β) εijk Tk , (2.63)

for i 6= j and where β is an arbitrary parameter.
Moreover, let us define a group element g(θ, ϕ) ∈ G, given by

g(θ, ϕ) = exp (−iϕM3) exp (−iθM2) exp (+iϕM3) . (2.64)
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Note that the element in eq. (2.64) is single-valued, whenever θ 6= π.
When θ = π, we recall the definition of eq. (2.39) to obtain that

g0(ϕ) = g(π, ϕ)g−1(π, 0) = exp(−2iϕM3) . (2.65)

The condition (2.40) for this loop to be single-valued implies that

exp (4πiM3) = 1 , (2.66)

which is the generalization of the Dirac quantization condition for non-
abelian monopoles. Provided that M3 is a generator of a su(2) sub-
algebra, its eigenvalues are integers or half-integers. This means that
eq. (2.66) is always satisfied. Moreover, whether this loop is contractible
or not will inform us when the monopole solutions belong to a non-
trivial topological sector.

Besides the quantization condition, it is interesting to note that
eq. (2.63) implies that

g(θ, ϕ)M3 g
−1(θ, ϕ) = naMa , (2.67)

with na = xa/r. This is usually called the hedgehog configuration. Fur-
thermore, using eq. (2.63), it is easy to show that under a gauge trans-
formation as in eq. (2.42) by a gauge group element given by eq. (2.64),
the Dirac string is removed. In appendix A we show this calculation in
details. In fact, after the gauge transformation, the cartesian compo-
nents of the gauge field can be written as

Wi(r →∞) = −εijk
nj

er
Mk . (2.68)

The gauge field configuration gives rise to the asymptotic magnetic
monopole field

Bi(r →∞) = − ni

er2 n
aMa = − xi

er3 gM3g
−1 . (2.69)

With regard to the scalar field φ, there is little we can in a gen-
eral situation. Actually, the form of its asymptotic configuration, given
by eq. (2.38), will strongly depends on φ0 and also on the choice of
the su(2) subalgebra of the monopole generators. That is, we cannot
calculate a completely general situation, since it depends on the com-
mutation relations between the generators of L(G). Instead, we present
here a quite general situation, which will be useful for all the monopole
solutions we analyze in this work.
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Let us suppose that φ0 = u ·H can be written as2

φ0 = v (S + ωQ0) (2.70)

where v is the vacuum expectation value (VEV) of the Higgs field, while
ω is some convenient constant in the decomposition and [M3, S] = 0 =
[M3, Q0]. Now, let us define

M± = M1 ± iM2 . (2.71)

In our construction the generator S ∈ L(G) is such that [S,M±] = 0.
This means that S is a singlet under the su(2) that generates the
monopole since [S,Mi] = 0, ∀ i = 1, 2, 3. On the other hand, let
us suppose that Q0 belongs to a set of generators Qm, with m =
0, ±1, . . . , ±l, which satisfy the commutation relations

[M3, Qm] = mQm , (2.72)
[M±, Qm] = c±l,mQm±1 , (2.73)

where c±l,m =
√
l(l + 1)−m(m± 1). In fact, Qm are the so-called

standard components of irreducible tensor operators [32]. They form a
(2l+1)-plet of the su(2) subalgebra. Thus, in the situation we defined
above we can find the asymptotic form of the Higgs field

φ(θ, ϕ) = v g(θ, ϕ) (S + ωQ0) g−1(θ, ϕ) ,

where g(θ, ϕ) is given by eq. (2.64).
First, let us recall that since S is a singlet, it is trivial to see that

g(θ, ϕ)S g−1(θ, ϕ) = S . (2.74)

Then, we only need to perform the following transformation

g(θ, ϕ)Q0 g
−1(θ, ϕ) ,

which we shall compute making use of spherical harmonics and prop-
erties of irreducible representations of su(2) algebras.

Let us recall that in a (2j + 1) irreducible representation of a su(2)
algebra with generators Ji, i = 1, 2, 3, and with eigenstates |j,m〉, the
spherical harmonics can be written as [42],

Y ∗jm(θ, ϕ) =
√

2j + 1
4π Dj

m0(φ, θ, 0),

2We shall discuss a more general situation later on.
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where

Dj
m0(φ, θ, 0) = 〈j,m| exp(−iϕJ3) exp(−iθJ2) |j, 0〉 = e−iϕm djm0(θ)

and

djm0(θ) = 〈j,m| exp(−iθJ2) |j, 0〉

= δm0 +
∞∑
n=1

(−iθ)n

n!

[(
Dj(J2)

)n]
m0

,

with Dj(Ji)m′m = 〈j,m′| Ji |j,m〉.
The commutation relations (2.72) and (2.73) can be written as

[Mi, Qm] = Dl(Mi)m′mQm′ , (2.75)

where Dl(Mi)m′m is the (2l + 1)−dimensional representation of the
su(2) generator Mi in the basis of the Qm’s. Then,

exp (−iθM2) Q0 exp (iθM2) = Q0 +
∞∑
n=1

(−iθ)n

n! [M2, [M2, . . . , [M2, Q0]]]︸ ︷︷ ︸
n

=
∑
m

{
δm0 +

∞∑
n=1

(−iθ)n

n!
[(
Dl(M2)

)n]
m0

}
Qm

=
∑
m

dlm0(θ)Qm .

Hence,

g(θ, ϕ)Q0 g(θ, ϕ)−1 =
∑
m

e−iϕm dlm0(θ)Qm

=
(

4π
2l + 1

)1/2∑
m

Y ∗lm(θ, ϕ)Qm . (2.76)

Therefore, it follows from eqs. (2.74) and (2.76) that

φ(θ, ϕ) = v S + α

+l∑
m=−l

Y ∗lm(θ, ϕ)Qm , (2.77)

with

α = vω

√
4π

2l + 1 . (2.78)



41

In summary, when φ0 can be decomposed in a singlet and a (2l+1)-plet,
we obtain an asymptotic configuration of the form of eq. (2.77).

From the results of eqs. (2.68), (2.69) and (2.77) we can propose an
ansatz for the whole space. From the asymptotic gauge field configu-
ration (2.68), one can propose the ansatz

Wi = − [1− u(r)]
er

εijkn
jMk , (2.79)

with the radial function u(r) satisfying the conditions, u(r = 0) = 1
and u(r →∞) = 0. From this gauge field we obtain the magnetic field3

Bi =
(
u′

er
P ikT + u2 − 1

er2 P ikL

)
Mk , (2.80)

where P ikT = δik − nink, P ikL = nink and u′(r) stands for du/dr.
Finally, we recall eq. (2.77) to propose an ansatz for the scalar field,

who takes the form
φ(r) = φS + φq , (2.81)

where

φs = v S, (2.82)

φq(r, θ, ϕ) = α f(r)
∑
m

Y ∗lm(θ, ϕ)Qm . (2.83)

where the radial function f(r) satisfies f(r = 0) = 0 and f(r →∞) = 1.
Note that the boundary conditions for u(r) and f(r) are chosen such
that the monopole is regular at the origin. This means that when
r → 0 the function u(r) must behave as u(0) − 1 ∝ −r2, while f(r)
must increase with rl. On the other hand, when r →∞ both the gauge
and Higgs fields must approach its asymptotic values, which justifies
why u(r →∞) = 0 and f(r →∞) = 1.

Additionally, note that our construction indeed gives rise to a spher-
ically symmetric monopole. Using the result

iεkab x
a ∂bY

∗
lm = Dl(Mk)m′mY ∗lm′ , (2.84)

it is straightforward to show that our scalar and gauge fields satisfy the
conditions (2.44) and (2.45).

Before we proceed to the next section, let us add a relevant com-
mentary. When we constructed our ansatz we have considered that the

3The detailed calculation is available at appendix A.
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scalar field φ could be written as the sum of two terms, one that is a
singlet under su(2) and another one which transforms as a (2l+1)-plet.
Although this is not the most general case, it is sufficient to construct
all the monopoles we shall discuss. However, this construction can be
extended to a more general class of vacuum configurations φ0.

Let us suppose that φ0 can be decomposed as

φ0 = v
∑
l

clQ
l
0 (2.85)

where cl are coefficients that may be necessary in the decomposition.
The generators Ql0, with l = 1, 2, . . . , n, are just a generalization of our
original Q0, i.e., each one of them belongs to a set of 2l+ 1 generators
Qlm, where m = 0, ±1, . . . , ±l, satisfying the commutation relations of
eqs. (2.72) and (2.73). Thus, we can extend the result of eq. (2.76) to
each one of the terms in the expansion (2.85). This implies that

φ(θ, ϕ) = v

n∑
l=0

+l∑
m=−l

αl Y
∗
lmQ

l
m , (2.86)

where
αl = cl

√
4π

2l + 1 . (2.87)

Note how this is close to a multipole expansion in ordinary electrody-
namics [43]. Now, with regard to an ansatz for the whole space, we
must be careful. If, by any chance, one needs to construct magnetic
monopoles in agreement with eq. (2.86), some caution must be taken
with the profile functions to be introduced and the boundary conditions
at the origin.

Finally, using the same arguments as before, the field configuration
(2.86), together with eq. (2.79), is spherically symmetric with respect
to the generalized angular momentum defined in eq. (2.43).

2.4. THE ’T HOOFT-POLYAKOV MONOPOLE REVISITED

In the previous sections we have constructed a quite general ansatz
for non-abelian magnetic monopoles, for the physically interesting case
of a scalar field φ in the adjoint representation. Now we shall use our
general results in order to construct and discuss the simplest monopole
solution, found in the SO(3) Georgi-Glashow model by ’t Hooft and
Polyakov [3, 4], independently, in 1974.

Let us consider a theory with the gauge group G = SU(2), whose
generatorsMa, a = 1, 2, 3, satisfy Tr(MaMb) = y δab. We also consider
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a Higgs field φ in the 3-dimensional representation. The action is given
by eq. (2.19), while the potential term V (ϕ) is taken to be the usual
mexican hat potential, given by

V (φ) = λ

4

(
Tr(φφ)
y

− v2
)2

, (2.88)

where λ ∈ R+. The ground state φ0 is chosen to be

φ0 = vM3 , (2.89)

which breaks SU(2) down to G0 = U(1). Since the only choice for the
monopole generators of eq. (2.62) is the full set of generators in L(G),
we have already named them as Ma. Then, from eq. (2.60) the gauge
field configuration in the string gauge is

W (0)
ϕ = 1− cos θ

e
M3 .

Thus, the gauge field takes the exact form of eq. (2.68).
With regard to the Higgs field, note that there is a subtlety in

the definition of the tensor operators Qm. Since L(G) contains only
the generators of a su(2) algebra, the correct commutation relations of
eqs. (2.72) and (2.73), with l = 1, can be obtained with

Q0 = M3 ,

Q±1 = ∓M±√
2
.

From the definition ofM± in eq. (2.71), it follows directly that [M±,M∓] =
±2M3 and [M±,M3] = ∓M±. Then, it is trivial to check that [M±, Q0] =√

2Q±1 and [M±, Q∓1] =
√

2Q0. Likewise, it also follows that [M3, Qm] =
mQm, with m = −1, 0, +1. Also note that there is no singlet term S,
since from eq. (2.89) we see that φ0 = v Q0.

Thus, we can use our general result of eq. (2.77), in the particu-
lar case of l = 1, in order to obtain that the Higgs field asymptotic
configuration is given by

φ(θ, ϕ) = v

√
4π
3

+1∑
m=−1

Y ∗1mQm = v naMa . (2.90)

We could also be more compact and say that this is the result of
eq. (2.86) when only l = 1 gives rise to non-trivial terms. Moreover,
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it is relevant to add that there is an easier way to obtain this asymp-
totic configuration, since one could recall the fact that both φ0 and
W

(0)
ϕ are in the same direction and lie only in the su(2) algebra of

the monopole generators. Then, from eq. (2.67), we directly obtain
that φ(θ, ϕ) = v naMa. Nevertheless, our general procedure provides
us with techniques to deal with more complicated situations. In chap-
ter 4, for instance, we shall work with a configuration which is much
more difficult to be computed by the standard methods.

Therefore, in full agreement with our previous results of eqs. (2.68)
and (2.77), we propose an ansatz of the form

φ = v f(r)naMa ,

Wi = − [1− u(r)]
er

εijkn
jMk ,

(2.91)

with the aforementioned boundary conditions. Note that, again, the
magnetic field is given by eq. (2.80), i.e.,

Bi =
(
u′

er
P ikT + u2 − 1

er2 P ikL

)
Mk .

Then, we can plug the ansatz of eq. (2.91) into eq. (2.24) in or-
der to obtain the well-known hamiltonian E of the ’t Hooft-Polyakov
monopole. For the sake of clarity, we shall show some steps of the calcu-
lation here. However, in section 4.2 we will show how one can calculate
a general hamiltonian for a Higgs field of the form of eq. (2.77), i.e.,
written in terms of the spherical harmonics and the tensor operators
Qm. So, in order to avoid repetition of our calculations through the
chapters, we will proceed with our present calculation, but making use
of the form φ(θ, ϕ) = vf(r)naMa only.

First of all, let us calculate the term Tr(DiφDiφ) in the hamiltonian.
From the ansatz of eq. (2.91), we see that

Diφ = v [(∂if(r))naMa + f(r)Di (naMa)] .

Using that ∂if(r) = nif ′(r), where f ′(r) stands for df(r)
dr , and the ansatz

of the gauge field, which is necessary in the gauge covariant derivative
expression (2.21), we obtain that

Diφ = vf ′(r)P iaL Ma + v
f(r)
r

[
P iaT Ma + (1− u)εijkεabknjnaMb

]
,

where we also used that ∂i na = (1/r)P iaT . Then, from the properties
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of the Levi-Civita symbol, we get that

Diφ = v

(
f ′ P iaL + fu

r
P iaT

)
Ma . (2.92)

Thus, recalling that the projectors P iaL = nina and P iaT = (δia − nina)
are such that

P iaL P
ib
L = P abL ,

P iaT P
ib
T = P abT ,

P iaL P
ib
T = 0 ,

where we used the implicit sum convention, we obtain that P iaL P iaL = 1
and P iaT P iaT = 2. Therefore, the kinetic term for the Higgs field in the
hamiltonian will be given by

1
2y Tr (DiφDiφ) = 1

2 (f ′)2 + (fu)2

r2 . (2.93)

Note that we used the fact that Tr(MaMb) = yδab.
Now, using the same arguments of the trace between generatorsMa

and the properties of the above projectors, we obtain that

1
2y Tr (BiBi) = (u′)2

e2r2 + 1
2

(u2 − 1)2

e2r4 . (2.94)

Finally, the contribution from the mexican hat potential is the simplest
one. From the fact that,

1
y
Tr (φφ) = v2f2 ,

it follows that
V (φ) = λ

4 v
2 (f2 − 1

)2
. (2.95)

Furthermore, we must join all the contributions from eqs. (2.93) to (2.95)
and use the spherical symmetry of the integrand in order to obtain
the ’t Hooft-Polyakov hamiltonian. After a change of variables where
ξ = evr, we obtain that E is given by

E = 4πv
e

∫ ∞
0

dξ

{
(u′)2 + 1

2
(u2 − 1)2

ξ2 + 1
2 ξ

2(f ′)2

+u2f2 + λ

4e2 ξ
2(f2 − 1)2

}
, (2.96)
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where u′(ξ) and f ′(ξ) denote derivatives with respect to ξ.
The conditions for E to be stationary with respect to f(ξ) and u(ξ)

provide the equations of motion for the ansatz of the ’t Hooft-Polyakov
monopole

u′′ = f2u+ u(u2 − 1)
ξ2 , (2.97a)

f ′′ = −2
ξ
f ′ + 2

ξ2 fu
2 + λ

e2 f(f2 − 1) . (2.97b)

The appropriate boundary conditions (with respect to ξ) are

f(0) = 0, u(0) = 1 (2.98)
f(ξ →∞) = 1, u(ξ →∞) = 0. (2.99)

This set of second order ordinary differential equations possess an an-
alytical solution in the limit of λ → 0 (with λ/e2 finite), i.e., in the
Prasad-Sommerfield limit [36]. In this case, they reduce to first order
equations, which could also have been obtained by plugging the ansatz
(2.91) into the Bogomolny equations (2.30b).

Now, since it is not possible to find an analytical solution for a
general value of λ to eqs. (2.97a) and (2.97b), we can analyze what
happens in the limit ξ → 0 and ξ →∞ and then implement a numerical
method.

When ξ → 0 one can see that u(ξ) − 1 ∝ −ξ2, while f(ξ) ∝ ξ in
order for the equations of motion to be satisfied in this region. On the
other hand, when ξ →∞ one can check that

u(ξ) = O [exp (−ξ)] , (2.100)

f(ξ)− 1 = O

exp
(
−
√

2λ
e2 ξ

)
ξ

 . (2.101)

Note that the behavior for ξ � 1 can be conveniently written in terms
of r as

u(r) = O [exp (−Mr/~)] and f(r)− 1 = O

[
exp (−µr/~)

evr

]
,

whereM = ev~ and µ =
√

2λ are the masses of the massive particles in
the theory. The approach to the asymptotic form is thus given by the
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Figure 2.1: The monopole profile functions u(ξ) and f(ξ) for λ/e2 =
0 (solid curves), λ/e2 = 0.1 (dashed curves) and λ/e2 = 1 (dotted
curves).

Compton wavelength of the particle associated to the field in question.
From these results, we see that we can think of the ’t Hooft-Polyakov
monopole as having a definite size, inside which the massive fields play
a role in providing a smooth structure and outside which they rapidly
vanish, leaving a field configuration exactly like the one in the Dirac
Monopole [6].

With regard to the numerical solution we should recall that this
problem has already been solved in details and with advanced numeri-
cal techniques. See, for instance, [44] and [45]. Nevertheless, we present
in fig. 2.1 a numerical solution which was done with MATLABR© program
bvp4c, for some particular coupling constant values. Besides that, in
section 4.2.1, we will show how one can compute the approximate so-
lutions for a broader case while in section 4.2.2, we shall also give more
details on how the numerical solutions can be implemented.

At the moment we have the numerical solution, we can use it in
order to obtain the classical mass of the monopole, given by eq. (2.96).
First, let us define the rescaled mass ẼtHP (λ/e2) [44], such that the
hamiltonian (2.96) is written by

E = M0ẼtHP (λ/e2), where M0 = 4πv
e

.

Note that ẼtHP (λ/e2) is a monotonically increasing function of λ/e2,
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since
dẼ(λ/e2)
d(λ/e2) = 1

4

∫ ∞
0

dξ ξ2(f2 − 1)2 > 0 . (2.102)

We obtain the lower bound when λ = 0 and numerical integration shows
that [44] Ẽ(0) = 1.000, in agreement with the analytical solution found
by Prasad and Sommerfield [36]. On the other hand, the upper bound
can be obtained in the limit λ → ∞, where the monopole mass stays
finite. This is due to the fact that, in this limit, f(ξ) = 1, ∀ ξ > 0 but
f(0) = 0. Then, the mass is given by

E = 4πv
e

∫ ∞
0

dξ

[
(u′∞)2 + (u2

∞ − 1)2

2ξ2 + u2
∞

]
. (2.103)

Thus, the only equation of motion is

u′′∞ = u∞ + u∞(u2
∞ − 1)
ξ2 . (2.104)

Performing the numerical solution of eq. (2.104) and making the inte-
gration of eq. (2.103) we obtain that Ẽ(∞) = 1.787 [29, 44, 46] is the
upper bound of the monopole mass.

2.4.1 The Magnetic Charge

In the last section, we have once more presented the form of the
magnetic field (2.80) of a monopole constructed from the gauge field
ansatz (2.79). But, note that far from the monopole core, Bi reduces
to eq. (2.69), that is

Bi = − ni

er2 g(θ, ϕ)M3 g
−1(θ, ϕ) ,

where the magnetic field is spherically symmetric and it takes values
in the local U(1) symmetry, given by g(θ, ϕ)M3 g

−1(θ, ϕ). This means
that the ’t Hooft-Polyakov monopole contributes to an abelian magnetic
flux over S2

∞. The magnetic charge g will be the natural measure of
this flux.

Let us define
Fµν = 1

vy
Tr (Gµνφ) . (2.105)

One can show that, at spatial infinity, this tensor satisfies Maxwell’s
equations in the Higgs vacuum [6, 47]. In order to prove this, we only
need to use the condition Dµφ = 0, the scalar field equations of motion
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and the Bianchi identity. Then, we shall call Fµν the electromagnetic
field strength. From this definition, the abelian magnetic charge in the
U(1) direction is defined as the surface integral

g =
∮
S2
∞

dSi
∗F 0i = 1

vy

∮
S2
∞

dSi Tr
(∗G0iφ

)
. (2.106)

Moreover, we should emphasize that this definition is valid for all the
monopole solutions with an adjoint Higgs field, i.e., it is not restricted
to the ’t Hooft-Polyakov monopole.

Using the fact that

1
vy

Tr (Biφ) = − ni

er2

it follows that the magnetic charge of the ’t Hooft-Polyakov monopole
is

g = −4π
e
. (2.107)

On the other hand, we could have chosen an alternative approach where
we define a magnetic current for the whole space, not only the Higgs
vacuum. And even though there are two well-known possibilities for
this, one suggested by ’t Hooft [3] and the other one by Bogomolny [35]
and Fadeev [48], we shall present the latter approach only, because
the suggestion from ’t Hooft is singular at the center of the monopole.
Besides that, as pointed out by [49] there is no unambiguous way to
measure the charge density of a monopole. Only the total charge makes
sense.

Let us now extend the definition of eq. (2.105) to the whole space.
The corresponding magnetic current is [6]

kµ = 1
vy

∂ν Tr (∗Gµνφ) . (2.108)

The conservation of the magnetic current follows from its definition as
the divergence of an antisymmetric and twice differentiable tensor. We
will see later on how kµ is indeed a topological current.

Now, since we are working in a frame where there are no electric
fields, it follows that the only non-trivial component of kµ is k0 and it
is given by

k0 = 1
vy
∂iTr

(
Biφ

)
= ∂i

(
u2 − 1
er2 f(r)ni

)
. (2.109)
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The integral∫
R3
d3x k0 = 4π

e

∫ ∞
0

dr
d

dr
[f(u2 − 1)] = −4π

e
, (2.110)

gives the magnetic charge g, as expected. Note that we have used
the boundary conditions at the origin and at infinity for the radial
functions u and f . Therefore, we know that the magnetic charge of a
’t Hooft-Polyakov monopole is conserved. However, we can still use an
alternative approach in order to prove it is also quantized.

2.4.2 The topological approach

In this section we shall follow the construction of [30]. In order to do
so, let us first define some conventions.

Since φ, Wi and Diφ take values in a su(2) algebra, we can expand
them as

φ = φaMa ,

Wi = WiaMa , (2.111)
Diφ = (Diφ)aMa ,

where
(Diφ)a = ∂aφa − eεabcWibφc . (2.112)

Besides that, let us define

φ̂ = φ

|φ|
, where |φ| =

√
φaφa . (2.113)

We know from the finite energy constraint that, at spatial infinity,
|φ| → v and that Diφ falls faster than r−3/2. Then,

1
8πy ε

ijk

∮
S2
∞

dSi φ̂ ·
(
Dj φ̂×Dkφ̂

)
= 0 . (2.114)

If we expand the covariant derivatives, we obtain that

0 = 1
8πy εijk

∮
S2
∞

dSi
{
φ̂ ·
(
∂j φ̂× ∂kφ̂

)
+ eφ̂ ·

[
∂j φ̂×

(
~Wk × φ̂

)
+
(
~Wj × φ̂

)
× ∂kφ̂

]
+ e2φ̂ ·

(
~Wj × φ̂

)
×
(
~Wk × φ̂

)}
,
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which can be simplified to

0 = 1
8πy εijk

∮
S2
∞

dSi
{
φ̂ ·
(
∂j φ̂× ∂kφ̂

)
+e ∂j φ̂ · ~Wk + e ∂kφ̂ · ~Wj + e2

(
~Wj × ~Wk

)
· φ̂
}
.

After an integration by parts, we get that

1
8πy εijk

∮
S2
∞

dSi
{
φ̂ ·
(
∂j φ̂× ∂kφ̂

)
+ e φ̂ · ~Gjk

}
= 0 . (2.115)

Now, from the definition

~Bi = −1
2εijk

~Gjk

we can write eq. (2.115) as

Nφ = e

4π

∮
S2
∞

dSiφ̂ · ~Bi , (2.116)

where Nφ is given by

Nφ = 1
8π εijk

∮
S2
∞

dSi φ̂ ·
(
∂j φ̂× ∂kφ̂

)
. (2.117)

Then, using the expression for the abelian magnetic charge (2.106),
which can be written as

g =
∮
S2
∞

dSi φ̂ · ~Bi , (2.118)

we obtain that
g = 4π

e
Nφ . (2.119)

The integral Nφ is a topological quantity and it is an integer [50]. In
fact, it is a winding number for a map between two 2-spheres, i.e., it
measures the number of times φ̂ covers a 2-sphere Σ in internal space
while r̂ covers S2

∞ once. In our specific case, Nφ = 1, because we
are working with only one ’t Hooft-Polyakov monopole. However, the
situation could be different in the case of a multi-monopole solution,
for example.
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3. ASPECTS OF NON-ABELIAN MONOPOLES

In this chapter we shall analyze some characteristics of non-abelian
magnetic monopoles. In order to do so, we need to review the symmetry
breaking patterns so that we can classify monopoles according to the
unbroken gauge group. Besides that, we shall present a brief review of
GUTs, in order to justify why it is interesting to study SSB patterns.
After that, we shall discuss a way to embed the ’t Hooft-Polyakov
monopole in more general theories. Finally, we shall also review the
so-called "Problem of Global Color".

3.1. SYMMETRY BREAKING PATTERNS

We have already discussed in section 2.3.3 under what circumstances
a vacuum configuration such as φ0 = φ0aTa can be rotated to the
Cartan subalgebra H, so that

φ0 = u ·H ,

where u is a constant vector. We know from eq. (2.35) that G0, which is
the unbroken gauge group with respect to the point where φ(θ, ϕ) = φ0,
has generators such that [φ0, Ta] = 0. Since φ0 commutes with itself
and with all the other generators in L(G0), then, it immediately follows
that φ0 generates an invariant U(1) subgroup of G0. Thus, G0 will be
of the form [40]

G0 = “K × U(1)” , (3.1)

where the quotation marks refer to the local structure of the unbroken
gauge group, only.

Hence, let us look at the other generators of G commuting with
φ0. Clearly, all the Cartan generators Hi do, so the rank of the exact
symmetry group G0 is equal to the rank of G. Next, note that according
to eq. (2.10)

[φ0, Eα] = (u · α)Eα .

Thus, the step operator Eα belongs to L(G0) if and only if (u · α) = 0.
The same applies to E−α.

Now, let us recall the result (2.17) that any root α can be expanded
in terms of the r simple roots αa as

α =
r∑
a=1

naαa ,

53



54

where na are all positive or all negative integers, depending whether α
is a positive or negative root. Then,

u · α =
r∑
a=1

na (u · αa) . (3.2)

Thus, we can enumerate the possibilities.
First, let us suppose that u · αa 6= 0, ∀ a = 1, . . . , r. This implies

that L(G0) has no step operators Eα and is, therefore, generated only
by the Cartan generators Hi. That is, the unbroken gauge group will
be of the form

G0 = (U(1))r = U(1)× U(1)× · · · × U(1) .︸ ︷︷ ︸
r times

We shall denote this case by Maximal Symmetry Breaking (MSB).
Next, let us suppose that only l < r products in the sum (3.2) are

equal to zero. Let us denote by α(B)
a the r − l simple roots satisfying

u · α(B)
a 6= 0 and by α(U)

a the l simple roots which satisfy u · α(U)
a = 0.

Then, note that from eq. (2.35) the step operators related to α(U)
a will

belong to L(G0), while those related to the simple roots α(B)
a will be

broken generators. Then, it follows that the unbroken gauge group will
be of the form

G0 = “H × (U(1))r−l” , (3.3)

where H has rank l. Now, let us recall that each dot in the Dynkin
diagram of a Lie algebra represents a simple root αa. When we say that
the step operators associated with α

(B)
a do not belong to L(G0), this

means that, in order to obtain L(H), we must eliminate the respective
circles in the original diagram of L(G). That is, L(H) can be obtained
by deleting the dots associated to the r− l roots α(B)

a from the Dynkin
diagram of L(G). For more details, please see [40]. We shall call this
case a Non-Abelian Unbroken Symmetry (NUS).

Finally, let us define a special case of NUS, called Minimal Sym-
metry Breaking. In this case, l = r − 1 and so G0 will be of the form
of (3.1). Moreover, it can be shown that, in order for this U(1) to be
compact so that magnetic charge is quantized, the vector u must be
proportional to a fundamental weight of G [7], let us say to λp. Then,
in this case, G0 will have the general form [5,7]

G0 = K × U(1)
Z

, (3.4)
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where K is a semisimple group, Z is a discrete subgroup of the center of
K, Z(K), which belongs to U(1) and K, i.e., Z = U(1)∩K. Moreover,
from what we have discussed above, we can obtain the Dynkin diagram
of L(K) by deleting the root αp in the original diagram of L(G).

Then, let us give some simple examples of this minimal symmetry
breaking patterns. When G = SU(5), there are two possibilities for
the SSB. They are:

a) αp = α1 or α4, then K = SU(4),

b) αp = α2 or α3, then K = SU(3)× SU(2).

The latter example is the so-called minimal SU(5) Grand Unified The-
ory broken by an adjoint Higgs field to SU(3)C × SU(2)L × U(1)Y .

On the other hand, if G = Spin(10)1, we can have the following
possibilities:

a) αp = α1, then K = Spin(8),

b) αp = α2, then K = SU(2)× SU(4),

c) αp = α3, then K = SU(3)× SU(2)× SU(2),

d) αp = α4 or α5, then K = SU(5).

Note that, by the moment, we are only interested in the symmetry
breaking patterns. However in the next subsection, we shall give a brief
review of GUTs in order to explain why we have a physical motivation
to analyze these SSB patterns.

Moreover, let us emphasize that in chapter 4 we shall use the min-
imal symmetry breaking given by eq. (3.4) in order to construct the
Dark Monopole solutions.

We end this section by emphasizing that, even though we have de-
termined the possible symmetry breaking patterns for an adjoint Higgs
field, this problem is much more complicated for φ in other representa-
tions.

3.1.1 Brief Overview of GUTs

The Standard Model (SM) of the strong, weak and electromag-
netic interactions is a gauge theory with symmetry group GSM =
SU(3)C × SU(2)L × U(1)Y , where SU(3)C is associated to the strong
interaction, SU(2)L to the weak interaction and U(1)Y to hypercharge.

1Spin(n) is the universal covering group of SO(n).
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The SM fits the observed data rather well, but it has a number of fea-
tures which are somewhat unsatisfactory. It involves three independent
gauge coupling constants, in addition to the large number of parame-
ters needed to specify the Higgs potential and the fermion mass matrix.
Moreover, the multiplet structure of the observed particles seems to be
random. Finally, there is no explanation to the fact that electric charge
is quantized.

One way to deal with these difficulties is to embed the Standard
Model in a Grand Unified Theory, based on a simple gauge group G ⊃
GSM . The fact that G is simple implies that there is only a single
gauge coupling constant as well as explains the quantization of weak
hypercharge (and hence of electric charge). It also turns out to be
possible to construct GUTs in which the observed fermions fit into a
relatively simple multiplet structure. For instance, for G = SU(5) the
set of all observed particles can be accommodated in a 5̄ representation
and in a 10, with no new particles being needed. On the other hand,
in the SO(10) case the same particles can be put into a single 16-
dimensional representation, with only one new necessary particle, which
would correspond to the right-handed neutrino.

The symmetry breaking in GUTs can be viewed as occurring in
stages [9]

G→ G
(1)
0 → G

(2)
0 → · · · → SU(3)C × SU(2)L × U(1)Y .

Note that at each stage there exists a Higgs field responsible for the
symmetry breaking.

Let us recall that the simplest GUT is [8]

SU(5) 1016 GeV−−−−−−→ SU(3)C × SU(2)L × U(1)Y
102 GeV−−−−−→ SU(3)C × U(1)em ,

where the first step of the SSB has been already introduced in sec-
tion 3.1. The second stage is the symmetry breaking in the Weinberg-
Salam model, where the Higgs field is in a 2-dimensional representa-
tion [51,52].

Remember that more complex sequences are possible with larger
gauge groups such as SO(10) or E6 [40]. If we restrict ourselves to the
case of real adjoint Higgs fields, which we have thoroughly discussed
in this dissertation, we can use the tools defined in the last section in
order to determine all the possibilities of symmetry breaking patterns.
However, we again emphasize that when φ is in another representation,
then, the problem is much more complicated.

Finally, let us recall that there are predictions which are common
to all GUTs [9]:
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a) The sum of the electric charges of all particle species in a multiplet
vanishes.

b) There are indications that the running gauge coupling constants
(properly normalized) for the weak, electromagnetic and strong
interactions tend to the same value when evaluated at sufficiently
high unification temperature Tc ∼ 1016 GeV, where we take the
Boltzmann constant to be KB = 1.

c) Magnetic monopoles should exist. And the observation of such
monopoles may be one of the few possibilities to obtain experi-
mental support for the unification hypothesis.

Before we continue, let us explain the last item in more details. Let
us recall that π2(G/GSM) is isomorphic to π1(GSM) as long as we take
the unification gauge group G to be a universal covering group2. Then,
it follows from π1(GSM ) = Z that these theories possess topological
magnetic monopoles. Besides that, it should be clear that in this ar-
gument we considered just the initial symmetry G and the surviving
gauge symmetry GSM of the the Standard Model. However, since these
GUTs might involve many steps of symmetry breaking we may have
some magnetic monopoles forming in the intermediate steps, but they
may or may not survive the consecutive SSB steps down to GSM . In
addition, we remember that in theories with subsequent steps of sym-
metry breaking composite objects can be produced, such as monopoles
attached to strings (see, for instance [53,54] and references therein).

Therefore, there are good reasons to expect that a Grand Unifica-
tion of the electroweak and strong interactions takes place at energies
about 1016 GeV. Then, topological defects such as cosmic strings and
monopoles, that occur naturally in GUT theories, might play some role
in the early universe [55]. According to Kibble [56], these topological
defects would be produced during the cosmological phase transitions
by which the universe has been through.

Also note that, from the fact that the masses of GUT monopoles
are proportional to the energy scale of grand unification, it implies that
they are far beyond the reach of particle physics experiments. Then,
the most plausible source of monopoles is as relics surviving from the
early universe [30].

2Note that there is no loss of generality in this choice, since the universal cov-
ering group admits all the possible representations of L(G). Moreover, a universal
covering group G is such that π1(G) = 0 = π0(G), i.e., it is connected and simply-
connected [32].
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3.2. EMBEDDING SU(2) MONOPOLES

In this section we shall use our results of chapter 2 in order to show
how one can construct an embedded ’t Hooft-Polyakov monopole in a
more general theory. We shall present the construction due to Bais [57],
which was proposed for monopoles in theories with MSB. However, we
shall also discuss what happens to the NUS case.

Once more, let us consider a theory with an adjoint Higgs field φ
with the vacuum configuration φ0 = u ·H, which breaks the compact
and simply-connected gauge group G to G0. Now, let us take the
monopole generators Mi to be

Mi = Tαi , (3.5)

where Tαi , i = 1, 2, 3, are given by (2.12) and are the generators of a
su(2) subalgebra associated to the root α, such that α · u 6= 0, which
implies that M3 ∈ L(G0) and M1, M2 /∈ L(G0). We can decompose
φ0 = u ·H as [57]

φ0 =
(
u− u · α

α2 α
)
·H + (u · α) Tα3 . (3.6)

The first term is a singlet under the su(2) generated by eq. (3.5), since[(
u− u · α

α2 α
)
·H, Tαi

]
= 0 , ∀ i = 1, 2, 3 . (3.7)

Therefore, we can use the result of eq. (2.77) with

S =
(
u− u · α

α2 α
)
·H ,

and with the generators Q0 = M3, Q±1 = ∓M±/
√

2, similar to what
we did for the ’t Hooft-Polyakov monopole. Then, from eqs. (2.79)
and (2.81) to (2.83), these monopoles will have the form

φ = S + (u · α) f(r)naMa,

Wi = − [1− u(r)]
er

εijkn
jMk ,

with the same boundary conditions as the ’t Hooft-Polyakov monopole.
Note that, except for the decomposition related to the singlet term S,
this is similar to the ansatz of eq. (2.91). Moreover, from the fact
that DiS = 0, it follows from the general hamiltonian (2.24) that the
kinetic terms of the Bais monopole will be of the same form of the ’t
Hooft-Polyakov case, up to some normalization.
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On the other hand, the potential V (φ) does not need to be nec-
essarily the same. Nevertheless, in principle, we can use the mexican
hat potential (2.88). When this happens the second order equations of
motion for the profile functions will be of the form of those in the ’t
Hooft-Polyakov monopole.

But, in fact, Bais [57] have only discussed monopole solutions in the
Prasad-Sommerfield limit of vanishing potential, i.e., the specific form
of V (φ) need not be determined. In this limit, the first order equations
of motion will also be the same as those from the BPS limit of the ’t
Hooft-Polyakov case, regardless of the choice of V (φ).

It is relevant to note that, except for the possible magnetic charges,
all the derivations we have done for the ’t Hooft-Polyakov monopole
can be repeated in the same way for this embedded solution. For this
reason, we shall not discuss the details regarding the behavior of the
function u(r) and f(r) nor the lower and upper bounds for the mass,
for instance.

Now, let us recall that in the MSB case φ0 is such that that it breaks
G to G0 = (U(1))r. This implies that

π2 (G/G0) ∼= π1 (G0) ∼= Zr . (3.8)

In this special case, the monopole will possess r topologically conserved
charges.

However, note that this construction is equally valid for the NUS
case of eq. (3.3). Of particular interest to Grand Unified Theories is
the minimal symmetry breaking of eq. (3.4), where

π2 (G/G0) ∼= π1 (G0) ∼= Z . (3.9)

This means that the only magnetic charge to be topologically con-
served, in the standard sense, is the one in the direction of the U(1)
gauge symmetry. In the next section, we shall analyze in more details
the generalized quantization condition and the non-abelian magnetic
charges.

Therefore, the important information we should keep is that by
choosing the monopole generators to be given by (3.5) we can embed
’t Hooft-Polyakov monopoles in more general theories.

3.3. GENERALIZED QUANTIZATION CONDITION

In section 2.1 we have discussed that, in order for the Dirac string
to be undetectable, the electric and magnetic charges should satisfy
a quantization condition, given by section 2.1. Moreover, when we
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constructed smooth non-abelian monopoles in section 2.3.4 we have
also encountered a quantization condition, given by eq. (2.66). Then,
in this section we shall analyze the generalized quantization condition
in more details.

First, let us recall that since at r → ∞, φ = φ(θ ϕ), the exact
symmetry group G0 is, in fact, position-dependent and given by G0(r̂).
For this reason, we shall focus our analysis in a point along the positive
z−axis in the limit r → ∞, i.e., a point to which the unbroken gauge
group is indeedG0. This is due to the fact that at the north pole φ = φ0.
Then, in order to make the notation clear, let us define G0 ≡ G0(r̂ = ẑ).
From eq. (2.69) we know that, in this limit, the magnetic field at the
north pole is given by

Bi = − xi

er3 M3 .

However, for further convenience, we shall write it as

Bi = − G4π
xi

r3 . (3.10)

Now, note that the generalized quantization condition of eq. (2.66) can
be rewritten as

exp (ieG) = 1 . (3.11)

And it is easy to see that at any other point over S2
∞, Bi = −G(r̂)

4π
xi

r3 and
the quantization condition turns out to be exp (ieG (r̂)) = 1. Also note
that, again, in order to make the notation compact we use that G ≡
G(r̂ = ẑ). Now, even though there are more general ways of obtaining
this quantization condition, see for instance [6, 39], the result is the
same as we have obtained here. This shows that all the information
about the topological quantum number is contained in the “generalized
magnetic charge”, G, defined by the asymptotic generalized magnetic
field.

Let us recall that in order to make φ0 to lie in the Cartan subalgebra
H we have used a gauge transformation g ∈ G. But, since G ∈ L(G0),
we still have the freedom to make a gauge transformation, with an
element of the unbroken group G0, in order to rotate G to the same
Cartan subalgebra as φ0. In the mathematical literature this is called
framing [58, 59] and, unfortunately, it is quite common stated as the
only way to solve the generalized quantization condition (3.11). As we
shall see, this is indeed true for the case of MSB. However, in the case
of minimal symmetry breaking it is not natural to require G to lie in
H [58,59]. When this condition is imposed, we might loose interesting
non-equivalent monopole solutions.
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For the sake of completeness, let us analyze what happens when we
impose the framing condition. In this case, G can be written as

G = ~g · ~H , (3.12)

where we needed to use an explicit vector notation in order to avoid
confusion with any gauge group element g ∈ G. The r components
of the vector ~g are called the magnetic weights of the monopole [6, 30]
and one should remember that this “magnetic charge” is not gauge-
invariant. Note that from (3.12), eq. (3.11) can be written as

exp
(
ie~g · ~H

)
= 1 . (3.13)

We can now determine the possible magnetic weights of ~g if we act with
the quantization condition on an arbitrary weight state |µ〉. Using the
result (2.13) we obtain that

exp
(
ie~g · ~H

)
|µ〉 = exp (ie~g · ~µ) |µ〉 .

Then, for the quantization condition (3.13) to be satisfied it follows
that

e~g · ~µ
2π = n, with n ∈ Z . (3.14)

Let us recall that, from the fact that both roots and weights can be
written as integer combinations of the simple roots αi and the funda-
mental weights λi, respectively, as defined in eqs. (2.17) and (2.18), it
follows from the orthogonality condition (2.14) that for any root α and
any weight µ

2α · µ
α2 = N with N ∈ Z .

Therefore, the solution to eq. (3.13) is given by

e~g · ~H
2π =

r∑
a=1

na α
∨
a ·H , (3.15)

where nα ∈ Z and α∨ ≡ 2α/|α|2 is a coroot. This means that any
monopole solution under the framing condition will have its vector
magnetic charge ~g lying in the coroot lattice of L(G).

Note that, in the case of MSB, the fact that G ∈ L(G0) immediately
implies that G ∈ H. In this special case all the magnetic weights are
conserved topological charges. However, in the case of NUS theories,
this is not true for all of them. In fact, this happens because the
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magnetic weights can be redefined up to a transformation by an element
of the Weyl group [30, 39, 60]. Nevertheless, we shall not discuss this
topic here since we will not need it in the subsequent chapters. The
important information to keep is that these magnetic weights may have
relevant physical consequences, as showed by Bais and Schroers [58,59]
for the case of BPS solutions in the SU(3)→ U(2) symmetry breaking.

There is one more point regarding the framed magnetic charge
(3.12) we would like to emphasize. Note that G can always be trans-
formed by a general element of the unbroken gauge group G0. Also
note that each one of the possible final configurations will satisfy the
quantization condition (3.13), but in general they will not belong to
the Cartan subalgebra anymore. In the case discussed by Bais and
Schroers [58,59], the action of a U(2) element on G generates 2-spheres
of quantized radius and “height” in the coroot lattice of su(3). Of
course, a general case is much more complicated, but it is interesting to
note that these new configurations will be associated to non-equivalent
monopole solutions.

Now, let us come back to the general case of eq. (3.11) in order
to make a final remark. Let us recall that this generalized condition
came from our analysis (2.66) of closed loops in G0. This means that
the quantization condition is sensitive to the global structure of the
exact symmetry group G0, not only to its Lie algebra. This is why we
have stressed in section 3.1 the cases where we were discussing the local
structure, only.

3.4. THE PROBLEM OF GLOBAL COLOR

In section 2.3.1, we have showed that the unbroken gauge group
G0 is position-dependent, i.e, G0(r̂). This is due to the fact that the
monopole asymptotic configuration takes values in L(G) according to
eq. (2.34). Then, in order for the generators Ta ∈ L(G0) to belong to
L(G0(r̂)) they must transform as

Ta(θ, ϕ) = g(θ, ϕ)Ta g−1(θ, ϕ) , (3.16)

where g(θ, ϕ) ∈ G is the gauge group element used to construct the
monopole, in our case it is given by eq. (2.64). This transformation is
sometimes called a parallel transport of the generators [30].

Now, the interesting point here is that, in the presence of NUS
monopoles, only the generators Ta which commute with the general-
ized magnetic charge G are globally-well defined. Furthermore, when
there are generators in L(G0) which do not commute with G ∝ M3,
then, we say that there is no globally well-defined “rigid” copy of the
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unbroken gauge group. This topological obstruction in the definition
of the unbroken gauge group G0(r̂) is known as The Problem of Global
Color [61–69]. This imposes difficulties to the construction of chro-
modyons and to the quantization of non-abelian monopoles [30,58,59].

But, in order to make clear what kind of problem we are talking
about, let us give an example. Let us consider a YMH theory with
G = SU(3). We shall follow the conventions of section 2.2, where α1, α2
denote the simple roots of su(3), while ψ = α1 + α2 is the remaining
positive root. Next, let

φ0 = v
λ2 ·H
|λ2|

.

It follows from eq. (2.35) that L(G0) will be given by

L(G0) =
{
λ2 ·H
|λ2|

, Tα1
1 , Tα1

2 , Tα1
3

}
, (3.17)

where Tα1
i , i = 1, 2, 3, follow the conventions of eq. (2.12). Then, it is

trivial to see that, L(G0) is of the form su(2)⊕u(1), where λ2 ·H gives
the U(1) direction.

Now, since α2
1 = 2 = α2

2 and α1 ·α2 = −1, it follows that, for su(3),
α∨ = α and λ∨ = λ. Besides that, the inverse Cartan Matrix is given
by

K−1 = 1
3

(
2 1
1 2

)
.

Then, from the eq. (2.16) it follows that

λ∨2
|λ2|2

= 1
2 α
∨
1 + α∨2 .

Thus, this implies that

exp
[
2πi

(
λ∨2
|λ2|2

− 1
2 α
∨
1

)
·H
]

= exp (2πi α∨2 ·H) = 1 .

The last step follows from the fact that α∨2 · H acting on any weight
state |n1λ1 + n2λ2〉, with n1, n2 ∈ Z, gives

α∨2 ·H |n1λ1 + n2λ2〉 = n2 |n1λ1 + n2λ2〉 .

Therefore,

exp
(

2πi λ∨2
|λ2|2

·H
)

= exp
(

2πi 1
2 α
∨
1 ·H

)
. (3.18)
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Then, we can see that the U(1) subgroup of G, generated by λ∨2 ·H
|λ2|2 , has

an element in common with the unbroken SU(2) subgroup, other than
the identity. This is the nontrivial element of the center Z2 of SU(2).
Thus, there are two elements of SU(2) × U(1) corresponding to each
element of G0. Therefore, it follows from the result (3.18) that there is
a Z2 identification between the elements of the SU(2) and U(1) factors,
so that

G0 = SU(2)× U(1)
Z2

∼= U(2) . (3.19)

Since π1 (U(2)) = Z, this theory supports magnetic monopoles with
integer abelian magnetic charges. However, their generalized magnetic
charge G may also contribute to a non-abelian magnetic flux.

Let us use the results of section 3.2 and take the monopole gen-
erators to be Mi = Tα2

i , i = 1, 2, 3. Furthermore, from eqs. (2.69)
and (3.10) it follows that

G = 4π
e
Tα2

3 .

Now, we can explicitly check whether the generators of the local
unbroken gauge group are well-defined over S2

∞. We shall calculate λ2 ·
H(θ, ϕ) and Tα1

3 (θ, ϕ) first, because the calculation is straightforward.
Since they are both in the Cartan subalgebra H, we can use the “trick”
of eq. (3.6) with α = α2, the definition (2.64) of our element g(θ, ϕ) ∈ G,
with Mi = Tα2

i , as well as the result (2.63) provided by the BCH
formula to obtain that

λ2 ·H(θ, ϕ) = (λ2 ·H − Tα2
3 ) + naTα2

a ,

Tα1
3 (θ, ϕ) = 1

2 [(α1 ·H + Tα2
3 )− naTα2

a ] , (3.20)

with

naTα2
a = (sin θ cosϕ) Tα2

1 + (sin θ sinϕ) Tα2
2 + (cos θ) Tα2

3 . (3.21)

Next, in order to obtain the remaining two generators Tα1
1 (θ, ϕ) and

Tα1
2 (θ, ϕ) we will need to obtain some new results in advance. Firstly,

let us recall that the BCH formula implies that

eiθT Ae−iθT = cos
(
θ
√
ab
)
A− i b√

ab
sin
(
θ
√
ab
)
B , (3.22)

when
[A, T ] = bB ,

[B, T ] = aA .
(3.23)
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We shall prove this result in appendix B. But, the important point here
is to use this result in order to obtain that

eiϕT
α2
3 Tα1

1 e−iϕT
α2
3 = cos (ϕ/2)Tα1

1 + sin (ϕ/2)Tα1
2 ,

eiϕT
α2
3 Tα1

2 e−iϕT
α2
3 = cos (ϕ/2)Tα1

2 − sin (ϕ/2)Tα1
1 ,

e−iϕT
α2
3 Tψ1 eiϕT

α2
3 = cos (ϕ/2)Tψ1 + sin (ϕ/2)Tψ2 ,

e−iϕT
α2
3 Tψ2 eiϕT

α2
3 = cos (ϕ/2)Tψ2 − sin (ϕ/2)Tψ1 ,

(3.24)

which we will be need in our calculations. Note that, in order to obtain
these results, we have used the fact that [Hi, Eα] = α(i)Eα, provided
by eq. (2.10).

In addition, for future convenience, we identify two su(2) subalge-
bras of su(3). The first one is given by the set of generators{

2Tα2
2 , 2Tα1

1 , 2Tψ1
}
,

such that [2Tα2
2 , 2Tα1

1 ] = i 2Tψ1 . The second one is given by the set{
2Tα2

2 , 2Tα1
2 , 2Tψ2

}
,

such that [2Tα2
2 , 2Tα1

2 ] = i 2Tψ2 . One can obtain these results making
use of the commutators between the step operators in su(3). In the
next chapter we shall present a review of the Lie algebra of SU(n),
where it will be clear how one can easily derive these commutation
relations. Then, with the above results we can use eq. (2.63) in order
to show that

e−iθT
α2
2 Tα1

1 eiθT
α2
2 = cos (θ/2)Tα1

1 + sin (θ/2)Tψ1 ,

e−iθT
α2
2 Tα1

2 eiθT
α2
2 = cos (θ/2)Tα1

2 + sin (θ/2)Tψ2 .
(3.25)

Note that with the results of eqs. (3.24) and (3.25) we can easily com-
pute

Tα1
I (θ, ϕ) = e−iϕT

α2
3 e−iθT

α2
2 eiϕT

α2
3 Tα1

I e−iϕT
α2
3 eiθT

α2
2 eiϕT

α2
3 ,

with I = 1, 2. After some trivial, but lengthy, steps we obtain that

Tα1
1 (θ, ϕ) = cos(θ/2)Tα1

1 + sin(θ/2)
[
cos(ϕ)Tψ1 + sin(ϕ)Tψ2

]
, (3.26)

Tα1
2 (θ, ϕ) = cos(θ/2)Tα1

2 + sin(θ/2)
[
cos(ϕ)Tψ2 − sin(ϕ)Tψ1

]
. (3.27)
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Note that the generators λ2 ·H and Tα1
3 that commute with the gener-

alized magnetic charge can be defined globally. However, the two that
do not commute with G, namely Tα1

1 and Tα1
2 fail to be well-defined at

θ = π, where they keep an azimuthal dependence. According to [30]
this can be understood as follows. One way to define a global gauge
rotation is to choose a Lie algebra element Ω at one point P on a sphere
at large r and then use parallel transport to obtain Ω at any other point
P ′ on the sphere. This only works if the result of the parallel trans-
port is independent of the path from P to P ′. This in turn requires
that the surface integral of [Bi,Ω] over the area between any two such
paths vanishes. In the limit r → ∞ only the 1/r2 part of Bi, i.e., the
generalized magnetic charge, contributes to this integral. Hence, only
the generators that commute with G are well-defined.

Therefore, even in this simple model we can check that the presence
of a monopole in a theory with a non-abelian unbroken symmetry may
indeed obstruct the global definition of the unbroken gauge group G0.

On the other hand, the situation is pretty different for monopoles
in the MSB case. There, the unbroken gauge group G0 = (U(1))r
is globally well-defined since all the generators in L(G0), including G,
belong to the Cartan subalgebra H. Therefore, they all commute with
G.

The simplest example of a MSB monopole is, in fact, the ’t Hooft-
Polyakov monopole. Thus, recalling the results of section 2.4, we know
that the only unbroken generator in this case is M3, which is the direc-
tion of both φ0 and G. And from the fact that g(θ, ϕ)M3 g

−1(θ, ϕ) =
naMa, we know that the unbroken U(1) symmetry is well-defined over
S2
∞.
Finally, let us emphasize that the problem of obstructing the global

definition of G0 implies that the Noether charges cannot be globally
extended, which means that some conservation laws may be spoiled
and the particles in the theory experience exotic behaviors [64, 65].
This problem may also happen to non-abelian strings, but, in this case,
the strings are called Alice Strings [53,70–75]. And even in the simplest
model of Alice Electrodynamics, electric charge is not conserved in the
ordinary sense.



4. DARK MONOPOLES IN GRAND UNIFIED THEORIES

In the previous chapters, we have analyzed the construction and
characteristics of non-abelian monopoles. All the given examples in-
volved a generalized magnetic charge G ∝M3 lying in the Cartan sub-
algebra H. And this was on purpose, because in the known monopole
solutions, it is usually considered that [M3, φ0] = 0 and M†3 = M3 im-
ply that M3 belongs to the same Cartan subalgebra as φ0. However,
as we mentioned in ?? and section 3.3, this is not necessary when G0
is a non-abelian gauge group.

Thus, in this chapter we shall construct monopole solutions whose
asymptotic magnetic field does not lie in the Cartan subalgebra H, i.e.,
M3 /∈ H. We will call them Dark Monopoles, since their magnetic
field vanishes in the direction of the generator of the electromagnetic
group U(1)em, which we consider to be in H. For the sake of clarity,
we would like to emphasize that the content of this chapter is based
on the publication [14]. Furthermore, it is important to mention that
in the case of Z2 monopoles, for theories where φ is not in the adjoint
representation, there already are monopole solutions with M3 in the
direction of some step operators [28, 76, 77]. Also note that string-
vortex solutions with magnetic fields as combinations of step operators
have been constructed for Yang-Mills-Higgs theories for various gauge
groups [53,74,78–82].

4.1. THE DARK MONOPOLES CONSTRUCTION

4.1.1 Brief Review of su(n)

In this section we shall analyze the construction of our Dark Monopoles
solutions in theories with gauge group G = SU(n). But, in order to do
so, we need to review some properties of su(n) first.

In the fundamental representation, the group SU(n) is realized
through the set of n × n unitary matrices of determinant 1. It has
dimension n2 − 1, rank n− 1 and n(n− 1) roots. The elements of the
Cartan subalgebra can be represented by a diagonal matrix of the form
A = diag(a1, . . . , an) with

∑
i ai = 0, i.e., (A)ij = aiδij . This con-

straint arises since the elements of the Lie algebra have to be traceless.
Moreover, a convenient way to define the n(n − 1) step operators

is to introduce n × n matrices Eij for i 6= j, where the labels i, j are
related to the name of the matrix instead of its components, defined by

(Eij)kl = δikδjl , (4.1)
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where i, j, k, l = 1, . . . , n. Now, note that

[A,Eij ]km = (ak − am) (Eij)km ,

shows that the operators Eij satisfy the properties of the step operators.
Furthermore, they comprise all the step operators of su(n), since there
are n(n− 1) of them. Note that Eij and Eji are the step operators for
two equal and opposite roots. Moreover,

[Eij , Eji]km = δikδim − δjkδjm ,

where there is no sum over the indices, unless otherwise stated. This
shows that [Eij , Eji] is a diagonal matrix with the i-th diagonal entry
1 and with the j-th diagonal entry −1, the rest being all zero. Such
a matrix belongs to the Cartan subalgebra. Denoting the matrices hi
as (hi)kl = δikδkl we have that [Eij , Eji] = hi − hj . This verifies that
indeed Eij and Eji are the step operators for two equal and opposite
roots. By comparing with the forth commutation relation in eq. (2.10)
we find that Eij is associated with a root vector

α = ei − ej , (4.2)

where (ei)k = δik are the unit vectors in the n-dimensional vector space.
Thus, note that all the roots have equal length square, namely 2.

Now we may proceed to find the simple roots. Let us define the
following vectors

αi = ei − ei+1 , (4.3)

with i = 1, 2, . . . , n− 1. Then, notice that any root α = (ei − ej) can
be written as

± (αi + αi+1 + · · ·+ αj−2 + αj−1) = ± (ei − ej) , 1 ≤ i < j ≤ n ,
(4.4)

This shows that the set (α1, . . . , αn−1) form a simple root basis, since
the coefficients in the expansion of any roots are either all positive or
all negative. A root (ei− ej) is positive if i < j, is negative if i > j and
is a simple root if j = i+ 1. Moreover, the definition (4.3) agrees with
the fact that the simple roots αi are the positive roots which cannot
be written as a sum of any other positive roots.

Besides that, there is one more information that we need to extract
from the fundamental representation of SU(n), which is the commu-
tators between the step operators. From the definition (4.1) we see
that

(EijEpq)km = δjp (Eiq)km , (4.5)
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which implies that the commutator

[Eij , Epq] = δjpEiq − δiqEpj . (4.6)

Note that the information we have extracted from the Lie algebra su(n),
such as the roots and commutation relations, is independent of the rep-
resentation. This means that we have used the fundamental represen-
tation just for convenience.

After this brief review of the properties of su(n) we still need to
introduce another tool, which is the Cartan involution.

4.1.2 The Cartan Involution

In this subsection we shall give an introduction to the Cartan invo-
lution, since it will be necessary for the contruction of our monopole
solution. For more details, please see [32] and [40]. Also note that in
this section we will use a different notation for the Lie algebras, in order
for the notation to be shorter.

An automorphism ω of a Lie algebra g is by definition a map from g
to itself which satisfies two requirements. First, it preserves the struc-
ture of the Lie algebra, which means it is linear and compatible with
the Lie bracket

ω ([x, y]) = [ω (x) , ω (y)] ∀x, y ∈ g .

And second, it is a bijection, i.e., a map which is one-to-one and onto.
The set of all automorphisms of g is a group, denoted by Aut(g).

This follows from the fact that the composition of two automorphisms
ω and ω′ is still an automorphism, while there is an identity element
id given by the trivial automorphism. Besides that the composition
of maps is associative and each automorphism ω has an inverse ω−1

satisfying ω ◦ ω−1 = id.
An automorphism is said to be of order N if there exists N ∈ N

such that
ωN ≡ ω ◦ ω ◦ · · · ◦ ω︸ ︷︷ ︸

N times

= id .

In the case such a number does not exist, ω is said to be of infinite
order. Furthermore, if ω is of finite order N , then g splits into the
direct sum

g =
N−1⊕
j=0

g(j)
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of eigenspaces of ω, with

g(j) = {x ∈ g|ω(x) = exp (2πi · j/N)x} .

The automorphism property of ω implies that, upon taking Lie brack-
ets, the subspaces g(j) behave as

[g(j), g(k)] ⊆ g(j+kmodN) . (4.7)

Besides that, we will also need to use the fact that Killing form1 κ is
invariant under any automorphism. In practice, this means that the
trace of generators of g is invariant, i.e., Tr (ω(x)ω(y)) = Tr(x y) for
any x, y ∈ g.

In this work, however, we will only need to use the Cartan involu-
tion, which is an automorphism of order 2. It acts on the elements of
an arbitrary semisimple Lie algebra g as [83],

σ(Hi) = −Hi,

σ(Eα) = −E−α ,

so that g can be decomposed as

g = g(0) ⊕ g(1) ,

where

g(0) = {−i (Eα − E−α) , for α > 0} , (4.8)
g(1) = {Hi, i = 1, 2, . . . , r; (Eα + E−α) , for α > 0} .

Then, g(0) forms a subalgebra of g and the generators of g(1) form a
representation of g(0). In the particular case of su(n), we can use the
results of eqs. (4.1) and (4.4) in order to see that the generators of g(0)

will be of the form

Lij = −i (Eij − Eji) , i, j = 1, . . . , n , (4.9)

which are generators of a so(n) Lie algebra contained in su(n) [40].
As an example, let us take g = su(3). There are three generators in
g(0) which form a su(2) subalgebra and there are five generators in g(1)

which form a quintuplet of this su(2) subalgebra.
1The Killing form is an inner product on a finite dimensional Lie algebra g defined

by κ(x, y) ≡ Tradj (x y), where the trace is taken in the adjoint representation.
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4.1.3 The Monopole Generators and Ansatz

Now, since we have already reviewed the necessary tools for our
calculations, we are finally able to construct the Dark Monopole so-
lutions. In order to do so, we shall use the results of sections 2.3.4,
4.1.1 and 4.1.2. For simplicity, let us consider that the gauge group is
G = SU(n) and that

φ0 = v
λp ·H
|λp|

, (4.10)

where λp is an arbitrary fundamental weight of su(n). This vacuum,
spontaneously breaks SU(n) to2 [7]

G0 = [SU(p)× SU(n− p)× U(1)]/Z .

We shall consider that the monopole generators Mi, which form a
su(2) subalgebra, belong to g(0). Then, φ0, which is in g(1) (because it
belongs to the Cartan subalgebra), will be in a representation of this
su(2), in agreement with our results of eq. (2.70).

Using the definition of eq.(2.12), we will consider that

M3 = 2Tα2 , M1 = 2T β2 , M2 = 2T γ2 ,

where α, β, γ are roots of su(n). Now, let us consider these roots
written according to eq. (4.2). Then, from eq. (4.6) we see that in
order for the generators Mi to satisfy the commutation relations of a
su(2) algebra the roots are such that α+ β + γ = 0.

Moreover, from the commutation relations of eq. (2.10) we see that
[M3, φ0] is proportional to

[2Tα2 , λp ·H] = i (α · λp) 2Tα1 . (4.11)

But, since we want M3 ∈ L(G0), then [M3, φ0] = 0, which implies that
α · λp = 0. From the results (2.14) and (2.17) this means that α does
not have the simple root αp in its expansion in the simple root basis.
Thus, for α = ei − ej , if i < j, either i > p or j ≤ p, and if i > j,
either i ≤ p or j > p. On the other hand, recalling that M1 and M2
do not belong to L(G0), we can proceed with an argument similar to
eq. (4.11) to conclude that β ·λp 6= 0 and γ ·λp 6= 0, which implies that
β and γ have the simple root αp in their expansion in the simple root
basis.

2In order to avoid a misunderstanding, we once more emphasize that for the
case p = 1 or p = n, G0 is given by G0 = SU(n−1)×U(1)

Z
, in agreement with our

discussion of section 3.1.
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Then, denoting by T ija , a = 1, 2, 3, the generators defined in eq. (2.12)
for α = ei− ej , we conclude that the possible monopole generators, for
α positive are

M3 = 2T ij2 ,

M1 = 2T jk2 , (4.12)
M2 = 2T ki2 ,

where there are two possibilities: a) 1 ≤ i < j ≤ p and j < k, with
p < k ≤ n; b) p < i < j ≤ n and k < j with 1 < k ≤ p. Note that
each of these su(2) subalgebras can be labeled by these three numbers
i, j, k. On the other hand, when α is a negative root, i > j, which can
be seen as an exchange between i↔ j in the cases above.

Furthermore, it is easy to check that the generators (4.12) indeed
satisfy an su(2) algebra. Note that this can be done by means of the
result (4.6), which implies that

[2T jk2 , 2T ki2 ] = −[Ejk − Ekj , Eki − Eik] = i 2T ij2 .

Also note that the remaining two commutation relations can be ob-
tained with cyclic permutation of the labels i, j, k.

At this point we should also remark that there may be other su(2)
subalgebras, withM3 being a combination of step operators, from which
we could construct other Dark Monopole solutions. However, for sim-
plicity, in this work we will only consider the su(2) subalgebras related
to positive roots, given by eq.(4.12).

In addition, it is relevant to note that from the result of eq. (4.9)
each set of Mi, i = 1, 2, 3, generates an SO(3) subgroup of SU(n)3.
However, the associated closed loop h(ϕ), 0 ≤ ϕ ≤ 2π, given by eq.
(2.65), is contractible. In a pictorial way, this can be seen as follows.
In the minimal symmetry breaking scheme of eq. (3.4) we see that
π1(G0) = Z because of the U(1) factor in G0. Then, the topologically
nontrivial loops in G0 consist of loops winding around the U(1) sub-
group of G0, and also of all the loops which travel through the U(1)
subgroup passing by identified elements and completing the loop with
a "walk" through K. But, note that since Tr(M3φ0) = 0, our loop
does not prescribe any path in the U(1) direction. Therefore, these
monopoles are associated to the trivial topological sector of π1(G0).

For each su(2) subalgebra, we can construct a monopole solution.
And in order to obtain the asymptotic configuration of the scalar field

3For G = SU(3), in the three dimensional representation, these generators cor-
respond to the Gell-Mann matrices λ7, −λ5, λ2.
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(2.38) for each of them, it is convenient to decompose φ0 as

φ0 = v

(
S + 2Q0√

6 |λp|

)
, (4.13)

where

Q0 = 2√
6

(
T ik3 + T jk3

)
,

S = λp ·H
|λp|

− 2Q0√
6 |λp|

,

with Tr(Q0Q0) = y and

[M3, Q0] = 0 = [M3, S] .

Moreover, [M±, S] = 0, where M± = M1 ± iM2. Therefore, S is a sin-
glet. On the other hand, one can check that Q0 belongs to a quintuplet
together with the generators

Q±1 = ±
(
T ik1 ± i T

jk
1

)
,

Q±2 = −
(
T ij3 ± i T

ij
1

)
,

satisfying the commutation relations (2.72) with l = 2. Note that this
is exactly the case we have discussed in eq. (2.70) of section 2.3.4 with
ω = 2√

6|λp|
.

Although for any su(2) subalgebra Mi, the generators Qm always
form a quintuplet and therefore l = 2, we will continue to write l to keep
track of this constant. It can also be useful for possible generalizations
of the Dark Monopole construction with different l for other gauge
groups.

Since Mi ∈ g(0) and Qm ∈ g(1), then, it follows from the invariance
of the trace under the Cartan involution that

Tr (MiQm) = 0 .

Moreover, since

Tr(Qm[Qp,M3]) = Tr(Qp[M3, Qm]) ,

it results from eq. (2.72) that

−pTr(QmQp) = mTr(QmQp) ,
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which means that Tr(QmQp) = 0 if p 6= −m. Similarly, from

Tr
(
Qm

[
Q−(m+1),M±

])
,

it results that

Tr (QmQ−m) = −Tr
(
Qm+1Q−(m+1)

)
.

Note that this is a simple recurrence relation, which can be solved by
m′ subsequent substitutions ofm→ m−1 untilm−m′ = 0. Therefore,
we can conclude that

Tr (QmQp) = (−1)m y δm,−p . (4.14)

Finally, from the definition of the generators Mi in (4.12) and our
convention for the trace between step operators (2.11), it follows that

Tr(MiMj) = 2 y δij , (4.15a)
Tr(M+M−) = 4 y . (4.15b)

Now, since Qm ∈ g(1), then it follows from (4.7) that [Qm, Qp] ∈
g(0). Thus,

[Qm, Qp] = AmpM3 +B+
mpM+ +B−mpM− +

∑
δ

Dδ
mp T

δ
2 ,

where Amp, B±mp, Dδ
mp are constants and T δ2 are other possible gener-

ators of g(0). Then, taking the trace of this commutator with M3, M±
and T−δ2 , and using the previous results, we can conclude that

[Qm, Qp] = (−1)m
(
m

2 M3 δm,−p −
1
4 c
−
l,pM+ δm,−p+1

−1
4 c

+
l,pM− δm,−(p+1)

)
,

where we recall that c±l,p =
√
l(l + 1)− p(p± 1) with l = 2. This set of

generators {Mi, Qm} form a su(3) subalgebra of su(n), since they are
linear combinations of the generators T ija , T ika , T jka , a = 1, 2, 3, where
only eight of these generators will be linearly independent.

Finally, we can use the results of the general ansatz of section 2.3.4,
given by eqs. (2.79) and (2.81) to (2.83) to propose the ansatz

Wi(r) = − [1− u(r)]
er

εijkn
jMk,

φ(r) = v S + αf(r)
2∑

m=−2
Y ∗lm(θ, ϕ)Qm ,

(4.16)
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where again the boundary conditions are given by u(0) = 1, u(r →
∞) = 0, f(0) = 0 and f(r → ∞) = 1, which are exactly the same as
those in section 2.3.4. Now, note that the ansatz of the Dark Monopoles
is very similar to the one of eqs. (2.79) and (2.81) to (2.83), with the
constraint of l = 2 as the only difference. Then, from now on we
shall use the ansatz given by eq. (4.16) in order to obtain a general
hamiltonian and equations of motion for our Dark Monopoles and for
some possible future generalizations. In order to do this, we shall keep
the dependence in l in our calculations.

4.2. HAMILTONIAN AND EQUATIONS OF MOTION

In this section, we shall obtain the Hamiltonian for our Dark Monopole,
as well as the equations of motion (EoMs) for the profile functions. It is
important to note that the “traditional” BPS bound for this monopole
is zero, since Tr(Biφ) = 0 and therefore the magnetic charge g as-
sociated to the U(1) group vanishes. However, since Bi is a linear
combination of Ma and Diφ is a linear combination of Qm, then the
Bogomolny equation [35] Bi = Diφ does not have a non-trivial solution.
Hence, there is no solution associated to this vanishing bound.

Let us now calculate the exact form of the hamiltonian (2.24) under
the ansatz of eq. (4.16). Let us start with the kinetic term of the
scalar field. Since the component φs = vS is such that ∂i(φs) = 0 and
[φs,Mi] = 0, it implies that Diφs = 0. Then, from eq. (2.75) one can
obtain that

Diφ = α

[
(∂if)Y ∗lm + f(∂iY ∗lm)− i f(1− u)

r2 εijkx
jDl (Mk)m′m Y

∗
lm′

]
Qm .

(4.17)
Making use of eq.(2.84), eq.(4.17) can be written as

Diφ = α

[
f ′

r
(xi Y ∗lm) + fu (∂i Y ∗lm)

]
Qm . (4.18)

From eq.(4.14) and the fact that Ylm = (−1)m Y ∗lm, one can obtain that

1
y
Tr (DiφDiφ) =

l∑
m=−l

α2 [(f ′)2YlmY
∗
lm + f2u2∇Ylm · ∇Y ∗lm

]
. (4.19)

Moreover, we can use the following properties of Vector Spherical Har-
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monics (VSH) [84]∫
S2

Ylm ·Y∗lm dΩ = δll′δmm′ ,∫
S2

Ψlm ·Ψ∗lm dΩ = l(l + 1) δll′δmm′ ,

where Ylm ≡ Ylmr̂, Ψlm ≡ r∇Ylm and dΩ = sin θ dθdϕ. Then, we
obtain that

1
2y

∫
d3xTr (DiφDiφ) = 4π 2v2

3|λp|2

∫ ∞
0

dr

[
1
2r

2(f ′)2 + l(l + 1)
2 f2u2

]
.

(4.20)
From the magnetic field (2.80) and the trace between generators Mi

given by (4.15a) it follows that

1
2y

∫
d3xTr (BiBi) = 4π

∫ ∞
0

dr
1

e2r2 [2r2(u′)2 + (1− u2)2] . (4.21)

Finally, we use eqs. (2.83) and (4.16), the fact that

Tr (SS) =
(

1− 2
3 |λp|

)
y ,

Tr (φqφq) = 2v2f2

3 |λp|2
Tr
(
g Q0 g

−1g Q0 g
−1) = 2v2f2y

3 |λp|2
,

and Tr(SQ0) = 0 in order to obtain that

V (φ) = λv4

9 |λp|4
(f2 − 1)2. (4.22)

Joining all the contributions and making the change of variables
ξ = evr the Hamiltonian (2.24) for the Dark Monopole will be

E = 4πv
e

∫ ∞
0

dξ

{[
2(u′)2 + (1− u2)2

ξ2

]
+ 2

3|λp|2

[
1
2ξ

2(f ′)2 + l(l + 1)
2 f2u2

]
(4.23)

+ λ

9e2|λp|4
ξ2(f2 − 1)2

}
,

where u′(ξ), f ′(ξ) denote derivatives with respect to ξ.
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The conditions for E to be stationary with respect to f(ξ) and u(ξ)
provide the equations of motion for the ansatz of the Dark Monopole:

u′′ = l(l + 1)
6|λp|2

f2u+ u(u2 − 1)
ξ2 , (4.24a)

f ′′ = −2
ξ
f ′ + l(l + 1) fu

2

ξ2 + 2λ
3e2|λp|2

f(f2 − 1) . (4.24b)

The appropriate boundary conditions for a non-singular finite-energy
solution are

f(0) = 0, u(0) = 1 (4.25)
f(ξ →∞) = 1, u(ξ →∞) = 0, (4.26)

which are exactly the same as those from the ’t Hooft-Polyakov monopole.
Also note that the radial EoMs could have been obtained by substitu-
tion of our ansatz into the general Yang-Mills-Higgs equations (2.22).
However, the calculations would be more complicated and lengthy.

Before looking for numerical solutions to eqs.(4.24a) and (4.24b),
we shall analyze the behavior of the profile functions when ξ ≈ 0 and
also when ξ →∞.

4.2.1 Approximate Solutions

When ξ � 1, eq.(4.24a) remains non-linear, since the dominant
contribution is of the form u′′ = u(u2 − 1)/ξ2. However, since we
are looking for approximate solutions, it is reasonable to series expand
(4.24a) about ξ = 0 to order ξ2. Since the series expansion is pretty
long and elementary we shall omit it here. Besides that, it is more
appropriate to use softwares such as MathematicaR© and wxMaximaR© to
obtain all the required terms. Then, it is a trivial task to see that

u(ξ) = 1− c1 ξ
2 , (4.27)

with c1 ∈ R, gives the behavior of u(ξ), subject to the boundary condi-
tions (4.25), near the origin. We do not bother to fix the constant c1,
since we are only interested in the behavior of the solution.

With regard to eq.(4.24b) one can see that the dominant contribu-
tion is of the form

ξ2f ′′ + 2ξf ′ − l(l + 1)f = 0 ,
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where we used the approximation u2(ξ → 0) ≈ 1. This equation is
in the form of the Euler-Cauchy equation. Then, the solution which
satisfies the boundary condition (4.25) is

f(ξ) = c2 ξ
l , (4.28)

where c2 ∈ R is also an arbitrary constant. It is important to stress
that solutions (4.27) and (4.28) agree with the fact that we are looking
for non-singular monopole solutions. In appendix C we explicitly check
that the expression of φ, Wi and Bi are regular at the origin.

At this point, we can make an important comparison between the ’t
Hooft-Polyakov monopole and our Dark Monopoles. While the behav-
ior of the profile function in the gauge field ansatz (u(ξ)) is the same
for both, in the case of the Higgs field (f(ξ)) we see a distinct behavior.
In the ’t Hooft-Polyakov case, f(ξ) ∼ ξ, although in our construction
f(ξ) ∼ ξ2.

Finally we analyze how the asymptotic values (4.26) are approached.
In order to do so, it is convenient to substitute f = (h/ξ) + 1 in the
eqs.(4.24a) and (4.24b) and take ξ →∞, which results in

u′′ = l(l + 1)
6|λp|2

u , (4.29a)

h′′ = 4λ
3e2|λp|2

h . (4.29b)

Thus, the solutions behave as

u(ξ) = O

[
exp

(
−

√
l(l + 1)
6|λp|2

ξ

)]
, (4.30)

f(ξ)− 1 = O

exp
(
−
√

4λ
3e2λp|2 ξ

)
ξ

 . (4.31)

Therefore, for distances larger than the monopole core

Rcore = 1
ev

√
6 |λp|2
l(l + 1) ,

the gauge field configuration in (4.16) reduces to the asymptotic form
(2.68) and the magnetic field (2.80) takes the form of a hedgehog as in
eq.(2.69).
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4.2.2 Numerical Solution

From the fact that we cannot find an analytical solution to the set
of equations (4.24a) and (4.24b), it is reasonable to look for numeri-
cal solutions. We numerically solved the problem making use of the
MATLABR© program bvp4c, which implements the solution of boundary
value problems (BVPs). The procedure to obtain the numerical solu-
tion is very similar to the case of the ’t Hooft-Polyakov monopole, but
here we shall give more details of the calculation.

First, the system of equations (4.24a) and (4.24b) were recast as a
system of first order equations of the form

u′ = v , (4.32a)

v′ = l(l + 1)
6|λp|2

f2u+ u(u2 − 1)
ξ2 , (4.32b)

f ′ = w , (4.32c)

w′ = −2
ξ
w + l(l + 1) fu

2

ξ2 + 2λ
3e2|λp|2

f(f2 − 1) , (4.32d)

where u, v, f and w are considered to be independent. Once more, we
stress that in the case of our Dark Monopoles l = 2, and one can obtain
several distinct solutions by choosing different SSB patterns through
the choice of λp in the Lie algebra of G. These solutions must satisfy
the constraints in the behavior imposed by the approximate solutions
(4.27) and (4.28). Figure 4.1 shows the solution for the case of the
SU(5) Dark Monopole, where the symmetry breaking is of the form
SU(5) → “SU(3)× SU(2)× U(1)”, where again the quotation marks
refer to the local structure of the unbroken gauge group, only. In the
SU(5) case we can take the fundamental weight λp to be λ2 or λ3,
since both of them generate the desired SSB. Then, it follows from the
inverse Cartan matrix of SU(5) [85] that |λp|2 = 6/5. One can see that
this solution agrees with the expected behavior, since u− 1 ∼ −ξ2 and
f ∼ ξ2 near zero, while they both reach the asymptotic values rather
fast.

The total energy of the solution, which is interpreted as the classical
mass, is given by eq.(4.23) and to simplify the analysis we use the
rescaled mass, Ẽ,

E = M0 Ẽ(λ/e2), where M0 = 4πv
e

.

Performing an analysis similar to [44], we can obtain the mass range for
the Dark Monopoles. Note first that Ẽ is a monotonically increasing
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Figure 4.1: The monopole profile functions u(ξ) and f(ξ) for λ/e2 =
0 (solid curves), λ/e2 = 0.1 (dashed curves) and λ/e2 = 1 (dotted
curves).

function of λ/e2, since

dẼ(λ/e2)
d(λ/e2) = 1

9|λp|4

∫ ∞
0

dξ ξ2(f2 − 1)2 > 0 .

The lower bound for the mass happens when λ = 0, and numerical
integration shows that for the SU(5) monopole Ẽ(0) = 1.294.

Similar to the case of the ’t Hooft-Polyakov monopole [45], in the
limit λ→∞ the mass of the monopole stays finite and it is given by

E = 4πv
e

∫ ∞
0

dξ

[
2(u′∞)2 + (1− u2

∞)2

ξ2 + l(l + 1)
3|λp|2

u2
∞

]
, (4.33)

since f(ξ) ≡ 1, ∀ ξ > 0 but f(0) = 0. Then, the only radial equation of
motion is

u′′∞ = l(l + 1)
6|λp|2

u∞ + u∞(u2
∞ − 1)
ξ2 . (4.34)

Solving eq.(4.34) and performing the integration in (4.33) gives us the
upper bound for the monopole mass. In the SU(5) case, the upper
bound is Ẽ(λ→∞) = 3.262. For comparison, for the ’t Hooft-Polyakov
monopole in the SU(2) case, ẼtHP (λ = 0) = 1 [36] and ẼtHP (λ→∞) =
1.787 [45], as we have seen in section 2.4.



81

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.2: ξ2H for the SU(5) Dark Monopoles. The solid curves are
from the solution with λ/e2 = 0, while the dashed and dotted curves
are from the λ/e2 = 0.1 and λ/e2 = 1, respectively.

In addition we can use the full numerical solution of eqs. (4.24a)
and (4.24b) in order to plot the integrand of the rescaled mass Ẽ(λ/e2),
which we will denote by E . The result is presented in fig. 4.2, where
we can see how well-localized is the size and shape of our SU(5) Dark
Monopole solution. This plot clearly indicates that the energy of the
solution is finite.

Finally, note that for a given SSB, where λp is fixed, the value
of monopole mass is the same for all the Dark Monopole solutions
associated to the the su(2) subalgebras (4.12). This follows directly
from the fact that the hamiltonian is independent of the indices i, j, k
that label those su(2) subalgebras. Moreover, these are classical results.
In order to determine the properties of the Dark Monopoles at the
quantum level, one could use for example semi-classical quantization.

4.3. NON-ABELIAN MAGNETIC CHARGE

One of the main properties of the Dark Monopole solution is that
its magnetic field is in a direction outside the Cartan subalgebra H.
Thus, as we mentioned before, this monopole has a vanishing abelian
magnetic charge g, given by eq. (2.106), since Tr(Biφ) = 0. However,
from eq. (2.68) we see that far from the monopole core it has a non-
abelian magnetic flux in the direction g(θ, ϕ)M3 g

−1(θ, ϕ), with M3
given by eq.(4.12). We shall define

ζ(~r) = a(r) g(θ, ϕ)M3 g
−1(θ, ϕ) = a(r)naMa , (4.35)
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which is in the direction of the monopole non-abelian magnetic flux,
where a(r) ∈ R is a radial function such that ζ is regular everywhere.
This implies that when r → 0, a(r) ∼ r. On the other hand, when
r � Rcore, we consider that a(r) = 1. Then, using the fact that in
this asymptotic region the gauge and the scalar fields assume the form
(2.68) and (2.38), respectively, it is easy to verify that asymptotically
ζ satisfies the conditions

Dµζ = 0 , (4.36)
[φ, ζ] = 0 . (4.37)

Recalling that under an infinitesimal gauge transformation of the form
1 + icaTa with ca ∈ R and Ta ∈ L(G), the fields Wµ and φ transform
as

δWµ = W ′µ −Wµ = 1
e
Dµ(caTa) ,

δφ = φ′ − φ = i [caTa, φ] ,

we can conclude from eqs. (4.36) and (4.37) that the asymptotic con-
figuration of the monopole is invariant under a gauge transformation
of the form exp(iζ). Therefore, ζ is a Killing vector which is associated
to a symmetry of the asymptotic fields of the monopole. According
to [86] and [87], from the existence of a Killing vector ζ for an asymp-
totic symmetry one can associate a conserved charge. It is interesting
to note that ζ satisfies the same asymptotic conditions as the scalar
field φ for the ’t Hooft-Polyakov monopole, outside the monopole core.
Therefore, in this special case φ can be identified with the Killing vec-
tor ζ. Note that if we perform an arbitrary gauge transformation U on
the monopole’s fields then, from eqs. (4.36) and (4.37), we obtain that
ζ must transform as

ζ → ζ ′ = U ζ U−1 ,

in order for ζ ′ to be a Killing vector of the transformed fields.
Moreover, since ζ andWi take values in the su(2) subalgebra formed

by Ma, we can expand them as

Wi = WiaMa ,

ζ = ζaMa , (4.38)
Diζ = (Diζ)aMa ,

where (Diζ)a = ∂iζa−eεabcWibζc. We shall also introduce the notation
ζ for the asymptotic configuration of ζ. Then, it follows from eq.(4.35)
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that ζa = na is a unitary vector. Note that ζ2
a = 1 defines a 2-sphere,

which we will denote by Σ.
Now, let us define a gauge-invariant magnetic current by taking a

projection of ∗Gµν in the direction of the Killing vector ζ as

JµM ≡
1
|ζ|y

∂νTr (∗Gµνζ) , (4.39)

where |ζ| ≡
√
ζaζa = 1. Besides that, ∗G0i = Bi and ∗Gij = −εijkEk.

The conservation of the current JµM follows from its definition as a
divergence of an antisymmetric tensor and from the fact that Tr

(
Biζ

)
is twice differentiable.

Thus, the conserved non-abelian magnetic charge is

QM =
∫
R3
d3xJ0

M = 1
|ζ|y

∮
S2
∞

dSiTr
(
Biζ

)
= −8π

e
. (4.40)

Note that eq.(4.40) is just a gauge-invariant measure of the non-abelian
flux in the normalized ζ(θ, ϕ) direction. Furthermore, we must empha-
size that the introduction of the radial function a(r) has no contribu-
tion to the magnetic charge. This artifact was introduced so that we
could define a regular magnetic current for the Dark Monopole. Besides
that, as pointed out by [49] there is no unambiguous way to measure
the charge density of a monopole. Only the total charge makes sense.

Let us now analyze the geometric meaning of the non-abelian mag-
netic charge QM . For this purpose, we shall use some arguments similar
to those in section 2.4.1. First, it follows from the asymptotic condition
(4.36) that

1
8πy ε

ijk

∮
S2
∞

dSiTr {ζ [Djζ,Dkζ]} = 0 . (4.41)

Then, from eq.(4.38) and using vector notation, as well as the fact that
|ζ| = 1 when r →∞, eq.(4.41) can be written as

1
8π ε

ijk

∮
S2
∞

dSi

{
ζ̂ ·
(
∂j ζ̂ × ∂k ζ̂

)
− eζ̂ ·

−→
G jk

}
= 0 . (4.42)

Now, using eq.(4.15a), the expression of the non-abelian magnetic charge
(4.40) can be written as

QM = 2
∮
S2
∞

dSi
−→
B i · ζ̂ ,
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and from eq.(4.42) we conclude that

QM = −4π
e

2Nζ ,

where
Nζ = 1

8π ε
ijk

∮
S2
∞

dSi

{
ζ̂ ·
(
∂j ζ̂ × ∂k ζ̂

)}
.

As it is well-known, this integral is a topological quantity which is an
integer and has the geometrical interpretation [50] which is to measure
the number of times ζ̂ covers Σ as r̂ covers S2

∞ once. For our particular
Dark Monopole construction, where ζ̄a = na, Nζ = 1. However, in
principle, one could obtain higher magnetic charges, generalizing our
construction, considering for example a gauge transformation

g(θ, ϕ) = exp (−iϕkM3) exp (−iθM2) exp (iϕkM3) , k ∈ Z ,

which would be associated to ζ̂ covering Σ k times as r̂ covers S2
∞ once.

It is important to remark that for the Dark Monopole, the magnetic
charge is not the usual one (in the abelian direction), associated to
the homotopy classes of the scalar field, like in the ’t Hooft-Polyakov
case. In fact, QM is related to a gauge-invariant magnetic flux in the
ζ direction. Moreover, we would like to stress that, even though non-
abelian magnetic fields are not gauge-invariant, our magnetic current
JµM , the magnetic flux of eq. (4.40) and our magnetic charge QM are
indeed gauge-invariant.

Therefore, from the results above we can conclude that the non-
abelian magnetic charge of the Dark Monopole is conserved and quan-
tized in multiples of 8π/e. And even though they are associated to the
trivial sector of Π1(G0), the conservation of QM could prevent them to
decay, at least classically. However, it is necessary to analyze in more
detail the stability of the Dark Monopole.



5. CONCLUSIONS AND DISCUSSIONS

In this work we have reviewed the construction of non-abelian mag-
netic monopoles in Yang-Mills-Higgs theories with an adjoint Higgs field
φ and a simple and simply-connected gauge group G. We revisited the
’t Hooft-Polyakov monopole under a somewhat different perspective,
while we have also analyzed its abelian magnetic charge in details.

Moreover, we have discussed symmetry breaking patterns and how
to embed SU(2) monopoles in theories with larger gauge groups, as
well as some aspects of NUS monopoles. In particular, we presented a
pedagogical review of the “Problem of Global Color”.

Nevertheless, the most relevant point is that we have obtained a
general procedure to construct monopole solutions whose magnetic field
does not lie in the Cartan subalgebra H and, thus, vanishes in the di-
rection of the generator of the U(1)em electromagnetic field. In order
to do that, we considered theories with gauge group SU(n) and a scalar
field in the adjoint representation. But, we expect that this construc-
tion can be generalized to other gauge groups. These Dark Monopoles
must exist in some Grand Unified Theories and we analyzed some of
their properties for the SU(5) case. In particular, we obtained their
mass range.

We also have shown that our monopole solution has a conserved
magnetic current JµM in the direction of the Killing vector ζ. The
associated charge is quantized and it measures the number of times ζ̂
covers Σ as r̂ covers S2

∞ once. In principle, the conservation of this non-
abelian magnetic charge could prevent the Dark Monopoles to decay.
However, the stability should be analyzed in more details in the future.

Another point that still needs to be analyzed is related to the cos-
mological implications of the Dark Monopoles. Nonetheless, in order
to discuss some cosmological aspects, let us assume for a moment that
our solution is indeed stable or has a reasonable lifetime.

We expect that the Dark Monopoles were created in a phase transi-
tion in the early universe by the Kibble mechanism [56] at a tempera-
ture of the order of the unification scale, along with the standard GUT
monopoles. Under some general assumptions [55] one can show that
their initial abundance nM (ti) has evolved in time according to [88]

ṅM + 3HnM = −Dn2
M ,

where H ≡ ȧ/a is the Hubble parameter, while a(t) is the scale fac-
tor in the Robertson-Walker metric. The last term is associated to
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the annihilation mechanism and comes from the collision term in the
Boltzmann equation [55]. This implies that the time evolution of the
monopole density strongly depends on how the monopoles interact be-
tween themselves and also on how they interact with the plasma of par-
ticles in the universe. Their motion can be described as [79] a Brownian
motion of heavy dust particles in a gas or liquid with a slight bias in
their random walks caused by the interaction between monopoles and
antimonopoles. But one should note that since our monopoles have a
vanishing U(1) magnetic charge, there may be some differences in the
annihilation mechanism, such as a different mean free path l and cap-
ture radius rc (high-temperature regime) as well as the cross-section
for radiative capture (low-temperature regime). As a consequence, we
expect the so called monopole-to-entropy ratio [30, 79] to be different.
However, a future detailed analysis on how the monopoles interact is
necessary in order to make estimates of this ratio.

Another relevant point is that when some possible ordinary monopoles
interact with the magnetic field of our galaxy, they are accelerated.
And it depends on the mass of these monopoles whether they will
be ejected or slightly deflected [30]. In any case, the acceleration of
these monopoles will drain energy from the galactic field. Now, note
that since our Dark Monopoles do not interact with galactic magnetic
fields, they will not be accelerated and, in principle, this means that
they can cluster with the galaxy. The same reasoning can be applied
to magnetic fields in galactic clusters.

Now, with regard to the Dark Matter problem we expect that Dark
Monopoles might contribute to part of the mass usually attributed to
Dark Matter. However, in face of the inflationary scenario [89], we
expect that this contribution might be small. One way out of this is to
investigate whether it is possible that any amount of Dark Monopoles
were created during the reheating phase after inflation through energy
density fluctuations. Although even if they do not have a relevant
contribution to Dark Matter, they are still an interesting solution since
they are a new type of GUT monopoles.

Finally, we recall that as the case of standard GUT monopoles the
mass of our Dark Monopoles is set by the GUT scale, which is beyond
the energy scale of particle physics experiments, and currently direct
detection is unlikely. However, as we mentioned before, further analysis
is needed on how our monopoles interact and this may give some hints
on the way we can look for them.
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A. Calculations of the Gauge and Magnetic Fields

In this appendix, we have two separate goals. The first one is to
prove that the Dirac string singularity can be removed in a non-abelian
gauge theory, while the second one is to give the detailed calculations
of the magnetic field Bi(r) for non-abelian monopoles.

A.1. GAUGE FIELDS WITH NO DIRAC STRINGS

In this section we intend to show how the Dirac string singularity in
eq. (2.60) can be removed with a gauge transformation with g(θ, ϕ) ∈ G
given by eq. (2.64). First, let us recall that in the string gauge

W (0)
r = 0 = W

(0)
θ , (A.1)

W
(0)
φ = 1− cos θ

e
M3 . (A.2)

Furthermore, we know that under a gauge transformation, the gauge
fieldWµ transforms as eq. (2.42). Then, it is easy to calculate the com-
ponents of the asymptotic gauge field in spherical coordinates. First,
since gW (0)

r g−1 = 0 and ∂rg(θ, ϕ) = 0, the transformed radial compo-
nent is trivial, i.e.,

Wr(θ, ϕ) = 0 . (A.3)

Secondly, the componentWθ is also simple, since gW (0)
θ g−1 = 0, which

implies that

Wθ = i

e
(∂θg)g−1 = 1

e
e−iϕM3 M2 e

+iϕM3 .

Thus, we can use the result of eq. (2.63) in order to obtain that

Wθ(θ, ϕ) = −1
e

[(sinϕ)M1 − (cosϕ)M2] . (A.4)

Thirdly, we can compute the azimuthal componentWϕ. From eq. (A.2)
we obtain that gW (0)

ϕ g−1 = (1 − cos θ) gM3g
−1/e. Besides that, it

immediately follows from eq. (2.64) that

i

e
(∂ϕg)g−1 = 1

e

[
M3 − gM3g

−1] .
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Thus,

Wϕ(θ, ϕ) = −1
e

[
(cos θ) gM3 g

−1 −M3
]

= −1
e

sin θ [cos θ (cosϕM1 + sinϕM2)− sin θM3] , (A.5)

where we have used that gM3 g
−1 is given by

gM3 g
−1 = [(sin θ cosϕ)M1 + (sin θ sinϕ)M2 + (cos θ)M3] .

Note that, after this gauge transformation, the asymptotic configura-
tion of the gauge field is free of singularities. However, if one wants
to check that these spherical components, given by eqs. (A.3) to (A.5),
are equivalent to the asymptotic gauge field configuration written in
cartesian coordinates by eq. (2.68), one should proceed with a change
of variables. We shall not present this calculation here because it is too
simple and not worth it.

A.2. MAGNETIC FIELD IN CARTESIAN COORDINATES

Let us now show how one can obtain the magnetic field Bi, given by
eq. (2.80), in details. First, let us recall that the ansatz for the gauge
field is of the form of eq. (2.79), i.e.,

Wi = − [1− u(r)]
er

εijkn
jMk .

Moreover, we know that 2Bi = −εijkGjk, with Gij given by eq. (2.20).
Then,

2Bi = −εijk (2∂jWk + ie[Wj ,Wk]) . (A.6)

For the sake of clarity, let us analyze both terms separately. The first
one is given by

−εijk (2 ∂jWk) = 2 εijkεabk∂j
[(1− u

er

)
na
]
Mb

= 2
e

(δiaδjb − δibδja)
[
d

dr

(1− u
r

)
P jaL + (1− u)

r2 P jaT

]
Mb ,

where P jaL = njna and P jaT = δja− njna. Also note that we have used
the result ∂jna = P jaT /r. After the contractions with the Kronecker
delta, we obtain that

−εijk (2 ∂jWk) = 2
e

[
d

dr

(1− u
r

)(
P ibL − δib

)
+ (1− u)

r2

(
P ibT − 2δib

)]
Mb .
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But, we should note that
(
P ibL − δib

)
= −P ibT and that

(
P ibT − 2δib

)
=

−
(
2P ibL + P ibT

)
. Moreover, since d

dr

( 1−u
r

)
+
( 1−u
r2

)
= −u

′

r the above
result can be simplified to

−εijk (2 ∂jWk) = 2
e

[
u′

r
P ibT + 2

(
1− u
r2

)
P ibL

]
Mb . (A.7)

Now, we are able to compute the second term in eq. (A.6). First, note
that

ie[Wj ,Wk] = − (1− u)2

er2 εabc εjmb εknc P
mn
L Ma .

Then, after the contraction with εijk we get that

−ieεijk[Wj ,Wk] = (1− u)2

er2 (δmkδib − δmiδkb) εabcεknc PmnL Ma .

Moreover, from the antisymmetry of the Levi-Civita symbol and the
fact that PmnL is symmetric under m ↔ n, it is trivial to see that
(δmkδib − δmiδkb) εabcεkncPmnL Ma = εakcεnkc P

in
L Ma = 2P iaL Ma. There-

fore,

− ieεijk[Wj ,Wk] = 2
e

(1− u)2

r2 P iaL Ma . (A.8)

Then, joining the contributions from eqs. (A.7) and (A.8) we finally
obtain that, in cartesian coordinates, the magnetic field Bi is of the
form

Bi =
(
u′

er
P ikT + u2 − 1

er2 P ikL

)
Mk , (A.9)

which is exactly the result of eq. (2.80).
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B. Proof to Equation (3.22)

Let us now prove the result of eq. (3.22). First, let us recall that
A, B and T are generators that satisfy (3.23). Then, we use the BCH
formula to show that

eiθT Ae−iθT = A+ (−iθ)[A, T ] + (−iθ)2

2! [[A, T ], T ]

+ (−iθ)3

3! [[[A, T ], T ], T ] + . . .

= A+ (−iθ) bB + (−iθ)2

2! abA

+ (−iθ)3

3! ab2 B + (−iθ)4

4! a2b2 A+ . . .

=
(

1− (θ
√
ab)2

2! + (θ
√
ab)4

4! + . . .

)
A

− ib
(
θ − θ3ab

3! + θ5(ab)2

5! + . . .

)
B .

Now, recalling that

θ2n+1 (ab)n = 1√
ab
θ2n+1 (ab)n+1/2 = 1√

ab

(
θ
√
ab
)2n+1

,

we obtain that

eiθT Ae−iθT =

(
+∞∑
n=0

(−1)n(θ
√
ab)2n

(2n)!

)
A

− i b√
ab

(
+∞∑
n=0

(−1)n(θ
√
ab)2n+1

(2n+ 1)!

)
B

= cos
(
θ
√
ab
)
A− i b√

ab
sin
(
θ
√
ab
)
B ,

which is exactly what we wanted to demonstrate.
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C. Regularity at the Origin

Let us show that the fields Wi(r), Bi(r) and φ(r) are regular at the
origin, as mentioned in section 4.2.1.

First, let us recall that the gauge field has the form of eq. (4.16),
i.e.,

Wi = − [1− u(r)]
er

εijkn
jMk ,

where again nj = xj/r. Then, we want to calculate

lim
r→0

Wi = lim
r→0
− [1− u(r)]

er2 εijkx
jMk .

It is true that, formally, we should specify the paths by which we are
taking the limit, for instance, setting x = 0 = y and taking z → 0 or
any other possible way to approach the origin. However, it will soon be
clear that for any of the possible paths the limit exists and it is zero.
Now, we must remember that, even though the profile function u(r)
does not have an analytic expression, in the limit r → 0 we can use the
approximate solution (4.27) in order to analyze the regularity at the
origin. This implies that

lim
r→0

Wi = lim
r→0
− [1− (1− c1r

2)]
er2 εijkx

jMk

= lim
r→0

c1

e
εijkx

jMk

= 0. (C.1)

Note that the last step is independent of the path we may choose,
since for any of them either the component xj = 0 or xj → 0 in the
implicit sum. Therefore, the gauge field is indeed regular at the origin.
Furthermore, let us emphasize that this result is also true for the cases
of the ’t Hooft-Polyakov and the SU(2)-embedded monopoles, since
they all have the same expression for Wi(r) and also an approximate
solution of the form (1− u) ∝ −r2 when r → 0.

With regard to the magnetic field Bi, given by eq. (2.80), the situ-
ation is similar. We know that Bi is of the form

Bi =
(
u′

er
P ikT + u2 − 1

er2 P ikL

)
Mk ,

which can be conveniently rewritten as

Bi = u′

er
Mi +

(
u2 − 1− ru′

er4

)
xixkMk ,
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using that P ikT = δik − nink and P ikL = nink. Now, note that

lim
r→0

u′

er
Mi = lim

r→0
−2c1r

er
Mi = −2c1

e

while

lim
r→0

(
u2 − 1− ru′

er4

)
xixkMk = lim

r→0

(1− c1r
2)2 − 1 + 2c1r

2

er4 xixkMk ,

which can be simplified to

lim
r→0

c2
1
e
xixkMk = 0 ,

where again the limit is independent of the path by which we approach
the origin. Hence,

lim
r→0

Bi = −2c1

e
Mi , (C.2)

which implies that the magnetic field is also non-singular.
Finally, we can analyze the behavior of the Higgs field in eq. (4.16).

Since we do not have to worry about the constant term φs = vS, we
only need to consider the behavior of our general expression (2.83), i.e.,

φq(r, θ, ϕ) = α f(r)
∑
m

Y ∗lm(θ, ϕ)Qm .

Remember that, in the limit r → 0, f(r) is given by the approximate
solution (4.28), which means that f(r → 0) ≈ c2r

l. Then,

lim
r→0

f(r)
∑
m

Y ∗lm(θ, ϕ)Qm = lim
r→0

c2r
l
∑
m

Y ∗lm(θ, ϕ)Qm = 0 ,

which follows from the fact that when we write the spherical harmonics
Ylm(θ, ϕ) and their complex conjugates in terms of the cartesian coor-
dinates we always get a product of r−l, whose singularity is canceled by
the rl factor coming from f(r), and a combination1 of the coordinates
x, y and z, which take the limit to zero. Thus,

lim
r→0

φ = vS , (C.3)

which implies that it is regular at the origin. Also note that this re-
sult is valid in the special case when l = 1, for the SU(2)-embedded
monopoles, and also to the more restrictive ’t Hooft-Polyakov case,
when l = 1 and S = 0.

Therefore, eqs. (C.1) to (C.3) prove that the Dark Monopole field
configuration is well-defined at the origin, as well as the other monopoles
we have discussed in this work.

1In general, it is a non-linear combination of the coordinates x, y and z.
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