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ABSTRACT 

 

The unit commitment (UC) problem seeks to determine which units 

must operate in a day-head planning horizon. In systems with central-

ized dispatch and predominance of hydroelectricity, this problem is very 

complex due to the presence of nonlinearities and a mixed-integer set of 

decisions. The nonlinearities are associated with the hydro production 

function (HPF), defined by the product of the net head, turbined out-

flow, and efficiency of the unit. Moreover, the mixed-integer character-

istic is present due to the need of deciding which units must be operat-

ing, as well as to represent their specific characteristics of operation 

such as start-up costs, minimum up/downtime constraints and startups 

limit. Due to the growing insertion of intermittent sources, e.g. wind 

farms, it is necessary to consider the inherent uncertainty in this kind of 

resource, which characterizes the problem as stochastic as well. For 

large-scale systems, it is not viable to solve this problem with all these 

characteristics and some simplifications are usually applied to the mod-

el. In this work, due to the availability of efficient softwares to solve 

mixed-integer linear programming (MILP) problems, the nonlinearities 

of the HPF can be treated with different levels of efficiency. For in-

stance, considering piecewise linear models obtained through the Con-

vex Hull algorithm, it is possible to represent the hydro units individual-

ly or through aggregation in one single equivalent generating unit. Each 

representation has a specific impact in the solution quality and computa-

tional effort, which have to be investigated for large-scale problems. In 

this sense, based on the solution of the deterministic UC instances, we 

compare three different individual representations of the HPF. Using 

these results, we define the best representation and compare with the 

other two ones, which are given by an aggregated representation of the 

units, through the solution of a two-stage stochastic programming mod-

el. Cases involving wind generation scenarios and initial useful volumes 

of the reservoirs are presented, using the data of a realistic hydrothermal 

configuration with 11 thermal plants and 16 hydro plants with 52 gener-

ating units. In the UC problem, a load is distributed in a transmission 

system with 95 transmission lines and 46 buses. The planning horizon is 

one day, discretized in hourly steps. Due to the dimension of the prob-

lem, the two-stage model is solved using Benders decomposition, in 

which the master problem is stabilized with the Proximal Bundle meth-

od to improve the convergence of the algorithm. 

 



 

 

 

Keywords: Unit Commitment problem, Hydro Production Function, 

two-stage stochastic programming, Benders Decomposition.





 

 

RESUMO 

 

O problema do comissionamento de unidades geradoras (UGs) visa 

determinar quais unidades devem operar ao longo do dia seguinte a 

operação em tempo real. Em sistemas com despacho centralizado e pre-

dominância de hidroeletricidade, o problema é muito complexo devido a 

presença de não linearidades em um conjunto discreto. As não lineari-

dades estão associadas com a função de produção hidrelétrica (FPH), 

dada pelo produto entre queda, vazão e rendimento da UG. Por sua vez, 

a característica discreta se deve a necessidade de decidir quais UGs 

devem estar operando, bem como a representação de características 

operativas particulares tais como custos de partida, restrições de mi-

nimum up and downtime e limite no número de partidas das UGs. Com a 

inserção crescente de fontes intermitentes, e.g. a geração eólica, deve-se 

levar em conta a incerteza inerente a este tipo de recurso o que, conse-

quentemente, caracteriza o problema também como estocástico. Para 

casos de grande porte, não é viável computacionalmente resolver o pro-

blema com todas essas características e comumente algumas simplifica-

ções de modelagem devem ser realizadas. Neste trabalho, devido a dis-

ponibilidade de pacotes computacionais eficientes de programação line-

ar inteira-mista (PLIM), as não linearidades da FPH podem ser tratadas 

com diferentes níveis de eficiência. Por exemplo, tendo como base mo-

delos lineares por partes obtidos por Convex Hull, pode-se representar as 

UGs individualmente ou por meio da agregação das mesmas em uma 

UG equivalente em cada usina hidrelétrica. Cada representação tem um 

impacto peculiar, em termos de qualidade de solução e esforço compu-

tacional, o qual merece ser investigado para casos de grande porte e com 

predominância de recursos hidrelétricos, como é o caso Brasileiro. Nes-

sa direção, com base na solução de casos determinísticos, comparam-se 

três maneiras de modelar a FPH por UG. Com base nesses resultados, a 

melhor estratégia é comparada com duas outras, as quais representam as 

UGs de forma agregada, por meio da solução de um modelo de progra-

mação estocástica de dois estágios. Diversos casos envolvendo cenários 

de geração eólica e volumes iniciais dos reservatórios são apresentados, 

tendo como base os dados de uma configuração hidrotérmica realista 

com 11 unidades termelétricas e 16 usinas hidrelétricas com 52 unidades 

geradoras. No problema, deve-se atender a uma demanda distribuída em 

um sistema de transmissão com 95 linhas e 46 barras, ao longo de um 

horizonte de um dia, discretizado em passos horários. Devido a dimen-

são do problema, o modelo de dois estágios é resolvido por meio da 



 

 

decomposição de Benders, no qual o problema mestre é estabilizado 

com o método de feixes para melhorar a convergência do algoritmo. 

 

Palavras-chave: Problema do comissionamento de unidades gerado-

ras, Função de produção hidrelétrica, programação estocástica de dois 

estágios, decomposição de Benders.
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1. INTRODUCTION 

The Unit Commitment (UC) problem in electric power systems 

planning might be defined as finding a schedule that defines which gen-

eration units must be turned on/off throughout a specified planning hori-

zon. This schedule needs to satisfy the constraints of the system such as 

energy load requirements, generation limits of the units, transmission 

lines capacity, etc. Furthermore, this schedule is also defined so that an 

objective function must be minimized over that planning horizon. In 

electricity markets with centralized dispatch approach, since an Inde-

pendent System Operator (ISO) is responsible for ensuring the social 

and economic welfare of the market, the objective function is usually 

given by the expected cost associated with thermal generation and defi-

cit. On the other hand, in a decentralized approach, the generation com-

panies supply bids with price and quantity for selling energy and thus 

the objective function is composed of the net revenues. Thus, independ-

ent of the market regulation framework, the UC problem is a well-

known (and hard-to-solve) optimization problem.  

In the case of this work, the interest is the centralized dispatch ap-

proach where the generating units of the system are given by hydro, 

thermal and wind resources. The power generated by wind farms are 

considered uncertain. Even though the UC has been studied by many 

researchers in the last decades, this is not a well-solved problem, mainly 

when we regard large-scale systems with predominance of the hydro 

resources.  

The presence of hydro plants inserts reasonable difficulties in this 

optimization problem. In many systems, mainly the ones with several 

hydro units, some plants may be coupled in cascade, which means that 

the reservoir water level of a downstream plant is influenced by the 

generation of the upstream plant. Besides that, the generation cost for 

hydro plants is not measured in the same way as for thermal plants, i.e., 

based on the amount of fuel used in the start-up, shutdown and nominal 

operation procedures. One methodology to measure the water cost is the 

Future Cost Function (FCF) (PEREIRA, 1989), which is represented by 

a set of inequalities constraints and it is included as a boundary condi-

tion for the UC problem. Moreover, forbidden zones associated with the 
Hydro Power Function (HPF) also may add difficulties to solve the 

problem. The HPF is a nonlinear and nonconvex function that is, in 

general, linearized for practical purposes; thus, the UC problem can be 

handled with mixed-integer linear programming (MILP) solvers. This 
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linearization, depending on the method used and the accuracy level, may 

result in many constraints and variables. All these issues affect directly 

the convergence of the UC problem even in the deterministic setting.  

As it is known, the recent growth in the use of renewable energy 

sources, mainly wind generation, inserts uncertainty in the UC problem 

so that in certain cases the computational burden may become infeasi-

ble. Therefore, new techniques and models have been proposed to over-

come these issues related to the UC problem with a predominance of 

hydro resources. In this scenario, the focus of this work consists in eval-

uating a tradeoff between computational burden and accuracy related to 

the hydro plant model in the UC problem. The main goal is to explore 

different representations of the HPF, considering aggregated and indi-

vidual units when the UC is represented as a two-stage stochastic pro-

gramming model. The scenario tree is associated with the wind genera-

tion and the resulting optimization model is solved via Benders decom-

position (BD)-based techniques.  

1.1 Relation with Existing Literature 

The first studies related to the UC problem were performed during 

the 1960s for thermal systems. Since that time, many researchers have 

been working on this subject, which became known as thermal UC prob-

lem (WRIGHT & JOHNSON, 1971), (HARA, et al., 1966) (PANG & 

CHEN, 1976), (COHEN & YOSHIMURA, 1983). Due to the mixed-

integer nature, and also the complexity of the problem, especially when 

applied to large-scale power systems, different optimization approaches 

have been applied over the past years, such as priority ordering methods 

(LEE, 1988), dynamic programming (SNYDER, et al., 1987), (BOSCH, 

1985), Lagrangian relaxation (MUKHERJEE & ADRIAN, 1989), 

(PETERSON & BRAMMER, 1995), Benders decomposition 

(SHAHIDEPOUR, et al., 1997), branch-and-bound method (COHEN & 

YOSHIMURA, 1983) and mixed-integer linear programming (CHANG 

& WAIGHT, 1999), (MUCKSTADT & WILSON, 1968). Most of these 

first works considered the UC as a deterministic problem; however, with 

the advent of renewable energy sources and computers with more data 

processing capacity, it was possible and necessary to consider the UC 

problem in a stochastic setting. 

Starting with determinist UC approaches, priority order is usually the 

simplest among the mentioned methods. In such approach, the units are 

committed to ascending order of their average production cost 

(GOVARDHAN, 2016), i.e., units are committed in a fixed order until 
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the commitment of the next unit in the priority list is uneconomic or 

more expensive. Nevertheless, priority list methods often result in sub-

optimal solutions, even in deterministic UC problems, since it usually 

does not handle difficult constraints (KAUR BAWA & KAUR, 2013). 

Nowadays, in some specific works, priority methods are usually com-

bined with other methods such as dynamic programming or meta-

heuristics to solve UC problems under uncertainty.  

Dynamic programming (DP) is one of the most classical approaches 

to solving UC problems. This method evaluates many decisions associ-

ated with the state space in a multi-stage problem. A subset of decisions 

is associated with each sequential stage problem and the cheapest one 

must be selected to minimize costs, i.e., a single decision must be made 

in each problem step. There is a cost associated with each decision and 

this cost may be affected by the decision made in the preceding step. 

This algorithm evaluates systematically many possible decisions in 

terms of minimizing the overall cost in a multistage scheduling problem 

(OUYANG & SHAHIDEHPOUR, 1991). Due to the enumerative nature 

of the method, DP suffers from a long processing time that expands 

exponentially with the size of the problem. The use of this method now-

adays involves mostly solving subproblems of UC often in relation with 

Lagrangian-based decomposition methods (TAHANAN, et al., 2018).  

Lagrangian relaxation (LR) is included in the “dual decomposition” 

methods. This approach decomposes the original primal problem into 

smaller easy-to-solve subproblems. For obtaining the decomposition, 

using Lagrange multipliers, the LR relaxes the coupling constraints, 

such as demand and reserve requirement ones, by moving them into the 

objective function. This method has the advantage of being easily modi-

fied to model characteristics of specific utilities and is robust in handling 

several types of the unit constraints. On the other hand, its optimal solu-

tion rarely satisfies the relaxed constraints. Besides that, the method is 

sensitive which may cause unnecessary commitments of some units so 

that depending on the specific problem only a suboptimal feasible solu-

tion can be expected from the LR (SALAM, 2007). However, the LR is 

still one of the most used methods, mainly in optimization under uncer-

tainty due to the computation time when compared to other mathemati-

cal approaches. 

Another classical approach to solve UC problems is the Benders De-

composition (BD), which is a primal decomposition. The BD decom-

poses the original problem into one master problem and other smaller 

subproblems. The master problem carries the fixed “complicated” varia-

bles (usually binary ones), and the subproblems have, in general, the 
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“easy” ones (continuous), thus easier independent problems to solve 

(BONNANS, et al., 2006). The application of BD to the UC problem is 

also seen in this work and therefore it will be better discussed in Chapter 

4. 

Branch and bound (BB) is a technique that solves simpler problems 

derived from a more complex original problem. These less complicated 

problems compose a tree, and each problem solution gives a lower 

bound on the solutions of the problems that are descendants of that one. 

However, if the cost solution of a problem is greater than a feasible 

solution to the original problem, then it is not necessary to evaluate the 

nodes below derived from that one since there will not be the optimal 

node among them (COHEN & YOSHIMURA, 1983). The great disad-

vantage of the BB method is that execution time grows up exponentially 

with the size of the UC problem. Besides that, using approximations for 

making the problem tractable for large-scale systems causes solutions to 

be highly sub-optimal (CHENG, et al., 2000).  

Mixed-integer programming (MIP) techniques consist of implement-

ing mixed-integer models using qualified software to solve these sorts of 

problems. MIP formulations of UC have become common with the rise 

of data processing and efficiency of mixed-integer linear programming 

(MILP) solvers, such as GUROBI and CPLEX. Nowadays, MILP tech-

niques are universally used when combined with other approaches, such 

as LR, DP, etc. Nevertheless, depending on how detailed the model is, 

MILP techniques might demand much computational effort. As detailed 

ahead, the MILP technique is used in this work to perform some deter-

ministic analysis of the UC problem. 

All the methods mentioned to handle the deterministic UC are also 

used in the stochastic UC problems. In general terms, MILP, LR, BD, 

DP, etc., are (alone or combined) the core solution strategy in the fol-

lowing approaches: Robust Optimization (RO), Chance-Constrained 

Optimization (CCO) and Stochastic Optimization (SO) (also known as a 

scenario-based approach). The basic ideas of these methods will be bet-

ter explained in chapter 4, but by now the main works that approach 

these methods are discussed.  

In general, the UC under uncertainty uses probability (scenario or 

distributions) associated mostly to four aspects in the problem: availabil-

ity of the units, load, wind, and inflow (CARDOZO, 2014). Energy 

prices may be present in the models, especially in decentralized market 

framework approaches. For example, Jiang, et al. (2010) use a two-stage 

model to treat uncertainty on supply and demand. Uncertain problem 

parameters are assumed to be within a given cardinality or polyhedral 
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uncertainty set. Conclusive results compare the RO technique with a 

deterministic approach.  

The CCO was first applied in the UC problem by Ozturk et al. 

(2004). In this work, LR was used to decompose the original primal 

problem into subproblems and each one was solved by DP. Moreover, 

the Monte Carlo method is used to verify the accuracy provided by the 

CCO technique. Ding, et al. (2010) propose a technique using CCO in 

where probabilistic constraints are changed into deterministic ones, and 

then a simple MILP method is used to solve the problem completely. 

The authors consider uncertainty on demand fluctuations, unit forced 

outages, a variety of energy prices and wind generation.  

The SO approach has been used broadly in the UC context over the 

past few years. An early work is presented by Carpentier et al. (1996). 

Random disturbances are modeled as scenario trees and the technique 

optimizes the average generation cost of the tree. To solve the problem, 

an augmented Lagrangian technique is used. Wong and Fuller (2007) 

present a stochastic linear programming (LP) formulation using scenario 

trees to model uncertainty associated with energy prices. The authors 

use an LP technique to solve the problem since simplifications were 

performed in the mathematical model with the goal to focus on energy 

prices stochastic schemes. The SO approach is also the method to repre-

sent uncertainty in this work to solve the UC problem. 

Another critical issue related to any UC problem is the mathematical 

model associated with the elements of the system. The more details and 

variables in the model, the harder it is to find an optimal solution. Re-

searchers have been inspecting many different models since the UC 

problem begun being studied. Considering the Hydrothermal UC 

(HTUC) problem, some detailed models can be seen in works such as of 

Takigawa (2010), Tavlaridis-Gyparakis (2017), Liahagen and ROD 

(2016), Gil et al (2003), Paredes et al (2015), Martins and Soares (2014), 

Norbiato, et al (2014). 

In the HTUC associated with hydro-based systems, one of the crucial 

aspects associated with the mathematical model is the accurate modeling 

of the HPF (CHENG, et al., 2000), which is a nonlinear function of the 

net head, turbined outflow and global efficiency of the unit. Thus, due to 

its nonlinear nature and nonconvexity, the precise inclusion of this func-

tion in the problem is a challenging task. There must be a balance in the 

model neither to oversimplify the model and find infeasible solutions for 

real-time operations, nor to implement many details that may result in 

impractical computation times.  
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In Carvalho (2002) the HPF considers individual units. The hydro 

generation is obtained through a linear relationship between power and 

turbined outflow. The linear coefficient that links these two variables is 

the productivity (MW/(m³/s)), which is a constant value calculated using 

the forebay, tailrace, and losses for discretized values of useful volume. 

This representation may be used for preliminary studies in the UC, but is 

more often used on the medium-term planning, since it is also consid-

ered simplified for the short-term. In Cunha et al. (1997), the authors 

present a method to calculate a variable productivity based on the con-

cept of energy production function. The method assumes that the total 

production of energy is obtained from volume values, turbined outflow, 

and spillage. This is a more realistic approach and it has been used in the 

entire Brazilian system to optimize the operation planning in the medi-

um-term. In Conejo et al. (2002) a MILP model is proposed to compute 

the power generation considering the net head and water discharged for 

each hydro unit. Regarding the HPF, the authors simplify the Hill chart 

using unit performance curves for specified values of the head. Further-

more, these curves consist of piecewise linear functions selected by 

binary variables. In this sense, this model has as disadvantage the exces-

sive use of binaries. The methodology presented by Diniz and Maceira 

(2008) uses the concept of Convex Hull (CH) (ANDREW, 1979), which 

is a strategy to sketch plans that envelops the original function through-

out its domain. The model considers the influence of the stored volume, 

turbined outflow, and spillage in the HPF. On the other hand, the effi-

ciency of the units is considered constant and hydraulic losses are calcu-

lated as percentages (or fixed values) of the gross head. In Li et al. 

(2014) a case study of hydro UC for the Three Gorges Project, in China, 

is presented. Concerning the HPF, the model considers the head varia-

tion over the operation and its effects on power generation. The forebay 

level is formulated using a linear approximation, but for the tailrace, an 

ad-hoc procedure is used using sequential MILP executions until achiev-

ing convergence. Moreover, the penstock head loss function is consid-

ered constant. The work of Guedes et al. (2017) proposes a compact 

MILP formulation based on an equivalent unit model and a piecewise 

linear generation function, which provides an aggregated optimal solu-

tion that is used to obtain unit decisions.  
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1.2 Goals of the Thesis 

This work seeks to evaluate the impact of different piecewise linear 

models of the HPF on the stochastic HTUC problem. The main goal is 

to investigate the tradeoff between computational burden and solution 

quality in the HTUC when different HPF representations are included in 

this problem. In general terms, two types of HPF models are analyzed: a 

single continuous function that aggregates the identical units in the 

plant, and the classical discontinuous HPF individual representation that 

considers each unit separately. As detailed ahead, we present three pos-

sibilities for representing the individual HPF and, for accessing the best 

approach, we perform a comparative analysis of these ones via deter-

ministic HTUC problem. In the sequence, we use the individual model 

chosen in the deterministic setting to compare with the aggregated mod-

el in a two-stage stochastic HTUC problem.  

1.3 Outline of the Thesis 

The thesis is structured as follows: Chapter 2 briefly describes the 

context of the generation scheduling planning problem considering the 

Brazilian system; Chapter 3 presents the mathematical models for each 

element of the system (generating units, transmission lines, etc.). Be-

sides that, different formulations for the HPF are shown, which define 

distinct models that will be evaluated in this work. Afterward, the de-

terministic model for the HTUC problem is presented as a MILP prob-

lem; in Chapter 4, initially, the two-stage model is presented. After that, 

the decomposition method is described, which includes the BD and the 

Proximal Bundle algorithms; Chapter 5 presents the computational re-

sults carried out for the deterministic and stochastic instances, evaluat-

ing the different cases defined by each different HPF model; finally, in 

Chapter 6, the final conclusions are presented, as well as suggestions for 

further works. 
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2. THE BRAZILIAN GENERATION SCHEDULING PROBLEM 

The Brazilian interconnected system (BIS) is responsible for genera-

tion, transmission, and distribution of electric energy throughout Brazil. 

The system encompasses more than 99% of the Brazilian territory, and 

only a few small systems (located in the Amazon region) are operated in 

the island mode (BRITO, 2013). The BIS has also a great extension 

when compared to other electric power systems abroad, which makes 

the system unique and extremely hard to operate, especially due to the 

weak electrical connection with other systems. Regarding power genera-

tion, BIS has as its main source the hydropower plants, which has ap-

proximately 65% of the total installed power, followed by other second-

ary sources, such as thermal and wind, as shown in Table 2-1. 

Table 2-1 - Main energy sources in the BIS.  

Type Units Installed power (MW) (%) 

hydro 1,267 98,814 64.55 

wind 461 11,245 7.30 

solar 55 236 0.15 

thermal 2,928 41,101 26.70 

nuclear 2 1,990 1.29 

Source: modified from ANEEL(2017) 

The centralized operation of the BIS is performed by an Independent 

System Operator (ISO), which has the following obligatory tasks (ONS, 

2017):  

1. Transmission system reinforcement: ISO elaborates a study 

called Enlargement and Reinforcement Plan, whose objective is 

to determine the changes in the transmission network, besides 

the reinforcement on the equipment of transmission and distri-

bution companies; 

2. Integration of new systems: The Brazilian regulatory frame-

work assures that any agent can be connected to the transmis-

sion system if the new integration has the requisites and criteria 

established by the ISO; 

3. Mid and Short-term generation scheduling: ISO evaluates 

future conditions to provide enough energy so that a certain 

demand is supplied. In the mid-term scheduling, the planning 
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horizon is 5-years discretized monthly steps. The hydro re-

sources are modeled based on the concept of “equivalent sub-

systems”. On the other hand, the short-term scheduling has a 

two-month planning horizon discretized in weekly steps in the 

first month. This problem uses the FCF calculated by the mid-

term scheduling and the hydro resources are represented in an 

individualized way. Both planning problems are solved using 

SDDP related algorithms to optimize costs and guarantee the 

security operation of the system; 

4. Unit commitment (or day-ahead generation scheduling): it 

concerns with day-ahead evaluation of the energy supplying 

conditions, considering a detailed model for the generating 

units and the transmission system. It defines the commitment 

and dispatch for hydro, thermal and wind units. Besides that, 

this stage also decides energy exchange between subsystems 

and agents of the BIS, as well as energy trade between interna-

tional connections to supply the load that was previously fore-

casted; 

5. Real-time operation: it may be divided into three tasks. The 

first one tries to apply the decisions coming from the day-ahead, 

with changes when necessary. The second one coordinates and 

supervises the network and its functioning, acting when some 

contingency or another event unexpected happens. The last one 

checks the data to evaluate the occurrences of the other stages, 

analyzing perturbations and contingencies; 

6. Evaluation of the operation: identifies undesirable causes and 

events related to unsatisfying performances of the system, and 

elaborates recommendations to improve the operation; 

7. Managing of transmission: it produces information that will 

compose the payments for those who provide the transmission 

lines services. 

Due to the size and the changes that the system has been going 

through, such as new environmental politics and penetration of renewa-

ble sources, there is a need of novel studies to contribute for a high-

quality operation. The next section will point out a few of these changes. 
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2.1 Penetration of Renewable Energy  

There is a growing use of renewable energy sources in power sys-

tems throughout the world, due to the advantages related to environmen-

tal politics, since renewable sources usually have minor impacts, re-

duced operating costs and do not depend on oil price variations. Wind 

power has not been used in large scale until the 1990s. By 1997, 1.5 GW 

of new capacity was installed worldwide (7.6 GW total global capacity), 

and it kept growing until 2013 when it suffered a dramatic decline in 

new installations. However, this growth was quickly recovered and in 

2015 wind power reached 432.9 GW, which stands for a 5,596% growth 

in 20 years (GWEC, 2015). Photovoltaic energy has followed the same 

path, but its use in large-scale started only during the 2000s. In 2008, the 

global capacity was 16 GW, and in 2015 it summed up 230 GW around 

the globe, a 1,331% growth in 10 years.  

Energy generation in Brazil followed a similar behavior, being 

among the top countries whose wind power capacity had the biggest 

growth in 2015 (46.2%). Nowadays wind energy sums up an expressive 

amount of generation among the main energy sources in Brazil. Solar 

energy is not as used as wind, but it is also increasing, and Brazil is 

supposed to be among the 20 top countries with the greatest generation 

of solar energy in 2018 (PORTAL BRASIL, 2016).  

Brazil stands out for having an energy matrix with a substantial share 

of renewables. Besides the increase in solar and wind energy, the main 

energy source in Brazil is also renewable, coming from several 

hydropower plants, a reality observed in a few countries in the world. 

This means that, currently, the GHG (greenhouse gas) emissions per unit 

of energy consumed in Brazil are far below when compared to other 

countries. On the other hand, if we compare socioeconomic indicators, 

we realize that Brazil still has a long way to go to reach a human devel-

opment index comparable to those of developed countries. Hence, even 

though Brazil has been adopting a development path less intensive in 

energy use than other nations, it is hard to imagine that the nation will 

be able to reduce the poverty level on the horizon by 2030 without in-

creasing energy consumption, since both are connected. As a result, 

GHG emissions will rise. Thus, the great defy of the Brazilian energy 

sector is precisely to keep a high share of renewable sources in its ener-

getic matrix, which implies a significant expansion of the existing num-

ber of wind farms, solar plants, biomass-fueled thermal power plants 

and the construction of new hydroelectric plants, in addition to increas-
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ing production and consumption of liquid biofuels, ethanol and bio-

diesel, and investments in energy efficiency (EPE, 2016). 

Nowadays, most of the hydroelectric inventoried potential is in the 

Amazon and Tocantins-Araguaia river basins, where there are large 

extensions of protected areas (conservation units, indigenous lands, and 

lands occupied by staying “quilombo” communities). Due to this social 

and environmental context, hydroelectricity is expected to lose share in 

the following years, at the expense of an increased share of wind, solar 

and biomass sources. Even though renewable sources have many ad-

vantages, they also have disadvantages, which include prohibitive costs 

to build a facility, dependence on geographic conditions (such as 

hydropower plants that depend on rivers flow) and intermittency of 

energy supplying. This last one is what makes a large system as BIS 

hard to operate with high penetration of renewable sources, since some 

forecasts might be hard to obtain, such as wind speed and inflows. 

Hydropower plants with reservoirs provide more reliability concern-

ing energy supplying, but nowadays many facilities without a reservoir, 

i.e., run-of-the-river plants, are being built and operated in the world, 

mainly due to environmental politics since there are major impacts relat-

ed to the construction of reservoirs.  Thus, considering the Brazilian 

context, due to the presence of hydro plants with large reservoirs and the 

absence of wind farms in the past, there was a tendency to develop 

mathematical models concerning only medium and long terms. Howev-

er, nowadays with this change in the Brazilian scenario towards renewa-

ble energy, run-of-the-river plants, and wind farms, new challenges are 

emerging and then we need to develop a substantial stochastic UC mod-

el.   

2.2 Generation Scheduling Problems  

The complexity of BIS makes infeasible to solve a unique computa-

tional model to accomplish the generation scheduling problem. Thus, 

ISO works with three main computational models, each one possessing 

different detail levels in the modeling (uncertainties, nonlinearities, on-

off decisions). The computational models are associated with the follow-

ing operational tasks: Mid-term generation scheduling (MTGS), short-

term generation scheduling (STGS) and the UC problem.  

MTGS problem is solved annually and revised every four months. 

This problem has as the main goal to evaluate the energy supplying to 

the forecasted energy market for a 5-years planning horizon, giving 

relevant information to the expansion of the system (ONS, 2017). The 
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main computational tool used to perform these evaluations is the 

NEWAVE model (DINIZ & MACEIRA, 2008), which defines via Sto-

chastic Dynamic Dual Programming (SDDP) the water values for ener-

gy equivalent model in each month.  

Using the water values provided by MTGS, the STGS problem is 

solved monthly and revised every week. The two-months planning hori-

zon is discretized weekly according to the load level in the first month, 

and the inflows in the second monthly are considered random. The main 

tool responsible for this study is the computational model DECOMP, in 

which each hydro plant is represented through its physical characteris-

tics and operational constraints. The DECOMP model employs the L-

Shaped algorithm as the solution strategy and, as a result, at the end of 

the first week, the water values are available as a function of the storage 

and past inflows. The last step of generation scheduling in Brazil is the 

so-called UC problem. 

The UC has as its main goal to optimize the operation of BIS, sup-

plying energy to the demand with security and on the best technical 

conditions. To carry out this goal, the HTUC performed by ONS uses as 

input data: centralized load forecasts performed every 30 minutes, daily 

meteorological data to forecast the wind conditions, availability declara-

tions of power plants and forecasted inflows. It is also considered envi-

ronmental constraints, maintenance schedules of generation and trans-

mission installations, and operational constraints of the power plants. 

All this information, together with the generation dispatch, power ex-

changes between subsystems and daily load programs compose the final 

report of the day-ahead generation scheduling, aggregating its input 

information and outcomes discretized in 30 minutes for the entire day.  

The computational tools used in this step are PDPM and OPCHEND 

(ONS, 2016). The first one works on the managing and validation of the 

other models acting on the previous steps, verifying the energetic bal-

ance, exchanges, reserve generation and thermal generation. The second 

one concerns goals related to the levels of the reservoirs that were 

established by preceding steps (ONS, 2008).  

This work treats the UC problem, analyzing it from a mathematical 

perspective. Thus, it is a problem that has a substantial mathematical 

complexity which can be summarized in TAKIGAWA (2010): 

 time coupling: due to the storage limits, water time traveling, 

ramp and uptime and downtime of thermal generation; 

 space coupling: due to hydro plants in cascade, power flow equa-

tions; 
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 nonlinear: because of the HPF, operational costs of thermal units 

and power flow between transmission lines; 

 combinatorial: since one of the main goals of the operation pro-

gramming is to decide which units should be on or off to supply 

enough energy to meet the demand; 

 size of the system: due to the substantial number of the units, 

time stages, binary decisions, and uncertainties.  

Thus, the nature of the HTUC is a mixed integer nonlinear optimiza-

tion problem. Some features of this nature might be loosed, such as non-

linearity, changing, for instance, the hydroelectric production function 

and the power flow in transmission lines to linear approximations, 

which improves the computational effort to solve the problem. The as-

sumptions made in this thesis regarding the HTUC problem will be bet-

ter explained in the next chapter.  

 

 

Equation Chapter (Next) Section 1 

Equation Chapter (Next) Section 1 

 

 

 

Equation Chapter (Next) Section 1 
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3. DETERMINISTIC UNIT COMMITMENT MODEL 

This chapter presents the deterministic optimization model used in 

this work to handle the HTUC problem. Initially, costs and constraints 

of thermal plants are introduced. After that, the DC power flow model is 

presented. Next, the model for the hydro generating units is shown, 

which includes different approaches of the HPF. Finally, the entire 

mathematical model is presented as a deterministic MILP problem.   

3.1 Thermal Plants 

Thermal plants use the energy of heat to generate electricity. The 

fuel used in this process can be a fossil, nuclear or renewable. In usual 

thermal plants, the procedure of burning this fuel produces the heat that 

turns water into steam, which will drive the inner turbine producing 

kinetic energy. The generator produces electricity from the turbine 

movement. This energy production involves a cost, which can be divid-

ed into start-up and nominal operation costs. The latter is usually 

modeled by a first or second-order (convex) polynomial that depends on 

the power output of the generating unit. Since second-order polynomials 

might increase computational effort to solve MILP problems, in this 

work is used one first-order polynomial, as the following equation: 

 ,C FCit i it ioc pt    (3.1) 

where: 

ocit variable thermal cost of plant i and stage t when the unit is 

operating in nominal range (R$); 

Ci 
unitary variable cost of plant i (R$/MW); 

ptit generation of thermal plant i and stage t (MW);  

FCi the fixed cost of thermal plant i (R$). 

Besides ocit, the act of turning on a thermal plant yields a cost since 

there is a time interval until the plant starts producing its minimum pow-

er. Then, considering as a fixed value, the fuel used during this time can 

be modeled through a start-up cost (WOOD & WOLLENBERG, 1996) 

as detailed in (3.2). 

 
, 1( ) ,

0,

SCit it i t i

it

sc u u

sc

  


 (3.2) 

where: 
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scit auxiliary continuous variable to compute the start-up cost of 

thermal i and stage t (R$); 

 SCi the start-up cost of thermal plant i (R$); 

 
uit binary variable that indicates if thermal plant i is on (uit = 1) 

or off (uit = 0) in stage t. 

The power produced by a thermal plant does not change loosely 

along a time horizon. Then, constraints known as ramp prevent this 

power variation to be higher than a determined value, and this variation 

must be limited in situations when power is decreasing or increasing. 

Equations (3.3) and (3.4) represent ramp constraints (FRANGIONI, et 

al., 2009). The first one corresponds to the situation when generated 

thermal power is increasing, and the second one to power decreasing.  

 
min

, 1 , 1 , 1(1 ) ,R PT
up

it i t i t i i t ipt pt u u       (3.3) 

 
min

, 1 (1 ) ,R PT
down

i t it it i it ipt pt u u      (3.4) 

where: 

 ( )
R

up down

i
 ramp-up (down) rate limit of thermal plant i (MWh/h); 

 min
PTi

 minimum power of thermal plant i (MWh). 

The equations above limit the ramp rate when a plant is already 

online, but also when a unit is turned on/off. In this case, it is mandatory 

to generate minimum power in the previous stage before the unit turns 

on or shuts down. 

Other important operational characteristics are given by the mini-

mum up and downtime constraints, which avoid the mechanical stress of 

thermal plants ensuring that a plant will be on/off for a minimum time 

interval. These constraints are formulated by equations (3.5) 

(FRANGIONI, et al., 2009).   

 
, 1

, 1

, [ 1, 1],

1 , [ 1, 1],

TT

TT

up

it ic i c i

down

it ic i c i

u u u c t t

u u u c t t





     

      
 (3.5) 

where: 

 
( )

TT
up down

i  minimum uptime (downtime) of thermal plant i  after 

turning on/off the plant. (h). 

Due to thermodynamic and efficiency issues, thermal plants have 

minimum and maximum power values, according to (3.6). 

 
min max ,PT PTi it it i itu pt u   (3.6) 

where: 
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max(min)
PTi

 maximum (minimum) power of thermal plant i (MW). 

3.2 Transmission System 

The transmission system is an important modeling issue since primal 

decisions may change according to the power flows on the transmission 

lines. Originally, power flow equations have a non-linear nature, but this 

aspect is simplified in this work due to the computational effort, and 

then a classical DC model is used. In this sense, some factors must be 

considered: 

 All bus voltages are considered fixed and equal to 1 p.u.; 

 Only the reactance of the transmission lines is considered. Re-

sistances and admittances are negligible; 

 Angle (ϴ) differences between buses are small, so that sin(ϴ) ≈ 

ϴ radians. 

Thus, with these considerations, it is possible to model power flow in 

each transmission line via linear constraints, as seen in equations below 

(TSENG, 1999).  

max max

1

l lb rt it gt bt bt l

b r i g

ph pt pd
   

 
        

 
   

b b b

B

R I RW

FL Γ PW L FL   (3.7)  

On the other hand, the equation (3.8) shows the power balance con-

straint for the entire system. 

1 1 1 1 1

rt it gt bt bt

b r b i b g b b

ph pt pd
       

        
b b b

B B B B B

R I RW

PW L  (3.8) 

where: 

 

B number of buses; 

Rb set of indices of the hydro plants connected to bus b; 

RWb Set of indices of the wind farms connected to bus b; 

Ib set of indices of the thermal plants connected to bus 

b; 
max

lFL

 

maximum power flow capacity of the transmission 

line l (MW); 

Γlb 

 

power transfer distribution factor (PTDF) of trans-

mission line l due to the injection of active power at 

bus b; 
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pdbt the deficit of bus b and stage t (MW); 

Lbt load demand of bus b and stage t (MW); 

phrt power of hydro plant r and stage t (MW); 

PWgt wind power of wind farm g and stage t (MW).  

Above, Γlb is a dimensionless parameter that depends on the reac-

tance of the transmission lines and represents the sensitivity of each 

power injection at bus b over line l. Furthermore, Γlb is obtained through 

manipulations on equations of power flow, power balance on buses and 

incidence matrix (SCUZZIATO, 2016). The value Γlb is zero for the 

slack bus, i.e., a power injection at this bus has no influence on the other 

buses. The reference VAN DEN BERGH, et al. (2014) adds more de-

tails on how to calculate parameter Γlb. This DC formulation is helpful if 

bus angles are not needed since it decreases the number of power flow 

constraints as well as the number of variables.  

3.3 Hydropower plants 

Two types of hydropower plants are considered in this work: run-of-

the-river and accumulation power plants. There is also a third type of 

plant with storage by pumping, but this one is not usual on the Brazilian 

system (SCUZZIATO, 2016) and then it is not considered in this work. 

Run-of-the-river plants have a small capacity of water storage so that the 

stored water needs to be used on a short-term period. In turn, hydro 

accumulation power plants have reservoirs capable of storing water to 

use during longer time horizons.  

The generation cost for hydro plants cannot be computed such as for 

thermal plants, which is based on the fuel, start-up, maintenance cost 

and etc. One methodology to measure the water cost is the Future Cost 

Function (FCF) (PEREIRA, 1989). This function relates the expected 

cost at the end of the UC planning horizon with the reservoirs storage 

levels. The more water is stored in the reservoirs, the less expensive will 

be the expected future costs. Thus, it is possible, using the FCF, to com-

pare costs regarding how much water should be used with keeping the 

water stored during the UC horizon, considering that it may be operated 

as an alternative option in the presence of a more expensive source of 

energy. The equation (3.9) shows the FCF constraints. 

 
( ) ( )

1

T
π

rn
g g

r r

r

v


     (3.9) 

where: 
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α variable that represents the expected future cost 

(R$); 

 
( )g

r  
slope coefficients of the FCF of hydro plant r and 

cut g (R$/hm
3
);  

 Trv
 

volume of reservoir r in the time stage T (hm
3
);  

 ( )g  linear coefficient of the cut g (R$). 

Hydropower units also have some operational characteristics that re-

strict their operation concerning the range of power generation. Besides 

that, hydropower plants have a minimum and maximum capacity of 

stored volume. Thus, constraints (3.10) represent limits of power gen-

eration, turbined outflow in the generating units, reservoir volume, and 

spillage. 

 

min max

min max

min max

max

jrt jr jrt jr jrt

jrt jr jrt jr jrt

r rt r

rt r

z q z

z ph z

v

s

 

 

 



Q Q

PH PH

V V

S

 (3.10) 

where: 

 
qjrt turbined outflow of hydro unit j, plant r and stage t 

(m³/s); 

 
max(min)

jrQ  
maximum (minimum) turbined outflow of hydro 

unit j and plant r (m³/s); 

 
phjrt

 generated power of hydro unit j, plant r and stage t 

(m³/s); 

 
max(min)

jrPH  maximum (minimum) power generation of hydro 

unit j and plant r (m³/s); 

 
zjrt binary variable that indicates if hydro unit j, plant r 

and stage t is on (1) or off (0); 

 vrt reservoir volume of hydro plant r and stage t (hm
3
); 

 
max(min)

rV  
maximum (minimum) reservoir volume of hydro 

plant r (hm
3
); 

 srt spillage of hydro plant r and stage t (m³/s); 

 
max

rS  
maximum spillage of hydro plant r (m³/s); 

Regarding the reservoirs, the operation of hydropower plants is ruled 

by the principle of mass conservation applied to fluids, which is present-

ed in the equation (3.11).  
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where: 

 
C1 constant used to convert a turbined outflow (m³/s) 

into a stored volume (hm³) for a period of 1 hour; 

 

wrt turbined outflow of hydro plant r and stage t (m³/s), 

which is given by 
1

r

rt jrt

j

w q



NG

; 

 
up

r  
set of indexes of the hydro plants upstream of plant 

r; 

 Ωmr water traveling time between reservoirs m and r (h); 

 
Yrt incremental inflow in the reservoir r and stage t 

(m³/s). 

Likewise thermal plants, hydro units also have minimum up and 

downtime constraints, expressed in (3.12) as follows: 

 
, 1

, 1

, [ 1, 1]

1 , [ 1, 1]

TH

TH

up

jrt jrc jr c jr

down

jrt jrc jr c jr

z z z c t t

z z z c t t





     

      
 (3.12) 

where: 

 
( )

TH
up down

jr
 minimum up(down)time of hydro unit j and plant r 

(h). 

It is expected during the real time operation that large hydro plants 

do not turn on/off often, but depending on the planning horizon and on 

the minimum up (down)time of the hydro units, this may happen. Thus, 

in order to avoid many start-ups, a constraint to define a maximum 

number of start-ups is used for the hydro units, as expressed in the 

equation (3.13). 
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,
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jrt jrt jr t

jrt jr

t
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y z z

y

y





 





  (3.13) 

where: 
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yjrt auxiliary variable to compute the number of start-

ups of hydro unit j, plant r, and stage t; 

 NSjr maximum startups of the unit j and plant r. 

One of the key issues regarding UC is the HPF, which is a nonlinear 

and nonconvex function due to the nature of the hydroelectric losses, 

efficiency, net head, and other aspects. Moreover, there are forbidden 

zones associated with vibrations in the turbine shaft. In this sense, it is a 

great challenge to represent HPF properly since this representation 

needs to be computationally efficient but also detailed enough so that 

the solution obtained is practical. Linear representations of the HPF are 

used broadly since this representation is especially useful considering 

computational efforts and details of the hydro units. The procedure to 

build a piecewise linear function can be accomplished through the Con-

vex Hull algorithm. The details of this process can be seen on   

FREDO(2016). A piecewise linear representation of the HPF was used 

in this work, but firstly we present succinctly the nonlinear formulation 

of the HPF. 

3.3.1 Nonlinear Hydro Power Function  

The mathematical expression that defines the HPF for a unit j, hydro 

plant r, and stage t is given by: 

 

  jrt jrt jrt jrtph h q   G   (3.14) 

where: 

 
phjrt power generation of the unit j, plant r and stage t 

(MW); 

 G constant value of 0.00981 (MW/(m³/s)m); 

 
qjrt turbined outflow of the generating unit j, plant r and 

stage t (m³/s); 

 hjrt net head of the unit j, plant r and stage t (m); 

 η(q,h)jrt hydraulic efficiency unit j, plant r, and stage t. 

 

Net head is defined using forebay and tailrace levels, besides the 

losses of each unit as follows: 

 

 ( ) ( , ) ( )h fbl v trl w s pl q    (3.15) 
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where: 

 

 fbl(v) forebay level (m); 

 trl(w,s) tailrace level (m); 

 pl(q) hydraulic losses (m). 

In the Brazilian case, the fbl and trl functions are expressed by the 

following fourth-degree polynomials: 

 

 
2 3 4( )fbl v v v v v        

0 1 2 3 4
HM HM HM HM HM  (3.16) 

 

2

3 4

( , ) ( ) ( )

( ) ( )

trl w s w s w s

w s w s

      

     

0 1 2

3 4

HJ HJ HJ

HJ HJ
 (3.17) 

where, HM0,…, HM4 and HJ0,…, HJ4 are the coefficients for fbl 

and trl, respectively. Equation (3.18) defines the hydraulic losses of the 

generating unit. 

 
2( )pl q q PR  (3.18) 

where PR (s²/m
5
) is the constant of hydraulic losses. Finally, the unit 

efficiency is defined by the following polynomial: 

 
2 2( , )q h q q h h q h            

0 1 2 3 4 5
R R R R R R  (3.19) 

where, R0,…,R5 are coefficients of the efficiency equation.  

Now, we present the piecewise linear functions that represent in an 

approximate way the nonlinear function HPF described above. We con-

sider that units possess only one forbidden zone. Furthermore, it is also 

assumed that each hydro plant has identical units. Five different piece-

wise linear HPF models are presented in this work and they are named 

as DFm (m = 1,2,…,5.). 

3.3.2 Individual Model (DF1) 

This section presents the formulation for the individual representa-

tion of the HPF. Firstly, we consider that the following linear piecewise 

model is available: 

 
( ) ( ) ( ) , 1,d d d

jrt jr jrt jr jrt jr jrph q h d   C0 C1 C2   D  (3.20) 

where: 
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 phjrt power of hydro unit j, plant r and stage t (MW); 

 
( )

C
d

jrk  
coefficient k of the hyperplane d that represents the 

piecewise linear HPF of the generating unit j and plant r;  

 hjrt net head of hydro unit j, plant r and stage t (m); 

 
Djr number of hyperplanes that represents the piecewise line-

ar HPF of the generating unit j and plant r. 

It is known that net head is a nonlinear function of the forebay (fbl) 

and tailrace (trl) elevations, as well as the penstock hydraulic losses (pl). 
For using MILP formulation, a crucial aspect is that the functions repre-

senting the fbl, trl, and pl can be approximated by a linear or piecewise 

linear model. Indeed, linearity considerations for the fbl and trl functions 

are reasonable in the day-ahead operation scheduling. However, it is 

also possible to include a piecewise linear model for these functions in 

the proposed model, especially for the trl case, since this last has a 

greater impact in the short-term horizon when compared to the variation 

of the fbl. The pl is a convex function and it can be approximate precise-

ly using the piecewise linear function. 

Thus, considering that NGr generating units are available for opera-

tion in the hydro plant r, the individual model (DF1) of the HPF is given 

by the following mixed-integer formulation: 

 
( ) ( ) ( ) , 1,d d d

jrt jr jrt jr jrt jr jrph q h d   C0 C1 C2  D  (3.21) 

 ( ) 0FB0 FB1 TL0 TL1jrt r rt r r rt rt r jrth v w s pl        (3.22) 

 
1

0
NGr

rt jrt

j

w q


   (3.23) 

 
( ) ( ) , 1,e e

jrt jr jrt jr jrt jrpl q z e  D0 D1 E  (3.24) 

 
min max

Q Qjrt jr jrt jr jrtz q z   (3.25) 

 
min max

jrt jr jrt jr jrtz ph z PH PH  (3.26) 

where: 
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FBkr coefficient k that represents the linear approximation of 

the forebay elevation of the hydro plant r; 

 
TLkr coefficient k that represents the linear approximation of 

the tailrace elevation of the hydro plant r; 

 
pljrt penstock hydraulic loss of hydro unit j, plant r and 

stage t (m); 

 

( )
D

e

jrk  
coefficient k of the hyperplane e that represents the 

piecewise linear penstock hydraulic loss of the unit j 
and plant r; 

 

Ejr
 number of hyperplanes that represents the piecewise 

linear penstock hydraulic function of the unit j and 

plant r. 

 
max(min)

jrPH  
Maximum (minimum) power of hydro unit j and plant 

r; 

3.3.3 Individual Model with Equal Generation (DF2) 

It is known from the optimality conditions that, in the optimal solu-

tion, the identical units in the same hydro plant must have same genera-

tion level, which means equals values of turbined outflow, efficiency, 

and net head. However, the DF1 model does not guarantee this condi-

tion, since the solution is associated with extreme points of the feasible 

set composed by inequality and equality constraints. Thus, the equation 

(3.27) is added to the DF1 model to create an individual model with 

equal generation, which is defined in this work as DF2 model. 

 
max0 (1 )Qrt jrt jr jrtqct q z     (3.27) 

where: 

 qctrt auxiliary variable of hydro plant r and stage t (m
3
/s). 

Therefore, the DF2 formulation is the one presented for DF1 in addi-

tion to the equation (3.27). 

3.3.4 Individual Model with Aggregated Constraints (DF3) 

The main idea in this section is, instead of using a piecewise linear 

model for each unit explicitly, we represent a group of identical units by 

a single piecewise HPF. To simplify the mathematical notation, this 

work considers plants in which all units are identical. Nevertheless, the 

notation can be easily extended for cases with distinct groups of identi-

cal units. The goal with this aggregation is to decrease the number of 

constraints associated to the HPF, which will be seen that also decreases 

reasonably the number of constraints for the HTUC problem.  
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Firstly, we can rewrite the equation (3.20) as follows: 

 
( ) ( ) ( )( ) , 1,d d d

jrt jr jrt jr rt jrt jrt jr jrt jrph q gh pl z z d    C0 C1 C2 D  (3.28) 

where ghrt is the gross head of hydro plant r and stage t (m). When 

assuming NGr units to be identical, we can aggregate the inequalities 

constraints, resulting in the following piecewise linear model with Djr 

constraints: 

 

( ) ( )

1 1

( )

1

( )

, 1,

NG NG

NG

C0 C1

C2 D

r r

r

d d

rt jr jrt jrt jr jrt rt jrt

j j

d

jr jrt jr

j

ph z q z gh pl

z d

 



  

 

 


 (3.29) 

As shown above, the equation possesses the following nonlinearities: 

zjrt·qjrt, zjrt·ghrt, and zjrt·pljrt. The first and the latter nonlinearities can be 

handled indirectly via constraints of maximum/minimum turbined out-

flows and hydraulic losses. Thus, (3.29) is equivalent to: 

 

( ) ( ) ( )

1 1 1

( )

1

, 1, .

NG NG NG

NG

C0 C1 C1

C2 D

r r r

r

d d d

rt jr jrt jr jrt rt jr jrt

j j j

d

jr jrt jr

j

ph q z gh pl

z d

  



  

 

  


 (3.30) 

The nonlinearity zjrt·ghrt can be addressed using the auxiliary variable 

ghajrt = zjrt·ghrt and by including the following constraints: 

 
min max ,GH GHr jrt jrt r jrtz gha z   (3.31) 

 
min max(1 ) (1 ),GH GHr jrt rt jrt r jrtz gh gha z      (3.32) 

where: 

 
min,max

GHr  
Minimum (maximum) value of the gross head of the 

hydro plant r (m). 

Thus, the constraints (3.30) can be rewritten as: 

 

( ) ( ) ( )

1 1 1

( )

1

min max

min max

, 1, ,

,

(1 ) (1 ).

NG NG NG

NG

C0 C1 C1

C2 D

GH GH

GH GH

r r r

r

d d d

rt jr jrt jr jrt jr jrt

j j j

d

jr jrt jr

j

r jrt jrt r jrt

r jrt rt jrt r jrt

ph q gha pl

z d

z gha z

z gh gha z

  



  

 

 

    

  

  (3.33) 
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To finish the DF3 model, we include in (3.33) the equations associ-

ated with the hydraulic loss and gross head shown previously. As a re-

sult, the DF3 model is given by the following constraints: 

 
( ) ( ) ( )

1 1 1

( )

1

min max

min max

, 1, ,

,

(1 ) (1 ),

( )

r r r

r

d d d

rt jr jrt jr jrt jr jrt
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d

jr jrt jr

j
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r jrt rt jrt r jrt

rt r rt r r rt rt r
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z d
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gh v w s
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
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 

 

    
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z q z



 
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
NG

D0 D1 E

Q Q

 (3.34) 

3.3.5 Aggregated Units with one Binary Variable per Plant (DF4) 

The HPF models presented previously represent each hydro unit in-

dividually in the problem. Thus, the number of binary variables is the 

same for all of them, even though the number of constraints is different 

for each model. It is known that binary variables are usually the compli-

cated ones in MILP problems. To decrease the number of binary varia-

bles, an aggregated hydro model (DF4) is proposed, which uses only 

one binary variable per hydro plant, instead of per hydro unit such as the 

other models. Besides that, only one turbined outflow variable is used 

per plant. Thus, the aggregated hydro model (DF4) of the HPF is given 

by the following mixed-integer formulation: 

 

 

( ) ( ) ( ) , 1,g g d

rt r rt r rt r rph w hp g   CP0 CP1 CP2 G

( ) 0FB0 FB1 TL0 TL1rt r rt r r rt rt r rthp v w s plp      
( ) ( ) , 1,l l

rt r rt r rplp w l  DP0 DP1 L  

min max
QP QPrt r rt r rtz w z   

min max
PH PHrt r rt r rtz ph z   

(3.35) 

where: 
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( )

CP
g

rk  
coefficient k of the hyperplane g that represents the piece-

wise linear HPF of the plant r;  

 hprt net head of hydro plant r and stage t (m); 

 
Gr number of hyperplanes that represents the piecewise linear 

HPF of the hydro plant r. 

 plprt penstock hydraulic hydro plant r and stage t (m); 

 
( )

DP
l

rk  
coefficient k of the hyperplane l that represents the piecewise 

linear penstock hydraulic loss of the plant r; 

 
Lr

 number of hyperplanes that represents the piecewise linear 

penstock hydraulic function of the plant r. 

 
min,max

QPr  
Minimum (maximum) value of the turbined outflow of the 

hydro plant r (m
3
/s); 

 zrt Binary variable of hydro plant r and stage t; 

Note that equation (3.35) includes the limits of the turbined outflow 

in the plant, where the minimum value corresponds to the minimum of a 

single unit, while its maximum corresponds to the maximum of the hy-

dro plant. Additionally, model DF4 cannot precisely include the mini-

mum up/downtime constraints. On the other hand, the model demands 

less computational effort since it has fewer variables and constraints 

than the other models presented above. 

3.3.6 Aggregated Units without Binary Variable (DF5) 

Model DF5 is the same that DF4, except that in DF5 binary variables 

for hydro plants are not used, which means that in the equation (3.36) 

the minimum turbined outflow is zero. Therefore, the minimum power 

generation is also zero as described in the equation below: 

 

 

( ) ( ) ( ) , 1,g g d

rt r rt r rt r rph w hp g   CP0 CP1 CP2 G

( ) 0FB0 FB1 TL0 TL1rt r rt r r rt rt r rthp v w s plp      
( ) ( ) , 1,l l

rt r rt r rplp w l  DP0 DP1 L  

max0 QPrt rw   

max0 PHrt rph   

(3.36) 
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3.4 Hydrothermal Unit Commitment Model 

This section presents the deterministic optimization model for the 

Hydrothermal Unit Commitment (HTUC) problem. The model below 

considers the individual representation of the HPF, i.e., DF1 model. 

1 1 1 1

min ) ( )i it i it it b bt

i t b t

pt u sc pd
   

       
NT T B T

(C FC AC  (3.37) 

 s.t.:  

max max

1

l lb rt it gt bt bt l

b r i g

ph pt pd
   

 
        

 
   

b b b

B

R I RW

FL Γ PW L FL  (3.38) 

1 1 1 1 1

rt it gt bt bt

b r b i b g b b

ph pt pd
       

        
b b b

B B B B B

R I RW

PW L  (3.39) 

, 1( ) , 0,it it i t i itsc u u sc   SC   (3.40) 

min

, 1 (1 )down

i t it it i it ipt pt u u    R GT  (3.41) 

min

, 1 , 1 , 1(1 )up

it i t i t i i t ipt pt u u     R GT  (3.42) 

, 1

, 1

, [ 1, 1],

1 , [ 1, 1],

TT

TT

up

it ic i c i

down

it ic i c i

u u u c t t

u u u c t t





     

      
 (3.43) 

min max
PT PTi it it i itu pt u   (3.44) 

, 1

1

, , 0,jrt jrt jr t jrt jr jrt

t

y z z y y


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T

 NS   (3.45) 

, 1

, 1

, [ 1, 1]

1 , [ 1, 1]

TH

TH

up

jrt jrc jr c jr

down

jrt jrc jr c jr

z z z c t t

z z z c t t





     

      
 (3.46) 

1

NGr

rt jrt

j

w q


  (3.47) 

, 1 1 , ,( ) 0C Y
mr mr

up
r

rt r t rt rt m t m t rt

m

v v w s w s  



 
       

  
  (3.48) 

( ) ( )

1

T
π

rn
g g

r r

r

v


    (3.49) 

min max max,r rt r rt rv s  V V  S  (3.50) 
( ) ( ) ( ) , 1,d d d

jrt jr jrt jr jrt jr jrph q h d   C0 C1 C2 D  (3.51) 
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( ) 0FB0 FB1 TL0 TL1jrt r rt r r rt rt r jrth v w s pl        

( ) ( ) , 1,e e

jrt jr jrt jr jrt jrpl q z e  D0 D1 E  
(3.52) 

min max
PH PHjrt jr jrt jr jrtz ph z   

min max

jrt jr jrt jr jrtz q z Q Q  
(3.53) 

where: 

 NT number of thermal plants;  

 ACb deficit unitary cost of the bus b (R$/MWh); 

 pdbt deficit in bus b and stage t (MW). 

 

The objective function (3.37) aims to minimize the operating cost. 

Constraints (3.38) and (3.39) are the classical DC power flow equations. 

Equations (3.40) - (3.44) correspond to the constraints that represent 

start-up cost, ramp down/up, minimum up/downtime and generation 

limits of the thermal plants. The set (3.45) – (3.50) refer to the hydro 

plants constraints given by, respectively, maximum number of start-ups 

of units, minimum up/down times, water balance in the penstock, 

streamflow balance in the reservoirs, future cost function, and limits on 

volumes and spillage of the reservoirs. In turn, equations (3.51) – (3.53) 

correspond to the individual HPF model (DF1). 

To formulate the other deterministic HTUC problems, the equations   

(3.51) – (3.53) are altered to consider DF2, DF3, DF4 and DF5 models. 

For instance, to obtain the model DF2, it is only necessary the addition 

of equation (3.27) in (3.37) – (3.53). On the other hand, to obtain model 

DF3 one must replace (3.51) – (3.53) by (3.34). The model DF4 is 

attained by substituting equations (3.51) – (3.53) by (3.35). Finally, as 

stated above, to obtain the model DF5 one has to replace equations 

(3.51) – (3.53) by (3.36). 

To show the differences among the dimensions of the deterministic 

models, consider a system with NT thermal plants and a transmission 

system with B buses and L transmission lines, NH hydro plants, each 

one of these with NG identical units. Each unit has an HPF model with 

D piecewise linear approximations. Consider also that the FCF model 

has F piecewise linear approximations, and the planning horizon pos-

sesses T time stages. In this context, Table 3-1 presents the general ex-

pressions to calculate the number of constraints (equality and inequality) 

(without considering minimum up/downtime constraints, since these 

ones depend on the minimum up/downtime of each generating unit) and 

variables (binaries and continuous) for each UC model used in this the-



50 

 

sis. In general terms, DF2 is the model that has the most constraints and 

variables, while DF5 has the fewest ones. 

 

Table 3-1 - Constraints in the deterministic HTUC models. 

Model Equality Inequality 

DF1 T·[NH·(NG+2)+1] NH·NG·T·(P+D+4)+NT·T·(L+4)+F+2T 
DF2 T·[NH·(NG+2)+1] NH·NG·T·(P+D+5)+NT·T·(L+4)+F+2T 
DF3 T·[NH·(NG+2)+1] NH·NG·T·(P+5)+NT·T·(L+4)+F+2T+NH·D·T 
DF4 T·(3NH+1) NH·T·(P+5)+NT·T(L+4)+F+2T+NH·D·T 
DF5 T·(3NH+1) NH·T·(P+5)+NT·T·(L+4)+F+2T+NH·D·T 

Equation Chapter (Next) Section 1 

Table 3-2 - Variables in the deterministic HTUC models. 

Model Continuous Binary 

DF1 T·[NH·(4NG+3)+2NT+B]+1 T(NH·NG+NT) 

DF2 T·[NH·(4NG+3)+2NT+B]+1 T(NH·NG+NT) 

DF3 T·[NH·(4NG+3)+2NT+B]+1 T·(NH·NG+NT) 

DF4 T·(7NH+2NT+B)+1 T·(NH+NT) 

DF5 T·(7NH+2NT+B)+1 T·NT 

 

Furthermore, Figure 3-1 shows a didactic tree to distinguish the dif-

ferences among the deterministic cases. 

 

Figure 3-1 - Deterministic cases and characteristics. 
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4. THE HYDROTHERMAL UNIT COMMITMENT PROBLEM VIA 

TWO-STAGE STOCHASTIC PROGRAMMING 

As detailed previously, the HTUC is a key operational problem in 

power systems used to determine an optimal daily generation commit-

ment schedule. Incorporating uncertainty in this already difficult mixed-

integer optimization problem introduces significant computational chal-

lenges. Most existing stochastic UC and HTUC models consider either a 

two-stage decision structure, where the commitment schedule for the 

entire planning horizon is decided before the uncertainty is realized, or a 

multistage stochastic programming model with simplistic stochastic 

processes to ensure tractability. Although the focus of this work is the 

two-stage approach, firstly this chapter presents the main approaches for 

optimization under uncertainty. Next, multi and two-stage optimization 

are briefly described. Finally, Benders Decomposition (BD) and proxi-

mal bundle method, which are the methods used to solve the two-stage 

stochastic HTUC problem in this work, are discussed.  

4.1 Methods for Optimization under Uncertainty 

The data used as input information in any sort of problem is very im-

portant, since this may have measure errors, noise, or even be difficult to 

forecast with reasonable accuracy or precision. In this sense, there are 

two types of optimization problems according to the way the input is 

treated: deterministic optimization and optimization under uncertainty. 

The first one considers that the input data is known, while the second 

one considers it as a range of possibilities, and each one of these has a 

probability associated with. In this work, the uncertainty is related to the 

wind power generation, since there is a reasonable distinction in the 

costs and decisions when different wind scenarios are considered in the 

HTUC problem.  

The main optimization-based approaches used to handle uncertainty 

comprise Robust Optimization (RO), Chance-Constrained Optimization 

(CCO) and Stochastic Optimization (SO) (TAHANAN, et al., 2018). 

RO uses the notion of uncertainty set, which basically reunites the ad-

verse events which are not desired to have influence over the problem 

solution. RO is an interval-based optimization method in which, instead 

of scenarios, the uncertainty is specified via intervals. Moreover, RO 

makes no assumption on the probability density function (PDF) of the 

uncertain parameter, which is a very desirable feature if the PDF is not 
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well known (SHAFIEE, et al., 2017). More information about RO can 

be seen in the work of Ben-Tal and Nemirovski (2000). 

CCO appears as an alternative to balance cost and robustness. In this 

approach, the probability is considered on the modeling of the con-

straints, defined as probabilistic constraints. In the HTUC context, these 

constraints are usually those associated to load balance requirements 

and/or stream flow equations. Nonetheless, probabilistic constraints of 

CCO can be nonconvex and hard to evaluate, which may increase com-

putation time. There is a link between RO and CCO, which is to select 

an uncertainty set in such a way as to enforce a probabilistic constraint 

(BEN-TAL & NEMIROVSKI, 2009), so that the solutions coming from 

the RO method are compared with those coming from the CCO one. 

Moreover, one may aim at replacing the probabilistic constraint with a 

convex, although possibly more restrictive, constraint. More information 

concerning CCO can be seen in (DENTCHEVA, 2009). 

At last, SO, also known as scenario tree approach, has been the sub-

ject of intense research in the last years in the UC context. The key ad-

vantage of using scenario trees is that uncertainty is assumed to be 

known in each node of the tree, which allows SO to be solved as a large-

scale deterministic problem discretized on the tree. Thus, any technique 

used to solve deterministic problems might be used here. However, 

depending on the problem and if uncertainty is not well known for each 

node of the tree, there may be difficult issues related to determining the 

PDF of uncertain variables and generating the tree. These two subjects 

may be extremely complicated since it involves a wide range of tech-

niques, and is not within the scope of this work. Thus, it is considered 

that the wind PDF is well known and also that the size of the scenario 

tree size is adequate to the HTUC problem. The SO technique may be 

classified according to the number of stages used in the problem: two or 

multi-stage. Each “stage” is composed by partial information or deci-

sions of the whole problem as will be seen in the next sections.  

4.2 Multi-stage Stochastic Optimization 

Multi-stage problems are present in a wide range of fields, such as 

engineering, financial planning, economic policy and many other appli-

cations, including the hydrothermal generation scheduling problem. 

These sorts of problem usually contain a very high level of uncertainty 

and they should be divided into a substantial set of scenarios, which 

might increase enormously the problem dimension and computational 

burden. To make the problem easier to handle, it is possible to divide it 
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into stages. Each stage is supposed to solve “a piece” of the problem, 

i.e., the problem itself can be solved partly by each stage, passing along 

valuable information for the next stages. In general, the decision maker 

solves the first stage and the decisions are transmitted to the second 

stage together with random events that also have influence over the 

second-stage decisions. Then, these ones are again passed to the next 

stage, usually with the presence of randomness, until the last stage is 

solved. After this process, the dual variables of the last stage are used to 

add an optimality cut to the previous stage, which is solved and its la-

grange multipliers compose another optimality cut that is added to the 

preceeding stage again. This entire process of forward/backward goes on 

until the solution is reached when a specific convergence is obtained. If 

the entire problem is modeled as a deterministic equivalent (DE), then 

all stages are solved simultaneously usually through a MILP technique.  

Partitioning a problem into more than two stages is done typically for 

those problems that involve much randomness, and usually demands a 

reasonable computational effort. Figure 4-1 depicts an illustration of a 

scenario tree with four stages. Thus, a single hard problem can be split 

among smaller problems that can be solved, in general, with less effort 

than the original one.  

Figure 4-1 – Scenario Tree.  

 

4.3 Two-stage Stochastic Optimization 

Two-stage problems are, in general, easier to handle in comparison 

to multi-stage ones due to its efficiency and simplicity for having only 

two stages. It is important to emphasize that stage and time period are 
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not equivalent. The first one is related to the decisions taken and the 

second to the planning horizon. Figure 4-2 shows a tree divided only in 

two stages. The circles represent each time period, and then we see that 

in the second stage there are more than one time period in the same 

stage. 

Figure 4-2 - Two-stage Tree. 

 
Consequently, this model has been used broadly and the two-stage 

SO is used in this work to model the stochastic HTUC problem. The 

first stage decisions are composed by the binary variables, i.e., which 

generating units must be turned on/off. The second stage decisions are 

the power generated by each of these units. The randomness is present 

in the wind generation in the system described in chapter 5, which has a 

few wind farms positioned in some buses.  

Two-stage problems can be written as a DE model. The DE consid-

ers the entire uncertain space simultaneously in only one optimization 

problem, which, in general, results in a large-scale one. However, this 

formulation is useful to show the variables associated with each scenar-

io. In the next section, it is presented the DE formulation related to the 

HTUC problem for different representations of the HPF. 

4.3.1 Stochastic model 1 – SF1 

The SF1 HTUC model is based on the DF3, where the constraints of 

the individual HPF are aggregated. Thus, considering a tree with NC 

wind generation scenarios, each one with probability P, the DE model 

associated with SF1 is given by: 
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min max ,GH GHr jrt jrt r jrtz gha z   (4.15) 
min max(1 ) (1 ),GH GHr jrt rt jrt r jrtz gh gha z       (4.16) 
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rt jrt

j

w q 



   (4.17) 

( ) 0,FB0 FB1 TL0 TL1rt r rt r r rt rt rgh v w s          (4.18) 
( ) ( ) , 1, ,e e

jrt jr jrt jr jrt jrpl q z e   D0 D1 E  (4.19) 

min max

jrt jr jrt jr jrtz q z Q Q  (4.20) 

4.3.2 Stochastic Model – SF2 

The stochastic HTUC model SF2 is based on the DF4 and aggregates 

hydro units using only one binary variable per hydro plant. Therefore, 

equations (4.21) - (4.24) below replace equations (4.14) - (4.20) in the 

model SF1. Thus, to obtain the DE for model SF2 we use equations 

(4.1) - (4.3), (4.6) - (4.13) in addition to equations (4.21) - (4.24).  

 
( ) ( ) ( ) , 1,CP0 CP1 CP2 G
g g d
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

 

 
 (4.24) 

4.3.3 Stochastic Model – SF3 

The model SF3 is basically the same that SF2, except that binary var-

iables are not used, i.e., in the equation (4.24) the minimum turbined 

outflow is zero and consequently, minimum generation is zero as well. 

Thus, the SF3 model is given by equations (4.1) - (4.3), (4.6) - (4.13) 

and (4.25)  (4.28). 

 
( ) ( ) ( ) , 1,CP0 CP1 CP2 G
g g d

rt r rt r rt r rph w hp g       (4.25) 

 ( ) 0FB0 FB1 TL0 TL1rt r rt r r rt rt r rthp v w s plp            (4.26) 

 
( ) ( ) , 1,l l

rt r rt r rplp w l   DP0 DP1 L  (4.27) 

 

max

max

0

0

QP

PP

rt r rt

rt r rt

w z

ph z





 

 
 (4.28) 

Each DE HTUC formulation presented is a large-scale optimization 

problem and to solve them efficiently this work uses a decomposition 

technique. Within this framework, one of the most used decompositions 

in the UC problems is the BD, since the problem is suitable in the ap-

proach, i.e., we can split the entire set of variables into “easy” (continu-
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ous) and “complicated” (binary) ones. Moreover, this technique has the 

advantage of supplying a feasible point, while dual methods (such as the 

LR), that are extremely used as well, cannot guarantee it. Furthermore, 

compared to MILP techniques, the BD approach is in general more effi-

cient in terms of computational execution time (TAHANAN, et al., 

2018). In this sense, we present the BD technique associated with the 

current HTUC problem. 

To summarize the characteristics of each stochastic model, Figure 

4-3 shows a tree comparing each model regarding their different repre-

sentations.  

Figure 4-3 - Characteristics of the Stochastic cases. 

 

4.4 Benders Decomposition  

The BD was first proposed by Benders (1962) and has been widely 

used in a great variety of optimization problems, even though its appli-

cation to UC problems is somewhat recent (TAHANAN, et al., 2018). 

The BD technique decomposes the original problem between master 

problem and different subproblems as shown in Figure 4-4.  
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Figure 4-4 - Benders Decomposition. 

 
 

The general idea of the BD approach is to solve the master problem, 

which is composed mostly of binary variables, and then pass along these 

0-1 variable values for the subproblems.  

Next, these subproblems must be solved and their dual variables 

compose an optimality cut
1
 that is added to the master problem. The 

master problem is then solved again with this new cut and this process 

continues until a specified convergence is reached. We detail the classi-

cal version of the DB algorithm considering the SF1 model, which is the 

most complete stochastic model presented in the previous section. The 

algorithm can be easily extended for the other models.  

4.4.1 BD Algorithm 

The algorithm below is built according to the specificities of this 

work. 

1. Choose lower bound LB
(0)

 = 0, upper bound UB
(0)

 = +∞, tolerance 

tol > 0. Set iteration iter = 1. 

2. Solve the following master and consider MVAL the value of its 

objective function. Equation (4.30) corresponds to the optimality 

cut added at iteration iter > 1. The process to obtain the cut is de-

tailed ahead. In the next formulation, ( )iter

itU ,
( )iter

jrtZ  are the value of 

                                                             
1
 It is important to highlight that, depending on the binary decisions sup-

plied by the master problem, the second-stage subproblem can be infeasible. 

This aspect can occur is several operational conditions such as low initial 

level of reservoirs or when the maximum transmission lines capacity are 

reached. In this way, it would be necessary to use feasibility cuts; however, 

in this work we use an auxiliary variable to compute the deficit in all buses 

with load. In general, in order to avoid infeasibility, auxiliary variables are 

used in every single constraint of the problem. However, in this work spe-

cifically we noticed that only the deficit variables were in fact necessary.  

Therefore, the second-stage subproblems are always feasible, and then fea-

sibility cuts are not needed. 
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the binary variables, 
( )iter

OF  is the objective function of the sub-

problem , and 
( ) ( ) ( ) ( ),..., , ,...,λ1 λ4  β1 β8
iter iter iter iter

it it jrt jrt     are Lagrange 

multipliers obtained from the solution of the subproblems at itera-

tion iter.  
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(4.30) 

3. Set LB
(iter)

 = MVAL. Use ( )iter

it ituU and 
( )iter

jrt jrtzZ as an input data 

to solve the following subproblems associated with each scenario :  

 

 
1 1 1 1

min i it b bt

i t b t

pt pd  

   

    
NT T B T

C AC  (4.31) 

s.t: (4.6), (4.7), (4.11), (4.12), (4.14), (4.17), (4.18).  
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min ( ) max ( ) ,iter iter
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( ) ( ) ( ) , 1, ,e e iter
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4. Obtain the upper bound of the problem that is given by: 
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5. If 
( ) ( )

( )

iter iter

iter

UB LB
tol

UB

 
 

 
, STOP.  

6. Use ( )iter

OF , ( )iter

itU ,
( )iter

jrtZ ,
( ) ( ) ( ) ( ),..., , ,...,λ1 λ4  β1 β8
iter iter iter iter

it it jrt jrt    , to build 

an optimality cut that must be included in the master problem. 

7. Set iter = iter +1 and return to Step 2. 

4.4.2 Optimality cut 

Optimality cut is built based on the solutions of the second-stage 

subproblems in each iteration. To obtain this cut, it is necessary to use 

the Lagrange multipliers of each constraint that contain the coupling 

variables of the two-stage problem, which are the binary ones in this 

case. In this work, we add only one optimality cut for iteration, using the 

probabilities of each scenario to calculate an average cut. Thus, for the 

SF1 model, it is presented below the constraints that possess the first-

stage variables and their respective dual variables. 
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max 0GH Zjrt r jrtgha    β2jrtω 

min 0GH Zr jrt jrtgha   β3jrtω 

max (1 ) 0GH Zrt jrt r jrtgh gha     β4jrtω 

min (1 ) 0GH Zr jrt rt jrtgh gha     β5jrtω 

( ) ( ) 0, 1,e e
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min 0Z Qjrt jr jrtq    β7jrtω 
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The optimality cut is described by the following compact 

formulation: 

 [ ]
u

z

 
    

 

U
Θ λ β

Z
 (4.45) 

where, 

  expected value of the optimal costs associated with the second 

stage subproblems.  

 vector with the expected values of the Lagrange multipliers 

associated with constraints (4.43). 

 vector with the expected values of the Lagrange multipliers 

associated with constraints (4.44). 

u vector with the binary variables associated with the thermal 
units; 

U vector with the binary decisions provided by the master 

problem associated with thermal plants;  

z vector with binary variables associated with the hydro units;                    
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Z vector with binary decisions provided by the master problem 

associated with the hydro units.  

The equation (4.45) can be rewritten as: 

u z    t t t t
λ β Θ λ U β Z  (4.46) 

The value of  is obtained directly from the solution of the 

subproblems and is given by: 

1

 



 
NC

Θ P OF  (4.47) 

The next step is to determine, using the values of the Lagrange 

multipliers shown in (4.43) and (4.44), the expression of . Each 

component of this vector represents the derivative of the objective 

function of binary variables of the dual problem built from the 

dualization of the constraints (4.43) and (4.44). Thus, using this 

information, we obtain the following expression that details ut
λ and

t
λ U :  
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Likewise, we obtain the expression for the other terms that comprise 

(4.46): 
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Finally, we obtain the optimality cut (for only one scenario) in the 

equation (4.52), which is presented in the master problem formulated in 

(4.29) - (4.30). 
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We generalize (4.52) for NC scenarios in the equation (4.53). The 

change is basically that for many scenarios we take into account the 

probability associated with each scenario.   
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(4.53) 

 

The equation (4.53) shows the optimality cut for the SF1 model. For 

SF2, it is basically the same cut, but since there is only one binary varia-

ble per hydro plant, the summation of the hydro units is not used. The 

equation (4.54) shows the optimality cut for the SF2. Moreover, for SF3, 

the optimality cut has only the thermal part of the optimality cut, since 

there are not binary variables for hydro plants. The equation (4.55) 

shows the optimality cut for this model. 
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Finally, the BD algorithm presented in this section suffers from the 

same drawbacks as the cutting-plane method, i.e., oscillation and slow 

convergence, compounded with the fact that the master problem is com-

binatorial. To overcome this aspect, the BD approach tends to be used 

together with other methods to accelerate convergence. In general, there 

are four strategies to accelerate the method: decomposition strategies, 

solution procedures, solution generation and cut generation 

(RAHMANIANI, et al., 2017). Among the solution generation strategy, 

an efficient approach is to stabilize the master problem, since its insta-

bility is one of the widely recognized drawbacks of the classical BD 

algorithm. In this sense, this work uses an exact proximal bundle meth-

od (PB) to stabilise the master problem and decrease the number of 

iterations. The inclusion of the PB method in the BD algorithm is de-

scribed in the next section. 

4.5 Stabilized BD via Proximal Bundle Method 

The PB method consists of a strategy to prospect a trust region, “pe-

nalizing” solutions out of this region. For more details of the PB 

method, we refer to the work of De Oliveira & Sagastizábal (2014) since 

it is not in the scope of this work to describe exactly this method. The 

algorithm showed below is proposed according to the specificities of 

this work.  

To include the PB method in the algorithm, minor changes are need-

ed in the BD algorithm described above. There are modifications in the 

structure of the master problem, since we must include one term in the 

objective function as shown below. 
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The algorithm for the bundle method is described below: 
 

1. Choose: lower bound LB
(0)

 = ∞; upper bound UB
(0)

 = ∞, 

tolerance tol > 0; Δ
(0)

 =; ∞; constant m є (0,1); feasible first-
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stage point array (
( )iter

itU , ( )iter

jrtZ ); μ
(0)

 є (10
-2

, 10
-3

) and set iter 

= 1.   

2. Solve subproblems and use ( )iter

OF , ( )iter

itU ,
( )iter

jrtZ ,

( ) ( ) ( ) ( ),..., , ,...,λ1 λ4  β1 β8
iter iter iter iter

it it jrt jrt    , to build an optimality cut 

and obtain: 

 ( ) ( )

1 1 1

( )iter iter

i it it

i t

u sc  

  

    
cNNT T

F FC P OF   

1
( 1) ( )

( ) ( 1)

( 1)
0.8 1

iter iter
iter iter

aux iter

UB







 
    

 

F
 

3. If 
( ) ( 1) ( 1) )(F
iter iter iterUB m    , set UB

(iter)
 = F

(iter)
 and 

  ( ) ( 1) ( )max 0.6 ,iter iter iter

aux

      

4. If 
( ) ( 1) ( 1) )(F
iter iter iterUB m    , set UB

(iter)
 =UB

(iter-1)
 and 

  ( ) ( 1) ( 1) ( ) 8max ,min 1.3 , ,10iter iter iter iter

aux

       

5. Solve the master problem. Consider vectors (
( )iter

itU , ( )iter

jrtZ ) 

and MVAL as the solution found for the binary variables at it-

eration iter and the value of the objective function, respec-

tively. Do LB
(iter)

 = MVAL.  

 

6. If 
( ) ( )

( )

iter iter

iter

UB LB
tol

UB

 
 

 
, stop. 

7. Use ( )iter

OF , ( )iter

itU ,
( )iter

jrtZ ,
( ) ( ) ( ) ( ),..., , ,...,λ1 λ4  β1 β8
iter iter iter iter

it it jrt jrt    , 

to build an optimality cut that must be included in the master 

problem. Set Δ
(iter)

=UB
(iter)

 – LB
(iter)

, iter = iter + 1 and return 

to step 2. 
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5. COMPUTATIONAL RESULTS 

This chapter presents the computational results of this work, where 

all tests were performed on an Intel ® Core™ i7-2600 CPU 3.4 GHz, 4 

GB RAM, and GUROBI 7.5 was used to solve MILP problems. Initial-

ly, the data of the electrical system is described. Next, the results associ-

ated with the deterministic HTUC results are presented for different 

HPF modeling. Finally, the chapter presents the results associated with a 

two-stage stochastic programming model for the HTUC problem. In all 

computation instances, we consider one-day planning horizon discre-

tized in hourly steps. 

5.1 Electrical System 

The hydro plants and transmission system used in this work are ex-

tracted from the Brazilian Southern power system. Thermal plants are 

modified from Diniz (2010), and a normal Probability Density Functions 

(PDFs) are assumed for the wind generation uncertainty. Specifically, 

the electrical system is composed of: 

 16 hydro plants, with 54 generating units; with 12,541 MW ca-

pacity 

 11 thermal plants with 3,470 MW capacity; 

 Three wind farms with 1,465 MW average generation; 

 A transmission system with 46 buses and 95 lines, represented as 

a classical DC model; 

 31 buses with load demand, where the minimum and maximum 

values are 10.88 and 13.36 GW, in hours 1 and 19, respectively. 

Initially, Figure 5-1 shows the total load of the electrical system over 

the 24-hours planning horizon.  
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Figure 5-1 - Total load. 

 

5.1.1 Hydro Plants 

The hydro system is composed of plants located in the Iguaçu and 

Uruguay rivers, as shown in Figure 5-2 and Figure 5-3, respectively. 

The plants represented by circles are run-of-the-river ones, and the tri-

angles represent plants that have weekly or monthly regularization ca-

pacity.  

Figure 5-2 – Hydro plants located in the Iguaçu river. 

 
 

Figure 5-3 - Hydro plants located in the Uruguay River. 

 

The water traveling time between two consecutive reservoirs is con-

sidered equals to one hour. All units in each plant are identical and pos-

sess only one forbidden operative zone. Table 5-1 shows the general 

12.0

12.5

13.0

13.5

14.0

14.5

15.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

To
ta

l L
o

ad
 (

G
W

) 

Stage(h) 



71 

 

data for the hydro plants and Table 5-2 presents the minimum values for 

turbined outflow and power generation. We consider a 3-hours uptime 

and downtime constraint for all hydro units. 

Table 5-1 - General data of the hydro plants. 

Plant 
Capacity 

(MW) 

Maximum 

outflow 

(m³/s) 

Maximum. 

volume 

(hm³) 

Minimum. 

volume 

(hm³) 

Units 

H1 1,676 1,376 5,779 1,974 4 

H2 1,260 1,268 2,950 2,562 4 

H3 1,420 1,576 6,775 2,662 4 

H4 1,078 1,784 1,124 721 4 

H5 1,240 2,100 3,573 3,308 4 

H6 120 152 35 32 2 

H7 120 162 431 169 2 

H8 880 558 1,477 1,320 3 

H9 192 501 296 232 3 

H10 690 516 4,904 2,712 3 

H11 1,140 1,311 3340 2,283 3 

H12 1,450 1,590 5100 4,300 5 

H13 855 1,888 1,501.8 1,428 4 

H14 120 114 137 111 3 

H15 226 102 1,589 185 2 

H16 74 134 150 140 2 

 

Table 5-2 - Operation zones and productibility. 

Plant 

Minimum 

outflow 

(m³/s) 

Minimum 

Capacity 

(MW) 

Productibility 

(MW/(m³/s)) 

H1 688 838 1.21 

H2 634 630 0.99 

H3 788 710 0.90 

H4 892 539 0.60 

H5 1050 620 0.59 

H6 76 60 0.79 

H7 81 60 0.74 

H8 279 440 1.57 

H9 250.5 96 0.38 

H10 258 345 1.33 

H11 655.5 570 0.87 

H12 795 725 0.91 

H13 944 427.5 0.45 

H14 57 60 1.05 

H15 51 113 2.21 

H16 67 37 0.55 
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Table 5-3 shows Mean Relative Error (MRE) between the linear and 

original nonlinear HPF and the number of constraints associated with 

the piecewise linear HPF models used in this work. 

Table 5-3 – HPF data. 

Plant 

Individual (DF1-DF2-DF3) Aggregated (DF4-DF5) 

MRE (%) 
Number of 

constraints 
MRE (%) 

Number of 

constraints 

H1 0.29 8 1.95 5 

H2 0.34 14 1.44 9 

H3 0.20 8 1.50 5 

H4 0.23 8 1.47 5 

H5 0.30 8 1.46 8 

H6 0.55 8 1.49 6 

H7 0.29 8 2.35 4 

H8 0.32 18 1.08 8 

H9 0.37 14 1.78 9 

H10 0.09 8 1.63 6 

H11 0.24 8 1.77 6 

H12 0.25 9 2.02 4 

H13 0.35 8 1.27 7 

H14 0.45 18 1.06 10 

H15 0.41 6 3.13 8 

H16 0.29 18 1.72 7 

 

The FCF used in this work is a piecewise linear function with 250 

cuts. This function involves the final volumes of all hydro plants with 

regulation capacity. The other ones (run-of-the-river plants) have a small 

storage capacity and they are not considered in the function. The FCF is 

obtained using the SDDP algorithm for solving a medium-term genera-

tion scheduling problem. This function is built iteratively, associating an 

expected cost of the water with thermal costs. More details on how this 

function is obtained can be seen in Tahan (2016). 

Table 5-4 shows the inflow data used in the system, which were se-

lected in order to avoid infeasibilities in the minimum power generation 

of the hydro units. The inflows are constant values throughout the time 

horizon.  
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Table 5-4 - Inflows. 

Hydro Plant Inflow (m³/s) 

H1/ H2 

/ H4/ H12 
350 

H3 400 

H5* 1000 

H6*/ H7 80 

H8/ H10 200 

H9* 250 

H11 450 

H13* 950 

5.1.2 Thermal Plants 

Table 5-5 presents the data related to the thermal plants. 

Table 5-5 - General data for thermal plants. 

Plant 

Fixed 

Cost 

(R$) 

Unitary 

variable 

cost 

(R$/MW) 

Startup 

cost 

(R$) 

Maxi-

mum 

power 

(MW) 

Mini-

mum 

power 

(MW). 

Ramp 

(MWh/

h) 

Min-

imum 

up/ 

down-

time 

(h) 

T1 135 13 1,300 150 30 40 8 

T2 122 12 1,200 220 100 40 4 

T3 110 11 1,100 155 55 30 5 

T4 105 10 1,000 155 55 30 6 

T5 30 9 200 350 110 60 3 

T6 1050 10.5 10,500 350 140 30 1 

T7 245 20 2,400 350 70 70 4 

T8 212 21 2,100 560 200 180 8 

T9 263 26 2,600 60 12 12 1 

T10 235 20 2,300 560 200 180 8 

T11 220 25 2,200 560 200 180 4 

5.1.3 Transmission System  

The transmission system has 46 buses and 95 lines, whose data was 

extracted from the Brazilian southern electrical system (SCUZZIATO, 

2016). Figure 5-4 shows the transmission system, as well as the power 

plants and loads location. Letters L, T, W, and H represent loads, wind 

farms, thermal and hydro plants, respectively. Bus 34 is considered as a 

slack bus. The Appendix A shows the data of the transmission lines used 

in the classical DC model power flow (reactance, lines capacity, etc.). 
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Figure 5-4 - Power plants, loads, and transmission system configuration. 

 

5.1.4  Wind Power Scenario Generation 

The random variable in the stochastic HTUC model is the power 

generation of the wind farms. Scenario generation is a very complex 

issue and, since it is not the focus of this work, this issue is simplified in 

comparison with real-life problems. In this sense, the wind farms are 

modeled via the lag-one periodic autoregressive model, that is, the wind 

generation depends linearly on its own previous values. The equations 

that represent the autoregressive models used in each wind farm are 

given by: 

 

1 1, 1

2 2, 1

3 3, 1
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t t

t t

gw gw

gw gw

gw gw

 (4.57) 

where: 
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 t index of periods (h); 

 gwit 
power generation of wind farm i and stage t (MW); 

 
(,) residual of the autoregressive model represented as a nor-

mal PDF with a mean  and standard deviation . 

Figure 5-5 shows 10 wind scenarios that will be used ahead, where 

each scenario corresponds to the sum of the three wind farms genera-

tion. 

Figure 5-5 – Aggregated wind generation scenarios. 

 

5.2 Deterministic cases 

This section presents results of 20 deterministic HTUC cases using 

the 10 wind generation scenarios combined with two initial volumes of 

the reservoirs (40 and 80 % useful volumes). Table 5-6 shows the initial 
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0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W
in

d
 P

o
w

e
r 

(G
W

) 

Time stage (h) 



76 

 

Table 5-6 - Initial volumes of hydro plants (hm
3
). 

Plant 40% 80% 

H1 3,496 5,018 

H2 2,717 2,872 

H3 4,307 5,952 

H4 882 1,043 

H5 3,414 3,520 

H6 33 34 

H7 273 377 

H8 1,382 1,445 

H9 257 283 

H10 3,588 4,465 

H11 2,705 3,128 

H12 4,620 4,940 

H13 1,457 1,487 

H14 121 132 

H15 746 1,308 

H16 144 148 

 

The deterministic analysis aims to evaluate individual and aggregat-

ed HPF models in terms of solution quality and computational time. 

This benchmark supports which HPF modeling will be included in the 

two-stage HTUC problem instances. 

5.2.1 Individual Representation of the Hydro Units 

In this subsection, the HTUC problem considering different individ-

ual hydro units representation, i.e., DF1, DF2, and DF3, are evaluated. 

The associated MILPs have different numbers of constraints and varia-

bles, which are seen in Table 5-7.  

 

Table 5-7 – Variables and constraints for individual HPF modeling. 

HPF modeling DF1 DF2 DF3 

binary variables 1,512 1,512 1,512 

continuous variables 8,161 9,073 8,161 

constraints 37,142 39,638 23,075 

Figure 5-6 presents the optimal value of the objective function for 

each HPF case. All executions were performed using a standard 

GUROBI MIPgap, that is 0.01 %. The maximum relative difference was 

0.00039% (smaller than GUROBI MIPgap and therefore negligible) and 

has occurred between DF1 and DF2 for wind scenario 6 using an 80% 

useful volume. As expected, the different HPF models do not change the 

optimal cost.  
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Figure 5-6 – Optimal costs for the deterministic MILPs. 

 

The main issue is associated with the computational time, as present-

ed in Figure 5-7. 

Figure 5-7 – Computational times (s). 
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0.02%, GUROBI found a R$ 1,138,932.23 optimal cost (0.0002% dif-

ference) in 22.42 seconds for model DF3. Using this same MIPgap for 

model DF1, it is obtained the same R$ 1,138,938.52 optimal cost in 

26.88 seconds. Thus, the computation time for this case is adjusted 

through GUROBI parameters, which do not jeopardize the optimal solu-

tion found. Table 5-8 shows the average cost and the respective standard 

deviation for the cases.  

Table 5-8 – Average (x) and standard deviation (S) of the optimal costs 

(R$). 

Initial Volumes (hm3) 
 

DF1 DF2 DF3 

40% 
x  1,215,949.41 1,215,948.82 1,215,953.35 

S 86,057.76 86,058.29 86,060.07 

80% 
x  945,774.23 945,774.16 945,774.07 

S 41,808.16 41,809.2 41,808.52 

Table 5-9 presents the average and standard deviation values associ-

ated with the computational times. It is seen that computational burden 

depends strongly on the HPF model. The greatest average difference is 

between models DF2 and DF3 (41.7% related to 40% volume cases). 

Table 5-9 - Average and standard deviation of the computational times (s).  

Initial Volumes (hm3) 
 

DF1 DF2 DF3 

40% 
x  52.12 62.47 36.40 

S 28.77 34.52 22.25 

80% 
x  59.04 65.06 41.90 

S 42.63 36.78 28.81 

Finally, we show examples of dispatch provided by DF1 and DF3. The 

Table 5-10 contains the turbined outflow decisions for H5 in the Scenario 4 

and 80% volume. The second table contains the same data for H9 in Sce-

nario 8 and 40% volume. As shown, the total turbined outflow in the plants 

is very similar, which has as consequence the similarity of the costs as well.  

Table 5-12 and Table 5-13 show the same situation but for the power 

generation. This pattern of similar generation occurs for the other sce-

narios as well. 

Table 5-10 - Turbined outflow in H5 at stage 6 (m³/s). 

 H5 turbined outflow  

Scenario 4 

80% volume 

Unit 1 2 3 4 Plant 

DF1 294.90 0 267.20 372.92 935.02 

DF3 0 311.67 311.67 311.67 935.01 

 

 

 



79 

 

Table 5-11 - Turbined outflow in H9 at stage 9 (m³/s). 

 H9 turbined outflow 

Scenario 8 

40% volume 

Unit 1 2 3 Plant 

DF1 162.75 170.90 171.00 504.65 

DF3 168.21 168.21 168.21 504.63 

 

Table 5-12 - Power generation decisions in H5 plant in stage 6 (MW). 

 H5 power generation  

Scenario 4  

80% volume 

Unit 1 2 3 4 Plant 

DF1 167.70 0 150.70 215.55 533.95 

DF3 0 177.98 177.98 177.98 533.94 

 

Table 5-13 - Power generation decisions in H9 plant in stage 9 (MW). 

 H9 power generation 

Scenario 8 

40%  

volume 

Unit 1 2 3 Plant 

DF1 56.12 58.84 58.85 173.81 

DF3 57.93 57.93 57.93 173.79 

We see that generation and costs are very similar between DF1 and 

DF3, while the computational burden is significantly smaller for DF3 

than for DF1. Thus, the DF3 model will be used to evaluate the perfor-

mance of the aggregated models. 

5.2.2 Aggregated Hydro Units 

In this subsection, we are interested in the HTUC problem where the 

HPFs are represented according to DF4 and DF5 models. It is important 

to emphasize that for the model DF4, the minimum value of a hydro 

plant’s power generation is the minimum generation of a single unit for 

the individual representation, and for DF5 this value is zero since there 

is no binary variable that can control the minimum generation. Table 

5-14 shows the number of variables and constraints for DF4 and DF5 

models.  

Table 5-14 – Number of variables and constraints for DF4 and DF5 models. 

MILP DF4 DF5 

Binary variables 648 264 

Continuous variables 4,465 4,465 

Constraints 10,623 10,623 

The same scenarios used in the individual models were applied to the 

aggregated ones and Figure 5-8 presents the optimal objective function 

values for each scenario. It is seen that these values are very similar in 

comparison with DF3 model. The maximum relative error is 1.2 % ob-

tained between DF3 and DF5, in scenario 6 and 80% initial volumes. 
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The minimum and average relative errors between DF3 and DF5 con-

sidering all cases are 0.59% and 0.72%, respectively.  

Figure 5-8 - Total cost for the 20 Cases. 

 

Figure 5-9 presents the computational time for all cases (including 

DF3 – the benchmark MILP), where the DF5 appears more efficient 

than DF4. In terms of computational burden, the greatest difference is 

verified between DF3 and DF5 for scenario 10 and 80% initial volumes. 
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Figure 5-9 - Computational Execution Time (s). 

 

Table 5-15 and Table 5-16 include the average and standard devia-

tion of optimal costs, as well as the computational execution time for all 

three MILPs. As a conclusion, we can see that, through compassion to 

DF3, DF5 model provides very accurate solutions with low computa-

tional effort. 

Table 5-15 - Average and standard deviation of the optimal costs (R$). 
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Table 5-16 - Average and standard deviation of the computational time (s). 
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40% 
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chapter stochastic models: SF1, SF2, and SF3, according to the HPF 

modeled. Table 5-17 shows the size of each stochastic model. 

Table 5-17 - Stochastic cases for 10 scenarios. 

Model SF1 SF2 SF3 

Binary variables 1,512 648 264 

Continuous variables 81,610 44,650 44,650 

Constraints 230,750 106,230 106,230 

Since SF2 and SF3 have similar formulations, in this section we ana-

lyze only SF1 and SF3. In this sense, we consider four scenario trees, 

each one with 10 wind generation sample size. These trees will be eval-

uated with 40% and 80% of useful volume as initial conditions of vol-

ume. In all BD computational instances, the algorithm finishes when the 

algorithm reaches 500 iterations or when (zup  zlo)/zup ≤ 0.5 %, where 

zup is the best upper bound and zlo is the lower bound. The MILP related 

to the master problem in BD is solved via Gurobi with MIP gap equals 

to 10
-8

. The second-stage LP subproblems are also solved with Gurobi 

using the same tolerance. The remaining of this section is organized as 

follows: initially the analyses consider the reservoirs with 40% initial 

volumes; next, the focus is on the cases with 80% initial volumes. 

5.3.1 Reservoirs with 40% Initial Volumes 

Initially, we consider the 10 scenarios shown in Figure 5-5. Figure 

5-10 depicts the values of lower and upper bounds over the iterative 

process for model SF1. 
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Figure 5-10 - Lower and Upper bounds for SF1 case. 
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hand, Figure 5-11 depicts the convergence process for model SF3. In 

this case, the algorithm needed 52 iterations for attending the stopping 
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Its computational time was 301.53 seconds.  
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Figure 5-11 - Lower and upper bounds for SF3 case. 

 
Based on these computational instances, the relative difference be-

tween SF3 and SF1 for Zup is 0.57%. On the other hand, the difference 

verified in the execution time is substantial, since SF1 demands approx-

imately 2.2 times more computational effort than SF3 to converge.  

5.3.2 Reservoirs with 80% Initial Volumes 

The cases with 80% of initial volumes have lower costs when com-

pared to the 40% cases. However, in such cases there are more candi-

dates to the optimal solution, especially among the hydro generation, 
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combinations of hydro units. 

Figure 5-12 and Figure 5-13 show lower and upper bounds for mod-
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56 iterations in 885.81 s. In the last iteration, the Zup is R$ 983,618.08, 
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%. On the other hand, model SF3 converged in 48 iterations with a 

281.59 (s) computational time. In this case, Zup is R$ 963,744.15, Zlo is 

R$ 965,256.67 and the optimality gap is 0.36%. The difference between 

Zup for the models is 2%, and SF1 has a computational burden 3.14 

higher than SF3. 
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Figure 5-12 - Lower and upper bounds for SF1 case (80% vol) 

 
 

Figure 5-13 - Lower and upper bounds for SF3 case (80% vol.). 
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Figure 5-14 – Mean (left axis) and the standard deviation for Tree 1. 

 
  

Figure 5-15 – Mean (left axis) and the standard deviation for Tree 2. 
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Figure 5-16 – Mean (left axis) and the standard deviation for Tree 3. 

 
 

Figure 5-17 - Mean (left axis) and the standard deviation for Tree 4. 

 
 

The tables presented ahead summarize the main results for the SF1 
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Table 5-18 - Stochastic cases for model SF1 (40% vol). 

Case It. 
Time 

(min.) 

Zsup 

(R$ 

x106) 

Immediate 

Cost 

(R$ x 106) 

Future 

Cost 

(R$ x 

106) 

Thermal 

Generation. 

(TWh) 

Hydro 

Generation 

(TWh) 

1 54 10.99 1.259 0.368 0.891 15.238 252.971 

2 52 13.70 1.303 0.411 0.891 15.387 252.338 

3 54 11.18 1.225 0.335 0.890 12.891 251.221 

4 97 17.99 1.340 0.449 0.890 16.681 252.195 

 

Table 5-19 - Stochastic cases for model SF3 (40% vol) 

Case It. 
Time 

(min.) 

Zsup 

(R$ x 

106) 

Imediate 

Cost 

(R$ x 

106) 

Future 

Cost 

(R$ x 

106) 

Thermal 

Generation 

(TWh) 

Hydro 

Generation 

(TWh) 

5 52 5.02 1.252 0.361 0.891 14.906 253.303 

6 57 4.96 1.295 0.404 0.891 14.736 252.989 

7 50 4.6 1.221 0.330 0.890 12.794 251.318 

8 80 6.28 1.324 0.433 0.890 16.177 252.699 

 

Table 5-20 - Stochastic Cases for model SF1 (80% vol). 

Case It. 
Time 

(min.) 

Zsup 

(R$ x 

106) 

Imediate 

Cost 

 (R$ x 

106) 

Future  

Cost  

(R$ x 

106) 

Thermal 

Generation 

(TWh) 

Hydro 

Generation 

(TWh) 

9 56 14.76 0.983 0.163 0.820 7.139 261.070 

10 89 11.65 1.058 0.239 0.819 8.734 258.992 

11 110 15.34 0.988 0.169 0.819 6.620 257.492 

12 61 11.12 1.069 0.249 0.819 10.129 258.746 

 

Table 5-21 - Stochastic Cases for model SF3 (80% vol) 

Case It. 
Time 

(min.) 

Zsup 

(R$ x 

106) 

Imediate 

Cost  

(R$ x 

106) 

Future 

Cost  

(R$ x 

106) 

Thermal 

Generation 

(TWh) 

Hydro 

Generation 

(TWh) 

13 48 4.69 0.968 0.148 0.820 6.692 261.517 

14 70 6.87 1.042 0.223 0.819 8.329 259.396 

15 111 6.33 0.977 0.158 0.819 6.328 257.784 

16 83 8.17 1.051 0.231 0.820 9.309 259.567 
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We can see that, in all cases, the SF3 costs are lower than SF1 ones. 

Highest and lowest differences between the Zup are 1.69% (between 

cases 12 and 16) and 0.34% (between cases 3 and 7). Mean error for Zup 

in 40% cases is 0.67% and for 80% is 1.47%. The highest difference 

between computational execution time is related to the cases 9 and 13, 

in which SF1 has a computation burden 3.14 times higher than SF3. For 

the 40% cases, the SF1 model has a computational time of 2.5 (mean) 

higher than SF3, and this factor for the 80% cases is 2.15. The lowest 

burden difference is between cases 16 and 12. In terms of thermal gen-

eration, for the 40% cases we obtained a mean difference of 2.54% and 

5.85% for the 80% cases. For the hydro generation, these differences are 

0.15% and 0.18% for 40% and 80% cases, respectively.  
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6. CONCLUDING REMARKS  

In this work, we have described the HTUC as a mathematical opti-

mization problem that seeks to minimize costs of supplying energy to a 

load during a 24-hours planning horizon. The HTUC, when applied to 

large-scale systems, may have difficult issues to converge due to the 

integer nature of the problem. In this sense, one of the major difficulties 

is related to the hydropower production, which in this work is represent-

ed using different piecewise linear functions. This representation is 

broadly used in the literature, but for hydro predominant systems, it may 

be demanding in terms of computational effort due to the many con-

straints associated with the piecewise model. To minimize this issue, an 

approach with aggregated hydro units is proposed and compared to the 

individual representation.  

Initially, a deterministic analysis is performed using the GUROBI 

solver to solve a MILP problem for 10 scenarios composed of two dif-

ferent initial volumes. Firstly, DF3 (individual model with aggregated 

constraints) is compared with DF1 (individual model with individual 

constraints), and it was seen that the hydro generation in DF1 is very 

similar to DF3, which led to a similarity of the optimal costs as well. 

The average difference between these two models is negligible, while 

the computational burden for DF1 is about 30% higher. After that, the 

DF3 and DF5 (aggregated model without binary variables for hydro 

plants) models are compared. The mean relative error of optimal costs 

between these ones is 0.72%. On the other hand, the average computa-

tional time is significantly smaller for the aggregated model, where for 

DF3 it is 32.09 s. while for DF5 is 10.69 s.  

The comparison among the individual models (DF1, DF2 and DF3) 

show that the approach of aggregating constraints (DF3 model) increas-

es the efficiency to solve the HTUC problem, since we reach the same 

results of costs and generation of the complete individual model (DF1) 

with less computational burden. Moreover, the comparison between 

DF3 and the aggregated model DF5 demonstrates that the difference 

between the individual and aggregated models is very small, even 

though for real-life instances the aggregated approach may provide im-

practical decisions since the operation zones of the hydro units are al-
tered. However, since the difference between the models is not great, it 

is perfectly reasonable to use the DF5 model to obtain preliminary re-

sults regarding costs and generation. Furthermore, for very large scale 

systems, DF5 models may be a practical solution for real operation, 
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since in some cases DF1 or DF3 may not even reach convergence to the 

dimension of the problem 

Next, a stochastic analysis is performed for the same tree with 10 

scenarios used in the deterministic analysis. Furthermore, we have used 

other 3 trees with 10 scenarios, totalizing 4 trees. The two stochastic 

models SF1 (individual model with aggregated constraints) and SF3 

(aggregated model without binary variables for hydro units) are com-

pared and the results show minor differences associated with the optimal 

costs, but reasonable distinctions regarding the computation burden. In 

general, the greatest differences have been noticed for cases with 80% 

initial volumes. The relative difference in the optimal costs between SF1 

and SF3 is approximately 1% for all the cases. In terms of total genera-

tion, the greatest difference was noticed for the thermal dispatch: mean 

of 4.5% for all the cases. 

The same analysis of the deterministic cases is applied for the sto-

chastic instances, i.e., even though the SF3 model alters the real opera-

tion zones of the hydro units, it provides solid results in terms of costs 

and generation proven by the similar results compared to the SF1 model, 

and then can be used as preliminary results or even practical solutions in 

the HTUC problem depending on the dimension of the system. 

6.1 Suggestions for future works 

The following aspects are suggested as future developments: 

 The inclusion of other random variables mainly forecasted 

demand and inflow, which are important factors for the 

model accuracy and would increase the difficulty of con-

vergence. 

 Use of a multi-stage model. Considering the inclusion of 

more random variables, the model becomes more stochas-

tic and may need to be divided into more stages so that 

each stage would carry a reasonable amount of random-

ness.    

 Explore other techniques to make BD decomposition more 

stable and include more realistic scenarios in the tree.  

 Consider not only identical units in the aggregated model 

and evaluate this modification in terms of costs and com-

putational burden; 

 Apply the algorithm for the Brazilian system, which has 

219 hydro plants with 1,267 generating units and 2,952 

thermal plants (ANEEL, 2017). 
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7. APPENDIX A: TRANSMISSION LINES CAPACITY 

T.L 

 

Bus 

(origin) 

Bus 

(end) 

React. 

(pu) 

Flow  

Capacity 

(MW) 

T.L 
Bus 

(origin) 

Bus 

(end) 

React. 

(pu) 

Flow 

Capacity 

(MW) 

TL1 3 4 0,0161 800 TL49 23 21 0,0276 500 

TL2 3 4 0,0161 800 TL50 23 21 0,0276 672 

TL3 3 4 0,017 900 TL51 24 25 0,0034 400 

TL4 3 6 0,0121 750 TL52 26 28 0,0297 280 

TL5 3 6 0,0126 750 TL53 26 28 0,0297 150 

TL6 4 20 0,0182 724 TL54 26 34 0,1872 545 

TL7 4 20 0,0262 724 TL55 28 27 0,0601 100 

TL8 5 2 0,0105 2500 TL56 28 27 0,0601 100 

TL9 6 19 0,0044 2110 TL57 28 27 0,0601 100 

TL10 7 8 0,0074 1637 TL58 28 38 0,2763 600 

TL11 7 30 0,0243 2273 TL59 29 25 0,0355 400 

TL12 13 5 0,0065 2363 TL60 29 36 0,0092 300 

TL13 13 6 0,0255 2110 TL61 29 42 0,0217 1300 

TL14 13 17 0,0205 2363 TL62 30 35 0,0139 1100 

TL15 13 19 0,0269 2182 TL63 30 35 0,0145 1200 

TL16 13 30 0,0201 2162 TL64 30 42 0,0194 300 

TL17 14 3 0,2826 750 TL65 30 42 0,0201 500 

TL18 14 13 0,0121 1000 TL66 31 32 0,1183 400 

TL19 14 40 0,1574 600 TL67 31 32 0,1183 600 

TL20 14 40 0,1572 600 TL68 31 38 0,2683 700 

TL21 15 17 0,0292 2037 TL69 32 9 0,1286 159 

TL22 15 19 0,016 2110 TL70 32 10 0,0449 1000 

TL23 16 15 0,0115 672 TL71 32 11 0,0744 1500 

TL24 16 15 0,0116 672 TL72 32 11 0,0741 130 

TL25 16 15 0,0128 672 TL73 32 37 0,1188 700 

TL26 16 27 0,0328 1000 TL74 32 41 0,0484 400 

TL27 16 27 0,0328 650 TL75 32 41 0,0464 400 

TL28 16 32 0,1936 593 TL76 34 33 0,1048 400 

TL29 16 33 0,0656 693 TL77 34 33 0,0585 350 

TL30 16 33 0,0656 443 TL78 34 33 0,0578 350 

TL31 16 37 0,1313 446 TL79 34 33 0,1272 525 

TL32 17 15 0,0391 2037 TL80 35 1 0,0141 1500 

TL33 17 23 0,0235 600 TL81 36 17 0,0046 400 

TL34 17 36 0,0059 420 TL82 38 37 0,1181 400 

TL35 18 17 0,0124 1500 TL83 38 37 0,131 400 

TL36 18 17 0,0123 1600 TL84 38 37 0,1263 500 

TL37 18 17 0,0123 400 TL85 38 37 0,0598 600 

TL38 18 44 0,0206 450 TL86 39 12 0,0461 291 

TL39 20 19 0,0116 320 TL87 39 43 0,0778 559 

TL40 20 19 0,0117 550 TL88 39 43 0,0777 559 

TL41 20 33 0,0978 550 TL89 40 43 0,1589 700 

TL42 20 33 0,097 550 TL90 42 5 0,007 1500 

TL43 21 22 0,0304 600 TL91 42 8 0,0117 500 

TL44 21 22 0,0304 600 TL92 45 41 0,1195 600 

TL45 21 45 0,0818 500 TL93 46 24 0,0122 1500 

TL46 22 39 0,2076 600 TL94 46 24 0,0114 1600 

TL47 23 24 0,0092 1688 TL95 46 24 0,0122 1600 

TL48 23 29 0,0303 2182 
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