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2018





Federal University of Santa Catarina

Postgraduate Program in

Automation Engineering and Systems

Bifurcation Analysis in Discontinuous
Piecewise-Smooth Systems: Applications

in Power Electronics

Thesis submitted to the Postgraduate Program
in Automation Engineering and Systems

of the Federal University of Santa Catarina,
as part of the requirements for obtaining the degree of

Doctor in Automation Engineering and Systems.

Rony Cristiano

Advisor: Prof. Daniel Juan Pagano, Dr.
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Abstract of thesis submitted to the Federal University of Santa
Catarina as part of the requirements for obtaining the degree of

Doctor in Automation Engineering and Systems.

Bifurcation Analysis in Discontinuous

Piecewise-Smooth Systems: Applications in Power

Electronics

Rony Cristiano

September/2018

Advisor: Daniel Juan Pagano, Dr.
Specialized field: Non-smooth Dynamical Systems and Non-linear
Control
Keywords: DPWS systems, Filippov systems, sliding vector field, first
return map, pseudo-equilibrium, boundary equilibrium, Teixeira singu-
larity, crossing limit cycle, sliding mode control, boost converter, buck
converter, stability, bifurcations.

ABSTRACT: This thesis considers the discontinuous piecewise-smooth

systems in R3 (3D-DPWS systems) that exhibit a single discontinuity

surface, typically flat and denoted by Σ. The concept of Filippov’s

solution is used to described the sliding dynamics contained in a re-

gion of Σ given that it fulfils certain conditions. 3D-DPWS systems

exhibit the classical bifurcations (saddle-node, Hopf, etc.) of smooth

systems and also non-conventional bifurcations, unique to nonsmooth

systems, known as discontinuity-induced bifurcations (DIBs). The gen-

eral objective is to classify and characterize bifurcations in 3D-DPWS

systems. In this sense, this thesis focuses on the qualitative and ge-

ometric analysis of bifurcations and their unfolding, in particular, of
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codimension 1 and 2, involving natural equilibria, boundary equilibria,

pseudo-equilibria, T-singularities (Teixeira singularities), limit cycles

and invariant surfaces. One way to generalize this study is to determine

canonical forms which describe certain required topological configura-

tions, which minimize the number of system parameters and end up

simplifying the calculations and the associated geometry. This thesis

presents varied original contributions, which are obtained from (i) some

case studies considering applications for dc-dc power converters under

a sliding mode control strategy; (ii) a pioneering experimental analysis

with a dc-dc boost converter, showing the effects caused by the TS-

bifurcation (T-singularity bifurcation); (iii) a detailed analysis, with

analytical and numerical results, of local bifurcations in sliding vector

fields, on the boundary equilibrium bifurcations and on bifurcations at

T-singularities; (iv) numerical results on the existence, stability and

some bifurcations of crossing limit cycles.
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Resumo de tese submetida à Universidade Federal de Santa Catarina
como parte dos requisitos para a obtenção do grau de Doutor em

Engenharia de Automação e Sistemas.

Análise de Bifurcações em Sistemas Descont́ınuos

Suaves por Partes: Aplicações em Eletrônica de

Potência

Rony Cristiano

Setembro/2018

Orientador: Daniel Juan Pagano, Dr.
Área de Concentração: Sistemas Dinâmicos Não-Suaves e Controle
Não-Linear
Palavras-chave: Sistemas DPWS, sistemas de Filippov, campo vetorial
deslizante, mapa de primeiro retorno, pseudo-equiĺıbrio, equiĺıbrio de
fronteira, singularidade de Teixeira, ciclo limite de cruzamento, cont-
role por modo deslizante, conversor boost, conversor buck, estabilidade,
bifurcação.

RESUMO: Esta tese considera sistemas dinâmicos descont́ınuos suaves

por partes em R3 (sistemas 3D-DPWS) exibindo uma única superf́ıcie

de descontinuidade, denotada por Σ e tipicamente plana. O conceito

de solução de Filippov é usado para descrever a dinâmica deslizante

presente em uma região de Σ cumprindo certas condições. Sistemas

DPWS exibem as bifurcações clássicas (sela-nó, Hopf, etc.) dos sis-

temas suaves e também bifurcações não convencionais, próprias dos

sistemas suaves por partes, conhecidas como bifurcações induzidas pela

descontinuidade (DIBs). O objetivo geral desta tese é o de classificar e

de caracterizar bifurcações em sistemas 3D-DPWS. Nesse sentido, esta

tese apresenta uma análise qualitativa e geométrica de bifurcações e

de seus desdobramentos, em particular, de codimensão 1 e 2, envol-
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vendo equiĺıbrios naturais, equiĺıbrios de fronteira, pseudo-equiĺıbrios,

T-singularidades (singularidades de Teixeira), ciclos limite e superf́ı-

cies invariantes. Para generalizar este estudo, são determinadas formas

canônicas que descrevem certas configurações topológicas exigidas, min-

imizando o número de parâmetros do sistema e simplificando os cálcu-

los e a geometria envolvida. Esta tese apresenta contribuições originais

variadas, as quais são obtidas a partir de (i) alguns estudos de caso

considerando aplicações para conversores de potência cc-cc sob uma

estratégia de controle por modos deslizantes; (ii) uma análise exper-

imental pioneira com um conversor boost cc-cc, mostrando os efeitos

causados pela bifurcação da T-singularidade; (iii) uma análise detal-

hada sobre bifurcações locais em campos vetoriais deslizantes, sobre

as bifurcações de equiĺıbrio de fronteira e sobre bifurcações em T-

singularidades; (iv) resultados numéricos sobre a existência, estabili-

dade e algumas bifurcações de ciclos limite de cruzamento.
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Chapter 1

Introduction

1.1 Motivation and goals

The piecewise-smooth (PWS) systems belong to an important

class of non-linear dynamical systems that have no continuity in the

vector field or in its derivatives. PWS systems are often used in physi-

cal systems and engineering applications to describe phenomena involv-

ing friction, impact, saturation, hysteresis or processes with switching

components.

This thesis is dedicated to the study of mechanisms through which

the system phase portrait loses its structural stability, i.e., bifurcations.

In particular, we are interested in non-standard phenomena which are

unique to PWS systems. Bifurcations in PWS systems have been the

object of study in several works in recent years, but there is not yet a

complete understanding of local bifurcations, so that there is a great

interest in the development of bifurcation theory for these systems.

We will consider the PWS systems in R3 which exhibit a two-

dimensional discontinuity surface, denoted by Σ and typically a flat

surface, where the vector field is discontinuous (we named 3D-DPWS

systems); see [51, 117]. This discontinuity surface is called switching
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boundary1. Several physical systems such as friction mechanical sys-

tems, power electronics converters and control systems are modelled by

DPWS systems.

An important feature of 3D-DPWS systems is the presence of

different types of equilibrium points (natural equilibrium, boundary

equilibrium, pseudo-equilibrium). In particular, the so-called pseudo-

equilibrium is a point at Σ where the sliding vector field becomes null,

being reached in finite time by trajectories initiated outside Σ. In slid-

ing mode control (SMC) processes [122], the desired operating point is

a stable pseudo-equilibrium of the system that belongs to an attrac-

tive region of Σ where the sliding occurs. The output of the pseudo-

equilibrium of this attractive sliding region, induced by the variation

of a system parameter, is usually associated with typical bifurcations

of 3D-DPWS systems such as the boundary equilibrium bifurcations

(BEBs) and the TS-bifurcation, which will be studied in detail in this

thesis.

3D-DPWS systems exhibit the classical bifurcations (saddle-node,

transcritical, Hopf, homoclinic, etc.) of smooth systems and also non-

conventional bifurcations, unique to non-smooth systems, known as

discontinuity-induced bifurcations (DIBs); see [42]. In this thesis the

notion of bifurcation is associated with a qualitative change in the topol-

ogy of the phase portraits of a dynamical system, due to the variation

of one or more parameters. Bifurcations that determine changes in the

number and nature of the equilibria and of the limit cycles of the system

are of particular importance to this study.

The general objective is to classify and characterize bifurcations

in 3D-DPWS systems. Specifically, it aims to: (i) determine a classifi-

cation of BEBs from its unfoldings and from the sliding dynamics at the

boundary equilibrium, considering a family of systems with discontinu-

ous piecewise-linear (DPWL) vector field and that exhibit two parallel

tangency lines on the switching boundary; (ii) revise the theory on the

1Also called switching manifold or discontinuity manifold.
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Teixeira singularity (T-singularity), in order to structure more deeply

the bifurcations at this point, describing the complete characterization

on its unfolding dynamics, and providing new and more efficient tools

for the local analysis of the T-singularity bifurcation (TS-bifurcation)

in applications; (iii) describe the dynamics and the bifurcations in a

family of systems with two T-singularities, with particular attention

to the possibles degenerate cases of the T-singularity bifurcation; (iv)

establish mechanisms for the birth (or vanishing) of Crossing Limit Cy-

cles - CLCs, considering some case studies; (v) describe the dynamics

and the bifurcations in a dc-dc boost, and buck, converters with sliding

mode control.

In this sense, this thesis focuses on the qualitative and geometric

analysis of bifurcations and their unfolding, in particular, of codimen-

sion 1 and 2. We will deal with bifurcations in the sliding vector field

(saddle-node, transcritical, pitchfork, Hopf) [29, 98], boundary equilib-

rium bifurcations [45, 51, 67, 78], bifurcations at T-singularities [26, 69,

117, 118] and bifurcations of crossing limit cycles [26, 32, 55, 117] (from

the first return map analysis).

One way to generalize this study is to determine canonical forms

that allow it to minimize the number of system parameters. This thesis

determines canonical forms for families of 3D-DPWS systems with spe-

cific configurations, such as the existence of two regular T-singularities

bifurcating from a type of degenerate T-singularity, [118]. Such canon-

ical forms are used for a detailed study of stability and bifurcations

in each family of systems considered, in particular for the investiga-

tion of the BEBs and of bifurcations at T-singularities, as well as the

associated dynamic phenomena.

For case studies we will consider applications in power electronics,

in which dc-dc power converters are used under a SMC strategy with

washout filter (SMC-Washout); see [91]. Experimental analysis with a

dc-dc boost converter, showing the effects caused by the TS-bifurcation,

are also considered in this thesis. These experimental results were also
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obtained in [29]. The power converters exhibit discontinuous models,

the discontinuity being related to their implementation by means of

electronic switches that are designed to be permanently switching be-

tween two discrete states, on and off. Due to this switching character-

istic, sliding mode controllers are considered for the voltage regulation

of power converters since they are naturally suitable for the control

of switched systems [108]. Although in general they have a piecewise-

linear model, power converters exhibit a complex and varied dynamic

behaviour [121], as we will see in this thesis.

The bifurcation theory [37, 77] contains powerful tools for the

analysis of nonlinear dynamics. From the analysis of bifurcations we

can, for instance, determine the region in the parameter space of a con-

trol system where the control objectives are attained and, thus, design

more efficient controllers capable of inhibiting the undesired dynamics

caused by bifurcations, see [29, 92]. In this sense, the study of bifurca-

tions and the related dynamic phenomena have great relevance in the

fields of applied mathematics and control engineering.

1.2 Piecewise-smooth dynamical systems

Qualitative theory and typical bifurcations of PWS systems are

introduced by Di Bernardo et al. [37], which is an important book in

the literature containing a series of applications (mechanical impact and

friction oscillators, power electronic and control systems with switches)

with numerical results and some experimental ones. Based on it, we

draw attention to the pioneering work on non-smooth equilibrium bi-

furcations of Andronov et al. [3], on border-collision bifurcations of

Feigin [48], on impact oscillators in [8, 97] of Babitskii and Peterka,

respectively, on sliding motion of Filippov [51] and Teixeira [117] on

singularities of discontinuous PWS three-dimensional systems. More

recent studies in PWS systems with important applications in non-

smooth mechanics are found in [17, 34, 56, 57, 76, 82, 87]; also in elec-
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trical and electronic devices [12, 20, 36, 41, 99, 121], in discontinuous

control systems [9, 29, 84, 123], in mathematical biology and medicine

[27, 31, 33, 120].

Regarding bifurcations, there is a variety of interesting works

published in the last two decades, for instance, the detailed work of

Kuznetsov et al. [78] on local and global one-parameter bifurcations

in planar Filippov systems (discontinuous PWS systems); Di Bernardo

& Hogan [42], presenting an important review on the discontinuity-

induced bifurcations in continuous PWS, discontinuous PWS and im-

pacting systems; in addition to other important contributions in the

development of the bifurcation theory in PWS systems, continuous

[52, 85, 100, 107] and discontinuous [11, 24, 26, 64, 67, 93, 118] and

also on bifurcations of limit cycles [32, 53, 54, 55, 68, 106].

PWS systems are described by a finite set of ordinary differential

equations

ẋ = f (i)(x), x ∈ R(i) ⊂ Rn, (1.1)

where R(i), i = 1, 2, 3, ...,m, are open regions separated by borders Σij

of (n − 1)-dimension. The functions f (i) : R(i) → Rn and boundaries

Σij are supposed to be smooth and the union of all boundaries Σij

and all regions R(i) covers the entire state space of (1.1). The non-

smoothness occurs on the switching boundaries Σij . Moreover, PWS

systems are classified depending on the type of non-smoothness [37]:

(i) Systems with abrupt discontinuities in states, such as the impact

systems with reverse speed.

(ii) Continuous piecewise-smooth systems (CPWS systems), if the

vector field (1.1) is continuous but it is not differentiable at some

points, that is, f (i)(x) = f (j)(x) but f
(i)
x (x) 6= f

(j)
x (x) for some

x ∈ Σij . No sliding motion occurs in CPWS systems. Examples

of this class are the elastic mechanical systems with constraints

in the states, the control systems with constraints on actuators

such as saturation in the amplitude and/or speed of the control
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action and nonsmooth oscillators.

(iii) Discontinuous piecewise-smooth systems (DPWS systems), if

f (i)(x) 6= f (j)(x) for some x ∈ Σij . In DPWS systems there can

be sliding motion in a region of Σij fulfilling certain conditions.

Such systems are also known in the literature as Filippov systems

[78], which are described by a set of first order ordinary differen-

tial equations with a discontinuous right-hand side. As shown by

Filippov in [51], it is possible to construct an appropriate vector

field to describe this sliding motion, called sliding vector field. Ex-

amples of this class are the mechanical systems with dry friction

and the sliding mode control systems.

In this thesis we will consider only DPWS systems in R3 (3D-

DPWS systems) and its applications involving power electronics con-

verters and SMC; see [108, 123]. In the qualitative analysis of these

systems we dedicate special attention to the constant solutions at Σij

associated with the equilibria of the sliding vector field, since one of

these equilibria is the desired point of operation in the SMC process. A

point at Σij , which is an equilibrium of the sliding vector field, is called

a pseudo-equilibrium, because it is not in general an equilibrium of f (i)

neither of f (j). Other invariant sets, such as limit cycles, homoclinic

or heteroclinic connections, are also relevant from the point of view of

robustness issues and global stability.

1.3 Outline of the thesis

In Chapter 2 we start by introducing some definitions, the nota-

tions and the elementary concepts regarding DPWS systems, as well as

tools for the analysis of dynamic behaviour of these systems.

In Chapter 3 we will study the Hopf and Homoclinic bifurcations

that occur in the sliding vector field of switching systems in R3. In

particular, we will analyse a dc-dc boost converter with SMC-Washout
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with the objective of investigating a new mechanism to produce a ho-

moclinic bifurcation, where the closing point of the homoclinic loop is

a two-fold singularity. This is a result known in the literature due to

recent works [12, 29], but here, in this thesis, the approach is more

detailed. This chapter has originated the paper: R. Cristiano, T. Car-

valho, D. J. Tonon and D. J. Pagano. Hopf and Homoclinic bifurcations

on the Sliding Vector Field of Switching systems in R3: A case study

in power electronics. Physica D: Nonlinear Phenomena, 347:12 - 20,

2017.

Chapter 4 is dedicated to the study of 3D-DPWS systems that

present the T-singularity (Teixeira singularity). The T-singularity can

undergo an interesting bifurcation, namely when a pseudo-equilibrium

point crosses the two-fold singularity, passing from the attractive slid-

ing region to the repulsive sliding region (or vice versa) and, simultane-

ously, a crossing limit cycle arises. This bifurcation is denominated in

this thesis as TS-bifurcation. After carefully deriving a local canonical

form, we will revise some previous works regarding this bifurcation so as

to correct some detected misconceptions. Furthermore, we will provide

by means of a more direct approach the critical coefficients character-

izing the bifurcation, also giving computational procedures for them.

The achieved results on TS-bifurcation will be applied to some illus-

trative examples and also in a dc-dc boost converter under a sliding

mode control strategy and washout filter. The TS-bifurcation and all

its unfolding are known in the literature (see [26]), however, this bifur-

cation had not been correctly described. In this sense, our main goal in

this chapter will be is the restructuring of TS-bifurcation, providing de-

tailed tools to investigate such bifurcation in application systems. This

chapter has originated the paper: R. Cristiano, E. Freire, E. Ponce and

D. J. Pagano. Revisiting the Teixeira singularity bifurcation analysis.

Application to the control of power converters. International Journal

of Bifurcation and Chaos, 28(9)1850106 (31 pages), 2018.

In Chapter 5 we will consider the model of a dc-dc boost converter

with sliding mode control and washout filter. This chapter is dedicated
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to the study of local and global bifurcations, in particular focused on

TS-bifurcation and crossing limit cycles (CLCs). Apart from the TS-

bifurcation characterization in this power converter, we will explore

numerically other non-local phenomena like a saddle-node bifurcation

of CLCs. Experimental results that illustrate the effects of the TS-

bifurcation in a real circuit prototype of a boost converter will also be

shown. The experimental identification of the Teixeira singularity in a

real circuit of power electronic is a pioneering result in the literature.

Besides the experimental results we will also present analytical and nu-

merical results on the TS-bifurcation and others bifurcations, helping

us to unravel the dynamical richness of this circuit. Moreover, we will

study global mechanisms for the vanishing (or birth) of a CLC (saddle-

node bifurcation and non-standard homoclinic bifurcation), besides the

existence and stability analysis of CLCs from its birth to its annihila-

tion. This chapter has originated the paper: R. Cristiano, E. Ponce,

D. J. Pagano and M. Granzotto. On the Teixeira Singularity Bifurca-

tion in a DC-DC Power Electronic Converter. Submitted to Nonlinear

Dynamics, 2018.

Chapter 6 contains a detailed analysis of bifurcations in a family of

3D-DPWS systems that have two points of T-singularity. In addition,

from the variation of a system parameter, these T-singularities collide

and then disappear along with the attractive sliding region. In this case,

a fold bifurcation occurs and, at the bifurcation point, appears a type of

degenerate T-singularity. We provide a local canonical form for systems

with 1-degenerate T-singularity (following [69, 118], but providing more

detail on derivation of the canonical form) and its unfolding in two regu-

lar or none T-singularities, along with the pathways to obtain it. Under

certain conditions, there is a pseudo-equilibrium that collides with one

of the T-singularities or, the two T-singularities simultaneously collide

with the pseudo-equilibrium. In the first case a TS-bifurcation occurs

and, in second case, a non regular case of larger co-dimension of this

bifurcation occurs, that we have named double TS-bifurcation. Like

the TS-bifurcation, the double TS-bifurcation also is associated with
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the birth of a crossing limit cycle, but here, it arises from a degener-

ate T-singularity. We will describe the sliding and crossing dynamics

around the T-singularities, regular or degenerate, and also the sliding

dynamics at the pseudo-equilibrium. Moreover, we will prove the ex-

istence, the stability and the bifurcations of crossing limit cycles from

the considered case study. To the best of our knowledge, the present

work is the first one in which the appearance of two T-singularities in

piecewise-smooth dynamical systems is studied. The fold bifurcation

of T-singularities and the double TS-bifurcation are unknown in the

literature, as far as we know, the given names for each are just our

suggestions.

In Chapter 7 we will study a family of DPWS systems in R3 in

which the vector fields are linear (DPWL systems) on both sides of the

switching boundary, and with two parallel tangency lines containing a

singularity cusp each. Such an adopted model often appears in engi-

neering problems being used to describe the dynamics of discontinuous

control systems such as sliding mode control. We will provide a canoni-

cal form for such systems and then we will simplify the calculations and

the geometry related to the topological configuration on the switching

boundary. We will describe the associated sliding vector field as well as

the dynamic characteristics on the switching boundary from a proposed

canonical form. Also, we will analyse the existence of natural equilib-

ria, pseudo-equilibria and boundary equilibria. Moreover, this chapter

is dedicated to the study of BEBs in R3 and of the different types of

boundary equilibria with respect to the sliding dynamics at this point.

The main goal will be the classification of BEBs, explicitly providing

the conditions on the system parameters for the occurrence of each of

the two scenarios, persistence and nonsmooth fold, and also the char-

acterization of the dynamics of its unfoldings in the sliding vector field.

The results obtained on stability and bifurcations will be applied to

two examples in power electronics systems involving the sliding mode

control of dc-dc buck converters.

Finally, in Chapter 8, we will discuss the main results and con-
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tributions of this thesis to the field of non-smooth dynamical systems

and we will present some proposals for future works. More details on

goals, results achieved and contributions are discussed in each chapter.



Chapter 2

Preliminary Results on

DPWS

In this chapter we present the definitions, the notations and the

elementary concepts regarding DPWS systems as well as the tools for

the analysis of dynamic behaviour of these systems. In particular, we

are interested in three-dimensional DPWS systems with two regions in

R3 separated by a planar surface Σ.

2.1 Introduction to 3D-DPWS systems

Let us assume two vector fields F± : R3 → R3 and a scalar

C∞ function h : R3 → R with non-vanishing gradient on a C∞ two-

dimensional surface

Σ = {x ∈ R3 : h(x) = 0} (2.1)

and so that we have possibly F+(x) 6= F−(x) for some x ∈ Σ. This

surface is chosen to be a switching boundary, by dividing the R3-space

into two open regions: R− = {x ∈ R3 : h(x) < 0} and R+ = {x ∈ R3 :
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h(x) > 0}, and such that R3 = R− ∪ Σ ∪ R+. Moreover, we assume

F± = (f±1 , f
±
2 , f

±
3 ) ∈ Xr, in which Xr denotes the space of Cr-vector

fields on R3 endowed with the Cr-topology1 with r =∞ or r ≥ 1 large

enough for our purposes.

A 3D-DPWS dynamical system is usually expressed as the set of

ordinary differential equations

ẋ =

{
F−(x), if x ∈ R−,
F+(x), if x ∈ R+,

(2.2)

where x is the three-dimensional state vector and the “ ˙ ” denotes the

differentiation in relation to time t.

The switching boundary Σ can be partitioned into regions with

different dynamical behaviours (see Figure 2.1): (i) crossing regions

(Σ±c ), where one vector field is pointing to Σ and the other is pointing

out of the boundary; (ii) attractive sliding region (Σas), where the

vector fields F+ and F− point towards Σ from both sides; (iii) repulsive

sliding region (Σrs), where both F+ and F− are pointing out of Σ from

either sides. Points in such regions are qualified accordingly2.

In order to study the dynamic behaviour of systems (2.2) on the

switching boundary Σ we introduce the orbital derivative of h in re-

lation to vector fields F±, in terms of the Lie derivative: LF±h =

〈∇h,F±〉, where ∇h is the gradient of smooth function h and 〈., .〉
denotes the usual inner product. The higher order Lie derivatives are

given by LnF±h = 〈∇Ln−1
F± h,F±〉 for n = 2, 3, .... Thus, we can explicitly

determine the sliding and crossing regions as follows:

Σas = {x ∈ Σ : LF+h(x) < 0 < LF−h(x)}, (2.3)

Σrs = {x ∈ Σ : LF−h(x) < 0 < LF+h(x)}, (2.4)

1This will be considered throughout the thesis, but will no longer be addressed.
2We use the appointment attractive/repulsive sliding region following [45, 81].

Some authors, as for example [71, 117], prefer to qualify as sliding only the attractive
case, being the repulsive sliding named as escaping.



2.1. Introduction to 3D-DPWS systems 13

F−

Fs

F+

F−

Fs

F+

ΣrsΣas

F−

F+

Σ+
c

F−

F+

Σ−c

Figure 2.1: Illustrative dynamical behaviours in Σ: (top-left) Attractive
sliding; (top-right) repulsive sliding; (bottom) crossing.

Σ−c = {x ∈ Σ : LF−h(x) < 0 and LF+h(x) < 0}, (2.5)

Σ+
c = {x ∈ Σ : LF−h(x) > 0 and LF+h(x) > 0}. (2.6)

The orbits of system (2.2) can be constructed by concatenating

standard solutions in R± and sliding solutions on Σ following the Filip-

pov convex method, see [37, 51, 78, 117] and its explicit definition later

in (2.9). The forward (with positive time evolution) orbit of (2.2) that

crosses Σ, goes from R− to R+ through some x0 ∈ Σ+
c and goes from

R+ to R− through x0 ∈ Σ−c . The forward orbit of (2.2) that intersects

Σ at a point x0 ∈ Σas, continues from this point x0 on a contained slid-

ing motion in Σ. The forward orbits of (2.2) through x0 ∈ R± never

reach the repulsive sliding region Σrs, so that the dynamics in Σrs will

not be observed in numerical integration of (2.2). But if x0 ∈ Σrs, we

can assume that there is a sliding motion starting at x0 that follows

the orbit defined by Filippov’s method.

The Filippov convex method is used to construct solutions in

Σas ∪Σrs ⊂ Σ as an extension to solutions of (2.2); see Figure 2.2. For

this, we introduce a new vector field, denoted by Fs and called sliding
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vector field, calculated from a convex combination of the vector fields

F±, namely

Fs(x) = (1− α)F−(x) + αF+(x). (2.7)

For each x ∈ Σas∪Σrs ⊂ Σ, the value of α is chosen so that the sliding

vector field Fs is tangent to Σ, that is

LFsh(x) = (1− α)LF−h(x) + αLF+h(x) = 0,

resulting in

α = α(x) =
LF−h(x)

LF−h(x)− LF+h(x)
. (2.8)

Σ
Fs(x)

F+(x)

F−(x)

R+

R−

x

Figure 2.2: Geometric definition of the sliding vector field.

Note that LF−h(x) − LF+h(x) 6= 0 and 0 < α(x) < 1 for all

x ∈ Σas ∪Σrs. Replacing (2.8) in (2.7) we can explicitly determine the

sliding vector field by

Fs(x) =
LF−h(x)F+(x)− LF+h(x)F−(x)

LF−h(x)− LF+h(x)
. (2.9)

The solution of (2.2) with initial condition x0 ∈ Σas ∪Σrs ⊂ Σ is

obtained from the sliding system

ẋ = Fs(x).
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For an initial condition x0 ∈ Σas, the solution is unique in forward

time but it is not unique in backward time; in this case, there are

three possible solutions: each one follows the flow of Fs or F− or F+.

The opposite occurs for an initial condition x0 ∈ Σrs, so that the

solution is unique in backward time, but it is not unique in forward time.

Studies about the existence and uniqueness of solutions of discontinuous

differential equations are found in [7, 50, 51].

Sliding regions are delimited by points where the vector fields F±

are tangent to Σ, which are calculated from the tangency condition:

LF−h(x) = 0 and h(x) = 0, in relation to F−; and LF+h(x) = 0 and

h(x) = 0, in relation to F+. Then, we define two sets of tangential

singularities:

T+ = {x ∈ Σ |LF+h(x) = 0}

and

T− = {x ∈ Σ |LF−h(x) = 0};

one for each vector field involved. These sets of tangency points are

assumed to be smooth curves contained in Σ, and we refer to T+ (resp.

T−) as the tangency line of F+ (resp. F−). Moreover, if F+ (resp. F−)

vanishes at x ∈ Σ, then x ∈ T+ (resp. x ∈ T−). Points where one of

the vector fields F± vanishes on Σ are known as boundary equilibrium

points; see Section 2.3 and references [37, 44, 45, 78].

At points x ∈ Σ such that LF−h(x) − LF+h(x) = 0, either both

vector fields F± are tangent to Σ, or one of them vanishes while the

other is tangent to Σ, or they both vanish, or both are identical; see

singular sliding points in [78]. Points where both vector fields F± are

tangent to Σ, that is, points x ∈ T+ ∩ T−, are double tangency points

which are classified generically as two-fold singularities; see Section 2.2

and references [49, 69, 71, 117].

The transverse intersection between the tangency lines T+ and T−
determine four quadrants on Σ (in a neighbourhood of this intersection

point): Σas in Q1, Σ+
c in Q2, Σrs in Q3 and Σ−c in Q4, as shown in
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Figure 2.3(a). If T− and T+ become parallel curves, then only three of

these regions remain on Σ: (i) sliding mode (Σas or Σrs) in the central

region and crossing mode in the regions outside (Σ−c on one side and

Σ+
c on the other), as shown in Figure 2.3(b); (ii) or the opposite case,

with crossing mode in the central region and sliding mode in the outer

regions.

T+

T−
x̂

Σas

ΣrsΣ−c

Σ+
c

Σ

ẋ = F−(x)

ẋ = F+(x)

x̃

(a)

T− T+

x̃
x̂+x̂−

Σ
Σas

Σ−c

Σ+
c

ẋ = F−(x)

ẋ = F+(x)

(b)

Figure 2.3: Phase portraits (illustrated) of 3D-DPWS systems. In (a) we
have transverse tangency lines presenting a Teixeira singularity at the point
x̂ ∈ T− ∩ T+ and a pseudo-equilibrium at the point x̃ ∈ Σas. In (b) we have
parallel tangency lines presenting a cusp point at x̂− ∈ T− and another at
x̂+ ∈ T+, and also a pseudo-equilibrium at the point x̃ ∈ Σas. For further
information, see next sections.

Figure 2.3 illustrates the geometry of the dynamic behaviour in

typical 3D-DPWS systems near the switching boundary Σ. In addition,

the main elements involved are represented in this figure. Chapter 7 of
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this thesis is devoted to the study of 3D-DPWS systems with parallel

tangency lines, while in the Chapter 4 we study those with transversal

tangency lines, in particular, presenting a Teixeira singularity. Both

types of systems are of great relevance to the literature of the field and

they appear as models of many real physical systems; see for instance

[14, 25, 39, 43, 72, 111].

Thus, we have completed the switching boundary of (2.2) as Σ =

Σs∪T ∪Σc, where Σs = Σas∪Σrs represents the set of points at sliding

mode, Σc = Σ+
c ∪ Σ−c represents the set of points at crossing mode

and T = T+ ∪ T− represents the set of tangency points. In Section

2.2 the tangency points in T± are classified according to the type of

contact between the vector fields F± and the switching boundary Σ;

see [78, 109, 117, 118].

2.2 Tangential singularities

We now introduce the definitions of the tangency points of system

(2.2). Figure 2.4 shows the dynamic behavior associated with tangency

points and planar representation is shown in Figure 2.5.

Definition 2.1. x̂ ∈ Σ is a fold point of F+ if x̂ ∈ T+ and L2
F+h(x̂) 6=

0, i.e., the contact of F+ with Σ is quadratic. In addition, we say that

x̂ is a visible (resp. invisible) fold if the orbit of ẋ = F+(x), starting

at x̂, belongs to R+ (resp. R−) for all sufficiently small |t| 6= 0, i.e., if

L2
F+h(x̂) > 0 (resp. L2

F+h(x̂) < 0).

Definition 2.2. x̂ ∈ Σ is a fold point of F− if x̂ ∈ T− and L2
F−h(x̂) 6=

0, i.e., the contact of F− with Σ is quadratic. In addition, we say that

x̂ is a visible (resp. invisible) fold if the orbit of ẋ = F−(x), starting

at x̂, belongs to R− (resp. R+) for all sufficiently small |t| 6= 0, i.e., if

L2
F−h(x̂) < 0 (resp. L2

F−h(x̂) > 0).

Definition 2.3. x̂ ∈ Σ is a cusp point of F+ if x̂ ∈ T+, L2
F+h(x̂) = 0,

L3
F+h(x̂) 6= 0 and {∇h(x̂),∇LF+h(x̂),∇L2

F+h(x̂)} is linearly indepen-

dent.
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Σ

T+

x̂

ẋ = F−(x)

ẋ = F+(x)

Σ+
c

Σas

Figure 2.4: Tangency points of F+ and the dynamics involved. Through
the generic cusp point x̂ ∈ T+ emanate two branches of fold points. The right
branch is composed of invisible fold points and the left branch is composed
of visible fold points.

Σ
T+

R+

R−

(a) Invisible Fold.

Σ
T+

R+

R−

(b) Visible Fold.

Σ
T+

R+

R−

(c) Cusp.

Figure 2.5: Planar representation of the dynamics at the tangency points.
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Definition 2.4. x̂ ∈ Σ is a cusp point of F− if x̂ ∈ T−, L2
F−h(x̂) = 0,

L3
F−h(x̂) 6= 0 and {∇h(x̂),∇LF−h(x̂),∇L2

F−h(x̂)} is linearly indepen-

dent.

A double tangency point appears where both vector fields F+ and

F− are tangent to Σ. If the contact between orbits of F± with Σ is

quadratic, then this double tangency point is classified as a two-fold

singularity (see Figure 2.6). If such contact is quadratic on one side of

Σ and cubic on the other, then it is classified as cusp-fold singularity.

Furthermore, when the contact is cubic on both sides of Σ, it is classified

as two-cusp singularity. The two-fold singularity is a generic point of

3D-DPWS systems (see [51, 71, 117]) and a double tangency point of

our interest in this thesis, which is defined with more details below.

Definition 2.5. x̂ ∈ Σ is a two-fold point if x̂ ∈ T−∩T+, L2
F−h(x̂) 6= 0

and L2
F+h(x̂) 6= 0. Moreover, it is assumed that the tangency lines T−

and T+ intersect transversely in x̂, i.e., the set

{∇h(x̂),∇LF+h(x̂),∇LF−h(x̂)}

is linearly independent (regular case). The two-fold point can be clas-

sified into:

(i) Invisible, if L2
F+h(x̂) < 0 < L2

F−h(x̂) (elliptic case);

(ii) Visible, if L2
F−h(x̂) < 0 < L2

F+h(x̂) (hyperbolic case);

(iii) Visible-Invisible, if L2
F+h(x̂) · L2

F−h(x̂) > 0 (parabolic case).

Remark 2.1. An invisible two-fold point is also known as a Teixeira

Singularity and in this thesis will be named as such, or abbreviated as

T-singularity. See Figure 2.6(a). T-singularity is an important point

for the dynamics of 3D-DPWS systems since this typical singularity al-

ways has, in its neighborhood on Σ, sliding and crossing regions. The

existence of a T-singularity enables the construction of first return ap-

plications that build up in the crossing regions of Σ, such that this
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T-singularity is a fixed point for the associated map. In addition, the

T-singularity behaves as an equilibrium for the sliding vector field, see

[71, 117].

T+

T−
x̂

Σrs

ΣasΣ+
c

Σ−c
Σ

ẋ = F−(x)

ẋ = F+(x)

(a)

T−

T+

x̂Σrs Σrs

Σ−c

Σ+
c

Σ

ẋ = F−(x)

ẋ = F+(x)

(b)

Figure 2.6: Dynamics on Σ presenting a T-singularity at x̂. In (a) is the
regular case and in (b) is the 1-degenerate case.

A non-generic contact between the tangency lines T− and T+,

as shown in the Figure 2.6(b), is defined right below (see [69, 118]).

Chapter 6 is dedicated to the study of systems that present this type

of singularity and its unfolding, from which a pair of regular two-fold

points can arise.

Definition 2.6. x̂ ∈ Σ is a 1-degenerate two-fold point if it is a two-

fold point where the contact between T+ and T− is quadratic at x̂.
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The following lemmas were proved in [117].

Lemma 2.1. Assume that x̂ ∈ T− (resp. T+) is a fold point of F−

(resp. F+) and x̂ /∈ T+ (resp. T−). Then, the sliding vector field Fs is

transversal to T− (resp. T+) at x̂.

Proof. Note that if LF−h(x̂) = 0 and LF+h(x̂) 6= 0 then Fs(x̂) =

F−(x̂). We define g(x) = LF−h(x) and so LFsg(x̂) = L2
F−h(x̂) 6=

0. Therefore, Fs is transversal to T− at all the fold points x̂ ∈ T−.

Similarly, Fs is transversal to T+ at all fold points x̂ ∈ T+.

Lemma 2.2. Assume that x̂ ∈ T− (resp. T+) is a cusp point of F−

(resp. F+) and x̂ /∈ T+ (resp. T−). Then, the sliding vector field Fs

has a quadratic contact with T− (resp. T+) at x̂.

Proof. In this case, we have LFsg(x̂) = L2
F−h(x̂) = 0 and L2

Fsg(x̂) =

L3
F−h(x̂) 6= 0. Therefore, Fs has a quadratic contact with T− at a cusp

point x̂ ∈ T−. Similarly, Fs has a quadratic contact with T+ at a cusp

point x̂ ∈ T+.

2.3 Equilibria

In system (2.2) it is possible to identify different types of equilib-

ria. Below, we give the definitions of this equilibria, see [37, 58, 78].

Definition 2.7. A point x ∈ R3 is a natural equilibrium of (2.2) if it

is an equilibrium of the vector field F+ or F−. In addition, we say that

x is a real (admissible) equilibrium if

F+(x) = 0 and h(x) > 0

or

F−(x) = 0 and h(x) < 0.
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Alternatively, we say that x is a virtual (non admissible) equilibrium if

F+(x) = 0 but h(x) < 0

or

F−(x) = 0 but h(x) > 0.

Definition 2.8. A point xb ∈ R3 is a boundary equilibrium of (2.2) if

F+(xb) = 0 or F−(xb) = 0 with h(xb) = 0.

Remark 2.2. Note that a boundary equilibrium xb is always located on

the boundary T+ (or T−) of the sliding region where the vector field F+

(or F−) vanishes, since LF+h(xb) = 0 (or LF−h(xb) = 0). It is easy

to see from (2.9) that Fs(xb) = 0, and so the boundary equilibrium is

an equilibrium for both vector fields Fs and F+ (or F−).

Definition 2.9. A point x̃ ∈ R3 is a pseudo-equilibrium of (2.2) if

x̃ ∈ Σas ∪ Σrs and it is an equilibrium of the sliding vector field Fs,

i.e.,

Fs(x̃) = 0,

h(x̃) = 0.

If the pseudo-equilibrium x̃ behaves as a node, a focus or a saddle for

the dynamics on Σ, we say that x̃ is a pseudo-node, pseudo-focus or

pseudo-saddle, respectively.

Remark 2.3. In the equilibria calculation of the sliding vector field Fs,

we can find x̃ ∈ Σ+
c ∪Σ−c . In this case, we say that x̃ is a virtual (non

admissible) pseudo-equilibrium. Moreover, we can also find x̃ ∈ T+ or

x̃ ∈ T−, and so x̃ becomes a boundary equilibrium. Whenever x̃ ∈
Σas ∪ Σrs we have a real (admissible) pseudo-equilibrium. In this last

one, both vector fields F+ and F− are transversal and anti-collinear to

Σ at x̃, that is, there exists α = α(x̃) (see equation (2.8)) such that
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0 < α < 1 and

F+(x̃) = − α

1− αF−(x̃).

Thus, the point x̃ can be reached in a finite time from a suitable initial

condition outside Σ, but in an infinite time from the sliding vector field

Fs.

Remark 2.4. To investigate the stability of the equilibria of a smooth

vector field Fi (where i = +,−, s) we use the classical theory of smooth

dynamical systems; see [77, 86].

2.4 Sliding vector field dynamics

Consider in system (2.2) the vector fields as F± = (f±1 , f
±
2 , f

±
3 ).

Assume with no loss generality that the switching boundary of (2.2) is

Σ = {(x, y, z) ∈ R3 : h(x, y, z) = z = 0}.

This is possible from a local coordinate change of the form (x′, y′, z′) =

(x, y, h(x, y, z)). Then, the sliding vector field of (2.2) is calculated by

(2.9) and expressed in coordinates x = (x, y, z) as

Fs(x) =
1

(f−3 − f+
3 )(x)




(f+
1 f
−
3 − f−1 f+

3 )(x)

(f+
2 f
−
3 − f−2 f+

3 )(x)

0


 .

Associated with Fs there exists the desingularized sliding vector

field:

Fas(x, y) =

[
(f+

1 f
−
3 − f−1 f+

3 )(x, y)

(f+
2 f
−
3 − f−2 f+

3 )(x, y)

]
,

for all x ∈ Σas. Note that (f−3 − f+
3 )(x) > 0 if x ∈ Σas, so that Fas

has the same vector orientation as Fs;

(
dx

dτ
,
dy

dτ

)
= Fas(x, y), (2.10)
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and (
dx

dt
,
dy

dt
,
dz

dt

)
= Fs(x, y, 0), (2.11)

have the same phase portrait in Σas; and it can be Cr-extended to the

closure Σas of Σas
3 (see [92, 117]).

We can take advantage of the invariance of Σ under the flow

determined by Fs and reduce the dimension of the problem by one,

taking z = 0. So, all the analysis of the attractive sliding dynamics

contained in this thesis is based on the two-dimensional system (2.10)

such that the time scale is redefined implicitly on every solution, by

writing

dt = |(f−3 − f+
3 )(x, y, 0)|dτ,

whenever (f−3 − f+
3 )(x, y, 0) > 0.

Obviously, systems (2.10) and (2.11) are topologically equivalent

for all (x, y, 0) ∈ Σas, since their orbits are identical and it is the ve-

locity of the motion that makes them different, i.e., the systems are

distinguished only by the time parametrization along the orbits; see

[77], page 42.

Remark 2.5. If x̃ = (x̃, ỹ, 0) ∈ Σas is a pseudo-equilibrium point of

(2.2), then (x̃, ỹ) is a standard equilibrium point of (2.10). We study

the stability of (2.2) at x̃ from the two-dimensional system (2.10) at

(x̃, ỹ).

Remark 2.6. If T− and T+ are transversal at x̂ = (x̂, ŷ, 0) (a double

tangency point of (2.2)), then f−3 (x̂) = f+
3 (x̂) = 0 and so (x̂, ŷ) is

an equilibrium point of (2.10). The interesting point here is that the

sliding dynamics described by ẋ = Fs(x) is not defined at x̂ = (x̂, ŷ, 0).

However, this point governs the sliding dynamics around it, acting as

a true equilibrium point from the analysis of the system (2.10). In this

case, we assume that Fs is Cr-extended to a full neighborhood of x̂ in

Σ and that x̂ is an equilibrium point of this vector field, see [117].

3Similarly, we define Frs(x, y) = −Fas(x, y) for all x ∈ Σrs and the repulsive

sliding dynamics is described by
(
dx
dτ
, dy
dτ

)
= Frs(x, y).
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2.5 Discontinuous-induced bifurcations

The classical bifurcations of smooth dynamical systems (saddle-

node, transcritical, Hopf, etc., see, for instance [65, 77, 89, 119]) also

occur in DPWS systems. In addition, DPWS systems exhibt other

bifurcations that do not appear on smooth systems, known in the liter-

ature as Discontinuous-Induced Bifurcations (DIBs), see [37, 82]. The

DIBs are unique bifurcations of PWS systems. Such bifurcations occur

when an invariant set of the system (equilibrium point, limit cycle, etc)

crosses or touches tangentially the switching boundary Σ in state space;

see [24, 35, 38, 40, 41, 44] and references therein.

An overview of the current state of the art in the analysis of DIBs

of piecewise-smooth systems is found in [42]. This reference presents a

classification of the most common types of DIBs involving non-trivial

interactions of the equilibria of flows (and fixed points of maps) with

the manifolds in state space where the system is non-smooth.

We highlight the DIB so-called Boundary Equilibrium Bifurcation

(BEB). Boundary equilibrium points represent intermediate situations

between real and virtual equilibrium points; see Figure 2.7. The topo-

logical changes from real to virtual equilibrium points (or vice versa),

due to changes in some system parameter, can lead to a BEB; see

[45, 60, 78]. There are others DIBs, such as the Grazing bifurcation

of limit cycles, that occurs when a limit cycle intersects tangentially a

switching boundary, and Sliding bifurcations of limit cycles that occur

when a limit cycle develops an intersection (tangential or transversal)

with a sliding region; see [35, 36, 43].

A new bifurcation, typical of 3D-DPWS systems, has recently

drawn attention to its variety of unfolded dynamics and its compound4

bifurcation characteristic; see [26, 29, 30, 49]. This bifurcation occurs

at a T-singularity and involves simultaneously a pseudo-equilibrium

4We say that the TS-bifurcation is a compound bifurcation since it is associated
with a bifurcation of the sliding vector field and a bifurcation of the first return
map, occurring simultaneously at the same point. See Chapter 4.
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transition from Σas to Σrs (or vice versa) and the birth of a non-smooth

limit cycle in R3-space, composed of two segments of orbits, one for

each vector field F+ and F+, transversely intersecting the switching

boundary Σ at two crossing points, one point on Σ+
c and the other

on Σ−c . We name such a phenomenon TS-bifurcation; and the limit

cycle that arises from this bifurcation, we call it crossing limit cycle

(CLC); see Figure 2.8. In this thesis we consider the TS-bifurcation as

a DIB, as well as other bifurcations that occur due to the presence of

the discontinuity manifold.

In the next two subsections, let us give a brief introduction on

the BEB and the TS bifurcations. For this, consider the system (2.2)

conditioned to the parameter µ ∈ (−ε, ε), written as

ẋ =

{
F−(x, µ), if h(x, µ) < 0,

F+(x, µ), if h(x, µ) > 0,
(2.12)

so that the state space is composed of Σ(µ) = {x ∈ R3 : h(x, µ) = 0},
R−(µ) = {x ∈ R3 : h(x, µ) < 0} and R+(µ) = {x ∈ R3 : h(x, µ) > 0}.
Finally, we deal with bifurcations of the sliding vector field (sliding

bifurcations).

2.5.1 On boundary equilibrium bifurcations

The appearance of a boundary equilibrium in a DPWS system

represent a codimension-one DIB known as BEB. A BEB is classified

according to two possible scenarios [37, 93], that take into account only

the positions of the equilibria involved in relation to the boundaries of

their respective vector fields:

(i) The persistence scenario is observed when a natural equilibrium

turns into a pseudo-equilibrium. In this case, if the natural equi-

librium is real (resp. virtual), then the pseudo-equilibrium is

virtual (resp. real).

(ii) The nonsmooth fold scenario is observed when both a natural
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equilibrium and a pseudo-equilibrium collide and disappear. In

this case, if the natural equilibrium is real (resp. virtual), then

the pseudo-equilibrium is also.

Each of them can present varied dynamic phenomena from the combi-

nation of stability and dynamics of the equilibria involved.

In Figure 2.7 we visualize the persistence and nonsmooth scenar-

ios described above, with respect to the system (2.12). For this, we

assume that x(µ) is an equilibrium related to vector field F− and x̃(µ)

a pseudo-equilibrium, both continually dependent on µ. In the persis-

tence scenario, for µ < 0, we have that x is real and x̃ is virtual, that is,

x ∈ R− and x̃ ∈ Σ−c ; for µ = 0, they collide giving rise to a boundary

equilibrium at the point of collision x(0) = x̃(0) = 0 ∈ T−; for µ > 0,

the equilibrium x becomes virtual and x̃ becomes real, that is, x ∈ R+

and x̃ ∈ Σas. In the nonsmooth fold scenario, for µ < 0, we have that

both x and x̃ are real; for µ = 0, they collide giving rise to a boundary

equilibrium at 0 ∈ T−; for µ > 0, both x and x̃ become virtual.

To distinguish between the persistence and nonsmooth fold sce-

narios, we use the BEB-Theorem5 found in [45, 93], which is given

below.

Theorem 2.1. Assume that for µ = 0, an equilibrium branch of the

vector field F−(x, µ) crosses the switching boundary h(x, µ) = 0 at the

origin, this point being regular, that is, A = DxF−(0, 0) is a nonsingu-

lar matrix. Furthermore, suppose that the crossing is transversal, that

is, if M = DµF−(0, 0), N = Dµh(0, 0) and CT = Dxh(0, 0), then

d

dµ
h(x̄(µ), µ)

∣∣∣
µ=0

= N − CTA−1M 6= 0,

and the nondegeneracy condition CTA−1B 6= 0, where B = F+(0, 0),

is satisfied. The following statements hold:

(a) The persistence scenario occurs if CTA−1B > 0.

5The Proof is given in the cited references.
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(b) The nonsmooth fold scenario occurs if CTA−1B < 0.

Furthermore, it was also proved that if the vector field of refer-

ence is F+, then, the persistence scenario occurs if CTA−1B < 0 and

nonsmooth fold if CTA−1B > 0.

Collisions of equilibria with boundaries have been the subject of

investigation of many works in the last years and they have been iden-

tified in mathematical models of a wide variety of physical systems; see

for instance [13, 75, 90, 102, 114, 126]. For two-dimensional DPWS

systems there is a complete classification of the BEBs and their unfold-

ing, see [22, 35, 45, 51, 60, 64, 67, 78]. For three-dimensional DPWS

systems, the BEBs present a greater complexity of phenomena, with

many possible geometric combinations. We still do not find a classifi-

cation in the literature that is similar to the two-dimensional systems

for the three-dimensional ones, although there are recent studies fo-

cused on the study of phenomena linked to BEBs as, for example,

[19, 29, 61, 62, 104, 105].

In Chapter 7 of this thesis, we give the starting point for the

classification of BEBs in 3D-DPWS systems from a proposed canonical

form to a typical family of these systems, where we present a two-

parameter analysis of the BEBs and sliding dynamics. In addition,

we provide the conditions on the system parameters under study for

a BEB to occur, classifying them into BEB persistence or nonsmooth

fold. Also, we give a complete description of the sliding dynamics. The

results obtained are applied in two practical examples involving the

sliding mode control of buck power converters.

2.5.2 On the TS-bifurcation

The TS-bifurcation in 3D-DPWS systems is a codimension-one

local DIB. Figure 2.8 shows some of the possible scenarios of the TS-

bifurcation. In Figure 2.8(a) we have supercritical cases, where a stable

pseudo-node in Σas for µ < 0 crosses the T-singularity becoming a



2.5. Discontinuous-induced bifurcations 29

Σ

T−

x̃

x

0

Σas Σ−c

R−

R+

µ < 0

Σ

T−

x̃

x

0

Σas Σ−c

R−

R+

µ > 0

Σ

T−

0

Σas Σ−c

R−

R+

µ = 0

(a) Persistence case.
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(b) Nonsmooth fold case.

Figure 2.7: Illustrative scenarios of boundary equilibrium bifurcations. The
blue line represents the branch of natural equilibria and the red line represents
the branch of pseudo-equilibria, being that the real is in the solid part and
the virtual is in the dashed part. The point 0 is a cusp for µ 6= 0 and a
boundary equilibrium for µ = 0.
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pseudo-saddle in Σrs for µ > 0. In Figure 2.8(b) we have subcritical

cases, where an unstable pseudo-node in Σrs for µ < 0 crosses the

T-singularity becoming a pseudo-saddle in Σas for µ > 0. In both

supercritical and subcritical cases, the CLC that arises along with a

pseudo-node has saddle dynamics, while the CLC that arises along

with a pseudo-saddle can have a node or a focus dynamics, stable or

unstable. For more details, see Chapter 4.

Below, we give a definition for the TS-bifurcation in 3D-DPWS

systems, from simple topological conditions on Σ.

Definition 2.10. 3D-DPWS system (2.12) undergoes a TS-bifurcation

for µ = 0, if there is a two-fold point x̂(µ) and a pseudo-equilibrium

point x̃(µ), defined for all µ ∈ (−ε, ε), such that x̃(0) = x̂(0) and

d

dµ
LF+h(x̃(µ), µ)

d

dµ
LF−h(x̃(µ), µ)

∣∣∣
µ=0

< 0, (2.13)

along with

L2
F+h(x̂(0), 0) < 0, L2

F−h(x̂(0), 0) > 0. (2.14)

Note that LF+h(x̃(0), 0) = LF−h(x̃(0), 0) = 0, because x̃(0) =

x̂(0) is a two-fold point. Condition (2.13) indicates that, for µ 6= 0, the

functions L+(µ) = LF+h(x̃(µ), µ) and L−(µ) = LF−h(x̃(µ), µ) have

opposite signs, and its graphs are transversal at µ = 0. Therefore,

x̃(µ) ∈ Σrs(µ) for µ < 0 (or the opposite) and x̃(µ) ∈ Σas(µ) for µ > 0

(or the opposite). Condition (2.14) ensures that the two-fold x̂ is of the

invisible type for µ = 0, i.e., x̂(0) = x̃(0) is a T-singularity. For a small

perturbation in the parameter µ, from the critical value µ = 0, we can

ensure that x̂(µ) remains a T-singularity for |µ| 6= 0.

The TS-bifurcation exhibits different dynamic scenarios with a

total of ten possible combinations between the types of dynamics in-

volving the pseudo-equilibrium and the CLC. All these scenarios are

completely studied in [26] and revised in Chapter 4, where we given

the local conditions for the occurrence of each one. The Chapters 4, 5

and 6 are devoted to the study of TS-bifurcation and the consequences
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Σ

µ < 0 µ = 0 µ > 0

Σ

µ < 0 µ = 0 µ > 0

(a) Supercritical cases: (above) for µ > 0 there appears a pseudo-saddle
in Σrs along with a stable CLC of node dynamics; (below) the stable
pseudo-node in Σas along with an unstable CLC of saddle dynamics
that exists for µ < 0 disappears for µ > 0.

Σ

µ < 0 µ = 0 µ > 0

Σ

(b) Subcritical cases: (above) for µ > 0 there appears a pseudo-saddle
in Σas along with an unstable CLC of node dynamics; (below) the
unstable pseudo-node in Σrs along with an unstable CLC of saddle
dynamics that exists for µ < 0 and disappears for µ > 0.

Figure 2.8: Some possible scenarios for the TS-bifurcation. (a) supercritical
cases; (b) subcritical cases. The blue point is the T-singularity, the red point
is the pseudo-equilibrium, light gray region is Σrs, dark grey region is Σas,
white regions are Σ±

c and the (non-smooth) limit cycle in green-color is the
CLC.
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on the dynamics of the system produced by it.

In Chapter 5, we present a case study on TS-bifurcation and its

implications on the dynamics of a power electronics control system,

where we determine the existence, the stability and some global bifur-

cations of CLCs created in the T-singularity. This study is based on the

numerical analysis of the solution of closing equations and the charac-

teristic multipliers associated to the first return map; see [3, 20, 77, 117].

In Chapter 6, we study a degenerate case of TS-bifurcation in

which the T-singularity is non regular at the critical value µ = 0 of

the bifurcation parameter. In this case, the T-singularity is classified

as 1-degenerate invisible two-fold (Q2 singularity in [118]), that is, the

tangency lines T+ and T− of invisible folds touch the T-singularity

with quadratic contact. This bifurcation is characterized by the si-

multaneous collision between a pair of regular T-singularities and a

real pseudo-equilibrium point, such that the pseudo-equilibrium per-

sists but the pair of T-singularities disappear after the collision, de-

termining a pitchfork bifurcation in the sliding dynamics. We named

this bifurcation double TS-bifurcation. Moreover, we present a case

study on stability and bifurcations of CLCs created from a degenerate

T-singularity.

2.5.3 Bifurcations in the sliding vector field

For 3D-DPWS systems as (2.12), the sliding dynamics is inves-

tigated from a two-dimensional sliding vector field, which is smooth

at all points of attractive/repulsive sliding region. Thus, we can use

the known tools of the bifurcation theory for two-dimensional smooth

systems. In addition, the sliding vector field can display the classical

bifurcations of equilibria and limit cycles. See references [2, 77, 88, 89].

We call the bifurcations that occur in sliding vector field as slid-

ing bifurcations. In all chapters of this thesis we will study local sliding

bifurcations such as saddle-node, transcritical, pitchfork and Hopf. De-

tailed applied studies on sliding bifurcations in power electronics, such
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as the transcritical, saddle-node, Hopf, Bogdanov-Takens, homoclinic,

and their pecularities due to the boundaries of the sliding region, are

found in [28, 29, 98]. We also cite the works [70, 118, 124], which contain

important results on sliding bifurcations at a double tangency point,

being that the most interesting case is when this double tangency is of

the T-singularity type.

In Chapter 3 we will carry out a case study, from the dc-dc boost

converter model with SMC-washout, on the Hopf bifurcation of sliding

vector field. Furthermore, we will show that the limit cycle that is

born in the Hopf bifurcation disappears when it touches the two-fold

point of the invisible-visible type, creating a homoclinic loop closes at

this two-fold point. Such a mechanism of vanishing of this limit cycle

is natural, since the a two-fold is a saddle equilibrium of the sliding

vector field.

2.6 Power converters and control

One of the emerging topics in electrical engineering is the efficient

design of dc-dc power converters, nowadays based in the extensive use

of discontinuous models. The discontinuous character of these models

comes from their implementation by means of electronic switches that

are designed to be permanently changing between its on and off states.

In each configuration, the device has behavior (approximately) linear

and, thus, we are naturally dealing with piecewise-linear dynamical

systems (DPWL systems).

Examples of dc-dc power converters are: buck, boost, buck-boost,

Cúk, Zeta; where the control action is constituted by a single switch

acting as a control input, see [108] and references therein. In the case

of boost converters, for example, the goal is to pass from a low voltage

to a higher voltage needed to feed some particular load device.

In this Section we present the boost converter model under a

sliding mode control strategy using a washout filter, which is described



34 2. Preliminary Results on DPWS

by a 3D-DPWL system. This system will be studied in Chapters 3, 4

and 5.

2.6.1 Modelling of the dc-dc boost converter

The behavior of a dc-dc boost converter can be studied using the

circuit topology depicted in Figure 2.9. We consider some simplifying

hypotheses for this circuit: (i) the semiconductor devices are assumed

to be ideal, i.e., free of loss and state switching at time zero; (ii) the ca-

pacitor is considered ideal, i.e., it has no loss or self-inductance; (iii) the

inductor has only one resistor and one series inductance that can be con-

sidered constant. Using the Kirchhoff’s circuit laws, the dynamic model

of the system, operating in Continuous6 Conduction Mode (CCM), is

given by

L
diL
dt

= Vin − rLiL − uvC ,

C
dvC
dt

= uiL −
vC
R
,

where vC ≥ 0 is the capacitor voltage, iL > 0 is the inductor current

and u = 1−q ∈ {0, 1} is the control action, representing the two possible

positions of the electronic switch S, open when u = 1 (q = 0), closed

when u = 0 (q = 1). The variable Vin represents the input voltage, rL

gives the equivalent series resistance of the inductor, R is the resistive

load, C and L are the circuit’s capacitor and inductor, respectively.

The analysis of the model becomes easier if the system is normal-

ized as follows: take a new time τ such that t = τ
√
LC, and introduce

the new variables

(x, y) =

(
iL
Vin

√
L

C
,
vC
Vin

)
,

6In power electronics, this continuous qualifier makes reference to the fact that
the current is not allowed to be zero, nothing to do with the continuity of the vector
field. In this case, the converter operates with a non-null inductance current at any
time, i.e. iL > 0.
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and parameters

b = rL

√
C

L
and a =

1

R

√
L

C
;

thus, obtaining the boost converter model in dimensionless normal form

ẋ = 1− bx− uy (2.15)

ẏ = ux− ay, (2.16)

for x > 0 and y ≥ 0, where u = {0, 1}, b > 0 (it can be considered in

some cases b = 0, i.e., with ideal inductance) and a > 0.

−
+

Vin
Sq C

−

+

vC R

rL L

iL

D

vC(t)

iL(t)

Figure 2.9: Topology of a dc-dc boost converter.

Note that for u = 0, the system has a stable equilibrium point at

(x, y) = (1/b, 0), and since b is usually rather small, this leads to a big

current with zero voltage, which is completely undesirable. Otherwise,

for u = 1, the standard stable equilibrium point appears at

(x, y) =

(
a

1 + ab
,

1

1 + ab

)
,

where the asymptotic value achieved for y is 1/(1 + ab) < 1.

Our goal is, by the use of an adequate and repeated interchange

between these two possibles values of u, to boost the voltage across the

load looking for a pseudo-equilibrium point with y = yr, where yr > 1

is the desired normalized reference voltage. Although it is theoretically
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possible to keep the problem in this two-dimensional setting, the use of

a third state variable turns to be a more efficient approach, as explained

below.

2.6.2 Adding the washout filter and the sliding mode

controller

We will introduce a washout filtering process for the current in

the inductor, as illustrated in Figure 2.10(a), see [112] and references

therein. Such washout filter works as a high pass filter that blocks

steady state inputs while passing transient inputs, and it leads to a new

state variable zF . The filtered value of iL can be written as iL − zF
where zF satisfies the dynamic equation

dzF
dt

= ωF (iL − zF ), (2.17)

and ωF is the parameter responsible for cut-off frequency of the filter,

being that it is always less than 1/
√
LC rad/s which is the approximate

natural frequency of the system.

iL
+

ωF
∫ zF

−

iF

(a) Washout filter.

iF K

+
vC

+

Vref

−
H u

(b) Sliding mode controller.

Figure 2.10: Control diagram. The control law is u = 1
2
(1 + sign[H]) and

the filtered inductor current given by iF = iL − zF represents the difference
between the inductor current iL and the filtered signal zF .

For the creation of the desired operating (pseudo-equilibrium)

point with vC = Vref > Vin we use a sliding mode controller. For

this, we choose (see [91]) an appropriate scalar function H : R3 → R,
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namely

H(iL, vC , zF ) = vC − Vref +K(iL − zF ),

where K > 0 and Vref are, respectively, the control parameter (to

be adequately tuned) and the reference voltage parameter. Now we

have to impose a control law as follows: to keep open the switch

(u = 1) while H(iL, vC , zF ) > 0 and to keep it closed (u = 0) whenever

H(iL, vC , zF ) < 0, see Figure 2.10(b).

We also apply a normalization to the washout filter equation

(2.17), taking the new variable and parameter:

z =
zF
Vin

√
L

C
and ω = ωF

√
LC,

respectively; and, then we obtain

ż = ω(x− z). (2.18)

In addition, we defined the switching boundary as

Σ = {(x, y, z) ∈ R3 : h(x, y, z) = y − yr + k(x− z) = 0}, (2.19)

where

k = K

√
C

L
and yr =

Vref

Vin

are, respectively, the normalized parameters of control and reference

voltage; and such that h(x, y, z) = H(iL, vC , zF )/Vin.

To improve the visualization of phase portraits and simplify the

calculations a little more, we introduced another variable change to

rewrite the switching boundary (2.19) as a horizontal plane. Such a

form is obtained by defining

z = y − yr + k(x− z̃),

and so the washout filter normalized equation (2.18) is rewrite as
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ż = (u− kb)x+ (ω − a− uk)y − ωz + k − ωyr. (2.20)

In this case, the switching boundary is the horizontal plane given

by

Σ = {(x, y, z) ∈ R3 : h(x, y, z) = z = 0}

and the control variable is

u =
1

2
(1 + sign[z]). (2.21)

Then, we get the control process normalized model described as

the 3D-DPWL system given by

ẋ =

{
F+(x), if z > 0,

F−(x), if z < 0,
(2.22)

F+(x) =




1− bx− y
x− ay
f+

3 (x)


 , F−(x) =




1− bx
−ay
f−3 (x)


 ,

where x = (x, y, z) and

f+
3 (x) = (1− kb)x+ (ω − a− k)y − ωz + k − ωyr,
f−3 (x) = −kbx+ (ω − a)y − ωz + k − ωyr.

The sliding vector field on Σ associated to the system (2.22) is

calculated according to (2.9), obtaining

Fs(x, y, 0) =
1

ky − x




bx2 − x+ ay2 − ωy(y − yr)
−k(bx2 − x+ ay2) + ωx(y − yr)

0


 , (2.23)

provided that ky − x 6= 0. The desired operating point for boost con-

verter is one of the pseudo-equilibria x̃± = (x̃±, yr, 0) , where
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x̃± =
1±

√
1− 4aby2

r

2b
> 0,

for all a ≤ 1
4by2r

. In some cases, we can consider ideal inductance with

b = 0 (rL = 0). Thus, there is a single pseudo-equilibrium, namely

x̃ =
(
ay2
r , yr, 0

)
.

More details on the dynamics of the boost converter with SMC-

Washout are given in the Chapter 5.

For the implementation of the proposed sliding mode control, we

must replace the signal function in the control law (2.21) by the hys-

teresis function; see [47]. In this case

u =

{
1 , if z > −ε
0 , if z < ε

, (2.24)

for some ε > 0 chosen in order to be small. The hysteresis works as

follows: a trajectory with u = 1 holds this value until it reaches the

plane z = −ε, then switch to u = 0; in the continuation, a trajectory

with u = 0 holds this value until it reaches the plane z = ε, then switch

to u = 1; see Figure 2.11.

0

z(τ)

τ

−ε

ε

τ+

u = 1

τ−
u = 0

Figure 2.11: Behavior illustrative of the evolution of the variable z over
time t, when there is sliding with hysteresis.

Considering Figure 2.11, then for u = 1 we have ż+ = −2ε/τ+ < 0

and for u = 0 we have ż− = 2ε/τ− > 0, where τ± > 0 are the respective

time for each mode. Note that ż± = LF±h(x), therefore we can write
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LF+h(x) = −2ε/τ+ < 0 and LF−h(x) = 2ε/τ− > 0. In this case, there

is an α according to equation (2.8), with 0 < α < 1 and

α =
τ+

τ+ + τ−
,

so that the Filippov sliding vector field (2.7) can be written as the

average vector field

Fs(x) =
τ−F−(x) + τ+F+(x)

τ− + τ+
.

Figure 2.12 shows simulation results of the sliding vector field

(2.23) along with the complete system with hysteresis (2.15), (2.16),

(2.20) and (2.24). In 2.12(a) we visualize the time response referring to

the normalized variables of voltage (y(τ)) and current (x(τ)). Observe

the permanent oscillations centered on the reference value y = yr (and

also at x = xr) indicating the presence of a limit cycle around the oper-

ating point (see illustration from (y, z)-plane in 2.12(b)). In 2.12(b) the

sliding dynamics is visualized in the (x, y)-plane, where the trajectory

in black color is the solution (x(τ), y(τ)) of ẋ = Fs(x, y, 0) and in green

color is the solution (x(τ), y(τ)) of the complete system with hystere-

sis, for the same initial condition (x(0), y(0), z(0)) = (1, 1, 0). Note that

the solution of ẋ = Fs(x, y, 0) is the average solution of the complete

system with hysteresis. In fact, since we can define two sliding vector

fields, one on the plane z = ε and another on the plane z = −ε, namely

Fs(x, y, ε) = Fs(x, y, 0) + εG(x, y, 0),

Fs(x, y,−ε) = Fs(x, y, 0)− εG(x, y, 0),

where G(x, y, 0) = ω
ky−x [y − x 0]

T
, then

Fs(x, y, 0) =
1

2
(Fs(x, y, ε) + Fs(x, y,−ε)) .

Remark 2.7. In this thesis, all simulation results of 3D-DPWS sys-
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tems, such as the boost converter with SMC-Washout, are taken with

the application of a small hysteresis range. Thus, the sliding dynam-

ics is induced and it arises naturally when a trajectory of the system

reaches the attractive sliding region on the switching boundary. There-

fore, the operating point is, actually, a (non-smooth) limit cycle with

small amplitude around the pseudo-equilibrium point, see Figure 2.12.
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Figure 2.12: Comparison between the ideal (in black color) and hysteresis
(in green color) sliding dynamics, referring to the SMC-Washout boost con-
verter system (2.22). Parameters: b = 0, ω = 1, yr = 2, k = 5 and a = 1/5.
The red dot indicates the pseudo-equilibrium located at x̃ = (0.8, 2, 0). Hys-
teresis range: ε = 1/10.
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2.6.3 A brief description on sliding mode control

Discontinuous feedback control systems as the sliding mode con-

trol (SMC) have been exhaustively explored in many works, see [123]

and references therein. The sliding mode controllers are naturally suit-

able for switched systems such as dc-dc power converters, see [108]

and references therein. Such systems are efficient for controlling com-

plex non-linear dynamic plants operating under uncertainty conditions,

which is a common problem for many technology processes.

We consider the affine control system

ẋ = f(x) + g(x)u (2.25)

where x ∈ Rn and the functions f(x) and g(x) 6= 0 are smooth and the

control signal u is supposed to be a scalar discontinuous function. We

assume a smooth non-constant scalar function h : Rn → R that defines

the switching boundary (discontinuity manifold)

Σ = {x ∈ Rn : h(x) = 0} ,

is supposed to be regular, that is, ∇h(x) 6= 0,∀x ∈ Σ, and splitting

the state space into two open regions R− = {x ∈ Rn : h(x) < 0} and

R+ = {x ∈ Rn : h(x) > 0}. Accordingly, the switching control law is

u, namely as

u = u(x) =

{
u−(x), if h(x) < 0, i.e. x ∈ R−,
u+(x), if h(x) > 0, i.e. x ∈ R+,

(2.26)

where u− and u+ are scalar smooth functions of x (typically constant

ones) to be later specified. System (2.25) endowed with the control law

(2.26) constitutes a discontinuous dynamical system that, depending

on the state, uses one of the two different smooth vector fields

F±(x) = f(x) + g(x)u±(x). (2.27)
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Example 2.1. Regarding the boost converter with SMC-Washout de-

scribed by equations (2.15), (2.16), (2.20) and (2.21), we obtain f(x) =

F−(x), g(x) =
[
−y x 0

]T
, u− = 0 and u+ = 1.

We define the rate variations of the value of h along the different

orbits when extended continuously to the boundary of the open regions

R±, that is, for all x ∈ R− = R− ∪ Σ the orbital derivative of h or Lie

derivative is

LF−h(x) =
d

dt
h(x(t)) =

〈
∇h(x),F−(x)

〉
.

Similarly, the corresponding case is obtained, for all x ∈ R+ = R+ ∪Σ.

Note that Σ = R− ∩ R+. This is the tool used to study the dynamic

behavior of the control system in the neighborhood of the switching

boundary Σ, which determines the sliding and crossing regions, see

definitions in (2.3)-(2.6). It is a fact that we are mainly interested in

the attractive sliding region Σas, where the two vector fields from both

sides out of Σ push orbits towards Σ.

From (2.3) we can also write Σas as

{
x ∈ Σ : −Lgh(x)u− < Lfh(x) < −Lgh(x)u+

}
.

Note that if Lgh(x) < 0 (resp. Lgh(x) > 0) then we must take u− < u+

(resp. u− > u+) so that the attractive sliding region defined above can

exist.

Example 2.2. Again regarding our example under study, we obtain

Lgh(x) = x − ky < 0 for all x ∈ Σas and therefore the choice u− = 0

and u+ = 1 is appropriate.

According to Filippov’s method [51], which is the most natural

way of obtaining the sliding dynamics induced by the discontinuous

vector field (2.25)-(2.26), we must consider the sliding vector field Fs
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defined in (2.9), which clearly simplifies to

Fs(x) = f(x)− g(x)
Lfh(x)

Lgh(x)
, (2.28)

since Lgh(x) 6= 0. It is also usual to introduce the notation

Fs(x) = f(x) + g(x)ueq (2.29)

where

ueq = −Lfh(x)

Lgh(x)
= − 〈∇h(x), f(x)〉
〈∇h(x),g(x)〉 (2.30)

is the so called equivalent control, see [122]. Note that the transversality

condition Lgh(x) 6= 0 is a necessary condition for the existence of ueq.

Remark 2.8. The equivalent control for our example under study is

ueq(x, y) =
−bkx+ (ω − a)y + k − ωyr

ky − x .

The Filippov’s method (convex combination) and Utkin’s method

(equivalent control) are algebraically equivalent. However, there are

some special cases where the two methodologies lead to different results,

see [15, 122].

As usual, we search for a stable operating point x̃ belonging to Σ,

which should be a point where the vector fields F± are anti-collinear

and transversal to Σ, that is, there is a point x̃ ∈ Σ and λ > 0 such

that F+(x̃) = −λF−(x̃). This point is called pseudo-equilibrium and

it is a sliding vector field equilibrium, that is, Fs(x̃) = 0. In terms

of the equivalent control, we say that x̃ ∈ Σ is a sliding vector field

equilibrium if there is a u− < ũeq < u+ (supposing that u− < u+) such

that f(x̃) = −ũeqg(x̃).

The condition x̃ ∈ Σas is essential for the sliding mode control

process. In this sense, it is important to know the boundaries of the

region Σas (which occur on the tangency lines T+ and T−), what are

the phenomena associated when the operating point exceeds one of
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these boundaries, and what is the condition on system parameters that

ensures x̃ ∈ Σas. The bifurcations that we are going to study in this

thesis, as the boundary equilibrium bifurcation and TS-bifurcation, are

associated to the breach of this condition.
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Chapter 3

Hopf and Homoclinic

Bifurcations in a Boost

Converter

In this chapter we study the Hopf and Homoclinic bifurcations

that occur in the sliding vector field of switching systems in R3. In par-

ticular, a dc-dc boost converter with sliding mode control and washout

filter is analyzed. This device is modelled as a three-dimensional DPWS

system, characterized by the existence of sliding movement and re-

stricted to the switching manifold. The operating point of the converter

is a stable pseudo-equilibrium and it undergoes a subcritical Hopf bifur-

cation. Such a bifurcation occurs in the sliding vector field and creates,

in this field, an unstable limit cycle. The limit cycle is connected to the

switching manifold and disappears when it touches the visible-invisible

two-fold point, resulting in an homoclinic loop which itself closes in

this two-fold point. The study of these dynamic phenomena that can

be found in different power electronic circuits controlled by sliding mode

control strategies are relevant from the viewpoint of the global stability

and robustness of the control design.



483. Hopf and Homoclinic Bifurcations in a Boost Converter

3.1 Introduction

Switching power electronic devices are strongly non-linear and can

be modelled as piecewise smooth dynamical systems. It has been shown

that this class of systems can exhibit various types of complex phenom-

ena, including the classic bifurcations (Hopf, Saddle-Node, Homoclinic,

etc.) and bifurcations induced by discontinuity [37].

In case where the dynamical system is discontinuous piecewise

smooth, orbits can be confined to the switching manifold. This phe-

nomenon is known as sliding motion and this class of systems is called

as DPWS systems (or Filippov systems) [51]. The occurrence of such a

phenomenon has been reported in various applications involving sliding

mode control. Here we highlight the applications in power electronics

converters [23, 91, 92, 98, 113].

In this Chapter, we study the Hopf and Homoclinic bifurcations

that appear in the sliding vector field of three-dimensional DPWS sys-

tems. For this study we consider the model of a dc-dc boost power elec-

tronics converter with sliding mode control and washout filter (SMC-

Washout) to reject load changes [92]. These bifurcations on the sliding

vector field are analogous to the standard continuous case, and will

be called Sliding Hopf and Sliding Homoclinic bifurcations. However,

sliding homoclinic bifurcations differ a little from the standard case,

since the closing point of the homoclinic loop is not on a saddle equi-

librium point, but in a visible-invisible two-fold singularity that has

dynamics saddle in the sliding region. Moreover, the homoclinic bi-

furcation exhibited here is of codimension-one and is obtained when a

single parameter is varied.

Dynamical systems that have a two-fold singularity possess a very

rich and complex dynamics. In [26, 68, 69, 71] two-fold singularities

are studied and in [25, 39] applications of such theory in electrical and

control systems, respectively, are exhibited.

The Hopf bifurcation is a local bifurcation in which an equilib-
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rium point of a smooth dynamical system loses stability when a pair of

complex conjugate eigenvalues crosses the imaginary axis of the com-

plex plane. In this case, an unstable limit cycle (subcritical Hopf) or

stable (supercritical Hopf) arises from an equilibrium point.

The Homoclinic bifurcation is a global bifurcation that occurs

when a limit cycle collides with a saddle equilibrium point. The exis-

tence of an homoclinic orbit implies global changes in system dynamics.

On two-dimensional systems studied by Andronov et al. [2], the exis-

tence of an homoclinic orbit causes the sudden appearance of a limit

cycle with same stability of the homoclinic orbit. In the same way, we

can say that Homoclinic bifurcation is the mechanism by which a limit

cycle, created for example from a Hopf bifurcation, is destroyed. More

details about the Hopf and Homoclinic bifurcation in smooth dynamical

systems, can be found in [59, 77, 88, 95].

In the literature there are several works on Homoclinic bifurca-

tion and Hopf bifurcation analysis in nonsmooth dynamical systems

[11, 18, 35, 78, 83, 85, 107, 128], where the bifurcations studied are

induced by the discontinuity. For example, in Kuznetsov et al. [78],

are study “Pseudo-Homoclinic” bifurcations where a standard saddle

equilibrium point may have an homoclinic loop containing a sliding

segment. In Dercole et al. [35], a bifurcation of codimension 2 where

a limit cycle that arises from an equilibrium point associated with a

Boundary Equilibrium Bifurcation, is analysed. On the Sliding Hopf

and Sliding Homoclinic bifurcations we highlight the pioneering works

of Ponce and Pagano [91, 98], identifying the occurrence of such bifur-

cations in a boost converter model, and recent studies with application

in systems compose by interconnected power converters in an islanded

direct current (DC) microgrid, in the works of Cristiano et al. [29] and

Benadero et al. [12]. In both the analysis is partial, without delving

into these subjects. Here, we will analyze them in more detail.

The main contribution of this chapter is the characterization of a

new mechanism to produce a homoclinic bifurcation, where the closing
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point of the homoclinic loop is a two-fold singularity. A rigorous analy-

sis of the Sliding Hopf and Sliding Homoclinic bifurcations is presented.

In order to do that, a case study in power electronics is considered.

This Chapter is organized as follows. The modelling of the boost

converter with SMC, the analysis of the tangential singularities and the

dynamics of the sliding vector field are shown in Section 3.2. The occur-

rence of Sliding Hopf and Sliding Homoclinic bifurcations are shown in

Section 3.3. From the analysis of stability and bifurcations, in Sections

3.4 and 3.5 we present some results about the attraction basin and the

set of values of the parameters for a correct performance of the control

system under study.

Previous results on Filippov theory in Chapter 2 are important

for the development that follows.

3.2 Dynamics of boost converter with

SMC-Washout

In this Chapter we consider the model of a dc-dc Boost converter,

operating in Continuous Conduction Mode (CCM), with sliding mode

control and washout filter (SMC-Washout). Such a model was intro-

duced in Chapter 2, Section 2.6, see Figures 2.9 and 2.10. We assume

the dimensionless model given in (2.15)-(2.16)-(2.20), but with ideal

inductance, that is b = 0 (equivalent to rL = 0).

Then, we take

ẋ = 1− uy
ẏ = ux− ay
ż = u(x− ky) + (ω − a)y − ωz + k − ωyr,

(3.1)

where (x, y, z) ∈ R3 are the state variables and the parameters are

ω ∈ (0, 1] (normalized filter parameter), yr > 1 (normalized reference

parameter), k > 0 (normalized control parameter) and a > 0 (normal-
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ized resistive load parameter). We stress that x > 0 is the normalized

inductor current, y ≥ 0 is the normalized output voltage and z ∈ R
depends on the filtered current.

The control variable u is defined as

u =
1

2
(1 + sign[z]) (3.2)

and the switching manifold as

Σ = {(x, y, z) ∈ R3 : h(x, y, z) = z = 0}.

System (3.1) with the control law (3.2) can be represented by the

dynamical system

(ẋ, ẏ, ż) =

{
F+ = (1− y, x− ay, f+

3 ) if z > 0

F− = (1,−ay, f−3 ) if z < 0
, (3.3)

where

f+
3 (x, y, z) = x+ (ω − a− k)y − ωz + k − ωyr,
f−3 (x, y, z) = (ω − a)y − ωz + k − ωyr.

3.2.1 Tangential singularities

The tangential sets of F+ and F− are given, respectively, by the

straight lines:

T+ = {(x, y, 0) ∈ Σ : x = (a+ k − ω)y − k + ωyr} ,

T− =

{
(x, y, 0) ∈ Σ : y =

k − ωyr
a− ω , for a 6= ω

}
.

The next result summarizes the possibilities of tangential singularities

according to the parameters a, yr, k and ω.

A straightforward calculation shows that the point x̂c = (xc, yc, 0)
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with

xc =
ω(yr − 1) + a(1 + (a+ k − ω)(k − ωyr))

(a+ k − ω)(k − ω) + 1

yc =
(a+ k − ω)(k − ωyr) + 1

(a+ k − ω)(k − ω) + 1
,

is a cusp singularity, since L2
F+h(x̂c) = 0 and the third Lie derivative

evaluated at the cusp point is given by L3
F+h(x̂c) = ω(1− yr) < 0, i.e.,

the trajectory of F+ passing through the cusp point x̂c departs from Σ.

The point x̂c separates T+ into two branches of fold singularities. The

branch of visible fold singularities for y < yc and the branch of invisible

fold singularities for y > yc.

Since L2
F−h(x̂f ) = a(k − ωyr) for all x̂f ∈ T− we get that all

points in T− are invisible fold singularities if k > ωyr, or visible fold

singularities if k < ωyr.

The double tangency point, x̂, is given by T+ ∩ T−, i.e.,

x̂ =
(k(k − yrω)

a− ω ,
k − ωyr
a− ω , 0

)
. (3.4)

The point x̂ is a two-fold singularity if a 6= ac(k) or a fold-cusp singu-

larity if a = ac(k), for all k 6= ωyr, where

ac(k) =
1

2(k − ωyr)
[
− 1 + ω(k − ωyr) (3.5)

+
√

1 + (k − ωyr)(2ω + (4 + (ω − 2k)2)(k − ωyr))
]

Table 3.1 shows the kinds of double tangency points according to

the parameters (a, k). Following, choosing ω = 1 and yr = 3/2, we

represent Table 3.1 in the plane of parameters (a, k) shown in Figure

3.1. Taking a point (a, k) in one of the regions V-I, V-V, I-V or I-I,

we obtain a double tangency fold of the type visible-invisible, visible-

visible, invisible-visible or invisible-invisible, respectively. While, for

points (a, k) on the curve a = ac(k) the double tangency is of the kind
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fold (invisible in part I-C or visible in part V-C) on one side and cusp

on the other. For each one of the kinds cited, we illustrate (on the

side) the geometry involving the “invisible” and “visible” dynamics of

the vector fields F+ and F− around the double tangency point1.

Kind of tangency (legend) Region on the plane (a, k)

Two-Fold Visible-Invisible (V-I) ac(k) < a < ω for k < ωyr
Two-Fold Visible-Visible (V-V) a < ac(k) for k < ωyr
Two-Fold Invisible-Invisible (I-I) ω < a < ac(k) for k > ωyr
Two-Fold Invisible-Visible (I-V) a > ac(k) for k > ωyr
Fold Invisible-Cusp (I-C) a = ac(k) for k > ωyr
Fold Visible-Cusp (V-C) a = ac(k) for k < ωyr

Table 3.1: Kinds of tangential points according to the parameters (a, k).

Remark 3.1. Observe that, for practical reasons, x > 0 and y > 0.

As a consequence, for x̂ given in (3.4), either a > ω and k > ωyr or

a < ω and k < ωyr.

3.2.2 Sliding vector field and pseudo-equilibrium

The sliding vector field is calculated from the equation (2.9) in

background Chapter 2, resulting in

Fs(x) =
1

x− ky




x− ay2 + ωy(y − yr − z)
−k(x− ay2)− ωx(y − yr − z)

0


 , (3.6)

whose equilibrium point is

x̃ = (ay2
r , yr, 0). (3.7)

1In the expressions Visible-Invisible, Visible-Visible, Invisible-Visible, Invisible-
Invisible, Fold Invisible-Cusp and Fold Visible-Cusp, the first description refers to
the vector field F− and the second to the vector field F+. For example, Visible-
Invisible indicates a two-fold whose quadratic tangency is visible to F− and invisible
to F+, or even, Fold Invisible-Cusp, where the double tangency is quadratic invisible
to F− and cubic to F+.
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Figure 3.1: Kinds of the double tangency point in the (a, k)-plane, according
to Table 3.1. The quadrants {k > ωyr} ∩ {a < ω} and {k < ωyr} ∩ {a > ω}
are not considered in our study according to Remark 3.1.

This is the operating point of the boost converter controlled by

the proposed SMC-Washout. The washout filter is responsible for the

elimination of the output voltage dependence in relation to the changes

of the parameter a produced by load changes of R. In this way, after a

perturbation on a, the output voltage maintains the desired value yr.

Now, we proceed to analyze the parameter conditions to obtain

a pseudo-equilibrium q real and located in the sliding region. In order

to do that, the following conditions

LF−h(x̃) = k − ayr > 0,

LF+h(x̃) = −(yr − 1)(k − ayr) < 0,

must be verified for x̃ ∈ Σas. We remember that the parameter yr > 1.

Therefore, if k − ayr > 0 (respectively, k − ayr < 0) then x̃ ∈ Σas

(respectively, x̃ ∈ Σrs) and if k − ayr = 0 then x̃ coincides with the
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double tangency point x̂ given in (3.4).

In sliding mode control it is necessary that the pseudo-equilibrium

(i.e., the operating point) remains in the sliding region Σas. So, the

control parameter k must fulfill:

k > ayr. (3.8)

Moreover, the pseudo-equilibrium must be stable and whenever possi-

ble, without to exhibit an unstable limit cycle around it in order to

enlarge the stability region.

In order to analyze the stability of the pseudo-equilibrium x̃, we

use the planar sliding vector field Fas given by

Fas(x, y) =

[
−x+ ay2 − ωy(y − yr)
k(x− ay2) + ωx(y − yr)

]
. (3.9)

The pseudo-equilibrium x̃ in reduced coordinates is denoted by x̃s =

(ay2
r , yr). This point is an equilibrium of Fas and its stability can be

extended to the pseudo-equilibrium x̃ since it satisfies the condition

(3.8).

The Jacobian matrix of the normalized sliding vector field (3.9)

evaluated at the point x̃s is given by

J(x̃s) =

(
−1 (2a− ω)yr

k ayr(ωyr − 2k)

)
.

The determinant and trace of J(x̃s), are given by

Det[J(x̃s)] = ωyr(k − ayr),
Tr[J(x̃s)] = −1 + ayr(ωyr − 2k).

Imposing the condition (3.8) on the parameter k, then Det[J(x̃s)] > 0.

Therefore, the pseudo-equilibrium x̃, when in Σas, can be a pseudo-

node or pseudo-focus, stable or unstable. In this case it will be stable
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if and only if, Tr[J(x̃s)] < 0, i.e., k must be chosen such that it fulfill,

in addition of (3.8), inequality

k >
aωy2

r − 1

2ayr
. (3.10)

Remark 3.2. If k < ayr the pseudo-equilibrium x̃ is on the repulsive

sliding region Σrs and it is a pseudo-saddle, because Det[Jrs(x̃s)] =

Det[J(x̃s)] < 0, where Jrs is the Jacobian matrix of the planar sliding

vector field defined on Σrs as Frs(x, y) = −Fas(x, y).

More precisely, in order to distinguish if x̃ is a pseudo-focus or a

pseudo-node we have to analyze the sign of the discriminant ∆ of the

characteristic polynomial of J(x̃s). Explicitly,

∆ = Tr[J(x̃s)]
2 − 4Det[J(x̃s)]

= 4a2y2
rk

2 − 4yr(ω + a(aωy2
r − 1))k + (1 + aωy2

r)2.

This expression is a polynomial of degree two in the variable k. The

solutions of ∆ = 0 are given by:

k± = kH +
ω ±

√
ω(1 + 2a2y2

r)(ω − 2a)

2a2yr
, (3.11)

where

kH =
aωy2

r − 1

2ayr
. (3.12)

Note that k > kH satisfies the stability condition (3.10) and k = kH

implies Tr[J(x̃s)] = 0. Furthermore, the roots k± of polynomial ∆ = 0

exist only for a ≤ ω

2
, otherwise we will have ∆ > 0 for all k.

In Table 3.2, we summarize these results on the dynamics of the

sliding vector field at the pseudo-equilibrium point x̃. These stability

conditions were obtained considering that yr ≥ 2
√

2
ω , otherwise x̃ is

always stable for all k > ayr. This condition on the parameter yr

assure us the existence of a Bogdanov-Takens bifurcation (BT) at points
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(a−, yra−) and (a+, yra+) of the (a, k)-plane (see Figure 3.6), such that

a± =
1

4yr

(
ωyr ±

√
ω2y2

r − 8
)
. (3.13)

Kind of dynamics Conditions under the parameters (a, k)

pseudo-saddle k < ayr
stable pseudo-node k > ayr and a ≥ ω

2 , or
k > k+ and a < ω

2 , or
ayr < k < k− and
a+ < a < ω

2 ∪ 0 < a < a−
unstable pseudo-node ayr < k < k− and a− < a < a+

stable pseudo-focus k− < k < k+ and
a+ < a < ω

2 ∪ 0 < a < a−, or
kH < k < k+ and a− < a < a+

unstable pseudo-focus k− < k < kH and a− < a < a+

Table 3.2: Kinds of dynamics of the sliding vector field at pseudo-
equilibrium point x̃, according to parameters (a, k).

The Hopf and Homoclinic bifurcations corresponding to the slid-

ing vector field of the boost converter system with SMC-Washout are

studied in the next Section.

3.3 A Sliding Hopf bifurcation followed by

a Homoclinic loop at the two-fold point

In this section we analyze two bifurcations that occur in the sliding

vector field (3.6). First a Sliding Hopf bifurcation takes place giving rise

to a unstable limit cycle C. Second, C persists when the parameter k

varies (from k = 1.375 to k = 1.573, for the case ω = 1, yr = 4, a = 0.2,

see simulations in Figures 3.2-3.3 and the bifurcation diagrams in Figure

3.4), and then it collides with the two-fold point, which behaves like a

saddle. This collision produces an homoclinic loop destroying the limit

cycle.
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3.3.1 Sliding Hopf bifurcation

In previous section, we proved that x̃ is an unstable focus when

k− < k < kH and a stable one when kH < k < k+, since a− < a < a+.

Then we can state the following result:

Proposition 3.1. If k = kH and a ∈ (a−, a+), where a± are given

in (3.13) and kH is given in (3.12), then a subcritical Hopf bifurcation

occurs at x̃ = (ay2
r , yr, 0) in the sliding vector field (3.6).

Proof. For this proof, we consider the planar sliding vector field (3.9)

that is topologically equivalent to (3.6) in Σas and the point x̃s =

(ay2
r , yr) equivalent to the pseudo-equilibrium x̃ in Σ.

The following necessary conditions to get a Hopf bifurcation are

satisfied for k = kH :

Det[J(x̃s)]
∣∣∣
k=kH

=
ω(−1 + ωy2

ra− 2y2
ra

2)

2a
> 0

Tr[J(x̃s)]
∣∣∣
k=kH

= 0

dTr[J(x̃s)]

dk

∣∣∣
k=kH

= −2ayr 6= 0,

since a− < a < a+. Then let us consider the system

u̇ = u+ v(ω(v + yr)− a(v + 2yr))

v̇ = −vω(u+ ay2
r) + k(−u+ av(v + 2yr)),

(3.14)

obtained from a translation of (3.9) in such a way that x̃s is translated

to the origin.

According to [2] (see page 253), if the number

σ = − 1

yr(2a−ω)

√
ω3(ay2r(ω−2a)−1)3

a3

(3
√

2πω(−2a2k2yr

+a(2k3 + k2ωyr + k − 2ωyr) + ω(k + ωyr)))



3.3. A Sliding Hopf bifurcation followed by a Homoclinic
loop at the two-fold point 59

is not null, then a Hopf bifurcation occurs at the origin in the planar

analytic system (3.14). In fact, the number σ, also known as Lyapunov

coefficient, is the first non null coefficient of the Taylor’s polynomial

expansion of the displacement map d(x) = ϕ(x)− x, where ϕ(x) is the

first return map associated to (3.14) (see [59] for details). Moreover, we

have σ > 0 for all a ∈ (a−, a+) and, thus, a subcritical Hopf bifurcation

occurs when k = kH . Therefore, a unique unstable limit cycle bifurcates

from the point x̃ in the sliding vector field (3.6) (see Figures 3.2(a)-

3.2(c)). So Proposition 3.1 is proved.

Figures 3.2(a) and 3.2(c) show the phase portrait of the boost con-

verter with the SMC-Washout given by (3.3), on the switching bound-

ary Σ and in the (x, y, z)-space, respectively. On both we note the

existence of an unstable limit cycle C ⊂ Σas around the stable focus

x̃ ∈ Σas. The red closed curve, the blue point and the green point

represent the limit cycle C, the pseudo-equilibrium point x̃ and the

two-fold point x̂, respectively. While the red solid denoted by Γ indi-

cates the basin of attraction of the pseudo-equilibrium x̃ (more details

in Subsection 3.4). Figure 3.2(b) shows the response time from simula-

tion results, where we observe that for an initial condition outside the

region delimited by the limit cycle C the system is unstable (solution

represented in blue color), and only for conditions within this region

is that the system stabilizes at the desired operation point (solutions

represented in green and orange color). The parameter values used in

the simulation are: ω = 1, yr = 4, a = 0.2 and k = 1.5.

3.3.2 Sliding Homoclinic bifurcation

The unique limit cycle C, that emerged from the Sliding Hopf

Bifurcation of Subsection 3.3.1, persists until the homoclinic loop occurs

at the two-fold point. This is the subject of the next proposition.

Proposition 3.2. The limit cycle C emerges from the Sliding Hopf Bi-

furcation in Proposition 3.1, when the parameter k assumes the critical
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Figure 3.2: Unstable limit cycle in the nonsmooth vector field (3.3) and the
corresponding basin of attraction for ω = 1, yr = 4, a = 0.2 and k = 1.5.

value k = kH . It persists when the parameter k varies from k = kH

to k = kHC , where kHC stands for the critical value of parameter k

needed to connect the limit cycle with the two-fold point, until to touch

the homoclinic loop at the two-fold point and then disappears.

Proof. According to Table 3.1, the double tangency point x̂ is a visible-

invisible two-fold singularity whenever ac(k) < a < ω and k < ωyr.

Note that the sliding Homoclinic bifurcation curve in plane−(a, k) is

contained in the quadrant a− < a < a+ and yra− < k < yra+ (see
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Figure 3.6). As a+ < ω
2 and a− > ac, then the double tangency point

is classified as visible-invisible two-fold when the sliding Homoclinic

bifurcation occurs.

Moreover, we consider the point x̂ in reduced coordinates given

by x̂s = (kŷ, ŷ), where ŷ > 0 is the y-coordinate of the double tangency

point x̂ given in (3.4). The point x̂s is an equilibrium of the planar

sliding vector field Fas, whose dynamics in its neighborhood on Σas is

saddle type whenever the pseudo-equilibrium is located in Σas, because

Det[J(x̂s)] = −ω(k − ayr)yt < 0

for k > ayr. Thus it is natural that the homoclinic loop passes through

this point.

Since the two coordinates of system (3.9) have no roots in common

and the cycle emerged from Proposition 3.1 is unique, we are able to use

the Perko’s Planar Termination Principle (see [94, 96]). More precisely,

the parameter k represents the Hopf bifurcation parameter and this

principle guarantee that this family of periodic orbits is unbounded or

terminates at a critical point as shown in Figure 3.3(a). So, we conclude

that the family of periodic orbits persists until reach a saddle point

defined by the separatrices of x̂s, which is a visible-invisible two-fold

point, giving rise to a homoclinic loop. See Figures 3.3(a)-3.3(b).

The previous proposition states the existence of homoclinic bifur-

cation for the planar sliding vector fields Fas. Note that this vector field

is smooth and therefore the homoclinic orbit posses the two-fold point

x̂s as α- and ω-limits, which is reached when t → −∞ and t → +∞,

respectively. However, the trajectories of the vector fields F+ and F−

reach the two-fold point in a finite time. This is an important issue and

a difference between the smooth and piecewise smooth world.

Figures 3.3(a) and 3.3(b) illustrate the phase portrait of (3.9)

and the simulations of the boost converter with SMC-Washout given

by (3.3), respectively. In Figure 3.3(a) we observe the homoclinic loop
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Figure 3.3: Homoclinic loop at the two-fold point and the corresponding
basin of attraction for ω = 1, yr = 4, a = 0.2 and k = 1.573.

(purple curve) passing through x̂s that is a saddle equilibrium point of

Fas and is the closing point of the homoclinic orbit. In Figure 3.3(b),

the purple solid represents the basin of attraction Γ of the pseudo-

equilibrium x̃; and x̂ (green dot) is a visible-invisible two-fold singu-

larity of the model. The parameter values used in the simulation are:

ω = 1, yr = 4, a = 0.2 and k = 1.573.
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Remark 3.3. The homoclinic loop L0 is simple since

σ0 = ∇ · Fas = Tr[J(x̂s)] =
k(2a− ω)(ωyr − k)

a− ω − 1 6= 0.

We say that a separatrix cycle is called stable or unstable if the

displacement map d(s) satisfies d(s) < 0 or d(s) > 0, respectively, for

all s in some neighbourhood of s = 0 where d(s) is defined.

As shown in [2] (see page 304), if L0 is simple (σ0 6= 0), the

homoclinic loop L0 is stable (unstable) if and only if σ0 < 0 (σ0 > 0)

and besides that there exists some neighbourhoods Vε of L0 and V of

Fas (in a C1-norm) such that for all vector field g ∈ V has at most one

limit cycle in Vε with the same stability of L0.

Moreover, as expected, from this homoclinic loop can arise from

an homoclinic bifurcation only one limit cycle, as proved in [2] (see page

309).

3.4 A brief comment about the basin of

attraction

An important part of the local stability analysis is the determina-

tion of the basin of attraction (see [10]), because it reveals the region in

the state space where for any initial condition the system (3.3) reaches

its equilibrium point. The basin of attraction, here, is defined as the

subset of R3 formed by all the initial states x0 = x(τ0), τ0 ≥ 0, that

reach the switching boundary Σ on the sliding region Σas (in finite

time τ = τ1 ≥ τ0), and remain confined to Σ (for all positive time

τ > τ1) sliding under the dynamics of Fs, tending asymptotically to

the pseudo-equilibrium x̃ = x(∞). Note that the pseudo-equilibrium

can be reached in finite time from some initial condition outside Σas.

The knowledge of the basin of attraction for different values of

the control parameter k is of great importance for the control design,

because it allow us to find a value for k in which the basin of attraction
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of the pseudo-equilibrium is as large as possible. However, the complete

analysis of the attraction basin is a difficult task and in general is

not analytically solvable. This is a very comprehensive topic and we

leave the complete analysis out of this work. What we will do next in

this subsection is a previous analysis on the subject from the results

obtained with the analysis of the sliding Hopf and sliding Homoclinic

bifurcations present in the previous subsections.

We present the case shown in Figure 3.2(c), where the presence

of a limit cycle C ∈ Σas creates a solid Γ with cylindrical shape repre-

senting the basin of attraction. In this case, the boundary of the basin

of attraction is formed by all initial states that reach Σas exactly on

the unstable limit cycle C. Note that our set of initial states for the

boost converter to reach the operating point is reduced to the interior

of the solid Γ.

The area in Σas delimited by the unstable limit cycle around the

stable pseudo-focus, represents the basin of attraction confined to Σas.

We have seen in the previous subsections that this area persists with

the increase in the value of parameter k (for a fixed value of a). The

basin of attraction in Σas becomes larger when we increase the value of

k. This increase can be observed by comparing the Figures 3.2(a) and

3.3(a), and also, numerically verified from the bifurcation diagrams in

Figure 3.4, which indicate an amplitude of limit cycle C, in both state

variables, increasing as a function of k. These arguments lead us to

a basin of attraction in R3 which increases along with k, as seen of

Figure 3.2(c) to Figure 3.3(b), where the solids denoted by Γ represent

the basin of attraction in each case.

From this previous analysis, it is clear that the basin of attraction

containing the largest possible part of R3 will be obtained for some value

of k after the sliding Homoclinic bifurcation and the disappearance of

the unstable limit cycle C. However, further studies are needed to find

the optimal value of k that maximizes the attraction domain, so we

leave this task for a future work.
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3.5 Choice of control parameter from the

bifurcation analysis

The bifurcation diagrams of Figure 3.4 show the displacement in

the x and y coordinates of the points of pseudo-equilibrium and dou-

ble tangency and the variation of amplitude of the limit cycle C as

a function of the parameter k. These numerical results are expected

according to the analysis of bifurcations discussed in the previous sub-

sections, where we prove that, by varying parameter k in an increasing

way, the system (3.3) undergoes a subcritical sliding Hopf bifurcation

followed by a sliding Homoclinic bifurcation. Moreover, we verified

through the analysis of the bifurcation diagrams that the amplitude of

C is an increasing function of k, starting (with zero amplitude) in the

Hopf and disappearing (with maximum amplitude) in the Homoclinic.
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Figure 3.4: Bifurcation diagrams showing the Hopf and Homoclinic sliding
bifurcations in (x, k)−plane and (y, k)−plane, considering k as the bifurcation
parameter, for ω = 1, yr = 4, a = 0.2. The dashed and solid lines represent
unstable and stable equilibria, respectively. While the dotted line represents
the unstable limit cycle.

In Figure 3.4 is shown: the dotted curve representing the ampli-

tude of the unstable limit cycle C; the straight line representing the

coordinates x and y of the pseudo-equilibrium x̃, which is an unstable
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focus in the dashed part and a stable one at the solid part; the dashed

curve represents the coordinates x and y of the two-fold singularity x̂,

which has characteristics of a saddle (unstable) equilibrium in the vec-

tor field sliding; the black points indicate the subcritical sliding Hopf

bifurcation (Hsub), where the unstable limit cycle born; and the sliding

Homoclinic bifurcation (HC), where the unstable limit cycle collides

with the two-fold singularity x̂ and disappears.
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Figure 3.5: Bifurcation diagram in (x, y, k)−space considering k as the bi-
furcation parameter. The “uLC” stands for unstable limit cycle, while PE
and DT indicate the branch of pseudo-equilibrium and double tangency, re-
spectively.

Figure 3.5 illustrates the displacement of the pseudo-focus x̃, of

the two-fold singularity x̂ and of the unstable limit cycle C, in rela-

tion to the parameter k. The pseudo-focus x̃ is unstable before the

subcritical sliding Hopf bifurcation (Hsub) and stable after it. The un-

stable limit cycle surrounds x̃ and there exists for k ∈ (1.375, 1.573). It

disappears, for k = 1.573, colliding to x̂ in an homoclinic loop (HC).

We summarize the dynamics on the diagram of Figure 3.6, where

it can be observed that: the two points denoted as BT, given by

(a−, yra−) and (a+, yra+) with a± given in (3.13), represent Bogdanov-

Takens bifurcations of x̃; the blue curve, given by k = kH(a) with kH
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defined in (3.12), stands for the subcritical sliding Hopf bifurcation

(Hsub) of x̃; the red curve, of equation k = ayr, indicates the tran-

scritical bifurcation (T) involving the two-fold singularity x̂ and the

pseudo-equilibrium x̃; the purple curve, numerically obtained, repre-

sents the sliding Homoclinic bifurcation (HC) of limit cycle C; and the

green curve point out the transition of the pseudo-equilibrium x̃ from

node to focus.
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Figure 3.6: Bifurcation set in (a, k)−plane.

A given value of the parameter pair (a, k) on region 1 means that

x̃ is a pseudo-saddle, on region 2 stands for an unstable pseudo-node, on

region 3 means that it is an unstable pseudo-focus, on region 4 implies

that it is a stable pseudo-node and on regions 5 and 6 denotes that it is

a stable pseudo-focus (on region 5 there exists an unstable limit cycle).

Moreover, on region 1 we get x̃ ∈ Σrs and on regions 2, 3, 4, 5 and 6

we get x̃ ∈ Σas.

The results obtained in this work on Sliding Hopf and Sliding

Homoclinic bifurcations can be used in the control design of a boost

converter. More specifically, our analysis can be used to find the val-

ues (a, k) that make the operating point locally stable, and from this,

to choose the “best” value of k from a prior knowledge of the varia-

tion range of the load parameter a. Following our analysis, the value
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searched for k must be in region 6 of Figure 3.6, namely the safe oper-

ating region of the system (3.3).

3.6 Conclusion

In this Chapter, by means of a case study in power electronics

(boost converter controlled by a sliding mode control), we proved the

existence of two different sliding bifurcations: (i) Sliding Hopf and (ii)

Sliding Homoclinic. The Sliding Hopf bifurcation occurs in the sliding

vector field and is analogous to the standard case. The limit cycle that

arises from the Sliding Hopf bifurcation is unstable and it is confined

to the switching manifold. The Sliding Homoclinic bifurcation occurs

when the limit cycle disappears by touching visible-invisible two-fold

point, whose dynamics in the sliding region is of the saddle type. The

homoclinic loop has a sliding segment which itself closes at the two-fold

singularity.

The result of the bifurcation analysis was summarized in the

(a, k)-plane bifurcation set showed in Figure 3.6. This methodology

is useful to choose an appropriate value for the control parameter k in

order to ensure the system stability at the desired operating point and

prevent the birth of a limit cycle around it, even after a change in the

load parameter a.

The mechanism described in the case studied in this work, from

which a sliding limit cycle collapses when it touches a two-fold point is a

dynamic phenomenon that is specific to nonsmooth dynamical systems.

Further studies will be conducted in order to prove and to characterize

this collapse mechanism for general nonsmooth dynamical systems in

R3.



Chapter 4

Teixeira Singularity

Bifurcation Theory

and Application Method

In the 1990s Teixeira [117] showed that for a discontinuous piece-

wise smooth dynamical system in R3, whose state space is divided in

two open regions by a plane acting as the switching boundary, there

generically appear two lines of quadratic tangency, one for each involved

vector field. When these two tangency lines have a transversal intersec-

tion, such a point is called two-fold. If furthermore both tangencies are

of invisible type, then the two-fold is known as Teixeira singularity (T-

singularity). The T-singularity can undergo an interesting bifurcation,

namely when a pseudo-equilibrium point collide with the two-fold point,

passing from the attractive sliding region to the repulsive sliding region

(or vice versa) and, simultaneously, a crossing limit cycle arises. This

bifurcation is named TS-bifurcation. After deriving carefully a local

canonical form, we revisit the previous works regarding this bifurcation

so correcting some detected misconceptions. Furthermore, we provide

by means of a more direct approach the critical coefficients characteriz-
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ing the bifurcation, also giving computational procedures for them. The

achieved results are applied to some illustrative examples, within the

realm of discontinuous piecewise-linear (DPWL) systems. This family

acts like a normal form for the TS-bifurcation, since DPWL systems

are able to reproduce all the unfolded dynamics. The study of the

TS-bifurcation in a dc-dc boost power converter under a sliding mode

control strategy is addressed. Apart from being a relevant application,

it allows to show the real usefulness of the analysis done.

4.1 Introduction

Several physical systems such as mechanical systems with fric-

tion, electronic power converters and control systems are modelled by

ordinary differential equations with discontinuous right-hand sides, also

called Filippov’s systems, see [51]. Other relevant references involving

PWS systems are for instance [3, 37, 76, 82]. A generic singularity

of these discontinuous systems for dimension greater than two is the

so-called Teixeira singularity [117, 118] (or T-singularity).

The T-singularity is a generic point in 3D-DPWS systems defined

by the aggregation of two different vector fields, one on each side of a

given switching boundary, appearing at the transversal intersection of

the corresponding fold lines. More specifically, it is assumed that in

both fold lines the tangency is of invisible type, so that it is possible to

have orbits that cross the switching boundary with recurrent behavior,

see [117].

The possible degeneration of the T-singularity and its associated

bifurcation behavior have been the subject of several papers, see [26,

49, 69, 71, 118]. No doubt, the most complete analysis can be found in

[26], where a detailed description of the different dynamics associated

to the bifurcation unfolding is given. However, it turns out necessary to

revisit these previous works correcting some misconceptions; in doing

so, we will provide by means of a more direct approach the critical
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coefficients characterizing the bifurcation, also giving computational

procedures for them, paving the way to practitioners.

In this chapter, we start in Section 4.2 by including the complete

derivation of a canonical form for 3D-DPWS systems having the T-

singularity, see Theorem 4.1. In the subsequent Remark 4.1, we put

in evidence the differences of the canonical form in Theorem 4.1 with

respect to the proposed one in [26].

In Section 4.3, we include all the theoretical results needed to

characterize the Teixeira singularity bifurcation (TS-bifurcation). First,

for the transcritical bifurcation affecting the pseudo-equilibrium point

of the sliding dynamics, we obtain the coefficient κS in Theorem 4.2,

see Subsection 4.3.1. This coefficient is given explicitly in terms of

the entries of the derived canonical form in Theorem 4.1, putting in

evidence that only the linear parts given in (4.13)-(4.14) are needed.

Next, in Subsection 4.3.2 the crossing dynamics bifurcation is analyzed

by defining in a natural way two half-return maps. Such maps turn to

be involutions [116], so that the composition of these two half-return

maps leads to a reversible first return map, see Section 3.1 in [101].

The fixed points of such first return map, excluding of course the T-

singularity point, represent crossing limit cycles (CLCs), so that the

stability analysis of the fixed points can be naturally extended to the

CLCs. This reversible character is very relevant when studying the

bifurcation for the crossing dynamics behavior and had not been rec-

ognized; therefore, the bifurcation had not been correctly termed. For

instance, regarding the associated return map, authors spoke of “a de-

generated (codimension-three) Bogdanov-Takens bifurcation” in p. 433

of [26] when actually one deals with a non-degenerated (codimension-

one) reversible Bogdanov-Takens bifurcation.

In Subsections 4.3.2 and 4.3.3 we tackle the topological determina-

tion of degenerate T-singularity, in relation the crossing dynamics, and

the complete characterization on its unfolding dynamics. We achieve

these results by a direct use of the two half return maps taking advan-
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tage of its involutive character. This approach avoids to build the first

return map by composition of the above half-return maps, and leads

to a direct study of the degeneration and the existence of fixed points

and their stability without needing the derivation of a normal form for

the map. On the contrary, in [26] authors adopt the usual approach of

making nonlinear changes of variables to obtain a normal form for such

first return map, so that they were not able of giving explicit expres-

sions for all the normal form coefficients. Moreover, it is not clear that

such changes of variables do preserve the reversibility of the map. Our

approach provides two coefficients obtained from the Taylor expansions

of the two half-return maps, namely σ and ρ, allowing the topological

determination of the degeneration (see Theorem 4.3) and the complete

characterization of its unfolding (see Theorem 4.4).

Regarding the problems we are interested in, Section 4.4 is de-

voted to the explicit computation of coefficients σ and ρ for the specific

case of discontinuous piecewise-linear (DPWL) systems, a rather com-

mon situation in applications. Thus, thanks to Lemmas 4.1 and 4.2

such computation can be made directly from the entries of the canoni-

cal vector field. We remark that even our analysis starts from general

cases, not necessarily being DPWL systems, such family of DPWL sys-

tems acts like a normal form for the bifurcation under study and so it

deserves a specific treatment.

In Section 4.5, thanks to the previous theoretical results, we study

some illustrative examples that reproduce the different dynamic scenar-

ios for the TS-bifurcation. In particular, in Subsection 4.5.2 we revisit

an example already studied in [26] by numerical simulation, and show

how our theoretical results go further. The computations needed to

put a generic 3D-DPWL system into the canonical form of the The-

orem 4.1 are detailed in Section 4.6, since they are needed in Section

4.7. In Section 4.7 we introduce a real application regarding electronic

power converters, which apart from being our main motivation, con-

stitutes by itself an example within the realm of applied dynamical

systems.
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Previous results on Filippov theory in Chapter 2 are important

for the development that follows.

4.2 Derivation of a canonical form

Without loss at generality, we assume in R3 that the switching

boundary is the first coordinate plane1

Σ = {x = (x, y, z) ∈ R3 : h(x) = x = 0},

and that the T-singularity is located at the origin; more general situa-

tions can be recast to this situation after some elementary transforma-

tion. We will use for our piecewise-smooth system the notation

ẋ =

{
F−(x) = (f−(x), g−(x), r−(x)), if x < 0,

F+(x) = (f+(x), g+(x), r+(x)), if x > 0,
(4.1)

where the ẋ = dx
dt and we assume a transversal intersection at the origin

of the two quadratic tangency lines. More precisely, we require

(H1) The conditions LF±h(0) = f±(0) = 0 hold (there is tan-

gency at the origin from both sides of Σ).

(H2) The two-fold is of invisible character, namely





L2
F−h(0) = (f−y · g− + f−z · r−)(0) > 0,

L2
F+h(0) = (f+

y · g+ + f+
z · r+)(0) < 0.

(4.2)

Note that if we define

f̃±(y, z) = f±(0, y, z),

1We have now chosen as switching boundary the first coordinate plane in order
to facilitate the comparison of our results with those found in [26].
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then from (H1) we see that f̃±(0, 0) = 0 and from (4.2) we get

(f̃±y (0, 0), f̃±z (0, 0)) = (f±y (0), f±z (0)) 6= (0, 0), (4.3)

so that by invoking the implicit function theorem we conclude the local

existence of two smooth curves

T± = {(x, y, z) : x = 0, f̃±(y, z) = 0}

of fold tangency points, intersecting at the origin. To ensure the transver-

sality of the two lines T± at the origin, we only need the linear inde-

pendence of the two gradient vectors in (4.3), but following the usual

convention in all previous works [26, 71, 74, 117], we suppose in (4.3) the

conditions to assure that the curves T± are tangent to the coordinate

axes at the origin, namely

(H2′) f−y (0) = 0, f−z (0) > 0, r−(0) > 0,

and

f+
y (0) < 0, g+(0) > 0, f+

z (0) = 0.

Resorting now to the implicit function theorem, we can parame-

terize the tangency lines in a neighborhood of the origin in the form

T+ = {(x, y, z) : x = 0, y = ϕ+(z)},

so that f̃+(ϕ+(z), z) = 0 and ϕ+(0) = ϕ′+(0) = 0; similarly,

T− = {(x, y, z) : x = 0, z = ϕ−(y)},

so that f̃−(y, ϕ−(y)) = 0 and ϕ−(0) = ϕ′−(0) = 0. It turns very

convenient to introduce a change of variables in order to get that the

tangency lines T+ and T− coincide with the second and third coordinate

axis, respectively.



4.2. Derivation of a canonical form 75

We introduce so the near-identity change of variables

u = x,

v = y − ϕ+(z),

w = z − ϕ−(y),

so that, by the inverse function theorem, we locally obtain

x = u,

y = v + ψ+(v, w),

z = w + ψ−(v, w).

Obviously, we have ψ±(0, 0) = 0, and also

∂ψ±
∂v

(0, 0) =
∂ψ±
∂w

(0, 0) = 0. (4.4)

Therefore, we get

u̇ = f±(u, v + ψ+(v, w), w + ψ−(v, w)),

v̇ = ẏ − ϕ′+(z)ż = g±(u, v + ψ+, w + ψ−)−
− ϕ′+(w + ψ−) · r±(u, v + ψ+, w + ψ−),

ẇ = ż − ϕ′−(y)ẏ = r±(u, v + ψ+, w + ψ−)−
− ϕ′−(v + ψ+) · g±(u, v + ψ+, w + ψ−),

where in the two last components the arguments of ψ± are omitted for

brevity. For convenience, the above system is rewritten as

u̇ = f̂±(u, v, w),

v̇ = ĝ±(u, v, w),

ẇ = r̂±(u, v, w),

where

ĝ+(0) = g+(0)− ϕ′+(0)r+(0) = g+(0) > 0,
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and

r̂−(0) = r−(0)− ϕ′−(0)g−(0) = r−(0) > 0.

We see that, for w in a neighborhood of 0, we get

f̂+(0, 0, w) = f+(0, ψ+(0, w), w + ψ−(0, w)) = f̃+(ϕ+(z), z) = 0,

and so the new tangency line T+ coincides with the axis v = 0; similarly,

for v in a neighborhood of 0, we get

f̂−(0, v, 0) = f−(0, v + ψ+(v, 0), ψ−(v, 0)) = f̃−(y, ϕ−(y)) = 0,

and so the new tangency line T− coincides with the axis w = 0.

The above change of variables allows us to write

f̂+(0, v, w) = −vρ+(v, w), (4.5)

so that

f̂+(u, v, w) = f̂+(u, v, w)− f̂+(0, v, w) + f̂+(0, v, w) =

=
ˆ̂
f+(u, v, w)− vρ+(v, w),

where
ˆ̂
f+(0, v, w) = 0 for all (v, w) in a neighborhood of (0, 0).

Anagolously, we have

f̂−(0, v, w) = wρ−(v, w), (4.6)

and so

f̂−(u, v, w) = f̂−(u, v, w)− f̂−(0, v, w) + f̂−(0, v, w) =

=
ˆ̂
f−(u, v, w) + wρ−(v, w),

where
ˆ̂
f−(0, v, w) = 0 for all (v, w) in a neighborhood of (0, 0). It should

be also noticed that the invisible character for the two-fold leads to the
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inequalities ρ±(0, 0) > 0. Effectively, by introducing the functions

q±(v, w) = f̂±(0, v, w) = f±(0, v + ψ+(v, w), w + ψ−(v, w)),

we obtain from (4.4) and (H2’)

∂q+

∂v
(0, 0) = f+

y (0) ·
(

1 +
∂ψ+

∂v
(0, 0)

)
+ f+

z (0) · ∂ψ
−

∂v
(0, 0) = f+

y (0) < 0,

and

∂q−

∂w
(0, 0) = f−y (0) · ∂ψ

+

∂w
(0, 0) + f−z (0) ·

(
1 +

∂ψ−

∂w
(0, 0)

)
= f−z (0) > 0,

and then, using (4.5) and (4.6), both ρ±(0, 0) > 0 follow.

Summarizing, after the above computations, we arrive at the sys-

tem 



u̇ =
ˆ̂
f+(u, v, w)− vρ+(v, w),

v̇ = ĝ+(u, v, w),

ẇ = r̂+(u, v, w),

(u > 0)

and 



u̇ =
ˆ̂
f−(u, v, w) + wρ−(v, w),

v̇ = ĝ−(u, v, w),

ẇ = r̂−(u, v, w),

(u < 0)

where
ˆ̂
f±(0, v, w) = 0 for all (v, w) near (0, 0), ρ±(0, 0) > 0, ĝ+(0) > 0

and r̂−(0) > 0.

We are now ready to apply a reparameterization of the time t,

different on each side of Σ, along with a rescaling of variables to achieve

the aimed canonical form. Thus, for u > 0 we define a new time τ+

such that

dτ+
dt

= ρ+(u, v)

√
ĝ+(0)

ρ+(0, 0)
, (4.7)
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while for u < 0 the new time τ− is chosen to satisfy

dτ−
dt

= ρ−(u, v)

√
r̂−(0)

ρ−(0, 0)
, (4.8)

and restoring the original symbols for the state variables, we write

x = u, y = v

√
ρ+(0, 0)

ĝ+(0)
, z = w

√
ρ−(0, 0)

r̂−(0)
.

After applying such time reparametrization along with the above change

of variables, we have achieved the following local canonical form.

Theorem 4.1. Under hypotheses (H1) and (H2’), it is possible to

rewrite system (4.1) in the canonical form

ẋ =

{
F−(x), if x < 0,

F+(x), if x > 0,
(4.9)

where the vector fields F± : R3 −→ R3 are

F+(x) =



f+(x, y, z)− y
g+(x, y, z)

r+(x, y, z)


 , F−(x) =



f−(x, y, z) + z

g−(x, y, z)

r−(x, y, z)


 , (4.10)

with f±(0, y, z) = 0 for all (y, z) in a neighborhood of (0, 0), and

g+(0) = r−(0) = 1.

The detailed derivation of this canonical form is included here

in order to be able to cope with real applications and not only with

academic examples. It will be useful later, when we tackle the analy-

sis of sliding and crossing dynamics regarding the degeneration of the

T-singularity. The required changes in the original vector field, intro-

duced to get the canonical form, become simpler in the specific case of

piecewise-linear systems, and are summarized in Section 4.6.
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We remark that by introducing in (4.9)-(4.10) the parameters

v+ = r+(0), v− = g−(0),

we see that at the origin the two vector fields turns out to be

F+(0) =




0

1

v+


 , F−(0) =




0

v−
1


 ,

so that they become anti-collinear when v+ < 0, v− < 0 and

v+v− − 1 = 0.

This suggests to introduce the parameter

ε := v+v− − 1,

so that, as it will be shown later, the vanishing of this parameter is

associated to a degeneracy of the T-singularity.

Remark 4.1. Comparing Theorem 4.1 with the local form near the T-

singularity given in p. 427 of [26], we observe that the quoted authors

proposed the approximation

F+(x) =



−y +O(x, ‖y, z‖2)

1 +O(‖x‖)
v+ +O(‖x‖)


 ,

F−(x) =



z +O(x, ‖y, z‖2)

v− +O(‖x‖)
1 +O(‖x‖)


 .

(4.11)

They did not give explicitly the changes needed to arrive at (4.11) but

in any case the non-specified terms in the first components are not in

agreement with their own statement that the fold lines T± are located on

the coordinate axes y and z. In other words, the key property assuring
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that f±(0, y, z) = 0 for all (y, z) in a neighborhood of (0, 0) was not

ensured, as is in Theorem 4.1, being crucial for the remaining analysis.

For instance, the structure of the half-return maps deduced in Appendix

B of [26] comes from the involution condition and assume that such

return maps preserve the y and z axis, respectively, in contradiction

with the proposed approximation. Furthermore, the quadratic terms

y2, yz and z2 appearing in the first F±-components of (4.11) would

invalidate the formula (A.1) given for their coefficient a2 controlling

the sliding bifurcation, corresponding to our coefficient κS in (4.22).

'+
c

'!c

'as

Fs

Fs

T+

0

_x = F+(x)

'

'rs

_x = F!(x)

T!

Figure 4.1: Dynamical behavior of a DPWS system in R3 near an invisible
two-fold point (T-singularity).

For system (4.9)-(4.10), and focusing our attention to a neighbor-

hood of the origin, it is now easy to distinguish on Σ different regions

regarding the crossing and sliding dynamics (see Figure 4.1), namely2

Σas = {(x, y, z) ∈ R3 : x = 0, y > 0 and z > 0},
Σrs = {(x, y, z) ∈ R3 : x = 0, y < 0 and z < 0},
Σ−c = {(x, y, z) ∈ R3 : x = 0, y > 0 and z < 0},
Σ+
c = {(x, y, z) ∈ R3 : x = 0, y < 0 and z > 0}.

First, we define the attractive sliding set Σas, as the subset of Σ where

2Such sets are calculated as (2.3), (2.4), (2.5) and (2.6), respectively.
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the vector fields F± point towards Σ from both sides, that is,

LF+h(0, y, z) = −y < 0,

LF−h(0, y, z) = z > 0.

In this positive quadrant, to determine the solution of (4.1) starting at

points of Σas it is usual to introduce the sliding vector field3

Fs(0, y, z) =
yF−(0, y, z) + zF+(0, y, z)

y + z
, (4.12)

where Fs is to be evaluated for x = 0 and is obtained from the convex

combination of F+ and F− that is tangent to Σ, see [78]. We remark

that the time reparameterizations (4.7)-(4.8) lead to a new time in

the Filippov vector field that preserves their orbits. If for some point

x ∈ Σas the vector fields F± are not only transversal to Σ but also

anti-collinear, then the point is an equilibrium for Fs and is called a

pseudo-equilibrium of system (4.1), see [58].

The repulsive sliding set Σrs corresponds to the region where F±

are pointing out of Σ from both sides. The solution of (4.1) starting at

point x ∈ Σrs also follows the solution of Fs given in (4.12).

The crossing set Σc determines the region where one of vector

field is pointing to Σ and the other is pointing out of the boundary. If

an orbit of (4.1) starting at a point x ∈ R− = {(x, y, z) ∈ R3 : x < 0}
falls on Σc, then it crosses Σ to enter the other part of the space (R+ =

{(x, y, z) ∈ R3 : x > 0}). In this case, the crossing set is denoted by

Σ+
c . The opposite situation can also happens (see Figure 4.1), and then

the crossing set is denoted by Σ−c .

As it will be shown, the degeneracy of T-singularity is the orga-

nizing center for the unfolding of the bifurcation behaviour, which we

call TS-bifurcation. This bifurcation implies that a pseudo-equilibrium

point crosses from the attractive sliding region to the repulsive slid-

ing region (or vice versa). Simultaneously with such a passage of the

3The sliding vector field is calculated as (2.9).
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pseudo-equilibrium point, a closed orbit composed by two arcs, each

one defined by one of the vector fields F±, is born crossing the mani-

fold Σ in two points and without any sliding segments. This limit cycle

that arises from the TS-bifurcation is called crossing limit cycle (CLC).

In Figure 4.2, one of the possible dynamic scenarios for the bi-

furcation is sketched, taking ε as the bifurcation parameter. In the

case of the picture, a stable pseudo-node in Σas for ε < 0 crosses the

T-singularity becoming a pseudo-saddle in Σrs for ε > 0, and a CLC

with stable dynamics emerges for ε > 0.

T+

'as'+
c

'!c
'rs

'

_x = F!(x)
_x = F+(x)

T!

(a) ε < 0

T+

'+
c

'!c

'rs

'as

'

_x = F+(x)

T!

_x = F!(x)

(b) ε = 0

T+

'!c

'rs

'+
c

'as

'

_x = F!(x)
_x = F+(x)

T!

(c) ε > 0

Figure 4.2: An illustrative scenario of the bifurcation at the T-singularity.

Next, in Section 4.3, we review the dynamics around the Teixeira

singularity for DPWS dynamical systems, regarding first the sliding

dynamics and next the crossing dynamics.
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4.3 Compound bifurcation analysis

In this section, starting from the canonical form given in (4.9)-

(4.10) we analyze the TS-bifurcation regarding both the sliding and

crossing dynamics, computing the coefficients that generically charac-

terize the different possibilities for the bifurcation. This bifurcation is

compound in the sense that involves two different bifurcations, each

one depending on different entries of the canonical form. We start by

considering the pseudo-equilibrium bifurcation undergone by the slid-

ing vector field that can be thought as a transcritical bifurcation; next

we study the reversible Bogdanov-Takens bifurcation for maps associ-

ated to the generation of limit cycles, which use points belonging to the

crossing regions.

To facilitate the effective application of our analysis, we write

the canonical form obtained in Theorem 4.1 by emphasizing the linear

terms, namely

F+(x) =




f+
1 x− y + x ·O(1)

1 + g+
1 x+ g+

2 y + g+
3 z +O(2)

v+ + r+
1 x+ r+

2 y + r+
3 z +O(2)


 (4.13)

and

F−(x) =




f−1 x+ z + x ·O(1)

v− + g−1 x+ g−2 y + g−3 z +O(2)

1 + r−1 x+ r−2 y + r−3 z +O(2)


 , (4.14)

where f±1 , g±1 , g±2 , g±3 , r±1 , r±2 , r±3 are given constants, being v± the

bifurcation parameters.

4.3.1 Sliding dynamics

From (4.12) with vector fields (4.13)-(4.14), we obtain the sliding

vector field
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Fs(0, y, z) =
1

y + z




0

v−y + z + g−2 y
2 + (g+

2 + g−3 )yz + g+
3 z

2 +O(3)

y + v+z + r−2 y
2 + (r+

2 + r−3 )yz + r+
3 z

2 +O(3)


 .

(4.15)

We observe that this vector field is not defined for points in Σ located in

the straight line y+ z = 0. These points are at crossing regions, where

the sliding vector field is not to be used, but note that the T-singularity

at the origin is a singular point for it.

We recall that equilibrium points x̃ = (0, ỹ, z̃) ∈ Σ of the sliding

vector field (4.15) are called pseudo-equilibrium points for system (4.9)-

(4.10). As the relevant pseudo-equilibrium points must be not located

at the crossing regions, if ỹz̃ < 0 then x̃ ∈ Σ+
c ∪Σ−c is called virtual and

only if ỹz̃ > 0 then x̃ ∈ Σas ∪ Σrs is a real pseudo-equilibrium point.

To facilitate the analysis of the sliding vector field, it is convenient

to make a desingularization by redefining implicitly the time scale on

every solution, namely by writing dτ = |y + z|dτ̂ , where it is assumed

y+ z 6= 0. With this change, we arrive at the desingularized dynamical

systems





dy

dτ̂
= v−y + z + g−2 y

2 + (g+
2 + g−3 )yz + g+

3 z
2 +O(3),

dz

dτ̂
= y + v+z + r−2 y

2 + (r+
2 + r−3 )yz + r+

3 z
2 +O(3),

(4.16)

for y + z > 0, and





dy

dτ̂
= −

[
v−y + z + g−2 y

2 + (g+
2 + g−3 )yz + g+

3 z
2 +O(3)

]
,

dz

dτ̂
= −

[
y + v+z + r−2 y

2 + (r+
2 + r−3 )yz + r+

3 z
2 +O(3)

]
,

(4.17)

for y + z < 0.

If x̃ = (0, ỹ, z̃) is a pseudo-equilibrium point of (4.9)-(4.10), then,
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depending on the sign of ỹ + z̃, the point (ỹ, z̃) is an equilibrium of

system (4.16) or (4.17), but in any case we must have that it fulfills the

equations

v−y + z +
[
y z

]
G

[
y

z

]
+O(3) = 0, (4.18)

y + v+z +
[
y z

]
R

[
y

z

]
+O(3) = 0, (4.19)

where

G =

[
g−2 g−3
g+

2 g+
3

]
and R =

[
r−2 r−3
r+
2 r+

3

]
. (4.20)

If (ỹ, z̃) is an equilibrium of type node, focus or saddle, then the pseudo-

equilibrium x̃ is said to be a pseudo-node, pseudo-focus or pseudo-

saddle, respectively. Note that thanks to the desingularization, the

point (0, 0) is always an equilibrium for systems (4.16) and (4.17), even

(0, 0, 0) is not a proper equilibrium of Fs.

Remark 4.2. For the analysis of sliding dynamics, we can just con-

sider the vector field (4.16) as defined in the whole R2 looking for the

possible equilibrium bifurcation near the origin and taking into account

that we must reverse the time when passing to the zone y + z < 0.

From (4.18)-(4.19), we note that for all values of parameters v−
and v+ the origin is a solution. Since the Jacobian matrix at the origin

is

J(0, 0) =

[
v− 1

1 v+

]
,

we can surmise for v−v+ − 1 = 0 the existence of another bifurcating

branch of solutions. Using the parameter ε = v−v+ − 1, and assuming

v+ 6= 0 and fixed, then

v− =
1 + ε

v+
, (4.21)

and we can state the following result about the bifurcation undergone

by system (4.16) when ε = 0.
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Proposition 4.1. Assuming in system (4.16) that the parameter v− is

given as (4.21), where v+ is fixed, and that the coefficient

κS =
[
−v+ 1

]
(v+G−R)

[
−v+

1

]
6= 0, (4.22)

where the matrices G and R are given in (4.20), the following state-

ments hold.

(a) System (4.16) undergoes a transcritical bifurcation for ε = 0, so

that, apart from the trivial solution, there exists another branch

of equilibria (ỹ(ε), z̃(ε)) with (ỹ(0), z̃(0)) = (0, 0) and

(ỹ′(0), z̃′(0)) =

(
−v

2
+

κS
,
v+

κS

)
.

(b) For the particular case where v+ < 0, the emanating branch

(ỹ(ε), z̃(ε)) is located at the quadrants with yz > 0. If κS > 0

(κS < 0) then in passing from ε < 0 to ε > 0 the origin passes

from being a saddle to a stable node, while the nontrivial equi-

librium (ỹ, z̃) passes from being a stable node in the first (third)

quadrant to be a saddle in the third (first) quadrant.

Proof. Since the parameter v+ is fixed, by applying the implicit func-

tion theorem at (ỹ, z̃) = (0, 0) to the equation (4.19), which does not

depend on v−, we can assure for any solution with |z̃| small the expan-

sion

ỹ = −v+z̃ +O(z̃2). (4.23)

Using (4.21), multiplying (4.18) by v+ and subtracting (4.19), we get

the scalar equation

εỹ +
[
ỹ z̃

]
(v+G−R)

[
ỹ

z̃

]
+O(3) = 0. (4.24)
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Substituting (4.23) in (4.24) we obtain the equation

−v+εz̃ + κS z̃
2 + z̃2φ(z̃, ε) = 0,

with κS given in (4.22), being φ a smooth function defined at a neigh-

borhood of (z̃, ε) = (0, 0) satisfying φ(0, 0) = 0. After removing the

trivial solution z̃ = 0, we desingularize the equation, and from the hy-

pothesis κS 6= 0 we can apply to it the implicit function theorem at

(z̃, ε) = (0, 0) to solve for z̃. We get

z̃(ε) =
v+

κS
ε+O(ε2).

Statement (a) comes now directly after using the expansion (4.23) to

get the local parametrization of the bifurcating branch.

The nontrivial branch of equilibria (ỹ(ε), z̃(ε)) uses for |ε| small

the quadrants with yz > 0 when ỹ′(0)z̃′(0) > 0, that is, when v+ < 0.

In such a case, according to statement (b), if κS > 0 (κS < 0), then the

nontrivial equilibrium is in the first (third) quadrant for ε < 0, being

in the third (first) quadrant for ε > 0.

To show all the assertions of statement (b), it remains to analyze

the stability of the equilibria (0, 0) and (ỹ(ε), z̃(ε)) of system (4.16).

Denoting by Jij(y, z) the entries of its Jacobian matrix J(y, z) in a

generic point (y, z), we have

J11(y, z) = v− +
[
1 0

]
G

[
y

z

]
+
[
y z

]
G

[
1

0

]
+O(2) =

= v− +
[
y z

]
(G+GT )

[
1

0

]
+O(2),

and similarly,

J12(y, z) = 1 +
[
y z

]
(G+GT )

[
0

1

]
+O(2),
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J21(y, z) = 1 +
[
y z

]
(R+RT )

[
1

0

]
+O(2),

J22(y, z) = v+ +
[
y z

]
(R+RT )

[
0

1

]
+O(2).

Using (4.21), the Jacobian matrix of system (4.16) at the origin is

J(0, 0) =

(
1+ε
v+

1

1 v+

)
,

so that det J(0, 0) = ε, and

trace J(0, 0) =
1 + v2

+

v+
+

ε

v+
.

For the nontrivial branch (ỹ(ε), z̃(ε)) we also have

trace J (ỹ(ε), z̃(ε)) =
1 + v2

+

v+
+O(ε),

while, after substituting the first terms of its expansion in ε, we get

det J (ỹ(ε), z̃(ε)) = ε+ v+
v+

κS

[
−v+ 1

]
(G+GT )

[
1

0

]
ε+

+
1

v+

v+

κS

[
−v+ 1

]
(R+RT )

[
0

1

]
ε−

− v+

κS

[
−v+ 1

]
(G+GT )

[
0

1

]
ε−

− v+

κS

[
−v+ 1

]
(R+RT )

[
1

0

]
ε+O(ε2).

We claim that det J (ỹ(ε), z̃(ε)) = −ε+O(ε2). In fact, we see that the
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above expression is equivalent to

ε− v+

κS

[
−v+ 1

]
(G+GT )

[
−v+

1

]
ε+

+
1

κS

[
−v+ 1

]
(R+RT )

[
−v+

1

]
ε+O(ε2) =

= ε− 2v+

κS

[
−v+ 1

]
G

[
−v+

1

]
ε+

2

κS

[
−v+ 1

]
R

[
−v+

1

]
ε+O(ε2) =

= ε− 2

κS

[
−v+ 1

]
(v+G−R)

[
−v+

1

]
ε+O(ε2) = −ε+O(ε2),

where we have substituted the definition (4.22) of the criticality coeffi-

cient κS .

Under the assumption v+ < 0, we conclude that for ε < 0 the

point (0, 0) is a saddle while (ỹ, z̃) is a stable node. On the other

hand, for ε > 0 the point (0, 0) is a stable node and (ỹ, z̃) is a saddle.

Statement (b) is shown and the proof is complete.

From Proposition 4.1, we see that when ε = 0 we have x̃(0) =

(0, 0, 0), i.e., x̃ collides with the T-singularity. Assuming v+ < 0 and

v− < 0, in changing the sign of ε, one pseudo-equilibrium passes from

the region Σas to Σrs or vice versa. Note that in the case κS < 0, when

ε < 0 the pseudo-node x̃ in Σrs is unstable, because in this case the

point (ỹ(ε), z̃(ε)) is actually an equilibrium for system (4.17) and not

for system (4.16). Taking this observation into account, we can state

our first main result, whose proof is now immediate.

Theorem 4.2. Consider v+ < 0 constant and ε = v−v+ − 1. Assume

that the criticality coefficient defined in (4.22) satisfies κS 6= 0. System

(4.9)-(4.13)-(4.14) undergoes for ε = 0 a pseudo-equilibrium transition

from Σas to Σrs (or vice versa) in its sliding dynamics. More precisely,

there exists for |ε| > 0 small, one pseudo-equilibrium point

x̃(ε) = (0, ỹ(ε), z̃(ε))
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such that

(ỹ(ε), z̃(ε)) =

(
−v

2
+

κS
,
v+

κS

)
ε+O(ε2),

and the following statements hold.

(a) (Supercritical case) If κS > 0, then for ε < 0 the point x̃(ε) ∈ Σas

is a stable pseudo-node, being x̃(ε) ∈ Σrs a pseudo-saddle for

ε > 0.

(b) (Subcritical case) If κS < 0, then for ε < 0 the point x̃(ε) ∈ Σrs

is an unstable pseudo-node, being x̃(ε) ∈ Σas a pseudo-saddle for

ε > 0.

We emphasize that the expression (4.22) characterizing the sliding

dynamics bifurcation depends only on the coefficients of linear terms

in system (4.9) with vector fields given in (4.13)-(4.14).

4.3.2 Crossing dynamics

As it will be shown at once, the sliding dynamics bifurcation stud-

ied in Theorem 4.2 is generically accompanied by the generation of a

CLC having two points at Σc.

In order to analyze the possible existence of CLCs, we consider

a trajectory φ+(τ) of system (4.9)-(4.10) with initial condition x0 =

(0, y0, z0) ∈ Σ+
c , such that for τ = τ1 the trajectory transversally re-

turns for the first time to Σ at the point x1 = (0, y1, z1) ∈ Σ−c , i.e.,

φ+(τ1) = x1. Accordingly, we define a half-return map P+ such that

P+(y0, z0) = (y1, z1). Next, for system (4.9)-(4.10), we consider the

trajectory φ−(τ) with initial condition x1 = (0, y1, z1) ∈ Σ−c , such

that for τ = τ2 it returns transversally to the plane x = 0 at the

point x2 = (0, y2, z2) ∈ Σ+
c , that is, φ−(τ2) = x2. We also define a

half-return map P− such that P−(y1, z1) = (y2, z2), see Figure 4.3(a).

Clearly, when x0 = x2 system (4.9)-(4.10) exhibits a closed orbit that

crosses the plane x = 0 at the points x0 and x1, which belong to the

crossing regions, as shown in Figure 4.3(b).
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Figure 4.3: Determining the existence of CLCs via the half-return maps.

We will analyze the existence and stability of CLCs by studying

the fixed points of the first return map, which can be obtained after the

composition of the above two half-return maps. We know from [116]

that both half-return maps are involutions; furthermore, each one must

leave invariant the corresponding tangency line. Thus, these half-return

maps possess a certain structure in their coefficients; in particular, the

fact that in a neighborhood of (y, z) = (0, 0) we have P+(0, z) = (0, z)

and P−(y, 0) = (y, 0) imposes expansions of the form

P+(y, z) =

[
l+1 0

l+2 1

][
y

z

]
+ y

[
q+
11y + q+

12z

q+
21y + q+

22z

]
+

+ y

[
c+11y

2 + c+12yz + c+13z
2

c+21y
2 + c+22yz + c+23z

2

]
+O(4),

P−(y, z) =

[
1 l−1
0 l−2

][
y

z

]
+ z

[
q−11y + q−12z

q−21y + q−22z

]
+

+ z

[
c−11y

2 + c−12yz + c−13z
2

c−21y
2 + c−22yz + c−23z

2

]
+O(4),
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where the letters l, q and c are used for coefficients of linear, quadratic

and cubic terms, respectively. If we impose now that both maps are

involutions and we exclude the trivial case in which both maps are equal

to the identity, we get that l+1 = l−2 = −1, along with the conditions

q+
12 = c+13 = 0, q+

21 =
l+2
2

(q+
22 − q+

11),

c+11 =
l+2 c

+
12

2
− (q+

11)2, c−22 =
l+2
2

(2c+23 − c+12) +
q+
22

2
(q+

22 − q+
11),

and

q−21 = c−21 = 0, q−12 =
l−1
2

(q−11 − q−22),

c−23 =
l−1 c
−
22

2
− (q−22)2, c−12 =

l−1
2

(2c−11 − c−22) +
q−11

2
(q−11 − q+

22).

The effective computation of all these coefficients for system (4.9)-

(4.13)-(4.14) is still a pending task. The specific case of DPWL system

is done in Section 4.4, and the used ideas there can be extended to the

general case with some additional work. We advance however that in

any case we have l+2 = −2v+, and l−1 = −2v−.

When v− = 1/v+, we see that the linear part of the first return

map turns out to be

(
1 −2/v+

0 −1

)
·
(
−1 0

−2v+ 1

)
=

(
3 −2/v+

2v+ −1

)
,

with 1 as double eigenvalue and [1, v+]T as the only eigenvector. To

analyze the topological type of this degeneration, we study the possible

existence of local invariant manifolds and the dynamics on them. Such

local manifolds must be tangent to the above eigendirection. Thus,

we can assume for the local invariant manifolds to be the graph of a
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function

z = a(y) = v+y + a2y
2 + a3y

3 +O(y4)

with v+ < 0, so that after building the composition (P− ◦P+)(y, z), we

must have

(ỹ, a(ỹ)) = (P− ◦ P+)(y, a(y)),

and this condition allows to define the iteration function governing the

dynamics on the local invariant manifold, namely

ỹ = α(y) = y + α2y
2 + α3y

3 +O(y4).

We can assure that the above composition of half-return maps is well-

defined in a wedge-shaped neighborhood around the eigenvector [1, v+]T ,

within Σ+
c .

Taking advantage of the involution property for P−, we can write

instead

P−1
− (ỹ, a(ỹ)) = P−(ỹ, a(ỹ)) = P+(y, a(y)),

arriving to the equivalent condition

P−(α(y), a(α(y))) = P+(y, a(y)), (4.25)

where all the coefficients of P− are evaluated for v− = 1/v+. By con-

struction, equation (4.25) is satisfied up to first order term in y. Com-

puting the second order terms in y, and imposing their cancellation in

both coordinates, we get the two equalities

1

v+

(
2a2 + q+

11v+ − q−22v
2
+ + v+α2

)
= 0,

2a2 + q+
11v+ − q−22v

2
+ + v+α2 = 0,

(4.26)

which are clearly redundant, and do not allow to solve for a2 and α2.

We can state so the following remark.

Remark 4.3. The second order terms of half-return maps do not suffice

to determine the degeneracy of the T-singularity, according to what is
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stated later, in Remark 4.4.

If we compute for (4.25) the third order terms in y, and im-

pose their cancellation in both coordinates, we get two new equalities,

namely

1

2v+

(
4a3 + 8a2α2 + 2(a2q

−
11 − 2a2q

−
22 − (q+

11)2 + α3)v++

+2(c−11 − c−22 − 2q−22α2)v2
+ + q−11(q−22 − q−11)v3

+ − 2c−13v
4
+

)
= 0

and

1

2

(
4a3 + 4a2α2 + 2c+21 + 2a2q

+
22 + (q+

22(q+
22 − q+

11)− 4q−22a2 + 2α3)v++

+2(c+12 − c+23 − 2q−22α2)v2
+ + 2(q−22)2v3

+

)
= 0,

where we see that there appear the new unknowns a3 and α3. Fortu-

nately, they can be removed after a simple combination of both equal-

ities to get

4a2α2 − 2(q+
22 − q−11v+)a2 − 2c+21−

− (2(q+
11)2 − q+

11q
+
22 + (q+

22)2)v+ + 2(c−11 − c−22 − c+12 + c+23)v2
+− (4.27)

− ((q−11)2 − q−11q
−
22 + 2(q−22)2)v3

+ − 2c−13v
4
+ = 0.

Solving any of the equations (4.26) for α2, we have

α2 = − 1

v+

(
2a2 + q+

11v+ − q−22v
2
+

)

and substituting in the previous expression, we get a quadratic in a2,

namely

8a2
2 + 2

(
(2q+

11 + q+
22)v+ − (q−11 + 2q−22)v2

+

)
a2 + 2c+21v++

+ (2(q+
11)2 − q+

11q
+
22 + (q+

22)2)v2
+ − 2(c−11 − c−22 − c+12 + c+23)v3

++ (4.28)

+ ((q−11)2 − q−11q
−
22 + 2(q−22)2)v4

+ + 2c−13v
5
+ = 0.
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On the other hand, if we solve any of the equations (4.26) for a2, we

have

a2 = −v+

2

(
α2 + q+

11 − q−22v+

)
,

leading by using (4.27) to a quadratic in α2, namely

2v+α
2
2 +

(
(2q+

11 − q+
22)v+ + (q−11 − 2q−22)v2

+

)
α2 + 2c+21+

+ (2(q+
11)2 − 2q+

11q
+
22 + (q+

22)2)v+−
− (2(c−11 − c−22 − c+12 + c+23)− q−11q

+
11 − q−22q

+
22)v2

++

+ ((q−11)2 − 2q−11q
−
22 + 2(q−22)2)v3

+ + 2c−13v
4
+ = 0.

This second quadratic is the more relevant one to characterize the local

dynamics of the degenerated T-singularity, by using the sign of its roots.

We rewrite it in the form

2α2
2 − σα2 + ρ = 0, (4.29)

where

σ = −2q+
11 + q+

22 + (2q−22 − q−11)v+ (4.30)

and

ρ =
1

v+

(
2c+21 + (2(q+

11)2 − 2q+
11q

+
22 + (q+

22)2)v+−

− (2c−11 − 2c−22 − 2c+12 + 2c+23 − q−11q
+
11 − q−22q

+
22)v2

++ (4.31)

+ ((q−11)2 − 2q−11q
−
22 + 2(q−22)2)v3

+ + 2c−13v
4
+

)

Both quadratics (4.28) and (4.29) have equal discriminant up to a con-

stant positive factor, namely

Θ =σ2 − 8ρ = − 1

v+

[
16c+21 +

(
12(q+

11)2 − 12q+
11q
−
22 + 7(q−22)2

)
v+−

−16(c−11 − c−22 − c+12 + c+23)v2
++

+ (4q−11q
+
11 + 8q+

11q
−
22 + 2q−11q

+
22 + 4q−22q

+
22)v2

++ (4.32)

+
(
7(q−11)2 − 12q−11q

−
22 + 12(q−22)2

)
v3

+ + 16c−13v
4
+

]
.
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Therefore, depending on the sign of Θ, we have none (Θ < 0), one (Θ =

0) or two (Θ > 0) local invariant manifolds. We can state the following

result, which is valid for any 3D-DPWS system having a T-singularity,

once expressed in its local canonical form, as stated in Theorem 4.1.

See Figure 4.4.
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Figure 4.4: The three main topological types for the T-singularity at its
degeneracy regarding the crossing dynamics: (a) center; (b) saddle; (c) node.

Theorem 4.3. Consider system (4.9)-(4.13)-(4.14), where the parame-

ter v− = 1/v+, being v+ < 0 and fixed, and assume that the half-return

maps P− and P+ are given, so that the values σ and ρ as defined in

(4.30) and (4.31) are known. The following statements hold.

(a) The origin is a fixed point for the composition P− ◦ P+ whose

linearization is non-hyperbolic having non-semisimple double one

eigenvalue.
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(b) If σ2 < 8ρ then the origin is of elliptic (center) type.

(c) If ρ < 0 then the origin is of hyperbolic (saddle) type. If 0 < 8ρ <

σ2 then the origin is of parabolic (node) type.

Remark 4.4. In the above theorem, we have used for the topological

type (see Figure 4.4) of the fixed point the terms elliptic (center), hy-

perbolic (saddle) and parabolic (node) because it is usual to study maps

near fixed points by resorting to unit-time shifts along orbits of au-

tonomous differential equations, see [77]. In fact, in our case, a planar

model differential equation would be

u̇ = v,

v̇ = ηu+ auv − bu3,
(4.33)

where the condition ab 6= 0 is needed in order to get a determined topo-

logical type, and η is the unfolding parameter. Note the reversibility

(u, v, t) → (−u, v,−t). This model corresponds with a normal form

for the reversible co-dimension one Bogdanov-Takens bifurcation of the

origin, see Section 4.1.2 in [66]. It is easy to study the non-hyperbolic

origin for η = 0, concluding that for b < 0 we have a nonlinear saddle

(hyperbolic type), while for b > 0 two cases arise. If a2 − 8b > 0 then

we have a nonlinear node (parabolic type), being the case a2 − 8b < 0

corresponding to a nonlinear center (elliptic type). Thus, the reversibil-

ity property clarifies the bifurcation problem, compare with Section 3.2

and Appendix D in [26].

We remark that in our approach we have avoided the temptation

of computing the normal form for the map P = P− ◦ P+ near the

organizing center, so following an alternative way to the usual analysis,

as appearing in [26, 77]. We have taken advantage of the structure of

the map P , being the composition of two involutions that allow us to deal

with the reversibility property in a more direct way. Furthermore, we

can so give in Theorem 4.3 the explicit expressions for the coefficients

σ and ρ in terms of the data.
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4.3.3 Existence and stability of bifurcating CLCs

In looking for bifurcating crossing limit cycles, we must compose

the two half-return maps P+ and P− by forcing the equality

(P− ◦ P+)(y0, z0) = (y0, z0),

that is (y2, z2) = (y0, z0). However, it is more direct to write the

condition

P+(y0, z0) = P−1
− (y0, z0) = P−(y0, z0),

where the second equality comes from the involution property of P−.

Thus, suppressing the subscript 0 for coordinates, and rearranging

terms, we will work with the equations

0 = −2y + 2v−z + q+
11y

2 − q−11yz − q−12z
2 + c+11y

3+ (4.34)

+ (c+12 − c−11)y2z − c−12yz
2 − c−13z

3 + · · · ,
0 = −2v+y + 2z + q+

21y
2 + q+

22yz − q−22z
2 + c+21y

3+ (4.35)

+ c+22y
2z + (c+23 − c−22)yz2 − c−23z

3 + · · · .

Apart from the origin, which corresponds with the T-singularity,

we see that a fixed point, leading to a CLC, can bifurcate when v−v+−
1 = 0. This fact suggests to introduce again the parameter ε = v−v+−1

and do a new bifurcation analysis assuming all parameters fixed except-

ing v−, to be defined as in (4.21).

We start by considering (4.35). A standard application of the

implicit function theorem allows to assure the existence of a smooth

function p(y, ε) such that z = y · p(y, ε), with p(0, 0) = v+. Computa-

tions give

p(y, ε) = v+ −
(
q+
11 − q−22(ε)v+

) y
2

+
[
−2c+21 + q+

22(2q+
11 − q+

22)v++

+
(
2c−22(ε)− 2c+12 + 2c+23 − 2q−22(ε)q+

11 − q−22(ε)q+
22

)
v2

+−

−2c−22(ε)v−(ε)v3
+

] y2

4
+ · · · .
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After substituting this expression for z in (4.34), we can desingularize

it to get

0 = 2ε−
(
q+
11 − q−11(ε)v+

)
εy +Q(ε)y2 + · · · (4.36)

where

Q(ε) = − 1

2v+

[
2c+21 +

(
2(q+

11)2 − 2q+
11q

+
22 + (q+

22)2
)
v++

+
(
−2c−11(ε) + 2c−22(ε) + 2c+12 − 2c+23 + q−11(ε)q+

11 + q−22(ε)q+
22

)
v2

++

+
(
q−11(ε)2 − 2q−11(ε)q−22(ε) + 2q−22(ε)2

)
v3

+ + 2c−13(ε)v4
+ +O(ε)

]
.

Clearly, from (4.36) we can apply the implicit function theorem at

(y, ε) = (0, 0) to solve for ε getting that for the emanating branch we

have the expansion

ε = κC · y2 +O(y3),

where the criticality coefficient is

κC = −Q(0)

2
=

1

4v+

[
2c+21 +

(
2(q+

11)2 − 2q+
11q

+
22 + (q+

22)2
)
v++

+
(
−2c−11(0) + 2c−22(0) + 2c+12 − 2c+23 + q−11(0)q+

11 + q−22(0)q+
22

)
v2

++

+
(
q−11(0)2 − 2q−11(0)q−22(0) + 2q−22(0)2

)
v3

+ + 2c−13(0)v4
+

]

Note that 4κC = ρ, as given in (4.31). In short, if we assume v+ < 0

then depending on the sign of κC we have a subcritical or supercritical

bifurcation of non-trivial fixed points (we are focussing our attention

in the one with y < 0, but clearly there is another one with y > 0) and

z(y) = v+ · y +O(y2),

ε(y) = κC · y2 +O(y3).

To characterize the topological type of the new fixed point and its

stability, we must compute the derivatives of the Poincaré half-return

maps, and evaluate them at this branch of non-trivial fixed points.

Computing DP (y) = D (P− ◦ P+) (y, z(y)), we get that the expansions
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for its determinant and trace share the coefficient of the first degree

term, namely

detDP (y) = 1 + σy + d2y
2 +O(y3),

traceDP (y) = 2 + σy + t2y
2 +O(y3).

(4.37)

where

σ = −2q+
11 + q+

22 +
(
2q−22(0)− q−11(0)

)
v+,

as in (4.30), and the second degree terms are

d2 =
1

2

[
6(q+

11)2 − 5q+
11

(
q+
22 − q−11(0)v+ + 2q−22(0)v+

)
+

+
(
q+
22 − q−11(0)v+ + 2q−22(0)v+

)2]
,

t2 = − 1

2v+

[
8c+21 +

(
2(q+

11)2 − 3q+
11q

+
22 + 3(q+

22)2
)
v++

+
(
−8c−11(0) + 8c−22(0) + 8c+12 − 8c+23 − q−11(0)q+

11+

+10q−22(0)q+
11 + 2q−11(0)q+

22

)
v2

++

+
(
3q−11(0)2 − 4q−11(0)q−22(0) + 4q−22(0)2

)
v3

+ + 8c−13(0)v4
+

]
.

Furthermore, it turns out that d2 − t2 = 8κC = 2ρ. Recall that

the standard stability conditions for fixed points of maps in R2 are

(i) |detDP | < 1, and

(ii) | traceDP | < detDP + 1

at the fixed point, see Figure 4.5. Therefore, if we assume σ 6= 0,

then we conclude from (4.37) that to satisfy (i), the stability of the

bifurcating fixed point requires σ > 0, since y < 0 at the bifurcating

point. Checking (ii), we get

1 + (t2 − d2)y2 +O(y3) = 1− 2ρy2 +O(y3) < 1,

what also requires κC > 0.

The topological type of the fixed point can be determined by
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Figure 4.5: The stability region for the fixed point of the return map deter-
mines a triangle in the (trace, det)-plane. The degeneracy of the T-singularity
corresponds with the labeled vertex A. Each side of the triangle corresponds
with the indicated bifurcation.

computing the value of the discriminant

(traceDP (y))2 − 4 detDP (y) =
[
σ2 + 4(t2 − d2)

]
y2 +O(y3) =

=
(
σ2 − 8ρ

)
y2 +O(y3).

Clearly, when ρ < 0 the bifurcating fixed points has two real eigenvalues

λ1 and λ2 with 0 < λ1 < 1 < λ2, so that its topological type is a saddle.

When ρ > 0 we have a node or a focus depending on the sign of σ2−8ρ.

Lastly, when σ vanishes, we have a degeneracy whose characterization

should require much longer computations.

Remark 4.5. It should be noticed that σ2−8ρ = Θ, as given in (4.32).

Thus, we see that the topological type of the new fixed points is inherited

from the topological type of the degenerate T-singularity.

We can summarize all the above analysis in the following result,

which amounts a complete characterization of the bifurcating CLC from

the T-singularity.
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Theorem 4.4. Consider v+ < 0 constant and ε = v−v+ − 1. Assume

that the non-degeneracy conditions σ 6= 0 and ρ 6= 0 hold, where σ and

ρ have been defined in (4.30) and (4.31), respectively. The following

statements hold.

(a) By varying v−, the system (4.9)-(4.13)-(4.14) undergoes for ε = 0

a bifurcation leading to the appearance or disappearance of a CLC.

Such a CLC bifurcates from the origin for ρ · ε > 0 small.

(b) The bifurcating CLC is stable whenever σ > 0 and ρ > 0.

(c) The topological type of the corresponding fixed point for the first

return map is saddle, node or focus depending on whether ρ < 0,

0 < 8ρ < σ2 or 8ρ > σ2, respectively.

We remark that Theorem 4.4 provides a characterization of a spe-

cific Takens-Bogdanov bifurcation for maps, since we are dealing with

a reversible map resulting from the composition of the two involutive

half-return maps. The above assertions about bifurcating fixed points

have a one-to-one correspondence with the existence and stability of

bifurcating equilibria of the normal form (4.33) in Remark 4.4 (see

Section 4.1.2 in [66]).

To apply later the above results in a convenient way for DPWL

systems, we need before a procedure for computing the coefficients of

the half-return maps P+ and P−, which is obtained in the next section.

4.4 Computing the half-return map coeffi-

cients for 3D-DPWL systems

As indicated before, we give in this section the expressions for the

coefficients of the return maps in terms of the entries of system (4.9)-

(4.10) when we are dealing with a piecewise-linear system, an important

case in real applications, see Section 4.7.
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We start so from the strictly linear version of the vector fields

(4.13)-(4.14), namely

F+(x) =




f+
1 x− y

1 + g+
1 x+ g+

2 y + g+
3 z

v+ + r+
1 x+ r+

2 y + r+
3 z


 (4.38)

and

F−(x) =




f−1 x+ z

v− + g−1 x+ g−2 y + g−3 z

1 + r−1 x+ r−2 y + r−3 z


 , (4.39)

and to analyze this issue, it is convenient first to obtain a reduced

canonical form that alleviates a little bit the required computations.

Lemma 4.1. The study of crossing dynamics and in particular the

existence of CLCs for system (4.9), with vector fields given in (4.38)-

(4.39), can be done by considering the reduced canonical form

ẋ =

{
F̃−(x), if x < 0,

F̃+(x), if x > 0,
(4.40)

with x = (x, y, z) ∈ R3 and the linear vector fields F̃± : R3 −→ R3 are

F̃+(x) =




f̃+
1 x− y

1 + g̃+
1 x+ g+

3 z

v+ + r̃+
1 x+ r+

3 z


 , F̃−(x) =




f̃−1 x+ z

v− + g̃−1 x+ g−2 y

1 + r̃−1 x+ r−2 y


 , (4.41)

where the new entries f̃±1 , g̃±1 , and r̃±1 are related with the old ones by

the relations

f̃+
1 = f+

1 + g+
2 ,

g̃+
1 = g+

1 + f+
1 g

+
2 − r+

2 g
+
3 , (4.42)

r̃+
1 = r+

1 + f+
1 r

+
2 − r+

2 r
+
3 ,
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and

f̃−1 = f−1 + r−3 ,

g̃−1 = g−1 − f−1 g−3 + g−2 g
−
3 , (4.43)

r̃−1 = r−1 − f−1 r−3 + r−2 g
−
3 .

Proof. It suffices to do the non-smooth continuous change of variables

(x̄, ȳ, z̄) = (x, y + g+
2 x, z + r+

2 x)

when x ≥ 0, along with

(x̄, ȳ, z̄) = (x, y − g−3 x, z − r−3 x)

when x < 0. This change reduces to the identity for x = 0 and so it

does not alter coordinates in Σ.

Therefore, any crossing orbit and its transformed by the above

change hit the manifold at the same points. This means in particular

that crossing limit cycles are mapped into crossing periodic points with

the same crossing points.

Note that from Lemma 4.1 we achieve a reduced canonical form

with 4 parameters less, namely g+
2 , r+

2 , g−3 and r−3 . Also note that the

change of variables needed in its proof does not preserve the sliding

dynamics and therefore is only useful for the study of CLCs.

In order to find the explicit expressions for the coefficients of each

half-return map, we must determine the solution of system (4.40)-(4.41)

for x > 0 and for x < 0. Such solution for x > 0 can be obtained from

the variation of constants formula

x(τ) = eA
+τx0 +

∫ τ

0

eA
+(τ−s)v+ds =

= eA
+τx0 +

(∫ τ

0

eA
+sds

)
v+, (4.44)
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where

A+ =



f̃+

1 −1 0

g̃+
1 0 g+

3

r̃+
1 0 r+

3


 , x0 =




0

y0

z0


 , v+ =




0

1

v+


 , x(τ) =



x(τ)

y(τ)

z(τ)


 ,

being y0 < 0. It will suffice to have the Taylor’s series approximation

until the fourth order terms for (4.44), namely

x(τ) = x0 +

(
τI +

τ2

2
A+ +

τ3

6
(A+)2 +

τ4

24
(A+)3

)
M +O(τ5), (4.45)

where M = A+x0 + v+ and I is the identity matrix of order 3.

From the first component of (4.45) we can determine an expres-

sion for the flight time τ+ = τ+(y0, z0), which depends on y0 and z0,

such that x(τ+) = 0. The third order polynomial approximation for

the time τ+ is given by

τ+(y0, z0) = a10y0 + a20y
2
0 + a11y0z0 + a30y

3
0 + a21y

2
0z0 + a12y0z

2
0 + · · ·
(4.46)

where

a10 = −2,

a20 =
2

3
(f̃+

1 − 2g+
3 v+),

a11 = 2g+
3 ,

a30 = −2

9

(
2(f̃+

1 )2 − 3g̃+
1 − (5f̃+

1 + 3h+
3 )g+

3 v+ + 8(g+
3 v+)2

)
,

a21 =
4

3
g+

3 (3g+
3 v+ − f̃+

1 − r+
3 ),

a12 = −2(g+
3 )2.

Now, substituting (4.46) in the second and the third component

of system (4.45), the half-return map (y1, z1) = P+(y0, z0) satisfies
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y1 = −y0 + q+
11y

2
0 + y0(c+11y

2
0 + c+12y0z0) +O(4),

z1 = −2v+y0 + z0 + y0(q+
21y0 + q+

22z0) + y0(c+21y
2
0 + c+22y0z0 + c+23z

2
0) +O(4),

where we see that l+2 = −2v+, and we get for the quadratic terms

q+
11 =

2

3

(
f̃+

1 + g+
3 v+

)
,

q+
22 = −2(r+

3 − g+
3 v+),

q+
21 = v+(q+

11 − q+
22) =

2

3

(
f̃+

1 − 2g+
3 v+ + 3h+

3

)
v+,

along with the equalities

c+11 = −v+c
+
12 + (q+

11)2 = −2

9

[
2(f̃+

1 )2 + (f̃+
1 + 3h+

3 )g+
3 v+ − 4(g+

3 v+)2
]
,

c+12 = −2

3

(
f̃+

1 + 2g+
3 v+ − r+

3

)
g+

3 ,

c+21 = −2

9

{
3r̃+

1 +
[
2(f̃+

1 )2 − 3g̃+
1 + 6h+

3 (f̃+
1 + r+

3 )
]
v+

+5g+
3 (f̃+

1 + 3h+
3 )v2

+ + 8(g+
3 )2v3

+

}
,

c+22 = v+(c+12 − 2c+23) + q+
22(q+

22 − q+
11)/2

=
2

3

[
r+
3 (f̃+

1 + 3h+
3 )− 2g+

3 (f̃+
1 + 5h+

3 )v+

]
+ 4(g+

3 v+)2,

c+23 = 2g+
3 (r+

3 − g+
3 v+) = −g+

3 q
+
22,

for the cubic ones.

The computations for the map P− are totally similar. We use

again the formula given in (4.44), this time with

A− =



f̃−1 0 1

g̃−1 g−2 0

r̃−1 r−2 0


 , x1 =




0

y1

z1


 , v− =




0

v−
1


 ,
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and compute the approximation up to third order of the return time τ−
spent by the trajectory φ−(τ) that starts in x1 = (0, y1, z1) to arrive

at the point x2 = (0, y2, z2). This is done by solving the equation

x(τ−) = 0 so that, after the evaluation at such a time for the other two

coordinates of the solution, we determine the image of the half-return

map (y2, z2) = P−(y1, z1), namely

y2 = y1 − 2v−z1 + z1(q−11y1 + q−12z1) + z1(c−11y
2
1 + c−12y1z1 + c−13z

2
1) +O(4)

z2 = −z1 + q−22z
2
1 + z1(c−22y1z1 + c−23z

2
1) +O(4).

Here l−1 = −2v−, along with the coefficients for the quadratic terms

q−11 = −2(g−2 − r−2 v−),

q−12 = v−(q−22 − q−11) =
2

3

(
f̃−1 − 2h−2 v− + 3g−2

)
v−,

q−22 =
2

3

(
f̃−1 + r−2 v−

)
,

and the following ones for the cubic terms,

c−11 = 2h−2 (g−2 − r−2 v−) = −r−2 q−11,

c−12 = v−(c−22 − 2c−11) + q−11(q−11 − q−22)/2

=
2

3

[
g−2 (f̃−1 + 3g−2 )− 2h−2 (f̃−1 + 5g−2 )v−

]
+ 4(r−2 v−)2,

c−13 =
2

9

{
3g̃−1 −

[
2(f̃−1 )2 + 3r̃−1 + 6g−2 (f̃−1 + g−2 )

]
+

+5h−2 (f̃−1 + 3g−2 )v2
− − 8(r−2 )2v3

−
}
,

c−22 = −2

3

(
f̃−1 − g−2 + 2h−2 v−

)
r−2 ,

c−23 = v−c
−
22 − (q−22)2 = −2

9

[
2(f̃−1 )2 + r−2 (f̃−1 + 3g−2 )v− − 4(r−2 v−)2

]
.

Just by using the above expresions in (4.30) and (4.31), we can

state the following result.
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Lemma 4.2. Assume in (4.38)-(4.39) that v+ < 0 and all the pa-

rameters are fixed, excepting v−. At the critical value v− = 1/v+ the

bifurcation of a crossing limit cycle predicted by Theorem 4.4 is ruled

by the values

σ(v+) =
2

3

(
v+(g+

3 + 3g−2 + 2f̃−1 )− 3h+
3 − r−2 − 2f̃+

1

)

and

ρ(v+) =
4

3v+

[
g̃−1 (v+)4 +

(
(g−2 )2 + f̃−1 g

+
3 − g−2 g+

3 − r̃−1
)

(v+)3−

−
(
f̃+

1 g
−
2 + g−2 r

−
2 − 2g+

3 r
−
2 + f̃−1 r

+
3 + g+

3 r
+
3

)
(v+)2+

+
(
g̃+

1 + f̃+
1 r
−
2 − r−2 r+

3 + (r+
3 )2
)
v+ − r̃+

1

]
,

where the entries f̃±1 , g̃±1 , and r̃±1 are given in (4.42)-(4.43).

Thanks to the above results, the application of Theorem 4.4 is

straightforward, as shown next.

4.5 Examples

In this section, we study a couple of examples to illustrate the

easy application of the achieved theoretical results. Both examples do

not have a physical meaning but are useful to better understand the

developed methodology. Later, in Section 4.7, we tackle the analysis of

a boost power converter, which is our final goal.

4.5.1 Example 1

Consider the DPWL system

ẋ =

{
(z, v−, 1) , if x < 0

(−y, 1, ay + bz + v+) , if x > 0
(4.47)
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with x = (x, y, z), where v−, v+ < 0 and we take sign(a) = sign(b). This

system is already in the canonical form (4.38)-(4.39) with coefficients

f±1 = r+
1 = 0, r+

2 = a and r+
3 = b, and g±i = r−i = 0 for i ∈ {1, 2, 3}.

Regarding (4.20), here the matrix G vanishes and we have

R =

[
0 0

a b

]
,

so that from (4.22) we get

κS = av+ − b.

According to Theorem 4.2 we have that for ε = v−v+ − 1 small,

(i) if a, b > 0 then κS < 0 (subcritical case) so that x̃(ε) ∈ Σrs is an

unstable pseudo-node when v−v+ < 1, being a pseudo-saddle in

Σas when v−v+ > 1,

(ii) if a, b < 0 then κS > 0 (supercritical case) so that x̃(ε) ∈ Σas is

a stable pseudo-node when v−v+ < 1, being a pseudo-saddle in

Σrs when v−v+ > 1.

In fact, from (4.15) we see that

Fs(x) =
1

y + z




0

v−y + z

y + v+z + ayz + bz2


 ,

so that the pseudo-equilibrium point is located exactly at

x̃(ε) =

(
0,− ε

(a− bv−)v−
,

ε

a− bv−

)
,

which, after the substitution v− = (1 + ε)/v+, coincides with the ex-

pression given in Theorem 4.2.

Regarding the crossing dynamics bifurcation, we apply first Lemma

4.1 obtaining that all the new entries are null excepting r̃+
1 = −ab. Hav-
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ing in mind that r+
3 = b is also non-vanishing, we obtain from Lemma

4.2 that σ = −2b, while

ρ =
4b(a+ bv+)

3v+
.

We see that for v+ < 0 we have

sign(ρ) = sign
(
−v+ −

a

b

)
,

so that ρ < 0 for −a/b < v+ < 0, being ρ positive for v+ < −a/b. The

condition 8ρ < σ2 translates to

b(a+ bv+)

3v+
<
b2

8
⇐⇒ v+ > −8a

5b
.

Therefore, according to Theorem 4.4, we conclude that for ε =

v−v+ − 1 small,

(i) the bifurcating CLC has dynamics of saddle type when

−a
b
< v+ < 0

and arises for v−v+ < 1;

(ii) the bifurcating CLC has dynamics of node type when

−8a

5b
< v+ < −a

b

and arises for v−v+ > 1, being stable (unstable) when b < 0

(b > 0);

(iii) the bifurcating CLC has dynamics of focus type when

v+ < −8a

5b

and arises for v−v+ > 1, being stable (unstable) when b < 0

(b > 0).
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Figure 4.6: Bifurcation set in (v−, v+)-plane for system (4.47).
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Figure 4.7: Simulation results of system (4.47) for parameter values v− =
−0.85 and v+ = −1.3. (a) when a = b = −1 the bifurcation leads to a stable
CLC (sCLC ); (b) when a = b = 1 we have an unstable CLC (uCLC ). In both
cases the CLC has dynamics of node type, the blue point is a pseudo-saddle
and the red point at the origin is the T-singularity.

In Figure 4.6, we summarize the crossing dynamics bifurcation,

by indicating the dynamical type of the bifurcating CLC; the arrows

mark the direction in which one must cross the curve v−v+ = 1 to get

the new limit cycle. Such a curve is divided in three parts, depending

on the type of dynamics of the CLC when it is born. Two cases where
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the CLC is of node type are shown in Figure 4.7.

Clearly, the bifurcation set in Figure 4.6 is to be completed. In

particular, the point (v−, v+) = (−a/b,−b/a) should be a co-dimension

two bifurcation point, since there is a transition between parabolic

(node) character and hyperbolic (saddle) character. This kind of re-

versible co-dimension two Bogdanov-Takens points is analyzed in [1]

for two-dimensional smooth differential systems. The translation of

such analysis would lead to the existence of a bifurcation curve ema-

nating from such a point, where saddle-node bifurcations of CLCs take

place.

4.5.2 Example 2

As our second example, we study a DPWL system introduced in

[26], defined by the vector fields

F+(x) =




a11x− y
−x− 3y + 1

a32y − 2z + v+


 and F−(x) =




3x+ z

−2y + v−
x+ 3z + 1


 ,

where v−, v+ < 0 and a11, a32 ∈ R. Again, this system is already in

the canonical form (4.38)-(4.39) with coefficients f+
1 = a11, g+

1 = −1,

g+
2 = −3, g+

3 = r+
1 = 0, r+

2 = a32, r+
3 = −2, f−1 = 3, g−1 = g−3 = 0,

g−2 = −2, r−1 = 1, r−2 = 0 and r−3 = 3.

Here, from (4.20) we have

G =

[
−2 0

−3 0

]
, R =

[
0 3

a32 −2

]
,

so that from (4.22) we get

κS(v+) =
[
−v+ 1

] [ −2v+ −3

−3v+ − a32 2

][
−v+

1

]
=

= 2 + (3 + a32)v+ + 3v2
+ − 2v3

+.
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After applying Lemma 4.1, we obtain the new entries f̃+
1 = a11−3,

g̃+
1 = −1 − 3a11, r̃+

1 = (a11 + 2)a32, f̃−1 = 6, g̃−1 = 0 and r̃−1 = −8.

Therefore, we get from Lemma 4.2

σ(v+) =
4

3
(3v+ − a11 + 6)

ρ(v+) =
4

3v+

[
12(v+)3 + 2(3 + a11)(v+)2 + 3(1− a11)v+ − a32(a11 + 2)

]
.

To apply Theorems 4.2 and 4.4 without requiring a long discussion, let

us consider just the bifurcation point corresponding to v− = v+ = −1.

Then, we have

κS(−1) = 4− a32,

σ(−1) =
4

3
(3− a11)

ρ(−1) =
4

3
[a32(a11 + 2)− 5a11 + 9] .

Therefore, we see that the sliding bifurcation changes its character

when a32 = 4. Regarding the crossing bifurcation, we detect the exis-

tence of the hyperbola a32 = (5a11−9)/(a11 +2) in the plane (a11, a32)

where ρ = 0, separating the saddle and node cases for the bifurcating

CLC. Furthermore, after computing the expression σ2 − 8ρ, we detect

another hyperbola, namely 6a32 = (24a11 + a2
11 − 45)/(a11 + 2), which

separates the node and focus cases for the bifurcating CLC.

Regions CLC type
1 and 6 saddle (unstable)
2 and 7 unstable node
3 and 8 unstable focus
4 and 9 stable focus
5 and 10 stable node

Table 4.1: The topological type of the CLC that bifurcates from the T-
singularity, with reference to Figure 4.8.
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Figure 4.8: By selecting the two parameters a11 and a32, one can obtain
the ten possible scenarios for the TS-bifurcation for the specific degeneracy
that appears for (v−, v+) = (−1,−1). Regarding the sliding bifurcation,
supercritical cases occurs in the regions from 1 to 5 and subcritical ones from
6 to 10. For the involved crossing dynamics, see Table 4.1.

In Figure 4.8 we show a partial view of the bifurcation set in

the parameter plane (a11, a32), where all the ten possible scenarios for

the TS-bifurcation appear, according to Table 4.1. Comparing these

results with the numerical simulations summarized in Table 1 of [26],

we see that we obtain algebraic expressions delimiting the ten possible

scenarios, also detecting possible co-dimension two points.

For instance, when a11 = 3 the point (v−, v+) = (−1,−1) should

be a codimension-two bifurcation point, since there is a transition from

stable to unstable focus (elliptic) character. The analysis in [1] for

two-dimensional smooth differential systems, adequately translated for

maps, should confirm the existence of two new bifurcation curves em-

anating from such a point; one for Neimark-Sacker bifurcation points

(leading to an invariant closed curve associated to dynamics on a torus)

and the other for homoclinic bifurcation points, see [16].

These two examples show the ability of our theoretical results in

predicting the local dynamical behaviour around the T-singularities. In

Section 4.6, below, we present the transformations in the states and in

the time scale, in order to obtain the canonical form (4.38)-(4.39), from
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a general discontinuous piecewise-linear (DPWL) system. The results

of this section will be useful for the unfolding of Section 4.7, where we

analyze a real application problem in power electronics.

4.6 TS-bifurcation in 3D-DPWL systems:

a computational procedure

In the applications regarding 3D-DPWL systems, the general sit-

uation is to have three vectors w−, w+, v ∈ R3, with v 6= 0, two 3× 3

square matrices A− and A+ and a scalar δ ∈ R, such that

ẋ =

{
F−(x) = A−x + w−, if vTx + δ < 0,

F+(x) = A+x + w+, if vTx + δ > 0,
(4.48)

and A−x + w− 6= A+x + w+ generically, when vTx + δ = 0.

The switching boundary is then the plane

Σ = {x ∈ R3 : h(x) = vTx + δ = 0}, (4.49)

and therefore, the tangency lines are4

T− = {x ∈ Σ : vTF−(x) = 0}, (4.50)

T+ = {x ∈ Σ : vTF+(x) = 0}. (4.51)

For x ∈ T− the tangency is of the visible (invisible) fold type if5

vTA−F−(x) < 0 (> 0). (4.52)

Analogously, for x ∈ T+ the tangency is of the visible (invisible) fold

type if

vTA+F+(x) > 0 (< 0). (4.53)

4Note that LF±h(x) = vTF±(x).
5Note that L2

F±
h(x) = vTA±F±(x).
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If the fold tangency lines T− and T+ intersect transversally at

one point x̂ ∈ Σ, then this intersection point represents a two-fold

singularity. When both tangencies are of invisible type, this point is

a T-singularity; see [69]. Note that from (4.49), (4.50) and (4.51), a

T-singularity is a solution of the equation




vT

vTA−

vTA+


x +




δ

vTw−

vTw+


 = 0. (4.54)

Thus, a natural first hypothesis is the following.

(A1) The set {vT ,vTA−,vTA+} is linearly independent.

Note that hypothesis (A1) guarantees the transversality of T−
and T+ along with the uniqueness of the two-fold point x̂, solution of

(4.54). As a second hypothesis, we assume the needed condition to

have invisible tangencies from both sides.

(A2) At the two-fold point x̂, the conditions vTA−F−(x̂) > 0 and

vTA+F+(x̂) < 0 hold.

If we assume δ = 0 and vT = (1, 0, 0) then vTx + δ = x1. So, we

would start from the system

ẋ =

{
A−x + w−, if x1 < 0

A+x + w+, if x1 > 0
(4.55)

where x = [x1 x2 x3]T , w± = [w±1 w±2 w±3 ]T , the dot “·” denotes the

derivative in relation to the time variable t and

A± =



a±11 a±12 a±13

a±21 a±22 a±23

a±31 a±32 a±33


 .
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Hypothesis (A1) translates to

∆ := det




vT

vTA−

vTA+


 = det




1 0 0

a−11 a−12 a−13

a+
11 a+

12 a+
13


 = a−12a

+
13 − a−13a

+
12 6= 0.

(4.56)

Thus, system (4.55) has a double tangency point in the transverse in-

tersection of the tangency lines contained in the plane x1 = 0, defined

by the sets

T± = {(0, x2, x3) : a±12x2 + a±13x3 + w±1 = 0},

if and only if ∆ 6= 0, as defined in (4.56). These tangency lines are

obtained using the equations (4.50)-(4.51), assuming vT = (1, 0, 0).

We have so the two-fold point located at (0, x̂2, x̂3) ∈ T+ ∩ T−.

We summarize in the next two lemmas the explicit changes needed

in this DPWL case to arrive at the canonical form of Theorem 4.1. In

the Lemma below, we propose first an invertible change of coordinates

to place the double tangency point at the origin of R3 so that the

tangency lines T− and T+ become the second and third coordinate

axis, respectively. We also impose that the new region with attractive

sliding be the quadrant corresponding to positive values of the last two

coordinates.

Lemma 4.3. Assuming Hypothesis (A1), the affine change of coordi-

nates 

x1

x2

x3


 =




1 0 0

0 α2 α3

0 β2 β3






x

y

z


+




0

α1

β1


 , (4.57)

with

α1 =
a−13w

+
1 − a+

13w
−
1

∆
, α2 =

a−13

∆
, α3 =

a+
13

∆
,

and

β1 =
a+

12w
−
1 − a−12w

+
1

∆
, β2 =

−a−12

∆
and β3 =

−a+
12

∆
,



118
4. Teixeira Singularity Bifurcation Theory

and Application Method

transforms system (4.55) into the system

(ẋ, ẏ, ż) =

{
G−(x, y, z), if x < 0

G+(x, y, z), if x > 0
, (4.58)

where

G−(x, y, z) =




s−1 x+ z

p−1 x+ p−2 y + p−3 z + b−2
q−1 x+ q−2 y + p−3 z + b−3




and

G+(x, y, z) =




s+
1 x− y

p+
1 x+ p+

2 y + p+
3 z + b+2

q+
1 x+ q+

2 y + q+
3 z + b+3




with the coefficients

s±1 = a±11,

p±1 = −a±21a
+
12 − a±31a

+
13,

p±2 = ∆
(
a±22α2β3 + a±23β2β3 − a±32α2α3 − a±33α3β2

)
,

p±3 = ∆
(
a±23β

2
3 − a±32α

2
3 + (a±22 − a±33)α3β3

)
,

q±1 = −a±21a
−
12 − a±31a

−
13,

q±2 = ∆
(
a±32α

2
2 − a±23β

2
2 + (a±33 − a±22)α2β2

)
,

q±3 = ∆
(
a±33α2β3 + a±32α2α3 − a±22α3β2 − a±23β2β3

)
,

b±2 = ∆
(
w±2 β3 + a±22α1β3 + a±23β1β3 − w±3 α3 − a±32α1α3 − a±33α3β1

)
,

b±3 = ∆
(
w±3 α2 + a±32α1α2 + a±33α2β1 − w±2 β2 − a±22α1β2 − a±23β1β2

)
.

Proof. As indicated before, we want to transform the tangency lines

T± so that in the new variables (x, y, z) we have

a−12x2 + a−13x3 + w−1 = z (4.59)

a+
12x2 + a+

13x3 + w+
1 = −y. (4.60)

Solving for (x2, x3) we get the change of variables (4.57), where the
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expressions for αi and βi are as shown in the statement of the Lemma.

Note that from (4.57) and (4.59)-(4.60) we can deduce that

[
a+

12 a+
13

] [α2 α3

β2 β3

]
=
[
−1 0

]
,
[
a−12 a−13

] [α2 α3

β2 β3

]
=
[
0 1

]
,

and [
a±12 a±13

] [α1

β1

]
+ w± = 0.

Taking into account these equalities, the new entries for the vector field

come easily after making the change given in (4.57).

After the application of Lemma 4.3, we have got a new system that

have the tangency lines T− and T+ at the y- and z-axis, respectively, so

that the double tangency is now at the origin. Note that in (4.58) the

Hypothesis (A2), regarding the conditions to have an invisible two-fold

gives now

L2
G−h(0) = b−3 > 0

L2
G+h(0) = −b+2 < 0.

In the Lemma below, we indicate the additional invertible change of

coordinates along with the time scaling needed to rewrite the system

(4.58) in the canonical form of Theorem 4.1.

Lemma 4.4. Assuming Hypothesis (A2), that is b−3 > 0 and b+2 > 0,

the invertible change of coordinates

(x, y, z) = (x, ω+y, ω−z)

along with the non-uniform time scaling τ = ω+t for x > 0, and τ =

ω−t for x < 0, with ω+ =
√
b+2 and ω− =

√
b−3 , transforms system

(4.58) into the system

ẋ =

{
F−(x), if x < 0,

F+(x), if x > 0,
(4.61)
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with the vector fields

F+(x) =




f+
1 x− y

1 + g+
1 x+ g+

2 y + g+
3 z

v+ + r+
1 x+ r+

2 y + r+
3 z


 , (4.62)

F−(x) =




f−1 x+ z

v− + g−1 x+ g−2 y + g−3 z

1 + r−1 x+ r−2 y + r−3 z


 . (4.63)

In system (4.61), x = (x, y, z) is the state vector, the dot “·”
denotes derivatives in relation to the new time τ and the new coefficients

are

v+ =
b+3

ω−ω+
, v− =

b−2
ω−ω+

, f±1 =
s±1
ω±

, g±2 =
p±2
ω±

, r±3 =
q±3
ω±

,

g−1 =
p−1

ω−ω+
, g−3 =

p−3
ω+

, r−1 =
q−1
ω2
−
, r−2 =

q−2 ω+

ω2
−

, g+
1 =

p+
1

ω2
+

,

g+
3 =

p+
3 ω−
ω2

+

, r+
1 =

q+
1

ω−ω+
, r+

2 =
q+
2

ω−
.

Proof. Note that (ẋ, ẏ, ż) = ω±
d

dτ
(x, ω+y, ω−z) and ω± > 0. Thus, we

rewrite (4.58) as

ω−
d

dτ
(x, ω+y, ω−z) = G− (x, ω+y, ω−z) for x < 0,

ω+
d

dτ
(x, ω+y, ω−z) = G+ (x, ω+y, ω−z) for x > 0.

Then, the vector fields F± are easily obtained by writing

F−(x) = diag

[
1

ω−
,

1

ω−ω+
,

1

ω2
−

]
·G− (x, ω+y, ω−z)

and

F+(x) = diag

[
1

ω+
,

1

ω2
+

,
1

ω−ω+

]
·G+ (x, ω+y, ω−z) ;

and the new coefficients come directly.
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Remark 4.6. From the transformations proposed here, we can inves-

tigate the occurrence of the TS-bifurcation in 3D-DPWL systems such

as (4.48), using the canonical form (4.61)-(4.63). Note that the vec-

tor fields (4.63) are the linear version of the vector fields (4.13)-(4.14).

Therefore, the general system (4.48) undergoes a TS-bifurcation if it is

possible to rewrite it in canonical form (4.61)-(4.63) and if there ex-

ists a solution of the equation ε = v−v+ − 1 = 0 for some parameter

of (4.48) such that v−(0) < 0, v+(0) < 0 and κS(0) 6= 0, where κS

is given in (4.22). Such a statement is in agreement with the defini-

tion of TS-bifurcation given in 2.10. Then, we use the Theorem 4.2 to

classify the TS-bifurcation in subcritical or supercritical case and the

Theorem 4.4 to determine the stability of the CLC bifurcating from the

T-singularity. For this, we resort to the coefficients σ and ρ given in

Lemma 4.2.

Next section is dedicated to a case study in order to apply the

results previously obtained.

4.7 Application in a boost converter with

SMC-Washout

For this case study, we consider the model of a dc-dc boost con-

verter, operating in Continuous Conduction Mode (CCM), with sliding

mode control and washout filter (SMC-Washout). Such a model was

introduced in Chapter 2, Section 2.6, see Figures 2.9 and 2.10.

We assume the dimensionless model given in (2.15)-(2.16)-(2.18)6,

with the scalar function h(x) : R3 → R such that the switching bound-

ary is

Σ = {x = (x, y, z) ∈ R3 : h(x) = y − yr + k(x− z) = 0}, (4.64)

where yr > 1 is the normalized reference parameter and k > 0 is the

6For simplicity, we use z instead of z as in (2.18).
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normalized control parameter (to be adequately tuned).

Then we get the control process model described as the three-

dimensional DPWL system

ẋ =

{
F+(x), if h(x) > 0,

F−(x), if h(x) < 0,
(4.65)

with

F+(x) =




1− bx− y
x− ay
ω(x− z)


 , F−(x) =




1− bx
−ay

ω(x− z)


 ,

where x = (x, y, z) ∈ R3 are the state variables and the parameters

are ω ∈ (0, 1] (normalized filter parameter), a > 0 (normalized resistive

load parameter) and b ≥ 0 (normalized inductor resistance parameter).

We stress that x > 0 is the normalized inductor current, y ≥ 0 is the

normalized output voltage and z ∈ R depends on the filtered current.

The goal is to have a pseudo-equilibrium point fulfilling the con-

trol objective y = yr > 1 and adequately located in the region Σas,

in order to get a robust operating point. Although the model seems

elementary, the computations in general are cumbersome, so that we

will adopt a simplified version.

Remark 4.7. From now on, we take yr = 2, a > 1, and k > 2 for

definiteness. To facilitate the remaining computations, we also assume

b = 0, that is, an ideal inductance, and ω = 1.

According to Remark 4.7 and Section 4.6, since vT = ∇h =

[k, 1,−k] the subset of Σ corresponding to Σas is defined by the in-

equalities

k(1− y) + x− ay − k(x− z) < 0 < k − ay − k(x− z),

or equivalently,

k − 2 + x− (a+ k − 1)y < 0 < k − 2− (a− 1)y,
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where the elimination of z is possible from (4.64), which implies

−k(x− z) = y − 2

on Σ. We note that all the points in Σas satisfy x− ky < 0. According

to (4.12) the corresponding sliding vector field is

Fs(x) =
1

k(x− ky)




k[x− ay2 − y(2− y)]

k[x(2− y) + k(ay2 − x)]

(2− y)(x− ky)


 ,

where x − ky < 0. By construction, the plane Σ is invariant for this

vector field. The only pseudo-equilibrium point is obtained on the

parabola x = ay2 for y = 2, that is at x̃ = (4a, 2, 4a), which belongs to

Σas whenever k > 2a (the restriction k > 2a is a key condition for the

efficiency of our boost converter). In the following we will show that

TS-bifurcation is associated with violation of this restriction.

T+y

x̃

x̂
T−

x = ay2

Σ−
c Σrs

Σas

x0

k−2
a+k−1

Σ+
c

k−2
a−1

yr = 2

−(k − 2)

Figure 4.9: Projection on the (x, y)-plane of the notable elements used
for the boost converter control design. The point x̃ (the operating point)
is within the attractive sliding region Σas. In the degeneracy, such a point
collides with the T-singularity x̂ to enter the repulsive sliding region Σrs.
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If we calculate the tangency lines of each vector field F± according

to (4.50)-(4.51), then we see that such tangency lines can be written as

T− = {x ∈ Σ : (1− a)y + k − 2 = 0},
T+ = {x ∈ Σ : x+ (1− a− k)y + k − 2 = 0},

and they correspond with the boundaries of Σas. See Figure 4.9 for

a geometric view of the projection on the (x, y)-plane of such notable

elements.

Hypothesis (A1) of Section 4.6 is clearly true, since the matrix




vT

vTA−

vTA+


 =




k 1 −k
−k −a k

1− k −a− k k




is non-singular whenever k 6= 0 and a 6= 1. In this case, a two-fold

singularity occurs at the point x̂ = (kŷ, ŷ, ẑ), with

ŷ =
k − 2

a− 1
> 0, ẑ =

(1 + k2)ŷ − 2

k
.

To check Hypothesis (A2), we use inequalities (4.52)-(4.53), and

so we need

vTA−F−(x̂) = [−k,−a, k]




1

−aŷ
x̂− ẑ


 > 0

and

vTA+F+(x̂) = [1− k,−a− k, k]




1− ŷ
x̂− aŷ
x̂− ẑ


 < 0,

so that, after some standard computations, it can be proved that the

point x̂ is an invisible two-fold singularity (T-singularity) if and only if

a(k − 2) > 0, (k − 2)a2 − (k − 3)a− (k − 1)3 < 0.
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Therefore, we have a T-singularity for all (k, a) such that

k > 2 (4.66)

and

1 < a <
k − 3 +

√
(k − 3)2 + 4(k − 2)(k − 1)3

2(k − 2)
. (4.67)

Under conditions (4.66) and (4.67) the system (4.65) can be rewrit-

ten in the canonical form (4.61)-(4.63). For this, we follow the scheme

of Section 4.6 and the transformations indicated in Lemma 4.3 and

Lemma 4.4. Previously, we transform the switching boundary Σ into

the plane x1 = 0 for a new state space (x1, x2, x3) ∈ R3, using the

invertible coordinates change

(x, y, z) =

(
x1 − x2 + kx3 + 2

k
, x2, x3

)
.

We obtain for the new parameters

v− =
1− a2(k − 2)− a(3− 3k + k2)

(a− 1)ω+ω−
, v+ =

(a− k)(k − 2)

ω+ω−
,

along with

f−1 = − 1

ω−
, f+

1 = −k − 1

kω+
,

r+
1 = − a− 1

kω−ω+
, r+

3 =
k − 1

ω+
,

g−2 = r−1 = r−2 = 0, g−1 = − 1

kω−ω+
,

g−3 =
a2k + a(1− k + k2)− 1

(a− 1)kω+
, r−3 = − a

ω−
,

g+
1 =

k2 + (a− 2)k + 1

k2ω2
+

, g+
2 = −k

2 + (a− 1)k + 1

kω+
,

g+
3 = − (k2 + (a− 2)k + 2− a)ω−

(a− 1)ω2
+

, r+
2 =

a− 1

ω−
,
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where the two conditions

ω2
− = a(k − 2) > 0, ω2

+ =
(k − 1)3 + (k − 3)a− (k − 2)a2

a− 1
> 0,

are guaranteed from Hypothesis (A2).

Before applying the Theorems 4.2 and 4.4, we investigate first

what is the bifurcation curve in the (k, a)-plane of parameters. We

obtain from a direct computation that

v−v+ − 1 = (2a− k)ŷ = 0,

i.e., the bifurcation condition in original parameters is k = 2a, as sus-

pected. Moreover, we check that, for all a > 1

v+

∣∣
k=2a

=
2a(1− a)

ω+ω−
< 0, v−

∣∣
k=2a

=
−1 + 2a− 6a2

ω+ω−
< 0.

Therefore, the TS-bifurcation occurs for k = 2a with a > 1 and the

sliding bifurcation is supercritical, since

κS |k=2a =
2

(1− 2a+ 6a2)
3
2

> 0.

Therefore, close enough to the T-singularity (k ≈ 2a ⇒ v−v+ ≈ 1),

we have a stable pseudo-node in Σas for k > 2a (v−v+ < 1) and a

pseudo-saddle in Σrs for k < 2a (v−v+ > 1).

Regarding the crossing bifurcation, we obtain

σ
∣∣
k=2a

=
2(4(1 + a) + (4a− 1)2 + 24a3)

3((1− a)2 + 5a2)
3
2

> 0

and

ρ
∣∣
k=2a

=
8

3((1− a)2 + 5a2)2
> 0,

so that the bifurcating CLC for k < 2a is stable. By checking that for
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all a > 1 we have

σ2 − 8ρ
∣∣
k=2a

=
4(576a6 + 768a5 + 64a4 + 112a3 − 112a2 + 56a− 23)

9((a− 1)2 + 5a2)3
=

=
4(576a6 + 768a5 + 64a4 + 112a2(a− 1) + 33a+ 23(a− 1))

9((a− 1)2 + 5a2)3
> 0,

we conclude that it is of node type.
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Figure 4.10: Normalized time-domain responses of a boost converter with
SMC, modeled by (4.64)-(4.65) and simulated with b = 0, ω = 1, yr = 2,
k = 2.5 and initial (normalized) resistive load a = 0.7, changing to a = 1.4
after τ = 70 s. The dashed line indicates the operating point required for the
converter, but not reached when the normalized resistive load (a) exceeds
the value 1.25.

We finish our study by emphasizing the importance of the achieved

results: once the control parameter k > 2 is fixed, our theorems allow

us to predict not only the parameter region where the control strategy is

adequate (2 < 2a < k) but also the undesirable dynamic consequences

of possible changes in the load (whenever 2a > k) that lead to desta-

bilizing the operating point, by getting an oscillating voltage around it

(see Figure 4.10).

In Figure 4.11, some simulation results are presented where we vi-

sualize the passage of the stable pseudo-node from the attractive sliding
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Figure 4.11: Phase portraits of a supercritical TS-bifurcation occurring in
the boost converter with SMC, modeled by (4.64)-(4.65) and simulated with
b = 0, ω = 1, yr = 2, a = 1.5 and for three different values of k: (a) k = 3.3,
(b) k = 3, (c) k = 2.5.

region to the repulsive sliding region, becoming a pseudo-saddle, and

the emergence of the CLC with dynamics of stable node type. Fig-

ure 4.10 shows the solution in time of the state variables (normalized

voltage and current) of boost converter. After τ = 70 s, the (nor-

malized) resistive load changes from a = 0.7 to a = 1.4, and so the

converter leaves the desired operating point (pseudo-equilibrium) and

tends to operate at a periodic orbit (CLC). In this case, for a = 1.25

the boost converter, of equations (4.64)-(4.65), undergoes a supercriti-

cal TS-bifurcation.
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4.8 Conclusion

A computational procedure that allows to characterize the de-

generacy of Teixeira singularity for generic DPWS systems has been

developed and illustrated with some examples. An application to a sim-

plified, non-trivial model of power electronics, showing the relevance of

having such algorithm at our disposal is also included.

Although the dynamic consequences associated to the Teixeira

singularity were known after Filippov’s impressive work [51] and had

been reported with much more detail in [26], the computational pro-

cedure obtained in this Chapter fills a gap not only from the practical

point of view but also in some theoretical aspects. A canonical form

for DPWS systems has been proposed and derived in detail. The topo-

logical type of the degeneration has been characterized and the need

for third order terms in return maps has been clarified.

It has been emphasized the need of putting the analysis in the

context of Takens-Bogdanov bifurcations for reversible maps, whose

nonlinear degeneracies and the corresponding higher co-dimension bi-

furcations ask for future work, see [1] for planar smooth flows. In par-

ticular, the possible existence of invariant tori (quasi-periodic behav-

ior) and homoclinic tangles (chaotic regimes) for the crossing dynamics

around the T-singularity deserve new research efforts.
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Chapter 5

TS-Bifurcation and

Crossing Limit Cycles in

a Boost Converter

The electronic circuit of a dc-dc boost power converter under

a specific sliding mode control strategy is analysed. This circuit is

modelled as a discontinuous piecewise-linear three-dimensional system,

whose state space is divided in two open regions by a plane acting as

the switching boundary. This system displays sliding motion confined

to the switching boundary and limited by two straight lines where lie

the points of tangency, one for each involved linear vector field. Such

tangency lines can intersect transversally on a invisible two-fold point

known as Teixeira singularity (T-singularity). Our goal is to investi-

gate an interesting bifurcation that occurs on the T-singularity, involv-

ing both a pseudo-equilibrium point and a crossing limit cycle. This

bifurcation, named TS-bifurcation, occurs when a pseudo-equilibrium

point, capable of moving between the attractive and repulsive sliding

regions as a result of the change in a parameter, collides with the T-

singularity. Simultaneously, a limit cycle arises from the T-singularity



132
5. TS-Bifurcation and Crossing Limit Cycles in a Boost

Converter

and crossing the switching boundary in two points. Apart from the TS-

bifurcation characterization in the dc-dc converter, we have numerically

detected other non-local phenomena like a saddle-node bifurcation of

crossing limit cycles. Experimental results to illustrate the effects of

the TS-bifurcation on the circuit of a power electronic converter are

also shown.

5.1 Introduction

Power converters are electronic circuits associated with conver-

sion, control and conditioning of electric power. Basically, the oper-

ation of these power electronic circuits involves cyclic switching be-

tween different linear topologies under a feedback control strategy, see

[46, 73, 121]. Accordingly, electronic circuits such as switched power

converters are naturally discontinuous systems and they can be consid-

ered as switched systems or discontinuous piecewise-smooth (DPWS)

dynamical systems. Recently, stability analysis methods for switching

mode power converters has received significant attention in the litera-

ture, see for instance [4, 5, 6] and the references therein.

The DPWS systems have as main characteristic the sliding motion

confined to the switching boundary and occurring under certain condi-

tions; see [51, 78]. The occurrence of sliding motions has been reported

in the literature involving sliding mode control (SMC) with applica-

tions in power electronics converters; see the references [12, 23, 91]. The

sliding mode dynamics is governed by a sliding vector field, obtained

according to the Filippov convention, for more details see [78] and pre-

vious Chapter 2. The sliding vector field is restricted to the switch-

ing boundary and its equilibrium points are called pseudo-equilibrium.

Typically, in applications such as SMC, a pseudo-equilibrium is the de-

sired operating point. The operating point is naturally reached when

the pseudo-equilibrium is in the attractive sliding region. This con-

straint on the pseudo-equilibrium gives relevance to the analysis of the
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sliding region boundaries and what would happen when the pseudo-

equilibrium goes through these boundaries, which are constituted by

points where one of the involved vector fields is tangent to the switch-

ing boundary; see [117].

In this context, a generic singularity of these discontinuous sys-

tems for dimension greater than two is the so called Teixeira singular-

ity [25, 26, 116, 117], or simply T-singularity. The T-singularity is a

generic singularity in 3D-DPWS systems defined by the aggregation of

two different vector fields, one on each side of a given switching bound-

ary, appearing at the transversal intersection of the corresponding fold

lines. More specifically, it is assumed that in both fold lines the tan-

gency is of invisible type (see Section 2.2 in Chapter 2), so that it is

possible to have orbits that cross the switching boundary with recurrent

behaviour, see [117]. In short, we speak of T-singularity as meaning an

invisible two-fold point.

Other relevant references involving the possible degeneration of

Teixeira singularity and its associated dynamical behavior in control

systems and power electronic circuits, are for instance [25, 29]. In

these works, the sliding region boundaries on the switching boundary

are tangency lines that cross transversally at a point of double tan-

gency classified as invisible two-fold singularity, creating two sliding

sectors, one attractive and another repulsive, and both connected only

by the two-fold singularity. The transition of a pseudo-equilibrium be-

tween the attractive and repulsive sliding regions, passing mandatorily

through the invisible two-fold singularity, is one of the main features

for a bifurcation at this point, from which there arises a limit cycle

that intersects transversally the switching boundary at two points on

the crossing regions, see [26, 49].

The bifurcation described in the previous paragraph is named as

TS-bifurcation, and the isolated limit cycle originated from this bifurca-

tion is called crossing limit cycle (CLC). The TS-bifurcation is the main

subject of this chapter. It will be proven, for the first time, the occur-
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rence of this bifurcation in a dc-dc boost converter controlled by a SMC

with a high-pass washout filter (SMC-washout), modelled by a discon-

tinuous piecewise-linear three-dimensional system (3D-DPWL system).

We will show that the TS-bifurcation occurs under two different forms,

named in this thesis as supercritical and subcritical. In supercritical

cases the pseudo-equilibrium is stable only when it is within the attrac-

tive sliding region, while in subcritical cases the pseudo-equilibrium is

unstable in both attractive and repulsive sliding regions. These topics

are addressed in detail in next sections.

The identification of the Teixeira singularity in a real circuit of

power electronic is one of the main contributions of this chapter, as well

as the analytical, numerical and experimental results on bifurcations,

helping us to unravel the dynamical richness of this circuit. Among

other contributions that can be highlighted in this chapter we can stress

(i) a proof of the coexistence of two CLCs, one stable originated in the

supercritical case and another unstable arising from the subcritical case;

(ii) the numerical identification of global mechanisms for the vanishing

(or birth) of CLC (saddle-node bifurcation and non-standard homo-

clinic bifurcation); (iii) the existence and stability analysis of the CLC

from its birth to its annihilation; and (iv) the proposal of a method

to investigate the TS-bifurcation, which can easily be applied to other

physical systems modelled as 3D-DPWL systems and that exhibit the

Teixeira singularity.

This chapter is organized as follows. In Section 5.2, the TS-

bifurcation is investigated starting from a case study in power elec-

tronics: a boost converter closed-loop controlled by means of a SMC-

Washout. In that section, the occurrence of a TS-bifurcation is shown

on a 3D-DPWL system that models the boost power converter. Ex-

plicit conditions on system parameters for the occurrence of both su-

percritical and subcritical TS-bifurcations are given. In Section 5.3,

a numerical analysis based on the theory of closing equations and the

first return maps (see [3, 20, 77, 117]) is introduced to get the location

and stability of the possible CLCs, where we also detect other global
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bifurcations. Experimental results proving that the TS-bifurcation phe-

nomenon appears in a real circuit prototype of a boost converter are

shown in Section 5.4. In Section 5.5, we conclude with a short summary

of the obtained results and some final remarks.

Previous results on Filippov theory in Chapter 2 are important

for the development that follows.

5.2 Applied analysis to the TS-bifurcation

In this section we prove the occurrence of a TS-bifurcation in a

3D-DPWL system that models a boost power converter controlled by a

sliding mode control strategy. Such a model was introduced in Chapter

2, Section 2.6, and in this current Chapter, we begin by reviewing

this modelling and, then, we proceeded with study of its equilibria,

dynamics and bifurcations.

5.2.1 Modelling and control of a dc-dc boost con-

verter

The basic topology of a boost converter is shown in Figure 5.1,

where R, L, C, rL and Vin, are the resistive load, the inductance, the ca-

pacitance, the inductor resistance and the voltage source, respectively.

The voltage vout = vC is equal to the one across the resistive load R

and is the system output, which must be regulated at a desired value

vout > Vin. To obtain the specified voltage value at the output, a con-

trol strategy by sliding modes based on the use of a high-pass washout

filter is implemented, as illustrated in Figure 5.1. It is chosen in order

to reject load perturbations (see [79] and [127]).

The model of the closed-loop boost converter, operating in Con-
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tinuous Conduction Mode (CCM), is given by

L
diL
dt

= Vin − rLiL − uvC (5.1)

C
dvC
dt

= uiL −
vC
R

(5.2)

dzF
dt

= ωF (iL − zF ), (5.3)

where vC ≥ 0 and iL > 0 are the instantaneous capacitor voltage and

the inductor current, respectively.

−
+

Vin

S
u C

−

+

vC R

rL L

iL

D

vC(t)

iL(t)

(a) DC-DC boost converter.

iL
+

ωF
∫ zF

−

iF

(b) Washout filter.

iF k

+
vC

+

Vref

−
H u

(c) Sliding mode controller.

Figure 5.1: Topology of the boost converter with Sliding Mode Control
(SMC) and a washout filter. The control function is u = 1

2
(1 + sign[H]). In

the schemes, the filtered inductor current given by iF = iL − zF represents
the difference between the inductor current iL and the filtered signal zF .

The filtered inductor current, denoted by the new variable zF , is

the output of the washout filter modeled by equation (5.3), where ωF

is the cut-off frequency of the filter (see [91]). Also, the control law
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u ∈ {0, 1} is defined as

u =
1

2
(1 + sign[H]),

such that u = 1 implies that the switch S is off, and u = 0 when it is

on (see Figure 5.1). The control surface is chosen as

H(iL, vC , zF ) = vC − Vref +K(iL − zF ) = 0, (5.4)

where K > 0 is a control parameter, to be suitably adjusted, and

Vref > Vin is the reference voltage (desired voltage value at the output).

The control objective is to regulate the output voltage vC such that

vC ≈ Vref > Vin, ensuring robustness of the system under parameter

variations, mainly produced by load changes in R.

State and Time Variables Parameters

x =
iL
Vin

√
L

C
yr =

Vref

Vin

y =
vC
Vin

a =
1

R

√
L

C

z =
vC − Vref +K(iL − zF )

Vin
k = K

√
C

L

τ =
t√
LC

b = rL

√
C

L

ω = ωF
√
LC

Table 5.1: Normalized new variables, parameters and time.

The equations (5.1)-(5.3) are normalized by applying the change

of variables, time and parameters, given in Table 5.1. Thus, we obtain

the following dimensionless dynamical system

ẋ = 1− bx− uy
ẏ = ux− ay
ż = (u− kb)x+ (ω − a− uk)y − ωz + k − ωyr,

(5.5)
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where (x, y, z) ∈ R3 are the new state variables and the new parameters

are ω ∈ (0, 1], yr > 1, a > 0, b > 0 and k > 0 (the dot “ · ” indicates

derivatives with respect to the normalized time τ). We highlight that

x > 0 is the normalized inductor current, y ≥ 0 is the normalized

capacitor voltage and a > 0 is the normalized load parameter.

Now, for the normalized system (5.5), the control law is defined

by u = 1
2 (1 + sign[z]) and the switching boundary is Σ = {h(x, y, z) =

z = 0}. So, system (5.5) can be represented by the following DPWL

system

(ẋ, ẏ, ż) =

{
F+(x, y, z), if z > 0

F−(x, y, z), if z < 0
, (5.6)

composed by the two linear vector fields

F+(x) =




1− bx− y
x− ay
f+

3 (x)


 and F−(x) =




1− bx
−ay
f−3 (x)


 ,

where x = (x, y, z) and

f+
3 = (1− kb)x+ (ω − a− k)y − ωz + k − ωyr, (5.7)

f−3 = −kbx+ (ω − a)y − ωz + k − ωyr. (5.8)

5.2.2 Natural equilibria

The vector field F− has an equilibrium at the point

x− =

(
1

b
, 0,−yr

)
.

It is a stable node since the eigenvalues are real and negative, namely

{−a,−b,−ω}. Moreover, this is a real equilibrium since

h(x−) = −yr < 0.
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The vector field F+ has an equilibrium point at

x+ =
(
aȳ+, ȳ+, ȳ+ − yr

)
,

where

ȳ+ =
1

1 + ab
.

It is a stable node (for a ≥ 2+b) or a focus (for a < 2+b) since the eigen-

values have negative real part, namely

{
−a+b

2 ±
√(

a−b
2

)2 − 1,−ω
}
.

Moreover, this is a virtual equilibrium point because

h(x̄+) = ȳ+ − yr < 0

(remember that yr > 1).

As x− is always a real equilibrium and x̄+ is always a virtual

equilibrium, no boundary equilibrium bifurcations can occur in (5.6).

5.2.3 Dynamics on the switching boundary

In order to analyse the dynamic behaviour of system (5.6) on the

switching boundary Σ, we calculate first and second order Lie deriva-

tives of the scalar function h(x, y, z) = z with respect to the vector

fields F±, through the formulas

LF±h = f±3 ,

L2
F±h = 〈∇f±3 ,F±〉.

The switching boundary Σ is partitioned into four different regions

Σas = {x ∈ Σ : f+
3 (x, y, 0) < 0 < f−3 (x, y, 0)},

Σrs = {x ∈ Σ : f−3 (x, y, 0) < 0 < f+
3 (x, y, 0)},

Σ−c = {x ∈ Σ : f−3 (x, y, 0) < 0 and f+
3 (x, y, 0) < 0},

Σ+
c = {x ∈ Σ : f−3 (x, y, 0) > 0 and f+

3 (x, y, 0) > 0},
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separated by tangency lines

T− = {x ∈ Σ : f−3 (x, y, 0) = 0},
T+ = {x ∈ Σ : f+

3 (x, y, 0) = 0},

which contain all the tangency points of the vector fields F− and F+

with Σ, respectively.

The double tangency point is at the transversal intersection of the

lines T±. Then, system (5.6) has only one point of double tangency,

given by

x̂ = (kŷ, ŷ, 0) , (5.9)

where

ŷ =
k − ωyr

a+ bk2 − ω , (5.10)

provided that

a 6= ω − bk2.

There is no double tangency points if a = ω − bk2 and k 6= ωyr, since

then the tangency lines T− and T+ become parallel. In the case a =

ω − bk2 and k = ωyr, the lines T− and T+ are coincident. Both cases

are not of our interest, since in the first case there is no point of double

tangency and the second is not a regular case. Moreover, the double

tangency point must be in the first quadrant with respect to the (x, y)-

axes in the plane z = 0, since it is required iL > 0 (x > 0) and vC ≥ 0

(y ≥ 0) due to operating constraints of the circuit. The double tangency

point x̂ will be a two-fold whenever L2
F−h(x̂) 6= 0 and L2

F+h(x̂) 6= 0

(see Definition 2.5).

The sliding vector field on Σ associated to the dynamical system

(5.6) is calculated according to (2.9), getting

Fs(x, y, 0) =
1

ky − x




bx2 − x+ ay2 − ωy(y − yr)
−k(bx2 − x+ ay2) + ωx(y − yr)

0



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provided that ky−x 6= 0. Pseudo-equilibrium points of (5.6) are easily

obtained by solving the vector equation

Fs(x, y, 0) = (0, 0, 0)T ,

which reduces to the quadratic bx2 − x + ay2 = 0 plus the condition

y = yr. So, we have two pseudo-equilibrium points, namely

x̃± =
(
x̃±, yr, 0

)
, (5.11)

where

x̃± =
1±

√
1− 4aby2

r

2b
> 0, (5.12)

for all a ≤ aSN with

aSN =
1

4by2
r

. (5.13)

For a = aSN a collision occurs between them, i.e., x̃+ = x̃−, and

for a > aSN both pseudo-equilibria disappear in a fold or saddle-node

bifurcation. Figure 5.2 illustrates this collision through the variation of

the parameter a.

ym

ym

0 x

y

yr

1
b

1
2b

1

x̃− x̃+x̃− = x̃+

a = aSN

a < aSN

a > aSN

Figure 5.2: Fold bifurcation of pseudo-equilibria. Pseudo-equilibria are
the points of intersection between the straight line y = yr and the ellipse

bx2 − x+ ay2 = 0. Take ym =
√

1
4ab

.

Figure 5.3 shows a portrait of Σ in (x, y)-plane, where we assume

ω < a < aSN and k > ωyr. The slope of the straight line ky − x = 0
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varies with the parameter k, and so the double tangency point x̂(k)

moves on the ellipse

x− ωyry − bx2 + (ω − a)y2 = 0 (5.14)

for y > 0, where the maximum value for its y-coordinate is given by

Ymax =

[
2bωyr

(
1 +

√
1 +

a− ω
bω2y2

r

)]−1

.

The double tangency point x̂(k) is able to collide with the pseudo-

equilibrium point x̃− or x̃+, located at the intersection of y = yr with

this ellipse, since under such condition equation (5.14) coincides with

the quadratic equation that defines pseudo-equilibria. From this, the

pseudo-equilibria transition between sliding regions can occur, leading

to a TS-bifurcation.

0 x

y

yr

x̂

x̃− x̃+

T− T+

Σ+
c

Σ−c

Σas
Σrs

1
b

1
2b

k−ωyr
bk

k−ωyr
a+k−ω

Ymax

1

Figure 5.3: Topological configuration on Σ. We assume ω < a < aSN and
k > ωyr. Both pseudo-equilibria x̃± are located at the intersection of the
(dashed-line) y = yr with the (dashed-line) ellipse. The double tangency
point x̂ moves on the dashed-line ellipse by varying the parameter k, since it
must also belong to the straight line x− ky = 0.
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Note that, from expressions (5.7) and (5.8), all the points x be-

longing to Σas fulfill the condition

f−3 (x)− f+
3 (x) = ky − x > 0.

On the other hand, if x ∈ Σrs then f−3 (x)−f+
3 (x) = ky−x < 0. On the

straight line ky−x = 0 we have f−3 (x) = f+
3 (x), and then x is a crossing

point if f−3 (x) = f+
3 (x) 6= 0, while the point x = x̂ is a double tangency

point (assuming a 6= ω − bk2) when f−3 (x) = f+
3 (x) = 0. Although the

sign of ky − x is not enough to locate points in the different regions

of Σ, it is sufficient in the case of pseudo-equilibria, which are always

in one of the sliding regions or on the point of transition between the

sliding regions, as proved in proposition below.

Lemma 5.1. (On the position of pseudo-equilibria) Assuming

ω − bk2 6= a ≤ aSN ,

the points x̃± = (x̃±, yr, 0) and x̂ = (kŷ, ŷ, 0) are well defined, being ŷ

given in (5.10) and x̃± given in (5.12). The following statements hold.

(i) If x̃± < kyr then x̃± ∈ Σas.

(ii) If x̃± > kyr then x̃± ∈ Σrs.

(iii) If x̃± = kyr then x̃± = x̂ = (kyr, yr, 0).

Proof. To simplify the analysis, we think of the parameter a as a func-

tion of the coordinate x̃±, by writing a = x̃±(1 − bx̃±)/y2
r . Then,

by eliminating this parameter in the expressions of LF−h(x̃±) and

LF+h(x̃±), we obtain

LF−h(x̃±) =
(1− bx̃±)(kyr − x̃±)

yr
,

LF+h(x̃±) = − (bx̃± + yr − 1)(kyr − x̃±)

yr
.
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Note from (5.12) that 0 < x̃± < 1/b and remember that yr > 1, b > 0

and k > 0. Then LF−h(x̃±)LF+h(x̃±) < 0 if x̃± 6= kyr, and for x̃± <

kyr (resp. x̃± > kyr) we have LF−h(x̃±) > 0 and LF+h(x̃±) < 0 (resp.

LF−h(x̃±) < 0 and LF+h(x̃±) > 0). If x̃± = kyr then LF−h(x̃±) =

LF+h(x̃±) = 0, that is, x̃± = x̂. The proof is complete.

The sliding dynamics defined on the plane z = 0 and restricted

to the sliding regions can be extended to the boundaries T+ and T−, as

follows. Starting from the sliding vector field Fs, we construct a two-

dimensional system whose dynamics is equivalent to Fs in the attractive

sliding region Σas. For this, we define the desingularized sliding vector

field Fds = (ky− x)Fs, provided that ky− x > 0. Then we discard the

third component, which is null, to get the planar sliding system

ẋ = bx2 − x+ ay2 − ωy(y − yr), (5.15)

ẏ = −k(bx2 − x+ ay2) + ωx(y − yr). (5.16)

We can also determine a planar sliding system with dynamics

equivalent to that of Fs in the repulsive sliding region Σrs. For this, just

take the opposite sign in equations (5.15)-(5.16), since for (x, y, 0) ∈ Σrs

we have −(ky − x) > 0. Then, for ky − x < 0, we must consider the

system

ẋ = −bx2 + x− ay2 + ωy(y − yr), (5.17)

ẏ = k(bx2 − x+ ay2)− ωx(y − yr). (5.18)

Clearly, equilibria of (5.15)-(5.16) are also equilibria of (5.17)-

(5.18), obtained by solving the system of equations

bx2 − x+ ay2 − ωy(y − yr) = 0, (5.19)

−k(bx2 − x+ ay2) + ωx(y − yr) = 0. (5.20)

Note that the pseudo-equilibria x̃± = (x̃±, yr, 0), once expressed in
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reduced coordinates are the points p± = (x̃±, yr), with x̃± given in

(5.12), so that they are of course equilibria of (5.15)-(5.16). In order

to determine the stability of the pseudo-equilibria x̃±, it is much easier

to work with the equivalent planar sliding systems, and we proceed as

follows.

(i) If x̃± = (x̃±, yr, 0) ∈ Σas then we must consider the planar sliding

system (5.15)-(5.16) and its respective Jacobian matrix

Jas(x̃
±, yr) =

(
2bx̃± − 1 (2a− ω)yr

k(1− 2bx̃±) ωx̃± − 2akyr

)
.

In this case, the determinant and trace of Jas are given by

Det[Jas(x̃
±, yr)] = ω(1− 2bx̃±)(kyr − x̃±), (5.21)

Tr[Jas(x̃
±, yr)] = (ω + 2b)x̃± − 2akyr − 1. (5.22)

(ii) If x̃± = (x̃±, yr, 0) ∈ Σrs then we must consider the planar

sliding system (5.17)-(5.18) and its respective Jacobian matrix

Jrs(x̃
±, yr) = −Jas(x̃±, yr). In this case, Det[Jrs(x̃

±, yr)] =

Det[Jas(x̃
±, yr)] and Tr[Jrs(x̃

±, yr)] = −Tr[Jas(x̃
±, yr)].

For all a < aSN the x-coordinate of the pseudo-equilibrium x̃−

fulfils x̃− < 1
2b . In this case, if x̃− < kyr then x̃− ∈ Σas and Det(Jas) >

0. Thus x̃− is a pseudo-node or a pseudo-focus when in Σas, being

stable whenever Tr(Jas) < 0, that is, for k > k−H with

k−H =
(w + 2b)x̃− − 1

2ayr
.

On the other hand, if x̃− > kyr then x̃− ∈ Σrs and Det(Jrs) < 0, that

is, x̃− is a pseudo-saddle in Σrs.

Regarding x̃+, we have x̃+ > 1
2b . In this case, if x̃+ < kyr then

x̃+ ∈ Σas and Det(Jas) < 0. Thus, it is a pseudo-saddle when in Σas.

If x̃+ ∈ Σrs then it can be a pseudo-node or a pseudo-focus, since



146
5. TS-Bifurcation and Crossing Limit Cycles in a Boost

Converter

Det(Jrs) > 0. Clearly, x̃+ is always an unstable pseudo-equilibrium of

3D system (5.6). But for the planar sliding system (5.17)-(5.18), it can

be a stable equilibrium if Tr(Jrs) < 0, that is, for k < k+
H with

k+
H =

(w + 2b)x̃+ − 1

2ayr
.

From the previous analysis, we can give the following statements

regarding the stability of the pseudo-equilibria x̃±. Note the condi-

tions that make stable the pseudo-equilibrium point x̃−, the one to be

selected as the desired operating point.

Proposition 5.1. We assume a < aSN and k 6= k±H . The point x̃−

is a pseudo-saddle when in Σrs and a pseudo-node (or pseudo-focus)

when in Σas. The point x̃+ is a pseudo-saddle when in Σas and a

pseudo-node (or pseudo-focus) when in Σrs. Therefore, x̃+ is always

an unstable pseudo-equilibrium while x̃− is a stable pseudo-equilibrium

whenever the control parameter k is selected such that k > x̃−/yr and

k > k−H .

We study next several bifurcations that can lead to situations

where the above proposition cannot be applied. Sliding bifurcations in

a boost converter with SMC-Washout were also analyzed in [28, 29],

but for different models of the boost converter.

5.2.4 Partial analysis of sliding bifurcations

Regarding the sliding dynamics, three different one-parameter bi-

furcations can appear: the saddle-node of equilibria, the Hopf bifurca-

tion, and the transcritical bifurcation.

Recall that the pseudo-equilibria x̃± exist for a ≤ aSN , as given

by (5.11)-(5.12) and (5.13), and that they are inside of sliding regions

if kyr 6= x̃±. For a = aSN they collide, i.e., there exists only one

pseudo-equilibrium point and the determinant in (5.21) goes to zero,

because then x̃±(aSN ) = 1/(2b). Moreover, at a = aSN we have a
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non-vanishing Tr(Jas) = (ωyr − k)/(2byr), provided that k 6= ωyr.

Therefore, if k 6= ωyr and k 6= 1/(2byr) then at a = aSN a saddle-node

bifurcation occurs for the sliding dynamics. The sign of the expression

kyr − x̃±(aSN ) implies that for k < 1/(2byr) such bifurcation occurs

in Σrs while for k > 1/(2byr) it occurs in Σas (see Lemma 5.1). In the

first case, for a < aSN and near the critical value aSN , the point x̃− is

a pseudo-saddle while the point x̃+ is a pseudo-node, both in Σrs. In

the second case, for a < aSN and near the critical value aSN , the point

x̃− is a pseudo-node and the point x̃+ is a pseudo-saddle, both in Σas.

A Hopf bifurcation occurs in Σas for k = k−H > x̃−/yr, since

Tr(Jas) = 0 and Det(Jas) > 0. This bifurcation is related to the

pseudo-equilibrium x̃−, so that (i) for k > k−H and near the critical value

k−H , we have x̃− an unstable pseudo-focus; (ii) for k < k−H becomes a

stable pseudo-focus and an unstable limit cycle arises around it, entirely

contained in Σas. Another Hopf bifurcation occurs, but now in Σrs

and for k = k+
H < x̃+/yr, since Tr(Jrs) = 0 and Det(Jrs) > 0. This

bifurcation is related to the pseudo-equilibrium x̃+, so that (i) for k >

k+
H and near the critical value k+

H , we have that x̃+ is an unstable

pseudo-focus; (ii) for k < k+
H it becomes a stable pseudo-focus and an

unstable limit cycle arises around it, entirely contained in Σrs. Both

bifurcations are subcritical ones but the full analysis of these Hopf

bifurcations is out of the scope of this work and will be done elsewhere.

Regarding the transcritical bifurcation, and assuming ω − bk2 6=
a < aSN , there are two cases. One of the cases involves the pseudo-

equilibrium x̃−, and it occurs at x̃− = kyr, while the other involves

x̃+ and occurs at x̃+ = kyr, provided that the trace (5.22) is not

null. Both cases are related to a pseudo-equilibrium transition from

Σrs (x̃± > kyr) to Σas (x̃± < kyr), being the transition point the

double tangency point x̂, as given in (5.9)-(5.10). See Lemma 5.1.

Note, from equations (5.11)-(5.12) and (5.9)-(5.10), that the points

x̃± = (x̃±, yr, 0) depend only on the parameter a, while the point

x̂ = (kŷ, ŷ, 0) depends on the parameters a and k. Thus, we rewrite
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Lemma 5.1 with respect to these two parameters, as follows.

Lemma 5.2. System (5.6) undergoes a pseudo-equilibrium transition

from Σas to Σrs (or vice versa) for a = aTS(k), where

aTS(k) =
k(1− bkyr)

yr
. (5.23)

In addition, regarding the critical value

kc =
1

2byr
, (5.24)

we have aTS(k) ≤ aTS(kc) = aSN = 1/(4by2
r) for all k, and the follow-

ing statements hold.

(i.1) x̃− = x̂ for all (k, a) such that ωyr 6= k < kc and a = aTS(k);

(i.2) x̃− ∈ Σrs for all (k, a) such that k < kc and aTS(k) < a ≤ aSN ;

(i.3) x̃− ∈ Σas for all (k, a) such that a < aTS(k) or k > kc and

a ≤ aSN ;

(ii.1) x̃+ = x̂ for all (k, a) such that ωyr 6= k > kc and a = aTS(k);

(ii.2) x̃+ ∈ Σas for all (k, a) such that k > kc and aTS(k) < a ≤ aSN .

(ii.3) x̃+ ∈ Σrs for all (k, a) such that a < aTS(k) or k < kc and

a ≤ aSN .

(iii) x̃− = x̃+ = x̂ for k = kc 6= kωyr and a = aTS(kc).

Proof. From Lemma 5.1, if x̃± = kyr then x̃± = x̂. Thus, solving the

equation b2k2y2
r − kyr + ay2

r = 0 with respect to a, we get expression

(5.23). We note that

4by2
r(aTS(k)− aSN ) = (1− 2bkyr)

2 ≥ 0,
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so that the inequality aTS(k) ≤ aTS(kc) = aSN holds. At the critical

value a = aTS we have that

x̃±(aTS) =
1

2b

(
1±

∣∣∣∣
k

kc
− 1

∣∣∣∣
)
,

ŷ(aTS) = yr,

implying the following situations: (i.1) if k < kc, then x̃−(aTS) = kyr

and so x̃− = x̂; (ii.1) if k > kc, then x̃+(aTS) = kyr and so x̃+ = x̂; (iii)

if k = kc, then x̃−(aTS) = x̃+(aTS) = kyr and so x̃− = x̃+ = x̂, since

aTS(kc) = aSN . Note that the constraint k 6= ωyr ensures that x̂(k, a)

is defined for a = aTS(k), since aTS(ωyr) = ω − bk2. See equation

(5.10).

If we define the functions g±(a) = x̃±(a) − kyr for all a ≤ aSN ,

then we get g±(aTS) = 0,

g±(a) =
1− k

kc
±
√

1− a
aSN

2b
,

dg−

da
(a) =

y2
r√

1− a
aSN

> 0,

dg+

da
(a) = − y2

r√
1− a

aSN

< 0.

Then, we can conclude that: (i.2) if k < kc and aTS(k) < a ≤ aSN ,

then x̃−(a) > kyr and so x̃− ∈ Σrs; (i.3) if a < aTS or k > kc and

a ≤ aSN , then x̃−(a) < kyr and so x̃− ∈ Σas; (ii.2) if k > kc and

aTS(k) < a ≤ aSN , then x̃+(a) > kyr and so x̃+ ∈ Σas; (ii.3) if

a < aTS or k < kc and a ≤ aSN , then x̃+(a) < kyr and so x̃+ ∈ Σrs.

See Lemma 5.1. The proof is complete.

We already know the stability of the pseudo equilibria x̃± (see

Proposition 5.1). Note that a change from saddle to node occurs when

x̃− (resp. x̃+) pass from Σrs to Σas (resp. Σas to Σrs). Furthermore, at

the critical point x̃− = kyr (resp. x̃+ = kyr) the determinant in (5.21)
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is null and x̃− = x̂ (resp. x̃+ = x̂). In fact, the double tangency point

x̂ is an equilibrium of the de-singularized sliding vector field (5.15)-

(5.16), and it is possible to show that its character changes from node

to saddle after colliding with x̃− or x̃+.

Effectively, the double tangency point x̂ = (kŷ, ŷ, 0), in reduced

coordinates, is represented by the point q = (kŷ, ŷ), which is also an

equilibrium point of (5.15)-(5.16)1. In fact, multiplying equation (5.19)

by k and adding (5.20) we obtain ω(x − ky)(y − yr) = 0. Choosing

x = ky, and substituting in (5.19) we have that

y
[
(bk2 + a− ω)y + ωyr − k

]
= 0. (5.25)

Thus, the non-trivial solution of equation (5.25) gives by the y-coordinate

in (5.10) and the x-coordinate is obtained directly from x = ky. We

can study the stability of this equilibrium from the determinant given

by

Det[J(q)] = ωyr(a− aTS)ŷ,

where J denotes the Jacobian matrix of planar sliding system (5.15)-

(5.16), evaluated at q = (kŷ, ŷ).

Consider the equilibria p± = (x̃±, yr) (mirroring pseudo-equilibria)

and q = (kŷ, ŷ) (mirroring the double tangency point) of planar sliding

system (5.15)-(5.16), and assume that the trace in (5.22) is not null at

a = aTS . A collision between the equilibria p− and q (resp. p+ and

q) occurs for ωyr 6= k < kc (resp. ωyr 6= k > kc) and a = aTS(k),

so that p−(aTS) = q(aTS) = (kyr, yr) is a non-hyperbolic equilibrium.

Moreover, for a 6= aTS and near the critical value aTS , both equilibria

p− and q coexist, being one of them of node type and the other of

saddle type, and interchanging such types at the value a = aTS . Then,

under such conditions, for a = aTS a transcritical bifurcation in the

sliding dynamics occurs.

1The trivial equilibrium point of (5.15)-(5.16) is always in a crossing region or
collides with the double tangency if k = ωyr (then, x̂ = 0). We do not worry about
this trivial equilibrium.
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Figure 5.4: Bifurcation set in plane (k, a). For values (a, k) in the shaded
region the point x̂ is a T-singularity, while the double tangency goes to infinity
at the dashed semi-parabola, where the denominator in (5.10) goes to zero.
At the point C, the point x̂ becomes a two-cusp. The black horizontal line
a = aSN indicates a saddle-node bifurcation (SN) for the pseudo-equilibria
x̃±, which arise for a < aSN . The parabola in red color (light and dark parts)
marks the transition of the pseudo-equilibria between the sliding regions.
The dark part of this parabola, within the shaded region, indicates the TS-
bifurcation, which is related with x̃− in its left-branch (TS−) and with x̃+

in its right-branch (TS+). At the point P there occurs a sliding pitchfork
bifurcation. The green line stands for a sliding Hopf bifurcation of x̃−, to be
studied elsewhere.

We summarize our analysis in the bifurcation set of Figure 5.4. In

the black horizontal line a = aSN there occurs the saddle-node bifur-

cation (SN) of the pseudo-equilibria x̃±, which are defined for a ≤ aSN
and such that x̃−(aSN ) = x̃+(aSN ). To the left of P -point this bifur-

cation occurs in Σas and to the right of P -point occurs in Σrs. At P

we have a degenerate case where x̃± = x̂. If we take k = kc then for

a < aSN = aTS , and near to the value aSN , three hyperbolic equilib-

ria appear in the sliding dynamics, equivalent to the pseudo-equilibria

x̃− ∈ Σas, x̃+ ∈ Σrs (both node equilibria) and to the double tangency

point x̂ (saddle equilibrium), so that for a > aSN only x̂ persists, as in

a Pitchfork bifurcation.

The parabola of equation a = aTS(k), represented in red color

(light and dark parts) in Figure 5.4, depicts the transition of the pseudo-
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equilibria between the sliding regions. From Lemma 5.2, we conclude

the following.

(i) For k < kc and aTS(k) < a ≤ aSN (to the left of the red parabola

left-branch) we get x̃− ∈ Σrs. For a < aTS(k) or k > kc and

a ≤ aSN (to the right of the red parabola left-branch) we get

x̃− ∈ Σas.

(ii) For k > kc and aTS(k) < a ≤ aSN (to the right of the red

parabola right-branch) we get x̃+ ∈ Σas. For a < aTS(k) or

k < kc and a ≤ aSN (to the left of the red parabola right-branch)

we get x̃+ ∈ Σrs.

(iii) At a = aTS(k) we get x̃− = x̂ for k < kc (red parabola left-

branch), x̃+ = x̂ for k > kc (red para-bola right-branch), and

x̃− = x̃+ = x̂ for k = kc, provided that k 6= ωyr.

Still in relation to Figure 5.4, for all values (a, k) in the shaded

region the double tangency x̂ is a T-singularity, since L2
F−h(x̂) > 0 and

L2
F+h(x̂) < 0. From this, we can note that the boost converter system

(5.6) presents all the types of two-folds defined in Definition 2.5, besides

other cases such as the two-cusp that occurs at the point C and the

cusp-folds that appear for (k, a) on the blue line (L2
F−h(x̂) = 0) and

also on the orange line (L2
F+h(x̂) = 0).

We have seen already that the transition of a pseudo-equilibrium

between the sliding regions induces in the sliding dynamics a transcrit-

ical bifurcation. This bifurcation involves a pseudo-equilibrium (x̃− or

x̃+) and the double tangency point (x̂), with associated equilibria in the

sliding dynamics. When the double tangency is indeed a T-singularity

(invisible two-fold), this sliding bifurcation is also associated to the

birth of a limit cycle that crosses the Σ-plane in two points, one in each

crossing region Σ±c , as shown below. Such a crossing limit cycle, which

does not contain sliding points, makes this bifurcation more aggressive.

Among all the bifurcations studied, the transcritical bifurcation

is the most interesting for the scope of this work. If we focus our
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attention to the case where x̂ is a T-singularity, then our (k, a)-plane

in Figure 5.4 could be reduced to the shaded part, where the parabola

in red color (dark part) indicates the occurrence of a TS-bifurcation.

We have two distinct scenarios: a supercritical case (TS−) involving

the pseudo-equilibrium x̃− and another subcritical (TS+) involving the

point x̃+.

In the sequel, we study the TS-bifurcation, proceeding in two

steps. First, in next subsection, we finalize our analysis of the sliding

dynamics with the TS-bifurcation theorem and its proof. Later, in

Section 5.3, we analyze the crossing dynamics and the birth of CLCs,

as well as global bifurcations related to the vanishing of CLCs.

5.2.5 The TS-bifurcation

The value of the parameter a can change during the operation of

the boost converter since the load represented by the impedance R can

vary. For this reason, in what follows, we consider this parameter as

the main bifurcation parameter. Note that both pseudo-equilibria x̃±

and the double tangency x̂, given in (5.9) and (5.11), respectively, have

their coordinates parameterized by a.

We assume b < bmax, where

bmax =

√
1 + ω2y2

r − ωyr
2yr

= (5.26)

=
1

2yr(
√

1 + ω2y2
r + ωyr)

<
1

2ωy2
r

,

so that we can assure that 1 − 4b(b + ω)y2
r > 0. Accordingly, we also

introduce the values

k1 =
1−

√
1− 4b(b+ ω)y2

r

2byr
= (5.27)

=
2(b+ ω)yr

1 +
√

1− 4b(b+ ω)y2
r

> (b+ ω)yr,
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and

k2 =
1 +

√
1− 4b(b+ ω)y2

r

2byr
<

1

byr
. (5.28)

Apart from kc given in (5.24), which separates the supercritical

and subcritical cases, the values k1 and k2 are important for the analysis

of TS-bifurcation, since they indicate the lower and upper limits for k,

respectively, of the domain of the function a = aTS(k) for which a TS-

bifurcation is possible (see Figure 5.4). Thus, a TS-bifurcation occurs

at a = aTS(k) for all k 6= kc such that k1 < k < k2. We remark

that if the condition b < bmax is not met, then the TS-bifurcation will

not occur, since then for a = aTS the double tangency cannot be of

invisible two-fold type (a T-singularity). Theorem 5.1 summarizes the

TS-bifurcation in system (5.6) for the boost converter.

Theorem 5.1. Consider system (5.6) with b < bmax and k 6= kc such

that k1 < k < k2, where kc, bmax, k1 and k2 are defined in (5.24),

(5.26), (5.27), and (5.28) respectively. The following statements hold

for a near the value aTS defined in (5.23).

(a) (Supercritical TS-bifurcation). If k1 < k < kc then for a = aTS

the system undergoes a TS-bifurcation, so that there exists ε > 0

such that for aTS−ε < a < aTS the pseudo-equilibrium x̃− ∈ Σas

and is a stable pseudo-node, while for aTS < a < aTS + ε the

pseudo-equilibrium x̃− ∈ Σrs and is a pseudo-saddle.

(b) (Subcritical TS-bifurcation). If kc < k < k2 then for a = aTS

the system undergoes a TS-bifurcation, so that there exists ε > 0

such that for aTS−ε < a < aTS the pseudo-equilibrium x̃+ ∈ Σrs

and is an unstable pseudo-node, while for aTS < a < aTS + ε the

pseudo-equilibrium x̃+ ∈ Σas and is a pseudo-saddle.

Proof. Remember that yr > 1. To prove the occurrence of a TS-

bifurcation we follow Definition 2.10. The critical value aTS of the

bifurcation parameter a comes from Lemma 5.2. Recall also from such
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lemma that aTS(k) < aSN if k 6= kc. Thus, we can assure that the

pseudo-equilibria x̃± are defined for all a in a neighborhood of aTS .

Moreover, the inequality aTS(k) > ω − bk2 holds for all k > k1, since

it is equivalent to the inequality k > ωyr, which is true from (5.27).

Thus, we can assure that the double tangency x̂ is defined for all a in

a neighborhood of aTS , and that its coordinates are positive, because

k1 > ωyr. Note also that, from the last inequality in (5.28), the value

aTS(k) > 0 for all k < k2.

Checking condition (2.13), we get

d

da
LF−h(x̃±(a), a)

d

da
LF+h(x̃±(a), a)

∣∣∣
a=aTS

=

=
y2
r (bkyr − 1) (bkyr − 1 + yr)(

1− k
kc

)2 < 0,

since kc 6= k < k2 < 1/(byr). Therefore, the pseudo-equilibria x̃±(a)

pass from the attractive to repulsive sliding regions (or vice versa) as

the parameter a varies around its critical value aTS . This transition

was already known from Lemma 5.2. We must also check the condition

(2.14), namely the inequalities

L2
F−h (x̂(aTS), aTS) =

= kb (bkyr − 1) (k − k1) (k − k2) > 0,

L2
F+h (x̂(aTS), aTS) =

= (bkyr − 1 + yr)
(
kb(k − k1)(k − k2)− k2 − 1

)
< 0,

which have been calculated at a = aTS . The first inequality is true

under the hypothesis b < bmax and k1 < k < k2, and for the same

reasons the second inequality is also true. Therefore, x̂ is a T-singularity

for a = aTS .

By using Lemma 5.2, the TS-bifurcation involves the pseudo-

equilibrium x̃− in the supercritical case, since x̃−(aTS) = x̂(aTS) for

all k1 < k < kc. In addition, for a > aTS we have x̃− ∈ Σrs and
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for a < aTS we have x̃− ∈ Σas. On the other hand, it involves the

pseudo-equilibrium x̃+ in the subcritical case, since x̃+(aTS) = x̂(aTS)

for all kc < k < k2. In this case, for a > aTS we have x̃+ ∈ Σas and for

a < aTS we have x̃+ ∈ Σrs.

Finally, we analyze the stability of pseudo-equilibria when they

are close enough to the bifurcation condition. From the determinant

and trace of the Jacobian matrix, given in (5.21)-(5.22), we obtain the

following result of stability, assuming that |a−aTS | is sufficiently small.

(a) Under the hypotheses of supercritical case, we get

Det[Jas(x̃
−, yr)]

∣∣∣
a=aTS

= 0,

d

da
Det[Jas(x̃

−, yr)]
∣∣∣
a=aTS

= −ωy2
r < 0,

Tr[Jas(x̃
−, yr)]

∣∣∣
a=aTS

=

= −2k
(
−byr(k − k1)(k − k2) +

ωyr
2

)
− 1 < 0.

Therefore, for a < aTS the point x̃− is a stable pseudo-node,

becoming a pseudo-saddle for a > aTS .

(b) Under the hypotheses of subcritical case, we get

Det[Jrs(x̃
+, yr)]

∣∣∣
a=aTS

= 0,

d

da
Det[Jrs(x̃

+, yr)]
∣∣∣
a=aTS

= −ωy2
r < 0,

Tr[Jrs(x̃
+, yr)]

∣∣∣
a=aTS

=

= 2k
(
−byr(k − k1)(k − k2) +

ωyr
2

)
+ 1 > 0.

Therefore, for a > aTS the point x̃+ is a pseudo-saddle, becoming

an unstable pseudo-node for a < aTS .

The proof is completed.

In next section, it will be shown that the TS-bifurcation predicted
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by Theorem 5.1 is accompanied by the birth of a crossing limit cycle

(CLC).

5.3 Numerical analysis of bifurcating CLCs

In this section, simulation results of the boost converter with

SMC-Washout modeled by the dynamical system (5.6) are shown in

Figures 5.5 and 5.6. From Figure 5.5, it is possible to visualize the

TS-bifurcation for the supercritical case and the emergence of a CLC

(Γs) with stable node dynamics. Figure 5.6 illustrates the subcritical

case, where it is possible to detect the emergence of a CLC (Γu) with

saddle dynamics.

In order to investigate the existence and stability of the CLC we

will analyze numerically the dynamics in the crossing region, using the

closing equations and the theory of first return maps (see [20]).

5.3.1 Closing equations and solutions

System (5.6) can be rewritten as

ẋ =

{
A−x + b, if z < 0

A+x + b, if z > 0
, (5.29)

where

A− =



−b 0 0

0 −a 0

−kb ω − a −ω


 , A+ =



−b −1 0

1 −a 0

1− kb ω − a− k −ω


 ,

x =



x

y

z


 and b =




1

0

k − ωyr


 .
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(a) a = 1.1 < aTS (b) a = 1.2 = aTS

(c) a = 1.25 > aTS

Figure 5.5: Simulation results of system (5.6) for the supercritical case.
The green and red points indicate the T-singularity and pseudo-equilibrium
x̃−, respectively. Simulation parameters are ω = 1, yr = 2, b = 0.01 and
k = 2.5.

Note that F±(x, y, z) = A±x + b. As system (5.29) is piecewise-linear,

we can write explicitly the flow in each zone, namely

Φ±(τ,x) = x± + eA
±τ (x− x±),

where

x− =




1
b

0

−yr


 and x+ =




a
1+ab

1
1+ab

1
1+ab − yr




are the equilibria of (5.29) for z < 0 and z > 0, respectively.
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(a) a = 1.13 < aTS (b) a = 1.63 = aTS

(c) a = 1.73 > aTS

Figure 5.6: Simulation results of system (5.6) for the subcritical case. The
green and red points indicate the T-singularity and pseudo-equilibrium x̃+,
respectively. Simulation parameters are ω = 0.6, yr = 1.33, b = 0.08 and
k = 6.

In what follows, we assume the existence of a CLC that crosses

Σ = {z = 0} at the two points

x0 =



x0

y0

0


 and x1 =



x1

y1

0


 ,

so that x0 ∈ Σ+
c and x1 ∈ Σ−c . We denote the flight times 2 spent by

2The flight time is the time required for a trajectory, started in Σ, to return to
Σ.
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the closed orbit using each vector field F− (zone z < 0) and F+ (zone

z > 0) by τ− and τ+, respectively. A trajectory of (5.29) starting in x0

is determined by the vector field F+ until the time instant τ+, when

it comes back to touch the plane z = 0 at the point x1. Similarly, a

trajectory of (5.29) starting in x1 is determined by the vector field F−

until the time instant τ−, touching again the plane z = 0 at the point

x0. Therefore, the point x0 is mapped into x1 by the flow of (5.29) in

zone z > 0 and the point x1 is mapped into x0 by the flow of (5.29) in

zone z < 0.

Accordingly, we write the closing equations as follows

x1 = x+ + eA
+τ+(x0 − x+), (5.30)

x0 = x− + eA
−τ−(x1 − x−). (5.31)

These equations form a system with 6 nonlinear equations with 6 un-

knowns. The vector of unknowns is (x0, y0, x1, y1, τ−, τ+), and it is

required that f±3 (x0, y0, 0) > 0 (x0 ∈ Σ+
c ), f±3 (x1, y1, 0) < 0 (x1 ∈ Σ−c )

and τ± > 0, where f+
3 and f−3 are the functions given in (5.7) and

(5.8), respectively. The following result is straightforward and is given

without proof.

Proposition 5.2. Assume that the dynamical system (5.29) has a CLC

that transversely intersects the plane z = 0 at the points x̂1 ∈ Σ−c and

x̂0 ∈ Σ+
c , with flight times τ̂+ > 0 and τ̂− > 0 in the zones z > 0

and z < 0, respectively. Then, the values x̂0, x̂1, τ̂+ and τ̂− satisfy the

closing equations (5.30) and (5.31).

5.3.2 First return maps and stability of limit cycles

In this section the stability of CLCs is analyzed. Assuming that

we have a transversal orbit in z > 0 joining the points x0 = (x0, y0, 0) ∈
Σ+
c , x1 = (x1, y1, 0) ∈ Σ−c , we can ensure that there is an open set

U0 ⊂ P12 (Σ+
c ) in the neighbourhood of (x0, y0), and an open set U1 ⊂

P12 (Σ−c ) in the neighbourhood of (x1, y1), where P12 is the canonical
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projection on the plane z = 0, and an application τ+ : U0 → R such

that Φ+(τ+(x0, y0),x0) = x1 = (x1, y1, 0) with (x1, y1) ∈ U1 for all

(x0, y0) ∈ U0. So, the half-return map in reduced coordinates, in zone

z > 0 to be denoted by P+, is defined by

P+ : U0 −→ U1

(x0, y0) 7−→ (x1, y1) = G+(x0, y0, τ+(x0, y0)),

where G+(x, y, τ) = P12(Φ+(P12x, τ)) corresponds to first two coordi-

nates of the flow. We will need also the function

g+(x, y, τ) = P3(Φ+(P12x, τ)),

where P3 is the standard projection on the z-axis. This last func-

tion implicitly defines the required flight time τ+ by imposing that, for

(x0, y0) ∈ U0, we have

g+(x0, y0, τ+(x0, y0)) = 0. (5.32)

Analogously, we can ensure that there is an open set V0 ⊂ P12 (Σ−c )

in the neighbourhood of (x1, y1), V1 ⊂ P12 (Σ+
c ) in the neighbourhood of

(x2, y2), and an application τ− : V0 → R such that Φ−(τ−(x1, y1),x1) =

x2 = (x2, y2, 0) with (x2, y2) ∈ V1 for all (x1, y1) ∈ V0. So, the half-

return map in reduced coordinates, in zone z < 0 and denoted by P−,

is defined by

P− : V0 −→ V1

(x1, y1) 7−→ (x2, y2) = G−(x1, y1, τ−(x1, y1)),

where G−(x, y, τ) = P12(Φ−(P12x, τ)) corresponds to first two coordi-

nates of the flow. We will need also the function

g−(x, y, τ) = P3(Φ−(P12x, τ)),

where P3 is the standard projection on the z-axis. This last func-
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tion implicitly defines the required flight time τ− by imposing that, for

(x1, y1) ∈ V0, we have

g−(x1, y1, τ−(x1, y1)) = 0. (5.33)

Thus, based on the conditions stated above and assuming U1 ⊂
V0, we define the function that describes in reduced coordinates the

complete first return map P as

P : U0 −→ V1

(x0, y0) 7−→ P = P− ◦ P+ = (x2, y2).

The fixed points of the first return map, excluding of course the

T-singularity, represent CLCs, so that the stability analysis of the fixed

points can be naturally extended to the CLCs. A CLC is born when

a fixed point bifurcates from a T-singularity, in a reversible Bogdanov-

Takens bifurcation with two eigenvalues equal to 1; see Chapter 5.

Note that, if (x̂0, ŷ0) is a fixed point of the map P = P− ◦ P+, then

(x̂0, ŷ0, 0) ∈ Σ+
c and it is a crossing point of the CLC with the plane

z = 0. Consequently, (x̂1, ŷ1) is a fixed point of the map P+ ◦ P− such

that (x̂1, ŷ1, 0) ∈ Σ−c and it is the other crossing point of the CLC with

the plane z = 0. The Jacobian matrices are obtained directly from

DP±(p) =
∂G±
∂(x, y)

(p) +
∂G±
∂τ

(p)
∂τ±
∂(x, y)

, (5.34)

where by differentiating (5.32) and (5.33), we obtain

∂g±
∂(x, y)

(p) +
∂g±
∂τ

(p)
∂τ±
∂(x, y)

= 0,

so that
∂τ±
∂(x, y)

= −
(
∂g±
∂τ

(p)

)−1
∂g±
∂(x, y)

(p). (5.35)



5.3. Numerical analysis of bifurcating CLCs 163

By substituting (5.35) in (5.34) we obtain

DP±(p) =
∂G±
∂(x, y)

(p)−

−
(
∂g±
∂τ

(p)

)−1
∂G±
∂τ

(p)
∂g±
∂(x, y)

(p), (5.36)

where p = p0 = (x0, y0, τ+(x0, y0)) or p = p1 = (x1, y1, τ−(x1, y1)),

respectively.

Now from (5.36), we can calculate the matrix

DP = DP−(p1) ·DP+(p0),

where the eigenvalues of matrix DP are the characteristic multipliers

of the limit cycle Γ.

Remark 5.1. In order to compute the above expressions in the model

of the circuit, we consider the case b 6= ω and a < 2 + b. This is a

consistent physical hypothesis and it is sufficient to reproduce all the

possible different behaviors.

Coming back to the computation of the solutions for equations

(5.30) and (5.31), we note that the eigenvalues of matrices A− and A+

are {−a,−b,−ω} and {α ± iβ,−ω}, respectively, where 2α = −(a +

b) and 2β =
√

4− (a− b)2. By defining p(τ+) = eατ+ cos[βτ+] and

q(τ+) = eατ+ sin[βτ+]/β, equations (5.30) and (5.31) are rewritten as

[
x1

y1

]
= G+(x0, y0, τ+) =

= M(τ+)

([
x0

y0

]
−
[

a
1+ab ,

1
1+ab

])
+

[
a

1+ab
1

1+ab

]
, (5.37)
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[
x0

y0

]
= G−(x1, y1, τ−) =

= N(τ−)

([
x1

y1

]
−
[

1
b

0

])
+

[
1
b

0

]
, (5.38)

0 = g+(x0, y0, τ+) =

= v(τ+)(x0 − x+) +
1

1 + ab
− yr, (5.39)

0 = g−(x1, y1, τ−) = u(τ−)(x1 − x−)− yr, (5.40)

where

M(τ+) =

[
p(τ+) + (a+ α)q(τ+) −q(τ+)

q(τ+) p(τ+)− (a+ α)q(τ+)

]
,

N(τ−) =

[
e−bτ− 0

0 e−aτ−

]
,

u(τ−)T =




kb
b−ω 0 − kb

b−ω
0 1 −1

0 0 1






e−bτ−

e−aτ−

e−ωτ−


 ,

v(τ+)T =



c11 c12 c13

c21 c22 c23

0 0 1






p(τ+)

q(τ+)

e−ωτ+


 ,

c11 =
k(b(a− ω) + 1)

(ω + α)2 + β2
,

c12 =
k((a− b)(b(a− ω) + 1)− 2ω)

2((ω + α)2 + β2)
+ 1,

c13 = −k(b(a− ω) + 1)

(ω + α)2 + β2
,

c21 = 1− kω

(ω + α)2 + β2
,
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c22 = a+ α+
k(2(1 + ab)− (a+ b)ω)

2((ω + α)2 + β2)
,

c23 =
kω

(ω + α)2 + β2
− 1.

From equations (5.37) and (5.38), we write

(x0, y0) = (x̂0(τ+, τ−), ŷ0(τ+, τ−))

and

(x1, y1) = (x̂1(τ+, τ−), ŷ1(τ+, τ−))

as functions of the flight times τ+ > 0 and τ− > 0, so that

[
x̂0(τ+, τ−)

ŷ0(τ+, τ−)

]
= X−1

(
NM̃

[
a

1+ab
1

1+ab

]
+ Ñ

[
1
b

0

])
, (5.41)

[
x̂1(τ+, τ−)

ŷ1(τ+, τ−)

]
= Y −1

(
MÑ

[
1
b

0

]
+ M̃

[
a

1+ab
1

1+ab

])
, (5.42)

where X = I −NM , Y = I −MN , M̃ = I −M , Ñ = I −N and I is

the identity matrix of order 2.

We define

x̂0 = (x̂0(τ̂+, τ̂−), ŷ0(τ̂+, τ̂−), 0) ∈ Σ+
c

and

x̂1 = (x̂1(τ̂+, τ̂−), ŷ1(τ̂+, τ̂−), 0) ∈ Σ−c

as the natural coordinates in R3 of the crossing points.

Substituting (5.41) and (5.42) in (5.39) and (5.40), we obtain the

non-linear equations

σ(τ+, τ−) = v(τ+)x̂d0(τ+, τ−)− ṽ(τ+, τ−)x+ = 0, (5.43)

ρ(τ+, τ−) = u(τ−)x̂d1(τ+, τ−)− ũ(τ+, τ−)x− = 0, (5.44)



166
5. TS-Bifurcation and Crossing Limit Cycles in a Boost

Converter

where we use ṽ = Det [X]·
(
v −

[
0 0 1

])
, ũ = Det [Y ]·

(
u−

[
0 0 1

])
,

and the points x̂d0 = x̂0 ·Det [X] and x̂d1 = x̂1 ·Det [Y ] to avoid a cum-

bersome denominator.

Thus, if (τ̂+, τ̂−) is a solution of the system equations (5.43)-

(5.44), such that τ̂+ > 0, τ̂− > 0, then the dynamical system (5.29)

has a CLC that transversely crosses the plane z = 0 at the points x̂0

and x̂1 with the flight times τ̂+ and τ̂− in the zones z > 0 and z < 0,

respectively.

By using (5.36) it is not difficult to arrive at the following propo-

sition that allows us to analyze the CLC stability of the system (5.29).

Proposition 5.3. Let Γ be a CLC of system (5.29), transversely in-

tersecting the plane z = 0 at the points x̂0 = (x̂0, ŷ0, 0) ∈ Σ+
c and

x̂1 = (x̂1, ŷ1, 0) ∈ Σ−c . We denote by τ̂+ > 0 and τ̂− > 0 the flight

times of Γ in the zone z > 0 and z < 0, respectively. We define the

Jacobian matrices

DP+(p0) =
1

v′(τ̂+)(x̂0 − x+)
M(τ̂+)×

×


I −

[
1− (bx̂0 + ŷ0)

x̂0 − aŷ0

]
v(τ̂+)




1 0

0 1

0 0





 ,

DP−(p1) =
1

u′(τ̂−)(x̂1 − x−)
N(τ̂−)×

×


I −

[
1− bx̂1

−aŷ1

]
u(τ̂−)




1 0

0 1

0 0





 ,

where p0 = (x̂0, ŷ0, τ̂+), p1 = (x̂1, ŷ1, τ̂−), I is the identity matrix of

order 2. The eigenvalues of matrix

DP = DP−(p1) ·DP+(p0),

are the characteristic multipliers of the limit cycle Γ.
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Example 5.1. By selecting b = 0.01, ω = 1, yr = 2, k = 2.5 and

a = 1.238, system (5.43)-(5.44) has two solutions in the positive quad-

rant, (τ̂ ′+, τ̂
′
−) = (0.84, 2.24) and (τ̂ ′′+, τ̂

′′
−) = (0.87, 5.18). This case

is shown in Figure 5.7 where for each of the two solutions listed in

Table 5.2, the respective fixed points and the restriction on the posi-

tion of these fixed points are given. In this example, two CLCs of

system (5.29) were detected as shown in Figure 5.10(a). For the first

(Γs), we have p0 = (10.53, 0.32, 0.84) and p1 = (8.5, 5.17, 2.24), then,

the characteristic multipliers are {0.923, 0.011}. In this case, the limit

cycle Γs has a stable node dynamics. For the second (Γu), we have

p0 = (19.31, 0.02, 0.87) and p1 = (15.02, 9.26, 5.18), consequently, the

characteristic multipliers are {1.88, 0.0002}. In this case, Γu has a sad-

dle dynamics.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

 

 

τ
+

τ
−

(τ̂ ′′+, τ̂
′′

−

)

(τ̂ ′+, τ̂
′

−

)

ρ(τ+, τ−) = 0

σ(τ+, τ−) = 0

Figure 5.7: Numerical analysis of the existence of CLCs in the example 5.1.
The intersecting points between the two curves (in red and blue-color) given
by (5.43) and (5.44) denote the presence of two CLCs.

5.3.3 Stability and bifurcations of CLCs

For a more comprehensive view of the evolution of a CLC with

respect to variations in the parameter a, we represent the points (x̂0, ŷ0)

and (x̂1, ŷ1) in the plane z = 0 but with the T-singularity placed at

the origin by choosing new variables (u1, u2) in such a way that the
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Solutions Fixed points
Constraints satisfied:

f±3 (x̂0, ŷ0, 0) > 0, f±3 (x̂1, ŷ1, 0) < 0

(τ̂ ′+, τ̂
′
−) = (0.84, 2.24)

(x̂0, ŷ0) = (10.53, 0.32)
(x̂1, ŷ1) = (8.5, 5.17)

f+
3 = 9.88 > 0, f−3 = 0.16 > 0

f+
3 = −5.36 < 0, f−3 = −0.94 < 0

(τ̂ ′′+, τ̂
′′
−) = (0.87, 5.18)

(x̂0, ŷ0) = (19.31, 0.02)
(x̂1, ŷ1) = (15.02, 9.26)

f+
3 = 19.3 > 0, f−3 = 0.01 > 0

f+
3 = −10.2 < 0, f−3 = −2.1 < 0

Table 5.2: Case study in the example 5.1.

tangency lines T− and T+ become the new coordinate axes. See Figures

5.8(b) and 5.9(b). Such normalization is obtained by defining

(u1, u2) = (−f+
3 (x, y, 0), f−3 (x, y, 0)).

For the subcritical case, the simulation of system (5.29) shown the

existence of a CLC (Γu) with saddle type dynamics (see Figure 5.6(a)).

The numerical analysis of the existence and the stability for the CLC

Γu is shown in Figure 5.8. In Figure 5.8(a), we visualize the bifurcation

diagram for the parameter a in the (a, u2)-plane, showing the saddle-

node bifurcation of pseudo-equilibria (SN) and the TS-bifurcation (TS).

The saddle-node bifurcation occurs at a = aSN = 1.76 and involves

the stable pseudo-node x̃− ∈ Σas (sPN-Σas) and the pseudo-saddle

x̃+ ∈ Σas (PS-Σas), indicated by the branch of pseudo-equilibria in

purple-color and red-color parts, respectively. The TS-bifurcation oc-

curs at a = aTS = 1.63 and is classified as subcritical, involving the

pseudo-equilibrium x̃+. It is caused by the transition, through the T-

singularity, of the pseudo-saddle in Σas (PS-Σas) when a > aTS , to

become a unstable pseudo-node in Σrs (uPN-Σrs) when a < aTS . The

curve in green-color, relative to the crossing points (x̂0, ŷ0) and (x̂1, ŷ1),

indicates the range of existence of the CLC, regarding the parameter

a. The CLC Γu bifurcates from the T-singularity at a = 1.63 and per-

sists until a = 0.72, i.e., Γu exists for 0.72 < a < 1.63. At a = 1.63 a

non-standard homoclinic bifurcation occurs.

In Figure 5.8(b), there appear the locus of the CLC crossing points
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(a) Bifurcation diagram in the (a, u2)-
plane considering a the bifurcation pa-
rameter.
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(b) The locus of CLC crossing points
(green color) and of pseudo-equilibria
(red color) in the (u1, u2)-plane.

0.72 1 1.3 1.63
0

0.5

1

1.5

2

TS

a

λ

λ = λ2(a)
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(c) The characteristic multipliers λ1,2
of Γu in the (a, λ)-plane.

Figure 5.8: Numerical analysis of the existence and stability of the limit
cycle Γu for parameters ω = 0.6, yr = 1.33, b = 0.08, k = 6 and 0.72 ≤ a ≤
1.63.

and the pseudo-equilibria, both in the normalized plane (u1, u2), as

the parameter a varies. Such curve (in green-color) is drawn by the

intersection points of Γu with the plane z = 0, in Σ+
c and Σ−c (SFP-Σ+

c

and SFP-Σ−c in Figure 5.8(a), respectively). The CLC Γu disappears

when it touches the tangency line T− at a visible tangency point of

F−. The locus of the pseudo-equilibria (in red-color) is drawn by the

pseudo-equilibrium position near the bifurcation. Recall from Theorem

5.1 that x̃+ ∈ Σas is a pseudo-saddle for a > aTS , while x̃+ ∈ Σrs is
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Figure 5.9: Numerical analysis of the existence and stability of the limit
cycles Γs and Γu for parameters ω = 1, yr = 2, b = 0.01, k = 2.5 and
1.16 ≤ a ≤ 1.35.

an unstable pseudo-node for a < aTS .

In Figure 5.8(c) we can visualize the characteristic multipliers of

Γu, from his birth to his disappearance. The CLC Γu has always saddle

dynamics, since for all 0.72 < a < 1.63 the characteristic multipliers

λ1,2 are real, with 0 < λ1 < 1 < λ2, so that when a = aTS = 1.63

we have λ1 = λ2 = 1, and when a = 0.72 we have λ1 = 0.049 and

λ2 = 129.4.
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For the supercritical case, the simulation results of system (5.29)

show the existence of a CLC (Γs) with stable node dynamics (see Figure

5.5(c)).The results of numerical continuation in the parameter a for the

CLC Γs are shown in Figure 5.9.

In Figure 5.9(a) we give the bifurcation diagram in the (a, u1)-

plane, showing a saddle-node bifurcation of CLCs (SNpo) and the TS-

bifurcation (TS). The SNpo bifurcation occurs at a = aSNpo = 1.35

and involves the stable CLC Γs with node dynamics (sNFP-Σ+
c and

sNFP-Σ−c ) and the unstable CLC Γu with saddle dynamics (SFP-Σ+
c

and SFP-Σ−c ), indicated by the branch of the fixed points with blue and

green parts, respectively. The TS-bifurcation occurs at a = aTS = 1.19

and is classified as supercritical, involving the pseudo-equilibrium x̃−;

as we already know, it is due to the transition through the T-singularity

of a stable pseudo-node in Σas (sPN-Σas) when a < aTS , to become

a pseudo-saddle in Σrs (PS-Σrs) when a > aTS . The branch in blue

and green colors, related to the crossing points (x̂0, ŷ0) and (x̂1, ŷ1),

indicates the range of existence of the CLCs, regarding the parameter

a. The stable CLC Γs bifurcates from the T-singularity for a = 1.19 and

persists until a = 1.35, i.e., Γs exists for 1.19 < a < 1.35. The unstable

CLC Γu exists in the interval 1.16 < a < 1.35, and such a periodic

orbit can be shown to appear after a TS-bifurcation for another value

of the control parameter k, in the subcritical case, but still persists for

the value of k used in this example.

Figure 5.9(b) shows the locus of crossing points and the pseudo-

equilibria, both in the normalized (u1, u2)-plane, as the parameter a

varies. Regarding the crossing points, the intersection points of Γs

appear in blue, while the ones of Γu appear in green. The locus of the

pseudo-equilibria (in red) gives the pseudo-equilibrium position near

the bifurcation. From Theorem 5.1, the point x̃− ∈ Σas is a stable

pseudo-node for a < aTS while x̃− ∈ Σrs is a pseudo-saddle for a >

aTS .

Figure 5.9(c) shows the characteristic multipliers of Γs, from his
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birth to his disappearance. The CLC Γs has always stable node dy-

namics, since for 1.19 < a < 1.35 the characteristic multipliers λ1,2

are real with |λ1| < 1 and |λ2| < 1. When a = aTS = 1.19 we have

λ1 = λ2 = 1 and when a = aSNpo = 1.35 we have λ1 = 6.4× 10−4 and

λ2 = 1. In Figure 5.9(d) we visualize the characteristic multipliers of

Γu, always of saddle dynamics, since the characteristic multipliers λ1,2

are real with 0 < λ1 < 1 < λ2. For instance, when a = 1.35 we have

λ1 = 6.4× 10−4 and λ2 = 1, and λ1 = 1.5× 10−4 and λ2 = 121.6 when

a = 1.16.

Example 5.2. Simulation results of system (5.6), with parameters b =

0.01, yr = 2, ω = 1, k = 2.5, for a = 1.238 are shown in Figure 5.10(a)

and, for a = 1.35, in Figure 5.10(b). Here, we visualize one non-

hyperbolic CLC (Γsn), created by the collision between the stable node

CLC (Γs) and the saddle CLC (Γu), in a saddle-node bifurcation of

CLCs.

5.4 Experimental results

This section is dedicated to validate the analytical and numeri-

cal results on the TS-bifurcation obtained in previous Sections 5.2 and

5.3, by means of experimental results obtained with a boost power

converter controlled by the SMC-Washout controller proposed in Sub-

section 5.2.1. The experimental setup is shown in Figure 5.11(a) and

the boost converter circuit in Figure 5.11(b).

The experimental parameters values are: L = 1.5mH, rL = 0.4Ω,

C = 10µF , Vin = 11V, Vref = 13V, ωF = 5000rad/s and K = 27.5Ω.

The applied hysteresis band is ±1V. The resistive load R has an initial

value of 21Ω.

Figures 5.11(c) and 5.11(d) show the oscilloscope signals obtained

from the experimental circuit corresponding to voltage vC (in orange-

color), current iL (blue-color), filtered current iF = 2.75(iL − zF )

(purple-color) and reference voltage Vref (green color) signals, for re-
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(a) Saddle (green) and stable node (blue) CLCs for
a = 1.238.

(b) Non hyperbolic CLC for a = 1.35.

Figure 5.10: Saddle-Node bifurcation of CLCs. Simulation results for b =
0.01, yr = 2, ω = 1, k = 2.5.

sistive loads of R = 21 Ω and R = 7 Ω, respectively.

Notice that in Figure 5.11(c), the current and voltage signals are

periodic, i.e. the converter operating point is not an equilibrium point

as expected for SMC. Instead, there appears a limit cycle with rather

small amplitude around the stable pseudo-equilibrium within the at-

tractive sliding region. This is due to the presence of a hysteresis band,
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(a) Experimental setup. (b) Boost Converter

(c) Oscilloscope signals: R = 21 Ω (d) Oscilloscope signals: R = 7 Ω

Figure 5.11: Experimental results: a) Laboratory setup; b) boost converter
circuit; c) and d) oscilloscope signals corresponding to voltage vC (in orange-
color), current iL (blue-color), filtered current iF = 2.75(iL − zF ) (purple-
color) and reference voltage Vref (green color), for R = 21 Ω and R = 7 Ω,
respectively.

used in practice to implement the sliding control law with a limited

switching frequency [108].

In Figure 5.11(d), the resistive load is changed from R = 21 Ω to

R = 7Ω, so that the converter undergoes the TS-bifurcation, appearing

a large CLC.

Experimental and simulation results obtained from the circuit

and from the controlled model are compared in Figure 5.12. In Fig-

ure 5.12(a), the blue dot stands for the position of the stable pseudo-

equilibrium, in (iL, vC)-plane for R = 21 Ω, and calculated by the ana-

lytical model. In the same figure, the small limit cycle in purple-color

represent the dynamical behavior of the converter, when operating with

the hysteresis band SMC.
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Figure 5.12: Experimental (in purple color) and simulation (black color)
results forR = 21Ω andR = 7Ω, in (a) the (iL, vC)-plane; (b) the (iL, vC , iF )-
plane. The different geometric elements used in the analysis are represented.
The red dot stands for the pseudo-equilibrium point and the black dot for
the T-singularity.

The change in the load value from R = 21 Ω to R = 7 Ω moves

the pseudo-equilibrium (blue dot) from the stable sliding region to the

repulsive sliding region (red dot), becoming unstable. Consequently, a

CLC arises from a TS-bifurcation, leading to the big limit cycle shown

in Figure 5.12 (in purple-color for the experiment and in black-color for

the numerical simulation).

From the values of the original control system parameters given
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by (5.1)-(5.4), according to Table 5.1, we obtain the dimensionless sys-

tem parameters given by (5.5): b = 0.033, yr = 1.182, ω = 0.61 and

k = 2.25. The initial normalized load is a = 0.58 (R = 21 Ω), and

it changes to a = 1.75 (R = 7 Ω). Thereby, the hypotheses of the

Theorem 5.1: b = 0.033 < bmax = 0.217 and k1 = 0.78 < k = 2.25 <

12.82 = kc, with bmax, k1 and kc calculated by (5.26), (5.27) and (5.24),

respectively, are satisfied. Then, the bifurcation critical value is found

at a = aTS = 1.735 (RTS = 7.06 Ω). The TS-bifurcation occurs as

in the supercritical case, since k1 < k = 2.25 < kc. Now, by applying

the CLC stability analysis of the previous section, we obtain the points

p0 = (4.79, 0.48, 0.96) and p1 = (4.06, 2.16, 0.85). Thus, the charac-

teristic multipliers are given by {0.965, 0.057}, implying a CLC with

stable node dynamics.

Obviously, the presence of such limit cycle is not desired and,

therefore, it is not acceptable from the practical point of view of control

engineers that design the SMC. Thus, it is very important to determine

the occurrence of this dynamical phenomenon, as well as, others that

can be occur in the operation of the power converter when load changes

are carry out. In this way, avoiding undesirable dynamical phenomena

such as the TS-bifurcation, it is possible ensure the robustness of the

designed control system.

5.5 Conclusion

In this Chapter, a dc-dc boost converter controlled using a slid-

ing mode control strategy was modeled as a DPWL system with two

zones in a three-dimensional space split by a flat surface. The main

contribution of this Chapter was to prove that, under certain condi-

tions on the circuit parameters, the analyzed model can display a TS-

bifurcation. This bifurcation can occur in two different forms, named

as supercritical and subcritical. The supercritical case is considered

the most important, since it involves the desired operating point for
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the boost converter. As a consequence of the TS-bifurcation, a CLC

arises from the T-singularity, which in the supercritical case was de-

tected with stable dynamics of node type, while in the subcritical case

is of saddle type. The supercritical and subcritical cases do not occur

simultaneously. However, the two CLCs that arise from each of these

cases can coexist. The two CLCs are born for different critical values

of the bifurcation parameter, but they may disappear simultaneously

in a saddle-node bifurcation of periodic orbits.

Experimental results obtained on a boost converter specially built

in our laboratory allow us to prove the occurrence of a supercritical TS-

bifurcation on the circuit. Such bifurcation can be induced varying the

value of the resistive load, in such a way that it changes the position

of the operating point and its stability from stable to unstable. This

change is critical and creates a stable CLC, which can have a large

amplitude with catastrophic effects for the converter.

Thus, the analysis of the existence of TS-bifurcations becomes

essential in the design and control of converters, since this is a dynamic

phenomenon that is not desired and not easy to detect. Therefore, it is

of great relevance to know the parametric conditions for the occurrence

of this bifurcation and so to establish safeguards in order to avoid it.
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Chapter 6

Dynamics and

Bifurcations in Systems

with Double

Teixeira Singularity

This Chapter contain a detailed analysis of bifurcations in a family

of 3D-DPWS systems that have two points of T-singularity (Teixeira

singularity). In addition, from the variation of a system parameter,

these T-singularities collide and then disappear along with the attrac-

tive sliding region. In this case a Fold bifurcation occurs and at the

bifurcation point appears a type of degenerate T-singularity. Under

certain conditions there is a pseudo-equilibrium that collide with one

of the T-singularities or the two T-singularities simultaneously collide

with the pseudo-equilibrium. In first case a TS-bifurcation occurs and,

in second case, a double TS-bifurcation occurs. Both bifurcations are

associated with the birth of a crossing limit cycle. We describe the

sliding and crossing dynamics around the T-singularities, regular or
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degenerate, and also the sliding dynamics at the pseudo-equilibrium.

Moreover, we present a case study where we prove the existence, sta-

bility and bifurcations of crossing limit cycles.

6.1 Introduction

Discontinuous piecewise-smooth (DPWS) systems are often used

to model mechanical systems with friction, switched electronic systems,

discontinuous control systems and others. In many of these models the

vector fields involved are non-linear and can thus have more complex

and varied phenomena; see for instance [29, 110]. In particular, in this

Chapter, we will deal with a specific class of DPWS defined in R3 by

two polynomial vector fields of degree two, separated by a flat switching

boundary.

One of the most intriguing phenomena concerning 3D-DPWS sys-

tems occur in the presence of a T-singularity. In fact, this typical

singularity always presents in its neighborhood sliding (attractive and

repulsive) and crossing regions. The existence of such regions permits

some recurrence around the T-singularity (at the crossing regions) and

non-uniqueness of trajectories passing through the T-singularity (at

the sliding regions). In particular, the occurrence of non-uniqueness of

trajectories produce some phenomena non observed in smooth vector

fields. The literature contemplates many exotic behaviors around a

single T-singularity, see [21, 26, 68, 69, 71, 117]. Despite of this, we do

not know any work in the literature that deals with 3D-DPWS systems

presenting two or more T-singularities.

In previous chapters, we have studied 3D-DPWS systems that

present one T-singularity and a bifurcation interesting occurring at

this point, called TS-bifurcation. Such a bifurcation is of codimension-

one and involves the collision of a real pseudo-equilibrium with a T-

singularity, caused by the pseudo-equilibrium transition from attractive

sliding region to repulsive sliding region (or vice versa). Associated with
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this bifurcation, there is the birth of a crossing limit cycle arising from

the T-singularity.

Now, in this Chapter, we consider 3D-DPWS systems that have

two T-singularities and which exhibit the fold bifurcation of these T-

singularities, a codimension-one bifurcation responsible for annihilation

(or generation) of a sliding region or, in the less interesting case, a cross-

ing region. In this bifurcation occurs the collapse of both T-singularities

in a single point, giving rise to the 1-degenerate T-singularity. More-

over, such systems exhibit the TS-bifurcation and also a non regular

case of this bifurcation, involving the simultaneous collision between

the two T-singularities and a real pseudo-equilibrium point, such that

the pseudo-equilibrium persist but the pair of T-singularities disappears

after the collision. Named double TS-bifurcation, this is a codimension-

two bifurcation and also is associated with the birth of a CLC, but

here it arises from the 1-degenerate T-singularity. In the double TS-

bifurcation, the bifurcation point is the 1-degenerate T-singularity with

vector fields anticolinear at this point.

As consequence of our study, some classical bifurcations (saddle-

node, transcritical and pitchfork) are observed in the sliding vector

field. Some of these bifurcations of the sliding vector field are asso-

ciated with the birth of a CLC. We describe the stability and some

global bifurcations (saddle-node of limit cycles and a non-standard ho-

moclinic) of CLCs, from the analysis of the first return map. Moreover,

under certain conditions, we are able to establish an upper bound of the

number of CLCs that can coexist. We have also identified the presence

of invariant (non-smooth) cones with vertex in one of the regular T-

singularities, which bifurcate from an invariant (non-smooth) ellipsoid

with vertices at the two regular T-singularities.

TS-bifurcation is little known in the literature, see [26, 29] and

Chapter 4. While that the fold bifurcation of T-singularities and the

double TS-bifurcation are unknown in the literature, as far as we know,

the given names for each are just our suggestions. In this Chapter, we
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have described the unfolding dynamics of the double TS-bifurcation

and also of the fold bifurcation de T-singularities, characterizing and

classifying the different scenarios involving each one. These are the

main results of this Chapter.

This chapter is organized in the following way. In Section 6.2 we

establish the problem and present a local canonical form, which de-

scribes the desired dynamic behaviour. The dynamics of sliding and

crossing around the T-singularities, regular or degenerate, is investi-

gated in the Section 6.3, as well as bifurcations involving such singular-

ities. In Section 6.4 is performed a two-parameter analysis of bifurca-

tions in the sliding vector field associated with the canonical form. The

results of sliding bifurcations obtained in this section are applied to an

example in Section 6.5. Also in Section 6.5, it is described the birth

of limit cycles around the T-singularities, upper bound, local dynamics

and bifurcations. Finally in Section 6.6 we present a brief conclusion

and some remarks.

Previous results on Filippov theory in Chapter 2 are important

for the development that follows.

6.2 Derivation of a canonical form

Let us consider a generic 3D-DPWS systems expressed by

ẋ =

{
F−(x), if x ∈ R−
F+(x), if x ∈ R+,

(6.1)

such that the R3-space is divided into two open regions: R− = {x ∈
R3 : h(x) < 0} and R+ = {x ∈ R3 : h(x) > 0}; separated by a

switching boundary defined by Σ = {x ∈ R3 : h(x) = z = 0}, where

x = (x, y, z). We assume that the components of the two vector fields

F± : R3 → R3 are smooth functions denoted by f±i : R3 → R, for

i = 1, 2, 3.
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Remark 6.1. The contact type of the vector fields F± with Σ are

provided by the directional Lie derivatives: LF±h = 〈∇h,F±〉, where

∇h = (0, 0, 1) (gradient of smooth function h) and 〈., .〉 denote the

canonical inner product. The higher order Lie derivatives are given by

LnF±h = 〈∇LnF±h,F±〉 for n = 2, 3, .... So we get

LF±h = f±3 ,

L2
F±h = f±1

∂f±3
∂x

+ f±2
∂f±3
∂y

+ f±3
∂f±3
∂z

,

which will be necessary for the course of this Chapter.

6.2.1 The unfolding of 1-degenerate two-fold sys-

tems

Generally there are two curves in R3-space where orbits of (6.1)

are tangent to Σ, one for each involved vector field. We assume that

the system (6.1) displays such tangency curves, which we denote by

T±. In this work, we are interested in systems whose tangency curves

T± have a quadratic contact (non-transversal intersection) at a point

of Σ, which we denote by x̂, for a critical value of a parameter, let’s

say µ. In addition, for a small perturbation on µ, from its critical value

µ = µc, T± are displaced passing to have two points of transversal

intersection or no contact, like a fold bifurcation. Figure 6.1 illustrates

this scenario in the Σ-plane. Moreover, we will analyze only the cases

involving tangential singularities of the invisible fold type.

T+

T−

T+

T−
x̂

T+

T−
x̂− x̂+

µ < µc µ = µc µ > µc

Figure 6.1: Fold bifurcation of double tangency points on Σ.
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Note that the tangency conditions LF±h(x, y, 0) = 0 leads us

to f±3 (x, y, 0) = 0. In this case, we assume that both the graphs of

the implicit equations f±3 (x, y, 0) = 0 are smooth curves in the (x, y)-

plane, and that both (or at least one) equations are dependent on one

parameter, denoted by µ, and then we define

f̃±µ (x, y) = f±3 (x, y, 0).

The tangency points sets T± are, consequently, dependent on µ and

determined by

T−(µ) = {(x, y, z) ∈ Σ : f̃−µ (x, y) = 0},
T+(µ) = {(x, y, z) ∈ Σ : f̃+

µ (x, y) = 0}.

Then we established our hypothesis with respect to (6.1).

(H1) There is a point (x, y, µ) = (x̂, ŷ, µc), in the (x, y, µ)−space,

where is fulfilled
∂f̃±µ (x,y)

∂(x,y) 6= (0, 0),
∂f̃+
µ (x,y)

∂µ 6= 0 and/or
∂f̃−µ (x,y)

∂µ 6= 0.

In addition, the equations

f̃+
µ (x, y) = 0, (6.2)

f̃−µ (x, y) = 0, (6.3)

∂f̃+
µ

∂x

∂f̃−µ
∂y

(x, y)− ∂f̃+
µ

∂y

∂f̃−µ
∂x

(x, y) = 0, (6.4)

are satisfied at (x, y, µ) = (x̂, ŷ, µc) and Det [Q] 6= 0 (determinant of

Q), where Q is matrix Jacobian of the equations system (6.2)-(6.4).

We assume, without loss of generality, that (x̂, ŷ, µc) = (0, 0, 0).

The hypothesis (H1) ensures that for µ = 0 occurs at the ori-

gin (0, 0) a non-transverse intersection between the tangency lines T±,

which are smooth curves at (0, 0). Moreover, the constraint Det [Q] 6= 0

ensures a single solution of the equations system (6.2)-(6.4) in the

neighborhood of the origin of (x, y, µ)-space, and so the graphs of

f̃+
0 (x, y) = 0 are tangents with quadratic contact at (x, y) = (0, 0).
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Then, T+ and T− are tangents with quadratic contact at 0 whenever

µ = 0 and system (6.1) has at 0 a 1-degenerate double tangency point.

See Figure 6.2.

T+

T−

0

T+

T−
0

T+

T−

0

µ = 0 µ = 0 µ = 0

Figure 6.2: Illustrations of a 1-degenerate double tangency point at 0.

From here, we rewrite system (6.1) in a canonical form according

to the following theorem.

Theorem 6.1. Under hypothesis (H1) it is possible to write any sys-

tem as (6.1) in the form

(ẋ, ẏ, ż) =

{
F−µ (x, y, z), if z < 0

F+
µ (x, y, z), if z > 0,

(6.5)

with vector fields defined by

F−µ (x) =




c− + p−µ (x)

b− + q−µ (x)

µ− y + e−x2 + r−µ (x)


 (6.6)

and

F+
µ (x) =




c+ + p+
µ (x)

b+ + q+
µ (x)

ε
(
aµ− y + e+x2 + r+

µ (x)
)


 , (6.7)

where ε 6= 0, a 6= 1, e+ 6= e− and p±µ , q±µ and r±µ are polynomial

functions of (x, y, z) and µ-parameter, such that p±0 (0) = q±0 (0) =

r±µ (0) = 0 and
∂r±µ
∂x =

∂r±µ
∂y =

∂2r±µ
∂x2 = 0 for µ = 0 and (x, y, z) =

(0, 0, 0).

Proof. See Appendix 6.7.
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System (6.5)-(6.7) has at the origin of its state space a degenerate

double tangency point, whenever µ = 0. If b± 6= 0 this double tangency

point is classified as a singularity of the 1-degenerate two-fold type (or

Q2-Singularity, see [118]). In addition, we can say that this system

belongs to the family of 1-degenerate two-fold systems for µ = 0 and

to the its unfolding for µ 6= 0.

We fix µ = 0. Applying now the implicit function theorem to the

equations

−y + e−x2 + r−0 (x, y, 0) = 0,

−y + e+x2 + r+
0 (x, y, 0) = 0,

we can parametrize the tangency lines in a neighborhood of 0, getting

T−(0) =
{

(x, y, z) ∈ Σ : y = e−x2 +O(3)
}
,

T+(0) =
{

(x, y, z) ∈ Σ : y = e+x2 +O(3)
}
.

We observed three different cases with respect to the concavity of the

tangency lines T± at the point of non-transverse intersection between

them, as illustrated in Figure 6.2. Both cases are equivalent, so let’s

look only at the one where the tangency curves have opposite concavi-

ties at 0, that is, the cases where e+e− < 0.

We now look at the sliding and crossing regions on Σ, keeping

µ = 0. Figure 6.3 shows the four possible topological configurations

on Σ according to the coefficients ε and e±. Since the cases in Figures

6.3(b) and 6.3(d) have only one type of crossing region, they do not

present first return map and are left for another works. The results

for the case in Figure 6.3(c) can be obtained directly from the case in

Figure 6.3(a) (or vice-versa), just take the time with opposite signal.

Figure 6.3(a) presents a configuration on the switching boundary

Σ in a critical state. From this, the displacement of the tangency lines

T± destroys the 1-degenerate two-fold point and a pair of regular two-

fold points may arise, making possible the formation of the attractive
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0

T+

T−
Σ+
c

Σ−c

Σrs Σrs

(a) ε > 0, e+ > 0, e− < 0

0

T+

T−
Σas

Σrs

Σ−c Σ−c

(b) ε < 0, e+ > 0, e− < 0

0

T−

T+
Σ+
c

Σ−c

Σas Σas

(c) ε > 0, e+ < 0, e− > 0

0

T−

T+
Σas

Σrs

Σ+
c Σ+

c

(d) ε < 0, e+ < 0, e− > 0

Figure 6.3: Possible configurations on Σ for 1-degenerate two-fold systems.

sliding region Σas. Figure 6.4 illustrates such scenario from the varia-

tion of the parameter µ, responsible for the displacement of T±, being

this the case of our interest in this Chapter. Here, we are considering

ε > 0, e+ > 0, e− < 0 and a < 0, thus 0 ∈ Σas for µ > 0 and 0 ∈ Σrs

for µ < 0, since LF−µ
h(0) = µ and LF+

µ
h(0) = εaµ.

0

T+

T−
Σ+
c

Σ−c

Σrs Σrs

(a) µ < 0

0

T+

T−
Σ+
c

Σ−c

Σrs Σrs

(b) µ = 0

0

T+

T−Σ+
c

Σ−c

Σrs Σrs
Σas

x̂2x̂1

(c) µ > 0

Figure 6.4: Attractive sliding region annihilation (generation).

Following with our analysis, we still want that the tangencies at

the origin of (6.5)-(6.7), for µ = 0, to be of the invisible fold type.
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Then, we must have

L2
F+

0
h(0) = −εb+ < 0,

L2
F−0
h(0) = −b− > 0,

resulting in εb+ > 0 and b− < 0. If we assume ε > 0, b+ > 0 and

b− < 0, then 0 is a 1-degenerate T-singularity. In addition, we can say

that there is a neighborhood of 0, for any |µ| small, where the tangency

points at T± are of the invisible fold type. In this case, a pair of regular

T-singularities arises for µ > 0 (resp. µ < 0), if a < 1 (resp. a > 1).

6.2.2 Regular and 1-degenerate T-singularities

In this subsection, we turn system (6.5)-(6.7) into a local canonical

form of 1-degenerate two-fold systems and its unfolding, with invisible

tangencies, according to the theorem below.

Theorem 6.2. Consider the domain K = {(x, y, z) ∈ R3 : x2 + y2 +

z2 < δ}, with δ > 0 arbitrarily small. We assume e+ > 0, e− < 0,

ε > 0, b+ > 0 and b− < 0. For any x ∈ K and |µ| small, system

(6.5)-(6.7) can be rewritten as

ẋ =

{
F−µ (x) if z < 0

F+
µ (x) if z > 0

, (6.8)

with the vector fields

F−µ (x) =




c1 + p1(x)

−1 + q1(x)

ε1

(
µ− y − x2 + r1(x)

)


 (6.9)

and

F+
µ (x) =




c2 + p2(x)

1 + q2(x)

ε2

(
−kµ− y + kx2 + r2(x)

)


 , (6.10)
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acting on the switching boundary Σ = {x ∈ K : h(x) = z = 0}. The

functions p12, q12, r12 are polynomials of (x, y, z), such that p12(0) =

q12(0) = r12(0) = 0 and ∂r12(0)
∂x = ∂2r12(0)

∂x2 = ∂r12(0)
∂y = 0. It is depen-

dent on parameters: (c1, c2, µ) ∈ R3, k > 0, ε1 > 0 and ε2 > 0.

Proof. See Appendix 6.8.

Proposition 6.1. System (6.8)-(6.10) has a pair of T-singularities

located at

x̂±(µ) = (x̂±(µ), ŷ±(µ), 0), (6.11)

such that

x̂±(µ) = ±√µ+O(µ), (6.12)

ŷ±(µ) = 0 +O(µ
3
2 ), (6.13)

whenever µ ≥ 0.

Proof. All point (x, y, 0) satisfying both equations

f1(x, y) = µ− y − x2 + r1(x, y, 0) = 0,

f2(x, y) = −kµ− y + kx2 + r2(x, y, 0) = 0,

it is a double tangency of (6.8)-(6.10). We rewrite the system above

doing f1 − f2 = 0 and also kf1 + f2 = 0, getting

(1 + k)µ = (1 + k)x2 + (r2 − r1) (x, y, 0), (6.14)

(1 + k)y = (kr1 + r2) (x, y, 0). (6.15)

Since k > 0 and r12(0) = ∂r12(0)
∂x = ∂2r12(0)

∂x2 = ∂r12(0)
∂y = 0, then for any

solution of (6.14)-(6.15) with |x| small we can assure the expansions

µ = x2 +O(x3), (6.16)

y = 0 +O(x3). (6.17)
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Note that there is real solution only for µ ≥ 0. It is easy to see that

solutions of (6.16) that reach the origin when µ = 0 are expressed by

(6.12), for any |µ| small. Replacing (6.12) in (6.17) we obtain (6.13).

Double tangency points x̂+(µ) and x̂−(µ), defined for µ ≥ 0,

are classified as T-singularities (invisible two-fold). This is expected

because

L2
F−µ
h(x, y(x), 0) = ε1 + s1x+O(x2) ≈ ε1 > 0,

L2
F+
µ
h(x, y(x), 0) = −ε2 + s2x+O(x2) ≈ −ε2 < 0,

where s12 are any real coefficients. So our proof is complete.

Therefore, in system (6.8)-(6.10) there are two regular T-singularities

for µ > 0, with coordinates x̂±(µ) given in (6.12)-(6.13). For µ = 0

both collide at the origin, that is, x̂±(0) = (0, 0, 0). In this case, the

origin of (6.8)-(6.10) is a 1-degenerate T-singularity.

6.2.3 Regions of sliding and crossing

The attractive/repulsive sliding regions and the crossing regions

are denoted respectively by Σas(µ), Σrs(µ) and Σ±c (µ), both dependent

as the parameter µ.

At point (0, 0, 0) we have

LF−µ
h(0, 0, 0) = ε1µ,

LF+
µ
h(0, 0, 0) = −ε2kµ,

therefore, (0, 0, 0) ∈ Σas(µ) for µ > 0 and (0, 0, 0) ∈ Σrs(µ) for µ < 0.

This is an important result and from it we will explore the dynamics

around the origin. First, we calculate the tangency lines T− and T+, in

a neighborhood of the origin and for any |µ| small, namely

T+(µ) =
{

(x, y, 0) ∈ K : y = k
(
−µ+ x2

)
+O(x3)

}
, (6.18)
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and

T−(µ) =
{

(x, y, 0) ∈ K : y = µ− x2 +O(x3)
}
. (6.19)

After, to determine the regions of sliding and crossing on Σ, we disre-

gard the terms of greater degree in the expansions of T±.

So, the attractive sliding region can be represented as

Σas(µ) =
{

(x, y, 0) ∈ K : k
(
x2 − µ

)
< y < µ− x2

}
, (6.20)

defined only for µ > 0 and such that 0 ∈ Σas(µ). The repulsive sliding

region is defined for any µ and is expressed as

Σrs(µ) =
{

(x, y, 0) ∈ K : −x2 + µ < y < k
(
−µ+ x2

)}
, (6.21)

such that 0 ∈ Σrs(µ) only for µ < 0. If µ ≥ 0, then Σrs is defined in

two sub regions on opposite sides of the y-axis. The crossing regions

are defined for any µ and are given by

Σ+
c (µ) =

{
(x, y, 0) ∈ K : y < k

(
x2 − µ

)
and y < µ− x2

}
, (6.22)

Σ−c (µ) =
{

(x, y, 0) ∈ K : y > k
(
x2 − µ

)
and y > µ− x2

}
. (6.23)

Origin is never a crossing point.

The two vector fields (6.9)-(6.10) calculated at the origin and for

µ = 0 turns out to be

F−0 (0) =



c1

−1

0


 and F+

0 (0) =



c2

1

0


 .

So that are anti-collinear whenever c2 = −c1. We can say then, that

for µ = 0 system (6.8)-(6.10) has a possible pseudo-equilibrium point

at 0, along with a 1-degenerate T-singularity. Moreover, for µ 6= 0

and c1 = −c2 such pseudo-equilibrium may remain at the origin or be

moved to a nearby point, as we’ll see in the Section 6.4.
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6.3 Fold bifurcation of T-singularities

In this section we consider system (6.8)-(6.10) in a reduced form.

Then we analyze the dynamics around the T-singularities points looking

for bifurcations involving the collision between them, followed by the

disappearance of the attractive sliding region (as illustrated in Figure

6.4). Our goal is to characterize the dynamics around a T-singularity,

in the cases regular and 1-degenerate, from the analysis of bifurcations

in the sliding vector field (sliding dynamics) and in the first return map

(crossing dynamics).

For this, we assume in system (6.8)-(6.10) that ε12 = k = 1 and

p12(x) = q12(x) = r12(x) = 0, and we redefine c1 = c− and c2 = c+.

The resulting system is

(ẋ, ẏ, ż) =

{
F−µ (x, y, z) = (c−,−1,−y − x2 + µ), if z < 0

F+
µ (x, y, z) = (c+, 1,−y + x2 − µ), if z > 0

, (6.24)

where x = (x, y, z) ∈ R3 is the state vector and (c+, c−, µ) ∈ R3 is the

vector of parameters.

6.3.1 Topological configuration on Σ

For the system (6.24) we have

LF−µ
h(x, y, 0) = −y − x2 + µ,

LF+
µ
h(x, y, 0) = −y + x2 − µ.

There are two tangency lines on the Σ, whose graphs are parabolas

defined by

T−(µ) = {(x, y, z) ∈ Σ : y = −x2 + µ}, (6.25)

T+(µ) = {(x, y, z) ∈ Σ : y = x2 − µ}. (6.26)
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The tangency points (x, y, 0) ∈ T± are of the invisible fold type when-

ever the inequalities

L2
F−µ
h(x, y, 0) = 1− 2c−x > 0, (6.27)

L2
F+
µ
h(x, y, 0) = −1 + 2c+x < 0, (6.28)

are fulfill.

The tangency sets T± intersect transversally at two points with

coordinates

x̂±(µ) = (±√µ, 0, 0), (6.29)

provided that µ > 0. For µ = 0 we have x̂+(0) = x̂−(0) = (0, 0, 0),

such that the contact between T− and T+ is quadratic (non-transverse)

at the origin. And there is no contact for µ < 0. In search of the T-

singularities, we must ensure that inequalities (6.27)-(6.28) are fulfill at

the points x̂±(µ) for µ ≥ 0. The trivial case occurs when c− = c+ = 0,

since all point in T± is of the invisible fold type. In other cases we will

assume |µ| < c depending on the positive value

c = min

{
1

4c2−
,

1

4c2+

}
. (6.30)

Thus the phase portrait of system (6.24) displays regular T-singularities

at both points x̂±(µ) for 0 < µ < c and 1-degenerate T-singularity at

the origin (0, 0, 0) for µ = 0.

Note in Figure 6.4 that from the decreasing variation of the pa-

rameter µ through the critical value µ = 0, occurs the collision between

the two points x̂±(µ), followed by the disappearance of both, chang-

ing the sliding and crossing regions on the switching boundary Σ. We

see the disappearance of the attractive sliding region (Σas) and the ex-

pansion of the repulsive sliding region (Σrs) that pass the contain the

origin. The two crossing regions (Σ±c ) persist for µ < 0, but without

transition points between them.
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Defined only for µ > 0, the attractive sliding region is given by

Σas(µ) = {(x, y, z) ∈ Σ : x2 − µ < y < −x2 + µ}. (6.31)

The region Σas contains the origin (0, 0, 0) and is completely surrounded

by tangential singularities of T− in y ≥ 0 and T+ in y ≤ 0. The points

x̂± are at the corners of Σas, so that they are the unique points of

transition between the attractive and repulsive sliding regions. While

the regions of repulsive sliding and crossing, given by

Σrs(µ) = {(x, y, z) ∈ Σ : −x2 + µ < y < x2 − µ}, (6.32)

and

Σ+
c (µ) = {(x, y, z) ∈ Σ : y < −x2 + µ and y < x2 − µ}, (6.33)

Σ−c (µ) = {(x, y, z) ∈ Σ : y > −x2 + µ and y > x2 − µ}, (6.34)

respectively, are defined for all µ.

Following the literature of the area, as for example [26, 117, 118],

we will analyze in next subsections (separately) the sliding and crossing

dynamics, where the T-singularities are equivalent to the equilibria of

sliding vector field and fixed points of first return map.

Remark 6.2. In next subsections we assume in system (6.24) that

c± 6= 0 and |µ| < c with c given in (6.30).

6.3.2 Sliding dynamics

It has been proven in [118] that the 1-degenerate T-singularity

of systems as (6.24) is a saddle-node equilibrium of the sliding vector

field and the center manifold is tangent to T+ and to T−. Here we

also prove these facts. Moreover, we prove that the collision of two

T-singularities produces in the sliding vector field an one-parameter

bifurcation of saddle-node type.
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The sliding vector field Fsµ associate to the system (6.24), calcu-

lated from the Filippov’s method (see [51, 78]), is given by

Fsµ(x, y, z) =
1

2(µ− x2)




(c− + c+)(µ− x2) + (c− − c+)y

−2y

0


 .

Assuming µ > 0, for all (x, y, z) ∈ Σas(µ) the inequality

2(µ− x2) = LF−µ
h(x, y, 0)− LF+

µ
h(x, y, 0) > 0

is true.

The sliding dynamics is confined to plane z = 0, and so can be

described by the planar sliding system

dx

dτ
= (c− + c+)(µ− x2) + (c− − c+)y, (6.35)

dy

dτ
= −2y, (6.36)

provided that (x, y, 0) ∈ Σas(µ). According to [115], the sliding vector

field can be smoothly extended to the boundary of Σas, and then we can

expand the domain of (6.35)-(6.36) to its limits, T±. To facilitate our

analysis, it is appropriate to assume the system (6.35)-(6.36) defined

throughout R2, remembering that for (x, y, 0) ∈ Σrs(µ) we have the

same vector field but with reversed time.

System (6.24) does not present pseudo-equilibria when we take

c− 6= −c+, since the sliding vector field Fsµ has no equilibrium point for

this parameter setting c±. In addition, for µ > 0 the sliding dynamics is

governed only by the T-singularities x̂±(µ), whose reduced coordinates

(±√µ, 0) are equilibria points of planar sliding system (6.35)-(6.36).

These two equilibria points collide at the origin (0, 0) for µ = 0 and

then disappear of the phase portrait for µ < 0.

Proposition 6.2. Consider the planar sliding system (6.35)-(6.36) de-

fined throughout R2 and with parameter c± fixed such that c− 6= −c+.
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Then, a Saddle-Node bifurcation occurs at the origin (0, 0) when the

parameter µ assumes the critical value µ = 0. Moreover, the following

statements hold.

(i) For µ > 0 there are two hyperbolic equilibria points, of coordinates

(±√µ, 0). Taking c− < −c+ (resp. c− > −c+), the point to the

left (resp. right) of the origin is a stable node equilibrium and the

point to the right (resp. left) is a saddle equilibrium.

(ii) For µ = 0 the origin (0, 0) is the unique equilibrium, a non-

hyperbolic of the saddle-node type.

(iii) For µ < 0 there are no equilibria.

Proof. The equilibria of system (6.35)-(6.36) must fulfill the equations

(c− + c+)(µ− x2) + (c− − c+)y = 0,

−2y = 0.

It is easy to see that for µ > 0 there are two equilibria, a with coordi-

nates (−√µ, 0) (to the left of the origin) and another with coordinates

(
√
µ, 0) (to the right of the origin). At critical value µ = 0, both equi-

libria collide and the system now has a single equilibrium, at the origin

(0, 0). And for µ < 0 there are no equilibria, since µ − x2 = 0 has no

real solution.

To evaluate the stability of the equilibria we consider the Jacobian

matrix given by

Jas(x̄(µ), 0) =

(
−2(c− + c+)x̄(µ) c− − c+

0 −2

)
,

where x̄(µ) represents the x−coordinate of the equilibria, and whose

eigenvalues are λ1 = −2 < 0 and λ2(x̄(µ)) = −2(c− + c+)x̄(µ). Taking

c− < −c+ and µ > 0, for the equilibrium point to the left to the

origin, i.e. with x̄(µ) < 0, we have λ2 < 0 and therefore is a hyperbolic
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stable node equilibrium. While the equilibrium point to the right, i.e.

with x̄(µ) > 0, is a hyperbolic saddle equilibrium, since λ2 > 0. Note

that case c− > −c+ only reverses the sign of λ2(x̄(µ)), and so, the node

equilibrium is to the right of the origin and the saddle to the left. In the

case µ = 0 we have λ2(0) = 0 and the origin (0, 0) as a non-hyperbolic

equilibrium point whose dynamic is a blend of saddle-node. So our

proof is complete.

In the Proposition 6.2 we assume (6.35)-(6.36) defined throughout

R2 to simplify, since the attractive sliding dynamics is preserved. How-

ever, to extend the bifurcation results to the complete system (6.24)

we must discard points in the crossing regions Σ±c and change the sign

of the time variable when in the repulsive sliding region Σrs. Then the

Saddle-Node bifurcation proved in the Proposition 6.2 will involve only

unstable equilibria when seen from the region Σrs.

Figure 6.5 illustrates the sliding dynamics on the switching bound-

ary Σ of system (6.24), assuming c− < −c+ (fixed) and µ ranging from

µ > 0 to µ < 0. This variation on the parameter µ destroys the

attractive sliding region Σas(µ) along with the T-singularities points

x̂±(µ). These phenomena create in the sliding vector field a Saddle-

Node bifurcation that occurs at the 1-degenerate T-singularity located

at x̂−(0) = x̂+(0) = (0, 0, 0) for µ = 0.

From the eigenvectors associated with the eigenvalues λ1 and λ±2
of the planar sliding system (6.35)-(6.36), given by v1 = (1, 0) and

v±2 (µ) =

(
c− − c+

±2(c− + c+)
√
µ− 2

, 1

)
,

respectively, we can observe that the eigenspaces generated by v−2 (µ)

and v+
2 (µ) extend through the crossing regions. In fact, since we are

assuming |µ| < c1 and, then, 1/v±2 (µ) > 2
√
µ and 1/v±2 (µ) < −2

√
µ,

where v±2 denote the first coordinate of v±2 . While the eigenspace gen-

erated by v1, given by S1 = {(x, y, z) ∈ Σ : y = 0}, is an invariant set

1With c given in (6.30)
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being attractor for the part in Σas and repulsive in Σrs. Moreover, the

center manifold for µ = 0, defined by straight line S1, is tangent to the

parabolic lines T±(0) of tangency at the origin, since both curves have

zero slope in it. See Figure 6.5.

0
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0

0
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x
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T+
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Σ+
c

S1

(c) µ < 0

Figure 6.5: Saddle-Node sliding bifurcation in the system (6.24), assuming
c− < −c+.

In the cases where c− = −c+, in the planar sliding system (6.35)-

(6.36) there are infinite equilibria on the straight line y = 0. This

situation is a critical point of stability exchange between the equilibria,

since its eigenvalues are λ1 = −2 < 0 and λ±2 = −2(c−+c+)(±√µ). So,

for c− > −c+ the equilibrium point (−√µ, 0) is a saddle and (
√
µ, 0) is

a stable node, and the opposite if c− < −c+ (see Proposition 6.2).

Based on the analysis performed so far, we can say that in 3D-

Filippov systems with two T-singularities, the collision between them,
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followed by the disappearance of the attractive sliding region and of

the T-singularities themselves, creates a bifurcation of the type saddle-

node in the sliding vector field. However this is only true when there

are no pseudo-equilibria into the attractive sliding region, as in the

case c− 6= −c+ here studied. In the Section 6.4 we will analyze what

can happen in the sliding dynamics when there is a pseudo-equilibrium

inside it.

6.3.3 Crossing dynamics and the first return map

In order to analyze the crossing dynamics of system (6.24), fol-

lowing [117] we use the associated first return map, which we know

that T-singularities are fixed points on this map. For this, we consider

an orbit of system (6.24) through the point x0 ∈ Σ+
c such that for

t = t1 > 0 the orbit transversally returns to Σ at the point x1 ∈ Σ−c .

And its continuation through the point x1 ∈ Σ−c such that for t = t2 > 0

the orbit transversally returns to Σ at the point x2 ∈ Σ+
c . The point

x1 = (x1, y1, 0) as a function of x0 = (x0, y0, 0) is determined by the

half-return map (x1, y1) = P+(x0, y0), and the point x2 = (x2, y2, 0)

as a function of x1 = (x1, y1, 0) is determined by the half-return map

(x2, y2) = P−(x0, y0). So, the first return map (x2, y2) = P (x0, y0),

which determines the point x2 as a function of x0, is obtained by

P− ◦ P+. See Figure 6.6.

The orbit-solution of system (6.24) for z ≥ 0, with initial condi-

tion at the point x0 = (x0, y0, 0) ∈ Σ+
c , is defined by flow Φ+ of the

vector field F+. Then, for all initial condition x0 we have

Φ+(t,x0) =
(
c+t+ x0, t+ y0, z

+(t, x0, y0)
)

where

z+(t, x0, y0) =
1

6
t
[
2c2+t

2 + 3(2c+x0 − 1)t+ 6(x2
0 − y0 − µ)

]
.

To determine the return time of Φ+ to the switching boundary Σ we
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T
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Figure 6.6: Determining the first return map.

solve the equation z+(t, x0, y0) = 0 for t ≥ 0. Denoted by t1, the

solution to the return equation is

t1(x0, y0) =
1/2− c+x0 −

√
(1/2− c+x0)2 − 4/3c2+(x2

0 − y0 − µ)

2/3c2+
,

defined for all (x0, y0) ∈ D0 = {(x, y) ∈ R2 : f(x) < y ≤ x2−µ}, where

f(x) =
1

16c2+

(
4c2+x

2 + 12c+x− 3− 16c2+µ
)
.

In this case, for t = t1(x0, y0) we have Φ+(t1,x0) = x1 = (x1, y1, 0) so

that (x1, y1) ∈ I0 = {(x, y) ∈ R2 : y ≥ x2 − µ}.
The two-dimensional map P+ : D0 → I0 is give by

P+(x0, y0) = (x0 + c+t1(x0, y0), y0 + t1(x0, y0)).

This map determines the points (x1, y1) of return of the orbits of system

(6.24) to Σ, from the initial conditions (x0, y0), so that the equation

x1 − c+y1 = x0 − c+y0 (6.37)

is satisfied. Furthermore, P+ is dependent on the parameter µ, so that
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for all (x0, y0, µ) in an neighbourhood of (0, 0, 0) we can represent it by

the expansions

x1 = x0 − 2c+y0 − 2c+(µ− x2
0) + c+m(x0, y0, µ) +O (3) ,

y1 = −y0 − 2(µ− x2
0) +m(x0, y0, µ) +O (3) ,

where m(x0, y0, µ) = − 4c+
3 (3x0 − 2c+(y0 + µ)) (y0 + µ).

On the other hand, the orbit-solution of system (6.24) for z ≤ 0,

with initial condition at the point x1 = (x1, y1, 0) ∈ Σ−c , is defined by

flow Φ− of the vector field F−. Then, for all initial condition x1 we

have

Φ−(t,x1) =
(
c−t+ x1,−t+ y1, z

−(t, x1, y1)
)

where

z−(t, x1, y1) = −1

6
t
[
2c2−t

2 + 3(2c−x1 − 1)t+ 6(x2
1 + y1 − µ)

]
.

To determine the return time of Φ− to the Σ we solve the equation

z−(t, x1, y1) = 0 for t ≥ 0. Denoted by t2, the solution to the return

equation is

t2(x1, y1) =
1/2− c−x1 −

√
(1/2− c−x1)2 − 4/3c2−(x2

1 + y1 − µ)

2/3c2−
,

(6.38)

defined for all (x1, y1) ∈ D1 = {(x, y) ∈ R2 : −x2 + µ ≤ y < g(x)} with

g(x) =
1

16c2−

(
−4c2−x

2 − 12c−x+ 3 + 16c2−µ
)
.

In this case, for t = t2(x1, y1) we have Φ−(t2,x1) = x2 = (x2, y2, 0) so

that (x2, y2) ∈ I1 = {(x, y) ∈ R2 : y ≤ −x2 + µ}.
The two-dimensional map P− : D1 → I1 is give by

P−(x1, y1) = (x1 + c−t2(x1, y1), y1 − t2(x1, y1)).
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This map determines the points (x2, y2) of return of the orbits of system

(6.24) to Σ, from the initial conditions (x1, y1), so that the equation

x2 + c−y2 = x1 + c−y1 (6.39)

is satisfied. Furthermore, P− is also dependent on the parameter µ, so

that for all (x1, y1, µ) in an neighbourhood of (0, 0, 0) we can represent

it by the expansions

x2 = x1 + 2c−y1 − 2c−(µ− x2
1)− c−n(x1, y1, µ) +O (3)

y2 = −y1 + 2(µ− x2
1) + n(x1, y1, µ) +O (3)

where

n(x1, y1, µ) = −4c−
3

(3x1 + 2c−(y1 − µ)) (y1 − µ).

Both maps P+ and P− are involutions (see [116]) at T+ and T−,

respectively, since P+(x0, x
2
0 − µ) = (x0, x

2
0 − µ), P−(x1,−x2

1 + µ) =

(x1,−x2
1 + µ), P 2

+(x0, y0) = (x0, y0), P 2
−(x1, y1) = (x1, y1) and

Det[DP+(x0, x
2
0 − µ)] = −1,

Det[DP−(x1,−x2
1 + µ)] = −1,

where DP± denote the Jacobian matrices given by

DP+(x0, x
2
0 − µ) =

(
1 + c+α(x0) −c+(c+α(x0) + 2)

α(x0) −1− c+α(x0)

)
, (6.40)

DP−(x1,−x2
1 + µ) =

(
1 + c−β(x1) c−(c−β(x1) + 2)

−β(x1) −1− c−β(x1)

)
, (6.41)

with α(x0) = 4x0

1−2c+x0
and β(x1) = 4x1

1−2c−x1
.

Based on the conditions stated above, we can ensure that there

is an open set D0c ⊂ D0 in neighbourhood of (x0, y0) and I0c ⊂ I0 in

neighbourhood of (x1, y1) such that P+(x0, y0) = (x1, y1) ∈ I0c for all

(x0, y0) ∈ D0c. Analogously, we can ensure that there is an open set
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D1c ⊂ D1 in neighbourhood of (x1, y1) and I1c ⊂ I1 in neighbourhood

of (x2, y2) such that P−(x1, y1) = (x2, y2) ∈ I1c for all (x1, y1) ∈ D1c.

In addition, we can establish (x0, y0, 0) ∈ Σ+
c and (x1, y1, 0) ∈ Σ−c ,

such that the points in D0c and D1c are crossing points. So, assuming

I0c ⊂ D1c we define the function that describes the first return map

P : (D0c,p
±) → (I1c,p

±) by composition P = P− ◦ P+, where p± =

(±√µ, 0). The explicit form for the first return map P is obtained by

P (x0, y0) =

[
x0 + c+t1(x0, y0) + c−t02(x0, y0)

y0 + t1(x0, y0)− t02(x0, y0)

]
(6.42)

with t02 = t2(P+(x0, y0)), which can be represented by the expansions

x2 = x0 − 2(c− + c+)y0 − 2(c+ + 3c−)(µ− x2
0) + rT0 Hr0 +O (3) ,

y2 = y0 + 4(µ− x2
0) + rT0 Gr0 +O (3) , (6.43)

for all (x1, y1, µ) in an neighbourhood of (0, 0, 0), where rT0 =
[
x0 y0 µ

]

and H = (hij) (resp. G = (gij)), for i = 1, 2, 3, with h1j = g1j = h23 =

g23 = 0 and

h21 = −4(c2− + 4c−c+ + c2+),

h22 =
8

3
(c3− + 3c2−c+ + 5c−c

2
+ + c3+),

h31 = −4(c− + c+)(3c− + c+),

h32 =
16

3
(3c3− + 6c2−c+ + 5c−c

2
+ + c3+),

h33 =
8

3
(3c2− + 2c−c+ + c2+)(3c− + c+),

g21 = 4(c− + 3c+),

g22 = −8

3
(c2− + 3c−c+ + 4c2+),

g31 = 12(c− + c+),

g32 = −16

3
(3c2− + 6c−c+ + 4c2+),
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g33 = −8

3
(9c2− + 9c−c+ + 4c2+).

We consider the crossing dynamics of system (6.24) described by

map P . The fixed points are displayed in the following proposition.

Proposition 6.3. With respect to the fixed points of the first return

map P , we have:

i) Assuming c− 6= −c+, for µ > 0 there are two fixed points at

(−√µ, 0) and (
√
µ, 0). In the critical case c− = −c+, for µ > 0

there are infinite fixed points belonging to the ellipse defined by

Γ = {(x, y, z) ∈ Σ : 3x2 + 4c2+y
2 − 6c+xy − 3µ = 0}. (6.44)

ii) For µ = 0 there is a single fixed point at (0, 0) and for µ < 0 there

are no fixed points, both cases for all c±.

Proof. The fixed points of map P must satisfy the equations (x0, y0) =

P (x0, y0), which can be reduced to

c+t1(x0, y0) = −c−t02(x0, y0),

t1(x0, y0) = t02(x0, y0).

In this case we have two possibilities: (a) If c− 6= −c+ then the fixed

points must satisfy the equations t1(x0, y0) = 0 and t02(x0, y0) = 0,

that is, y0 = x2
0 − µ and y0 = −x2

0 + µ, respectively. Therefore, there

are two fixed points at (−√µ, 0) and (
√
µ, 0) for µ > 0, a single fixed

point at (0, 0) for µ = 0 and there are no fixed points for µ < 0. (b)

Now, if c− = −c+, then the fixed points must satisfy the equation

t1(x0, y0) − t02(x0, y0) = 0, which can be reduced to equation in (6.44)

provided that µ > 0. Therefore the ellipse Γ determines on Σ an

invariant set for the crossing dynamics. When µ assumes the critical

value µ = 0, this ellipse disappears and the origin becomes the only

fixed point, since it is the only point to fulfill equation in (6.44). So

our proof is complete.
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Remark 6.3. The non-trivial fixed points (±√µ, 0), for µ > 0, are

equivalent to T-singularities of (6.24) with reduced coordinates, while

for µ = 0 the trivial fixed point is equivalent to 1-degenerate T-singularity

with reduced coordinates. When c− = −c+ and µ > 0, besides the fixed

points equivalent to T-singularities, there are other infinite fixed points

belonging to the set Γ which, except for points (±√µ, 0), is completely

contained in the crossing regions for 0 < µ < 3
16c2+

.

The stability of the non-trivial and trivial fixed points is proved

in the following proposition. See Figure 6.9.

Proposition 6.4. Assume c− < −c+ (resp. c− > −c+). With respect

to the stability of the first return map P , we have:

a) For µ > 0 the point fixed (−√µ, 0) is a saddle (resp. center) and

(
√
µ, 0) is of center type (resp. saddle).

b) For µ = 0 the origin is a parabolic fixed point originated by the

collision between the two non-trivial fixed points of saddle and

center types.

Proof. We assume c− < −c+. Note that for the fixed points (±√µ, 0)

and (0, 0), we have x1 = x0 in the Jacobian matrices DP± given in

(6.40)-(6.41). Then, the Jacobian matrix of the map P is defined by

DP (x̂, 0) = DP−(x̂, 0) ·DP+(x̂, 0), applied at the point (x̂, 0), where x̂

represents the x-coordinate of the fixed point. So, we get

DP (x̂, 0) = σ(x̂)

(
1 + 2x̂(5c− + c+(1 + 2c−x̂)) −2(c− + c+(1 + 4c−x̂))

−8x̂(1 + (c− + c+)x̂) 1 + 2x̂(5c+ + c−(1 + 2c+x̂))

)
,

(6.45)

where σ(x̂) = 1
(1−2c−x̂)(1−2c+x̂) > 0, and then we calculate the corre-

sponding determinant and trace, namely

Det[DP (x̂, 0)] = 1,

Tr[DP (x̂, 0)] = 2q(x̂) = 2 + 16(c− + c+)x̂σ(x̂).
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In equation of trace, we have q(0) = 1, 0 < q(
√
µ) < 1 and q(−√µ) > 1.

Therefore, for µ > 0 the non-trivial fixed point with x̂ = −√µ < 0 is a

saddle, since its eigenvalues are

ρ±(x̂) = q(x̂)±
√
q(x̂)2 − 1, (6.46)

such that ρ−ρ+ = 1, 0 < ρ− < 1 and ρ+ > 1. While the fixed point

with x̂ =
√
µ > 0 is of center type (elliptic), since its eigenvalues ρ±

are complex conjugate such that |ρ±| = 1. When the parameter µ

assumes the critical value µ = 0 both non-trivial fixed points, of the

saddle and center types, collide at the origin. In this case the origin is

the only fixed point of map P and its eigenvalues are ρ± = 1. So, the

trivial fixed point is parabolic, called 1:1 resonant. For the opposite

assumption, c− > −c+, the exchange of stability occurs between the

non-trivial fixed points. So our proof is complete.

6.3.4 Invariant surfaces connected to T-singularity

Assuming c− = −c+ and µ = 0 the map P has a single fixed point,

located at the origin of its phase portrait, and Jacobian matrix with

double eigenvalue 1. We take equations (6.37)-(6.39) and the straight

line given by χ = {(x, y, z) ∈ Σ : x = c+y}, containing the trivial fixed

point. Then, for all (x0, y0, 0) ∈ χ we have also (x1, y1, 0) ∈ χ and

(x2, y2, 0) ∈ χ. In this case, any trajectory of the system (6.24) started

at the point (x0, y0, 0) ∈ χ, crosses the switching boundary Σ a finite

number of times circulating the origin, always at points belonging to

the χ, until the point (x2, y2, 0) ∈ χ leaves the domain of P and so the

trajectory not crosses the Σ anymore. On the straight line χ we can

ensure, from the equation (6.43), that y2 − y0 = −4c2+y
2
0/3 +O (3) < 0

(remember that y0, y2 < 0) and, thus, any trajectory started at the

point (x, y, 0) ∈ χ near the origin, moves away from the origin. See

Figure 6.7.

In addition, for initial conditions outside χ, the evolution of the
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Figure 6.7: Phase portrait of system (6.24) for an initial condition at χ,
with parameters µ = 0 and c− = −c+ = 1/4.

Figure 6.8: Invariant (non-smooth) ellipsoid present in the system (6.24)
for µ > 0 and c− = −c+.

map P occurs on parallel lines to χ. So, an trajectory of (6.24) through

of any parallel line to χ that crosses the repulsive sliding region Σrs,

spirals around the Σrs moving away from it.

Continuing with c− = −c+, for a small positive perturbation on

the parameter µ from the critical value µ = 0, the trivial fixed point

bifurcates and gives rise to infinite fixed points belonging to the set Γ
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given in (6.44). So, in addition to the fixed points (±√µ, 0) ∈ (T−∩T+),

there are other infinite fixed points belonging to crossing region Σ+
c . A

fixed point in the region Σ+
c implies the existence of its corresponding

in the region Σ−c , and so there is a limit cycle that transversely crosses

Σ at these two points. Crossing limit cycles in 3D-Filippov systems

with an unique T-singularity have been recently studied in the works

[26, 63].

In the case shown in Figure 6.8, the phase portrait of system (6.24)

displays infinity CLCs through the Γ, with nonlinear center dynamics.

These centers create an ellipsoid in the state space of the system (6.24),

such that its interior determines the basin of attraction for Σas, and

its surface is invariant to the flow of (6.24). The presence of attractive

sliding region Σas inside and repulsive sliding region Σrs outside the

ellipsoid, makes it unstable, as shown in Figures 6.8.

Now, taking fixed c± such that c− 6= c+, for a small positive per-

turbation on the parameter µ from the critical value µ = 0, the trivial

fixed point bifurcates and gives rise to two non-trivial fixed points,

(−√µ, 0) and (
√
µ, 0), one is saddle and the other center (see Fig-

ure 6.9). The Jacobian matrix calculated at the fixed points, given in

(6.45), has the eigenvalues ρ±(x̂) given in (6.46) and the eigenvectors

u±(x̂) = (u±(x̂), 1), where

u±(x̂) =
(c+ − c−)x̂±

√
(c+ + c−)(1 + 2c−x̂)(1 + 2c+x̂)x̂

2x̂(1 + (c− + c+)x̂)
(6.47)

and x̂ = x̂(µ) 6= 0 represents the x-coordinate for each fixed point.

Note in the denominator of (6.47) that 1 + (c−+ c+)x̂ > 0, because we

are assuming 0 < µ < c (see Remark 6.2) which lead us to

x̂(µ) =
√
µ <
√
c =

1

2|c−|
<

1

|c−|+ |c+|
≤ 1

|c− + c+|
, for c− < −c+,

x̂(µ) = −√µ > −√c =
−1

2|c−|
>

−1

|c−|+ |c+|
≥ −1

|c− + c+|
, for c− > −c+,

provided that |c−| > |c+| (if |c−| < |c+| we must use
√
c = 1

2|c+| in
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the above expressions). From (6.47) it is possible to prove that the

eigenvectors of the fixed point saddle are in the region of crossing Σ+
c ,

just check that u(x̂)2 < 1
4x̂2 for all 0 < µ < c. In this case, one of

the eigenvectors leaves the crossing region when the double tangential

singularity is no longer of the invisible two-fold type.

Σas
ΣrsΣrs

−

√

µ x

T
−

T+

y

0
√

µ

Σ
+
c

Σ
−

c

0

W s

W u

u+
u
−

Figure 6.9: Crossing dynamics for µ > 0, assuming c− < −c+.

Figure 6.9 illustrates the crossing dynamics described by first re-

turn map P , calculated from (6.42), presenting two fixed points for

µ > 0, one saddle and the other center. It is important to note the map

P is defined only in the crossing region Σ+
c . In order to get the crossing

dynamics in Σ−c we must calculate the inverse map P−1 = P+ ◦ P−.

Both maps have same fixed points and with same stability, however,

the stable (W s) and unstable (Wu) invariant manifolds have their sta-

bility exchanged. In other words, the branch for the unstable manifold

in region Σ+
c , defines the stable manifold in region Σ−c , see [63, 68, 71].

For a neighborhood around the fixed point saddle, the map P+

(resp. P−) takes the branch of Wu from region Σ+
c (resp. Σ−c ) to the

branch of Wu in the region Σ−c (resp. Σ+
c ). Such connections between

the branches of Wu in Σ+
c and Σ−c , produce an invariant cone with

vertex at the T-singularity, which contains Σrs in its interior. While,
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the connections between the branches of W s in Σ+
c and Σ−c , produce

an invariant cone containing Σas in its interior (see Figure 6.10). The

existence and stability of this non-smooth cones is proved in [71], where

we find that the cone surrounding the sliding region Σas is unstable

while the other surrounding Σrs is stable, both asymptotically.

Figure 6.10: Invariant (non-smooth) cones present in the system (6.24) for
µ = 1 > 0 and c− = c+ = −1/4 (c− 6= −c+).

In the system (6.24) one of the two regular T-singularities is al-

ways related to the fixed point saddle for all c− 6= −c+ and µ > 0.

Therefore both stable and unstable cones persist for all c− 6= −c+ , so

that the point of connection between them exchange of T-singularity

following the fixed point saddle from the exchange of the signal of

c− + c+. In addition, when c− = −c+ and µ > 0 the vector fields

F+
µ and F−µ are anti-collinear at the regular T-singularities, since

F+
µ (±√µ, 0, 0) = −F−µ (±√µ, 0, 0) = (c+, 1,−µ),

so that a bifurcation occurs and the unstable and stable invariant

cones (hyperbolic) give way to the unstable invariant ellipsoid (non-

hyperbolic) connecting the two T-singularities.
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We have seen in this section that the system (6.24) does not

present isolated pseudo-equilibrium point in the sliding regions and

also fixed point in the crossing regions. In this case, both sliding and

crossing dynamics are governed only by T-singularities when they ex-

ist, such points being the equilibria of the planar sliding system and

also of the first return map. If in system (6.24) we added terms of

higher degree in the components of the vector fields F±µ , we can find

pseudo-equilibrium points in the sliding regions and fixed points in the

crossing regions. Such facts will be discussed in the following sections.

6.4 Two-parameter sliding bifurcations

Let us now see the bifurcations in the sliding vector field associ-

ated with the canonical form given in (6.8)-(6.10).

6.4.1 Equilibria of the sliding vector field

The dynamic behaviour of the system (6.8) at z = 0 is described

by a sliding vector field, namely

Fs(x, y, 0) =
1

L(x, y)




(
f−3 f

+
1 − f+

3 f
−
1

)
(x, y)

(
f−3 f

+
2 − f+

3 f
−
2

)
(x, y)

0


 ,

where f−1 (x, y) = c1 +p1(x, y, 0), f+
1 (x, y) = c2 +p2(x, y, 0), f−2 (x, y) =

−1 + q1(x, y, 0), f+
2 (x, y) = 1 + q2(x, y, 0),

f−3 (x, y) = ε1

(
µ− y − x2 + r1(x, y, 0)

)
,

f+
3 (x, y) = ε2

(
−kµ− y + kx2 + r2(x, y, 0)

)
,

and L(x, y) =
(
f−3 − f+

3

)
(x, y) = (ε1+kε2)µ−(1+k)x2+ε1r1(x, y, 0)−

ε2r2(x, y, 0). As f−3 (x, y) = L−Fµh(x, y, 0) and f+
3 (x, y) = L+

Fµ
h(x, y, 0),
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then we have L(x, y) < 0 for all (x, y, 0) ∈ Σrs, L(x, y) > 0 for all

(x, y, 0) ∈ Σas and L(x, y) = 0 only for (x, y, 0) ∈ T+ ∩ T−2.

Following the standard analysis we take the first two components

of Fs multiplied by singularity L(x, y) > 0 and write a two-dimensional

system given by

dx

dτ
=
(
f−3 f

+
1 − f+

3 f
−
1

)
(x, y), (6.48)

dy

dτ
=
(
f−3 f

+
2 − f+

3 f
−
2

)
(x, y), (6.49)

where dτ = 1
L(x,y)dt, which has the same phase portrait that Fs in

Σas. To simplify, let us consider the system (6.48)-(6.49) defined in

the whole R2, looking for the possible equilibria bifurcations near the

origin. We recall that for the repulsive sliding dynamics (in Σrs) we

must take the equations (6.48)-(6.49) with reversed time.

It is important to remember that for µ > 0 there are two points of

double tangency in the system (6.8), and these points, with reduced co-

ordinates, are equilibria of planar sliding system (6.48)-(6.49), because

f−3 (x, y) = f+
3 (x, y) = 0. We denote such equilibrium points by p̂±, so

that p̂±(µ) = (x̂±(µ), ŷ±(µ)). For any µ ≥ 0 and small, coordinates of

p̂± in (x, y)-plane can be expressed by (6.12)-(6.13), as calculated in

the previous subsection (see Proposition 6.1). Then, for µ = 0 there

are two equilibria colliding at the point (0, 0).

Remark 6.4. We define here a new parameter,

ν = c2 + c1, (6.50)

where c1 is considered fixed and c2 is a parameter that can be disturbed

in system (6.8), as well as µ.

We will show below the necessary and sufficient conditions to

have a third equilibrium at (0, 0) such that for a small disturbance in

2The others possible zeros of the L function are located in crossing regions, not
being important in this moment for the sliding dynamics.
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vector of parameters (ν, µ), from the critical value (ν, µ) = (0, 0), this

equilibrium is moved (smoothly) from the origin to some point near of

the origin.

We denoted by (x̃(ν, µ), ỹ(ν, µ)) the equilibria manifold, which

fulfills (x̃(0, 0), ỹ(0, 0)) = (0, 0) and equations

d0(ν)µ+ d11µx̃+ d12(µ, ν)ỹ +O(2) = 0, (6.51)

d1µ+ d21µx̃+ d22(µ)ỹ +O(2) = 0, (6.52)

where

d0(ν) = c1(ε2k − ε1) + ε1ν,

d1 = ε1 − ε2k,

d11 = ε1
∂p2

∂x
(0) + ε2k

∂p1

∂x
(0),

d21 = ε1
∂q2

∂x
(0) + ε2k

∂q1

∂x
(0),

d12(ν, µ) =

(
ε1
∂p2

∂y
(0) + ε2k

∂p1

∂y
(0)

)
µ− ε1ν + c1(ε1 + ε2),

d22(µ) = −(ε1 + ε2) +

(
ε1
∂q2

∂y
(0) + ε2k

∂q1

∂y
(0)

)
µ.

Equations (6.51)-(6.52) is obtained from the (6.48)-(6.49), doing

(dxdτ ,
dy
dτ ) = (0, 0). We are presenting only the linear terms, but we also

consider the quadratic and cubic terms.

Since d22(0) 6= 0, then we can apply the implicit function theorem

at (x̃, ỹ, µ) = (0, 0, 0) to the equation (6.52), which does not depend on

ν, we can assure for any solution with |(x̃, µ)| small the expansion

ỹ =
ε1 − ε2k

ε1 + ε2
µ+O(|(x̃, µ)|2). (6.53)

After, we substitute (6.53) in the equation (6.51), getting

αµν + κ(ν)µx̃− ανx̃2 + σ(ν)µ2 +O(|x̃, µ)|3) = 0, (6.54)
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where

α =
ε1ε2(1 + k)

ε1 + ε2
> 0,

κ(0) = α

(
∂(p1 + p2)

∂x
(0) + c1

∂(q1 + q2)

∂x
(0)

)
,

σ(0) = α
ε1 − ε2k

ε1 + ε2

(
∂(p1 + p2)

∂y
(0) + c1

∂(q1 + q2)

∂y
(0)

)
.

Assuming κ0 = κ(0)
α 6= 0 and µ 6= 0, we can apply to (6.54) the implicit

function theorem at (x̃, ν, µ) = (0, 0, 0) to solve for x̃. Therefore, we

get

x̃(ν, µ) = − 1

κ0
ν − σ0µ+O(|(ν, µ)|2), (6.55)

where σ0 = σ(0)
κ(0) . The corresponding ỹ(ν, µ)−coordinate is directly

obtained by substituting (6.55) in equation (6.53), namely

ỹ(ν, µ) =
ε1 − ε2k

ε1 + ε2
µ+O(|(ν, µ)|2). (6.56)

For the case µ = 0 the equation (6.54) is is reduced to

−αν + η(ν)x̃+O(x̃2) = 0,

such that η(0) = −κ(0). Thus the coordinates (x̃(ν, 0), ỹ(ν, 0)) can be

directly obtained from (6.55) and (6.56) with µ = 0.

Remark 6.5. If ε1 = ε2k and ν = 0, then (x̃(0, µ), ỹ(0, µ)) = (0, 0)

for all µ, because

F−µ (0) =



c1

−1

ε2kµ


 and F+

(0,µ)(0) =



−c1

1

−ε2kµ




are anti-collinear, being also transversal to Σ for µ 6= 0 or tangent when

µ = 0.

We denote by p̃(ν, µ) = (x̃(ν, µ), ỹ(ν, µ)) the equilibrium point
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whose coordinates in (x, y)-plane are expressed by (6.55)-(6.56). There-

fore, if the condition

κ0 =
∂(p1 + p2)

∂x
(0) + c1

∂(q1 + q2)

∂x
(0) 6= 0 (6.57)

is satisfied, then system (6.48)-(6.49) has at least three equilibrium

points: p̂± with coordinates given in (6.12)-(6.13) and defined for all

µ ≥ 0; and also p̃, with coordinates given in (6.55)-(6.56) and defined

for all (ν, µ) in a neighborhood of (0, 0).

The following lemma summarizes the stability results of the equi-

libria of (6.48)-(6.49). We consider ν̄± and µ̄ defined by

ν̄±(µ) = ±κ0
√
µ+O(µ)

for µ ≥ 0 and

µ̄(ν) =
1

κ2
0

ν2 +O(ν3). (6.58)

Lemma 6.1. On the equilibria stability of system (6.48)-(6.49).

(a1) If ν > ν̄+(µ), then p̂− is a saddle equilibrium. If ν < ν̄+(µ), it

is a stable node equilibrium.

(a2) If ν < ν̄−(µ), then p̂+ is a saddle equilibrium. If ν > ν̄−(µ), it

is a stable node equilibrium.

(a3) Suppose κ0 > 0 (resp. κ0 < 0). If µ < µ̄(ν), then p̃ is a stable

node equilibrium (resp. saddle). If µ > µ̄(ν), it is a saddle (resp.

stable node).

Proof. We already know the equilibria of the planar sliding system

(6.48)-(6.49). We then proceed to the analysis of the hyperbolic stabil-

ity of these equilibria.

From the Jacobian matrices of (6.48)-(6.49), denoted by J and

applied at the equilibria p̂± (existing only for µ ≥ 0), we get the equa-
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tions of the determinant and trace, namely

Det[J(p̂±)] = 2ε1ε2(1 + k)
√
µ [±ν + (κ0 + κ1ν)

√
µ ] +O(µ

3
2 ),

Tr[J(p̂±)] = −(ε1 + ε2) +O(µ
1
2 ),

respectively. Note that the trace is negative and that the eigenvalues

are real (since Tr[J(p̂±)]2 − 4Det[J(p̂±)] > 0) in a neighborhood of

(0, 0), in the (ν, µ)-plane of parameters. Applying the implicit function

theorem at (ν, µ) = (0, 0) to equations Det[J(p̂±)] = 0, we can assure

for any solution with |µ| small, the expansions ν = ν̄∓(µ) = ∓κ0
√
µ+

O(µ). Moreover, for ν < ν̄+(µ) (resp. ν > ν̄+(µ)) and µ > 0 we

get Det[J(p̂−)] > 0 (resp. Det[J(p̂−)] < 0). Analogously, for ν >

ν̄−(µ) (resp. ν < ν̄−(µ)) and µ > 0 we get Det[J(p̂+)] > 0 (resp.

Det[J(p̂+)] < 0). From this, it is easy to see that the statements (a1)

and (a2) of the Lemma 6.1 are true.

For the equilibrium point p̃, the equations of the determinant and

trace are approximate in a neighborhood of (ν, µ) = (0, 0) by

Det[J(p̃)] = −ε1ε2(1 + k)κ0

(
µ− 1

κ2
0

ν2

)
+ δ11νµ+ δ02µ

2 +O(|(ν, µ)|3),

Tr[J(p̃)] = −(ε1 + ε2) +O(ν, µ),

respectively. Note that, just as p̂±, the trace is negative (ε1 + ε2 > 0)

and the eigenvalues are real. Applying the implicit function theorem at

(ν, µ) = (0, 0) to equation Det[J(p̃)] = 0, we can assure for any solution

with |ν| small, the expansion µ = µ̄(ν) = 1
κ2
0
ν2 + O(ν3). Supposing

κ0 < 0, then: (i) for µ < µ̄(ν) we get Det[J(p̃)] < 0; and (ii) for

µ > µ̄(ν) we get Det[J(p̃)] > 0. The case κ0 > 0 has determinant with

opposite sign. From this, it is easy to see that the statement (a3) of

Lemma 6.1 is true.
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6.4.2 Bifurcations Analysis

In previous subsection we have analyzed the conditions of exis-

tence and stability of the equilibria p̂± and p̃. From this, we can

conclude about the bifurcations in system (6.48)-(6.49), as follows:

(b1) The equilibria p̂±(µ) are defined only for µ ≥ 0, and p̂+(0) =

p̂−(0) = (0, 0), Det[J(0, 0)] = 0 and Tr[J(0, 0)] < 0. If µ > 0 and

ν < 0 (resp. ν > 0), then p̂− is a stable node (resp. saddle) and

p̂+ is a saddle (resp. stable node). If ν = 0, then both equilibria

are saddle for µ > 0.

(b2) Assume ν < 0 (resp. ν > 0). The equilibria p̂−(µ) (resp. p̂+) and

p̃(ν, µ) are defined for all µ in a neighborhood of µ = µ̄(ν), so that

p̂−(µ̄(ν)) = p̃(ν, µ̄(ν)) = (−ν/κ0, 0)+O(ν2), Det[J(p̂−)] = 0 and

Tr[J(p̂−)] < 0. If µ < µ̄(ν), then p̂− (resp. p̂+) is a stable node

and p̃ is a saddle. If µ > µ̄(ν), then p̂− (resp. p̂+) becomes a

stable node and p̃ becomes a saddle.

(b3) Suppose ν = γµ with γ an any constant. For µ > 0 we have that

p̂± are saddle equilibria, separated by p̃ which is a stable node

equilibrium. For µ = 0 these equilibria collide, so that p̂+(0) =

p̂−(0) = p̃(0, 0) = (0, 0), Det[J(0, 0)] = 0 and Tr[J(0, 0)] < 0. For

µ < 0 the equilibria p̂± disappear, while p̃ persists and becomes

a saddle.

From the statements listed above, it is clear that a Saddle-Node

bifurcation occurs for µ = 0 and a Transcritical bifurcation occurs for

µ = µ̄(ν), whenever ν 6= 0. A combination of these two bifurcations

occur for (ν, µ) = (0, 0), so that if we fix ν = γµ, from the variation of

the µ-parameter a Pitchfork bifurcation is observed at µ = 0.

The set of bifurcations in the (ν, µ)−plane of parameters, shown

in Figure 6.11 for the case κ0 < 0, summarizes the results about the

bifurcations in system (6.48)-(6.49), assuming ‖(ν, µ)‖ small. The green



218
6. Dynamics and Bifurcations in Systems with Double

Teixeira Singularity

and brown lines indicate the Trancritical bifurcation (Tb) and Saddle-

Node bifurcation (SNb), respectively. The black point at the origin

indicates the Pitchfork bifurcation (Pb). The (ν, µ)−plane is divided

into four regions around the origin, such that for each one we illustrate

the dynamics involving the equilibria of (6.48)-(6.49). In these phase

portraits the blue point represents the equilibrium p̃, while the red

points represent the equilibria p̂− (on the left) and p̂+ (on the right).

ν

Tb Tb

SNbSNb

µ
µ = µ̄(ν)

Pb

0

Figure 6.11: Bifurcations local set.

6.4.3 Stability at the pseudo-equilibrium point

The equilibrium point p̃(ν, µ), of the planar sliding system (6.48)-

(6.49), composes the first two coordinates of the pseudo-equilibrium

x̃(ν, µ) of system (6.8).

Theorem 6.3. Assume κ0 6= 0 and that ‖(ν, µ)‖ < ξ with ξ arbitrarily

small. System (6.8) has at x̃ = (p̃, 0) a real pseudo-equilibrium point if

µ 6= µ̄(ν). Suppose κ0 < 0 (resp. κ0 > 0). If µ > µ̄(ν), then x̃ ∈ Σas

and is a stable pseudo-node (resp. pseudo-saddle). If µ < µ̄(ν), then

x̃ ∈ Σrs and is a pseudo-saddle (resp. unstable pseudo-node).
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Proof. Since

LF−µ h(x̃(ν, µ)) = α (µ− µ̄(ν)) + n1νµ+ n2µ
2 +O(3)

LF+
(ν,µ)

h(x̃(ν, µ)) = −α (µ− µ̄(ν)) + n3νµ+ n4µ
2 +O(3)

with µ̄(ν) given in (6.58), α > 0 defined in previous subsection and

ni any coefficients, we can make the following statements. There is a

neighborhood of (0, 0) in the (ν, µ)-plane of parameters, where:

(i) x̃(ν, µ) ∈ Σas(µ) for µ > µ̄(ν);

(ii) x̃(ν, µ) ∈ Σrs(µ) for µ < µ̄(ν).

Comparing the results listed above with the item (a3) of the Lemma

6.1, it is easy to see that item (c) of the Theorem 6.3 is also true. Recall

that when the pseudo-equilibrium is in the repulsive region, its stability

is the opposite to that found from system (6.48)-(6.49).

Therefore, for µ = µ̄(ν) the system (6.8) undergoes a pseudo-

equilibrium transition from Σas to Σrs (or vice-versa). Moreover, the

transition point is a regular T-singularity of coordinates

x̂+(µ) = (p̂+(µ), 0)

(or x̂−(µ) = (p̂−(µ), 0)) if ν 6= 0. In the degenerate case µ = ν = 0, a

collision between the pseudo-equilibrium and the pair of T-singularities

occurs, so that for µ > 0 the pseudo-equilibrium is in the attractive

sliding region and for µ < 0 it is in the repulsive sliding region.

Figure 6.12 shows a particular case, for ε1 = ε2k, ν = 0 and

assuming κ0 < 0. In this case, for µ > µ̄(0) = 0 the origin is a stable

pseudo-node in Σas, and a pseudo-saddle in Σrs when µ < 0.
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Figure 6.12: Topological configurations on Σ induced by the pitchfork slid-
ing bifurcation.

6.5 A case study on crossing limit cycles

Let us now, by a simple example, apply the results of the previous

section with respect to sliding bifurcations. From this, we associate such

bifurcations with the birth of a limit cycle without sliding parts, that

is, a crossing limit cycle (CLC).

The system used for the analysis is given by

ẋ =

{
F−µ (x), if z < 0

F+
µ,ν(x), if z > 0

, (6.59)
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with

F−µ (x) =




1/4

−1

−y − x2 + µ


 , F+

µ,ν(x) =




ν − 1/4− ax
1

−y − az + x2 − µ


 ,

where x = (x, y, z) ∈ R3, dependent on real parameters ν, µ and

a. Note that (6.59) belongs to the family of systems with two T-

singularities given in (6.8)-(6.10), already written in the canonical form.

Thus, in a neighborhood of the origin the topological configuration of

(6.59) at z = 0 is as in (6.8)-(6.10). Then for µ > 0 and small, system

(6.59) has two regular T-singularities at points x̂±(µ) = (±√µ, 0, 0)

and, at x̂±(0) = (0, 0, 0) there exists a 1-degenerate T-singularity.

Moreover, the tangency lines T±, the sliding regions Σas and Σrs, and

the crossing regions Σ+
c and Σ−c , are defined as in (6.25), (6.26), (6.31),

(6.32),(6.33) and (6.34), since the third component of the vector field

in (6.59) and (6.24) are identical at z = 0.

6.5.1 Pseudo-equilibrium transition from Σas to Σrs

The system (6.59) has a pseudo-equilibrium point at x̃(ν) =

(ν/a, 0, 0) if, and only if, a 6= 0. This pseudo-equilibrium is real when-

ever ν2

a2 − µ 6= 0, since thus the vectors

F−µ (x̃(ν)) =




1
4

−1

−ν2

a2 + µ


 and F+

(ν,µ)(0) =



− 1

4

1
ν2

a2 − µ




are anti-collinear and also transverse to Σ. The existence condition

of pseudo-equilibrium point is also calculated from the coefficient κ0

defined in (6.57), getting κ0 = −a 6= 0. So, we can applied the Theorem

6.3 to the system (6.59), to obtain the stability and position of the

pseudo-equilibrium point as follows:

i) Case κ0 = −a < 0: For µ > µ̄(ν) = ν2/a2 the point x̃(ν) is
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a stable pseudo-node belonging to Σas, while for µ < ν2/a2 the

point x̃(ν) is a pseudo-saddle belonging to Σrs.

ii) Case κ0 = −a > 0: For µ > ν2/a2 the point x̃(ν) is a pseudo-

saddle belonging to Σas, while for µ < ν2/a2 the point x̃(ν) is an

unstable pseudo-node belonging to Σrs.

A transcritical bifurcation in the sliding dynamics occurs for all

ν 6= 0 and µ = ν2/a2. There are two bifurcation branches, as shown in

Figure 6.11, with equations ν± = ±a√µ, for µ > 0. This bifurcation is

related to the pseudo-equilibrium transition from Σas to Σrs (or vice

versa), being the transition point an equilibrium of the sliding dynamics

located at one of double tangency points x̂±(µ) = (±√µ, 0, 0). Since

the double tangency points are invisible two-fold, then, from the tran-

scritical bifurcation in the sliding dynamics, arises a CLC. In this case

we say that (6.59) undergoes a TS-bifurcation for µ = ν2/a2 whenever

ν 6= 0.

Example 6.1. Supposing a = µ = 1, then a TS-bifurcation occurs

when ν = −1 and also when ν = 1. Figure 6.13 shows a TS-bifurcation

scenario in the system (6.59), where for ν = −0.5 > −1 the pseudo-

equilibrium x̃ belongs to Σas and is stable (pseudo-node), being moved

to Σrs when ν = −1.1 < −1 and so becoming unstable (pseudo-saddle).

Along with the pseudo-equilibrium in Σrs, arise in the state space of

(6.59) a CLC with stable dynamics. For ν = −1 occurs x̃(−1) =

x̂−(1) = (−1, 0, 0), so that the T-singularity point becomes a local at-

tractor of (6.59), revealing the stable nature of the CLC that arise from

this point for ν < −1.

A pitchfork bifurcation in the sliding dynamics occurs for (ν, µ) =

(0, 0) whenever it is possible ν = γµ, for an any constant γ. Such

a bifurcation destroys (or creates) the attractive sliding region Σas,

causing a pseudo-equilibrium transition from Σas to Σrs (or from Σrs

to Σas). Here the transition point is a trivial equilibrium of the sliding

dynamics located at a double tangency point classified as 1-degenerate
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Figure 6.13: Simulation of system (6.59) in the states space and with
parameters a = µ = 1: An example of the TS-bifurcation. Green points are
T-singularities, purple point is a pseudo-equilibrium and blue cycle, in figure
(a), is a CLC.

T-singularity of system (6.59).

Example 6.2. Supposing ν = 0, then for all µ < 0 the phase portrait

of (6.59) has an unique pseudo-equilibrium point, located at x̃(0) =

(0, 0, 0) ∈ Σrs and with saddle dynamics if a > 0 (or unstable node if

a < 0). In addition, there are no double tangency points and, conse-

quently, there are no T-singularities and also attractive sliding region

Σas. When µ = 0 the vector fields of (6.59) become anti-collinear and

tangent to Σ at the origin, so that the created double tangency point at

the origin is classified as 1-degenerate T-singularity. Continuing, for
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Figure 6.14: Simulation of system (6.59) in the state space: Examples of
the Double TS-bifurcation. Green points are T-singularities, purple point is
a pseudo-equilibrium and blue/red (stable/unstable) cycles are CLCs.

µ > 0 the origin returns to be a pseudo-equilibrium, but now belonging

to Σas and with stable node dynamics if a > 0 (or saddle if a < 0). With

the disappearance of the 1-degenerate T-singularity and the appearance

of two regular T-singularities, the attractive sliding region Σas finally

emerges in Σ. See Figure 6.14.
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The bifurcation that occurs in the system (6.59) when (ν, µ) =

(0, 0) is named here as Double TS-bifurcation. For both examples, a =

1 > 0 and a = −1 < 0, we see in Figure 6.14 the birth of a CLC.

Such a CLC bifurcates from the 1-degenerate T-singularity and emerges

around the Σrs (resp. Σas) for µ < 0 (resp. µ > 0), in the case a > 0

(resp. a < 0).

6.5.2 Analysis of limit cycles created from the

TS-bifurcation

We use the method proposed in Chapter 4 to prove the existence

and stability of the CLC, local to its birth and assuming the parameters

a = µ = 1. In addition, only one case is considered, which involves the

T-singularity located at point x̂−(1) = (−1, 0, 0), as in the example

shown in Figure 6.13.

System (6.59) is rewrite in the canonical form according to Sec-

tion 4.6 of Chapter 4, and the coefficients required for the analysis are

calculated. We have listed below such coefficients:

v+ =
1 + 4ν√
3(5 + 4ν)

, ε = −16(1 + ν)

3(5 + 4ν)
,

σ = 5.65, ρ = 3.55.

Following Theorem 4.4 of Chapter 4, a bifurcation occurs for ε(ν) = 0,

i.e., for ν = −1, since v+(−1) < 0. Moreover, for any ν such that

−5/4 < ν < −1, the constraint ρε > 0 is satisfied. Therefore the CLC

arises in the phase portrait of (6.59) for ν < −1. Since σ > 0 and

0 < 8ρ < σ2, the CLC is born with stable node dynamics. The stable

CLC bifurcates of the T-singularity point at (−1, 0, 0) when ν = −1

and, exists to ν < −1. This analysis is local, so that the obtained

results are taken close enough to the bifurcation point, that is, for all

ν such that |ν + 1| < ζ with ζ > 0 arbitrarily small.

We recall, as seen in the previous subsection, that for ν = −1 a
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Transcritical bifurcation occurs in sliding dynamics, associated to the

pseudo-equilibrium transition from Σas (for −1 < ν < 1) to Σrs (for

ν < −1). Simultaneously, a bifurcation of the Bogdanov-Takens type

for maps occurs in the crossing dynamics, giving rise to two fixed points

for ν < −1, one in Σ+
c and the other in Σ−c , indicating the presence of

a CLC.

6.5.3 Analysis of limit cycles created from the

Double TS-bifurcation

In the following we analyze the stability and existence of CLCs

bifurcating from the 1-degenerate T-singularity point of system (6.59).

We set ν = 0 to place the pseudo-equilibrium at the origin.

We consider an orbit of system (6.59) through the point x0 ∈ Σ+
c

such that for t = t1 > 0 the orbit transversally returns to Σ at the

point x1 ∈ Σ−c . And its continuation through the point x1 ∈ Σ−c such

that for t = t2 > 0 the orbit transversally returns to Σ at the point

x2 ∈ Σ+
c . See Figure 6.15.
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Figure 6.15: Determining the first return map.
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Solution of ẋ = F+
µ,0(x) with initial condition (x0, y0, 0) ∈ Σ+

c is

x(t) = x0e
−at +

1

4
q(t),

y(t) = t+ y0,

z(t) = p(t)− e−at

2a
[q(t) + t]x0 + q(t)

[
y0 + µ− e−atx2

0

]
,

where

p(t) =
1 + 16a(1− at)− 2a(8 + t)e−at − e−2at

16a3
,

and

q(t) =
e−at − 1

a
.

Suppose there is a t = t1 > 0 such that (x(t1), y(t1), z(t1)) = (x1, y1, 0) ∈
Σ−c . Then a half-return map is defined by (x1, y1) = P+(x0, y0, t1) with

x1 = x0e
−at1 +

1

4
q(t1), (6.60)

y1 = t1 + y0, (6.61)

0 = f(x0, y0, t1) =
z(t1)

q(t1)
, (6.62)

for all t1 = t1(x0, y0) > 0 fulfilling the third equation.

The division by q(t1) in the equation (6.62) eliminates the trivial

solution t1 = 0, since q(0) = 0. In this case f(x0, y0, t1) = 0 is not

defined at t1 = 0 and limt1→0+ f(x0, y0, t1) = 0 only if y0 → x2
0 − µ,

leading to x1 → x0 and y1 → y0. Therefore, all (x0, y0, 0) ∈ Υ+ ⊂ T+

(Υ+ is the set of invisible folds to F+
µ,0) is a non-isolated fixed point for

the P+-map.

The P+-map satisfy the conditions of involution (see [116]) at Υ+,

since

P+(x0, x
2
0 − µ, 0) = (x0, x

2
0 − µ),

P 2
+(x0, y0, 0) = (x0, y0),

lim
t1→0+

Det[DP+(x0, y0, t1)] = −1.
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This is an important property that should be checked. Here, DP+

denotes the Jacobian matrix calculated by

DP+(p0) =
∂P+(p0)

∂(x0, y0)
− ∂P+(p0)

∂t1

∂f(p0)

∂(x0, y0)

(
∂f(p0)

∂t1

)−1

, (6.63)

where p0 = (x0, y0, t1) and

∂P+(p0)

∂(x0, y0)
=

[
e−at1 0

0 1

]
,

∂P+(p0)

∂t1
=
[
− 1

4e
−at1(1 + 4ax0) 1

]T
,

∂f(p0)

∂(x0, y0)
=
[
e−at1

2

(
t1

1−e−at1 − 1
a − 4x0

)
1
]
,

∂f(p0)

∂t1
=
−4(1 + 2ax0)(1 + 4ax0) + 16ae2at1 + (1 + 4ax0)2e−at1

16a(eat1 − 1)2

+
2 + 8a(x0 − 2at1 − 2)− 2at1(1 + 4ax0) + (1 + 4ax0)2

16ae−at1(eat1 − 1)2
.

Solution of ẋ = F−µ (x) with initial condition (x1, y1, 0) ∈ Σ−c is

x(t) =
1

4
t+ x1,

y(t) = −t+ y1,

z(t) = − 1

48
t3 +

1

4
(2− x1)t2 − (y1 + x2

1 − µ)t.

There exists a t = t2 > 0 such that (x(t2), y(t2), z(t2)) = (x2, y2, 0) ∈
Σ+
c , given by

t2 = 6(2− x1)− 2
√

3
√

12(1− x1)− x2
1 − 4(y1 − µ),

whenever y1 < 3(1− x1)− x2
1

4
+ µ. This t2 = t2(x1, y1) determines the

time spent by a trajectory, starting at z = 0, to return to the z = 0.

We called of return time or flight time. To simplify the calculations,

we leave the P−-map dependent on the return time t2 > 0.
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Given (x1, y1, µ) with µ− x2
1 < y1 < 3(1− x1)− x2

1

4
+ µ, there is

a t = t2 > 0 such that (x(t2), y(t2), z(t2)) = (x2, y2, 0) ∈ Σ+
c . Then a

Half-return map is defined by (x2, y2) = P−(x1, y1, t2) with

x2 =
1

4
t2 + x1, (6.64)

y2 = −t2 + y1, (6.65)

0 = g(x1, y1, t2) = − 1

48
t22 +

1

4
(2− x1)t2 − y1 − x2

1 + µ, (6.66)

for any t2 = t2(x1, y1) ≥ 0 fulfilling the third equation and (x1, y1, µ)

fulfilling the constraint µ − x2
1 ≤ y1 < 3(1 − x1) − x2

1

4
+ µ. In this

case g(x1, y1, t2) = 0 is defined at t2 = 0 and g(x1, y1, 0) = 0 only

if y1 = −x2
1 + µ, leading to x2 = x1 and y2 = y1. Therefore, all

(x1, y1, 0) ∈ Υ− ⊂ T− (Υ− is the set of invisible folds to F−µ ) is a

non-isolated fixed point for the P−-map.

Matrix DP− denotes the Jacobian matrix calculated by

DP−(p1) =
∂P−(p1)

∂(x1, y1)
− ∂P−(p1)

∂t2

∂g(p1)

∂(x1, y1)

(
∂g(p1)

∂t2

)−1

, (6.67)

where p1 = (x1, y1, t2) and

∂P−(p1)

∂(x1, y1)
=

[
1 0

0 1

]
,

∂P−(p1)

∂t2
=
[

1
4 −1

]T

∂g(p1)

∂(x1, y1)
=
[
− t24 − 2x1 −1

]
,

∂g(p1)

∂t2
=

1

24
(12− t2 − 6x1)

The P−-map is a involution at Υ−, since

P−(x1,−x2
1 + µ, 0) = (x1,−x2

1 + µ),

P 2
−(x1, y1, 0) = (x1, y1),

Det[DP−(x1, y1, 0)] = −1.

Based on the conditions stated above, we can ensure that there is
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an open set D0 ⊂ Σ+
c in neighbourhood of (x0, y0, 0) ∈ Σ+

c and I0 ⊂ Σ−c
in neighbourhood of (x1, y1, 0) ∈ Σ−c , where for all (x0, y0, 0) ∈ D0

there is an unique t = t1 > 0 such that P+(x0, y0, t1) = (x1, y1) with

(x1, y1, 0) ∈ I0. Analogously, we can ensure that there is an open

set D1 ⊂ Σ−c in neighbourhood of (x1, y1, 0) ∈ Σ−c and I1 ⊂ Σ+
c

in neighbourhood of (x2, y2, 0) ∈ Σ+
c , where for all (x1, y1, 0) ∈ D1

there is an unique t = t2 > 0 such that P−(x1, y1, t2) = (x2, y2) with

(x2, y2, 0) ∈ I1.

In addition, we can establish (x0, y0, 0) ∈ Σ+
c and (x1, y1, 0) ∈ Σ−c ,

such that the points in D0 and D1 are crossing points. So, assuming

I0 ⊂ D1 we define the function that describes the first return map

P : (D0, T ) → I1, by composition P = P− ◦ P+, where T denoted the

set of values possible for (t1, t2). The first return map P is obtained by

P (x0, y0, t1, t2) =

[
x0e
−at1 + 1

4a (at2 + e−at1 − 1)

y0 + t1 − t2

]
, (6.68)

0 = f(x0, y0, t1) (6.69)

0 = g(x1(x0, t1), y1(y0, t1), t2) = g̃(x0, y0, t1, t2) (6.70)

for all (x0, y0, 0) ∈ D0 and (t1, t2) ∈ T .

A point (x̂0, ŷ0) is a fixed point of P -map if there are t̂1 =

t1(x̂0, ŷ0) ≥ 0 and t̂2 = t2(x̂0, ŷ0) ≥ 0 satisfying the equations (6.69)-

(6.70), such that (x̂0, ŷ0) = P (x̂0, ŷ0, t̂1, t̂2). Trivial fixed points occur

for t̂1 = t̂2 = 0 and are located at the intersections of the tangency

lines T+ and T−. More precisely, if µ > 0 there are two trivial fixed

points, located at the regular T-singularities of coordinates (±√µ, 0, 0);

if µ = 0 there is only one trivial fixed point, located at the 1-degenerate

T-singularity of coordinates (0, 0, 0); and if µ < 0 there are no trivial

fixed points. In fact, since P (x0, y0, 0, 0) = (x0, y0),

lim
t1→0

f(x0, y0, t1) = y0 − x2
0 + µ = 0,

g̃(x0, y0, 0, 0) = −y0 − x2
0 + µ = 0,
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that is, the trivial fixed points have coordinates (
√
µ, 0) and (−√µ, 0),

whenever µ ≥ 0. Any other fixed point (x̂0, ŷ0) of P -map, with t̂1 > 0

and t̂2 > 0, must meet (x̂0, ŷ0, 0) ∈ Σ+
c . Such a fixed point in the

crossing region indicates the presence of a CLC in the phase portrait

of system (6.59).

Remark 6.6. If (x̂0, ŷ0) is a fixed point of the map P = P− ◦ P+ and

x̂0 = (x̂0, ŷ0, 0) ∈ Σ+
c , then x̂0 is a crossing point of the CLC with

the plane z = 0. Consequently, (x̂1, ŷ1) is a fixed point of the map

P = P+ ◦ P− such that x̂1 = (x̂1, ŷ1, 0) ∈ Σ−c is the another crossing

point of the CLC with the plane z = 0.

Proposition 6.5. We defined the set

Ω = {(a, τ) ∈ R2 : τ > 0, a 6= 0, ψ1(a, τ) < 0 < ψ2(a, τ)},

where

ψ1(a, τ) = −1

a
+

1− 8a

8a(1− eaτ )
τ +

1 + eaτ

16(eaτ − 1)2
τ2, (6.71)

ψ2(a, τ) = 24 +
3

a
+

1 + 2eaτ

1− eaτ τ. (6.72)

For each (a, τ) ∈ Ω there is a µ = µ̂(a, τ), where

µ̂(a, τ) =
6 + a(48 + aτ2)− 3a(1 + 8a)τcoth[aτ2 ]

96a2
, (6.73)

so that the phase portrait of system (6.59) has a CLC transversely in-

tersecting the plane z = 0 at the points x̂0 = (x̂0, ŷ0, 0) ∈ Σ+
c and

x̂1 = (x̂1, ŷ1, 0) ∈ Σ−c , with coordinates expressed by parametric equa-

tions

x̂0(a, τ) =
1 + (aτ − 1)eaτ

4a(eaτ − 1)
, (6.74)

ŷ0(a, τ) =
48− 3(1− 24a)τ − aτ2 − 4eaτ (24 + 24aτ + aτ2)

96a(eaτ − 1)2
+ (6.75)



232
6. Dynamics and Bifurcations in Systems with Double

Teixeira Singularity

+
e2aτ (48 + 3(1 + 8a)τ − aτ2)

96a(eaτ − 1)2
,

x̂1(a, τ) = −τ/4 + x̂0(a, τ), (6.76)

ŷ1(a, τ) = τ + ŷ0(a, τ). (6.77)

Proof. Assume that for given a 6= 0 and µ the system (6.59) has a

CLC transversely intersecting the plane z = 0 at points x̂1 ∈ Σ−c and

x̂0 ∈ Σ+
c , with return times t̂1 > 0 and t̂2 > 0 in the zones z > 0 and

z < 0, respectively. Then, the values x̂0, ŷ0, x̂1, ŷ1, t̂1 and t̂2 satisfy

the closing equations

(x1, y1) = P+(x0, y0, t1),

0 = f(x0, y0, t1)

(x0, y0) = P−(x1, y1, t2),

0 = g(x1, y1, t2).

Note from (6.61), (6.64) and (6.65) that t1 = t2 = y1−y0 = 4(x0−x1).

Then we defined τ = t̂1 = t̂2 and consequently x̂1 = −τ/4 + x̂0 and

ŷ1 = τ + ŷ0. We use τ > 0 as auxiliary parameter and we solve the

equations

x̂0 −
1

4
τ = x̂0e

−aτ +
1

4
q(τ),

0 =
p(τ)

q(τ)
− e−aτ

2a

[
1 +

τ

q(τ)

]
x̂0 + ŷ0 + µ̂− e−aτ x̂2

0,

0 = − 1

48
τ2 +

1

4
(x̂0 − 2)τ − ŷ0 − x̂2

0 + µ̂,

to (x̂0, ŷ0, µ̂) and so we get the searched solutions (6.73), (6.74) and

(6.75), defined for a 6= 0 and τ > 0. The constraint x̂0 ∈ Σ+
c is vi-

olated when LF−µ
h(x̂0) = 0 and the constraint x̂1 ∈ Σ−c is violated

when LF+
µ,0
h(x̂1) = 0. So, to have x̂0 ∈ Σ+

c and x̂1 ∈ Σ−c is nec-

essary LF+
µ,0
h(x̂1) < 0 < LF−µ

h(x̂0). As LF−µ
h(x̂0) = τ

48ψ2(a, τ) and

LF+
µ,0
h(x̂1) = ψ1(a, τ), then x̂0 ∈ Σ+

c and x̂1 ∈ Σ−c for all a 6= 0 and
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τ > 0 fulfilling ψ1(a, τ) < 0 < ψ2(a, τ). Therefore, for each (a, τ) ∈ Ω

there is a µ = µ̂(a, τ) (see equation (6.73)) for which system (6.59)

presents a CLC in its phase portrait. All CLC has period 2τ and

transversely intersect the plane z = 0 at the points x̂1 ∈ Σ−c and

x̂0 ∈ Σ+
c , whose coordinates are expressed by parametric equations

(6.74)-(6.77).
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Figure 6.16: Ω-Domain of CLCs in the (a, τ)-plane. Regions 1, 2, 3 and 4
are demarcated by solid lines. The curves of green and blue color indicate
a non-standard homoclinic bifurcation, denoted by HC+ and HC−, respec-
tively; the curve of orange color indicates a saddle-node bifurcation, denoted
by SN; the horizontal black line indicates a double TS-bifurcaton, denoted
by DTS.

The set Ω defined in Proposition 6.5 is geometrically represented

in the (a, τ)-plane of the Figure 6.16, from the regions 1, 2 3 and 4,

including the borders 2-3 and 3-4. The regions are defined by

Ω1 = {τ > 0, a < 0 and ψ1(a, τ) < 0},
Ω2 = {τ > 0, a > 0, ψ2(a, τ) > 0 and µ̂(a, τ) ≥ 0},

Ω3 = {τ > 0, a > 0, ψ2(a, τ) > 0 and µ̂(a, τ) ≤ 0 <
∂µ̂

∂τ
(a, τ)},

Ω4 = {τ > 0, a > 0, and
∂µ̂

∂τ
(a, τ) < 0},
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and, its borders, are defined by

HC+ = {τ > 0, a < 0 : ψ1(a, τ) = 0},
HC− = {τ > 0, a > 0 : ψ2(a, τ) = 0},

SN = {τ > 0, a > 0 :
∂µ̂

∂τ
(a, τ) = 0}.

In Figure 6.16, for any point (a, τ) taken in regions 1, 2, 3 and 4,

including the borders 2-3 and 3-4, there is a CLC. For any point (a, τ) on

the green curve, of equation ψ1(a, τ) = 0, the CLC touches the tangency

line T+ at a visible fold point and then appears a type of homoclinic

loop which is associated with the vanishing (or birth) of this CLC3. For

any point (a, τ) on the blue curve, of equation ψ2(a, τ) = 0, the CLC

touches the tangency line T− at a visible fold point and then appears

a type of homoclinic loop which is associated with the vanishing (or

birth) of this CLC4. For any (a, τ) on the red curve occurs µ̂(a, τ) = 0,

being µ̂ < 0 in regions 1 and 2 and µ̂ > 0 in 3 and 4. For any point

(a, τ) on the orange curve we obtain ∂µ̂
∂τ (a, τ) = 0, that is, this curve

indicates a saddle-node bifurcation of CLCs.

We assume (a, τ) ∈ Ω = Ω1 ∪Ω2 ∪Ω3 ∪Ω4 ∪SNB. The Jacobian

matrix of (6.68), denoted by DP , is defined by

DP (a, τ) = DP−(p̂1(a, τ)) ·DP+(p̂0(a, τ)),

where

p̂1(a, τ) = (x̂1(a, τ), ŷ1(a, τ), τ)

and

p̂0(a, τ) = (x̂0(a, τ), ŷ0(a, τ), τ).

Matrices DP+ and DP− are given in (6.63) and (6.67), respectively.

We denote by ρ1,2 the eigenvalues of DP . It is easy to numerically

verify the following statements.

3The fixed point (x1, y1) leaves the region Σ−
c by a visible fold point at T+.

4The fixed point (x0, y0) leaves the region Σ+
c by a visible fold point at T−.
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(a) For all (a, τ) ∈ Ω the eigenvalues ρ1,2(a, τ) are real, i.e., CLC

with saddle or node dynamics.

(b) For all (a, τ) ∈ Ω1 we obtain ρ1,2(a, τ) > 1, i.e., unstable (node)

CLC.

(c) For all (a, τ) ∈ Ω2 ∪ Ω3 we obtain ρ1(a, τ) < 1 and ρ2(a, τ) > 1,

i.e., unstable (saddle) CLC.

(d) For all (a, τ) ∈ Ω4 we obtain ρ1,2(a, τ) < 1, i.e., stable (node)

CLC.

(e) For all (a, τ) ∈ SN we obtain ρ1(a, τ) < 1 and ρ2(a, τ) = 1, i.e.,

semi-stable (saddle-node) CLC, created by the collision between

a CLC of the stable node type and other of the saddle type.

(f) For any a 6= 0 we obtain limτ→0+ ρ1,2(a, τ) = 1.

Example 6.3. There is a stable (node) CLC in system (6.59) when

ν = 0, a = 1 and µ = −0.1, as shown in Figure 6.14(a). We solve nu-

merically the equation µ̂(1, τ) = −0.1 and we find τ = 1.71 as unique

solution5. Consequently, we obtain the eigenvalues ρ1(1, 1.71) = 0.18

and ρ2(1, 1.71) = 0.37. So, this CLC has dynamics of the stable node

type. The same can be done to verify the stability of the CLC shown

in Figure 6.14(b), now for a = −1 and µ = 0.5. In this case we

find τ = 3.49 as unique solution and, consequently, the eigenvalues

ρ1(−1, 3.49) = 14.3 and ρ2(−1, 3.49) = 34.7. So, this CLC has dynam-

ics of the unstable node type.

From the branch solutions

ξa(τ) = (x̂0(a, τ), ŷ0(a, τ), x̂1(a, τ), ŷ1(a, τ), µ̂(a, τ)),

dependent on the parameter a 6= 0, we calculate limτ→0+ ξa(τ) =

(0, 0, 0, 0, 0). So, when τ → 0+ the CLC is approaching its point of

birth, located at the point (0, 0, 0) ∈ Σ for µ = 0 (i.e., located at the

5Approximated values of τ and ρ12.
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1-degenerate T-singularity). We assume |µ| small, then a CLC is born

for µ > 0 if a ≤ 1
8 and for µ < 0 if a > 1

8 , since

lim
τ→0+

µ̂(a, τ) = 0,

lim
τ→0+

∂µ̂

∂τ
(a, τ) = 0,

lim
τ→0+

∂2µ̂

∂τ2
(a, τ) =

1− 8a

96
,

lim
τ→0+

∂3µ̂

∂τ3
(1/8, τ) = 0,

lim
τ→0+

∂4µ̂

∂τ4
(1/8, τ) =

1

15360
> 0.

But until when the CLC persists, ie, what is the interval for µ such

that there is a CLC? Is there only one, or can there be more than one

CLC simultaneously for same µ value?

In order to answer this questions asked above, let us look at Figure

6.16. Taking a < 0 there is a τ = τmax(a) satisfying ψ1(a, τmax) = 0,

so that τmax →∞ when a→ 0− and for a→ −∞ we have τmax(a)→
16. So, if a < 0 for all τ fulfilling 0 < τ < τmax(a) there is a CLC

defined. This CLC is unique since µ̂(a, τ) > 0 and ∂µ̂
∂τ (a, τ) > 0 for all

(a, τ) ∈ Ω1. In this case, if a < 0 then there is only one CLC for all

µ ∈ (0, µg+(a)), where µg+(a) = µ̂(a, τmax(a)).

Taking a > 0 there is a τ = τmax(a) satisfying ψ2(a, τmax) = 0, so

that for each τ ∈ (0, τmax) a CLC is defined. In addition, for a→ +∞
we have τmax(a) → 12 and for a → 0+ we have τmax(a) → +∞.

However, if a > 1
8 then there is τ = τsn(a) ∈ (0, τmax(a)) satisfying

∂µ̂
∂τ (a, τsn) = 0, ∂

2µ̂
∂τ2 (a, τsn) > 0 and µ̂(a, τsn) < 0. We defined µsn(a) =

−µ̂(a, τsn) > 0 and then we ensure that for a µ > −µsn and close to the

critical value −µsn, two CLCs coexist. Both collide when µ = −µsn
and disappear for µ < −µsn, as in a Saddle-Node bifurcation of limit

cycles.

Example 6.4. If we fixed a = −1, from the equation ψ1(−1, τmax) = 0

we obtain τmax = 17.06 and then µg+ = µ̂(−1, 17.06) = 6.33, that is,
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Figure 6.17: Bifurcations diagram in the (τ, µ)-plane, being τ = ŷ1 − ŷ0 =
−4(x̂1−x̂0). The branches are obtained by µ = µ̂(−1, τ) (red), µ = µ̂(0.09, τ)
(green) and µ = µ̂(0.2, τ) (blue-purple), for τ ∈ (0, τmax). A double TS-
bifurcation occurs at point O(0, 0). At points P (τmax, µg+), Q(τmax, µg−)
and R(τmax, µg−), the CLC collapses in the tangency line T−. At S(τsn, µsn)
a saddle-node bifurcation occurs.

for all µ ∈ (0, 6.33) the system (6.59) has a CLC6. This CLC is unstable

with node dynamics, since (−1, τ) ∈ Ω1. See Figure 6.17, where the red

color curve segment indicates the range of µ for which there is a CLC.

Note in Figure 6.18(a), of stability analysis, that both eigenvalues (real)

have an absolute value greater than 1.

Example 6.5. Another unstable CLC is found if a = 0.09. From the

equation ψ2(0.09, τmax) = 0 we obtain τmax = 23.99 and then µg− =

µ̂(0.09, 23.99) = 1.2, that is, for all µ ∈ (0, 1.2) the system (6.59) has a

CLC. This CLC is unstable with saddle dynamics, since (0.09, τ) ∈ Ω2.

See Figure 6.17, where the green color curve segment indicates the range

of µ for which there is a CLC. The stability analysis shown in Figure

6.18(b), reveals positive eigenvalues one with absolute value greater than

1 and the other less than 1.

6Approximated values of τmax and µ±g . We use Figure 6.16 for an initial condi-
tion choice in the resolution of the equations ψ1(−1, τmax) = 0, ψ2(0.09, τmax) = 0,

ψ2(0.2, τmax) = 0 and ∂µ̂
∂τ

(0.2, τsn) = 0.
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Figure 6.18: Numerical analysis of stability. The branches are obtained
by vector equations ~r1(τ) = (µ̄(τ), ρ̄1(τ)) (solid branches) and ~r2(τ) =
(µ̄(τ), ρ̄2(τ)) (dashed branches), where ρ̄1(τ) = ρ1(a, τ), ρ̄2(τ) = ρ2(a, τ)
and µ̄(τ) = µ̂(a, τ) for the constants a = −1, a = 9

100
or a = 1

5
and for all

τ ∈ (0, τmax).

Example 6.6. More special case, occurring a Saddle-Node bifurcation

of CLCs, is obtained by taking a = 1
5 . From the equations ∂µ̂

∂τ (0.2, τsn) =

0 and ψ2(0.2, τmax) = 0 we obtain τsn = 15.2 and τmax = 18.8. The

critical values µsn = µ̂(0.2, 15.2) = −0.326 and µg− = µ̂(0.2, 15.2) =

−0.256 are obtained. There is a stable CLC with node dynamics for

all µ ∈ (0, µsn), since (0.2, τ) ∈ Ω3 whenever 0 < τ < τsn. Also there

is an unstable CLC with saddle dynamics for all µ ∈ (µg− , µsn), since

(0.2, τ) ∈ Ω4 whenever τsn < τ < τmax.

In Figure 6.17 the blue (purple) color curve segment indicates
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Figure 6.19: Simulations of system (6.59) in state space. In (a) we visu-
alized two CLCs, an unstable of the saddle type (red) and another stable of
the node type (blue), and in (b) a semi-stable CLC of the saddle-node type
(purple). In both, the green point in Σrs represents the trivial pseudo-saddle.

the range of µ for which there is a stable (unstable) CLC. Note that

for two different values of τ , near to τsn, we obtain a same value for

µ, thus indicating the presence of two CLCs, simultaneously, in the

phase portrait of the system (6.59). The stability analysis shown in

Figure 6.18(c), reveals two pair of positive eigenvalues, one pair with

both eigenvalues less than 1 and the other pair with one eigenvalue

greater than 1 and other less than 1.
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A Saddle-Node bifurcation of CLCs occurs in system (6.59)7 for

any a > 1
8 and µ = µsn(a), where µsn(a) = µ̂(a, τsn(a)). Figure 6.19

shows simulations of system (6.59) in state space, where we visualize,

for µ = −0.29 > µsn(0.2), the coexistence of two CLCs of opposite

stabilities and then, for µ = −0.326 = µsn(0.2), the collision of these

CLCs. Soon after, for µ < µsn(0.2), there are no more CLCs in the

phase portrait of (6.59).

To conclude this section, from the results of the existence and

stability analysis of CLCs for system (6.59) held here, we state the

following lemma.

Lemma 6.2. We defined the values µsn(a) = −µ̂(a, τsn(a)) > 0 for any

a 6= 0 and τsn(a) > 0 satisfying ∂µ̂
∂τ (a, τsn) = 0, µg+(a) = µ̂(a, τmax(a))

for any a < 0 and τmax(a) > 0 satisfying ψ1(a, τmax) = 0, and µg−(a) =

µ̂(a, τmax(a)) for any a > 0 and τmax(a) > 0 satisfying ψ2(a, τmax) = 0,

where ψ1(a, τ), ψ2(a, τ) and µ̂(a, τ) are given in (6.71), (6.72) and

(6.73), respectively. With regard to the phase portrait of system (6.59),

we can state the following.

(a) If a < 0 then for all µ ∈ (0, µg+(a)) there is an unstable CLC

with node dynamics.

(b) If 0 < a ≤ 1
8 then for all µ ∈ (0, µg−(a)) there is an unstable CLC

with saddle dynamics.

(c) If a > 1
8 then,

(c.1) for all µ ∈ (−µsn(a), 0) there is a stable CLC with node

dynamics.

(c.2) for all µ ∈ (−µsn(a), µg−(a)) there is an unstable CLC with

saddle dynamics.

(c.3) both stable node and saddle CLCs coexist for all

µ ∈ (−µsn(a), 0) if µg−(a) ≥ 0, or for all

µ ∈ (−µsn(a), µg−(a)) if µg−(a) < 0.

7Keeping ν = 0.
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6.6 Conclusion

The analysis performed along the Chapter shows that systems

with two T-singularities can present interesting bifurcations as the fold

bifurcation of T-singularities, the TS-bifurcation and the double TS-

bifurcation. Such bifurcations are said to be compound, since they are

characterized by standard bifurcations occurring simultaneously in the

sliding vector field and in the first return map. We have presented

a detailed analysis of the sliding and crossing dynamics around the T-

singularities, regular or degenerate, and also the sliding dynamics at the

pseudo-equilibrium. From the case study, we have proved the existence

of up to two CLCs, the stability and bifurcations involving such CLCs.



242
6. Dynamics and Bifurcations in Systems with Double

Teixeira Singularity

6.7 Appendix A: Proof of Theorem 6.1

We represent the state variables of system (6.1) as x = (x1, x2, x3).

From the hypothesis (H1) we write

f̃+
µ (x1, x2) = a+

0 µ+ a+
10x1 + a+

01x2 + σ+
µ (x1, x2),

f̃−µ (x1, x2) = µ+ a−10x1 + a−01x2 + σ−µ (x1, x2),

where σ±µ are polynomial functions of (x1, x2), may be dependent on

the parameter µ, and such that σ±µ (0) =
∂σ±0 (0)
∂x1

=
∂σ±0 (0)
∂x2

= 0. Note

that σ±µ represent the non linear parts of f̃±µ . Moreover, the coefficients

of linear part of f̃±µ must satisfy

a+
10a
−
01 = a+

01a
−
10.

The matrix Q of (H1) is

Q =



a+

10 a+
01 a+

0

a−10 a−01 1

a1 a2 a3


 ,

where a1 = ∂n
∂x1

(0), a2 = ∂n
∂x2

(0) and a3 = ∂n
∂µ (0), and n(x1, x2, µ) =

∂f̃+
µ

∂x1

∂f̃−µ
∂x2
− ∂f̃−µ

∂x1

∂f̃+
µ

∂x2
. Since, Det[Q] 6= 0 then the linear part of f̃±µ must

be non null. So, we assume that a−01 6= 0.

The new state variables are:

y = −a−10x1 − a−01x2, (6.78)

x = x1. (6.79)

From this change of variables, we rewrite f̃±µ as

˜̃
f

+

µ (x, y) = aεµ− εy + σ̃+
µ (x, y),

˜̃
f
−
µ (x, y) = µ− y + σ̃−µ (x, y),
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where ε =
a+01
a−01
6= 0 and a =

a+0
ε . Note that ε 6= 0, since the hypothesis

(H1) ensures that both the graphs of the implicit equations
˜̃
f
±
µ (x, y) =

0 are smooth curves at (x, y, µ) = (0, 0, 0), that is,
∂
˜̃
f
±
0 (0,0)
∂(x,y) 6= (0, 0).

We recalculate the matrix Q and its determinant, and we get

Q̃ =




0 −ε aε

0 −1 1

ã1 ã2 ã3




and Det[Q̃] = ε(a− 1)ã1 6= 0. Therefore, we must have a 6= 1 and ã1 =

ε(e− − e+) 6= 0, that is, e− 6= e+, where e− =
∂2σ̃−µ
∂x2 and e+ = 1

ε

∂2σ̃+
µ

∂x2

for (x, y, µ) = (0, 0, 0).

Finally, by applying the change of variables given in (6.78)-(6.79)

to the system (6.1), we rewrite it in a form as in (6.5)-(6.7) of Theorem

6.1.

6.8 Appendix B: Proof of Theorem 6.2

Consider the system (6.5)-(6.7) rewrite as

d

dτ
(x1, x2, x3) =

{
F−u (x1, x2, x3), if x3 < 0

F+
u (x1, x2, x3), if x3 > 0,

with vector fields defined by

F−u (x) =




c− + p−u (x)

b− + q−u (x)

u− x2 + e−x2
1 + r−u (x)




and

F+
u (x) =




c+ + p+
u (x)

b+ + q+
u (x)

ε
(
au− x2 + e+x2

1 + r+
u (x)

)


 ,
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for all x = (x1, x2, x3) ∈ K and |u| small. We assume that ε > 0,

e− < 0, e+ > 0, b+ > 0 and b− < 0, and we defined the coefficients

α =
1− a
1 + k

6= 0,

β =
a+ k

1 + k
.

To write the system (6.5)-(6.7) in the local canonical form given

in (6.8)-(6.10), just apply the change of variables of the state and time,

besides the definition of new parameters according to Table 6.1. The

new polynomial functions are get by p1 =
p−0

−b−
√
−e− , p2 =

p+0
b+
√
−e− ,

q1 =
q−0
−b− , q2 =

q+0
b+ , r1 =

r−0
−b− and r2 =

r+0
b+ .

State and time variables Parameters

t = −b−τ for z < 0 c1 = c−

−b−
√
−e−

t = b+τ for z > 0 ε1 = 1
−b− > 0

x =
√
−e−x1 c2 = c+

b+
√
−e−

y = x2 − βu ε2 = ε
b+ > 0

z = x3 k = − e+

e− > 0

µ = αu

Table 6.1: Normalization



Chapter 7

Boundary Equilibrium

Bifurcations in a Family

of 3D-DPWL Systems

In this Chapter we study a family of discontinuous piecewise-

smooth systems in R3 whose vector fields are linear on both sides of the

switching boundary, which we call 3D-DPWL systems. Furthermore,

we are interested in systems with two parallel tangency lines containing

a cusp point each. This configuration is observed in piecewise-linear

control systems in which the control action is discontinuous such as

the Sliding Mode Control (SMC). We consider a general system of this

class and then derive a canonical form to reduce the number of system

parameters. The general objective in this Chapter is, from the canonical

form, to perform an analysis of the equilibria, stability, sliding dynamics

and boundary equilibrium bifurcations (BEBs). The main result is

the classification of the BEBs and its unfoldings in the sliding vector

field. This and others results obtained on the existence and stability of

equilibria are applied in two practical examples involving the SMC of

dc-dc buck power converters.
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7.1 Introduction

Bifurcations in DPWS systems (or Filippov systems) have mo-

tivated many works over the years. We highlight here the so-called

Boundary Equilibrium Bifurcations (BEBs), see for instance [13, 44,

45, 55, 67, 78]. The BEBs are part of the Discontinuous-Induced Bifur-

cations (DIBs), occurring generically by varying one single parameter

(codimension-one local bifurcation). The DIBs are unique bifurcations

of piecewise-smooth systems. Such bifurcations occur when an invari-

ant set of the system (equilibrium point, limit cycle, etc), crosses or

touches tangentially the switching boundary Σ of this system, see [42]

and references therein.

The BEBs can trigger varied and complex phenomena, such as the

birth of periodic orbits with a sliding part or even strange attractors,

see for instance [61]. But, with regard to the position of the equilibria

involved1, in relation to the boundaries of their respective vector fields,

there are two generic scenarios according to [37, 93], both occurring by

a one-parameter bifurcation:

(i) The persistence scenario is observed when a natural equilibrium

turns into a pseudo-equilibrium. In this case, if the natural equi-

librium is real (resp. virtual), then the pseudo-equilibrium is

virtual (resp. real).

(ii) The nonsmooth fold scenario is observed when both a natural

equilibrium and a pseudo-equilibrium collide and disappear. In

this case, if the natural equilibrium is real (resp. virtual), then

the pseudo-equilibrium is also.

The persistence of a single equilibrium indicates that both natu-

ral and pseudo equilibria do not coexist, as shown in Figure 7.1. In the

nonsmooth fold scenario they collide and disappear, so that they can co-

1See definitions of the typical equilibria of DPWS systems in the preliminary
Chapter 2, Section 2.3: natural equilibrium, pseudo-equilibrium and boundary equi-
librium.
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exist. Undoubtedly, persistence scenario with a real pseudo-equilibrium

is ideal for the applications in sliding mode control systems, however

this is not always possible. To determine which situation occurs for a

given BEB in a DPWS system, we use Theorem 1 statement in [45],

page 1382.

R
−

R
+

Σ

(a) µ < 0

R
−

R
+

Σ

(b) µ = 0

R
+

R
−

Σ

(c) µ > 0

Figure 7.1: Boundary node collision in a persistence scenario of BEBs in
system 7.1. The switching boundary is Σ = {(x, y) ∈ R2 : x + y = 0},
dividing the plane into two open regions: R+ = {(x, y) ∈ R2 : x + y > 0}
and R− = {(x, y) ∈ R2 : x + y < 0}. The green and blue dots in (a) are,
respectively, the pseudo-equilibrium (real) and the invisible fold. The blue
dot, in (b), is the boundary equilibrium. The red and blue dots in (c) are,
respectively, the natural equilibrium (real) and the visible fold.

For two-dimensional dynamical systems we now know all the un-

folding dynamics of the BEBs, having a total of twelve topologically

distinct cases. The first classification of BEBs was given by Filippov
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in [51], where were determined eight topologically distinct cases for the

generic local dynamics at a boundary equilibrium. An almost com-

plete list of their unfoldings of codimension-one, with ten cases, were

described by Kuznetsov et al. in [78] and, the missing cases, have only

recently been revealed by Hogan et al. in [67]. Other works with im-

portant results that deserve highlight are [22, 35, 45, 60, 64, 93].

Example 7.1. In Figure 7.1 we see one of twelve distinct cases of

BEBs. Such a generic unfolding is obtained, for example, by the vari-

ation of the parameter µ in the system

(ẋ, ẏ) =

{
F+(x, y) = (−4x,−y + µ) if x+ y > 0

F−(x, y) = (2, 1) if x+ y < 0
. (7.1)

For µ = 0 a BEB persistence occurs at the boundary equilibrium located

at (0, 0). Moreover, this BEB has as characteristic the persistence of

the natural stable node equilibrium for µ > 0 and of the stable pseudo-

equilibrium for µ < 0 (see BN1 case in [78]). The nonsmooth fold

scenario can be also observed at a boundary node equilibrium, if we

take −1 instead of 1 in the second component of the constant vector

field F− (see Remark 4.2 in [64]).

There are few studies related to BEBs in R3, and the number of

topologically distinct cases of BEBs in 3D-Filippov systems is not yet

known. We highlight here the recent study of Simpson in [105], where

a new normal form is proposed for BEBs in systems of any number of

dimensions, and are provided numerical evidence for the emergence of

chaotic attractors from BEBs. Another recent study, made by Glendin-

ning in [61], have shown that the Shilnikov mechanism appears natu-

rally in the unfolding of BEBs in R3, which are associated with the

creation of complex orbits near other bifurcations of piecewise smooth

systems.

The bifurcation theory for piecewise-smooth systems is still in

evolution, and in this Chapter we intend to contribute to its devel-

opment by presenting new results with respect to BEBs in R3. For
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this, we derive a canonical form for 3D-DPWS systems of our interest

and we perform a two-parameter analysis on the dynamic behaviour of

these systems. In addition, we given the conditions on the parameters

of the canonical form for a BEB to occur, classifying into persistence or

nonsmooth fold. We also given a complete classification of the sliding

dynamics at the pseudo-equilibrium (even when it becomes a boundary

equilibrium), thus obtaining all the unfolding dynamics of the BEBs,

persistence and nonsmooth fold, in the sliding vector field of systems

reducible to canonical form in study.

The results obtained are applied in two practical examples involv-

ing the sliding mode control of dc-dc buck power converters. For a first

application we use the model of a buck converter with sliding mode

control and washout filter, where the stability and bifurcation of the

pseudo-equilibrium, desired operation point for the converter, are com-

pletely determined from the canonical form. In our second application

we used the model of a bidirectional buck converter feeding a constant

power load, in which case the vector fields involved are nonlinear. From

the linear version of this system around the boundary equilibrium point,

we analyse the BEBs by applying the results obtained with the canon-

ical form. For this second application we also present a partial analysis

of other bifurcations of equilibria and limit cycles that may occur.

This Chapter is organized as follows. In the Section 7.2 we present

the system model which will be the object of study in this chapter, ours

objectives and also main results. In Section 7.3 we derive a canonical

form for 3D-DPWS systems of our interest and then we describe the

associated sliding vector field as well as dynamic characteristics on the

switching boundary. Moreover, we analyse the existence of natural

equilibria, pseudo-equilibria and boundary equilibria. The sliding dy-

namics at a pseudo-equilibrium point is investigated in Section 7.4. In

Section 7.5 we study the BEBs and classify the different types of bound-

ary equilibria with respect to the sliding dynamics in its neighborhood.

The Sections 7.6 and 7.7 are dedicated to applications of the results

obtained in previous sections.
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Previous results on Filippov theory in Chapter 2 are important

for the development that follows.

7.2 Setting the problem and main results

DPWS systems are often used as models of discontinuous control

systems in various fields of science and engineering such as mechanical,

electrical, biology, among others, see for instance [31, 80, 103, 123, 125].

In this chapter we study a particular class of 3D-DPWS systems

that describe the dynamics of control systems of the form

ẋ = Px + nu, (7.2)

where x,n ∈ R3, P is a matrix of order 3 and the control signal u is

supposed to be a scalar discontinuous function, piecewise-constant, as

u =

{
u− if h(x) < 0

u+ if h(x) > 0
, (7.3)

such that u− 6= u+. The scalar function h : R3 → R must be designed to

meet the control objectives, being usually defined as h(x) = kT (x−xr),

where xr is the reference vector and k is the control parameter vector.

The control theory for these variable structure systems is well known

and is named as Sliding Mode Control (SMC), see [122].

System (7.2)-(7.3) in closed loop is rewritten as the discontinuous

piecewise-linear system (DPWL system) given in (7.4). An important

feature of these systems is that they have linear sliding vector field and

thus exhibit, under certain conditions, only a pseudo-equilibrium. Even

presenting linear vector fields, DPWL systems are rich in non-linear

phenomena developed by the interaction of such vector fields with the

discontinuity surface (switching boundary) Σ = {x ∈ R3 : h(x) = 0}.
DPWL systems are widely used in SMC applications, in general for the

study of its dynamic behaviour. Undoubtedly, the bifurcation theory
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[37, 77] presents powerful tools for the analysis of nonlinear dynamics.

From the analysis of bifurcations we can, for example, to determine the

region in the space of system and control parameters where the control

objectives are met, and thus design more efficient controllers capable

of inhibiting the undesired dynamics caused by bifurcations; see for

instance [29, 92].

The desired operating point of discontinuous control systems as

(7.2)-(7.3), is a pseudo-equilibrium. In this sense, it is necessary to

ensure, besides stability, that this pseudo-equilibrium point is real (ad-

missible) and that it remains so after the variation in some system

parameter. BEBs are responsible for the transition from real to virtual

pseudo-equilibrium, and therefore the BEBs analysis should be consid-

ered as an important part of the control project, in order to prevent in

order to prevent the occurrence of such undesired phenomenon.

Our objectives in this chapter are: (i) to describe the dynamic

behaviour of discontinuous control systems as (7.2)-(7.3), reducible to

a canonical form (see (7.5) at the next section); (ii) to establish the

stability conditions at the pseudo-equilibrium point; (iii) to determine

bifurcation mechanisms associated with BEBs in R3 and to classify the

different unfoldings in the sliding dynamics; (iv) to apply the results

obtained in power electronics systems involving the control of dc-dc

buck converters.

Results obtained with respect to the existence, position, stability

and bifurcations of equilibria in canonical form (7.5) can be applied to

any given system of form (7.4), fulfilling the required hypotheses (see

(H1) and (H2) in Section 7.3). The methodology of application in

a given system (see Section 7.6) passes through the verification of the

required hypotheses, the calculation of the new coefficients and param-

eters from of those that are given (see Theorem 7.1 and Lemma 7.1)

and transcription of the general results for the given system (whenever

the required conditions on coefficients and parameters are satisfied).
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Our main results in this chapter are: (i) the classification of BEBs

in 3D-DPWL systems of the form (7.4), giving explicit conditions on

the system parameters for the occurrence of each of the two scenarios,

persistence and nonsmooth fold (see Theorem 7.3 and Figure 7.5), and

also the characterization of the dynamics of its unfoldings in the sliding

vector field (see Table 7.1); (ii) the canonical form and the pathways to

get it, from which it is possible to obtain, following our results, differ-

ent types of BEBs, as we will do in the Section 7.5 through the study

of a few examples; (iii) the description of the sliding dynamics, pro-

viding the conditions on the system parameters to obtain each of the

types (saddle, node, focus, center) of pseudo-equilibrium and bound-

ary equilibrium (see Theorem 7.2 and Table 7.1); (iv) the numerical

results obtained from 4 examples, where we have presented the phase

portraits associated to different types of BEBs and, in our main exam-

ple, we show the birth (or vanishing) of a limit cycle (with sliding part)

from a BEB persistence which involves an unstable pseudo-focus and

a natural stable node equilibrium. Such results of sliding dynamics,

along with the results of the BEBs analysis, allow us to choose prop-

erly the parameters for a correct operation of the control system, even

with small uncertainties and perturbations in its parameters.

Proof of the existence of BEBs in power converters under a SMC

strategy, identification (from the simulated results, guided by the local

analysis of bifurcations) of a stable limit cycle in R3 with a sliding

segment (from a boundary focus collision) and also the identification

of a Grazing bifurcation of limit cycle, are important results in DIBs

applications for 3D-DPWS systems.

7.3 Introducing a relevant canonical form

Consider given a 3D-DPWL system of form

ẋ =

{
Px + n−, if h(x) < 0

Px + n+, if h(x) > 0
, (7.4)
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where the dot denotes derivative respect to the time t, x = (x, y, z) ∈ R3

is the state vector, P = (pij)3 for i, j ∈ {1, 2, 3} and n± = (n±1 , n
±
2 , n

±
3 )

are matrix and vector of parameters, and h is a switching scalar func-

tion.

We define the switching boundary Σ of (7.4) as being the third

coordinate plane:

Σ = {(x, y, z) ∈ R3 : h(x) = z = 0}.

More general situations can be recast to this situation after some el-

ementary transformation. The R3-space is divided by Σ in two open

regions: R− = {(x, y, z) ∈ R3 : z < 0} and R+ = {(x, y, z) ∈ R3 :

z > 0}; and the state space of (7.4) is formed by R+ ∪ R− ∪ Σ. We

define F−(x) = Px + n− as the linear vector field acting on the zone

R− (z < 0) and F+(x) = Px + n+ on R+ (z > 0), both interacting on

Σ (z = 0).

Switching boundary Σ can be divided into up to three regions in

which the system (7.4), among Σas, Σrs and Σ±c ; in which the system

(7.4) displays sliding or crossing dynamics. The transition between the

crossing and sliding modes occurs over two parallel straight lines, where

the orbits of (7.4) are tangents to Σ. Both tangency lines, denoted by

T− with respect to the vector field F− and T+ to F+, are generally

formed by two half-lines of fold singularities (invisible on one branch

and visible on the other) connected by a cusp singularity. See Figure

7.2 where we visualize a possible scenario of the dynamics of system

(7.4) in the neighborhood of Σ.

Analysis of dynamics and bifurcations in systems modelled by

(7.4), with configurations on Σ described in the previous paragraph and

the one in which the Σas is present, are the objective of our study in

this chapter. To begin, below we present conditions on the parameters

of general system (7.4) to obtain such behaviour2.

2See definitions of sliding regions and tangential singularities in background
Chapter 2.
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(H1) The conditions p31 6= 0 and/or p32 6= 0, and n−3 − n+
3 > 0 hold.

In this way, there are tangency lines

T± = {(x, y, 0) ∈ Σ : p31x+ p32y + n±3 = 0},

and the attractive sliding region Σas between them is given by

Σas = {(x, y, 0) ∈ Σ : −n−3 < p31x+ p32y < −n+
3 }.

(H2) There are two points x±c , one for each vector field F±(x), such

that

h(x±c ) = LF±h(x±c ) = L2
F±h(x±c ) = 0

and Det [Q] 6= 0, where

Q =



∇h(x±c )

∇LF±h(x±c )

∇L2
F±h(x±c )


 .

(H3) At x±c we have L3
F±h(x±c ) = Det [R±] not identically zero, where

R± =



p11 p12 n±1
p21 p22 n±2
p31 p32 n±3


 .

Remark 7.1. Note that LF−h(x, y, 0)−LF+h(x, y, 0) = n−3 −n+
3 > 0,

then LF−h(x, y, 0) > LF+h(x, y, 0) for all (x, y, 0) ∈ Σ.

The next step is to rewrite system (7.4) in a canonical form, with

reduced number of parameters, where all tangency point of T+ and of

T− have coordinates (1, y, 0) and (−1, y, 0) with y ∈ R, respectively.

Still with respect to the tangency lines T±, at the points (1, 0, 0) and

(−1, 0, 0) a change between visible and invisible fold singularities occur.

Moreover, the attractive sliding region Σas is present between such

parallel lines, that is, if −1 < x < 1 then (x, y, 0) ∈ Σas (see Figure
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7.2). This canonical form is given below (see Equation (7.5)) and will

be analysed in the next sections, in order to characterize the present

dynamics and the possible BEBs. For simplicity, let us use the same

notation for the coordinates of the new state space, as well as for the

time variable.

The canonical form considered is described by

ẋ =

{
Ax + b−, if z < 0

Ax + b+, if z > 0
, (7.5)

where

A =



a11 1 0

a21 a22 a23

1 0 0


 , x =



x

y

z


 , b− =



a11

b−2
1


 and b+ =



−a11

b+2
−1


 ,

for some parameters a11, a21, a22, a23 and b±2 . Switching boundary Σ

remains the same, given by the plane z = 0. The linear vector fields

which interact with Σ are defined by F±(x) = Ax + b±.

Theorem 7.1. Consider the hypotheses (H1) and (H2) with respect

to system (7.4). Then, there are a linear transformation of coordinates

and a rescaling of time, such that the state portrait of (7.4) is mapped

onto the state portrait of (7.5), preserving orientation of all the orbits,

including sliding orbits.

Proof. See Appendix 7.9.

Remark 7.2. All results obtained from the canonical form (7.5) are

also observed in the general system (7.4). This is our goal. From

the analysis of the canonical form (7.5), we know the dynamics of the

general system (7.4).

Figure 7.2 shows the switching boundary Σ of system (7.5) and

illustrates the behaviour of their orbits through Σ. In the next subsec-

tions we will study this system, determining its main characteristics,
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equilibrium points, stability and sliding dynamics.

T−

T+

0 x

z

y

1

−1

Σas
Σ−c

Σ+
c

ẋ = F−(x)

ẋ = F+(x)

Σ

Figure 7.2: Switching boundary of system (7.5).

7.3.1 Topological configuration on switching

boundary Σ

In order to analyse the dynamic behaviour of system (7.5) on Σ,

we recalculated the Lie derived of first, second and third order of the

scalar function h(x, y, z) = z with respect to its vector fields, getting

LF+h(x, y, 0) = x− 1, (7.6)

L2
F+h(1, y, 0) = y, (7.7)

L3
F+h(1, 0, 0) = a21 + b+2 , (7.8)

and

LF−h(x, y, 0) = x+ 1, (7.9)

L2
F−h(−1, y, 0) = y, (7.10)

L3
F−h(−1, 0, 0) = −a21 + b−2 . (7.11)

The above equations are used to classify the behaviour on Σ, as follow.

The vector fields F− and F+ are tangents to Σ at the points of
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the (parallel) straight lines

T− = {(x, y, z) ∈ R3 : z = 0 and x = −1}

and

T+ = {(x, y, z) ∈ R3 : z = 0 and x = 1},

respectively. Regarding to the tangency lines T±, the following classi-

fications hold.

(i) On the tangential singularities at (−1, y, 0) ∈ T−: invisible fold

for all y > 0; visible fold for all y < 0; and a cusp tangency for

y = 0, whenever a21 6= b−2 .

(ii) On the tangential singularities at (1, y, 0) ∈ T+: visible fold for

all y > 0; invisible fold for all y < 0; and a cusp tangency for

y = 0, whenever a21 6= −b+2 .

The cusp tangencies are important points of system (7.5) for our study,

which we denoted by

x±c = (±1, 0, 0).

The switching boundary Σ is divided into three regions of different

dynamical behaviour. Two crossing regions, namely

Σ−c = {(x, y, z) ∈ R3 : z = 0 and x < −1},

where future orbits of (7.5) crosses the plane z = 0 towards of z > 0 to

z < 0; and

Σ+
c = {(x, y, z) ∈ R3 : z = 0 and x > 1},

where future orbits of (7.5) crosses the plane z = 0 towards of z < 0 to

z > 0. Also, one attractive sliding region, namely

Σas = {(x, y, z) ∈ R3 : z = 0 and − 1 < x < 1},
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such that all future orbit of (7.5) that intersects the plane z = 0 in this

region, remains confined to it, sliding according the dynamics of the

vector field

Fs(x, y, 0) =
1

2




2y

(2a21 − b−2 + b+2 )x+ 2a22y + b−2 + b+2
0


 . (7.12)

7.3.2 Natural equilibria, pseudo-equilibria and

boundary equilibria

The vectors fields F− and F+ has a single equilibrium point each,

if and only if,

Det [A] = a23 6= 0. (7.13)

For simplify we define two new parameters, µ and ν, such that

µ = −L3
F+h(1, 0, 0) = −a21 − b+2 , (7.14)

ν = −L3
F−h(−1, 0, 0) = a21 − b−2 . (7.15)

This way, the equilibrium point of F− has coordinates

x− =

(
−1, 0,

ν

a23

)
. (7.16)

Such point is a real equilibrium for a23ν < 0, a virtual equilibrium for

a23ν > 0, or a boundary equilibrium when ν = 0.

On the other hand, the equilibrium point of F+ has coordinates

x+ =

(
1, 0,

µ

a23

)
. (7.17)

Such point is a real equilibrium for a23µ > 0, virtual equilibrium for

a23µ < 0, or a boundary equilibrium when µ = 0.
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Proposition 7.1. The natural equilibria x± of system (7.5) have the

same stability, being hyperbolic and asymptotically stable iff

a23 < 0,

a11 + a22 < 0,

(a11 + a22)(a21 − a11a22) + a23 > 0.

Proof. Such conditions above are obtained through the direct applica-

tion of Routh-Hurwitz stability criterion to characteristic polynomials

of third degree.

Sliding vector field Fs, given in (7.12), is linear and therefore the

system (7.5) has a single pseudo-equilibrium point at

x̃ =

(
ν + µ

ν − µ, 0, 0
)
, (7.18)

iff ν 6= µ. The point x̃ is the equilibrium of sliding vector field Fs, and

is a real equilibrium3 for µν < 0; virtual equilibrium for µν > 0; and

becomes a boundary equilibrium for µ = 0 or for ν = 0.

System (7.5) has only one boundary equilibrium, located at the

point

x−b = (−1, 0, 0) (7.19)

if ν = 0 and µ 6= 0; or at point

x+
b = (1, 0, 0) (7.20)

if µ = 0 and ν 6= 0. Note that, the boundary equilibrium x−b comes

up when the equilibrium of vector field F− collides with the switching

boundary Σ = {z = 0}, such that x−b = x− = x̃ is equilibrium of

F− and also of the sliding vector field Fs. Analogously, the boundary

equilibrium x+
b comes up when the equilibrium of F+ collides with the

3Note that
∣∣∣ ν+µν−µ

∣∣∣ < 1 has as solution the region in (ν, µ)-plane defined by µν < 0.
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switching boundary, such that x+
b = x+ = x̃ is equilibrium of F+ and

also of Fs. In the degenerate case, when ν = µ = 0, the system (7.5) has

the two boundary equilibrium points x±b , coexistent. But, the sliding

vector field Fs has an infinite number of equilibria on the straight line

segment (contained in Σ) that joining the points x±b .

Remark 7.3. Note that the boundary equilibria x±b have the same co-

ordinates as the cusp singularities x±c . What happens, is that at the

point (−1, 0, 0) we have a cusp singularity if ν 6= 0, and a boundary

equilibrium if ν = 0. Similarly, at the point (1, 0, 0) we have a cusp

singularity if µ 6= 0, and a boundary equilibrium if µ = 0.

7.4 Sliding vector field dynamics

The sliding vector field (7.12) is defined for all (x, y) ∈ R2 and z =

0, but only makes sense for (x, y) ∈ Σas, allowing it to be extended to its

borders that are defined by T− and T+. Following the standard analysis

of the sliding vector field, we taking only the two first coordinates of

(7.12) and write a two-dimensional linear system, whose dynamics is

topologically equivalent to (7.12) in Σas. So, the sliding dynamics will

be analysed by

ẋ = J(ν, µ)x + C(ν, µ), (7.21)

where x = (x, y),

J(ν, µ) =

[
0 1

(ν−µ)
2 a22

]
, C(ν, µ) =

[
0

− (ν+µ)
2

]
,

and µ and ν defined in (7.14) and (7.15), respectively.

There is only one pseudo-equilibrium point in the 3D-DPWL sys-

tem (7.5), denoted by x̃ and given in (7.18). This point is the equilib-

rium of sliding vector field (7.12) and, therefore, also is the equilibrium

of planar sliding system (7.21) (only considering the (x, y)-coordinates).

Dynamics at the pseudo-equilibrium x̃ is then investigated from the
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planar sliding system (7.21), based in the eigenvalues of J , given by

λ± =
1

2

(
a22 ±

√
a2

22 + 2(ν − µ)

)
.

Theorem 7.2. Assume µ 6= ν. System (7.5) has a single pseudo-

equilibrium point, namely

x̃ =

(
ν + µ

ν − µ, 0, 0
)
.

Moreover, the following statements hold.

a) If νµ < 0, then the pseudo-equilibrium x̃ is real. In the opposite

case it is virtual.

b) If ν > µ, then x̃ is a pseudo-saddle.

c) Assume a22 < 0 (resp. a22 > 0). If ν < µ ≤ ν +
a222
2 , then x̃ is a

stable pseudo-node (resp. unstable); if µ > ν +
a222
2 , then it is a

stable pseudo-focus (resp. unstable).

d) If a22 = 0 and ν < µ, then x̃ is a pseudo-center.

Remark 7.4. An important feature of system (7.5) is that the pseudo-

equilibrium manifold, given by

M = {(x, y, 0) ∈ Σ : y = 0},

is transverse to the tangency lines T± at the cusp points x±c = (±1, 0, 0),

as shown in the Figure 7.3. Moreover, the sliding vector field is tan-

gent to T− at x−c and T+ at x+
c , and in the other points of T± it is

transversal, see Lemma 2.1 and 2.2. More specifically, all point in T−
such that y > 0 (invisible fold points), is an entry point of Fs; while for

y < 0 (visible fold points) it is an exit point of Fs. On the other hand,

all point in T+ such that y < 0 (invisible fold points), is an entry point

of Fs; while for y > 0 (visible fold points) it is an exit point of Fs.
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Figure 7.3: Dynamics of sliding vector field, assuming a22 < 0 and νµ < 0.

In Figure 7.3 we see some phase portraits of Fs, in the cases

where x̃ is a real hyperbolic pseudo-equilibrium. The eigenvectors v± =

(1, λ±/2) are associated with eigenvalues λ±, so that the straight lines

generated by v+ and v− have slope with opposite signs whenever x̃ is

a pseudo-saddle, and slope of the same signal whenever x̃ is a pseudo-

node.
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7.5 Two-parameter bifurcation analysis of

equilibria

A boundary equilibrium arises in state space of the system (7.5)

when one of its natural equilibria collides with the switching boundary

Σ. More specifically, this critical point arises from the collision between

three particular points: a natural equilibrium, a pseudo-equilibrium

and a cusp singularity. The appearance of a boundary equilibrium

in a 3D-DPWS system represents a codimension-one DIB known as

BEB, and is classified according to two possible scenarios: persistence

and nonsmooth fold. Equilibria analysis in Subsection 7.3.2 indicates

the existence of generic BEBs in system (7.5). Here we will analyse

in detail these bifurcations and the sliding dynamics at the boundary

equilibrium.

First we analyse the BEBs involving the equilibrium x+ of the vec-

tor field F+, taking µ as the bifurcation parameter and the remaining

fixed. The equilibrium point x+ moves on a straight line in R3 with vec-

tor equation x+(µ) =
(

1, 0, µ
a23

)
, from the variation of the parameter

µ. Along, the pseudo-equilibrium point x̃ moves on a straight line in Σ

with vector equation x̃(µ) =
(
ν+µ
ν−µ , 0, 0

)
, also according to the param-

eter µ. The manifold equilibria defined by x+(µ) and x̃(µ) are passing

through the cusp tangency point of coordinates x+
c = (1, 0, 0), so that

for µ = 0 the equilibrium points x+ and x̃ collide with the cusp point

x+
c , giving rise to the boundary equilibrium x+

b = x+(0) = x̃(0) = x+
c .

Therefore, for µ = 0 the system (7.5) undergoes, possibly, a BEB.

After, we analyse the BEBs involving the equilibrium x− of the

vector field F−, taking ν as the bifurcation parameter and the remain-

ing fixed. The equilibrium point x− moves on a straight line in R3 with

vector equation x−(ν) =
(
−1, 0, ν

a23

)
, from the variation of the param-

eter ν. Along, the pseudo-equilibrium point x̃ moves on a straight line

in Σ with vector equation x̃ = x̃(ν), now according to the parame-

ter ν. The manifold equilibria defined by x−(ν) and x̃(ν) are passing



264
7. Boundary Equilibrium Bifurcations in a Family of

3D-DPWL Systems

through the cusp tangency point of coordinates x−c = (−1, 0, 0), so that

for ν = 0 the equilibrium points x− and x̃ collide with cusp point x−c ,

giving rise to the boundary equilibrium x−b = x−(0) = x̃(0) = x−c (see

Figure 7.4). Therefore, for ν = 0 the system (7.5) undergoes, possibly,

a BEB.

Theorem 7.3 confirms the existence of BEBs in system (7.5), and

provides the required conditions on the system parameters for the oc-

currence of the persistence or nonsmooth fold scenario.

Theorem 7.3. Assume a23 6= 0 and ν 6= µ. Then system (7.5) under-

goes a BEB for ν = 0 if µ 6= 0 or for ν = 0 if µ 6= 0. In addition, the

following statements hold.

(a) The BEB at µ = 0 corresponds to persistence scenario if a23ν > 0,

and to nonsmooth fold if a23ν < 0.

(b) The BEB at ν = 0 corresponds to persistence scenario if a23µ < 0,

and to nonsmooth fold if a23µ > 0.

Proof. The proof is obtained from the application of the Theorem 2.1

(given in Chapter 2) to the system (7.5).

(a) We obtain N−CTA−1M = 1/a23 6= 0 and −CTA−1B = ν/a23 6=
0. Then, a23ν > 0 implies in the persistence case and a23ν < 0

implies in the nonsmooth fold case.

(b) We obtain N−CTA−1M = 1/a23 6= 0 and CTA−1B = −µ/a23 6=
0. Then, a23µ < 0 implies in the persistence case and a23µ > 0

implies in the nonsmooth fold case.

In Figure 7.4 the two BEBs, persistence and nonsmooth fold, are illus-

trated. This BEBs involve the natural equilibrium x− and the pseudo-

equilibrium x̃. Note the triple collision between the natural equilibrium

x−, the pseudo-equilibrium x̃ and the cusp singularity x−c , turning this

last point into the boundary equilibrium x−b .
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Figure 7.4: BEBs in system (7.5) involving the natural equilibrium x−

(blue) and the pseudo-equilibrium x̃ (red). The point x−
c represent the cusp

singularity of vector filed F− and x−
b (purple) the boundary equilibrium.
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Remark 7.5. An important finding here is that the other natural equi-

librium, that is x+, is virtual when the BEB at x−b is of the persistence

type and it real when is of the nonsmooth fold type. Moreover, the natu-

ral equilibria and pseudo-equilibria can be simultaneously real but never

simultaneously virtual.

µ = ν

x− virtual

x̃ virtual
x+ real

x− real

x̃ real

x+ real

x+ virtual

x̃ real

x− virtual

x+ virtual

x̃ virtual

x− real

ν

µ

0

BEB+
PBEB+

NF

BEB−
NF

BEB−
P

Figure 7.5: BEBs in the (ν, µ)-plane of parameters, assuming a23 > 0.
BEB±

NF and BEB±
P denote the nonsmooth fold and the persistence scenar-

ios, respectively, for the vector field F±.

Figure 7.5 summarizes our analysis of BEBs in the (ν, µ)-plane of

parameters, where we assume a23 > 0. Parameter µ is responsible for

a BEB involving the equilibrium of the vector field F+, occurring for

µ = 0 and being of the nonsmooth fold type if ν < 0, or persistence

if ν > 0. The parameter ν is responsible for a BEB involving the

equilibrium of the vector field F−, occurring for ν = 0 and being of

the nonsmooth fold type if µ > 0, or persistence if µ < 0. In the case

a23 < 0 the scenarios are the same but occur for opposite values of µ

and ν (simply replace the quadrants 1 with 3, and 2 with 4, in Figure

7.5).

The boundary equilibrium x−b (resp. x+
b ) is also an equilibrium

of sliding vector field, so that the sliding dynamics at this point is
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BE SD a23 < 0a23 > 0

x+
b = (1, 0, 0)

µ = 0

ν 6= 0

a23 6= 0

x−b = (−1, 0, 0)

ν = 0

µ 6= 0

a23 6= 0

Saddle

Node
a22 6= 0

Focus
a22 6= 0

Center
a22 = 0

Saddle

Node
a22 6= 0

Focus
a22 6= 0

Center
a22 = 0

ν > 0

−a
2
22

2 ≤ ν < 0

ν < −a
2
22

2

ν < 0

P

NF

NF

NF

NF

P

P

P

µ < 0

0 < µ ≤ a222
2

µ >
a222
2

µ > 0

P

NF

NF

NF

NF

P

P

P

Table 7.1: Classification of boundary equilibrium points with respect to
the sliding dynamics and the type of BEB present. Legend: P indicates the
persistence scenario, NF indicates the nosmooth fold scenario, BE means
boundary equilibrium and SD means sliding dynamics.

equivalent to the dynamics at the pseudo-equilibrium, described in the

Theorem 7.2. In Table 7.1 we present the required conditions on the

system parameters to obtain in the phase portrait of (7.5) a boundary

equilibrium with sliding dynamics: saddle, node, focus or center4. For

each of them, the BEB can be of the nonsmooth fold or persistence type,

depending on the signal of parameter a23. In addition, if a22 < 0 (resp.

a22 > 0) then the node/focus boundary equilibrium is asymptotically

stable (resp. unstable) from the sliding vector field Fs.

4We have included the non-hyperbolic case involving a pseudo-center. This result
can be used in the study of Hopf bifurcation in 3D-DPWS systems where the sliding
vector field has the linear part of the form given in (7.21).
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Figure 7.6: Persistence BEB with an unstable pseudo-focus and a stable
node (natural) equilibrium. The red dot represents the natural equilibrium
point, the green dot represents the pseudo-equilibrium point and the blue dot
represents the boundary equilibrium point when µ = 0 and the cusp point
for µ 6= 0. The small circle indicates that the equilibrium is virtual. sLC
denotes the stable limit cycle, shown in blue color.
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Figure 7.7: Nonsmooth Fold BEB with a pseudo-saddle and a stable node
(natural) equilibrium. The red and purple dots represent the natural equi-
librium points, the green dot represents the pseudo-equilibrium point, the
black dot represents cusp point of F−, the blue dot represents the cusp point
of F+ for µ 6= 0 and a boundary equilibrium point when µ = 0. The small
circle indicates that the equilibrium is virtual.
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Example 7.2. Boundary Node-Focus: persistence scenario.

Consider in system (7.5) that a22 = 0.5, a11 = −6.5, a21 = −14.25,

a23 = −6 < 0, b−2 = −13.25 (implies in ν = −1 < 0) and b+2 =

14.25−µ, for |µ| small. Thus the natural equilibria are stable and have

node dynamics, while the pseudo-equilibrium is unstable with focus dy-

namics (since µ > −0.875). In this study case, a BEB occurs for µ = 0,

involving the pseudo-focus (equilibrium of Fs) and the node equilibrium

of F+. As a23ν > 0, then the persistence scenario is observed. A non-

smooth limit cycle with sliding part arises from the boundary equilibrium

point for µ > 0. This limit cycle is composed of an orbit segment of F+

and a sliding orbit segment of Fs. In addition, it is stable and develops

around unstable (real) pseudo-focus. See Figure 7.6.

Example 7.3. Boundary Node-Saddle: nonsmooth fold sce-

nario. Consider in system (7.5) that a22 = 0.5, a11 = −6.5, a21 =

−14.25, a23 = −6 < 0, b−2 = −15.25 (implies in ν = 1 > 0) and

b+2 = 14.25 − µ, for µ < 1. Thus the natural equilibria are stable and

have node dynamics, while the pseudo-equilibrium is unstable with sad-

dle dynamics. In this study case, a BEB occurs for µ = 0, involving

the pseudo-saddle (equilibrium of Fs) and the node equilibrium of F+.

As a23ν < 0, then the nonsmooth fold scenario is observed. We have

chosen here to consider the phase portraits showing the global dynam-

ics, involving all system equilibria and the unfoldings of the nonsmooth

fold BEB. See Figure 7.7.

Generically, BEBs are of codimension-one, but degenerate cases of

larger codimension also can occur in the system (7.5). A codimension-

two BEB occurs for µ = ν = 0, provided that a23 6= 0. In this case both

natural equilibria become boundary equilibria (in [93] a double bound-

ary equilibrium analysis in two-dimensional systems is introduced). An-

other codimension-two BEB occurs when the boundary equilibrium is

a center with respect to the sliding dynamics, that is, for a22 = µ = 0,

provided that a23 6= 0 and ν < 0. In the following we introduce two ex-

amples with non-hyperbolic BEBs (see case studies of two-dimensional
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systems in [45]). In both, the boundary equilibrium has node dynamics

with respect to F+ and center dynamics with respect to Fs. But, in the

first example we observed the persistence scenario and, in the second,

the nonsmooth fold scenario is observed.

Example 7.4. Boundary Node-Center: persistence scenario.

Consider in system (7.5) that a22 = 0, a11 = −6, a21 = −11, a23 =

−6 < 0, b−2 = 1 (implies in ν = −12 < 0) and b+2 = 11 − µ. Thus the

natural equilibria are stable and have node dynamics, while the pseudo-

equilibrium has center dynamics. In this study case, a BEB occurs

for µ = 0, involving the pseudo-center (equilibrium of Fs) and the

node equilibrium of F+. As a23ν > 0, then the persistence scenario is

observed. See Figure 7.8.

Example 7.5. Boundary Node-Center: nonsmooth fold sce-

nario. Consider in system (7.5) that a22 = 0, a11 = 6, a21 = −11,

a23 = 6 > 0, b−2 = 1 (implies in ν = −12 < 0) and b+2 = 11−µ. In this

example remain the pseudo-center and the natural node equilibria, but

now the node equilibria are unstable. Thus, a BEB occurs for µ = 0

and, as a23ν < 0, the nonsmooth fold scenario is observed. See Figure

7.9.

We conclude this section by giving below the main parameters

of the canonical form (7.5), calculated according to the parameters of

the original system (7.4), thus facilitating the process of applying the

obtained results.

Lemma 7.1. The parameters a23 and a22, the first responsible for the

existence of natural equilibria and the second for the stability in sliding

dynamics, are given by

a23 =
8Det [P ]

(n−3 − n+
3 )3

, (7.22)

a22 =
2((n−3 − n+

3 )(p11 + p22)− (n−1 − n+
1 )p31 − (n−2 − n+

2 )p32)

(n−3 − n+
3 )2

,

(7.23)
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as functions of the parameters of system (7.4).

The pair of parameters (ν, µ), responsible for the boundary equi-

librium bifurcations predicted by Theorem 7.3, is ruled by the values

µ =− 8Det [R+]

(n−3 − n+
3 )3

, (7.24)

ν =− 8Det [R−]

(n−3 − n+
3 )3

, (7.25)

where

R± =



p11 p12 n±1
p21 p22 n±2
p31 p32 n±3


 .

Proof. For the values of a23 and a22 we have proved in Appendix 7.9

from the normalization of system (7.4) to form (7.5). Parameters µ and

ν are defined in (7.14) and (7.15), respectively. From this, we write

−L3
F±h(±1, 0, 0) = −8L3

F±h(x±c )

(n−3 − n+
3 )3

= − 8Det [R±]

(n−3 − n+
3 )3

,

thus obtaining the equations (7.24)-(7.25).

7.6 Application 1: The buck converter

under a SMC strategy

In this section we consider a 3D-DPWL system that describes

the dynamics of the dc-dc buck converter under a sliding mode control

strategy. We will use the results of stability and bifurcations obtained

from the canonical form (7.5), in previous section, to study the dynamic

behaviour and possible BEBs in the control system proposed for the

buck converter. This analysis provides us with important information

about the dynamics of this control system.
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Figure 7.8: Persistence BEB with pseudo-center and stable node (natural)
equilibrium. The red dot represent the natural equilibrium point, the green
dot represents the pseudo-equilibrium point, the blue dot represents the cusp
point of F+ for µ 6= 0 and a boundary equilibrium point when µ = 0. The
small circle indicates that the equilibrium is virtual.
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Figure 7.9: Nonsmooth fold BEB with pseudo-center and unstable node
equilibrium. The red dot represent the natural equilibrium point, the green
dot represents the pseudo-equilibrium point, the blue dot represents the cusp
point of F+ for µ 6= 0 and a boundary equilibrium point when µ = 0. The
small circle indicates that the equilibrium is virtual.
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7.6.1 Closed loop control system modelling

The basic topology of a DC-DC buck converter is shown in Fig-

ure (7.10)(a), where R, L, C, rL and Vin, are the resistive load, the

inductance, the capacitance, the inductor resistance and the voltage

source, respectively. The voltage vout = vC (ideal case) passing through

R is the system output, which must be conducted to a desired value

vC = Vref < Vin in steady state. To obtain the desired voltage value

at the output, a control strategy by sliding modes based on the use of

a washout filter is implemented, as illustrated in Figure (7.10)(b)-(c),

in order to reject load perturbations, mainly the changes produced by

load changes of R.

−
+

Vin

u

C

−

+

vC

rL L

iL

R

S

D vC(t)

iL(t)

(a) DC-DC buck converter.

iL
+

ωF
∫ zF

−

iF

(b) Washout filter.

iF k

+
vC

+

Vref

−
H u

(c) Sliding mode controller.

Figure 7.10: Topology of a buck converter with Sliding Mode Control
(SMC) and a washout filter. The control function is u = 1

2
(1 − sign[H]).

In the schemes, the filtered inductor current given by iF = iL−zF represents
the difference between the inductor current iL and the filtered signal zF .
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The model of the buck converter with washout filter, operating in

Continuous Conduction Mode (CCM), is given by

L
diL
dt

= uVin − rLiL − vC (7.26)

C
dvC
dt

= iL −
vC
R

(7.27)

dzF
dt

= ωF (iL − zF ), (7.28)

where vC > 0 and iL > 0 are the instantaneous capacitor voltage and

inductor current, respectively. The filtered inductor current, denoted

by the new variable zF , is the output of the washout filter modelled

by equation (7.28), where ωF is the cut-off filter frequency should be

assigned with the natural frequency of the system (see [91, 111]).

The control law is defined as

u =
1

2
(1− sign[H]), (7.29)

such that u = 0 implies that the S switch, in Figure 7.10(a), is off and

u = 1 it is on. From this, the control surface is chosen as

H(iL, vC , zF ) = vC − Vref +K(iL − zF ), (7.30)

where Vref < Vin is the reference voltage (desired voltage value at the

output) and K > 0 is the control parameter, which must be adjusted

properly to ensure stability (at least local) of the desired operating

point.

Looking for a simplified model with the horizontal planar switch-

ing surface, the equations (7.26)-(7.28) are normalized by applying the

change of variables, time and parameters, given by Table 7.2. The

switch position function is invariant with respect to the normalization.

In this way, we obtain a dimensionless dynamical system, which we

represent as a DPWL dynamical system of form
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(ẋ, ẏ, ż) =

{
F+(x, y, z) = Px + n+, if z > 0

F−(x, y, z) = Px + n−, if z < 0
, (7.31)

where (x, y, z) ∈ R3 are the new state variables and

P =



−b −1 0

1 −a 0

1− bk ω − a− k −ω


 , x =



x

y

z


 ,

n+ =




0

0

−ωyr


 and n− =




1

0

k − ωyr


 .

The new parameters are ω ∈ (0, 1], 0 < yr < 1, a > 0, b > 0 and k > 0.

The dot “ · ” indicates d
dτ . We highlight that x > 0 is the normalized

inductor current, y > 0 is the normalized capacitor voltage and a > 0

is the normalized load parameter.

The vector field F+ has a equilibrium point at

x+ = (0, 0,−yr) ,

being always virtual. This equilibrium point not belong to the region

of interest x > 0 and y > 0, and so we leave out of our study. On the

other hand, the vector field F− has a equilibrium at point

x− = (aȳ, ȳ, ȳ − yr) ,

where

ȳ =
1

1 + ab
.

This natural equilibrium of (7.31) is classified as a real equilibrium for

yr > ȳ and a virtual equilibrium for yr > ȳ. The eigenvalues of matrix

P are
{

1
2

(
−a− b±

√
(a− b)2 − 4

)
,−ω

}
, which have negative real

part. In this way, x− is a stable hyperbolic equilibrium.
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State and Time Variables Parameters

iL = Vin

√
C
Lx Vref = yrVin

vC = Viny R = 1
a

√
L
C

zF = iL +
vC−Vref−Vinz

K K = k
√

L
C

t =
√
CLτ rL = b

√
L
C

ωF = ω√
LC

Table 7.2: Normalization.

7.6.2 Stability conditions at the pseudo-equilibrium

The desired operating point for the buck converter is a equilibrium

of sliding vector field (pseudo-equilibrium of (7.31)), denoted by p,

which is expected to have coordinates p = (ayr, yr, 0). In order to

report the sliding dynamics and stability of p, we will use the results

obtained in the previous section, from the canonical form (7.5).

We assume in system (7.31) that k 6= 1/b (usually k < 1/b).

Then, in system (7.31) we have p31 = 1− bk 6= 0 and n−3 −n+
3 = k > 0.

Moreover, the parameters (a, k, b, ω) are easily selected so that

Det [Q] = −bka2 + f(k, b, ω)a+ g(k, b, ω) 6= 0,

where f(k, b, ω) = −k + ω + b(−1 + k(b − k + ω)) and g(k, b, ω) =

−1 − (k − ω)2 − b2kω + b(k + ω). Following the Theorem 7.1, we can

write the system (7.31) in the canonical form (7.5), and so we get from

the Lemma 7.1 the main parameters:

a22 = −2(1 + ak)

k2
< 0,

a23 = −8(1 + ab)ω

k3
< 0,
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µ = −a23yr > 0,

ν = a23

(
1

1 + ab
− yr

)
= a23(ȳ − yr).

The pseudo-equilibrium point for the buck converter in canonical

form (7.5) has coordinates given by

x̃ =




ν+µ
ν−µ
0

0


 =




1− 2yr(1 + ab)

0

0


 .

Using the change of coordinates (7.36) proposed in Appendix 7.9, we

calculate the coordinates of this point referring to the model of buck

converter given in (7.31). In this way, we obtain

p = T x̃ + C =



ayr

yr

0


 ,

with matrices T and C given in Appendix 7.9.

Since a23 < 0, a22 < 0, µ = ν − a23ȳ > ν and

µν =− a2
23yr(ȳ − yr),

µ− ν − a2
22

2
=

4kω − 2(1 + ak)2

k4
,

from the Proposition 7.2 we can conclude that:

(i) if yr < ȳ = 1
1+ab then p is a real pseudo-equilibrium, that is,

p ∈ Σas;

(ii) p is a stable pseudo-node for a ≥ −1+2
√
kω

k and a stable pseudo-

focus for a < −1+2
√
kω

k .

It is important to note that there is a threshold for reference pa-

rameter yr, given by yr = ȳ, so that just for yr < ȳ the proposed control

keeps the buck converter working at the required point p. Figure 7.11
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shows some phase portraits of the buck converter controlled by SMC-

washout, from of simulations of system (7.31), where is observed that

from the breach of this threshold the buck converter pass to operate at

the natural equilibrium x−.
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Figure 7.11: The persistence BEB in a buck converter. System (7.31)
simulated with b = 0.3, k = 1/2, ω = 1, a = 1/3 and for differents values
of yr. In (a), (b) and (c) we have the solution in state space and in (d) we
have the solution in time. The blue point refers to the natural equilibrium,
virtual in (a) and real in (c). The red point refers to the pseudo-equilibrium,
real in (a) and virtual in (c). The green point refers to the cusp singularity
in (a) and (c), but in (b), it refers to the boundary equilibrium. In (d), the
dashed line indicates the operating point required for the converter, but not
reached when the normalized reference voltage (yr) exceeds the value 0.91.
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Natural equilibrium x− and pseudo-equilibrium p do not coexist

for yr 6= ȳ. In this case, the persistence scenario of a BEB is observed in

system (7.31), as shown in the Figure 7.11. In addition, for yr < ȳ the

natural equilibrium x− is real and the pseudo-equilibrium p is virtual;

and for yr > ȳ we have that x− is virtual and p is real. Applying

Theorem 7.3 we prove this statements.

To conclude our analysis of the buck converter with a SMC strat-

egy, modelled by 3D-DPWL system (7.31), we summarize the results of

stability and bifurcation of their equilibrium points with respect to the

parameters of reference yr and resistive load a, showed in Figure 7.12.

Natural equilibrium x− and pseudo-equilibrium p are stable (node or

focus), as well as the natural equilibrium x+ which we leave out be-

cause it is never present in the phase portrait of (7.31) (it is always

virtual). For all pair of parameters (a, yr) taken below the persistence

bifurcation curve, that is, yr < ȳ = 1
1+ab , then p ∈ Σas is the unique

equilibrium point present in the phase portrait of (7.31).

a

yr

BEB−P

0

1

x−: virtual

p: real

x−: real

p: virtual

yr =
1

1 + ab

Figure 7.12: The persistence BEB in the (a, yr)-plane of parameters.



282
7. Boundary Equilibrium Bifurcations in a Family of

3D-DPWL Systems

7.7 Application 2: The buck converter

feeding a nonlinear load of CPL-type

Results of the BEBs analysis performed in Section 7.5 can be ap-

plied to the 3D-DPWS systems where the vector fields involved are

nonlinear, as we will see in this current section. For this, we consider

the model of the buck converter connected to a constant power load

and to regulate the output voltage of the converter we use sliding mode

controller based on a washout filter. We also present a summary anal-

ysis of other bifurcations (classical and DIBs) of equilibria and limit

cycles.

7.7.1 Closed loop control system modelling

In typical dc distribution systems with a cascaded converter archi-

tecture, loads connected to the bus by an electronic converter behave

as constant power drawn from the feeder, and can be modelled as a

constant power load (CPL, for short), see [111] and references therein.

For this application we will use a 3D-DPWS system that models the

voltage control process at the output of the bidirectional buck converter

by feeding a CPL, see Figure 7.13.

Constant Power Load (CPL)

i1

v1
+

−
P1

i0

v0
+

−
P0

Buck

Converter

i1
Converter at

load point
Load

Figure 7.13: A converter at the load point behaves as a constant power
load for the feeder (buck) converter. Both P1, P0, v0 and i0 are constants
and P1 = P0, see [112].

We start from the system already written in the normalized form

which is obtained from the change of coordinates and time variable
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proposed in Table 7.2, adding P = V 2
in

√
C
L d, where P denotes the

original CPL load parameter and d denotes the normalized CPL load

parameter. In addition, to simplify, we assume this system without the

presence of constant impedance loads (linear loads).

In this way, we consider the system given by

(ẋ, ẏ, ż) =

{
F+(x, y, z), if z > 0

F−(x, y, z), if z < 0
, (7.32)

composed by the nonlinear vector fields

F+(x, y, z) =



−bx− y
x− d/y
f3(x, y, z)


 and F−(x, y, z) =




1− bx− y
x− d/y

f3(x, y, z) + k


 ,

where

f3(x, y, z) = (1− kb)x+ (ω − k)y − d/y − ωz − ωyr,

x ∈ (−xmax, xmax), y ∈ (0, ymax) and z ∈ R are the normalized vari-

ables of inductor current, capacitor voltage and filter, respectively.

The normalized parameters d ∈ R, b > 0, ω ∈ (0, 1], k > 0 and

0 < yr < 1 correspond to the CPL, inductor resistance, filter cut-

off frequency, control parameter and reference voltage (desired volt-

age value at the output), respectively. Switching plane is defined by

Σ = {(x, y, z) ∈ R3 : h(x, y, z) = z = 0}.
Tangency lines on the plane z = 0 are given by equations LF+h(x, y, 0) =

f3(x, y, 0) = 0 and LF−h(x, y, 0) = f3(x, y, 0) + k = 0. In addition,

there is an attractive sliding region (Σas) whenever k > 0, given by

Σas = {(x, y, 0) ∈ Σ : −k < f3(x, y, 0) < 0}.

At Σas the sliding dynamics is described by system (ẋ, ẏ, ż) = kyFs(x, y, 0),
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where Fs is the sliding vector field of system (7.32) and

ẋ = −xy − ωy(y − yr) + d,

ẏ = k(xy − d),

ż = 0.

System (7.32) has a pseudo-equilibrium point (equilibrium of Fs)
at x̃(d) = (d/yr, yr, 0), for all d ∈ R. This is the desired operating

point in the state space of our control system under analysis. Natural

equilibrium points of (7.32), that is, equilibria of F±, can coexist with

the pseudo-equilibrium x̃. Points x−12 =
(

1±γ
2b ,

1∓γ
2 , 1−2yr∓γ

2b

)
, with γ =√

1− 4bd, are the equilibria of the vector field F−, being x−1 = x−1 (d)

defined for all 0 < d ≤ 1/4b and x−2 = x−2 (d) for all d ≤ 1/4b, and such

that x−1 (1/4b) = x−2 (1/4b). While that F+ has a equilibrium point

at x+(d) =

(
−
√
−d
b ,
√
−bd,

√
−bd− yr

)
, defined for all d ≤ 0. We

next evaluate the stability and robustness of system (7.32) based on

the study of bifurcations and numerical simulation.

7.7.2 On bifurcations and limit cycles

Both vector fields of system (7.32), F± and also Fs, determine

smooth nonlinear dynamical systems so that we can find classical bi-

furcations of smooth systems in system (7.32). Furthermore, we can

also find in system (7.32) different types of DIBs.

We start with a DIB known as BEB, based on the previously re-

sults of this Chapter. We chose the parameter d as the BEB bifurcation

parameter. Taking z = 0 and solving the equations F+(x, y, z, d) = 0

and F−(x, y, 0, d) = 0 with respect to (x, y, z, d), we get

(
x−b , d

−
B

)
=

(
−yr
b
, yr, 0,

(1− yr)yr
b

)
, (7.33)

(
x+
b , d

+
B

)
=

(
1− yr
b

, yr, 0,−
y2
r

b

)
, (7.34)
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respectively, where x±b denote the boundary equilibrium of (7.32), re-

lated to the vector field F±, and appearing for the critical value d = d±B
of the load parameter.

Then, a piecewise-linear version of (7.32) at a boundary equilib-

rium point (xb, dB) is obtained and represented by

ẋ =

{
Px + n−, if z < 0

Px + n+, if z > 0
, (7.35)

where

x =



x

y

z


 , P =



−b −1 0

1 dB/y
2
r 0

1− bk dB/y
2
r + ω − k −ω


 ,

n− =




1

−(d+ dB)/yr

−(d+ dB)/yr + k − ωyr


 , n+ =




0

−(d+ dB)/yr

−(d+ dB)/yr − ωyr


 ,

with dB = d−B = (1−yr)yr
b if xb = x−b (boundary equilibrium related to

F−) or dB = d+
B = −y

2
r

b if xb = x+
b (boundary equilibrium related to

F+).

System (7.35) meets the hypotheses (H1) and (H2) described

in Section 7.3. The first is simple to check: p31 = 1 − bk 6= 0 and

n−3 − n+
3 = k > 0. We can assume this, since usually 0 < k < 1/b. For

the second hypothesis, it is necessary to calculate the matrix Q applied

at the points d±B given in (7.33) and (7.34). Then, the parameters

(yr, k, b, ω) are easily selected so that Det
[
Q(d±B)

]
= −p2

31 − p2
32 + (b+

p22)p31p32 6= 0.

Following the Theorem 7.1, we can write the system (7.35) in the

canonical form (7.5), and so get the canonical system parameters (for

each of the values d = d±B)

a23(d) =
8ωb(d+ d+

B)

k3y2
r

,
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ν(d) =
8ωb(d− d−B)

k3yr
,

µ(d) =
8ωb(d− d+

B)

k3yr
,

from the Lemma 7.1, which are responsible for the BEBs. Note that

µ = ν + 8ω
k3 > ν. Finally, we can prove the occurrence of persistence

and nonsmooth fold bifurcations of boundary equilibria in the buck con-

verter model considered, using the Theorem 7.3. The analysis proceeds

in two stages, one for each vector field involved, F±.

Regarding the vector field F+, we have

µ(d+
B) = 0,

a23(d+
B)ν(d+

B) =
128ω2

k6
> 0.

Therefore, for d = d+
B the system (7.32) undergoes a boundary equilib-

rium bifurcation of the persistence type (see item (a) of Theorem 7.3).

Such a bifurcation involves the points of natural equilibrium x+ and

pseudo-equilibrium x̃.

Now, we pass to the boundary equilibrium of the vector field F−.

In this case, we have

ν(d−B) = 0,

a23(d−B)µ(d−B) =
64ω2(1− 2yr)

k6yr
6= 0 if yr 6= 1/2.

Therefore, if yr > 1/2 the persistence BEB is observed at the boundary

equilibrium point x−b ; or in otherwise, if yr < 1/2 the nonsmooth fold

BEB is observed (see item (b) of Theorem 7.3). First case involves the

equilibria points x−1 and second case involves x−2 .

Figure 7.14 shows a (yr, d)-plane of parameters, where the black

parabolic curves indicate occurrence of the boundary equilibrium bi-

furcations. At the complete parabolic curve of equation
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d = d−B(yr) =
(1− yr)yr

b
,

the left branch refers to the nonsmooth fold BEB involving the equilib-

rium x−1 of the vector field F− (BEB−NF ). While that, the right branch

refers to the persistence BEB involving the equilibrium x−2 , also equi-

librium of F− (BEB−P ). The half-parabola of equation

d = d+
B(yr) = −y

2
r

b
,

refers to the persistence BEB involving the equilibrium x+ of the vector

field F+ (BEB+
P ). The black arrows in this figure, indicates the side of

the parabolic curve where the equilibrium of F± is real, consequently,

in the opposite side is virtual.

The vector fields involved F± and also Fs exhibit some classical

bifurcations such as (i) saddle-node bifurcation of the equilibria x−12,

indicated by the green straight line segment (SN) in Figure 7.14 and

occurring to

d =
1

4b
;
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(ii) the subcritical Hopf bifurcations of the equilibrium x−2 and

pseudo-equilibrium x̃, indicated by the blue straight line segment (H−sub)

and red parabolic curve segment (Hs
sub), and occurring to

d =
b

(1 + b2)2
and d =

y2
r

k
,

respectively. Moreover, in Figure 7.14 the pointsA(1/2, 1/(4b)), B(k/(b+

k), k/(b + k)2) and C(1/(1 + b2), b/(1 + b2)2) indicate bifurcations of

codimension two where the saddle-node or Hopf bifurcations are occur-

ring simultaneously to a BEB.

The results of stability and bifurcations of equilibria in system

(7.32), according to the region in the (yr, d)-plane defined in Figure

7.14, are summarized in the Table 7.3. These regions are demarcated

by solid lines and the dashed lines indicate the node/focus dynamics

transition of equilibria. So, choosing a point (yr, d) in the bifurcations

set of Figure 7.14, we know the dynamics involving the equilibria.

Example 7.6. Boundary Focus Bifurcations: persistence case

with stable pseudo-node and unstable focus. Consider yr = 0.9.

If d is disturbed around the critical value d = d−B = 0.45, so that we

moved from region 3 to the region 4 in Figure 7.14, then persistence

BEB involving the unstable focus equilibrium e−2 and the stable pseudo-

node p, is observed in system (7.32). This dynamic scenario is simu-

lated and shown in Figure 7.15, where the points of focus equilibrium,

pseudo-node and boundary equilibrium are represent by red, green and

blue dots, respectively. A stable limit cycle with sliding part arises in

the state space for d > d−B = 0.45.

Boundary focus bifurcations in planar Filippov systems were stud-

ied in [78], from which it was proved the existence of five generic critical

cases. These BEBs involving a natural focus equilibrium, a pseudo-

equilibrium and a fold singularity. In the case where the natural equi-

librium is an unstable focus, the pseudo-equilibrium is stable we have

a persistence BEB. Such a bifurcation produce a stable limit cycle that
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is composed of two segments of orbits, one defined by the sliding vector

field Fs and the other by vector field F− (or F+). In addition, this

limit cycle is present in the state space when the focus is a real equi-

librium close to the Σ, the pseudo-equilibrium is virtual and the fold

singularity is visible.

(a) d = 0.25 < d−B (b) d = 0.45 = d−B

(c) d = 0.5 > d−B

Figure 7.15: Simulation results of Buck-SMC-Washout system (7.32) with
parameters b = 0.2, ω = 1, k = 0.1 and yr = 0.9.

Figure 7.15 shows an R3 version for the boundary focus collision in

a Filippov system, from simulation results of the buck converter system

(7.32). As in the two-dimensional case, a stable limit cycle with sliding

part arises from a boundary equilibrium of dynamic unstable focus for

F− and stable node for Fs. In R3, the tangential singularity involved

is of the cusp type and divided the line of tangency into fold visible and
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invisible. In addition, this limit cycle is present in the state space when

the focus is a real equilibrium close to the Σ, the pseudo-equilibrium is

virtual and the cusp singularity is “visible” (that is, L3
F−h(x−c ) < 0 at

the cusp point).

Example 7.7. Grazing Bifurcation. Consider in system (7.32) that

b =
√

1/3, ω = 1, k = 0.5, yr = 0.937 and d = 0.305. In this case

there is an unstable limit cycle around the real focus equilibrium of the

vector field F−, tangent to the switching boundary Σ, see Figure 7.16.

For a small perturbation in parameter d (for d < 0.305) this limit cycle

is destroyed. Then we have a Grazing bifurcation occurring in system

(7.32).

Figure 7.16: Simulation results of Buck-SMC-Washout system (7.32) with
parameters b =

√
1/3, ω = 1, k = 0.5, yr = 0.937 and d = 0.305.

7.8 Conclusion

In this Chapter we have studied a canonical form to 3D-DPWL

systems with parallel tangency lines containing the singularity cusp

each. Such an adopted model often appears in problems of engineer-

ing and it is used to describe the dynamics of discontinuous control

systems such as the SMC. For this family of systems, we have deter-

mined the specific conditions on the system parameters for a BEB to
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occur, classifying it into persistence or nonsmooth fold. Furthermore,

we have provided a complete classification of the sliding dynamics at

the pseudo-equilibrium, which is valid for when it becomes a boundary

equilibrium. From the combination of the results on the BEBs and slid-

ing dynamics, we then exhibit all the unfolding dynamics of the BEBs

in the sliding vector field.

Two applications were considered. In both we used the buck

converter with sliding mode control and washout filter, but in the first

application we take the converter connected to a resistive load, while

in the second we considered a CPL load. In the system with CPL

load we have identified other bifurcations of equilibria (saddle-node,

Hopf and sliding Hopf) and of limit cycles (Grazing bifurcation). In

addition to these, we highlight the case study done on the boundary

focus bifurcation in R3, which is associated with the birth of a non-

smooth limit cycle with a sliding segment.
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7.9 Appendix: Proof of Theorem 7.1

Linear transformation of the state space of system (7.4) on the

state space of system (7.5), provided by Theorem 7.1, is obtained by

applying the change of coordinates

y = Tx + C, (7.36)

where T = T1T2T3 is an invertible matrix, C = T1N2 + N1, y denotes

the state vector of (7.4) and x denotes the state vector of (7.5); with

T1 =




n−3 −n+
3

2p31

p32
Det[Q] −p33p31

0 − p31
Det[Q] 0

0 0 1


 , T2 =




1 0 0

r − (n−3 −n+
3 )2

4 q

0 0 1


 ,

T3 =




1 0 0
2

(n−3 −n+
3 )2

s 1 0

0 0 1


 ,

N1 =



−n

−
3 +n+

3

2p31

0

0


 , N2 =




0 0 0
p31
2

p32
2

−p11p31−p21p32
2p31

0 0 0






n−1 + n+

1

n−2 + n+
2

n−3 + n+
3


 ,

q = p13p31 + p23p32 −
p33

p31
(p11p31 + p21p32),

r =
(n−3 − n+

3 )(p21p32 + p31(p11 + p33))

2p31
,

s =
[
p31 p32 p33

]


n−1 − n+

1

n−2 − n+
2

n−3 − n+
3


 .

We are assume that in hypothesis (H1) the condition p31 6= 0 hold,

while p32 can be null or not. For the change in the time scale, we use

the relation

t =
2

n−3 − n+
3

τ, (7.37)
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where t denotes the time variable of (7.4) and τ denotes the time vari-

able of (7.5).

The proposed transformation is done in two steps, as follow.

First change of coordinates is given by y = T1x1 + N1. From it,

tangency lines T− and T+ are moved to the vertical lines at (−1, v, 0)

and (1, v, 0), for v ∈ R, respectively. Moreover, the new system al-

ways has a point in T± connecting the half-line of visible folds with the

half-line of invisible folds. These connection points are generically sin-

gularities cusp. Then the time variable is changed by applying (7.37).

Note that, from (H1) we have n−3 −n+
3 > 0. In this way, the time nor-

malization eliminates cases where the sliding region is repulsive, thus

obtaining a system always presenting an attractive sliding region.

Second change of coordinates is given by x1 = T2T3x +N2. From

it, cusp singularity of T− and of T+ are moved to the points (−1, 0, 0)

and (1, 0, 0), respectively. Moreover, points (−1, v, 0) ∈ T− are fold

singularities of the visible type for v < 0 and invisible for v > 0; while

that (1, v, 0) ∈ T+ are fold singularities of the visible type for v > 0

and invisible for v < 0.

The calculation of the important parameters a23 and a22 given in

Lemma 7.1, as well as the other parameters of matrix A given in (7.5),

are directly obtained by

A =
2

n−3 − n+
3

T−1PT.



Chapter 8

Final Remarks

In Chapter 2, some aspects on the theory of DPWS systems were

reviewed, giving tools for the analysis of dynamic behaviour of these

systems and laying the groundwork for the course of the thesis. In

this chapter we have stated a simple and accurate definition for TS-

bifurcation. This is an important and original result of this thesis.

Our journey through the world of bifurcations in 3D-DPWS sys-

tems started in Chapter 3 where, from the dc-dc boost converter model

with SMC-washout, we have studied the Hopf and Homoclinic bifurca-

tions in the vector field sliding. The main contribution was the charac-

terization of the mechanism for the annihilation of a limit cycle in the

sliding vector field of 3D-DPWS systems with a two-fold point. Specif-

ically, we have determined that the limit cycle which appears due to

Hopf bifurcation at the pseudo-equilibrium disappears when touching

an invisible-visible two-fold point, forming a homoclinic loop that closes

at this point. This is a naturally expected result since the two-fold point

is a saddle equilibrium of the sliding vector field in this situation. The

case study made in this Chapter leave us motivated for new research

addressing more general results and incorporating more elements such

as another pseudo-equilibrium and/or two-fold.
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In Chapter 4 we have thoroughly studied the TS-bifurcation, char-

acterized by a pseudo-equilibrium transition from the attractive sliding

region to the repulsive sliding region (or vice versa), where the transi-

tion point is a T-singularity. Such a bifurcation is associated with the

birth of a crossing limit cycle (CLC). After carefully deriving a local

canonical form, we have reviewed the previous works regarding this bi-

furcation and were provided, by means of a more direct approach, the

critical coefficients that characterize the bifurcation, also giving compu-

tational procedures for them. The achieved results on TS-bifurcation

were applied to some illustrative examples and also in a dc-dc boost

converter under a sliding mode control strategy and washout filter. In

this Chapter, we have contributed with a detailed computational proce-

dure that allows to prove the occurrence of TS-bifurcation in 3D-DPWS

systems, which were made easy to apply, since we have provided all the

necessary tools. In particular, the possible existence of invariant tori

(quasi-periodic behavior) and homoclinic tangles (chaotic regimes) for

the crossing dynamics around the T-singularity deserve new research

efforts. Also, for new research, it is in our interest to apply the pro-

posed method of TS-bifurcation analysis in other systems known in the

literature, especially those that are related to some sliding mode control

application.

Chapter 5 was dedicated to the study of local and global bifurca-

tions related to TS-bifurcation and crossing limit cycles (CLCs). For

this we have considered the model of a dc-dc boost converter with

sliding mode control and washout filter. As a consequence of our anal-

ysis, we have proved the occurrence of classical equilibria bifurcations

(saddle-node, transcritical, Hopf), involving the pseudo-equilibrium of

the system. Apart from the analytical verification of the TS-bifurcation

in this power converter, we have numerically detected other non-local

phenomena like a saddle-node bifurcation of CLCs. Experimental re-

sults to illustrate the effects of the TS-bifurcation in a real circuit pro-

totype of a boost converter were also presented. Such a bifurcation can

be induced varying the value of the resistive load, in such a way that
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it changes the position of the operating point (a pseudo-equilibrium)

and its stability from stable to unstable. This change is critical and

creates a stable CLC, which can have a large amplitude with catas-

trophic effects for the converter. Thus, the analysis of the existence of

TS-bifurcations becomes essential in the design and control of convert-

ers, since this is a dynamic phenomenon that is not desired and not

easy to detect. Therefore, it is of great relevance to know the paramet-

ric conditions for the occurrence of this bifurcation and so to establish

safeguards in order to avoid it. The identification of the Teixeira sin-

gularity in a real circuit of power electronic was the main contribution

of this chapter, as well as the analytical, numerical and experimental

results on bifurcations, which helped us to unravel the dynamical rich-

ness of this circuit. Among other contributions that can be highlighted

in this chapter, we present (i) the numerical proof of the coexistence

of two CLCs, one stable originated in the supercritical TS-bifurcation

and another unstable arising from the subcritical TS-bifurcation; (ii)

the numerical identification of global mechanisms for the vanishing (or

birth) of CLC (saddle-node bifurcation and non-standard homoclinic

bifurcation); (iii) the existence and stability analysis of a CLC from its

birth to its annihilation; and (iv) the proposal of a numerical method

to investigate the existence and the dynamics of CLCs, which can be

applied to other physical systems modelled as 3D-DPWL systems and

that exhibit the Teixeira singularity. As a goal for new research, we in-

tend to repeat the numerical method of bifurcation analysis of CLCs in

other systems related to real applications in the engineering or sciences.

Chapter 6 addressed a detailed analysis of bifurcations in 3D-

DPWS systems that have two points of T-singularity. In addition, from

the variation of a system parameter, these T-singularities collide and

then they disappear along with the attractive sliding region. In this case

a Fold bifurcation occurs and at the bifurcation point it appears a type

of degenerate T-singularity. We have determined the conditions on the

system parameters so that there is a real pseudo-equilibrium colliding

with one of the T-singularities or the two T-singularities simultaneously
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colliding with the pseudo-equilibrium. In the first case, a TS-bifurcation

occurs and, in the second case, a non regular case of larger codimen-

sion of this bifurcation occurs, which we named double TS-bifurcation.

Like the TS-bifurcation, the double TS-bifurcation is also associated

with the birth of a CLC, but here, it arises from the 1-degenerate

T-singularity. In general, we have made a detailed description of the

sliding and crossing dynamics around the T-singularities, regular or de-

generate, and also the sliding dynamics at the real pseudo-equilibrium.

As a consequence of our study, we have identified the presence of two

invariant (non-smooth) cones with its vertex in one of the regular T-

singularities, which bifurcates from an invariant (non-smooth) ellipsoid

with vertices at the two regular T-singularities. Moreover, some clas-

sical bifurcations (saddle-node, transcritical, pitchfork) were observed

in the sliding vector field. From the unfolding dynamics of such phe-

nomena we described the birth of CLCs, the stability and the bifur-

cations (saddle-node of limit cycles and a non-standard homoclinic),

from the analysis of the first return map associated to the case study

addressed. We have proved that the system considered in this case

study can exhibit two coexisting CLCs at most. The fold bifurcation of

T-singularities and the double TS-bifurcation are not yet known in the

literature and we have contributed with this first contact with them,

introducing important results and detailed characterizations of such

bifurcations and their unfolding. For future works, we aim at deter-

mine more general results on the crossing dynamics prevailing in such

bifurcations, and also to carry out other case studies.

In Chapter 7 we have studied a family of 3D-DPWS systems in

which the vector fields are linear (in this case, are DPWL systems)

on both sides of the switching boundary and with two parallel tan-

gency lines containing a singularity cusp each. We showed that such

an adopted model often appears in problems of engineering and it is

used to describe the dynamics of discontinuous control systems such as

sliding mode control. We provide a canonical form for such systems

and, with that, we simplified the calculations and the geometry re-
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lated to the topological configuration on the switching boundary. This

canonical form is an important result obtained, since from this model

we can study all types of boundary equilibrium bifurcations (BEBs)

that can occur in the system family considered. The results obtained

on the stability and the bifurcations were applied to two examples in

power electronics systems involving the sliding mode control of dc-dc

buck converters. The main results and contributions achieved in this

chapter were: (i) The classification of BEBs in an important family of

3D-DPWL systems giving explicit conditions for the occurrence of each

of the two scenarios, persistence and nonsmooth fold. In addition, we

have presented in Section 7.5 some of the possible unfolding of BEBs

in R3, from some examples taken with the canonical form. (ii) The

complete characterization of the sliding dynamics in systems belonging

to the family studied. In addition, we presented the classification of

the possible types (saddle, node, focus, center) of pseudo-equilibrium

and boundary equilibria. (iii) The proof of the existence of BEBs in

power converters under a SMC strategy, the identification (from the

simulated results, guided by the local analysis of bifurcations) of a sta-

ble limit cycle in R3 with sliding part (from a boundary focus collision)

and also the identification of a Grazing bifurcation of limit cycle are

unprecedented results in DIBs applications for 3D-DPWS systems. In

this chapter we have explored a classification of some topologically dis-

tinct cases of BEBs in R3, a problem still open in the literature, which

we take as objective for future works.

We close this thesis with the list of the articles published in jour-

nals and main works presented at scientific events, whose productions

originate from this Thesis.
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