
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

DEPARTAMENTO DE AUTOMAÇÃO E SISTEMAS
ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Maria Eduarda Bastos Lübke

Conception and Development of a
Device for Automatic Monitoring of
Ethernet Communication Systems,
Based on the Industrial Computer

PR21

Florianópolis

2019

Maria Eduarda Bastos Lübke

Conception and Development of a
Device for Automatic Monitoring of
Ethernet Communication Systems,
Based on the Industrial Computer

PR21

Relatório submetido à Universidade Federal
de Santa Catarina como requisito para a
aprovação na disciplina DAS 5511: Projeto
de Fim de Curso do curso de Graduação em
Engenharia de Controle e Automação.
Orientador(a): Prof. Rômulo Silva de Olveira

Florianópolis

2019

Maria Eduarda Bastos Lübke

Conception and Development of a
Device for Automatic Monitoring of
Ethernet Communication Systems,
Based on the Industrial Computer

PR21

Esta monografia foi julgada no contexto da disciplina DAS5511: Projeto de Fim de Curso
e aprovada na sua forma final pelo Curso de Engenharia de Controle e Automação.

Florianópolis, 9 de dezembro de 2019

Banca Examinadora:

Christian Kaufmann
Orientador na Empresa

Bosch Rexroth

Rômulo Silva de Oliveira
Orientador no Curso

Universidade Federal de Santa Catarina

Carlos Barros Montez
Avaliador

Universidade Federal de Santa Catarina

Gabriel Paiva de Oliveira
Debatedor

Universidade Federal de Santa Catarina

Thais Juliane Dall’Agnol
Debatedor

Universidade Federal de Santa Catarina

To my parents, whose immense support led me where I am.

Acknowledgements

It is a genuine pleasure to hereby express my gratitude to all people that have given

me support during my internship period. It was only possible for me to develop myself

and to achieve the results described in this document with the professional, technical and

personal aid I have received during my time in Germany.

I would like to thank my supervisor, Christian Kaufmann, and the department

for the trust placed in me to develop this project. During my time at Bosch Rexroth, I

always felt respected, heard and welcome to the team. I appreciate all the patience and

disposition to help and teach me. I am sure that I will be a better professional due to his

counseling.

To my University, professors and friends, thank you for enabling this experience.

Specially to Amadeu Plácido Neto and Rafael Vendramini Savi, who were my colleagues

in University and were also my colleagues at Rexroth. You helped me to get in touch

with the company and made this internship possible. Thank you for being my Brazilian

family in Europe, those months would not have been the same without you. The best

regards to my brazilian friends, who have supported me in so many ways, specially Lara

Lucena Zacchi, Marina Bastos Cavallazzi. Special thanks to Alex Cani, Marcelo Menezes

Morato, Gustavo Ardigó and Ramon Dettmer for reviewing this document and for the

always welcome suggestions.

I am eternally grateful to my parents, Heloísa Helena Bastos Silva Lübke and Vitor

Guilherme Lübke, as well as all members of my close family, who have always believed

in me and measured no efforts to make my dreams and goals come true. To you, I owe

everything.

To my intern colleagues, who have shared more than a department and lunch

breaks with me. Specially Asli Yardim, David Riethmann, Eszter Siska, Thomas Kranzioch

and Jannik Vogt, thank you for showing me that Germany is not so cold and making me

feel like home, even if ten thousand kilometers away from Brazil.

After this year of discovery and learning, the best way I can express my feelings is

with a Portuguese word, obrigada!

Abstract

Com o objetivo de capturar tráfego Ethernet nas aplicações de clientes da empresa Bosch

Rexroth, este projeto busca disponibilizar um dispositivo de fácil instalação e operabilidade

que seja capaz de registrar a comunicação em redes industriais. O hardware utilizado é

o mini computador industrial IndraControl PR21, que utiliza um sistema operacional

Linux. O PR21 é estendido com um módulo de Inputs/Outputs (I/O) com inputs de

24V, que são utilizados para engatilhar ações como iniciar e parar a captura de pacotes

no dispositivo. A configuração do sistema é feita de forma automática quando iniciado

o programa no dispositivo, de modo que ele interpreta arquivos em formato .ini de um

USB stick. O software que coordena todas essas tarefas foi desenvolvido na linguagem de

programação C++ seguindo uma arquitetura de software modular, abrindo a possibilidade

de que diferentes ferramentas de captura e bibliotecas possam ser utilizadas, dependendo

da necessidade do cliente. A meta do trabalho ficou definida em iniciar e parar a captura

de tráfego Ethernet dependendo do status de certos inputs, que podem ser ativados

manualmente (como no caso deste trabalho, através de botões), ou por sinais de saída

de outros dispositivos, como CLPs. Os pacotes capturados são então gravados em uma

localidade definida pelo arquivo de configuração, seja ela no USB stick ou mesmo dentro

do PR21, para facilitar propósitos de análise.

Palavras-chave: CLP; Comunicação; Tempo real; Monitoramento; Ethernet.

Abstract

To capture Ethernet traffic in Rexroth costumer applications, an easy-to-install and

operable recording hardware should be made available for use. The hardware used is the

mini IPC IndraControl PR21, a compact industrial graded Linux target. The PR21 is

extended with the aid of an Input/Output (I/O) module with 24V inputs. The configuring

of the target is triggered automatically with an USB stick via configuration format files. The

software which coordinates those tasks is developed in C++ with a modular architecture,

making it possible to use different capture tools and other configurations to support

distinct costumer needs. The aim of the work is, in short words, to start and stop the

capture of Ethernet traffic depending on the status of certain inputs, which can be set

manually (e.g. through buttons) or through outputs of other devices, like PLCs. Captured

packets shall be stored in an USB stick in order to simplify analysis purposes.

Keywords: PLC; Real-time Ethernet communication; Monitoring; Sercos III.

List of Figures

Figure 1 – Box-PC PR21 . 19

Figure 2 – Official logo of Bosch Rexroth AG . 23

Figure 3 – Box PCs - PR series . 27

Figure 4 – Structure of Sercos communication cycle 28

Figure 5 – Sercos ring topology . 29

Figure 6 – Sercos broken ring . 30

Figure 7 – Master/Slave system representation . 34

Figure 8 – User Case 1 . 36

Figure 9 – User Case 2 . 36

Figure 10 – User Case 3 . 37

Figure 11 – Tasks schedule . 38

Figure 12 – UML system’s sequence diagram - Sercos Monitor 40

Figure 13 – Example of a general configuration .ini file 47

Figure 14 – Example of a TCP dump configuration .ini file 49

Figure 15 – Example of a Sercos Monitor configuration .ini file 50

Figure 16 – C++ class diagram . 52

Figure 17 – Configuration part printed in the log file 58

Figure 18 – Execution part printed in the log file 59

List of Tables

Table 1 – System’s Functional Requirements . 41

Table 2 – Non-Functional Requirements FR1 . 41

Table 3 – Non-Functional Requirements FR2 . 42

Table 4 – Non-Functional Requirements FR3 . 42

Table 5 – Non-Functional Requirements FR4 . 42

Table 6 – Non-Functional Requirements FR5 . 42

Table 7 – Non-Functional Requirements FR6 . 43

Table 8 – Status codes of the C++ program . 53

Table 9 – Status codes of the C++ program . 54

Table 10 – C++ methods for StatefulPin class . 69

Table 11 – C++ methods for IfaceCaptureTool class 69

Table 12 – C++ methods for IfaceIniFileHandler class 69

Table 13 – C++ methods for LightController class 69

Table 14 – C++ methods for Application class . 70

List of abbreviations and acronyms

API Application-Programming-Interface

AT Acknowledge telegram

CPU Central processing unit

GUI Graphical user interface

IP Internet protocol

IPC Industrial PC

IT Information technology

I/O Input/Output

LED Light-Emitting Diode

MAC Media access control

MDT Master data telegram

OS Operational system

PC Personal computer

PLC Programmable logic controller

REST Representation State Transfer

Sercos Serial Real-time Communication System

TCP Transmission control protocol

UC Unified communication

UCC Unified communication channel

UDP User datagram protocol

XML Extensible markup language

Contents

1 INTRODUCTION . 19

1.1 Background . 19

1.2 Motivation . 20

1.3 Contribution . 21

2 THE COMPANY AND BUSINESS 23

2.1 Bosch Rexroth - A Bosch Company 23

3 THEORY . 25

3.1 Industrial Ethernet . 25

3.2 PR21 . 26

3.3 Sercos . 27

3.3.1 Transmission principle . 28

3.3.2 Topology . 28

3.4 Software architecture . 30

3.5 Network monitoring . 31

3.5.1 Tools . 31

3.5.1.1 TCP dump . 31

3.5.1.2 Sercos Monitor . 32

3.6 Chapter summary . 32

4 MODELLING . 33

4.1 Problem overview . 33

4.2 System general view . 38

4.3 Workflow . 39

4.4 Requirements . 41

4.5 Chapter summary . 43

5 IMPLEMENTATION . 45

5.1 Configuration files . 45

5.1.1 General configuration file . 46

5.1.2 Capture tool configuration file . 48

5.2 C++ program . 50

5.2.1 Class diagram . 51

5.2.2 Error handling . 52

5.2.3 Logs . 54

5.3 Chapter summary . 54

6 RESULT ANALYSIS . 57

6.1 Chapter summary . 60

7 CONCLUSION . 61

7.1 Possible future work . 61

7.2 Personal synthesis . 62

BIBLIOGRAPHY . 65

APPENDIX 67

APPENDIX A – C++ CLASSES 69

19

1 INTRODUCTION

In the context of industrial applications, this project develops and discusses both

software and hardware work fronts for the development of a device for automatic monitoring

of Ethernet communication systems. The construction of this device is based on the

industrial computer PR21 (see Figure 1).

Figure 1 – Box-PC PR21

Source: Bosch Rexroth

The presented work is a Bachelor Monograph unfolded during the period of in-

ternship inside the company Bosch Rexroth AG, specifically in the Software Development

department in Lohr am Main, Germany.

The project was developed looking at the company and the university perspectives,

producing a relevant work that improves internal aspects of Bosch Rexroth and covers

different areas of study inside the Control and Automation course at Universidade Federal

de Santa Catarina (UFSC), such as embedded programming in PLCs, software design and

network protocols.

1.1 Background

Programmable logic controllers (PLCs) are industrial computers adapted for the

control of manufacturing processes, such as assembly lines, robotic devices, or any operation

that requires high reliability, ease of programming and process fault diagnosis [1]. They

are usually designed to operate accurately in harsh usage environments and conditions,

such as strong vibrations, extreme temperatures and wet or dusty facilities.

20 Chapter 1. INTRODUCTION

Nowadays, PLCs are widely used in the most varied range of industrial areas

and other applications. Rexroth’s automation solutions are developed to be flexible and

intelligent in order to ensure that the machines used are functional and future-proof.

Industrial Ethernet is often chosen to tie the parts together in manufacturing

environments. Ethernet is a family of computer networking technologies that was first

standardized in 1983 as IEEE 802.3 [2], but is still widely used due to its improving shared

medium, the wide acceptance in devices, and the support to virtually all popular network

protocols. Those attributes corroborate with the principles of Industry 4.0 [3], as the

automation market is highly fragmented and there are plenty of PLC vendors, data bus

and Ethernet protocols being supported. The interoperability brought enlarges the limits

of PLC networks expansion and the number of possible applications.

The concept of Industry 4.0 puts a spotlight on data in a broad sense, being

important to point out that only a very small percentage of industrial data is currently

used in a way that makes sense or adds value. Therefore, it is clear to see why monitoring

the network traffic of industrial applications can be crucial to the performance and efficiency

improvement of the factories of the future.

More than knowing what is happening with a system through measured values,

output messages and errors, it is necessary to understand what is going through every

part of it, and packet analysis is an important tool to reach the goal of fully perceiving the

internal aspects of a structure as complex as industrial ones can be. Through the packets,

it is possible to see the signals sent from one device to the other and its respective answer.

This brings awareness of where problems could be caused, in which parts of the system

there has been an incorrect message, what kind of content each device emits and much

more.

1.2 Motivation

Bosch Rexroth is nowadays one of the main suppliers of PLCs, Drives and related

technology in the business, possessing an assortment of customers worldwide with multiple

needs and requirements. The company also provides services and aid to the customers

on the post-sale process, as any problem or questions can be brought up directly to the

team responsible for the development. This can also mean meeting up the clients in their

environment to help solve complications and adverse conditions. Thus, sending employees

to directly support customers costs time and money for the company, especially knowing

that the client plant can be basically anywhere in the world.

The study case of the work here described is about the costumers whose problems

can be investigated and solved by adding a network tap to the system in order to monitor

the packets travelling through the system. A network tap denotes a system that monitors

1.3. Contribution 21

events (messages) on a local network with the goal of facilitating the analysis of the

network traffic.

Sporadic errors can occur in the costumers’ production machines, and since they

are not monitored by humans the whole time, having a register of the packets with the

time the errors happened, as well as other information, can be crucial on the understanding

of the problem. This information can be acquired via a network tap, and the work here

described proposes that this system and these functions be made automatic and versatile

for easy integration with current functioning plants.

1.3 Contribution

The main goal of the project is to have a device, needing minimal configuration,

that can be mounted in a running machine system without a big effort and that is safe

for harsh environments, meaning that the device can be sent to the client’s plant without

being necessary to send an entire team to do the job of catching packets in a network.

The device should also be easily configured, since quite often the costumer does not

have an employee who is a specialist on networks, and the tools used for the capture and

analysis of packets data are not intuitive, requiring special knowledge. Thinking of that,

the tap system should encapsulate all complicated configuration, leaving for the end-user

a simple interface where data about the plant should be inserted.

Considering that most costumers work on harsh usage environments, the use of

industrial computers as network tap systems are necessary replacements to regular laptops,

so that the device is, besides functional and easy to configure, also robust.

Given the background, motivation and goal statements exposed in this Chapter,

the continuation of the document is organized in the following way: Chapter 2 brings a

quick briefing regarding Rexroth, the company where the project has been developed and

its business.

Chapter 3 contains relevant information for the understanding of the problem and

the proposed solution, providing the theoretical aspects used throughout the rest of the

document.

Chapter 4 expands the problem and the case of study the project aims to solve,

pointing the difficulties and complications that might exist. In Chapter 4 is also shown

the planning for the solution and how it was modelled.

Chapter 5 presents all the steps taken to implement the solution as a whole. It

is the documentation of what was developed and which parts already existed inside the

company.

Chapter 6 showcases the results obtained with the development stage achieved

22 Chapter 1. INTRODUCTION

through this project. Moreover, it exposes the successes and failures of the work.

Lastly, Chapter 7 brings up the discussion on final findings and future prospects,

as well as improvements that can be done and possibilities enhanced by this project.

23

2 THE COMPANY AND BUSINESS

The internship respective to this document was carried in the Connect X team

from the department DC-AE/ESW2 (Drive and Control Technology - Automation and

Electrification Solutions /Engineering Software) at Bosch Rexroth facilities in Lohr Am

Main, Germany. An overview on the company and its main products is given on this

Chapter. More information about Rexroth can be found at [4].

Figure 2 – Official logo of Bosch Rexroth AG

Source: Bosch Rexroth archive

2.1 Bosch Rexroth - A Bosch Company

Bosch Rexroth is one of the world’s leading providers of drive and control tech-

nologies with more than 32,000 employees worldwide. The teams are set up to develop

safe, efficient, intelligent and high-performance solutions for the areas of Factory Automa-

tion, Mobile Applications, as well as Machinery Applications and Engineering. With its

cross-technology range, digital services and comprehensive service, Bosch Rexroth acts as

a reliable partner for machine manufacturers and users. The company develops, produces

and sells its components and system solutions in more than 80 countries.

The history of the company starts in 1795, when Charles Ludwig Rexroth puts a

water-powered hammer mill into operation in Elsavatal (Spessart). The company Rexroth

established itself in Lohr am Main, and during the years that followed, went through some

reorganizations, like becoming a wholly owned subsidiary of Mannesmann AG in 1975,

changing its name to Mannesmann Rexroth AG.

The technology provided by the company was already one of the leading in the

market when in 2001, Bosch Automation Technology and Mannesmann Rexroth AG merged

to form what we know now as Bosch Rexroth AG. About its products it is interesting

to enlighten the 1994 revolution in the printing industry caused by Rexroth’s Synax 200

automation system. It changed the old printing system that consisted in a "royal wave"

which moved and synchronized the individual printing units with great mechanical effort.

24 Chapter 2. THE COMPANY AND BUSINESS

This system also required that the whole production line was stopped when any minor

changes or repairs had to be made.

The Synax 200 replaced these vulnerable mechanics and since that point, intelligent

individual drives, that communicate with each other via the Sercos automation bus, are

driving the rollers and rollers without shafts, see [5].

Thanks to the shaftless drive technology individual parts of the press can be turned

on and off for repairs with no waste paper produced. In addition, the friction is lower due

to the eliminated mechanical parts, reducing energy consumption.

Regarding other products, in 2009, Rexroth creates a hydraulic pump called

Sytronix, that combined with a controlled electric motor only generates as much hydraulic

power as is needed for a given task or machine cycle. Sytronix variable-speed pump drives

reduce energy consumption by up to 80 percent.

Bosch Rexroth in 2014 launches the IndraControl XM control platform, which

offers more intelligence for Industry 4.0 applications and links it with extremely fast

processing of signals. Also in 2014, Rexroth becomes heading operator of Industry 4.0: on

the networked multi-product line in the Homburg/Saar Bosch Rexroth plant, employees

were installing 200 different variants of highly-efficient hydraulic valves in nine intelligent

stations.

The company has become synonymous of tailored solutions. For Rexroth, every

industry has specific needs and requires many technologies for one solution. The drive and

control division develops solutions for Mobile Applications like construction machinery

and agricultural and forestry machinery. For Machinery Applications and Engineering it is

possible to mention the following applications: marine and offshore, motion simulation,

energy technology, testing technology and presses. For Factory Automation, Bosch Rexroth

develops technologies for electronics and manufacturing, printing and paper, automotive,

machine tools, as well as many other industries.

Data from 2018 show that in this year, Bosch Rexroth had an amount of 6.2

billion euros on total sales and 327.6 million euros on total research and development. The

company invests in its technologies and therefore customers profit from the resources and

innovative strength of a global player, flexible structures and an understanding of local

needs.

.

25

3 THEORY

In pursuit of a better understanding of the project executed inside the company,

this Chapter goes into the details of the technologies adopted in this work, from hardware

to software. All of the technologies and equipment used in this project were defined by

the team guidelines, for being used in other works and for being developed inside the

company, making it easy to adapt the equipment if needed and for easier integration with

other teams. Also, the guidelines here used are chosen to make the project as versatile

and general as possible to integrate with different applications in industry.

3.1 Industrial Ethernet

Industry 4.0 represents the current trend of automation and data exchange in

manufacturing processes. It incorporates a variety of disruptive technologies, such as

machine learning, predictive analytics, autonomous robotics and cloud computing. What

they all have in common, is that they are entirely related to digitalization, blurring

the lines between the spheres of virtual and physical world. It is expected that those

technologies combined deliver higher operational efficiency and achieve unprecedented

levels of scalability and mass customization, as discussed by [6] and [7].

In order to achieve those forecasts and to promote the desired interconnected

systems, it is vital that there is a universal network technology that works across a vast

number of devices and locations. Inserted in this context, it can be said that Ethernet has

become the technology of choice to connect and tie the parts together in manufacturing

environments.

Ethernet is a family of computer networking technologies that was first standardized

in 1983 as IEEE 802.3 [2], but is still widely used due to its improving shared medium,

the wide acceptance in devices, and the support to virtually all popular network protocols.

Those attributes corroborate with the principles of Industry 4.0, as the automation

market is highly fragmented and there are plenty of PLC vendors, data bus and Ethernet

protocols being supported. The interoperability brought enlarges the limits of PLC networks’

expansion.

Ethernet and, specifically, industrial Ethernet have recently become popular indus-

try terms in the manufacturing world. While similar, they both offer different characteristics

and benefits [8]. Regular Ethernet, suitable for office automation, does not meet the stan-

dards of industrial applications, that require more rigorous performance and durability [9].

Knowing that the factories environment can present harsh conditions, like being

26 Chapter 3. THEORY

densely packed with industrial machinery, facing extreme hot or cold conditions, it can

be inferred that industrial Ethernet must follow more rigorous standards than regular

Ethernet. It has to offer protection against shock, vibration and to be shielded in a way

that electromagnetic frequencies cannot penetrate the cables. Also, facing intensive use, it

should follow protocols developed specially for it, like EtherCat and Sercos III, in order to

ensure specific manufacturing data is correctly sent and received.

3.2 PR21

The PR21 is a compact industrial graded Linux target. It is manufactured by

Bosch Rexroth as a compact Box Pc from the PR series, being available in a variety of

different housing versions. The description from the company says: "Various interfaces can

be used to connect the spatially separated DR multi-touch displays. By using the latest

processor generation with low power dissipation, the device does not require a fan. High

performance, in addition to a wide range of expansion options and standard interfaces,

including real-time Ethernet communication, make the PR Box PC the ideal platform

solution for all HMI-based applications. The integrated TPM 2.0 chip provides necessary

security in the IoT environment, making the robust devices ideal for Industry 4.0." [10]

Figure 3 shows the Box PCs from PR series. The technical details and features

from the product are defined in [10] and include:

• CPU: Intel ATOM E3815

• RAM: 4 GB

• Operating system: Linux Ubuntu Core

• Extension slots: 1 x mPCIe interface module or mSATA mass memory

• Mass memory: 32 G eMMC onboard

3.3. Sercos 27

Figure 3 – Box PCs - PR series

Source: Bosch Rexroth [10]

The PR21 is the choice of hardware for this project due to its simplicity and

robustness, along with the possibility of mounting a 24V I/O module for receiving the

inputs. It gives the necessary flexibility required by the application, and yet is complex

enough to carry all the necessary functionalities.

3.3 Sercos

The PR21 is meant to be inserted in contexts where the Sercos (Serial Real-Time

Communication System) bus system is used between the devices and read through its

telegrams. Therefore, it is relevant to explain how it works and how the telegrams are

constituted.

Sercos is one of the main communication protocols used in industrial applications,

specially in mechanical systems, due to its efficient and deterministic protocol that is based

on an optical transmission system for immunity to high noise. Sercos II, the predecessor

system to Sercos III, was based only in optical transmission. Nowadays, the used version is

Sercos III, which is based on Ethernet technology, therefore being useful for Ethernet based

systems. It specifies over 700 standardized parameters meant to describe precisely the

interaction between control systems, drives and other peripheral devices using universal

semantics. This creates a manufacturer-independent communication solution, that today is

being used on a daily basis in over 500,000 applications. The protocol combines standard

Ethernet with the need for real-time accuracy in automation engineering.

3.5. Network monitoring 31

or cedar) later, after the plans ensure that the use cases are met [13]. Same applies to

software modular architecture, where the most important aspects are functionality and

requirements fulfillment, not the tools that can be used inside it.

Moreover, modularity permits abstractions to be reused, if modules are developed

with sufficiently general interfaces. This reduces design, programming, testing, documenta-

tion, and maintenance costs. It permits code to go through all development steps more

easily, since code is divided into manageable, comprehensible portions [14].

3.5 Network monitoring

The most notable trend in manufacturing over the past years is probably the move

towards networks at all levels. At lower levels in the factory infrastructure, networks provide

higher reliability, visibility, diagnosability, and enable capabilities such as distributed

control, diagnostics, safety, and device interoperability. At higher levels, networks can

leverage internet services to enable factory-wide automated scheduling, supervisory control,

and diagnostics; improve data storage and visibility; and open the door to e-manufacturing

[15]. With this type of knowledge in mind, it is almost implicit that network monitoring

plays an important part in maintaining the quality standards of industrial applications.

Network monitoring is the process of constantly observing a chain of components

in order to identify defective machinery, to collect statistics and to gather relevant data

about system, which can be generalized as simply to map a network and its packets. The

packets that go through it help on the comprehension of notable events, may those be

desired or not. In the direction of this belief, there are several different packet analyzers

available in the current market with varied features and goals, as described by [16].

3.5.1 Tools

With the plurality of nowadays networks, comes a multiple range of tools for packet

analyzing and network monitoring. From those tools, Wireshark deserves a highlight, as

it is the world’s most popular network analyzer. It is a very powerful tool that provides

network and upper layer protocols information about data captured in a network [16].

Although, due to its complexity, other tools took place in this project: TCP dump and

Sercos Monitor.

3.5.1.1 TCP dump

TCP dump is a common packet analyzer that runs under the command line. It

allows the user to display TCP/IP and other packets being transmitted or received over a

network to which the computer is attached [17]. It works on most UNIX systems using a

library called libpcap.

32 Chapter 3. THEORY

Even though it is a rather simple tool, TCP dump has multiple configurable

parameters, which can personalize the tool in order to fulfill specific requirements, such as

storing the captured packets in a file of .pcap type (-w flag), capturing only packets from

a certain interface (-i flag) and many others, that can be found in [18].

In a general way, the TCP dump command with all its options is:

tcpdump [-AbdDefhHIJKlLnNOpqStuUvxX#] [-B buffer_size]

3.5.1.2 Sercos Monitor

The Sercos Monitor is a powerful diagnosis tool for Sercos III networks which is

available for free download from the Sercos website. It allows a comprehensive and detailed

analysis of data traffic in Sercos III networks.

The tool allows a retrospective evaluation of network records saved in .pcap format,

as well as real-time analysis of network traffic. The user-friendly interface and overview

functions which are characteristic of Sercos III networks, such as topology, communication

phases and service channel transfers, allow the analysis process to be started quickly and

in a targeted manner. Various views and filters allow an evaluation of Sercos III real-time

telegrams and other Ethernet telegrams which is tailored to meet the user’s requirements.

If required, the functionality of the Sercos Monitor can also be expanded with user-specific

plug-ins [19].

Furthermore, Sercos Monitor provides a Web API, named Monitor Core, which is

supported by the REST (Representation State Transfer) model in a way that is possible

to integrate different types of applications through methods like GET and POST.

3.6 Chapter summary

In resume, this Chapter brings to light important concepts and technologies that will

be approached in further Chapters, in order to make the understanding of other concepts

easier and more fluid. It is presented here a discussion about industrial Ethernet and its

importance to today’s industry, as well as the context the protocols are inserted. Also,

the PR21, the hardware device used in this project is introduced in its details and Sercos

III protocol is explained with its principles and functionalities. The software architecture

modelling is brought up to serve as explanation and justification of the program developed,

which modelling will be approached in the next Chapter. The capture tools inserted in

the scope are also mentioned along their specificities. With all this information in mind,

it is now possible to discuss and introduce the modelling strategies used in this project,

detailing the problem and determining how the solution should be carried.

33

4 MODELLING

The detailed description of the problem’s scope, as well as the tasks that were

listed in order to achieve the main goals of the project, are introduced in this Chapter.

Also presented here is an overview of the proposed solution, which is of great importance

to this work, as it aids on the understanding of the implementation and the results that

can be seen on further Chapters.

The modelling of the work was defined along with the company supervisor, Mr.

Christian Kaufmann, in order to fulfill both the company and the university requirements

for this project.

4.1 Problem overview

In order to fully clarify the work done, it is necessary to explain in details why this

project is important. In other words, to describe the problem and build the logical path

taken to the solution.

As mentioned previously, the need of monitoring the telegrams between two or

more devices came directly from observing costumer maintenance and how long this

procedure took when done manually. Errors can occur sporadically in the costumers’

production machines, and for humans to observe those errors and define the exact cause

of them is a task that requires a significant amount of work and time. This happens

because those machines and controllers are inserted in complex systems with multiple

layers where failures might occur. In a traditional Master/Slave topology, the controllers

are set as in Figure 7. The image shows the Master and the Slaves with their 7 internal

communication OSI layers [20]. The communication between them in Figure 7 is illustrated

by the red continuous line, and it can be seen in this topology that only adjacent nodes

are interconnected. The doted red line here represents the internal slave communication

from the receiving port to the port that will transmit the master message to the next slave.

Simply by describing Figure 7 and its characteristics, several error sources can already be

brought up by the way the system is mounted:

• Communication errors between the 7 OSI layers [20];

• Physical errors related to the cables;

• Errors related to FPGA problems;

• Errors in the telegrams the Master sends to the Slaves.

4.1. Problem overview 35

therefore increasing the size of the sample to be analyzed. For instance, when working

with a 1ms cycle time, at least 2000 telegrams have to be capture and analyzed per second

of capture time. When storing only the telegrams in between the triggered period of time,

the problem decreases in difficulty.

The understanding of costumer plants is based on experience and Rexroth’s exper-

tise, and through the years developers have figured that taking regular PCs or laptops to

those plants could not be the most adequate solution. Rexroth’s costumers are divided in

many different fields and areas of interest, like marine and offshore applications, printing

and agricultural machinery and much more. What those environments have in common was

taken in consideration when planning the project here described, and it was a consensus

that the device should be able to work on harsh conditions, such as the ones with dust

and high noises. Besides that, standard PCs need 110V or 230V, depending on which

country they are used, and industrial environments present easy to find 24V, since almost

all automation systems work with this voltage.

In the possession of all this information, there is the indication of three main pillars

for the development of the device: Automation, Easiness of Usage and Robustness. Those

are taken as guidelines and are of crucial importance to the implementation of the project,

since they matter not only for the choice of technologies to be used, but also on the

strategies of approach to the problem.

For instance, the choice of the PR21 as the computer to be used is based on the

need of robustness and simplicity stipulated on this project. The alignment of it with a 24V

input/output module allows this relatively small structure to have all the functionalities

necessary to work as a network tap in harsh environments. Adding the structure to a

simple on-board Linux OS complements the device and supports the needed softwares.

Looking at the mounting of the structure in the system, three possibilities were

brought up at first:

1. For the mounting shown in Figure 8, the PR21 is added at the end of the network

line, which is positive because it is easy to mount and it is possible to do it on a

running machine. On the other hand, the con of this mounting is that the PR21 only

receives one-sided messages, meaning that it does not get to know what the slaves

are sending back to the master. This can limit in certain ways the analysis of the

telegrams going through the network.

4.3. Workflow 39

communication. Developed inside Bosch Rexroth, Lohr am Main site, it aims to make

costumer problems solving faster and simpler. The device has a 24V input module connected

to it, which has the purpose of receiving trigger signals for starting and stopping telegram

capture.

In the scope of this project’s development, the trigger inputs are manually generated,

but for real scenarios can be expanded to other sources. The software generates log files

in text format and stores the captured telegrams in the format specified by the capture

configuration. There are two different .ini files to be read during the program’s execution:

the general configuration file and the capture configuration file. Therefore, the system has

three main functionalities:

• Reading the two text configuration files (general configuration file and capture

configuration file) to define the specificity of the workflow.

• Interpret the input triggers to start and stop telegram network captures.

• Store the necessary information (logs and capture files) in the adequate format and

inside the correct folder locations.

This behavior is expected when combining several other smaller functionalities, such

as: The selection of the capture tool to be used in the program through the configuration

file; The possibility of choosing the storage format and location of the captured telegrams

via capture configuration file; The possibility of choosing different type of log files; To

configure the drive and the input pins to trigger different program settings, as well as a

number of other small tasks.

4.3 Workflow

Detailing the general view of the system, an UML sequence diagram can be brought

up in order to better explain the system’s workflow and justify some implementation

choices.

The diagram shown in Figure 12 depicts the sequence of the tasks made and the

interaction between the modules of the project. As it was already mentioned in Section 4.2,

there are two types of .ini files to be read. It was decided that only one configuration file

would not be enough for describing all the settings possibilities because different capture

tools have different parameters to be set. Therefore, only having a general file is too

generic for this application. So they were separated in two types: General configuration file

and capture tool configuration file. The first one is meant to be more generic and should

contain the location of the second one. The second one, about the capture tools, is more

specific in the matter of which parameters are defined according to the application.

4.4. Requirements 41

4.4 Requirements

To fulfill the desired workflow, functional requirements are gathered in the concep-

tion phase of the project. This step in the process serves as guideline for the implementation

and comprehends only the extension of what the system is supposed to do, without detailing

how it is done [21].

Following Wazlawick’s model, the functional and non-functional requirements of

the system can be read in Tables 1, 2, 3, 4, 5, 6 and 7. From those requirements, it is

interesting to highlight the determined need to have several configurations set by the user,

like NF5.1 and NF5.2, that it is the user’s task (through the configuration files) to specify

where and how to store the capture files.

NF1.2 also specifies an interesting aspect of the application: it should be able to

handle wrongly inserted information from the user, either with error or warning messages.

By taking a closer look to the requirements, the path for the implementation begins

to look clearer, as software requirements should, in general, be related to specific methods

or classes of the code.

Code Functional Requirements
FR1 Automatically read the configuration files and set the necessary parameters.
FR2 Receive signals from the I/O module connected to the hardware.
FR3 Interpret signals to trigger telegram capture start and stop.
FR4 Communicate with different capture tools.
FR5 Automatically save the captured files.
FR6 Incorporate diagnose LEDs.

Table 1 – System’s Functional Requirements

FR1 - Configuration files
Description: The system must automatically read and interpret both general configuration file and capture
tool configuration file.
Non-Functional Requirements
Name Restriction Category Desirable
NF1.1 - Variable reading The program should be set to read and in-

terpret only expected variables, for example
LogFilePath.

Specification Yes

NF1.2 - Error and warning
handling

When incorrect values are read from the con-
figuration files, the program should show error
or warning messages.

Security Yes

Table 2 – Non-Functional Requirements FR1

42 Chapter 4. MODELLING

FR2 - I/O module
Description: The system must be able to receive signals from the I/O module connected to the hardware
Non-Functional Requirements
Name Restriction Category Desirable
NF2.1 - Cycle time The program should be able to receive the

signals in a cycle time, found empirically, that
is fast enough to not miss any signals, but also
not too fast to face the switch debouncing
problem.

Performance Yes

NF2.2 - Edge detection When receiving a signal, the program should
know whether it is a rising edge signal or a
falling edge signal.

Specification Yes

Table 3 – Non-Functional Requirements FR2

FR3 - Triggers
Description: The system must trigger determined actions according to the inputs received.
Non-Functional Requirements
Name Restriction Category Desirable
NF3.1 - Trigger interpreta-
tion

The actions to be taken after a specific signal
being triggered can only be defined in the
configuration file.

Security Yes

NF3.2 - Capture tool unique-
ness

A signal can only trigger starting/stopping
capture for one capture tool at a time. Mean-
ing, the only capture tool used in the run-time
is the one specified in the configuration file.

Specification Yes

Table 4 – Non-Functional Requirements FR3

FR4 - Capture Tool
Description: The system must be able to communicate with determined capture tools in order to use their
functionalities.
Non-Functional Requirements
Name Restriction Category Desirable
NF4.1 - Communication
adaptation

The program must send different commands
to start and stop the capture, according to
the capture tool chosen on the configuration
file.

Specification Yes

Table 5 – Non-Functional Requirements FR4

FR5 - Capture files
Description: The system must store all the captured telegrams files automatically.
Non-Functional Requirements
Name Restriction Category Desirable
NF5.1 - Storage location The telegrams should be stored in the path

specified in the configuration files.
Specification Yes

NF5.2 - Storage format The telegrams should be stored in the format
specified in the configuration files.

Specification Yes

Table 6 – Non-Functional Requirements FR5

4.5. Chapter summary 43

FR6 - Diagnose LEDs
Description: The device should have LEDs to point out the status of the application.
Non-Functional Requirements
Name Restriction Category Desirable
NF6.1 - Status The LEDs should be used in the way to in-

dicate two different status: green for running
capture and red for error.

Specification Yes

Table 7 – Non-Functional Requirements FR6

4.5 Chapter summary

This Chapter approaches the identification of the problem in details and then

proposes the modelling for the solution, following the UML standards for diagrams and

requirements. It takes in consideration the technologies previously presented to develop the

workflow of the project, as well as the patterns for the sequence scenario. Also displayed

here is the schedule for the activities of development and documentation. The use cases are

analyzed and the option is made to adopt the one that is simple enough to be implemented,

yet has enough complexity to fulfill its task. By bringing up those topics and decisions, it

foments the next Chapter, which consists on the description of the implementation and

the options made during this phase. Chapter 5 points out the different tools and strategies

taken to develop each part modelled in this current Chapter.

45

5 IMPLEMENTATION

Chapter 5 consists on the detailed description of the implementation and devel-

opment of all software and hardware aspects that were brought up during the modelling

phase, as seen on Chapter 4. Sections 4.2 and 4.3 go through the workflow and general

view of the system, giving a good overview on the main aspects of the implementation of

this project, as the requirements are used as guidelines for software development.

The implementation of this work comes based on a software developed inside Bosch

Rexroth by another student, Simon Müller, who started to write the software and had the

idea to mount the input module on the PR21. After his initial work, he switched projects

and the continuation of the project became the Bachelor thesis here described.

As previously stated, the PR21 is an industrial computer, which means in practical

scenarios that its operational system does not have a graphical user interface (GUI) or

supports complex tools. Although the development PC is Windows OS based, the chosen

OS for the target is a Linux one, therefore, all programs developed follow the specificity

of this operational system. This is possible because tools like Visual Studio [22] allow

cross-compiling, meaning that the execution of codes can happen in an outside target,

enabling all the work to be developed in a regular PC.

Following the workflow of the project structure, this Chapter covers through its

Sections the different components that together form the implementation of this work.

Firstly, the configuration files are exposed and explained with their details. Then, the C++

program PR21Sniffer is brought up, as well as the interaction with the capture tools, log

files and other aspects.

5.1 Configuration files

Configuration files in this scope are archives used to configure parameters and initial

settings in applications. They are read during initialization phase in order to personalize

the type of capture wanted and further information, as the configuration files for this

project are meant to be the interface between the final user and the program. The chosen

format for those files is the .ini format, which are simple text files with a basic structure

composed of "sections" and "keys", and comments are defined by ";", like the example:

[section]

name=value ; this is a key

46 Chapter 5. IMPLEMENTATION

For this project, it was defined that two configuration files must be read in the

startup step. First, the general configuration file and second, the capture tool configuration

file. As mentioned in Section 4.3, this decision comes from the need of flexibility in the

system. The general configuration file contains all basic information to be defined about

the run-time of the program, and the capture tool configuration file regards the specificity

of different capture tools. So, they are separated in a way that it is possible to have

different capture tools working without having to change the entire structure of the general

document.

5.1.1 General configuration file

The general configuration file, as the name points out, serves to set the most basic

information to the program. It is used as an argument to start the C++ program, in a

way that it is the first contact to the user needs.

The file is divided in the following sections and their respective keys:

• general_information

– CaptureTool: Identifies which capture tool will be used.

– CycleTimeDelay: Delay in mili seconds, to avoid switch debouncing.

– LogFilePath: Path and name of the log file

– TraceTypeLOG: TRUE/FALSE to log output. Case sensitive.

– TraceTypePRINTF : TRUE/FALSE to printf output. Case sensitive.

– TraceTypeEXTERN : TRUE/FALSE to external option output. Case sensitive.

• capture_tool

– CapToolIniPath: Path to the .ini file related to the capture tool.

• drive_id

– DevInfo: String that defines the hardware to be used.

• pin_number

– PinNr : Pin identifier.

– EdgeToStart: Edge type that triggers the start state.

– EdgeToStop: Edge type that triggers the stop state.

– EdgeToShutdown: Edge type that triggers the shutdown state.

48 Chapter 5. IMPLEMENTATION

stabilizing. The value of 1 millisecond in the example is defined empirically as a good

value for the delay time, small but still safe.

Other sections and keys of this file are intuitive. CapToolIniPath points out the

path where the capture tool configuration file is located, so the program can find it and

read it.

5.1.2 Capture tool configuration file

The capture tool configuration file is meant to be the interface between the user

and the program that contains the specific information about the packet capture needed.

Knowing that different tools have different parameters and settings, the capture tool

configuration file changes accordingly. In the scope of this project two distinct capture

tools are approached: Sercos Monitor and TCP dump. Therefore, it is shown in this

Sub-Section the files for both tools.

As exposed in Section 3.5, TCP dump is, between the presented tools, the simplest

one. The configuration file for TCP dump is divided in the following sections and keys:

• tcp_dump

– StoragePath: Relative path and file name to store the capture files.

– Interface: Name of the interface where network traffic is recorded.

– AddTimeToFileName: TRUE/FALSE to add date and time to the capture file

name. Case sensitive.

– FileSize: Option for ring buffering, defines the maximum size of each capture

file, in Mega Bytes.

– FileNumber : Option for ring buffering, defines the number of files the ring buffer

should work.

Figure 14 explores an example of a TCP dump configuration file. In this example,

there are two files in the ring buffer to store the captured packets, each one with 1MB of

size. Since there is no date and time added to the name of the files, they are differentiated

in the program by adding the numbers "0" and "1", for this example, at the end of the file

name. With these settings, what happens to the storage files when the capture lasts long

enough to occupy more than 2MB (1MB for each file) is that the .pcap files start to get

overwritten. Hence, the number of files does not increase, it always stays in 2.

5.2. C++ program 51

5.2.1 Class diagram

The main classes of the program can be seen in Figure 16. The classes are divided

by functionality, and a brief explanation of those main parts and their role in the system

is given as:

• Application: The most general of classes, it is responsible for creating objects of

basically all the other classes and for the main loop. Also responsible for the settings

of the different types of logs.

• LightController: This class refers to the control of the LEDs that indicate error or

success of the program.

• StatefulPin: It abstracts the inputs and their functions in objects that contain data

such as pin number, edge to start, edge to stop, edge to shutdown and latest state.

• InputController: Class that abstracts the grouping of all pins and other information

read from the configuration file, like delay time for input reading and the drive’s

identifier string.

• IfaceIniFileHandler: Interface class created to abstract the functions of reading the

configuration file not being too specific about the method for doing it, since there

are lots of models available.

• SimpleIniFileHandler: Class for dealing with the .ini file, currently the only one, but

with the aid of the interface class, more can be added later without having to change

the entire code.

• IfaceCaptureTool: Interface class to abstract the different possibilities of capture

tools to be used, containing functions that are common to all of those tools, such

as start capture, stop capture and configure tool. As all interface classes, it is not

supposed to instantiate any objects.

• TCPdump: This class refers to TCP dump and its specific methods and variables,

inheriting the ones from the interface class IfaceCaptureTool.

• SercosMonitor: Refers to the Sercos Monitor capture tool and its specific methods

and variables, inheriting the ones from the interface class IfaceCaptureTool.

52 Chapter 5. IMPLEMENTATION

Figure 16 – C++ class diagram

Source: Personal archive

In order to maintain the confidentiality standards of the company, Figure 16 shows

only a high level representation of the implemented classes. For further content on the

C++ classes and their methods and variables, see Appendix A.

5.2.2 Error handling

Error and warning handling refers to the response procedures from error conditions

presented in the software application. It is the process of maintaining the normal workflow

of the program, or shutting it down when necessary.

When it comes to interacting with humans for configuring and setting parameters

that will go through the entire process, the possibility of having wrong information as

inputs has to be considered in the development phase. With this in mind, the project’s

code is structured in a way that methods that are prone to error always return a status

variable, in hexadecimal notation, which contains the code for either successful processes

(0x00000000 status code) or processes returning warnings or errors.

This measure is taken with special attention, as parameters wrongly set can cause

troubles that are not so easily identified. The status codes are divided between success,

warnings and errors. Warnings are triggered when a information is wrongly set, but there

are ways of fixing it using default information without stopping the run-time. On the other

hand, errors trigger the complete stop of the program, as there are no solutions that can

be taken without compromising the user needs. The status codes, as well as the error and

warning sources already identified and predicted can be seen in Table 8.

5.2. C++ program 53

Type Code name Value Description
Success PR21_S_OK 0x00000000 Status for successful process.

Warning PR21_W_MISSING_LOG_PATH 0x00000001 Warning for lack of path to store
the log.

Warning PR21_W_MISSING_INTERFACE 0x00000002 Warning for lack of interface spec-
ification for capture.

Warning PR21_W_MISSING_CAPTURE_PATH 0x00000003 Warning for lack of path to store
the capture.

Warning PR21_W_MISSING_LOG_OPTION 0x00000004 Warning for not choosing which
log options should be active.

Warning PR21_W_CAPTOOL_NOT_SPECIFIED 0x00000005 Warning for not selecting the cap-
ture tool.

Error PR21_E_MISSING_DRIVE 0xF0000001 Error for lack of drive information
in the .ini file.

Error PR21_E_MISSING_TRIGGER 0xF0000002 Error for lack inputs set to trigger
the capture.

Error PR21_E_MISSING_CAPTOOL_INI 0xF0000003 Error for lack of path to the cap-
ture tool configuration file.

Table 8 – Status codes of the C++ program

About the errors seen in Table 8, it is noticeable that stopping the program is the

only alternative to follow, as for example in error PR21_E_MISSING_DRIVE, without

the hardware information it is not possible to get the inputs from the device and capture

packets. When error PR21_E_MISSING_TRIGGER is set, no input is configured in

the device to trigger the capture, therefore it would never happen, so there is no reason

to continue the program. Finally, error PR21_E_MISSING_CAPTOOL_INI depicts a

situation where there is no path to the capture tool .ini file, and the capture can not be

configured.

The warning handling deserves a special note on it, as it does not stop the pro-

gram, only modifies the configuration parameters that were not set to default ones. This

information, along with the warning code and the warning explanation, is printed out in

the log so the user can keep track of it. The default settings are defined by the developer

as the most basic ones. When there is the case of multiple warnings being triggered, all

of them are printed out in the log option. Table 9 shows for the following warnings the

respective default options to be taken.

54 Chapter 5. IMPLEMENTATION

Warning Response
PR21_W_MISSING_LOG_PATH No path inserted for log. No log file writing allowed.

Default PRINTF is selected.
PR21_W_MISSING_INTERFACE No interface for capture was specified. All interfaces shall

be captured.
PR21_W_MISSING_CAPTURE_PATH No capture storage path was specified. Capture will be

stored on default path "/̃defaultCapture.pcap".
PR21_W_MISSING_LOG_OPTION No log option was chosen. Default PRINTF is selected.

PR21_W_CAPTOOL_NOT_SPECIFIED No capture tool was specified. Default TCP dump is
selected.

Table 9 – Status codes of the C++ program

5.2.3 Logs

A log file, in the scope of this project is a text file used to automatically document

the produced and time-stamped information of events, behaviors and conditions relevant

to a particular system. By reviewing the data contained in a log file, the developer and

the user can see where problems are occurring, what is causing them, and in the case of

success, to check that everything is happening as planned.

The log type in this project is set through the .ini general configuration file, as

seen in Section 5.1. There can be log messages directly printed in the Linux console, in a

text file or in an external output printing. This option comprehends other alternatives

that may be implemented according to the user needs, like logging into Linux journal, for

instance.

The stored log files structure can be divided in two separate parts: configuration

phase and execution phase. Firstly, when the project is started and all the configuration

files are read, the selected settings are printed in the log, as well as the time-stamp for

every event. The second phase of the log file printing is where all configurations have

already been set and the program enters the loop of waiting for inputs to trigger the

capture of packets.

Those files are the detailed outcome of what happens inside the system during the

run-time. It is the evidence that reveals whether the task is successful or not, showing

errors or warnings. Therefore, the detailing of it will be given in the Chapter to come, as

the results are proven.

5.3 Chapter summary

In resume, Chapter 5 presents all the topics related to the implementation, which

consists of different tools combined together in the way that comprehend all the specified

requirements and fulfill the initial goals, in order to actually do an automatic capture of

5.3. Chapter summary 55

packets in an industrial network. First, the configuration files are approached and the

reason for them to be separate is explained. They are the interface with the user and,

sequentially, the first phase of the system’s run-time. After, the C++ program is presented

in a high level, depicting the classes and the proposed functionalities. Inside this part, the

error handling is treated and explained, as well as the possibilities of logs allowed by the

program. Next Chapter brings more light into this matter, as log files are presented and

explained as successful results of the work. The results are then analyzed and the goals

stated initially are fetched back in order to explain the outcomes of the project.

57

6 RESULT ANALYSIS

Before anything else, to analyze the outcome of the monograph means to evaluate if

the primary goals were achieved in the best possible ways. In other words, to describe if the

development has followed best practice guidelines to keep easy maintainability, good user

experience and optimized resource utilization. This Chapter goes through those aspects in

a mostly qualitative measure, as the results are evaluated in a research facility and cannot

be compared to real costumers work conditions.

Recapitulating, the program starts by reading the .ini configuration files, setting the

necessary parameters and then starting the chosen capture tool. After this configuration

stage, the program enters the execution loop, where it keeps waiting for triggers in order

to start or stop a capture of packets.

It is possible to begin with the analysis and evaluation of the project described

in this document by observing the log files, briefly described in Sub-Section 5.2.3. As

stated, they can be logically divided into two parts: configuration phase and execution

phase. Figure 17 depicts the configuration phase of the log file, and from it, to see that all

configurations described in the configuration files are printed out, in order to keep track of

what is happening to the system and to consult it afterwards for further analysis and other

costumer needs. Moreover, the timestamp shows that the configuration phase happens in

less than one second, which corroborates to the idea that the software developed in the

scope of this project has good performance measures. Once all setting information is read

and printed out, as there are no errors, the configuration phase is finished.

60 Chapter 6. RESULT ANALYSIS

and optimization of time and human resources for the company when implemented in real

applications. Being able to monitor industrial networks brings the necessary awareness

to the data inside those systems, following the current trend of looking to a better

understanding of data in a way that adds knowledgeable value to the costumers plants.

It is important to note, though, that yet the application itself is fully functional,

during the development phase the capture tool Sercos Monitor has presented unpredictable

behavior while trying to interconnect it with the application. Their costumer service was

contacted, but by the end of this internship there has been no solution to this situation.

So, Sercos Monitor is only implemented virtually as a capture tool prone to be used, with

all its methods and particularities. Although the project has fulfilled the expectations and

is already available for use, there are some limitations on the implementation, that can

mainly be used only as specified with the use cases.

6.1 Chapter summary

This Chapter presented the results and outcomes of the project developed through-

out the internship period. By presenting the log files, an association of what is planned to

happen can be made with the events depicted, showing a successful scenario. The Chapter

also approaches the initially stated goals as metrics for success, comparing the backbones

of the objectives with the implementation elements to begin the discussion on what is

still open for improvement, or what has shown limitations. The next Chapter brings a

conclusion comprehending the results and analysis of all other Chapters.

61

7 CONCLUSION

This document aimed to identify and develop an effective strategy for industrial

network monitoring, based on actual needs gathered from an insider company, Bosch

Rexroth. Developing the monograph’s project inside the company brings awareness of

several important aspects that in a theoretical environment would not be so clearly seen,

such as the difficulties of actually implementing an idea in an established corporation and

putting together the needs for Rexroth, the University and the costumers as a whole.

As stated, the use cases here have limitations and are better applied when following

the allegations seen on this document, but as the system was entirely developed thinking

about modularity and possible expansions, it is very fortunate to observe that the project

itself is successful and prone to growth.

The results presented in Chapter 6 indicate that the area still has potentially space

to grow, as the industrial sector tends to be more receptive and show more interest in

data collection and analysis for the future years. Different features can be added and

existing ones can be improved, comprehending a vast room for further development, which

is brought up by Section 7.1. Section 7.2 portrays a brief personal synthesis of the work

and the internship.

7.1 Possible future work

Knowing that there is still room for improvement in this project, and the continua-

tion of it would bring interesting results for the company, this Section puts a highlight

on possible future work that were thought during the development stage. Although the

ideas for enhancement are many, due to the short period that this internship took place,

it is not possible to cover and develop all strategies. The work presented here satisfies the

initial goals stated along with the company, but future work can confirm, build on and

enrich the conclusions taken.

For instance, some of the ideas that can come up as projects in the future include

the implementation for different capture tools, as the only one completely usable at the

moment is TCP dump. By making it possible to work with Sercos Monitor, for example,

the complexity of the project is increased, as the tool provides a broad range of options

and customization that might be interesting for some applications.

When it comes to user experience, it is possible to implement an actual GUI interface

instead of the configuration files used currently, in order to have a better interaction with

the user and still be able to make the necessary settings. However, the idea does not

62 Chapter 7. CONCLUSION

implicate on extinguishing the .ini files, since it is a common and practical configuration

format. It implies on the creation of a new layer, to stand between the configuration files

and the user as a front-end. With this approach, the main program would only have to go

through some minor changes, and all the parts developed to interpret the .ini files could

still remain useful.

Perhaps one of the nicest future implementation idea was given during the presenta-

tion of this work to the company, by the end of the internship. Rexroth is launching in SPS

Nürnberg 2019 (from November 26 to November 29) a new line of controllers and devices,

called cntrlX AUTOMATION, described in [23], which possess a highly modern processing

capacity. They have several cores inside the device, which implicates that operational

systems can be installed in one or more cores, in the pursuance of having different features

directly inside the controller. Those features come as optional snap, that the costumer can

choose to buy together with the system in order to fulfill new and special requirements for

the application.

Knowing the use cases for this project and the limitations presented by having an

external hardware for monitoring the network, the idea given was that this project could

be adapted to become one of those snaps, in a way that controllers can be bought with

this embedded extra already and facilitate monitoring for problem solving reasons or any

other that the application requires. It is interesting to notice that the acquiring of packets

data is filling a gap that is being more and more recognized as industrial networks develop

towards intelligent factories.

It can be concluded that, although the work already presented here aims for its

objectives successfully, there is still a lot to be perceived as new necessities for industries,

and therefore has a heavy relevance and projection of expansion.

7.2 Personal synthesis

Developing this project inside an internationally recognized corporation and being

able to use a vast broad of knowledge acquired during all those years in University is a

truly gratifying experience. I could not think of a best way to end my graduation, if not

producing such an interesting and relevant work that is indeed related to the current needs

of engineering field.

It is interesting to notice that, although the project’s basis is mainly software

development, knowledge from many different areas had to be used in order to pursue the

best solution possible for the scope of the problem. It demanded knowledge on network

protocols, industrial computers, PLCs, different operational systems and engineering tools

and several soft skills that are so important for future engineers nowadays. Those contents

were studied during University courses, but are actually more retained now that I had to

7.2. Personal synthesis 63

use them in a practical subject.

Besides learning so many technical topics with this internship, I have gained

experience not only on my field of studies, but also personally. Being abroad for so long

taught me how to be resilient, understanding and humble, and I will always carry this

period fondly with me. The wish now is that the future brings opportunities as enriching

as the one I had in Germany.

65

Bibliography

1 BOLTON, W. Programmable Logic Controllers. 4th. ed. [S.l.]: Elsevier, 2006. Cited on
page 19.

2 IEEE. IEEE 802.3 ETHERNET WORKING GROUP. 1983. Cited 2 times on pages
20 and 25.

3 COHEN, Y. et al. Assembly system configuration through industry 4.0 principles: the
expected change in the actual paradigms. IFAC (International Federation of Automatic
Control), 2017. Cited on page 20.

4 BOSCH REXROTH. Rexroth - A Bosch Company. 2019. Disponível em:
<https://www.boschrexroth.com/de/de/>. Cited on page 23.

5 BOSCH REXROTH. Revolution mit Druck. 2012. Disponível em: <https:
//www.boschrexroth.com/de/de/trends-und-themen/directions/revolution-in-printing>.
Acesso em: 11 feb. 2019. Cited on page 24.

6 SCHWAB, K. The fourth industrial revolution: What it means and how to respond.
Foreign Affairs, 2015. Cited on page 25.

7 LIN, Z.; PEARSON, S. An inside look at industrial Ethernet communication protocols.
2018. Disponível em: <http://www.ti.com/lit/wp/spry254b/spry254b.pdf>. Acesso em:
25 nov. 2019. Cited on page 25.

8 ANALOG DEVICES. What Is the Difference Between Ethernet and Industrial
Ethernet? Disponível em: <https://www.analog.com/en/technical-articles/
what-is-the-difference-between-ethernet-and-industrial-ethernet.html#>. Acesso em: 27
nov. 2019. Cited on page 25.

9 C ENTERPRISES. What’s the Difference between Ethernet and
Industrial Ethernet? Disponível em: <https://blog.centerprises.com/
whats-the-difference-between-ethernet-and-industrial-ethernet>. Acesso em: 27
nov. 2019. Cited on page 25.

10 BOSCH REXROTH. Box PC - PR Series. 2019. Disponível em: <https:
//www.boschrexroth.com/en/xc/products/product-groups/electric-drives-and-controls/
industrial-pc-and-operator-panels/box-pc/pr>. Cited 2 times on pages 26 and 27.

11 SERCOS. Transmission Principle. 2019. Disponível em: <https://www.sercos.org/
technology/functions-and-features/transmission-principle/>. Acesso em: 24 jan. 2019.
Cited on page 28.

12 SERCOS. Topology. 2019. Disponível em: <https://www.sercos.org/technology/
functions-and-features/topology/>. Acesso em: 20 nov. 2019. Cited on page 29.

13 MARTIN, R. C. Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. 1st. ed. [S.l.]: Prentice Hall, 2017. Cited 2 times on pages 30 and 31.

66 Bibliography

14 SPECTOR, A. Z. Modular architectures for distributed and database systems.
Association for Computing Machinery., 1989. Cited on page 31.

15 MOYNE, J. R.; TILBURY, D. M. The emergence of industrial control networks for
manufacturing control, diagnostics, and safety data. Proceedings of the IEEE, IEEE, v. 95,
2007. Cited on page 31.

16 SURI, S.; BATRA, V. Comparative study of network monitoring tools. International
Journal of Innovative Technology and Exploring Engineering, v. 1, 2012. Cited on page
31.

17 AMOEDO, D. Tcpdump, conoce el tráfico de una interfaz de red desde la terminal.
2018. Disponível em: <https://ubunlog.com/tcpdump-descripcion-general-herramienta/>.
Acesso em: 20 nov. 2019. Cited on page 31.

18 TCPDUMP. Manpage of TCPDUMP. [S.l.], 2019. Disponível em: <https:
//www.tcpdump.org/manpages/tcpdump.1.html>. Acesso em: 19 nov. 2019. Cited on
page 32.

19 SERCOS. Tools - Sercos Monitor. 2019. Disponível em: <https://www.sercos.org/
technology/implementation/tools/>. Acesso em: 11 feb. 2019. Cited on page 32.

20 KUROSE, J. F.; ROSS, K. W. Computer Networking: A Top-Down Approach. 6th. ed.
[S.l.]: Pearson, 2014. Cited on page 33.

21 WAZLAWICK, R. S. Análises e Projetos de Sistemas de Informação Orientados a
Objetos. 3rd. ed. [S.l.]: Elsevier, 2010. Cited 2 times on pages 38 and 41.

22 MICROSOFT. Microsoft Visual Studio. Disponível em: <https://visualstudio.
microsoft.com/>. Acesso em: 20 nov. 2019. Cited on page 45.

23 NüRNBERG, S. SPS compact: The official e-paper for the SPS 2019. 2019. Cited on
page 62.

Appendix

69

APPENDIX A – C++ Classes

This Appendix is meant to give some more detailing on the implementation of the

C++ classes mentioned in Chapter 5. The classes are divided here in Tables to exemplify

some of their methods in a simple way.

StatefulPin
Method Description
bool getLatestState() Returns the Boolean last state of the respective pin.
PinNumber getPinNumber() Returns the identifier of the respective pin.
EdgeType getEdgetoStart() Returns the edge to start referent to the pin.
EdgeType getEdgetoStop() Returns the edge to stop referent to the pin.
EdgeType getEdgetoShutdown() Returns the edge to shutdown referent to the pin.
InputTriggeredSignal getSig-
nalOnPinChange()

Returns the assigned signal that shall be emitted on pin-
change.

Table 10 – C++ methods for StatefulPin class

IfaceCaptureTool
Method Description
void init(SimpleIniFileHandler
ini)

Initializes the capture tool and gets the .ini file.

void insertInfo() Configures the capture tool according to the .ini file.
void startCapture() Triggers the start of packet capture.
void stopCapture() Triggers the stop of packet capture.

Table 11 – C++ methods for IfaceCaptureTool class

IfaceIniFileHandler
Method Description
void loadIniFile() Loads the .ini file.
string vector getAllSections() Gets all sections from the .ini file.
string vector getAllKeys(char section) Gets all keys from a section in the .ini file.
string getValuefromKey(char section, char key) Gets the value from a specific key inside a section.

Table 12 – C++ methods for IfaceIniFileHandler class

LightController
Method Description
void update() Updates outputs to enable blinking of the LEDs.
LightType getLightType() Returns the currently emitted LED color pattern.
void setLightType(LightType type) Sets the new LED color pattern that will be emitted.
setOutputs(LightType type) Sets LEDs outputs immediately.

Table 13 – C++ methods for LightController class

70 APPENDIX A. C++ Classes

Application
Method Description
PR21_STATUS divideSections() From the sections found by the .ini file handler, map

them into specific types.
void configureLog() Initial log configuration.
PR21_STATUS setGeneral(char section) Sets the configurations from the .ini file regarding the

general section.
PR21_STATUS configurePins(char section) Configures the pin abstractions according to the .ini file.
PR21_STATUS configureDrive(char section) Configures the hardware part.
setCapToolIni() Initiates the chosen capture tool and passes the path to

the capture tool .ini file to it.
PR21_STATUS checkVectorSize() Checks if there are enough configured triggers.
PR21_STATUS execute() Enter the execution loop of waiting for inputs.

Table 14 – C++ methods for Application class

	Approval
	Dedication
	Acknowledgements
	Abstract
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	INTRODUCTION
	Background
	Motivation
	Contribution

	THE COMPANY AND BUSINESS
	Bosch Rexroth - A Bosch Company

	THEORY
	Industrial Ethernet
	PR21
	Sercos
	Transmission principle
	Topology

	Software architecture
	Network monitoring
	Tools
	TCP dump
	Sercos Monitor

	Chapter summary

	MODELLING
	Problem overview
	System general view
	Workflow
	Requirements
	Chapter summary

	IMPLEMENTATION
	Configuration files
	General configuration file
	Capture tool configuration file

	C++ program
	Class diagram
	Error handling
	Logs

	Chapter summary

	RESULT ANALYSIS
	Chapter summary

	CONCLUSION
	Possible future work
	Personal synthesis

	Bibliography
	Appendix
	C++ Classes

