UNIVERSIDADE FEDERAL DE SANTA CATARINA Bianca Meotti

COMPARAÇÃO ENTRE MÉTODOS TOP-DOWN E BOTTOM-UP NA ESTIMATIVA DE EMISSÕES VEICULARES

Bianca Meotti

COMPARAÇÃO ENTRE MÉTODOS TOP-DOWN E BOTTOM-UP NA ESTIMATIVA DE EMISSÕES VEICULARES

Trabalho Conclusão do Curso de Graduação em Engenharia Sanitária e Ambiental do Centro Tecnológico da Universidade Federal de Santa Catarina como requisito para a obtenção do Título de Engenheira Sanitarista e Ambiental.

Orientador: Prof. Dr. Leonardo Hoinaski

Florianópolis

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Meotti, Bianca

Comparação entre métodos top-down e bottom-up na estimativa de emissões veiculares / Bianca Meotti; orientador, Leonardo Hoinaski, 2019.
113 p.

Trabalho de Conclusão de Curso (graduação) - Universidade Federal de Santa Catarina, Centro Tecnológico, Graduação em Engenharia Sanitária e Ambiental, Florianópolis, 2019.

Inclui referências.

1. Engenharia Sanitária e Ambiental. 2. Emissões veiculares. 3. Metodologia top-down. 4. Desagregação espacial. I. Hoinaski, Leonardo. II. Universidade Federal de Santa Catarina. Graduação em Engenharia Sanitária e Ambiental. III. Título.

Bianca Meotti

COMPARAÇÃO ENTRE MÉTODOS TOP-DOWN E BOTTOM-UP NA ESTIMATIVA DE EMISSÕES VEICULARES

Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do Título bacharel em Engenharia Sanitária e Ambiental e aprovado em sua forma final pelo Curso de Engenharia Sanitária e Ambiental.

Local, 03 de Dezembro de 2019.

Prof^a. Maria Eliza Magri, Dra.

Mar Elin My

Coordenadora do Curso

Banca Examinadora:

Prof. Leonardo Hoinaski, Dr.

Orientador

Universidade Federal de Santa Catarina

Prof. Davide Franco, Dr.

Membro da Banca

Universidade Federal de Santa Catarina

Prof. Pedro Luiz Borges Chaffe, Dr.

Membro da Banca

Universidade Federal de Santa Catarina

AGRADECIMENTOS

Agradeço enormemente aos meus pais e minha família por me apoiarem em minhas escolhas e principalmente por não deixarem que me falte nada. Obrigada por todo apoio e ensinamentos nos momentos em que mais precisei.

Ao meu amigo e colega de universidade Gabriel Anzolin, que durante todo o período na universidade se fez presente e prestativo, além de contagiar a todos com sua risada. Agradeço por ter esta amizade e parceria.

Aos meus amigos que me apoiaram diretamente e indiretamente durante todo o período em que estive na universidade e principalmente ao longo da elaboração deste trabalho.

Ao Guilherme Batista, que me apoiou a todo instante durante a elaboração deste trabalho, tornando a jornada menos cansativa.

Ao meu orientador Dr. Leonardo Hoinaski pela colaboração grandiosa neste trabalho, pela paciência nos momentos difíceis e pela empolgação de realizar um bom trabalho. Agradeço pelos ensinamentos que colaboraram para minha evolução pessoal e profissional.

Aos membros da banca, Professor Davide Franco e Pedro Luiz Borges Chaffe, pelo trabalho atencioso em revisar e contribuir para melhorar este TCC.

À Andy Maes e ao Thiago Vieira Vasques por me auxiliarem com seus conhecimentos prévios sobre emissão veicular. Agradeço por serem sempre prestativos e atenciosos durante a elaboração deste trabalho.

À equipe do Laboratório de Controle de Qualidade do Ar – LCQAr pela parceria, troca de conhecimentos e momentos de descontração. Agradeço por fazerem os dias de trabalho mais harmoniosos.

RESUMO

A estimativa de emissões veiculares é necessária para o gerenciamento do controle da poluição do ar. A qualidade das estimativas está intimamente relacionada à disponibilidade de dados, sendo esses escassos em países em desenvolvimento e subdesenvolvidos. O método bottom-up, mais refinado e com maior resolução, necessita de dados de fluxo veicular via por via, dificilmente encontrados na maior parte das cidades brasileiras. Como alternativa, utiliza-se modelos simplificados como a metodologia top-down. Tal metodologia geralmente não apresenta distribuição espacial e temporal das emissões. Existem poucos trabalhos na literatura que visam melhorar a qualidade das estimativas do método top-down e sanar as lacunas de dados necessários para estudos de qualidade do ar. O método de desagregação de emissões pela densidade de vias é uma alternativa que pode melhorar a resolução temporal e espacial da metodologia top-down. No entanto, suas estimativas são superestimadas em locais com baixo fluxo veicular e subestimadas em regiões que contém elevado fluxo. Neste trabalho, avaliouse as estimativas das emissões veiculares em cinco municípios da microrregião de Florianópolis, através do método top-down e bottom-up em diferentes escalas espaciais e temporais. A metodologia de desagregação baseada na densidade de vias foi utilizada para distribuir as emissões espacialmente em pixels de 1 km². Verificou-se que ao comparar o método top-down com o método bottom-up em escala de cidade obteve-se uma diferença de até 165% para o município de Governador Celso Ramos e 10% para o município de Palhoça, ambos para o poluente material particulado. Ainda, notou-se uma tendência da metodologia top-down em subestimar as estimativas de emissões dos menores municípios da área de estudo. Ao efetuar a desagregação espacial das emissões estimadas pelo método top-down houve uma diferença de até 193% para o material particulado e óxido de nitrogênio. Ocorreu uma superestimação das emissões em vias locais e uma subestimação nas rodovias e vias arteriais. O método de desagregação apresentou diferença de até 183% para o poluente hidrocarboneto. O método de desagregação por densidade de vias demonstrou superestimação em vias de baixo fluxo e subestimação em vias de alto fluxo. Além disso, observou-se que para o monóxido de carbono e hidrocarboneto o erro foi menor ao considerar o erro da estimativa de emissão em conjunto com o erro do método de desagregação comparado apenas com o erro do método de desagregação.

Palavras-chave: Emissões veiculares. Metodologia top-down. Desagregação espacial.

ABSTRACT

The estimative of vehicular emissions is an important tool for air pollution management and control. The accuracy of emissions estimates is highly associated to the availability of data, which is scarce in developing countries. Most Brazilian cities find constraints in applying refined methods for emissions estimation such as the bottom-up approach, as it requires vehicular activity data on a road link level. Instead, a top-down approach is usually employed where data is scarce. Such top-down method usually has spatial and temporal resolution limitations. There are still very few works in literature that aim to improve the quality of topdown estimations and fill in missing data for air quality assessments. Disaggregating emissions according to the density of roads is an alternative to improve spatial resolution of top-down inventories. However, it usually overestimates emissions in roads of reduced traffic, and underestimates in regions of intense vehicular flow. In that sense, the present work evaluated vehicular emissions estimation from five municipalities in the Florianópolis region, applying the top-down and bottom-up approaches in different temporal and spatial scales. The emissions disaggregation method based on road density was applied to distribute emissions in 1 km² pixels. Comparing both bottom-up and top-down methods for each city, a difference of 165% in Particulate Matter emissions was found in Governador Celso Ramos and 10% in Palhoça. Also, the top-down approach showed an inclination to underestimate emissions in smaller cities within the study area. Emissions were overestimated in local roads and underestimated in highways and arterial roads. In relation to the disaggregation method, it presented a difference of up to 183% for Hydrocarbons. Besides, for both Carbon Monoxide and Hydrocarbons, the combined error of estimation and disaggregation was smaller than the disaggregation method error alone.

Keywords: Vehicular emission. Top-down methodology. Spatial disaggregation.

LISTA DE FIGURAS

Figura 1 – Mapa de localização da área de estudo com a rede viária34
Figura 2 – Fluxograma da metodologia.
Figura 3 – Classificação da rede viária segundo o PLAMUS
Figura 4 – Fatores de tráfego. 47
Figura 5 – Demonstração dos grids acima da área de estudo
Figura 6 – Desagregação espacial conforme a densidade de vias
Figura 7 – Esquema das três etapas metodológicas, sendo B.U. (a) as emissões de referência
estimadas pelo método bottom-up; B.U. (b) as emissões totais estimadas pelo método bottom-
up e desagregadas espacialmente pela densidade de vias e T.D. (c) é a emissão estimada pelo
método top-down e desagregado espacialmente conforme a densidade de vias50
Figura 8 – Fractional bias da estimativa de emissão pelo método top-down em porcentagem.
Em que F é Florianópolis, P é Palhoça, S.J é São José, B é Biguaçu e G.C.R é Governador Celso
Ramos
Figura 9 – Espacialização da emissão de Monóxido de Carbono (CO) na hora de pico. Sendo
a) a emissão estimada pelo método <i>bottom-up</i> por vias e distribuída nos grid correspondentes;
b) a emissão total estimada pelo método top-down e desagregada espacialmente conforme a
densidade de vias; c) Bias, conforme Equação 10; e d) Fractional bias, conforme Equação 12.
57
Figura 10 – Espacialização da emissão de Hidrocarbonetos (HC) na hora de pico. Sendo a) a
emissão estimada pelo método bottom-up por vias e distribuída nos grid correspondentes; b) a
emissão total estimada pelo método top-down e desagregada espacialmente conforme a
densidade de vias; c) Bias, conforme Equação 10; e d) Fractional bias, conforme Equação 12.
58
Figura 11 – Espacialização da emissão de Material Particulado (MP) na hora de pico. Sendo a)
a emissão estimada pelo método <i>bottom-up</i> por vias e distribuída nos grid correspondentes; b)
a emissão total estimada pelo método top-down e desagregada espacialmente conforme a
densidade de vias; c) Bias, conforme Equação 10; e d) Fractional bias, conforme Equação 12.
59
Figura 12 – Espacialização da emissão de Óxido Nitroso (N_2O) na hora de pico. Sendo a) a
emissão estimada pelo método bottom-up por vias e distribuída nos grid correspondentes; b) a
emissão total estimada pelo método top-down e desagregada espacialmente conforme a

densidade de vias; c) Bias, conforme Equação 10; e d) Fractional bias, conforme Equação 12.
Figura 13 – Espacialização da emissão de Óxido de Nitrogênio (NO _x) na hora de pico. Sendo
a) a emissão estimada pelo método <i>bottom-up</i> por vias e distribuída nos grid correspondentes;
b) a emissão total estimada pelo método top-down e desagregada espacialmente conforme a
densidade de vias; c) Bias, conforme Equação 10; e d) Fractional bias, conforme Equação 12.
61
Figura 14 - Emissões de monóxido de carbono distribuídas espacialmente, na hora de pico.
Sendo: a) emissão estimada pelo método <i>bottom-up</i> em cada grid; b) desagregação da emissão
total estimada com o método bottom-up, conforme Equação 9; c) Bias, conforme Equação 11;
e d) Fractional Bias, conforme equação 12
Figura 15 – Emissões de hidrocarboneto distribuídas espacialmente, na hora de pico. Sendo: a)
emissão estimada pelo método bottom-up em cada grid; b) desagregação da emissão total
estimada com o método <i>bottom-up</i> , conforme Equação 9; c) <i>Bias</i> , conforme Equação 11; e d)
Fractional Bias, conforme equação 12
Figura 16 - Emissões de material particulado distribuídas espacialmente, na hora de pico.
Sendo: a) emissão estimada pelo método <i>bottom-up</i> em cada grid; b) desagregação da emissão
total estimada com o método bottom-up, conforme Equação 9; c) Bias, conforme Equação 11;
e d) Fractional Bias, conforme equação 12
Figura 17 – Emissões de óxido nitroso distribuídas espacialmente, na hora de pico. Sendo: a)
emissão estimada pelo método bottom-up em cada grid; b) desagregação da emissão total
estimada com o método <i>bottom-up</i> , conforme Equação 9; c) <i>Bias</i> , conforme Equação 11; e d)
Fractional Bias, conforme equação 12
Figura 18 – Emissões de óxido de nitrogênio distribuídas espacialmente, na hora de pico. Sendo:
a) emissão estimada pelo método bottom-up em cada grid; b) desagregação da emissão total
estimada com o método bottom-up, conforme Equação 9; c) Bias, conforme Equação 11; e d)
Fractional Bias, conforme equação 12 67

LISTA DE EQUAÇÕES

Equação 1 – Estimativa de emissão pela metodologia bottom-up
Equação 2 – Estimativa de emissão pela metodologia <i>top-down</i>
Equação 3 – Fator de emissão ponderado para a categoria de veículos loves e comerciais leves
da metodologia bottom-up
Equação 4 - Fator de emissão ponderado para a categoria de veículos leves e comerciais leves
da metodologia top-down
Equação 5 – Fator de emissão ponderado para as motocicletas da metodologia bottom-up41
Equação 6 – Fator de emissão ponderado para as motocicletas da metodologia top-down 41
Equação 7 - Fator de emissão ponderado para a categoria de veículos pesados da metodologia
bottom-up42
Equação 8 - Fator de emissão ponderado para a categoria de veículos pesados da metodologia
top-down42
Equação 9 – Metodologia de desagregação espacial pela densidade de vias
Equação 10 - Diferença (Bias) da estimativa de emissão considerando o método de
desagregação espacial e da estimativa de emissão.
Equação 11 - Diferença (Bias) da estimativa de emissão considerando apenas o método de
desagregação espacial
Equação 12 – Fractional bias

LISTA DE TABELAS

Tabela 1 - Tabela resumo dos principais estudos de desagregação espacial o	las emissões
estimadas pelo método top-down.	31
Tabela 2 – Informações sobre os municípios da área de estudo	33
Tabela 3 – Agrupamento dos combustíveis licenciados e correspondente quantidad	e de veículos
da área de estudo	38
Tabela 4 – Agrupamento das categorias de veículos e os tipos de combustível	39
Tabela 5 – Quantidade de combustível, em litros, na área de estudo e a proporção	de consumo
para cada categoria.	43
Tabela 6 – Fluxo de veículos no horário de pico vespertino.	44
Tabela 7 – Agregação das categorias conforme PLAMUS.	45
Tabela 8 – Estimativas de emissões na hora de pico pelo método bottom-up (B.U.) e top-down
(T.D.).	54

LISTA DE ABREVIATURAS E SIGLAS

CETESB – Companhia de Tecnologia de Saneamento Ambiental

CO - Monóxido de Carbono

CONAMA - Conselho Nacional do Meio Ambiente

COVNM – Compostos orgânicos voláteis não-metânicos

EEA – European Environment Agency

GLP - Gás liquefeito de petróleo

HC – Hidrocarbonetos

IBGE – Instituto Brasileiro de Geografia e Estatística

MMA - Ministério do Meio Ambiente

MP – Material particulado

NH₃ – Amônia

NO_x – Óxidos de Nitrogênio

NO₂ – Óxido Nitroso

WHO - World Health Organization

PROCONVE – Programa de Controle da Poluição do Ar por Veículos Automotores

PROMOT – Programa de Controle da Poluição do Ar por Motociclos e Veículos Similares

SC – Santa Catarina

SUMÁRIO

1	INTRODUÇÃO	23
1.1	OBJETIVOS	24
1.1.1	Objetivo Geral	24
1.1.2	Objetivos Específicos	24
2	REVISÃO BIBLIOGRÁFICA	25
2.1	POLUIÇÃO DO AR EM CENTROS URBANOS	25
2.2	EMISSÕES VEICULARES	26
2.3	INVENTÁRIO DE EMISSÕES	29
2.4	DESAGREGAÇÃO ESPACIAL DAS EMISSÕES	30
3	METODOLOGIA	33
3.1	ÁREA DE ESTUDO	33
3.2	ESTIMATIVA DAS EMISSÕES VEICULARES	34
3.3	CARACTERIZAÇÃO DA FROTA VEICULAR	37
3.4	FATOR DE EMISSÃO	40
3.5	CÁLCULO DA EMISSÃO	43
3.5.1	Top-down	43
3.5.2	Bottom-up	44
3.6	FATORES DE TRÁFEGO	46
3.7	ESPACIALIZAÇÃO DAS EMISSÕES	48
4	RESULTADO E DISCUSSÃO	53
4.1	AVALIAÇÃO DA ESTIMATIVA DE EMISSÃO HORÁRIA PELOS MÉTO	ODOS
TOP-D	DOWN E BOTTOM-UP EM ESCALA DE CIDADE	53
4.2	AVALIAÇÃO DO MÉTODO TOP-DOWN DESAGREGADO ESPACIALM	ENTE
F TFM	APOR ALMENTE	57

4.3	AVALIAÇÃO DO METODO DE DESAGREGAÇÃO ESPACIAL	62
5	CONCLUSÃO	68
6	RECOMENDAÇÕES	70
REFE	ERÊNCIAS	72
ANEX	XO A – FATORES DE EMISSÃO CETESB (2018)	75
APÊN	NDICE A – FATOR DE EMISSÃO	93
APÊN	NDICE B – COMPARAÇÃO DAS EMISSÕES ANUAIS ENTRE OS MÉTO	ODOS
BOTT	TOM-UP E TOP-DOWN EM NÍVEL DE CIDADE	95
APÊN	NDICE C – COMPARAÇÃO DAS EMISSÕES ESTIMADAS NA HORA D	E PICO
ENTR	RE OS MÉTODOS <i>BOTTOM-UP</i> E <i>TOP-DOWN</i> EM NÍVEL DE CIDADE	97
APÊN	NDICE D – EMISSÃO ESTIMADA PELO MÉTODO TOP-DOWN	
DESA	GREGADO ESPACIALMENTE E TEMPORALMENTE	99

1 INTRODUÇÃO

De acordo com a Organização Mundial da Saúde (OMS), a poluição do ar causou cerca de 4,2 milhões de mortes prematuras em 2016 (WHO, 2018). Este cenário mostra a necessidade de investigar as principais fontes de poluição atmosférica, de modo a buscar alternativas efetivas de redução e tratamento das emissões.

Conforme relatório da CETESB referente ao ano de 2017, na Região Metropolitana de São Paulo (RMSP), das emissões atmosféricas totais, os veículos foram responsáveis pela emissão de 96.8% de monóxido de carbono (CO), 76.3% de hidrocarbonetos (HC), 66.6% de óxidos de nitrogênio (NO_x) e 16.9% de óxidos sulfúricos (SO_x). Enquanto que a estimativa dos materiais particulados (MP), referente ao ano de 2002, foi de 40% para MP₁₀ e 37% para MP_{2,5} (CETESB, 2018). Estes poluentes, quando em concentrações elevadas na atmosfera, são responsáveis por graves problemas ambientais e de saúde (PRESAD; BELLA, 2010).

Os inventários de emissões são ferramentas essenciais para estabelecer estratégias eficientes de redução da poluição do ar, pois podem determinar a quantidade e distribuição espacial das fontes de emissão, bem como quantificar os poluentes emitidos. No entanto, para emissões veiculares, essa tarefa está longe de ser trivial, porque as fontes de emissões estão se movimentando no espaço ao longo do tempo. Para os veículos, a maneira mais eficiente de quantificar a emissão de poluentes é pela estimativa utilizando métodos matemáticos.

Para realizar estimativas de emissões de poluentes veiculares, existem duas metodologias já consolidadas: a metodologia a) *Bottom-up*, utilizada geralmente em escalas locais e possui a necessidade de dados robustos como a distância média percorrida pelo veículo e o fluxo de tráfego por ruas; e a metodologia b) *Top-down*, que utiliza dados agregados como o consumo de combustível anual e é usualmente aplicada em macroescala.

A aplicação da metodologia *bottom-up* é limitada pela disponibilidade de dados, muitas vezes escassos em países emergentes. Na ausência de dados de fluxo veicular, aplica-se a metodologia *top-down*, com qualidade e resolução inferior ao método *bottom-up*. Para melhorar a resolução das estimativas com o método *top-down*, Tuia et al. (2007) utilizou diversas técnicas de desagregação espacial das emissões, sendo o método utilizando a densidade de vias o que demonstrou melhores resultados. Entretanto, ocorreu a subestimação em centros urbanos, zonas industriais e ruas com alto fluxo; e superestimação em zonas residenciais (TUIA et al., 2007).

Outros métodos de desagregação foram avaliados para resolver os problemas relatados em Tuia et al. (2007), sendo os métodos de desagregação utilizando contagem de tráfego e mapas de uso da terra os que obtiveram melhores resultados, contudo estes métodos possuem um menor nível de simplicidade (SAIDE et al., 2009).

Neste contexto, o objetivo principal deste trabalho é avaliar as estimativas de emissões veiculares através do método *top-down* e *bottom-up* em diferentes escalas espaciais e temporais. Para isso, serão estimadas as emissões veiculares para cinco municípios da Grande Florianópolis pelos dois métodos e realizada a desagregação espacial pela densidade de ruas. O estudo foi realizado com o apoio do Laboratório de Qualidade do Ar – LCQAr, pertencente ao Departamento de Engenharia Sanitária e Ambiental da Universidade Federal de Santa Catarina – UFSC, coordenado pelo Professor Dr. Leonardo Hoinaski, onde foram realizados estudos de emissões veiculares em escala regional (MAES, 2017; MEIRELLES, 2017), utilizando a metodologia *bottom-up*; e estadual (VASQUES, 2018) empregando a metodologia *top-down*. Sendo assim, estes estudos serão utilizados como base para a realização deste trabalho.

1.1 OBJETIVOS

1.1.1 Objetivo Geral

Avaliar as estimativas das emissões veiculares através dos métodos *top-down* e *bottom-up* em diferentes escalas espaciais e temporais.

1.1.2 Objetivos Específicos

- Avaliar as estimativas de emissões veiculares pelos métodos *top-down* e *bottom-up* em escala de cidade:
- Avaliar as estimativas do método top-down desagregado espacialmente por densidade de vias em escala horária; e
- Avaliar método de desagregação espacial por densidade de vias das estimativas de emissão veicular.

2 REVISÃO BIBLIOGRÁFICA

2.1 POLUIÇÃO DO AR EM CENTROS URBANOS

A intensificação dos processos de urbanização está associada ao consumo de combustível fóssil, desmatamento, queima e geração de resíduos, que por sua vez resulta na degradação da qualidade do ar (MCMICHAEL, 2000). Consequentemente, a poluição do ar tornou-se uma preocupação de saúde pública, mesmo quando seus níveis ficam dentro do limite estabelecido pela legislação atual.

A poluição atmosférica pode ser definida como a presença de substâncias emitidas no ar por fonte antropogênica biogênica ou geogênica; que não fazem parte da composição natural da atmosfera, ou presentes em concentrações superiores ao natural, e que podem causar efeitos adversos a curto ou longo prazo (DALY e ZANNETTI, 2007). Portanto, para que uma fonte cause dano à saúde e\ou meio ambiente é necessário entender o mecanismo de dispersão dos poluentes no ar para verificar se a concentração emitida pela fonte causa efeito ao encontrar o receptor.

Os poluentes gasosos e o material particulado gerados a partir da queima de combustíveis fósseis apresentam efeitos diretos sobre o sistema respiratório, em especial, de crianças, idosos e da população economicamente vulnerável. Esses efeitos têm sido medidos através de aumentos nos atendimentos de pronto-socorro, internações hospitalares, e mortalidade (RIBEIRO et al., 2019).

Segundo a OMS, nas cidades onde a qualidade do ar é monitorada, 80% não atende os parâmetros básicos estabelecidos para o bem-estar da saúde de seus habitantes. Este número é ainda maior quando considerado apenas o monitoramento das cidades de baixa renda per capta, chegando a 98%. Enquanto que para os países de alta renda per capta este número diminui para 56% (WHO, 2016). O Ministério do Meio Ambiente do Brasil cita que, além de trazer prejuízos à saúde, os danos causados pela poluição atmosférica também elevam os gastos do estado, devido ao aumento do número de atendimentos, internações hospitalares e uso de medicamentos (BRASIL, s.d.).

O monitoramento da qualidade do ar no Brasil ainda é restrito e insatisfatório no que se refere a histórico amostral, cobertura territorial, quantidade de parâmetros monitorados e representatividade nas medições. Isto é reflexo das dificuldades de gestão e de poucos técnicos capacitados envolvidos, além da falta de recursos para a compra e manutenção de equipamentos e redes de monitoramento (BRASIL, 2014).

2.2 EMISSÕES VEICULARES

O crescimento econômico e o incentivo ao consumo das últimas décadas proporcionaram um aumento no número de veículos automotores no mundo inteiro. De 2010 a 2017, a frota veicular do Brasil, por exemplo, sofreu um acréscimo de 36%, passando de 48,5 milhões para 65,8 milhões de veículos. O estado brasileiro que possui a maior frota veicular é São Paulo que representa aproximadamente 29% da frota total brasileira, enquanto que o estado de Santa Catarina é o 6º estado com a maior frota veicular, o equivalente a aproximadamente 6% da frota veicular total brasileira (AMARAL 2018).

Em 2010, as emissões referente ao transporte (rodoviário, marítimo e aéreo) aumentaram 49% comparado com as emissões do ano de 1990, totalizando assim, uma emissão de 7,0 Gt de CO₂eq. Desta emissão, aproximadamente 72% foi proveniente do transporte rodoviário (IPCC, 2014).

As emissões de um veículo automotor podem ocorrer pelo escapamento (emissões diretas) ou por natureza evaporativa do combustível, seja durante o uso ou no repouso do veículo (MMA, 2011). A emissão total de escape é representada pela soma das emissões quentes (quando o motor está na temperatura normal de operação) e das emissões de partida a frio (durante a transição de aquecimento do motor). A distinção entre as emissões durante a fase estabilizada "quente" e a fase transitória de "aquecimento" é necessária devido à diferença das emissões do veículo durante essas duas condições. As concentrações de alguns poluentes durante o período de aquecimento do motor são muitas vezes maiores do que durante a operação a quente (EEA, 2016).

As emissões diretas são resultados da combustão de derivados do petróleo como gasolina, diesel, gás liquefeito do petróleo (GLP) e gás natural em motores de combustão interna. O etanol, outro combustível veicular utilizado no Brasil, também é responsável pela emissão de poluentes, porém é um combustível renovável obtido através da fermentação do amido. Contudo, de acordo com Amaral et al. (2016) o etanol possui um potencial poluidor menor quando comparado aos combustíveis derivado do petróleo (AMARAL et al., 2016). Desta forma, a combustão destes combustíveis resultam em emissões dos seguintes poluentes (EEA, 2016):

- Gases causadores de efeito estufa, como CO₂ (dióxido de carbono), CH₄ (gás metano) e N₂O (óxido nitroso).
- Precursores do ozônio, como o CO (monóxido de carbono), NO (monóxido de nitrogênio) e COVNM (compostos orgânicos voláteis não-metânicos)
- Substâncias acidificantes, como NH₃ (amônia) e SO₂ (dióxido de enxofre);
- Hidrocarbonetos (HC);
- Material particulado (MP);
- Metais pesados; e
- Compostos tóxicos, como dioxinas e furanos.

Diversos fatores interferem na quantidade de poluentes emitidos para a atmosfera. Considera-se, de maneira geral, que o tipo de veículo, o combustível utilizado, as condições ambientais e a estrutura viária, além da forma de condução do veículo são fatores importantes a serem considerados (ZHANG, 2014).

No Brasil, os veículos automotores são classificados conforme a Resolução CONAMA Nº 015/1995. Segundo esta Resolução, os veículos são classificados em: veículo leve de passageiros, veículo leve comercial, veículo com características especiais e veículos pesados. Sendo que os veículos leves de passageiros caracterizam-se por possuir massa total máxima de 3856 kg e transportar no máximo 12 passageiros, os veículos leves comerciais se assemelham com os veículos leves de passageiros com a diferença de que além de transportar passageiros também podem transportar cargas. Os veículos com características especiais são os que possuem tração nas quatro rodas, ângulos de ataque, saída e transposição de rampa definidos, e altura livre do solo também definida. Por fim, os veículos pesados podem carregar cargas e/ou passageiros acima de 3856 kg.

Os principais combustíveis utilizados em veículos leves, no Brasil, são o etanol hidratado, a gasolina comum e o gás natural veicular (GNV). Por outro lado, o diesel é o combustível mais utilizado nos veículos pesados (CETESB, 2015). O combustível utilizado nos veículos está associado ao tipo de ignição do motor. Sendo assim, o motor conhecido como Ciclo Otto, abrange os automóveis, motocicletas, e a maioria dos veículos comerciais leves. Contudo, o motor Ciclo Diesel é utilizado predominantemente em veículos pesados como caminhões e ônibus. No ciclo Otto, o combustível é misturado com ar após submeter-se à compressão nos ciclíndros, e a ignição é iniciada por uma centelha. Já nos motores de ciclo

Diesel, a combustão acontece com a auto-ignição do combustível após a sua injeção e mistura com o ar, devido à compressão no interior dos cilíndros. Desta forma, os veículos movidos à gasolina emitem uma quantidade maior de monóxido de carbono (CO) e hidrocarbonetos (HC) quando comparado com automóveis que utilizam diesel, que por sua vez possuem uma maior emissão de óxidos de nitrogênio (NO_x) (FAIZ et al., 1996).

O consumo de combustível está diretamente relacionado com a emissão veicular de poluentes atmosféricos. Sendo que a carga de passageiros, a velocidade de deslocamento, o número de paradas, a inclinação do terreno e a frequência das interrupções no tráfego afetam o consumo de combustível (ANG; FWA, 1989). A análise quantitativa dos efeitos desses fatores sobre o consumo de combustível é necessária para desenvolver métodos e estratégias visando a previsão do consumo de combustível e a economia de combustível.

Além disso, a deterioração dos veículos é um importante fator de interferência nas emissões, visto que os veículos mais novos apresentam tecnologias do uso de combustíveis mais eficientes e consequentemente uma menor emissão de poluentes. Com o passar do tempo os mecanismos de controle de emissão presentes nos automóveis, como o catalisador, deterioram devido a "intensidade de uso" (SPITZLEY et al, 2005). Uma forma de mitigação é a implantação de Programas de Inspeção e Manutenção para Veículos Automotores em Uso – I/M, que possui como objetivo averiguar as condições de segurança, o controle de emissão de poluentes e ruídos de forma periódica estabelecidas pelo CONTRAN para os itens de segurança e pelo CONAMA no que se refere a emissão de poluentes e ruídos (BRASIL, 1997). Apesar do Programa I/M estar previsto desde 1997 no Código de Trânsito Brasileiro, somente após 20 anos, através da Resolução CONTRAN nº 716/2017, foi regulamentado a forma e as condições de implantação do programa I/M previsto a obrigatoriedade em 31 de dezembro de 2019.

Segundo o Relatório de emissões veiculares do Estado de São Paulo, no ano de 2017, diversas regiões do estado apresentaram concentrações de ozônio (O₃), partículas inaláveis (MP₁₀) e partículas inaláveis finas (MP_{2,5}) acima do recomendado pela legislação, mesmo com o decréscimo nas concentrações dos poluentes desde 2014. Essa situação de comprometimento da qualidade do ar reforça a necessidade de adotar medidas complementares para a redução de seus precursores e efetiva redução da concentração desses poluentes (CETESB, 2018).

2.3 INVENTÁRIO DE EMISSÕES

Para estabelecer estratégias eficientes de redução da poluição do ar, deve-se determinar a quantidade e a distribuição espacial das fontes de emissão. No entanto, para emissões veiculares, essa tarefa está longe de ser trivial, porque as fontes de emissões estão se movimentando no espaço ao longo do tempo. Para os veículos, a maneira mais eficiente de avaliar a emissão de poluentes é pela estimativa utilizando métodos matemáticos.

A aplicação destes métodos matemáticos é a construção dos inventários de emissão, que possuem como função quantificar e classificar as informações necessárias acerca dos poluentes emitidos ao ar (PARRISH, 2006). Inventários de emissões também identificam e hierarquizam as diferentes fontes de poluentes atmosféricos e os principais poluentes emitidos (MMA, 2011). Desta forma, esta ferramenta torna-se fundamental na gestão e avaliação dos impactos na qualidade do ar.

Os métodos de estimativa de emissão podem conter erros de precisão, no entanto as outras formas de quantificar poluentes também carregam erros e podem mostrar-se onerosas. A primeira alternativa seria monitorar continuamente cada fonte na área de estudo, inviável no caso de emissões veiculares. E a segunda, seria monitorar continuamente a qualidade do ar ambiente em muitos pontos, e aplicar equações que calculem as emissões a partir da concentração de poluente dispersa no ar (VALLERO, 2008). Na prática as duas alternativas para estimar emissões podem tornar-se dificultosas quando muitas fontes, ou muitos pontos da área de estudo precisam ser monitorados, em um longo período de tempo, como é o caso dos poluentes emitidos por veículos automotores.

Para realizar estimativas de emissões de poluentes veiculares, existem duas metodologias já consolidadas: a metodologia *bottom-up*, e a metodologia *top-down*.

Na metodologia *bottom-up* é necessário obter dados mais robustos como a distância média conduzida para cada tipo de veículo, fluxo de veículos por categoria, entre outros. Indicase para aplicação em escala local, permitindo, inclusive, caracterizar emissões em rodovias (POLICARPO et al., 2018). Contudo sua aplicação é mais difícil de implementar, principalmente em países emergentes em que a qualidade e quantidade dos dados é insatisfatória ou ausente.

Por outro lado, a metodologia top-down determina as emissões de forma abrangente, muitas vezes dando poucos detalhes espaciais e temporais. Na maioria das vezes, este método é usado em macroescala e são usualmente utilizados para construir inventários nacionais de emissões (FAMELI; ASSIMAKOPOULOS, 2015). Necessita de uma quantidade reduzida de parâmetros de entrada quando comparado ao método *bottom-up*, e é, portanto, mais econômico e de fácil implementação. Contudo, espera-se que o erro na estimativa das emissões de gases de escape por um modelo *top-down* seja maior do que em um modelo *bottom-up*.

2.4 DESAGREGAÇÃO ESPACIAL DAS EMISSÕES

Devido à dificuldade na distribuição espacial das estimativas de emissões realizadas pelo método *top-down* (Brulfert et al., 2005), estudos mostram a utilização de desagregação espacial das emissões veiculares por diversas metodologias, como por exemplo, utilização da densidade de ruas, mapas de uso da terra e contagem de veículos por ruas (TUIA et al., 2007; OSSÉS DE EICKER et al., 2008; SAIDE et al., 2009; GÓMEZ et al., 2018). Para verificar a precisão da desagregação espacial das estimativas de emissões veiculares pelo método *top-down*, estes estudos realizaram a comparação com um inventário de referência utilizando a metodologia *bottom-up*.

O trabalho realizado por Tuia et. al. (2007) concluiu-se que a melhor metodologia para a desagregação espacial das emissões de CO na região de Gran Concepción, no Chile, foi utilizando a densidade de ruas de uma rede viária simplificada. Porém, notou-se a ocorrência de subestimação em centros urbanos, zonas industriais e ruas de alto fluxo; e superestimação em zonas residenciais.

Em seguida, Osses et. al. (2008), relatou que as principais conclusões foram que em cidades compactas com uma rede viária simples e com um único centro, foi alcançada uma boa precisão da distribuição espacial das emissões com valores de correlação acima de 0,8. Em contraste, para cidades complexas constituídas por núcleos interconectados, resultou em valores de correlação abaixo de 0,5.

Ainda, Saide et. al. (2009) realizou um estudo em uma cidade de grande porte como Santiago, no Chile, com o intuito de resolver os problemas encontrados em Tuia et.al. (2007). Os autores avaliaram diversas metodologias para verificar qual seria a mais precisa e de simples aplicação. Concluiu-se que utilizando o mapas de uso da terra resolveu parcialmente os problemas, enquanto os dados de contagens de tráfego resolveram quase completamente.

Em Manizales, na Colômbia, Goméz et. al. (2018) foram realizadas diversas metodologias de desagregação espacial das emissões utilizando fluxo de veículos (total ou categorizado) e densidade de vias considerando rede viária completa e simplificada. Os resultados sugeriram que métodos simplificados poderiam subestimar a alocação espacial das emissões do centro da cidade, uma área caracterizada pelo alto tráfego de veículos.

A Tabela 1 mostra em síntese os estudos citados acima que realizaram a desagregação espacial das emissões pelo método *top-down*, mostrando suas conclusões e limitações.

Tabela 1 – Tabela resumo dos principais estudos de desagregação espacial das emissões estimadas pelo método *top-down*.

Autor Local		Método	Poluentes	Conclusões	Limitações
Tuia et al. (2007)	Gran Concepción - Chile	Área urbanizada, densidade populacional, densidade de vias 1 ^{as} , densidade de ruas 1 ^{as} e 2 ^{as}	СО	A metodologia pela densidade de ruas primárias foi mais precisa	Subestimação em centros urbanos e industriais, e superestimação em zonas residenciais
Osses et. al. (2008)	7 cidades andinas - Chile	Densidade de ruas considerando apenas as vias primárias	$\begin{array}{c} MP_{10},CO,\\ HC,NO_x,\\ N_2O,NH_3\\ e\ CH_4 \end{array}$	Cidades compactas obtiveram correlação > 0,8. Para cidades complexas a correlação foi < 0,5	Subestimação em centros urbanos e industriais, e superestimação em zonas residenciais
Saide et al. (2009)	Santiago - Chile	Densidade de vias 1 ^{as} e 2 ^{as} , contagem de veículos, velocidade média das vias e mapa de uso da terra	СО	A utilização de mapa de uso da terra e contagem de tráfego obtiveram o melhor resultado	O método que resultou na diminuição dos erros também diminuiu o nível de simplicidade
Gomez et al. (2018)	Manizales - Colômbia	Fluxo de veículos totais e divididos em categorias, rede viária complexa e simplificada	MP ₁₀ , CO, NMVOC, NO _x e SO _x .	Encontrou hotspots na zona central e na área residencial e comercial	A contagem de tráfego de forma simplificada pode aumentar as incertezas comparado com o método de densidade de vias.

3 METODOLOGIA

3.1 ÁREA DE ESTUDO

O presente estudo abrange cinco municípios da microrregião de Florianópolis, sendo eles: Biguaçu, Florianópolis, Governador Celso Ramos, Palhoça e São José. O município de Florianópolis é o mais populoso dentre os municípios da área de estudo. Caracteriza-se por ser a capital do estado de Santa Catarina e possuir uma parte insular e outra continental. Faz fronteira com São José, segundo município mais populoso da região - seguido por Palhoça, Biguaçu e Governador Celso Ramos, respectivamente. A região estudada apresenta uma área total de 1.715 km² e uma frota veicular total de 689.805 veículos. As informações geográficas detalhadas de cada município são apresentadas na Tabela 2.

Tabela 2 – Informações sobre os municípios da área de estudo.

Município	População estimada	Área	Densidade populacional	Frota veicular	Nº de veículos por habitante
	[hab.]	[km²]	[hab./km²]	[veic.]	[veic./hab.]
Florianópolis	492.977	674,8	742	353.676	0,72
São José	242.927	150,5	1.639	166.051	0,68
Palhoça	168.259	394,9	435	116.738	0,69
Biguaçu	67.458	367,9	186	45.094	0,67
Governador Celso Ramos	14.333	127,4	114	8.246	0,58

Fonte: IBGE, 2018.

Os municípios da região de estudo possuem características semelhantes de veículos per capita, sendo o município de Governador Celso Ramos o que apresenta um valor inferior (0,58) dentre os municípios. Em relação aos detalhamentos viários das regiões, conforme apresentado na Figura 1, pode-se dizer que o município de Florianópolis possui as maiores concentrações de vias primárias na zona continental, no centro e em pequenos núcleos da zona insular, sendo estes conectados por rodovias. A distribuição viária dos municípios de São José e Palhoça se assemelham ao município de Florianópolis, por outro lado os municípios de Biguaçu e Governador Celso Ramos possuem uma maior concentração de vias apenas em uma zona central.

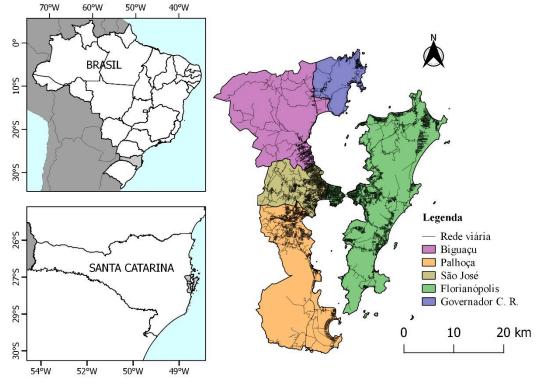


Figura 1 – Mapa de localização da área de estudo com a rede viária.

Fonte: elaborado pela autora, com bases cartográficas disponibilizadas pelo IBGE (2017) e rede viária pelo PLAMUS (2015).

Ainda, vale destacar que entre os municípios da área de estudo ocorre um intenso deslocamento pendular, ou seja, o deslocamento de pessoas entre municípios distintos. Isto ocorre principalmente devido à necessidade de trabalhar em regiões diferentes daquela em que se mora. Além disso, há um deslocamento sazonal acentuado no município de Florianópolis por conta de suas praias, ocorrendo durante o verão nos meses de dezembro à março.

3.2 ESTIMATIVA DAS EMISSÕES VEICULARES

Neste trabalho utilizou-se duas metodologias para estimar a emissão veicular: a metodologia a) *bottom-up*, a qual será utilizada como a emissão de referência e a metodologia b) *top-down* em que a emissão resultante será avaliada com a emissão de referência.

a) Metodologia Bottom-Up

Nesta abordagem são utilizados dados de entrada robustos, como a distância média conduzida por veículo, fluxo de veículos por categoria, entre outros. Tal metodologia foi utilizada para caracterizar emissões por vias (MAES, 2019). Por este motivo considerou-se que

a emissão resultante seria utilizada como referência. Esta metodologia pode ser descrita pela Equação 1 (MMA, 2011):

$$E_{B,p,c,l} = \sum_{l=1}^{n} F E_{p,j,l,c} * N_{l,h} * D_{l}$$
(1)

onde:

 $E_{B,p,c,l}$ é a emissão estimada pelo método *bottom-up*, do poluente p, da categoria c e na via l, em kg/hora;

 $FE_{p,j,i,c}$ corresponde ao fator de emissão para cada poluente p, combustível j, ano-modelo i e da categoria c, em kg/km;

 $N_{l,h}$ é o número de veículos da via l e na hora h, em veículo/hora; e

 D_l é a distância percorrida pelo veículo na via l, em veículo/km.

b) Metodologia Top-Down

A metodologia top-down determina as emissões com dados mais abrangentes. Necessita de uma quantidade reduzida de dados de entrada quando comparado ao método *bottom-up*, e é, portanto, mais econômico e de fácil implementação. Tal metodologia foi utilizada para gerar um inventário de emissão no Estado de Santa Catarina (VASQUES, 2018). O cálculo da emissão por esta metodologia é descrita na Equação 2 (MMA, 2011):

$$E_{T,p,c} = \sum_{k=1}^{n} \sum_{j=1}^{n} FE_{p,j,i,c} * C_{j,k}$$
(2)

onde:

 $E_{T,p,c}$ é a emissão estimada pelo método top-down, para o poluente p e da categoria c, em kg/ano;

 $FE_{p,j,i,c}$ é o fator de emissão para cada poluente p, combustível j, ano-modelo i e da categoria c, em kg/Litro; e

 $C_{j,k}$ é a quantidade de combustível j, consumido na cidade k, em Litro/ano.

Ambas metodologias utilizam o fator de emissão (FE) ponderado pelas características da fonte poluidora (ano-modelo, categoria e tipo de combustível do veículo) no seu cálculo. A única diferença é que na metodologia *top-down* o FE é expresso em (kg/Litro), portanto, o FE ponderado (kg/km) é multiplicado pela autonomia de cada veículo (km/Litro).

O fluxograma apresentado na Figura 2 descreve as fontes e os dados necessários para a implementação das metodologias de estimativa de emissão, os cálculos efetuados e o resultado das emissões pelos dois métodos.

Neste trabalho foram estimadas as emissões de Monóxido de Carbono (CO), Hidrocarbonetos (HC_{total}), Óxidos de Nitrogênio (NO_x), Material Particulado (MP), e Óxido Nitroso (N₂O) com base nos fatores de emissão elaborados nos estudos da Companhia Ambiental do Estado de São Paulo (CETESB, 2018). Portanto, considerou-se apenas as emissões por escapamento. Desconsiderou-se as emissões evaporativas e de ressuspensão do solo. Além disso, neste estudo as emissões provenientes dos ônibus não foram consideradas devido à falta de dados sobre o fluxo desta categoria na área de estudo.

Para que o erro nas estimativas de emissão não seja ampliado devido à má qualidade dos dados de entrada, optou-se por considerar os dados de 2015, que é o ano referente ao fluxo de veículos na área de estudo.

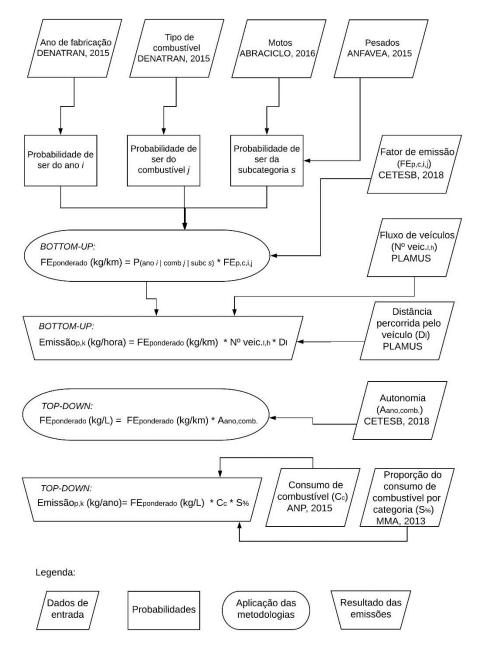


Figura 2 – Fluxograma da metodologia.

Fonte: Adaptado de MEIRELES, 2017 e VASQUES, 2018.

3.3 CARACTERIZAÇÃO DA FROTA VEICULAR

A caracterização da frota veicular foi necessária para ponderar o fator de emissão para cada município. O ano da frota e o tipo de combustível consumido são informações fundamentais para determinação do perfil de emissão do município. Desta forma, cidades que

possuem uma frota mais antiga geralmente emitem poluentes em maior quantidade do que os municípios que possuem frota mais moderna.

No ano de 2015, a área de estudo possuía 622.033 veículos licenciados, distribuídos em 21 categorias, e 17 tipos diferentes de combustíveis, segundo os relatórios estatísticos disponibilizados pelo DENATRAN (https://infraestrutura.gov.br/relatorios-estatisticos.html). Para realizar a futura ponderação do fator de emissão foi necessário realizar agregações dos tipos de combustíveis e de veículos licenciados, conforme a CETESB classifica os fatores de emissão. Portanto, a Tabela 3 mostra a agregação dos combustíveis disponibilizados pelo DENATRAN, bem como a respectiva quantidade de veículos que utilizam tal combustível.

Tabela 3 – Agrupamento dos combustíveis licenciados e correspondente quantidade de veículos da área de estudo.

Tipo de Combustível	Combustíveis licenciados	Quantidade de veículos	Percentual de veículos
Gasolina	Gasolina, Gasolina/Elétrico	280.791	45.1%
Etanol	Álcool	16.008	2.6%
Flex	Álcool/Gasolina	259.453	41.7%
Diesel	Diesel	35.236	5.7%
Gás Natural Veicular	Gás Natural Veicular, Gás Metano, Álcool/Gás Natural Combustível, Álcool/Gás Natural Veicular, Gasolina/Gás Natural Combustível, Gasolina/Álcool/Gás Natural, Gasolina/Gás Natural Veicular, Gasogênio	14.564	2.3%
Elétricos	Elétrico/Fonte Externa, Elétrico/Fonte Interna	19	0.0%
Outros	Sem Informação, Vide/Campo/Observação	15.956	2.6%

Fonte: Adaptado, DENATRAN, 2015.

De acordo com o relatório de emissões veiculares no estado de São Paulo (CETESB, 2016), existe uma porcentagem mínima de veículos elétricos licenciados. O mesmo relatório não estima as emissões proveniente de veículos movidos a GNV devido à baixa contribuição desses na frota circulante do estado. Logo, as categorias de combustível denominadas como "Gás Natural Veicular", "Elétricos" e "Outros" não foram consideradas neste estudo para fins de simplificação de cálculos.

Os veículos do tipo '*flex fuel*' podem utilizar tanto a gasolina quanto o etanol como combustível. Segundo a CETESB (2015), no ano de 2015, no estado de São Paulo 63% dos veículos '*flex-fuel*' utilizaram etanol hidratado como combustível, enquanto 37% utilizam gasolina. Esta mesma porcentagem foi aplicada para os veículos da área de estudo.

Em relação aos veículos, estes foram agrupados nas categorias leves, comerciais leves, motos e pesados conforme mostra a Tabela 4. Além disso, é atribuído o combustível que pode ser utilizado por cada categoria. Por exemplo, os veículos pesados podem ser abastecidos apenas com diesel, enquanto que os veículos leves podem ser abastecidos por etanol e gasolina e ainda serem um veículo 'flex-fuel' o qual aceita os dois combustíveis.

Foram desconsideradas as categorias de bonde, reboque, semi-reboque e sidecar, por estes não possuírem emissão de escapamento. A categoria "outros" também foi desconsiderada por representar uma parcela pequena do total. Este agrupamento é necessário para poder atribuir o fator de emissão determinado pela CETESB e posterior aplicação no cálculo da probabilidade de utilização dos combustíveis.

Tabela 4 – Agrupamento das categorias de veículos e os tipos de combustível.

Categorias para o estudo	Categorias do DENATRAN	Quantidade de veículos na área de estudo	Combustível para cada categoria	
			Gasolina	
Leves	Automóvel e Quadriciclo	390.410	Etanol	
		390.410	Flex - gasolina	
			Flex - etanol	
Comerciais leves			Gasolina	
	Caminhonete, Camioneta e Utilitário		Etanol	
		71.845	Flex - gasolina	
			Flex - etanol	
			Diesel	
Motos	Ciclomotor, Motocicleta, Triciclo e Motoneta		Gasolina	
		128.414	Flex - gasolina	
	Thereto e Motoneta		Flex - etanol	
Pesados	Caminhão, Caminhão Trator, Chassi Plataforma, Trator Esteira e Trator Rodas	13.661	Diesel	

Fonte: Adaptado de DENATRAN, 2015 e CETESB, 2018.

3.4 FATOR DE EMISSÃO

Este trabalho utilizou os fatores de emissão divulgados no relatório de emissões veiculares no estado de São Paulo do ano de 2018 (CETESB, 2018), conforme apresentado no anexo A. Não foram considerados acréscimos do fator de emissão devido à intensidade de uso dos veículos. A frota veicular da área de estudo possui veículos de ano/modelo até 2016, sendo assim, não foram utilizados os fatores de emissão correspondentes aos anos de 2017 e 2018. Os métodos de determinação dos fatores de emissão para as categorias de veículos leves, comerciais leves, motos e pesados são apresentados a seguir.

Inicialmente foi realizada a agregação dos veículos de ano/modelo até 1982, que é o primeiro fator de emissão caracterizado pela CETESB para a categoria de veículos leves. A agregação foi necessária para as demais categorias, sendo até 1983 para os comerciais leves, até 2003 para as motos e até 1999 para a categoria dos pesados.

Na categoria dos veículos leves, os combustíveis utilizados são o etanol e a gasolina. Sendo assim, foi calculada a probabilidade condicional de um veículo ser do ano *i* e utilizar o combustível *j*, como descrito na Equação 3 para a metodologia *bottom-up* e Equação 4 para metodologia *top-down*. A mesma equação foi utilizada para a categoria de veículos comerciais leves. Para os veículos '*flex-fuel*', iniciados a partir de 2003, foi determinado que 63% utilizam álcool e 37% utilizam gasolina como combustível (CETESB, 2015).

$$\overline{FE}_{B,c,p} = \sum_{i=1}^{n} \sum_{j=1}^{n} FE_{c,p,i,j} * P(i|j)$$
(3)

$$\overline{FE}_{T,c,p} = \sum_{i=1}^{n} \sum_{j=1}^{n} FE_{c,p,i,j} * P(i|j) * A_{i,j}$$
(4)

onde:

P(i|j) é a probabilidade condicional de um veículo ser do ano-modelo i e utilizar o combustível j. $FE_{c,p,j,i}$, é o fator de emissão da categoria de veículos c (leves ou comerciais leves), do poluente p, para o ano-modelo i e combustível j, em g/km.

 $A_{i,j}$ é a autonomia do veículo de ano-modelo i e combustível j, em km/Litro.

 $\overline{FE}_{B,c,p}$ é o fator de emissão ponderado da metodologia *bottom-up* para a categoria c e poluente p, em g/km.

 $\overline{FE}_{T,c,p}$ é o fator de emissão ponderado da metodologia *top-down* para a categoria c e poluente p, em g/Litro.

Para as motocicletas, a CETESB categoriza os fatores de emissão por cilindradas, dividindo-as em 3 subcategorias: até 150 cc, de 150 cc a 500 cc e acima de 500 cc. Para estimar a quantidade de motocicletas em cada categoria, foram retiradas informações sobre vendas e licenciamentos da Associação Brasileira dos Fabricantes de Motocicletas, Ciclomotores, Motonetas, Bicicletas e Similares (ABRACICLO, 2016). Devido à falta de dados de autonomia das motocicletas do ano de 2003 até 2010, adotou-se a autonomia referente ao ano de 2011. Sendo assim, foi calculado a probabilidade condicional de uma motocicleta ser do ano *i*, estar na subcategoria de cilindrada *cc* e utilizar o combustível *j*.

Este cálculo é mostrado na Equação 5 para a metodologia *bottom-up* e na Equação 6 para a metodologia *top-down*. Para as motocicletas *flex-fuel*, foi utilizada a mesma porcentagem de distribuição de combustível dos veículos leves.

$$\overline{FE}_{B,M,p} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{cc=1}^{n} FE_{p,i,j,cc} * P(i|j) * P(i|cc)$$
(5)

$$\overline{FE}_{T,M,p} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{cc=1}^{n} FE_{p,i,j,cc} * P(i|j) * P(i|cc) * A_{i,j,cc}$$
(6)

onde:

P(i|j) é a probabilidade condicional de uma motocicleta ser do ano-modelo i e utilizar o combustível j;

P(i|cc) é a probabilidade condicional de uma motocicleta ser do ano-modelo i e da cilindrada cc;

 $FE_{p,i,j,cc}$ é o fator de emissão do poluente p, para o ano i, combustível j e cilindrada cc, em g/km.

 $A_{i,j,cc}$ é a autonomia das motocicletas do ano i, combustível j e cilindrada cc, em km/Litro.

 $\overline{FE}_{B,M,p}$ é o fator de emissão ponderado da metodologia *bottom-up* para a categoria das motocicletas M e poluente p, em g/km.

 $\overline{FE}_{T,M,p}$ é o fator de emissão ponderado da metodologia *top-down* para a categoria das motocicletas M e poluente p, em g/Litro.

Os veículos pesados utilizam unicamente o diesel como combustível. São divididos em duas categorias, ônibus e caminhões. Contudo, este estudo não está considerando a emissão dos ônibus. Portanto a categoria dos pesados foi considerado apenas os caminhões, os quais possuem cinco subcategorias: caminhões semileves, leves, médios, semipesados e pesados. Para determinar a proporção de caminhões em cada subcategoria, foram extraídas informações da ANFAVEA (http://www.anfavea.com.br/estatisticas-2015.html) sobre licenciamento total de autoveículos novos. Esta proporção foi aplicada na quantidade total da categoria de veículos pesados retirados dos dados disponibilizados pelo DENATRAN, conforme visto anteriormente na Tabela 3, para cada município. Sendo assim, foi calculada a probabilidade condicional de um veículo pesado ser do ano *i* e da subcategoria *s*, como mostrado na Equação 7, para a metodologia *bottom-up* e Equação 8 para a metodologia *top-down*.

$$\overline{FE}_{B,P,p} = \sum_{i=1}^{n} \sum_{s=1}^{n} FE_{p,i,s} * P(i|s)$$
(7)

$$\overline{FE}_{T,P,p} = \sum_{i=1}^{n} \sum_{s=1}^{n} FE_{p,i,s} * P(i|s) * A_{i,j,s}$$
(8)

onde:

P(i|s) é a probabilidade de um veículo pesado ser do ano-modelo i e da subcategoria s.

 $FE_{p,i,j,}$ é o fator de emissão do poluente p, para o ano i e subcategoria s, em g/km.

 $A_{i,j,s}$ é a autonomia do veículo pesado do ano i e subcategoria s, em km/Litro.

 $\overline{FE}_{B,P,p}$ é o fator de emissão ponderado da metodologia *bottom-up*, para a categoria dos veículos pesados P e poluente p, em g/km.

 $\overline{FE}_{T,P,p}$ é o fator de emissão ponderado da metodologia *top-down*, para a categoria dos veículos pesados P e poluente p, em g/Litro.

3.5 CÁLCULO DA EMISSÃO

Para realizar o cálculo das emissões é necessário aplicar as Equações 1 e 2, apresentadas na seção 3.2. Para isso é preciso obter as informações do fator de emissão ponderado mostrado na seção 3.4. Além disso, necessita-se dos dados de consumo de combustível, fluxo de veículos e distância percorrida pelo veículo. Portanto, esta seção será separada entre a metodologia *top-down* e *bottom-up* para mostrar como estes dados foram obtidos e posterior utilização no cálculo da emissão.

3.5.1 *Top-down*

O consumo de combustível em cada município foi obtido através dos dados fornecidos pela Agência Nacional do Petróleo, Gás Natural e Biocombustível – ANP, em seus dados estatísticos, onde possui informações anuais de vendas de derivados de petróleo e etanol (ANP, 2015). Ainda, a proporção de combustível utilizada por cada categoria de veículo foi retirada do Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (MMA, 2013), esta proporção foi igual para todos os municípios. A compilação dos dados está demonstrada na Tabela 5.

Tabela 5 – Quantidade de combustível, em litros, na área de estudo e a proporção de consumo para cada categoria.

Combustível	Quantidade	Categoria	Proporção de consumo
		Leves	0,773
Gasolina	408.295.352	Comerciais Leves	0,142
		Motos	0,086
		Leves	0,852
Etanol	39.360.828	Comerciais Leves	0,131
		Motos	0,016
Diesel	139.775.525	Comerciais Leves	0,041
Diesei	139.773.323	Pesados	0,769

Fonte: Adaptado de ANP, 2015 e MMA, 2013.

Como simplificação, considerou-se que os veículos licenciados em um determinado município utilizaram os combustíveis e emitiram os poluentes no respectivo município.

3.5.2 Bottom-up

A rede viária da área de estudo, juntamente com o fluxo de veículos, foi obtida a partir de um modelo de transporte detalhado desenvolvido pelo Plano de Mobilidade Urbana Sustentável da Grande Florianópolis (PLAMUS, 2015). Este plano foi resultado de um estudo realizado na região da Grande Florianópolis pelo Governo do Estado de Santa Catarina, com a participação de diversas instituições, como universidades, municípios, consultores, operadores de transporte público, entre outros. O modelo da rede viária foi desenvolvido no TransCAD, um Sistema de Informação Geográfica (SIG) adaptado para aplicações de transporte.

O plano categorizou os veículos em: privados, caminhões pequenos e caminhões grandes, sendo o fluxo veicular modelado para os horários de pico da manhã e da tarde. Neste trabalho utilizou-se o fluxo veicular no horário de pico vespertino para as emissões estimadas pelo método *bottom-up*, conforme mostra a Tabela 6.

Tabela 6 – Fluxo de veículos no horário de pico vespertino.

Município	Privados	Caminhão pequeno	Caminhão grande	
Florianópolis	3.842.022	62.244	26.921	
Palhoça	895.267	73.572	132.040	
São José	1.707.095	100.377	85.804	
Biguaçu	453.216	79.477	138.483	
Governador Celso Ramos	114.383	171.60	24.664	

Fonte: Adaptado de PLAMUS (2015).

Ainda, a rede viária foi categorizada em: vias expressas, conectores, vias arteriais, coletores e estradas locais, como mostra a Figura 3. As vias expressas incluem estradas federais e estaduais, projetadas para alta velocidade (de 100 a 80 km/h) e fluxo intenso de veículos. Podem ser conectadas por estradas denominadas conectores. As arteriais são caracterizadas como portadoras de grandes volumes de tráfego em velocidade média de 80 a 30 km/h, além de possuir interseções ocasionais e semáforos. Os coletores incluem estradas que conectam as vias arteriais com as estradas locais. As estradas locais são as ruas que transportam baixo fluxo de veículos em áreas urbanas sob velocidade média de 25 a 10 km/h.

Devido a classificação do PLAMUS em relação ao fluxo de veículos, necessitou-se realizar uma nova agregação das categorias dos veículos conforme descrito na Tabela 7.

Tabela 7 – Agregação das categorias conforme PLAMUS.

Categoria PLAMUS	Categoria para cálculo do FE		
_	Leves Comerciais leves		
Privados			
	Motos		
Caminhões pequenos	Pesados		
Caminhões grandes			
	PLAMUS Privados Caminhões pequenos		

Fonte: Adaptado, PLAMUS, 2015.

Desta forma, para obter a emissão pelo método *bottom-up* foi necessário ponderar o total de veículos privados fornecidos pelo PLAMUS, conforme a proporção de veículos leves, comerciais leves e motos fornecidos pelo DENATRAN. Assim, o cálculo da emissão dos veículos leves é a soma das emissões da categoria leves, comerciais leves e motos, isto vale para ambas metodologias. Para o cálculo da emissão dos veículos pesados, realizou-se a soma dos caminhões pequenos e grandes na via considerada.

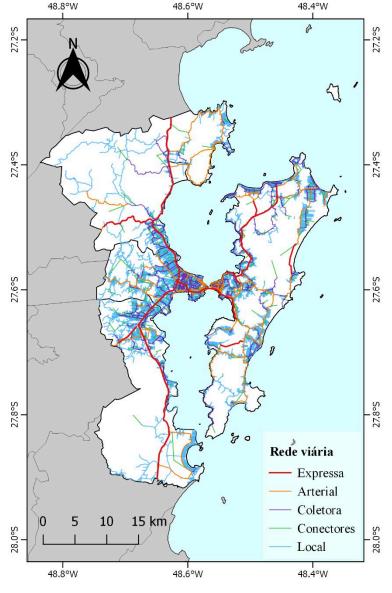


Figura 3 – Classificação da rede viária segundo o PLAMUS.

Fonte: Elaborada pela autora, com base cartográfica do IBGE (2017) e rede viária do PLAMUS (2015).

3.6 FATORES DE TRÁFEGO

As quantidade de poluentes emitidos pelos veículos dependem, além de diversos fatores, da quantidade de veículos que trafegam em uma determinada via. Sendo assim, em horários de pico ocorre a máxima emissão devido ao elevado número de veículos em uma única via. Os horários de pico durante os dias úteis são geralmente em um período da manhã em que a maioria da população se desloca para ir trabalhar e estudar e no período da tarde em que ocorre

o retorno para casa. Ainda, nos finais de semana a movimentação de veículos na cidade diferem da movimentação durante os dia de semana, geralmente diminuem-se os congestionamentos.

Sendo assim, devido à falta de estudos em Santa Catarina que possuam fatores de tráfego representativos para a área de estudo, neste trabalho utilizou-se os fatores de tráfego disponibilizados pelo Instituto Estadual de Meio Ambiente e Recursos Hídricos – IEMA, em seu Inventário de Fontes de Emissões Atmosféricas da Região da Grande Vitória/ES (https://iema.es.gov.br/qualidadedoar/inventariodefontes). Os fatores de tráfego variam entre 0 e 1, sendo o fator de menor e maior emissão, respectivamente. Segundo demonstrado na Figura 4, os fatores de tráfego diferem-se entre as horas do dia e conforme os dias de semana. Não foram considerados os deslocamentos sazonais entre os municípios da área de estudo.

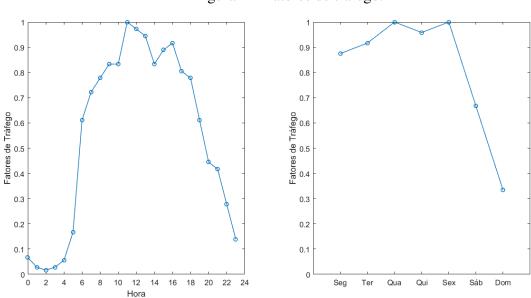


Figura 4 – Fatores de tráfego.

Fonte: Adaptado de IEMA, 2015.

Além de auxiliar na variação das emissões veiculares em relação ao tempo, os fatores de tráfego foram necessários para alterar a unidade da emissão resultante do método top-down, visto que tal método resulta em emissões anuais. Já o método *bottom-up* resulta em emissões horárias.

3.7 ESPACIALIZAÇÃO DAS EMISSÕES

Após as emissões totais terem sido avaliadas, os resultados devem ser espacializados, ou seja, as emissões horárias totais serão distribuídas em uma grade regular com resolução espacial de 1 km². Para a formação dos grids sobre a área de estudo, primeiramente foi necessário definir os pontos iniciais e finais de latitude e longitude. Após isto, utilizou-se uma variação de 1000 metros entre a latitude e longitude iniciais até alcançar a latitude e longitude finais. Desta forma, criou-se uma grade regular com grids de 1 km² dispostos sobre a área de estudo, conforme mostra a Figura 5.

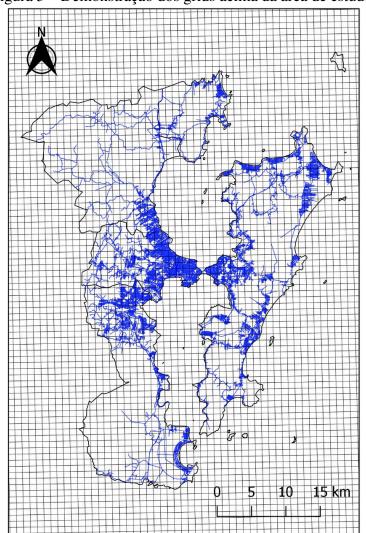


Figura 5 – Demonstração dos grids acima da área de estudo.

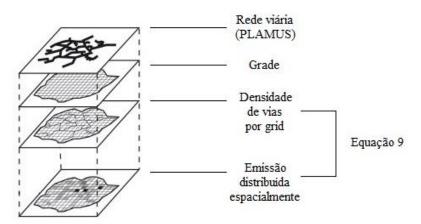
Fonte: elaborado pela autora, com bases cartográficas disponibilizadas pelo IBGE (2017) e rede viária obtida pelo PLAMUS (2015).

O resultado da emissão estimada pelo método *bottom-up*, considerada como referência, foi distribuída em grids, que receberam os valores de emissão de cada segmento de via, correspondente. Por outro lado, as emissões estimadas pelo método *top-down* foram desagregadas espacialmente conforme a densidade de vias, conforme descrito na Equação 9.

$$E_{n,p,c} = E_{x,p,c} * \frac{L_n}{L_k} \tag{9}$$

onde:

 $E_{n,p,c}$ é a emissão no grid n, poluente p e categoria de veículos c, em kg/hora;

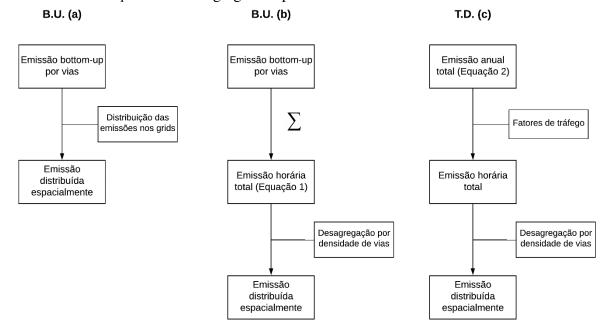

 $E_{x,p,c}$ é a emissão total estimada pelo método x, para o poluente p e categoria de veículos c, conforme Equação 1 (bottom-up) e Equação 2 (top-down), em kg/hora;

 L_n é o comprimento das vias no grid n, em metros; e

 L_k é o comprimento total das vias para o município k.

Entretanto, nesta metodologia de densidade de vias, todos os tipos de vias possuem o mesmo peso na distribuição das emissões nos grids, ou seja, as vias expressas possuem o mesmo peso das vias locais. A Figura 6 mostra esquematicamente a metodologia de desagregação espacial conforme a densidade de vias.

Figura 6 – Desagregação espacial conforme a densidade de vias.



Fonte: adaptado de Tuia et al., 2007.

Contudo, para avaliar a qualidade do método de desagregação espacialização das emissões, bem como o método utilizado para estimar as emissões, foi necessário realizar três etapas descritas abaixo e esquematizadas na Figura 7.

- **a.** Agregação das emissões estimadas pelo método *bottom-up*: agregar as emissões das vias em grids de 1 km² cobrindo toda a área de estudo;
- b. Desagregação da emissão estimada pelo método *bottom-up*: desagregação da emissão total estimada pelo método *bottom-up* em grids utilizando a densidade de vias; e
- c. Desagregação da emissão estimada pelo método top-down: desagregação da emissão total estimada pelo método top-down em grids utilizando a densidade de vias.

Figura 7 – Esquema das três etapas metodológicas, sendo B.U. (a) as emissões de referência estimadas pelo método *bottom-up*; B.U. (b) as emissões totais estimadas pelo método *bottom-up* e desagregadas espacialmente pela densidade de vias e T.D. (c) é a emissão estimada pelo método *top-down* e desagregado espacialmente conforme a densidade de vias.

Fonte: elaborada pela autora.

Desta forma, realizando a análise entre (a) e (c) avalia-se os erros em conjunto do método de estimativa de emissão e da desagregação espacial das emissões, demonstrado na Equação 10. Por outro lado, quando realizado a comparação entre (a) e (b), avalia-se apenas o erro do método de desagregação das emissões, conforme apresentado na Equação 11.

$$D_{n.d.e} = BU_a - TD_c (10)$$

$$D_{n,d} = BU_a - BU_b \tag{11}$$

onde:

 $D_{n,d,e}$ é a diferença (Bias) da estimativa de emissão do grid n considerando o método de desagregação espacial pela densidade de vias d e o método de estimativa de emissão e;

 $D_{n,d}$ é a diferença (Bias) da estimativa de emissão do grid n considerando apenas o método de desagregação espacial pela densidade de vias d;

 BU_a é a emissão estimada pelo método bottom-up e distribuída em cada grid;

 BU_b é a emissão total estimada pelo método *bottom-up* e desagregada espacialmente utilizando a densidade de vias; e

 TD_c é a emissão total estimada pelo método top-down e desagregada utilizando a densidade de vias.

Além disso, para verificar o quanto esta diferença em magnitude representa em proporção, foi utilizado *Fractional Bias*, conforme mostra a Equação 12.

$$FB = \frac{2 * (\overline{BU} - \overline{TD})}{(\overline{BU} + \overline{TD})} \tag{12}$$

onde:

FB é a proporção da diferença entre a emissão estimada pelo método *bottom-up* e *top-down*, sendo que os valores positivos e negativos representam uma subestimação e superestimação das emissões estimadas pelo método *top-down*, respectivamente.

BU é a emissão estimada pelo método bottom-up; e

TD é a emissão estimada pelo método top-down.

4 RESULTADO E DISCUSSÃO

Através do método *bottom-up* e *top-down*, foi calculada a emissão dos poluentes CO, HC, NO_x, N₂O e MP provenientes de emissões veiculares da rede viária dos municípios de Florianópolis, São José, Palhoça, Biguaçu e Governador Celso Ramos. Os dois métodos são estimativos e utilizam como dado de entrada o fator de emissão ponderado de acordo com as características da frota veicular de cada município, sendo estes discutidos no apêndice A. A magnitude total da estimativa de emissão anual e da estimativa de emissão na hora de pico, pelos dois métodos foram comparadas. Sendo a estimativa de emissão anual apresentada no apêndice B. Além disso, fez-se a comparação das emissões horárias distribuídas espacialmente utilizando a densidade de vias.

4.1 AVALIAÇÃO DA ESTIMATIVA DE EMISSÃO HORÁRIA PELOS MÉTODOS TOP-DOWN E BOTTOM-UP EM ESCALA DE CIDADE

Para as emissões estimadas pelo método *bottom-up* utilizou-se a Equação 1, apresentada na sessão 3.2. Por outro lado, para estimar as emissões horárias empregando a metodologia *top-down*, foi necessário converter os resultados anuais, obtidos a partir da Equação 2, para emissões horárias. Esta conversão foi realizada utilizando os fatores de tráfego, descrito na seção 3.4. Os resultados das estimativas de emissão na hora de pico (11 horas) estão demonstrados na Tabela 8.

Tabela 8 – Estimativas de emissões na hora de pico pelo método *bottom-up* (B.U.) e *top-down* (T.D.).

Município	Categoria –	CO [kg/h]		HC _{total} [kg/h]		NO _x [kg/h]		MP [kg/h]		N₂O [kg/h]	
		B.U.	T.D.	B.U.	T.D.	B.U.	T.D.	B.U.	T.D.	B.U.	T.D.
Florianópolis	Leves	952,1	1776,0	102,7	196,0	65,0	118,8	0,6	1,4	5,0	8,3
	Pesados	7,4	22,0	2,1	6,1	43,2	128,3	1,6	4,8	0,3	1,0
	Total	959,5	1798,0	104,7	202,1	108,2	247,0	2,2	6,2	5,3	9,2
Palhoça	Leves	341,1	618,7	38,3	68,8	23,1	42,7	0,3	0,5	1,4	2,6
	Pesados	35,0	38,0	10,2	11,1	202,4	218,1	8,0	8,7	1,2	1,4
	Total	376,1	656,6	48,5	79,8	225,5	260,8	8,3	9,1	2,6	4,0
São José	Leves	435,0	807,7	48,6	89,9	29,8	55,7	0,3	0,6	2,0	3,6
	Pesados	19,5	17,2	5,6	4,9	113,0	99,5	4,4	3,8	0,7	0,7
	Total	454,4	825,0	54,2	94,9	142,8	155,1	4,7	4,5	2,7	4,3
Biguaçu	Leves	254,0	279,7	28,6	30,8	16,8	19,1	0,2	0,2	0,9	1,1
	Pesados	41,0	16,9	12,1	5,0	236,6	96,8	9,6	3,9	1,4	0,6
	Total	295,0	296,6	40,7	35,8	253,4	115,9	9,8	4,1	2,3	1,7
Governador Celso Ramos	Leves	51,9	21,7	6,0	2,4	3,5	1,5	0,0	0,0	0,3	0,1
	Pesados	9,6	0,9	2,6	0,2	56,5	5,4	2,0	0,2	0,4	0,0
	Total	61,6	22,6	8,6	2,7	60,0	6,9	2,0	0,2	0,7	0,2

Referente à metodologia *bottom-up*, o município de Florianópolis demonstrou a maior emissão de poluentes para a categoria dos veículos leves, isto porque, dentre os municípios da área de estudo, Florianópolis possui o maior fluxo de veículos, conforme mostrado na Tabela 6, na seção 3.5.2. Contudo, Biguaçu apresentou maiores emissões de poluentes para os veículos pesados e maior emissão de NO_x e MP no total, isto demonstra o intenso fluxo de veículos pesados na região, como mostrado na Tabela 6, em que Biguaçu possui o maior fluxo de caminhões pequenos e grandes na área de estudo.

O município de Florianópolis também possuiu a maior emissão de poluentes na categoria de veículos leves estimados pela metodologia *top-down*. Isto se deve pelo elevado consumo de gasolina e etanol na região, correspondendo 54% e 49% do consumo total na área de estudo, respectivamente. Por outro lado, o município de Palhoça obteve as maiores emissões de poluentes referente aos veículos pesados estimados com o método *top-down*, contrariando o resultado encontrado pelo método *bottom-up*. Isto é resultado do elevado fator de emissão ponderado para os veículos pesados deste município, bem como o alto consumo de diesel na região, correspondendo 38% do consumo total na área de estudo.

As menores emissões de poluentes estimadas pelo método *top-down* foram observadas no município de Governador Celso Ramos em todas as categorias de veículos. Isto se deve pelo baixo consumo de combustíveis nesta região. As menores emissões estimadas pelo método *bottom-up* vai de encontro ao resultado da metodologia *top-down*, exceto para a categoria dos veículos pesados, em que Florianópolis obteve a menor emissão por possuir um baixo fluxo de veículos pesados na região.

Após realizar a estimativa de emissão na hora de pico pelos dois métodos, foi possível analisar a diferença em magnitude das estimativas de emissão utilizando *Bias*. Ainda, para verificar quanto estas diferenças representam em porcentagem, empregou-se *Fractional bias*. Sendo assim, estes resultados encontram-se no apêndice C. A Figura 8 apresenta a diferença da estimativa de emissão na hora de pico pelo método *top-down* em porcentagem, utilizando *Fractional Bias* (Equação 12), sendo os valores negativos as emissões superestimadas e os positivos as emissões subestimadas.

Figura 8 – *Fractional bias* da estimativa de emissão pelo método *top-down* em porcentagem. Em que F é Florianópolis, P é Palhoça, S.J é São José, B é Biguaçu e G.C.R é Governador Celso Ramos.

Observando-se a Figura 8, houve uma superestimação das emissões pelo método *top-down* nos municípios de Florianópolis e Palhoça, para todos os poluentes e categorias de veículos. Contudo, no município de São José, ocorreu uma subestimação pelo método *top-down* na categoria dos veículos pesados. Além disso, ocorreu uma alta subestimação pelo método *top-down* em todas as categorias de veículo e poluentes no município de Governador Celso Ramos.

4.2 AVALIAÇÃO DO MÉTODO TOP-DOWN DESAGREGADO ESPACIALMENTE E TEMPORALMENTE

Além de avaliar a diferença em magnitude entre as estimativas de emissão dos métodos *bottom-up* e *top-down*, realizou-se a distribuição espacial das emissões, conforme descrito na sessão 3.7. As espacializações das emissões foram feitas para todas as horas do dia, sendo estas apresentadas no apêndice D. Nesta sessão será apresentado as espacializações das emissões na hora de pico (11 horas) para cada poluente.

Figura 9 – Espacialização da emissão de Monóxido de Carbono (CO) na hora de pico. Sendo a) a emissão estimada pelo método *bottom-up* por vias e distribuída nos grid correspondentes; b) a emissão total estimada pelo método *top-down* e desagregada espacialmente conforme a densidade de vias; c) *Bias*, conforme Equação 10; e d) *Fractional bias*, conforme Equação 12.

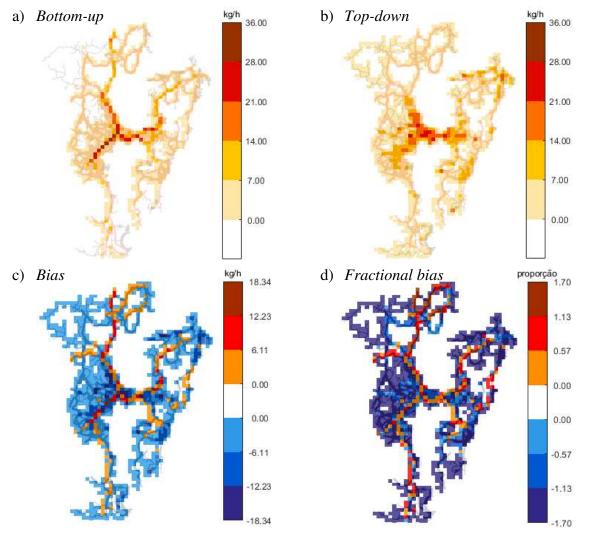


Figura 10 – Espacialização da emissão de Hidrocarbonetos (HC) na hora de pico. Sendo a) a emissão estimada pelo método *bottom-up* por vias e distribuída nos grid correspondentes; b) a emissão total estimada pelo método *top-down* e desagregada espacialmente conforme a densidade de vias; c) *Bias*, conforme Equação 10; e d) *Fractional bias*, conforme Equação 12.

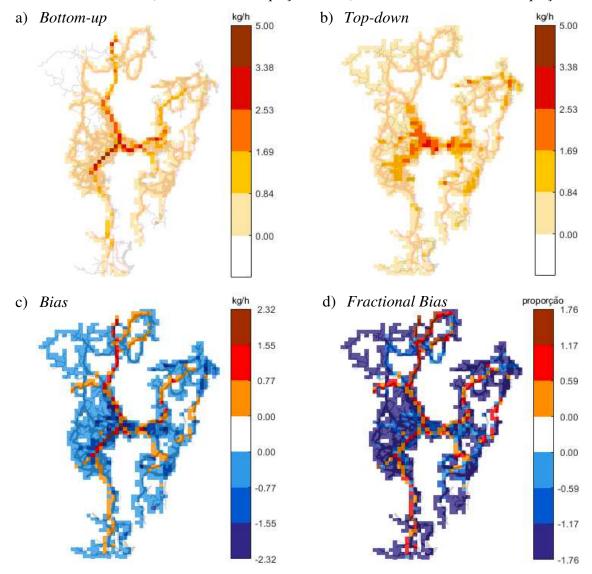


Figura 11 – Espacialização da emissão de Material Particulado (MP) na hora de pico. Sendo a) a emissão estimada pelo método *bottom-up* por vias e distribuída nos grid correspondentes; b) a emissão total estimada pelo método *top-down* e desagregada espacialmente conforme a densidade de vias; c) *Bias*, conforme Equação 10; e d) *Fractional bias*, conforme Equação 12.

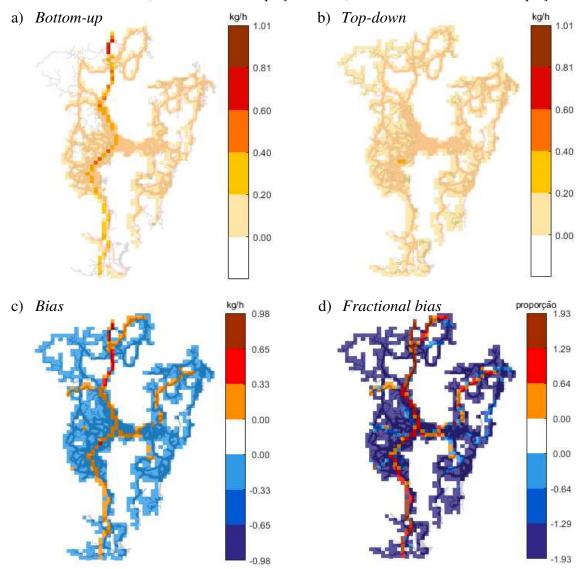


Figura 12 – Espacialização da emissão de Óxido Nitroso (N₂O) na hora de pico. Sendo a) a emissão estimada pelo método *bottom-up* por vias e distribuída nos grid correspondentes; b) a emissão total estimada pelo método *top-down* e desagregada espacialmente conforme a densidade de vias; c) *Bias*, conforme Equação 10; e d) *Fractional bias*, conforme Equação 12.

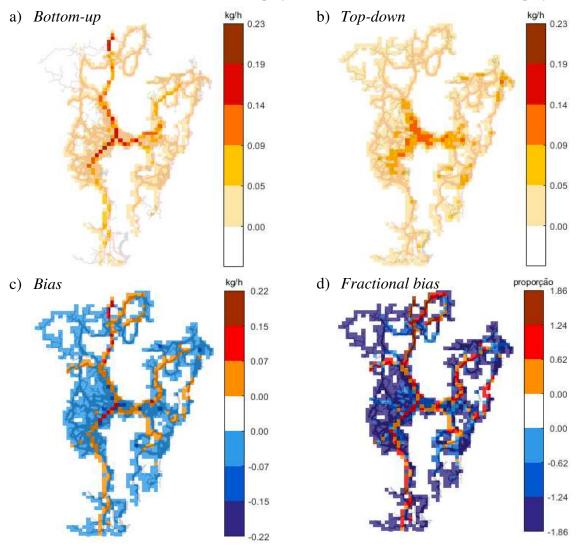
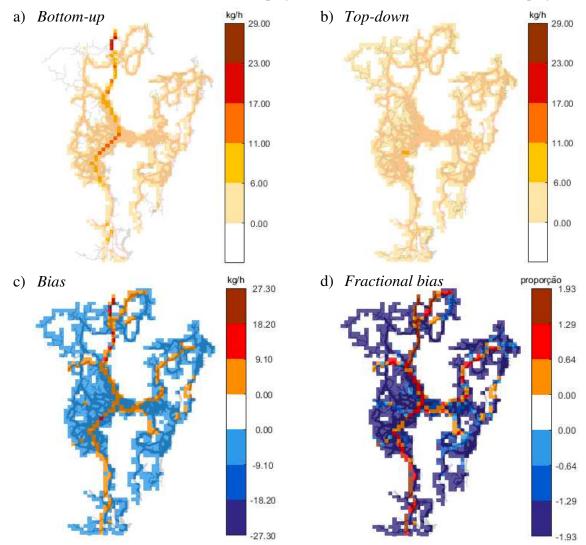



Figura 13 – Espacialização da emissão de Óxido de Nitrogênio (NO_x) na hora de pico. Sendo a) a emissão estimada pelo método *bottom-up* por vias e distribuída nos grid correspondentes; b) a emissão total estimada pelo método *top-down* e desagregada espacialmente conforme a densidade de vias; c) *Bias*, conforme Equação 10; e d) *Fractional bias*, conforme Equação 12.

O material particulado e óxido de nitrogênio apresentaram as maiores diferenças, ambos atingindo até 193%. Nota-se que nas vias secundárias (vias locais) o método *top-down* superestima as emissões, já nas vias primárias (rodovias, vias arteriais) ocorre uma subestimação pelo método *top-down*. Este resultado vem de encontro com Tuia et. al. (2007), que encontrou subestimação vias de alto fluxo e superestimação em zonas residenciais utilizando a desagregação espacial conforme a densidade de vias primárias.

4.3 AVALIAÇÃO DO MÉTODO DE DESAGREGAÇÃO ESPACIAL

Além de avaliar o método *top-down* desagregado espacialmente e temporalmente, é necessário atentar-se ao erro inerente ao método utilizado para realizar a desagregação espacial das emissões. Desta forma, para verificar o desempenho da metodologia de desagregação espacial pela densidade de vias, realizou-se a comparação da emissão estimada pelo método *bottom-up* por vias e distribuída nos grid correspondentes e as emissões totais estimadas pela metodologia *bottom-up* e desagregadas espacialmente utilizando a metodologia de densidade de vias. Para isso, será dividido a seção conforme os poluentes avaliados. Nesta sessão será apresentado a avaliação da metodologia de desagregação espacial na hora de pico (11 horas) para cada poluente.

Figura 14 – Emissões de monóxido de carbono distribuídas espacialmente, na hora de pico. Sendo: a) emissão estimada pelo método *bottom-up* em cada grid; b) desagregação da emissão total estimada com o método *bottom-up*, conforme Equação 9; c) *Bias*, conforme Equação 11; e d) *Fractional Bias*, conforme equação 12.

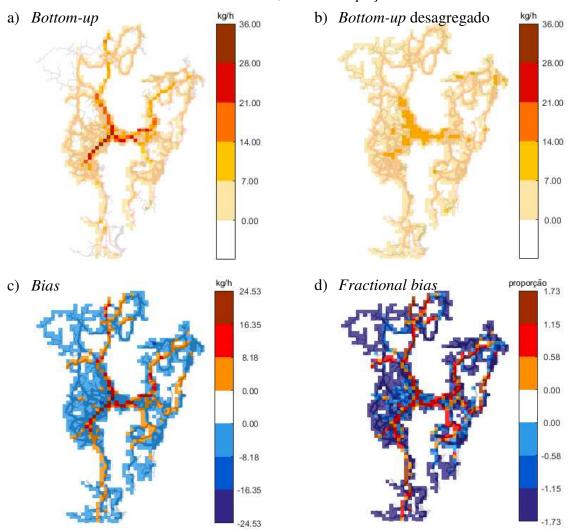


Figura 15 — Emissões de hidrocarboneto distribuídas espacialmente, na hora de pico. Sendo: a) emissão estimada pelo método *bottom-up* em cada grid; b) desagregação da emissão total estimada com o método *bottom-up*, conforme Equação 9; c) *Bias*, conforme Equação 11; e d) *Fractional Bias*, conforme equação 12.

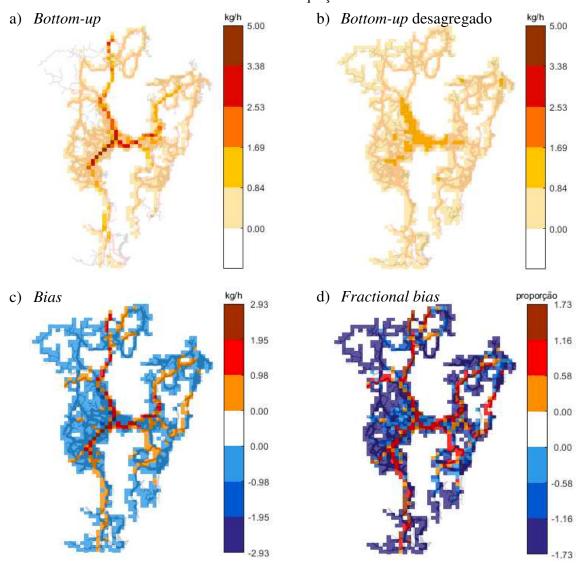


Figura 16 – Emissões de material particulado distribuídas espacialmente, na hora de pico. Sendo: a) emissão estimada pelo método *bottom-up* em cada grid; b) desagregação da emissão total estimada com o método *bottom-up*, conforme Equação 9; c) *Bias*, conforme Equação 11; e d) *Fractional Bias*, conforme equação 12.

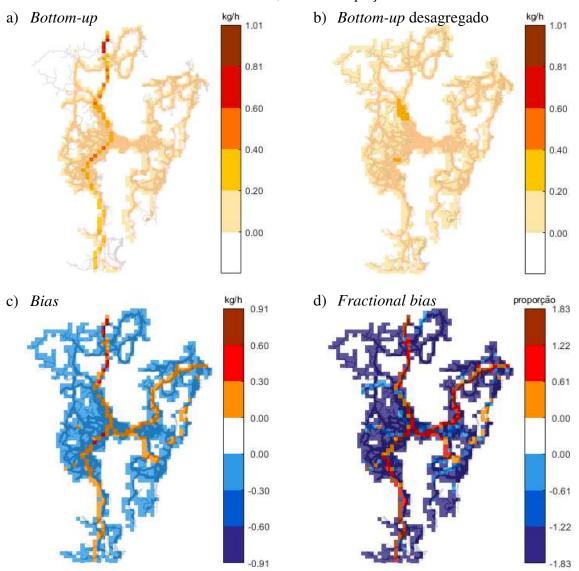


Figura 17 – Emissões de óxido nitroso distribuídas espacialmente, na hora de pico. Sendo: a) emissão estimada pelo método *bottom-up* em cada grid; b) desagregação da emissão total estimada com o método *bottom-up*, conforme Equação 9; c) *Bias*, conforme Equação 11; e d) *Fractional Bias*, conforme equação 12.

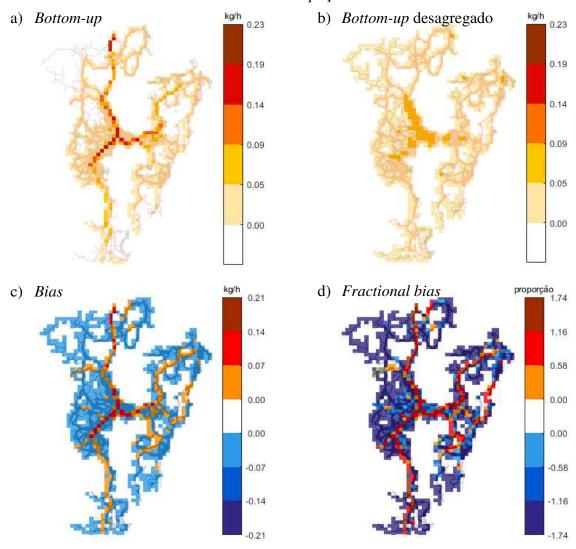
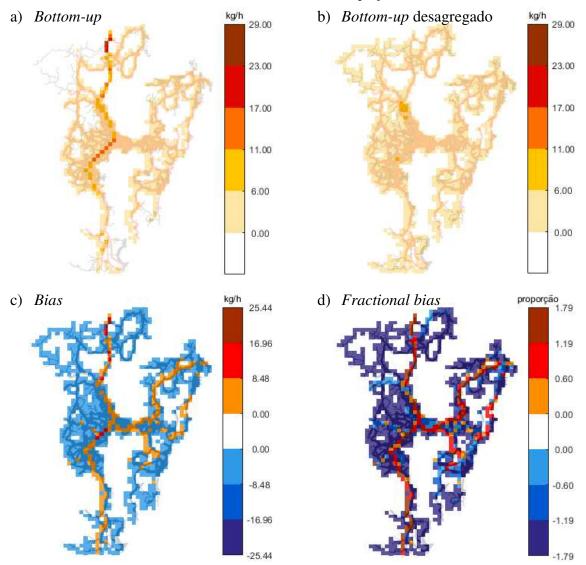



Figura 18 – Emissões de óxido de nitrogênio distribuídas espacialmente, na hora de pico. Sendo: a) emissão estimada pelo método *bottom-up* em cada grid; b) desagregação da emissão total estimada com o método *bottom-up*, conforme Equação 9; c) *Bias*, conforme Equação 11; e d) *Fractional Bias*, conforme equação 12.

O método de desagregação apresentou diferenças de 173% a 183%. Contudo, o erro do método de desagregação, para o monóxido de carbono e hidrocarbonetos, foi menor quando comparado com o erro da estimativa de emissão juntamente com o erro do método de desagregação. Isto pode ter ocorrido devido ao método *top-down* possuir a tendência de superestimar a emissão e desta forma encobriu o erro.

5 CONCLUSÃO

Neste trabalho realizou-se uma comparação entre as emissões estimadas pelo método *bottom-up* e as emissões estimadas pelo método *top-down* em escalas espaciais e temporais diferentes. Para realizar a desagregação espacial das emissões estimadas pelo método *top-down* utilizou-se uma metodologia baseada na densidade de vias utilizando uma rede viária completa.

As emissões estimadas pelo método *top-down* para a hora de pico (11 horas) foram maiores, em magnitude, que as estimativas de emissões pelo método *bottom-up*. Exceto para o município de Governador Celso Ramos, em que as estimativas de emissões foram maiores, para todas as categorias e poluentes, utilizando a metodologia *bottom-up*. Isto pode ocorrer devido à robustez da metodologia *bottom-up*, a qual considera o fluxo de veículo, sendo que as regiões de Governador Celso Ramos e Biguaçu possuem alto fluxo de veículos pesados, sendo estes, os principais causadores de emissão de óxido de nitrogênio (NO_x). Desta forma, notou-se uma subestimação do *top-down* em resposta ao *bottom-up* de 165% e 84% na emissão de NO_x para o município de Governador Celso Ramos e Biguaçu, respectivamente. Portanto, houve uma tendência do método *top-down* subestimar as emissões dos menores municípios da área de estudo.

A desagregação espacial das emissões estimadas pelo método *top-down* resultaram em uma diferença de até 193% para o material particulado e óxido de nitrogênio. Notou-se uma superestimação das emissões em vias locais e uma subestimação nas rodovias.

Em relação ao método de desagregação, este apresentou diferença de até 183% para o poluente hidrocarboneto. As maiores diferenças foram evidenciadas principalmente nos grids em que possuíam vias secundárias. O método de desagregação por densidade de vias demonstrou superestimação em vias de baixo fluxo e subestimação em vias de alto fluxo devido à limitação do método em não diferenciar o tipo de via.

Devido ao elevado erro inerente no próprio método de desagregação espacial das estimativas de emissão, consequentemente houve um elevado erro da desagregação espacial das emissões estimadas pelo método *top-down*. Contudo, observou-se que para o monóxido de carbono o erro foi menor ao considerar o erro da estimativa de emissão em conjunto com o erro do método de desagregação comparado apenas com o erro do método de desagregação.

6 RECOMENDAÇÕES

Para implementar o método *bottom-up* na área de estudo, foi necessário informações robustas como fluxo de veículos e a distância percorrida pelo veículo. Desta forma, utilizou-se as informações disponibilizadas pelo PLAMUS, contudo estavam desatualizadas, sendo do ano de 2015. Além disso, estes dados não possuem informações sobre fluxo de ônibus. Categoria veicular importante para considerar na estimativa de emissão, visto que os veículos pesados tendem a emitir em maior quantidade do que os veículos leves. Desta forma, recomenda-se a atualização destas informações sobre fluxo de veículos e a inclusão da categoria de ônibus.

Ainda, para realizar a conversão da emissão anual para horária, foi necessário utilizar um fator de tráfego disponibilizado por um estudo realizado no Espírito Santo, portanto, faz-se necessário realizar uma pesquisa na área de estudo deste trabalho para aprimorar a metodologia.

A metodologia de desagregação das estimativas de emissão pela densidade de vias resultou em elevadas diferenças, portanto, propõe-se realizar uma metodologia de desagregação que distingue as vias primárias e secundárias, atribuindo-se proporções de emissão diferentes para cada tipo de via, sendo uma maior proporção para as vias primárias e menor para as vias secundárias.

REFERÊNCIAS

ABRACICLO, **Anuário da Indústria Brasileira de duasrodas 2016**. Associação Brasileira dos Fabricantes de Motocicletas, Ciclomotores, Motonetas, Bicicletas e Similares. Disponível em: http://www.abraciclo.com.br/anuario-de-2016>. Acessoem: 05 de ago. 2019.

AMARAL, B. S. et al. Comparative profile of pollutants generated by a stationary engine fueled with diesel, biodiesel, and ethanol. **Journal of Aerosol Science**, 2016.

AMARAL, G. L., YAZBEK C. L., OLENIKE J. E. Frota brasileira de veículos em circulação. Instituto Brasileiro de Planejamento e Tributação, 2018.

ANG, B. W.; FWA, T. F. A study on the fuel-consumption characteristics of public buses. **Energy**, 1989.

BRASIL. MINISTÉRIO DO MEIO AMBIENTE (MMA). Qualidade do Ar. Disponível em: http://www.mma.gov.br/cidades-sustentaveis/qualidade-do-ar. Acesso em: 20 ago. 2019. BRASIL. MINISTÉRIO DO MEIO AMBIENTE – CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução n. 015/1995.

BRASIL, Advocacia-Geral da União. Lei nº 9.503, de 23 de setembro de 1997. Institui o Código de Trânsito Brasileiro. Diário Oficial da União, 1997.

BRASIL, 1º Diagnóstico de rede de monitoramento da qualidade do ar no Brasil Instituto de Energia e Meio Ambiente, São Paulo, 2014

COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Qualidade do ar no Estado de São Paulo. Série relatórios. 2018.

COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Emissões veiculares no Estado de São Paulo 2017. Série relatórios. 2018.

COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Emissões veiculares no Estado de São Paulo 2015. Série relatórios, 2016.

DALY, A.; ZANETTI, P. An introduction to air pollution – definitions, classifications and history. The Arab School for Science and Technology (ASST), The Enviro Comp Institute, 2007. Disponível em: < http://www.envirocomp.org/books/chapters/laap.pdf>. Acesso em: 11set. 2019.

EEA. European Environment Agency (Dinamarca). EMEP/EEA air pollutant emission inventory guidebook, 2016. Luxemburgo: Publications Office of The European Union, 2016. Disponível em: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016>. Acesso em: 11 set. 2019.

FAIZ, A; WEAVER, C S; WALSH, P M. Air pollution for motor vehicles: standards and technologies for controlling emissions. Washington, D.C: The World Bank, 1996.

- FAMELI, K. M.; ASSIMAKOPOULOS, V. D. Development of a road transport emission inventory for Greece and the Greater Athens Area: Effects of important parameters. **Science of the Total Environment**, 2015.
- GÓMEZ, C. D. et al. Spatial and temporal disaggregation of the on-road vehicle emission inventory in a medium-sized Andean city. Comparison of GIS-based top-down methodologies. **Atmospheric Environment**, 2018.
- IEMA. **1º diagnóstico da rede de monitoramento da qualidade do ar no Brasil**. Instituto Energia e Meio Ambiente, 2014.
- IEMA. Instituto Estadual do Meio Ambiente e Recursos Hídricos. Inventário de emissões atmosféricas da Região da Grande Vitória ano-base 2015. Disponível em: https://iema.es.gov.br/Media/iema/CQAI/INVENT%C3%81RIO/Ecosoft_RTC190018_R1.p df>. Acesso em: 15 out. 2019.
- IPCC. Chapter 8: Transport. **Working Group III Mitigation of Climate Change**, 2014. MAES, A. S. Modelagem de dispersão das emissões veiculares de NO2 e CO no entorno da Avenida Beira Mar Norte em Florianópolis/SC. 2017. 101p. Trabalho de Conclusão de Curso (graduação) Universidade Federal de Santa Catarina, Florianópolis, 2017. Orientador: Dr. Leonardo Hoinaski.
- MAES, S. A. et al. A methodology for high resolution vehicular emissions inventories in metropolitan areas: Evaluating the effect of automotive technologies improvement. **Transportation Research Part D: Transport and Environment**, 2019.
- MCMICHAEL, A. J. The urban environment and health in a world of increasing globalization: Issues for developing countries. **Bulletin of the World Health Organization**, 2000.
- MEIRELLES, T. B. Inventário de emissões veiculares: um estudo de caso da região de Florianópolis. 2017. 84p. Trabalho de Conclusão de Curso (graduação) Universidade Federal de Santa Catarina, Florianópolis, 2017. Orientador: Dr. Leonardo Hoinaski.
- MMA. 1º Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários Relatório Final. **Ministério do Meio Ambiente**. 2011.
- OSSÉS DE EICKER, M. et al. Spatial accuracy of a simplified disaggregation method for traffic emissions applied in seven mid-sized Chilean cities. **Atmospheric Environment**, 2008.
- POLICARPO, N. A. et al. Road vehicle emission inventory of a Brazilian metropolitan area and insights for other emerging economies. **Transportation Research Part D: Transport and Environment**, 2018.
- PARRISH, David D. Critical evaluation of US on-road vehicle emission inventories. Atmospheric Environment, v. 40, n. 13, p. 2288-2300, 2006.

PRASAD, R.; BELLA, Venkateswara R. A review on diesel soot emission, its effect and control. Bulletin of Chemical Reaction Engineering & Catalysis, v. 5, n. 2, p. 69, 2010.

RIBEIRO, A. G. et al. Incidence and mortality for respiratory cancer and traffic-related air pollution in São Paulo, Brazil. **Environmental Research**, 2019.

SAIDE, P. et al. Spatial disaggregation of traffic emission inventories in large cities using simplified top-down methods. **Atmospheric Environment**, 2009.

SÃO PAULO. Companhia Ambiental do Estado de São Paulo. Secretaria do Meio Ambiente do Estado de São Paulo. Qualidade do Ar no Estado de São Paulo. Disponível em: http://cetesb.sp.gov.br/veicular/wp-content/uploads/sites/6/2013/12/Relatorio-Emissoes-Veiculares-2015-v4_.pdf. Acesso em: 06 set. 2017.

SEST/SENAT. A fase P7 do PROCONVE e o impacto no setor de transporte CNT. [s.l: s.n.].

SPITZLEY, David V. et al. Life cycle optimization of ownership costs and emissions reduction in US vehicle retirement decisions. **Transportation Research Part D**: Transport and Environment, v. 10, n. 2, p. 161-175, 2005.

TUIA, D. et al. Evaluation of a simplified top-down model for the spatial assessment of hot traffic emissions in mid-sized cities. **Atmospheric Environment**, 2007.

VALLERO, D. Fundamentals of air pollution. Durham, North Carolina: Elsevier Inc, 2008.

VASQUES, T. V.Inventário de emissões veiculares no estado de Santa Catarina. 2018. 99p. Trabalho de Conclusão de Curso (graduação) — Universidade Federal de Santa Catarina, Florianópolis, 2018. Orientador: Dr. Leonardo Hoinaski.

WORLD HEALTH ORGANIZATION (Dinamarca). 9 out of 10 people worldwide breathe polluted air, but more countries are taking action. Disponível em: http://www.who.int/mediacentre/news/releases/2016/air-pollution-rising/en/. Acesso em: 02 set. 2019.

ANEXO A – FATORES DE EMISSÃO CETESB (2018)

a) Veículos leves

		Fogo			НС					MP			
Ano	Combustive l	Fase Proconv e	CO (g/km)	Total (g/km)	NMHC (g/km)	CH ₄ (g/km)	NMHC- ETOH (g/km)	NOx (g/km)	RCHO (g/km)	(g/km	CO ₂ (g/km)	N ₂ O (g/km)	Autonomi a (km/L)
Até 1982	Gasolina C	PP	33.000	3.000	2.550	0.450	nd	1.400	0.0500	0.002	nd	0.005	8.90
All 1702	Etanol	11	18.000	1.600	1.360	0.240	nd	1.000	0.1600	nd	nd	0.007	7.10
1983	Gasolina C	PP	33.000	3.000	2.550	0.450	nd	1.400	0.0500	0.002	nd	0.005	9.65
1903	Etanol	rr	18.000	1.600	1.360	0.240	nd	1.000	0.1600	nd	nd	0.007	7.90
1984	Gasolina C	PP	28.000	2.400	2.040	0.360	nd	1.600	0.0500	0.002	nd	0.004	10.19
1904	Etanol	PP	16.900	1.600	1.360	0.240	nd	1.200	0.1800	nd	nd	0.006	8.25
1005	Gasolina C	PP	28.000	2.400	2.040	0.360	nd	1.600	0.0500	0.002	nd	0.004	10.39
1985	Etanol	PP	16.900	1.600	1.360	0.240	nd	1.200	0.1800	nd	nd	0.006	8.54
1006	Gasolina C	DD	22.000	2.000	1.700	0.300	nd	1.900	0.0400	0.002	nd	0.004	10.42
1986	Etanol	PP	16.000	1.600	1.360	0.240	nd	1.800	0.1100	nd	nd	0.006	8.46
1007	Gasolina C	PP	22.000	2.000	1.700	0.300	nd	1.900	0.0400	0.002	nd	0.004	10.64
1987	Etanol	PP	16.000	1.600	1.360	0.240	nd	1.800	0.1100	nd	nd	0.006	8.52
1000	Gasolina C	Т 1	18.500	1.700	1.445	0.255	nd	1.800	0.0400	0.002	nd	0.004	10.86
1988	Etanol	L1	13.300	1.700	1.445	0.255	nd	1.400	0.1100	nd	nd	0.006	8.58
1000	Gasolina C	T 1	15.200	1.600	1.360	0.240	nd	1.600	0.0400	0.002	nd	0.004	11.07
1989	Etanol	L1	12.800	1.600	1.360	0.240	nd	1.100	0.1100	nd	nd	0.006	8.65
1000	Gasolina C	T 1	13.300	1.400	1.190	0.210	nd	1.400	0.0400	0.002	nd	0.004	11.82
1990	Etanol	L1	10.800	1.300	1.105	0.195	nd	1.200	0.1100	nd	nd	0.006	8.65
1991	Gasolina C	L1	11.500	1.300	1.105	0.195	nd	1.300	0.0400	0.002	nd	0.004	11.82

	Etanol		8.400	1.100	0.935	0.165	nd	1.000	0.1100	nd	nd	0.006	8.65
1992	Gasolina C	L2	6.200	0.600	0.510	0.090	nd	0.600	0.0130	0.002	nd	0.004	10.98
1992	Etanol	L2	3.600	0.600	0.510	0.090	nd	0.500	0.0350	nd	nd	0.006	8.01
1993	Gasolina C	L2	6.300	0.600	0.510	0.090	nd	0.800	0.0220	0.002	nd	0.004	10.98
1993	Etanol	L2	4.200	0.700	0.595	0.105	nd	0.600	0.0400	nd	nd	0.006	8.54
1994	Gasolina C	L2	6.000	0.600	0.451	0.149	nd	0.700	0.0360	0.002	nd	0.022	10.04
1994	Etanol	L2	4.600	0.700	0.514	0.186	nd	0.700	0.0420	nd	nd	0.017	7.54
1995	Gasolina C	L2	4.700	0.600	0.451	0.149	nd	0.600	0.0250	0.002	nd	0.022	10.40
1993	Etanol	L2	4.600	0.700	0.514	0.186	nd	0.700	0.0420	nd	nd	0.017	7.54
1996	Gasolina C	L2	3.800	0.400	0.300	0.100	nd	0.500	0.0190	0.002	nd	0.022	11.04
1990	Etanol	L2	3.900	0.600	0.440	0.160	nd	0.700	0.0400	nd	nd	0.017	7.17
1997	Gasolina C	L3	1.200	0.200	0.150	0.050	nd	0.300	0.0070	0.001	nd	0.022	11.04
1997	Etanol	L3	0.900	0.300	0.220	0.080	nd	0.300	0.0120	nd	nd	0.017	7.17
1998	Gasolina C	L3	0.790	0.140	0.105	0.035	nd	0.230	0.0040	0.001	nd	0.022	11.82
1990	Etanol	L3	0.670	0.190	0.139	0.051	nd	0.240	0.0140	nd	nd	0.017	7.41
1999	Gasolina C	L3	0.740	0.140	0.105	0.035	nd	0.230	0.0040	0.001	nd	0.022	11.82
1999	Etanol	L3	0.600	0.170	0.125	0.045	nd	0.220	0.0130	nd	nd	0.017	8.01
2000	Gasolina C	L3	0.730	0.130	0.098	0.032	nd	0.210	0.0040	0.001	nd	0.022	11.89
2000	Etanol	L3	0.630	0.180	0.132	0.048	nd	0.210	0.0140	nd	nd	0.017	6.96
2001	Gasolina C	L3	0.480	0.110	0.083	0.027	nd	0.140	0.0040	0.001	nd	0.022	11.97
2001	Etanol	L3	0.660	0.150	0.110	0.040	nd	0.080	0.0170	nd	nd	0.017	6.96
2002	Gasolina C	L3	0.430	0.110	0.083	0.027	nd	0.120	0.0040	0.001	198	0.022	10.9
2002	Etanol	L3	0.740	0.160	0.117	0.043	nd	0.080	0.0170	nd	191	0.017	7.2
	Gasolina C	L3	0.400	0.110	0.083	0.027	nd	0.120	0.0040	0.001	194	0.021	11.2
2003	Etanol	L3	0.770	0.160	0.117	0.043	nd	0.090	0.0190	nd	183	0.017	7.5
	Flex-Gasol.C	L3	0.500	0.050	0.038	0.012	nd	0.040	0.0040	0.001	210	0.023	10.3

	Flex-Etanol		0.510	0.150	0.110	0.040	nd	0.140	0.0200	nd	200	0.017	6.9
	Gasolina C	L3	0.350	0.110	0.083	0.027	nd	0.090	0.0040	0.001	190	0.021	11.4
2004	Etanol	L3	0.820	0.170	0.125	0.045	nd	0.080	0.0160	nd	160	0.017	8.6
2004	Flex-Gasol.C	L3	0.390	0.080	0.060	0.020	nd	0.050	0.0030	0.001	201	0.022	10.8
	Flex-Etanol	L3	0.460	0.140	0.103	0.037	nd	0.140	0.0140	nd	190	0.017	7.3
	Gasolina C		0.340	0.100	0.075	0.025	nd	0.090	0.0040	0.001	192	0.021	11.3
2005	Etanol	L4	0.820	0.170	0.125	0.045	nd	0.080	0.0160	nd	160	0.017	8.6
2003	Flex-Gasol.C	L4	0.450	0.110	0.083	0.027	nd	0.050	0.0030	0.001	188	0.021	11.5
	Flex-Etanol		0.390	0.140	0.103	0.037	nd	0.100	0.0140	nd	180	0.017	7.7
	Gasolina C		0.302	0.068	0.063	0.005	nd	0.066	0.0023	0.001	174	0.021	11.3
2006	Etanol	L4	0.670	0.120	0.088	0.032	nd	0.050	0.0140	nd	200	0.017	6.9
2000	Flex-Gasol.C	L 4	0.509	0.114	0.073	0.041	nd	0.043	0.0020	0.001	203	0.020	11.7
	Flex-Etanol		0.492	0.126	0.087	0.039	nd	0.061	0.0212	nd	195	0.017	7.8
	Gasolina C		0.302	0.068	0.063	0.005	nd	0.066	0.0023	0.001	174	0.021	11.3
2007	Flex-Gasol.C	L4	0.509	0.114	0.073	0.041	nd	0.043	0.0020	0.001	203	0.020	11.7
	Flex-Etanol		0.492	0.126	0.087	0.039	nd	0.061	0.0212	nd	195	0.017	7.8
	Gasolina C		0.369	0.057	0.053	0.004	nd	0.045	0.0021	0.001	201	0.024	9.6
2008	Flex-Gasol.C	L4	0.519	0.095	0.080	0.015	nd	0.039	0.0023	0.001	181	0.021	11.4
	Flex-Etanol		0.558	0.115	0.080	0.035	nd	0.049	0.0136	nd	175	0.017	7.7
	Gasolina C		0.199	0.028	0.020	0.008	nd	0.021	0.0010	0.001	222	0.024	9.9
2009	<i>Flex</i> -Gasol.C	L5	0.317	0.037	0.034	0.003	nd	0.027	0.0019	0.001	178	0.021	11.5
	Flex-Etanol		0.544	0.076	0.037	0.039	nd	0.031	0.0114	nd	171	0.017	7.8
	Gasolina C		0.204	0.029	0.023	0.006	nd	0.028	0.0014	0.001	206	0.023	10.9
2010	Flex-Gasol.C	L5	0.278	0.038	0.031	0.007	nd	0.030	0.0015	0.001	177	0.019	12.3
	Flex-Etanol		0.508	0.071	0.040	0.031	nd	0.038	0.0093	nd	171	0.017	8.5

	Gasolina C		0.274	0.035	0.028	0.007	nd	0.025	0.0028	0.001	197	0.021	11.2
2011	Flex-Gasol.C	L5	0.284	0.041	0.032	0.009	nd	0.029	0.0015	0.001	178	0.019	12.2
	Flex-Etanol		0.488	0.084	0.044	0.040	0.021	0.031	0.0085	nd	171	0.017	8.6
	Gasolina C		0.274	0.028	0.023	0.005	nd	0.022	0.0020	0.001	199	0.021	11.1
2012	Flex-Gasol.C	L5	0.267	0.036	0.026	0.010	nd	0.027	0.0014	0.001	181	0.019	12.1
	Flex-Etanol		0.476	0.081	0.054	0.027	0.020	0.029	0.0082	nd	173	0.017	8.5
	Gasolina C		0.241	0.025	0.019	0.006	nd	0.020	0.0019	0.001	197	0.022	11.2
2013	<i>Flex</i> -Gasol.C	L5	0.227	0.030	0.024	0.006	nd	0.026	0.0014	0.001	176	0.019	12.4
	Flex-Etanol		0.423	0.077	0.051	0.026	0.020	0.023	0.0083	nd	168	0.017	8.6
	Gasolina C		0.211	0.021	0.015	0.006	nd	0.015	0.0013	0.001	197	0.021	11.5
2014	Flex-Gasol.C	L5/L6	0.228	0.024	0.020	0.004	nd	0.019	0.0015	0.001	173	0.019	12.7
	Flex-Etanol		0.398	0.073	0.053	0.020	0.021	0.018	0.0083	nd	165	0.017	8.8
	Gasolina C		0.155	0.016	0.012	0.004	nd	0.025	0.0010	0.001	186	0.020	12.0
2015	Flex-Gasol.C	L6	0.217	0.021	0.018	0.003	nd	0.015	0.0012	0.001	166	0.018	13.2
	Flex-Etanol		0.360	0.073	0.058	0.015	0.019	0.016	0.0078	nd	158	0.017	9.2
	Gasolina C		0.114	0.016	0.010	0.006	nd	0.022	0.0010	0.0010	176	0.020	12.5
2016	Flex-Gasol.C	L6	0.251	0.022	0.018	0.004	nd	0.012	0.0009	0.0010	159	0.018	13.8
	Flex-Etanol		0.363	0.075	0.047	0.028	0.020	0.013	0.0065	nd	151	0.017	9.6
	Gasolina C		0.141	0.015	0.011	0.004	nd	0.013	0.0008	0.001	175	0.020	13.1
2017	Flex-Gasol.C	L6	0.229	0.022	0.018	0.004	nd	0.011	0.0010	0.001	154	0.018	14.3
	Flex-Etanol		0.340	0.069	0.046	0.023	0.020	0.012	0.0064	nd	147	0.017	9.8
	Gasolina C		0.173	0.016	0.012	0.004	nd	0.010	0.0005	0.0010	177	0.020	13.4
2018	Flex-Gasol.C	L6	0.253	0.023	0.019	0.004	nd	0.012	0.0010	0.0010	154	0.018	14.2
	Flex-Etanol		0.338	0.070	0.047	0.023	0.019	0.012	0.0067	nd	147	0.017	9.8

b) Veículos comerciais leves

						HC							
Ano	Combustível	Fase Proconve	CO (g/km)	Total (g/km)	NMHC (g/km)	CH4 (g/km)	NMHC- ETOH (g/km)	NOx (g/km)	RCHO (g/km)	MP (g/km)	CO ₂ (g/km)	N ₂ O (g/km)	Autonomia (km/L)
Até	Gasolina C	PP	33.00	3.00	2.55	0.45	nd	1.40	0.0500	0.0024	221	0.005	7.7
1983	Etanol	ГГ	18.00	1.60	1.36	0.24	nd	0.83	0.1600	nd	168	0.007	7.1
1984	Gasolina C	PP	33.00	3.00	2.55	0.45	nd	1.40	0.0500	0.0024	221	0.005	7.7
1904	Etanol	rr	16.90	1.60	1.36	0.24	nd	0.83	0.1800	nd	170	0.007	7.1
1985	Gasolina C	PP	28.00	2.40	2.04	0.36	nd	1.60	0.0500	0.0024	231	0.004	7.7
1905	Etanol	PP	16.90	1.60	1.36	0.24	nd	0.83	0.1800	nd	170	0.007	7.1
1986	Gasolina C	PP	28.00	2.40	2.04	0.36	nd	1.60	0.0500	0.0024	231	0.004	7.7
1900	Etanol	PP	16.00	1.60	1.36	0.24	nd	0.83	0.1100		171	0.007	7.1
1987	Gasolina C	PP	22.00	2.00	1.70	0.30	nd	1.90	0.0400	0.0024	241	0.004	7.7
1987	Etanol	PP	16.00	1.60	1.36	0.24	nd	0.83	0.1100	nd	171	0.006	7.1
1000	Gasolina C	PP	22.00	2.00	1.70	0.30	nd	1.90	0.0400	0.0024	241	0.004	7.7
1988	Etanol	PP	13.30	1.70	1.45	0.26	nd	0.83	0.1100	nd	175	0.006	7.1
1000	Gasolina C	PP	18.50	1.70	1.45	0.26	nd	1.80	0.0400	0.0024	248	0.004	7.7
1989	Etanol	PP	12.80	1.60	1.36	0.24	nd	0.83	0.1100	nd	176	0.006	7.1
1000	Gasolina C	PP	15.20	1.60	1.36	0.24	nd	1.60	0.0400	0.0024	253	0.004	7.7
1990	Etanol	PP	10.80	1.30	1.11	0.20	nd	0.83	0.1100	nd	180	0.006	7.1
1001	Gasolina C	PP	13.30	1.40	1.19	0.21	nd	1.40	0.0400	0.0024	257	0.004	7.7
1991	Etanol	PP	8.40	1.10	0.94	0.17	nd	0.83	0.1100	nd	185	0.006	7.1
1002	Gasolina C	DD	11.50	1.30	1.11	0.20	nd	1.30	0.0400	0.0024	260	0.004	7.7
1992	Etanol	PP	3.60	0.60	0.51	0.09	nd	0.83	0.0350	nd	194	0.006	7.1

1002	Gasolina C	PP	9.67	0.60	0.51	0.09	nd	0.60	0.0130	0.0024	265	0.004	7.7
1993	Etanol	PP	4.20	0.70	0.60	0.11	nd	0.83	0.0400	nd	193	0.006	7.1
1994	Gasolina C	PP	9.67	0.60	0.51	0.09	nd	0.80	0.0220	0.0024	265	0.022	7.7
1994	Etanol	rr	4.60	0.60	0.51	0.09	nd	0.83	0.0420	nd	192	0.006	7.1
1995	Gasolina C	PP	9.67	0.53	0.45	0.08	nd	0.70	0.0360	0.0024	266	0.022	7.7
1773	Etanol	П	4.60	0.60	0.51	0.09	nd	0.83	0.0420	nd	192	0.017	7.1
1996	Gasolina C	L1	9.668	1.004	0.754	0.250	nd	0.882	0.0081	0.0024	274	0.022	7.4
1770	Etanol	LI	2.786	0.620	0.455	0.165	nd	0.828	0.0201	nd	246	0.017	5.8
1997	Gasolina C	L2	6.605	0.727	0.546	0.181	nd	0.584	0.0062	0.0011	276	0.022	7.5
1331	Etanol	L2	3.281	0.650	0.477	0.173	nd	0.767	0.0207	nd	246	0.017	5.7
1998	Gasolina C	L3	0.643	0.119	0.089	0.030	nd	0.172	0.0034	0.0011	284	0.022	7.6
1770	Etanol	LS	2.534	0.582	0.427	0.155	nd	0.834	0.0194	nd	263	0.017	5.4
1999	Gasolina C	L3	0.614	0.104	0.078	0.026	nd	0.187	0.0042	0.0011	276	0.022	7.8
1777	Etanol	LS	2.547	0.587	0.431	0.156	nd	0.828	0.0194	nd	267	0.017	5.3
2000	Gasolina C	L3	0.689	0.096	0.072	0.024	nd	0.208	0.0043	0.0011	278	0.022	7.8
2000	Etanol	LS	0.630	0.180	0.130	0.050	nd	0.210	0.0140	nd	278	0.017	5.2
2001	Gasolina C	L3	0.956	0.126	0.095	0.031	nd	0.246	0.0035	0.0011	278	0.022	7.8
2001	Etanol	LS	0.660	0.150	0.110	0.040	nd	0.080	0.0170	nd	278	0.017	5.2
2002	Gasolina C	L3	0.814	0.114	0.086	0.028	nd	0.149	0.0040	0.0011	285	0.022	7.6
2002	Etanol	LS	0.830	0.220	0.161	0.059	nd	0.282	0.0195	nd	254	0.017	5.7
	Gasolina C		0.916	0.111	0.083	0.028	nd	0.143	0.0034	0.0011	284	0.021	7.6
2003	Etanol	L3	0.770	0.160	0.120	0.040	nd	0.090	0.0190	nd	249	0.017	5.7
2003	Flex-Gasol.C	LS	0.500	0.050	0.040	0.010	nd	0.040	0.0040	0.0011	210	0.023	10.3
	Flex-Etanol		0.510	0.150	0.110	0.040	nd	0.140	0.0200	nd	206	0.017	6.9
2004	Gasolina C	L3	0.926	0.122	0.092	0.030	nd	0.134	0.0032	0.0011	276	0.021	7.8
2 00 1	Etanol	LS	0.820	0.170	0.120	0.050	nd	0.080	0.0160	nd	249	0.017	5.7

	Flex-Gasol.C		0.390	0.080	0.060	0.020	nd	0.050	0.0030	0.0011	200	0.021	10.8
	Flex-Etanol		0.460	0.140	0.100	0.040	nd	0.140	0.0140	nd	195	0.017	7.3
	Gasolina C		0.782	0.112	0.109	0.003	nd	0.215	0.0033	0.0011	280	0.021	7.7
2005	Etanol	Ι. 4	0.689	0.204	0.167	0.037	nd	0.295	0.0220	nd	251	0.017	5.8
2005	Flex-Gasol.C	L4	0.450	0.110	0.080	0.030	nd	0.050	0.0030	0.0011	188	0.021	11.5
	Flex-Etanol		0.390	0.140	0.100	0.040	nd	0.100	0.0140	nd	185	0.017	7.7
	Gasolina C		0.707	0.085	0.073	0.012	nd	0.238	0.0021	0.0011	280	0.021	7.7
	Etanol		0.670	0.120	0.090	0.030	nd	0.050	0.0140	nd	251	0.017	5.8
2006	Flex-Gasol.C	L4	0.501	0.136	0.112	0.024	nd	0.062	0.0020	0.0011	215	0.023	10.1
	Flex-Etanol		0.347	0.120	0.085	0.035	nd	0.128	0.0180	nd	204	0.017	7.1
	Diesel		0.485	0.093	0.093	nd	nd	0.870	nd	0.0780	277	0.020	9.6
	Gasolina C		0.654	0.110	0.097	0.013	nd	0.070	0.0017	0.0011	280	0.021	7.7
2007	Flex-Gasol.C	L4	0.537	0.127	0.082	0.045	nd	0.059	0.0024	0.0011	220	0.020	9.8
2007	Flex-Etanol	L 4	0.405	0.125	0.069	0.056	nd	0.094	0.0170	nd	204	0.017	7.1
	Diesel		0.485	0.093	0.093	nd	nd	0.870	nd	0.0780	277	0.020	9.6
	Gasolina C		0.494	0.119	0.062	0.057	nd	0.048	0.0016	0.0011	290	0.024	7.7
2008	Flex-Gasol.C	L4	0.487	0.128	0.078	0.050	nd	0.056	0.0023	0.0011	252	0.020	8.6
2008	Flex-Etanol	L 4	0.432	0.129	0.073	0.056	nd	0.069	0.0167	nd	236	0.017	6.1
	Diesel		0.334	0.083	0.083	nd	nd	0.717	nd	0.0630	285	0.020	9.3
	Gasolina C		0.282	0.026	0.025	0.001	nd	0.019	0.0038	0.0011	231	0.028	8.3
2009	Flex-Gasol.C	L5	0.220	0.061	0.037	0.024	nd	0.033	0.0015	0.0011	224	0.028	8.3
2009	Flex-Etanol	LJ	0.448	0.019	0.011	0.008	nd	0.030	0.0110	nd	208	0.017	7.0
	Diesel		0.285	0.033	0.025	0.008	nd	0.681	nd	0.0600	269	0.020	9.5
2010	Gasolina C	L5	0.291	0.023	0.021	0.002	nd	0.013	0.0018	0.0011	238	0.027	9.2
2010	Flex-Gasol.C	LJ	0.211	0.027	0.024	0.003	nd	0.041	0.0014	0.0011	237	0.024	9.2

	Flex-Etanol		0.520	0.069	0.020	0.049	nd	0.035	0.0113	nd	228	0.017	6.7
	Diesel		0.209	0.059	0.057	0.002	nd	0.721	nd	0.0570	265	0.020	10.0
	Gasolina C		0.299	0.032	0.024	0.008	nd	0.017	0.0019	0.0011	224	0.024	9.8
2011	Flex-Gasol.C	L5	0.241	0.038	0.026	0.012	nd	0.032	0.0013	0.0011	251	0.026	8.6
2011	Flex-Etanol	L3	0.666	0.087	0.039	0.048	nd	0.019	0.0087	nd	242	0.017	6.2
	Diesel		0.153	0.047	0.043	0.004	nd	0.624	nd	0.0520	264	0.020	10.1
	Gasolina C		0.302	0.026	0.020	0.006	nd	0.010	0.0021	0.0011	219	0.024	10.1
2012	Flex-Gasol.C	L5	0.239	0.038	0.029	0.009	nd	0.044	0.0024	0.0011	243	0.026	9.0
2012	Flex-Etanol	L3	0.732	0.095	0.052	0.043	0.023	0.045	0.0103	nd	238	0.017	6.2
	Diesel		0.050	0.029	0.017	0.012	nd	0.311	nd	0.0180	254	0.020	10.6
	Gasolina C		0.195	0.022	0.017	0.005	nd	0.012	0.0012	0.0011	246	0.025	9.0
2013	Flex-Gasol.C	L5	0.221	0.037	0.027	0.010	nd	0.039	0.0021	0.0011	243	0.027	9.1
2013	Flex-Etanol		0.643	0.085	0.051	0.034	0.025	0.035	0.0110	nd	234	0.017	6.3
	Diesel	L6	0.075	0.028	0.014	0.014	nd	0.276	nd	0.0150	256	0.020	10.4
	Gasolina C		0.225	0.021	0.018	0.003	nd	0.009	0.0013	0.0011	225	0.022	9.9
2014	Flex-Gasol.C	L5/L6	0.284	0.031	0.025	0.006	nd	0.025	0.0027	0.0011	243	0.027	9.2
2014	Flex-Etanol		0.547	0.090	0.068	0.022	0.030	0.033	0.0118	nd	232	0.017	6.3
	Diesel	L6	0.080	0.023	0.010	0.013	nd	0.276	nd	0.0150	256	0.020	10.4
	Gasolina C		0.197	0.017	0.015	0.002	nd	0.010	0.0013	0.0011	209	0.022	10.6
2015	Flex-Gasol.C	L6	0.372	0.021	0.017	0.004	nd	0.020	0.0020	0.0011	222	0.024	10.0
2013	Flex-Etanol	LO	0.350	0.064	0.046	0.018	0.018	0.028	0.0078	nd	215	0.017	6.8
	Diesel		0.051	0.020	0.008	0.012	nd	0.282	nd	0.0180	252	0.020	10.6
	Gasolina C		0.218	0.019	0.016	0.003	nd	0.008	0.0011	0.0011	210	0.022	10.4
2016	Flex-Gasol.C	L6	0.351	0.021	0.017	0.004	nd	0.010	0.0016	0.0011	216	0.024	10.1
- 2010	Flex-Etanol	LU	0.440	0.077	0.061	0.016	0.025	0.038	0.0098	nd	217	0.017	6.7
	Diesel		0.043	0.024	0.012	0.012	nd	0.281	nd	0.0120	247	0.020	10.8

	Gasolina C		0.160	0.016	0.013	0.003	nd	0.011	0.0011	0.0011	200	0.022	10.9
2017	Flex-Gasol.C	1.6	0.249	0.019	0.014	0.005	nd	0.015	0.0022	0.0011	208	0.024	10.7
2017	Flex-Etanol	L6	0.194	0.041	0.026	0.015	0.026	0.015	0.0082	nd	201	0.017	7.4
	Diesel		0.043	0.020	0.010	0.010	nd	0.275	nd	0.0140	247	0.020	10.8
	Gasolina C		0.145	0.013	0.010	0.003	nd	0.010	0.0006	0.0011	202	0.022	10.9
2018	Flex-Gasol.C	1.6	0.215	0.021	0.017	0.004	nd	0.014	0.0015	0.0011	199	0.024	11.1
2016	Flex-Etanol	L6	0.190	0.045	0.026	0.019	0.017	0.009	0.0065	nd	188	0.017	7.8
	Diesel		0.045	0.019	0.008	0.011	nd	0.253	0.0130	0.0120	240	0.020	11.1

c) Motocicletas

Ano	Classificação	Fase Promot	Combustível	СО	НС	NMHC	СН4	NOx	MP	CO ₂	N ₂ O	Autonomi a
				(g/Km)	(g/Km)	(km/L)						
2003	≤ 150 cc		Gasolina	4.785	0.725	0.616	0.109	0.145		43	0.002	38.5
	$>150 e \le 500 cc$	M1	Gasolina	7.300	1.165	0.990	0.175	0.165	0.0140	82	0.002	27.2
	≥ 501 cc		Gasolina	3.570	0.110	0.094	0.017	0.110		163	0.002	27.2
2004	≤ 150 cc		Gasolina	6.065	0.815	0.693	0.122	0.175		47	0.002	38.5
	$>150 e \le 500 cc$	M1	Gasolina	7.300	1.165	0.990	0.175	0.165	0.0140	82	0.002	27.2
	≥ 501 cc		Gasolina	3.665	0.685	0.582	0.103	0.120		172	0.002	27.2
2005	≤ 150 cc		Gasolina	2.610	0.460	0.391	0.069	0.160		43	0.002	38.5
	>150 e ≤ 500 cc	M1	Gasolina	3.135	0.585	0.497	0.088	0.135	0.0035	82	0.002	27.2
	≥ 501 cc		Gasolina	1.725	0.395	0.336	0.059	0.125		145	0.002	27.2
2006	≤ 150 cc		Gasolina	2.235	0.335	0.285	0.050	0.175		53	0.002	38.5
	$>150 e \le 500 cc$	M2	Gasolina	1.745	0.375	0.319	0.056	0.155	0.0035	65	0.002	27.2
	≥ 501 cc		Gasolina	1.225	0.205	0.174	0.031	0.050		201	0.002	27.2
2007	≤ 150 cc		Gasolina	1.795	0.320	0.272	0.048	0.170		60	0.002	38.5
	$>150 e \le 500 cc$	M2	Gasolina	1.995	0.365	0.310	0.055	0.145	0.0035	77	0.002	27.2
	≥ 501 cc		Gasolina	1.315	0.215	0.183	0.032	0.095		158	0.002	27.2
2008	≤ 150 cc		Gasolina	1.355	0.230	0.196	0.035	0.115		55	0.002	38.5
	$>150 e \le 500 cc$	M2	Gasolina	1.720	0.290	0.247	0.044	0.145	0.0035	74	0.002	27.2
	≥ 501 cc		Gasolina	1.250	0.190	0.162	0.029	0.070		132	0.002	27.2
2009	≤ 150 cc	M3	Gasolina	1.090	0.165	0.124	0.041	0.100	0.0035	61	0.002	38.5

	$>150 e \le 500 cc$		Gasolina	1.070	0.115	0.086	0.029	0.105		87	0.002	27.2
	≥ 501 cc		Gasolina	1.015	0.150	0.113	0.037	0.105		143	0.002	27.2
2010	≤ 150 cc		Gasolina	0.684	0.175	0.131	0.044	0.065		52	0.002	38.5
	> 150 cc	M3	Gasolina	1.142	0.124	0.093	0.031	0.095	0.0035	79	0.002	27.2
	≤ 150 cc	IVI3	Flex-Gasolina	0.754	0.148	0.111	0.037	0.052	0.0055	51	nd	42.8
	≤ 150 cc		Flex-Etanol	0.579	0.156	0.117	0.039	0.066		51	nd	28.0
2011	≤ 150 cc		Gasolina	0.610	0.200	0.150	0.050	0.080		56	0.002	38.5
	> 150 cc	M3	Gasolina	1.030	0.110	0.083	0.027	0.090	0.0035	71	0.002	27.2
	≤ 150 cc	1013	Flex-Gasolina	0.760	0.140	0.105	0.035	0.060	0.0033	50	nd	42.8
	≤ 150 cc		Flex-Etanol	0.680	0.160	0.120	0.040	0.060		49	nd	28.0
2012	≤ 150 cc		Gasolina	0.500	0.167	0.125	0.042	0.067		57	0.002	37.8
	> 150 cc		Gasolina	0.989	0.111	0.083	0.028	0.089		83	0.002	26.5
	≤ 150 cc	M3	Flex-Gasolina	0.741	0.137	0.103	0.034	0.041	0.0035	50	0.002	43.2
	> 150 cc	1013	Flex-Gasolina	1.139	0.103	0.077	0.026	0.092	0.0033	71	0.002	29.4
	≤ 150 cc		Flex-Etanol	0.897	0.162	0.122	0.040	0.039		47	nd	29.3
	> 150 cc		Flex-Etanol	1.430	0.254	0.191	0.063	0.051		71	nd	19.4
2013	≤ 150 cc		Gasolina	0.492	0.160	0.120	0.040	0.063		56	0.002	40.9
	> 150 cc		Gasolina	0.821	0.124	0.093	0.031	0.073		85	0.002	27.4
	≤ 150 cc	M3	Flex-Gasolina	0.681	0.142	0.107	0.035	0.046	0.0035	50	0.002	42.5
	> 150 cc	WIS	Flex-Gasolina	0.696	0.081	0.061	0.020	0.077	0.0055	77	0.002	27.6
	≤ 150 cc		Flex-Etanol	0.828	0.152	0.114	0.038	0.038		47	nd	29.4
	> 150 cc		Flex-Etanol	0.780	0.090	0.068	0.022	0.042		76	nd	18.3
2014	≤ 150 cc		Gasolina	0.492	0.160	0.120	0.040	0.063		56	0.002	40.9
	> 150 cc	M3	Gasolina	0.821	0.124	0.093	0.031	0.073	0.0035	85	0.002	27.4
	≤ 150 cc		Flex-Gasolina	0.681	0.142	0.107	0.035	0.046		50	0.002	42.5

	> 150 cc		Flex-Gasolina	0.696	0.081	0.061	0.020	0.077		77	0.002	27.6
	≤ 150 cc		Flex-Etanol	0.828	0.152	0.114	0.038	0.038		47	nd	29.4
	> 150 cc		Flex-Etanol	0.780	0.090	0.068	0.022	0.042		76	nd	18.3
2015	≤ 150 cc		Gasolina	0.570	0.130	0.097	0.032	0.043		50	0.002	44.2
	> 150 cc		Gasolina	0.734	0.112	0.084	0.028	0.064		75	0.002	31.1
	≤ 150 cc	M4	Flex-Gasolina	0.708	0.113	0.085	0.028	0.037	0.0035	45	nd	47.2
	> 150 cc	1 V1 4	Flex-Gasolina	0.633	0.072	0.054	0.018	0.050	0.0055	54	nd	41.0
	≤ 150 cc		Flex-Etanol	0.789	0.136	0.102	0.034	0.029		43	nd	32.5
	> 150 cc		Flex-Etanol	0.697	0.087	0.065	0.022	0.032		52	nd	28.3
2016	≤ 150 cc		Gasolina	0.606	0.124	0.093	0.031	0.013		47	nd	45.2
	> 150 cc		Gasolina	0.504	0.079	0.059	0.020	0.049		65	nd	35.5
	≤ 150 cc	M4	Flex-Gasolina	0.649	0.130	0.098	0.032	0.038	0.0035	46	nd	45.7
	> 150 cc	1 V1 4	Flex-Gasolina	0.715	0.111	0.083	0.028	0.044	0.0055	62	nd	34.3
	≤ 150 cc		Flex-Etanol	0.517	0.160	0.120	0.040	0.039		45	nd	31.2
	> 150 cc		Flex-Etanol	0.827	0.180	0.135	0.045	0.021		60	nd	23.0
2017	≤ 150 cc		Gasolina	0.580	0.110	0.083	0.027	0.024		38	0.002	57.1
	> 150 cc		Gasolina	0.525	0.073	0.055	0.018	0.043		48	0.002	45.6
	≤ 150 cc	M4	Flex-Gasolina	0.731	0.120	0.090	0.030	0.031	0.0035	41	nd	51.9
	> 150 cc	1 V1 -4	Flex-Gasolina	0.694	0.084	0.063	0.021	0.045	0.0033	49	nd	44.0
	≤ 150 cc		Flex-Etanol	0.476	0.151	0.113	0.038	0.024		40	nd	35.8
	> 150 cc		Flex-Etanol	0.689	0.110	0.083	0.027	0.028		48	nd	29.8
2018	≤ 150 cc		Gasolina	0.608	0.108	0.081	0.027	0.023		37	0.002	58.5
	> 150 cc		Gasolina	0.545	0.073	0.055	0.018	0.046		50	0.002	44.2
	≤ 150 cc	M4	Flex-Gasolina	0.834	0.113	0.085	0.028	0.030	0.0035	41	nd	51.5
	> 150 cc		Flex-Gasolina	0.726	0.086	0.065	0.021	0.042		49	nd	44.0
	≤ 150 cc		Flex-Etanol	0.502	0.139	0.104	0.035	0.027		40	nd	35.6

	> 150 cc	Flex-Etanol	0.654	0.101	0.076	0.025	0.035		47	nd	30.3	
--	----------	-------------	-------	-------	-------	-------	-------	--	----	----	------	--

d) Pesados

Ano	Fase Proconve	C	Categoria		НС	CH ₄	NOx	MP	N ₂ O	Autonomia
	2 2 0 0 0 2 2 7 0			(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(km/l)
			Semileves	0.764	0.279	0.06	4.395	0.271	0.03	9.1
			Leves	1.249	0.457	0.06	7.185	0.443	0.03	5.6
		Caminhões	Médios	1.250	0.457	0.06	7.190	0.444	0.03	5.6
até 1999	P2/P3/P4		Semipesados	2.014	0.736	0.06	11.585	0.715	0.03	3.5
			Pesados	2.014	0.736	0.06	11.585	0.715	0.03	3.5
		Ônibus	Urbanos	3.019	1.104	0.06	17.368	1.071	0.03	2.3
		Onious	Rodoviários	2.292	0.838	0.06	13.182	0.813	0.03	3.0
	P3/P4	Caminhões	Semileves	0.687	0.229	0.06	2.777	0.135	0.03	9.1
			Leves	1.123	0.374	0.06	4.539	0.220	0.03	5.6
2000			Médios	1.124	0.375	0.06	4.543	0.221	0.03	5.6
2000- 2001			Semipesados	1.810	0.603	0.06	7.319	0.355	0.03	3.5
2001			Pesados	1.810	0.603	0.06	7.319	0.355	0.03	3.5
		Ônibus	Urbanos	2.714	0.905	0.06	10.973	0.533	0.03	2.3
		Onious	Rodoviários	2.060	0.687	0.06	8.329	0.404	0.03	3.0
			Semileves	0.374	0.128	0.06	2.711	0.053	0.03	9.1
			Leves	0.612	0.209	0.06	4.432	0.086	0.03	5.6
2002-	P4	Caminhões	Médios	0.612	0.209	0.06	4.435	0.086	0.03	5.6
2003	P4		Semipesados	0.986	0.336	0.06	7.146	0.139	0.03	3.5
			Pesados	0.986	0.336	0.06	7.146	0.139	0.03	3.5
		Ônibus	Urbanos	1.478	0.504	0.06	10.713	0.209	0.03	2.3

			Rodoviários	1.122	0.383	0.06	8.131	0.158	0.03	3.0
			Semileves	0.360	0.100	0.06	2.280	0.042	0.03	9.1
			Leves	0.580	0.160	0.06	3.720	0.069	0.03	5.6
2004		Caminhões	Médios	0.580	0.160	0.06	3.720	0.069	0.03	5.6
2004- 2005	P4/P5		Semipesados	0.940	0.250	0.06	6.000	0.111	0.03	3.5
2003			Pesados	0.940	0.250	0.06	6.000	0.111	0.03	3.5
		Ônibus	Urbanos	1.410	0.380	0.06	9.000	0.166	0.03	2.3
		Onibus	Rodoviários	1.070	0.290	0.06	6.830	0.126	0.03	3.0
			Semileves	0.563	0.116	0.06	1.890	0.044	0.03	9.1
			Leves	0.793	0.228	0.06	3.464	0.069	0.03	5.6
		Caminhões	Médios	0.789	0.127	0.06	3.106	0.067	0.03	5.6
2006	P4/P5		Semipesados	1.004	0.247	0.06	5.292	0.103	0.03	3.4
2000	F4/F3		Pesados	0.808	0.218	0.06	5.209	0.094	0.03	3.4
		Ônibus	Urbanos	1.801	0.351	0.06	8.205	0.163	0.03	2.1
			Micro-ônibus	1.546	0.201	0.06	4.761	0.109	0.03	3.4
			Rodoviários	0.974	0.254	0.06	5.622	0.103	0.03	3.2
			Semileves	0.563	0.116	0.06	1.890	0.044	0.03	9.1
			Leves	0.793	0.228	0.06	3.464	0.069	0.03	5.6
		Caminhões	Médios	0.789	0.127	0.06	3.106	0.067	0.03	5.6
2007	P4/P5		Semipesados	1.004	0.247	0.06	5.292	0.103	0.03	3.4
2007	F4/F3		Pesados	0.808	0.218	0.06	5.209	0.094	0.03	3.4
			Urbanos	1.801	0.351	0.06	8.205	0.163	0.03	2.1
		Ônibus	Micro-ônibus	1.546	0.201	0.06	4.761	0.109	0.03	3.4
			Rodoviários	0.974	0.254	0.06	5.622	0.103	0.03	3.2
2008	D5	Caminhões	Semileves	0.361	0.071	0.060	1.717	0.040	0.030	9.1
2008	2008 P5	Callillioes	Leves	0.685	0.124	0.06	3.072	0.062	0.03	5.6

			Médios	0.494	0.075	0.06	2.921	0.054	0.03	5.6
			Semipesados	1.030	0.104	0.06	4.920	0.089	0.03	3.4
			Pesados	0.713	0.149	0.06	5.397	0.085	0.03	3.4
			Urbanos	2.164	0.330	0.06	8.607	0.158	0.03	2.1
		Ônibus	Micro-ônibus	0.836	0.077	0.06	4.508	0.085	0.03	3.4
			Rodoviários	0.718	0.117	0.06	5.674	0.092	0.03	3.2
			Semileves	0.381	0.069	0.06	1.685	0.029	0.03	9.1
			Leves	0.647	0.116	0.06	3.060	0.054	0.03	5.6
	2009 P5	Caminhões	Médios	0.499	0.077	0.06	2.980	0.058	0.03	5.6
2000			Semipesados	0.936	0.085	0.06	5.018	0.085	0.03	3.4
2009	rs		Pesados	0.906	0.117	0.06	5.349	0.080	0.03	3.4
			Urbanos	1.842	0.291	0.06	8.262	0.146	0.03	2.1
		Ônibus	Micro-ônibus	0.783	0.082	0.06	4.743	0.082	0.03	3.4
			Rodoviários	0.595	0.134	0.06	5.669	0.084	0.03	3.2
			Semileves	0.401	0.086	0.06	1.730	0.032	0.03	9.1
			Leves	0.489	0.088	0.06	2.977	0.048	0.03	5.6
		Caminhões	Médios	0.503	0.041	0.06	2.792	0.052	0.03	5.6
2010	P5		Semipesados	0.886	0.128	0.06	5.036	0.096	0.03	3.4
2010	P3		Pesados	0.643	0.168	0.06	5.312	0.066	0.03	3.4
			Urbanos	1.827	0.307	0.06	8.380	0.151	0.03	2.1
		Ônibus	Micro-ônibus	1.188	0.143	0.06	4.738	0.082	0.03	3.4
			Rodoviários	0.668	0.180	0.06	5.448	0.093	0.03	3.2
			Semileves	0.369	0.061	0.06	1.686	0.036	0.03	9.1
2011	P5	Caminhões	Leves	0.499	0.086	0.06	2.972	0.048	0.03	5.6
			Médios	0.515	0.114	0.06	3.066	0.057	0.03	5.6

			Semipesados	1.007	0.099	0.06	4.782	0.085	0.03	3.4
			Pesados	0.789	0.157	0.06	5.188	0.071	0.03	3.4
			Urbanos	1.672	0.212	0.06	8.471	0.150	0.03	2.1
		Ônibus	Micro-ônibus	1.188	0.137	0.06	4.871	0.095	0.03	3.4
			Rodoviários	0.704	0.160	0.06	5.474	0.085	0.03	3.2
			Semileves	0.005	0.005	0.06	0.513	0.003	0.03	9.1
			Leves	0.128	0.010	0.06	1.090	0.007	0.03	5.6
		Caminhões	Médios	0.141	0.007	0.06	1.052	0.007	0.03	5.8
2012	P7		Semipesados	0.136	0.016	0.06	1.620	0.015	0.03	3.6
2012	2012 P7		Pesados	0.256	0.030	0.06	1.590	0.015	0.03	3.6
			Urbanos	0.626	0.018	0.06	2.810	0.020	0.03	2.1
		Ônibus	Micro-ônibus	0.153	0.039	0.06	1.448	0.015	0.03	3.4
			Rodoviários	0.344	0.033	0.06	1.695	0.016	0.03	3.4
		Caminhões	Semileves	0.011	0.005	0.06	0.484	0.003	0.03	9.1
			Leves	0.116	0.007	0.06	0.957	0.008	0.03	5.6
			Médios	0.087	0.010	0.06	1.086	0.009	0.03	5.8
2013	P7		Semipesados	0.106	0.017	0.06	1.602	0.016	0.03	3.6
2013	Ρ/		Pesados	0.281	0.029	0.06	1.542	0.016	0.03	3.6
			Urbanos	0.528	0.018	0.06	2.683	0.021	0.03	2.1
		Ônibus	Micro-ônibus	0.128	0.031	0.06	1.211	0.011	0.03	3.4
			Rodoviários	0.400	0.046	0.06	1.702	0.017	0.03	3.4
			Semileves	0.011	0.005	0.06	0.484	0.003	0.03	9.1
			Leves	0.116	0.007	0.06	0.957	0.008	0.03	5.6
2014	P7	Caminhões	Médios	0.087	0.010	0.06	1.086	0.009	0.03	5.8
			Semipesados	0.106	0.017	0.06	1.602	0.016	0.03	3.6
			Pesados	0.281	0.029	0.06	1.542	0.016	0.03	3.6

			Urbanos	0.528	0.018	0.06	2.683	0.021	0.03	2.1
		Ônibus	Micro-ônibus	0.128	0.031	0.06	1.211	0.011	0.03	3.4
			Rodoviários	0.400	0.046	0.06	1.702	0.017	0.03	3.4
			Semileves	0.044	0.007	0.06	0.528	0.004	0.03	9.1
			Leves	0.200	0.009	0.06	0.993	0.009	0.03	5.6
		Caminhões	Médios	0.091	0.009	0.06	0.986	0.009	0.03	5.8
2015	P7		Semipesados	0.111	0.019	0.06	1.602	0.016	0.03	3.6
2013	Γ/		Pesados	0.275	0.029	0.06	1.633	0.016	0.03	3.6
			Urbanos	0.530	0.021	0.06	2.710	0.024	0.03	2.1
		Ônibus	Micro-ônibus	0.085	0.026	0.06	1.385	0.010	0.03	3.3
			Rodoviários	0.363	0.028	0.06	1.639	0.017	0.03	3.4
		Caminhões	Semileves	0.036	0.008	0.06	0.515	0.003	0.03	9.1
			Leves	0.172	0.012	0.06	0.994	0.008	0.03	5.6
			Médios	0.091	0.005	0.06	0.975	0.009	0.03	5.8
2016	P7		Semipesados	0.124	0.011	0.06	1.469	0.014	0.03	3.6
2010	Γ/		Pesados	0.292	0.033	0.06	1.690	0.016	0.03	3.6
			Urbanos	0.566	0.016	0.06	2.873	0.021	0.03	2.1
		Ônibus	Micro-ônibus	0.072	0.012	0.06	1.303	0.010	0.03	3.3
			Rodoviários	0.352	0.028	0.06	1.832	0.016	0.03	3.4
			Semileves	0.030	0.004	0.06	0.484	0.003	0.03	9.1
			Leves	0.214	0.008	0.06	0.942	0.008	0.03	5.6
2017	P7	Caminhões	Médios	0.102	0.012	0.06	0.906	0.008	0.03	5.8
2017	r/		Semipesados	0.080	0.022	0.06	1.652	0.014	0.03	3.6
			Pesados	0.233	0.025	0.06	1.630	0.014	0.03	3.6
		Ônibus	Urbanos	0.462	0.024	0.06	2.645	0.021	0.03	2.1

			Micro-ônibus	0.081	0.009	0.06	1.362	0.008	0.03	3.3
			Rodoviários	0.351	0.028	0.06	1.525	0.017	0.03	3.4
			Semileves	0.023	0.003	0.06	0.486	0.002	0.03	9.1
		Caminhões P7 Ônibus	Leves	0.231	0.008	0.06	0.880	0.009	0.03	5.6
			Médios	0.195	0.009	0.06	0.754	0.007	0.03	5.8
2018	D7		Semipesados	0.092	0.019	0.06	1.627	0.015	0.03	3.6
2016	Γ/		Pesados	0.266	0.022	0.06	1.630	0.014	0.03	3.6
			Urbanos	0.532	0.010	0.06	2.016	0.021	0.03	2.1
			Micro-ônibus	0.106	0.007	0.06	1.419	0.008	0.03	3.3
			Rodoviários	0.374	0.028	0.06	1.678	0.018	0.03	3.4

APÊNDICE A – FATOR DE EMISSÃO

Os fatores de emissão para cada poluente e categoria de veículo foram disponibilizados pela CETESB, conforme descrito no item 3.4 e demonstrados no anexo A. Os valores dos fatores de emissão reduzem ao longo dos anos devido as melhorias das tecnologias dos catalizadores e da qualidade dos combustíveis.

Visto a impossibilidade de conhecer as características especificas (ano de fabricação, categoria veicular e combustível utilizado) de cada veículo que trafega na área de estudo, foi calculado um fator de emissão ponderado conforme a frota licenciada de cada município.

Foram determinados os fatores de emissão para as três categorias de veículos leves e para a categoria de veículos pesados, utilizando as Equações 3, 5 e 7 para a metodologia *bottomup*, sendo estes apresentados na Tabela 1.

Tabela 1 – Fatores de emissão ponderado, utilizado na metodologia *bottom-up*.

Município	Categoria -	CO	HC _{total}	NO_x	MP	N_2O
	Categoria	[g/km]	[g/km]	[g/km]	[g/km]	[g/km]
	Leves	3,094	0,318	0.221	0.001	0.018
Elorianánalis	Comerciais leves	3,600	0,348	0,262	0,002	0,020
Florianópolis	Motos	1,987	0,309	0,082	0,005	0,001
	Pesados	0,751	0,209	4,396	0,164	0,030
	Leves	3,551	0,365	0,266	0,001	0,018
Palhoça	Comerciais leves	4,211	0,406	0,316	0,003	0,019
	Motos	2,447	0,377	0,098	0,006	0,001
	Pesados	0,870	0,253	5,030	0,199	0,030
	Leves	3,273	0,338	0,245	0,001	0,018
São José	Comerciais leves	3,871	0,374	0,291	0,003	0,020
340 1086	Motos	2,264	0,350	0,092	0,005	0,001
	Pesados	0,822	0,235	4,768	0,184	0,030
	Leves	3,884	0,395	0,286	0,001	0,018
Biguaçu	Comerciais leves	4,573	0,439	0,339	0,003	0,019
Diguaçu	Motos	2,540	0,391	0,100	0,006	0,002
	Pesados	0,893	0,263	5,149	0,209	0,030
	Leves	2,673	0,280	0,200	0,001	0,019
Governador	Comerciais leves	3,148	0,310	0,242	0,003	0,020
Celso Ramos	Motos	1,950	0,305	0,084	0,004	0,001
	Pesados	0,736	0,199	4,313	0,150	0,030

Tendo em vista a Tabela 1, é possível notar que Biguaçu possui os maiores fatores de emissão. Isto ocorre pois a frota veicular de Biguaçu possui veículos mais antigos, portanto, o fator de emissão é elevado devido à falta de tecnologia desses veículos em diminuir os poluentes emitidos pela combustão de combustíveis. Contudo, o município que possuiu os menores fatores de emissão foi Governador Celso Ramos por possuir uma frota de veículos mais recente.

Entretanto, para a metodologia *top-down*, o fator de emissão é multiplicado pela autonomia do veículo, resultando em um fator de emissão em gramas por litro, conforme demonstrado nas Equações 4, 6 e 8. Desta forma os fatores de emissão ponderados empregados na metodologia *top-down* estão demonstrados na Tabela 2.

Tabela 2 – Fatores de emissão ponderado, utilizado na metodologia *top-down*.

Município	Categoria	CO	HC_{total}	NO_x	MP	N_2O
	Categoria	[g/L]	[g/L]	[g/L]	[g/L]	[g/L]
	Leves	29,867	3,084	2,231	0,011	0,194
Florianópolis	Comerciais leves	27,654	2,668	2,044	0,022	0,165
Piorianopons	Motos	72,547	11,357	3,028	0,176	0,047
	Pesados	3,148	0,877	18,337	0,684	0,136
	Leves	34,531	3,570	2,701	0,012	0,195
Palhoça	Comerciais leves	32,329	3,111	2,456	0,025	0,162
	Motos	89,399	13,852	3,609	0,215	0,054
	Pesados	3,648	1,063	20,961	0,831	0,136
	Leves	31,853	3,303	2,485	0,011	0,195
São José	Comerciais leves	29,720	2,868	2,267	0,024	0,163
Sao Jose	Motos	82,695	12,861	3,386	0,200	0,052
	Pesados	3,444	0,985	19,878	0,766	0,136
	Leves	37,712	3,865	2,899	0,012	0,193
Biguaçu	Comerciais leves	35,111	3,362	2,643	0,027	0,160
Diguaçu	Motos	92,812	14,348	3,699	0,224	0,056
	Pesados	3,740	1,103	21,459	0,871	0,136
	Leves	26,067	2,745	2,029	0,011	0,196
Governador	Comerciais leves	24,205	2,377	1,901	0,024	0,167
	Motos	71,223	11,175	3,104	0,169	0,048
	Pesados	3,091	0,835	17,986	0,625	0,136

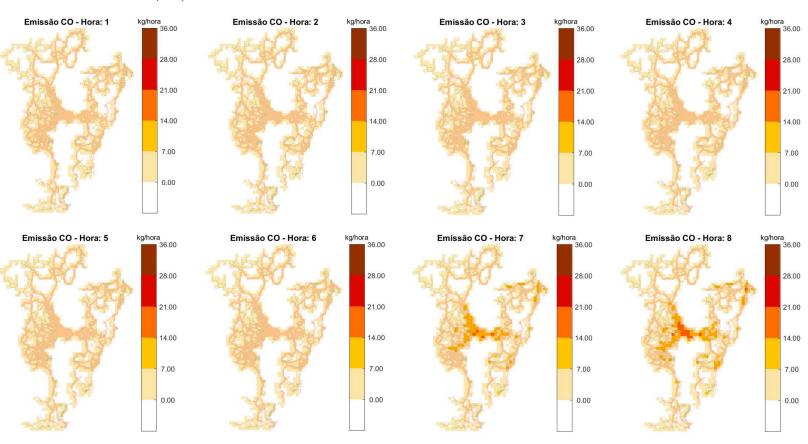
APÊNDICE B – COMPARAÇÃO DAS EMISSÕES ANUAIS ENTRE OS MÉTODOS BOTTOM-UP E TOP-DOWN EM NÍVEL DE CIDADE

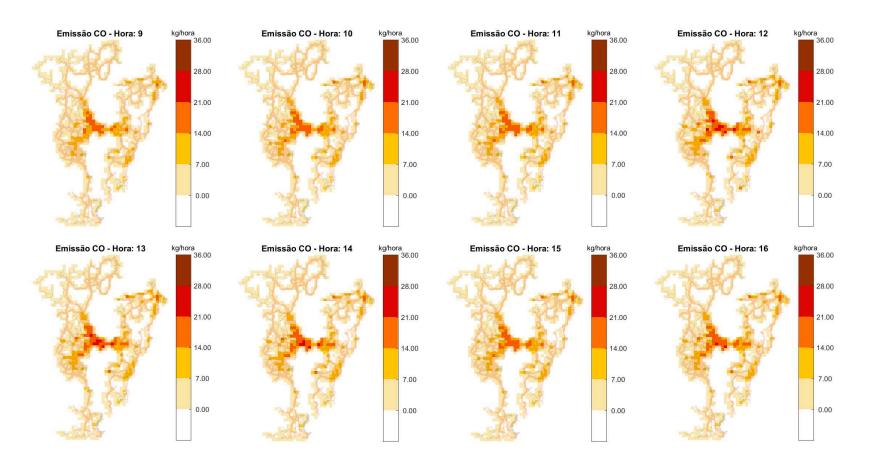
As emissões estimadas pelo método *bottom-up* resultam em emissões horárias. Portanto, para realizar a comparação das estimativas de emissão anual entre os dois métodos, utilizou-se os fatores de tráfego para converter a emissão horária estimada pelo método *bottom-up* em emissões anuais. As emissões estimadas pelo método *top-down* resultam em emissões anuais, não sendo necessário a utilização dos fatores de tráfego nesta etapa.

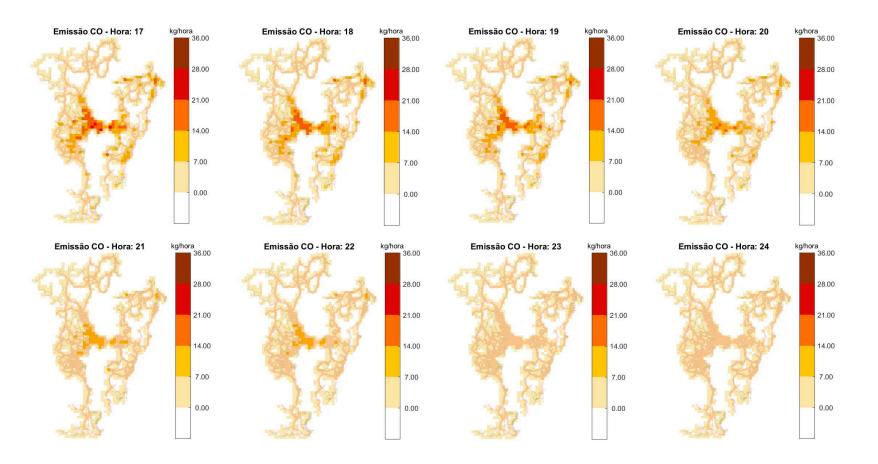
Como foram utilizados os fatores de trafego para converter as emissões de anual para horária, a diferença em magnitude das emissões ao comparar as estimativas anuais e horárias serão as mesmas. Portanto, utilizou-se no texto somente as emissões horárias pois estas serão desagregadas espacialmente. Portanto, as estimativas de emissões anuais pelos métodos *bottom-up* e *top-down* estão apresentadas na Tabela 1.

Tabela 1 – Estimativa de emissão anual pela metodologia *bottom-up* (B.U.) e *top-down* (T.D.).

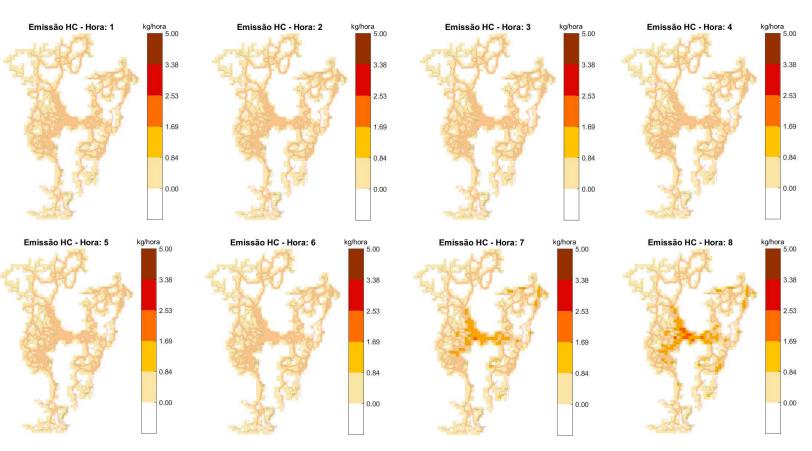
Município	Categoria -	CO [t/	ano]	HC _{total} [$NO_x[t/t]$	NO_x [t/ano]		MP [t/ano]		N ₂ O [t/ano]	
	Categoria	B.U.	T.D.	B.U.	T.D.	B.U.	T.D.	B.U.	T.D.	B.U.	T.D.	
	Leves	3.760,7	7.014,2	405,6	773,9	256,6	469,0	2,3	5,4	19,7	32,7	
Florianópolis	Pesados	29,2	87,0	8,1	24,2	170,8	506,7	6,4	18,9	1,2	3,8	
	Total	3.789,9	7.101,1	413,7	798,1	427,3	975,7	8,6	24,3	20,8	36,5	
Palhoça	Leves	1.347,9	2.443,4	151,4	271,6	91,4	168,7	1,0	1,9	5,6	10,1	
	Pesados	138,3	149,9	40,3	43,7	799,3	861,3	31,7	34,2	4,7	5,6	
	Total	1.486,2	2.593,3	191,7	315,3	890,7	1.030,0	32,7	36,1	10,4	15,7	
	Leves	1.718,1	3.190,1	192,0	355,2	117,8	219,8	1,2	2,5	7,9	14,2	
São José	Pesados	76,9	68,1	22,0	19,5	446,0	392,9	17,2	15,1	2,8	2,7	
	Total	1.795,0	3.258,2	213,9	374,7	563,8	612,7	18,4	17,7	10,7	16,9	
	Leves	1.002,9	1.104,7	112,9	121,8	66,3	75,4	0,8	0,8	3,7	4,2	
Biguaçu	Pesados	162,0	66,7	47,8	19,7	934,7	382,5	37,9	15,5	5,4	2,4	
	Total	1.164,9	1.171,4	160,7	141,5	1.001,0	457,9	38,7	16,3	9,1	6,7	
G 1	Leves	205,2	85,6	23,8	9,6	13,9	5,9	0,2	0,1	1,1	0,4	
Governador Celso Ramos	Pesados	38,1	3,6	10,3	1,0	223,2	21,2	7,8	0,7	1,5	0,2	
Ceiso Kanios	Total	243,3	89,2	34,1	10,6	237,1	27,1	7,9	0,8	2,6	0,6	

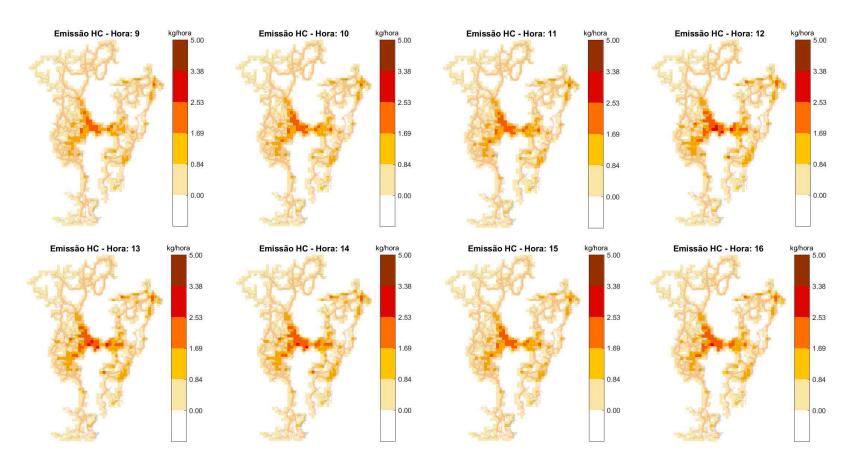

APÊNDICE C – COMPARAÇÃO DAS EMISSÕES ESTIMADAS NA HORA DE PICO ENTRE OS MÉTODOS *BOTTOM-UP* E *TOP-DOWN* EM NÍVEL DE CIDADE

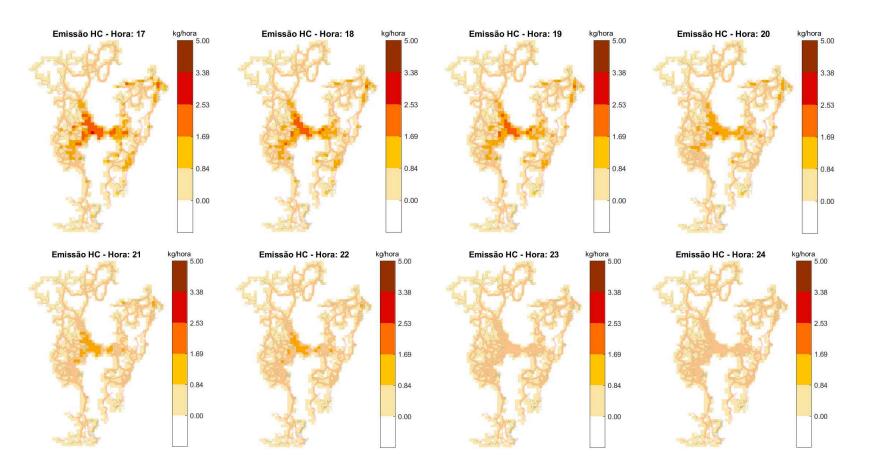

a) Aplicação de *Bias* e *Fractional bias* nas emissões da hora de pico (11 horas) estimadas pelo método *bottom-up* e *top-down*.

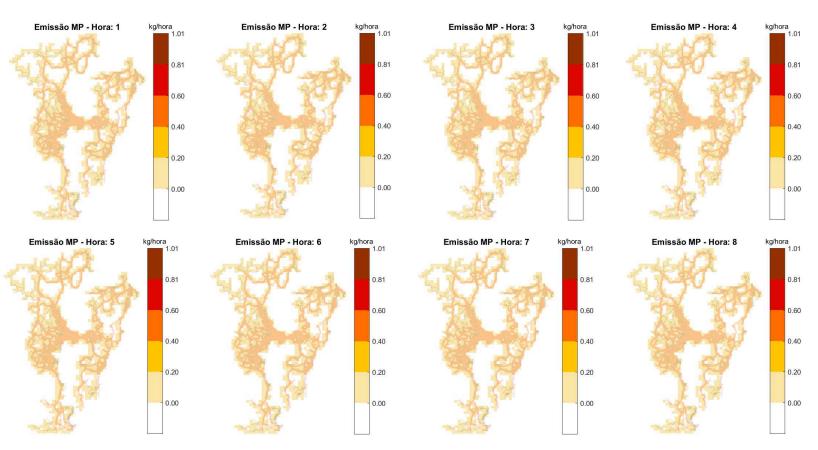

Município	Categoria	CO	HCtotal	NOx	MP	N ₂ O
	Categoria	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
	Leves	-823,9	-93,3	-53,8	-0,8	-3,3
	Leves	(-60%)	(-62%)	(-59%)	(-82%)	(-50%)
Florianópolis	Pesados	-14,6	-4,1	-85,1	-3,2	-0,7
Piorianopons	resauos	(-100%)	(-100%)	(-99%)	(-99%)	(-106%)
	Total	-838,5	-97,4	-138,9	-4,0	-4,0
	Total	(-61%)	(-63%)	(-78%)	(-95%)	(-55%)
	Leves	-277,6	-30,4	-19,6	-0,2	-1,1
	Leves	(-58%)	(-57%)	(-59%)	(-62%)	(-57%)
Palhoça	Pesados	-2,9	-0,9	-15,7	-0,6	-0,2
1 amoça	resauos	(-8%)	(-8%)	(-7%)	(-8%)	(-16%)
	Total	-280,5	-31,3	-35,3	-0,9	-1,3
	Total	(-54%)	(-49%)	(-14%)	(-10%)	(-41%)
	Leves	-372,8	-41,3	-25,8	-0,3	-1,6
		(-60%)	(-60%)	(-60%)	(-68%)	(-57%)
São José	Pesados	2,2	0,6	13,5	0,5	0,0
Sao Jose		(12%)	(12%)	(13%)	(13%)	(4%)
	Total	-370,5	-40,7	-12,3	0,2	-1,6
	Total	(-58%)	(-55%)	(-8%)	(4%)	(-45%)
	Leves	-25,7	-2,2	-2,3	0,0	-0,1
	Leves	(-10%)	(-8%)	(-13%)	(-6%)	(-13%)
Biguaçu	Pesados	24,1	7,1	139,8	5,7	0,8
Diguaçu		(83%)	(83%)	(84%)	(84%)	(77%)
	Total	-1,6	4,9	137,5	5,6	0,6
	Total	(-1%)	(13%)	(74%)	(81%)	(31%)
	Leves	30,3	3,6	2,0	0,0	0,2
Governador Celso Ramos		(82%)	(85%)	(80%)	(84%)	(84%)
	Pesados	8,7	2,4	51,1	1,8	0,4
		(165%)	(165%)	(165%)	(165%)	(162%)
	Total	39,0	5,9	53,1	1,8	0,5
	Total	(93%)	(105%)	(159%)	(163%)	(125%)

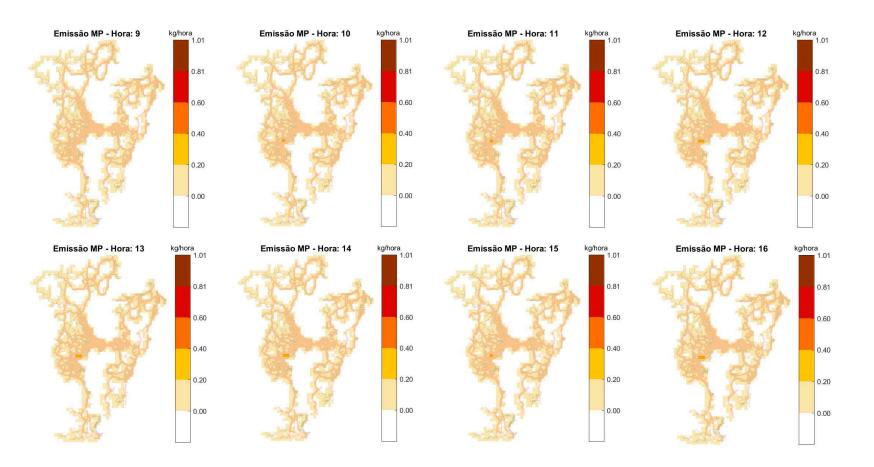
APÊNDICE D – EMISSÃO ESTIMADA PELO MÉTODO TOP-DOWN DESAGREGADO ESPACIALMENTE E TEMPORALMENTE

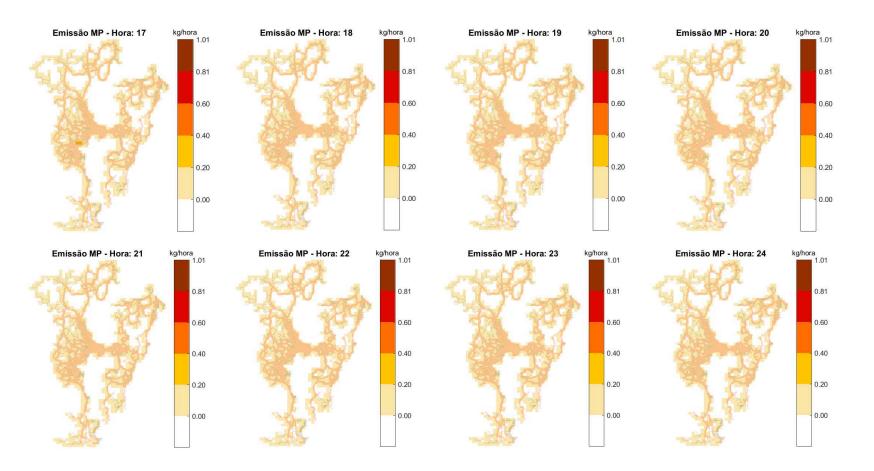

a) Monóxido de carbono (CO)

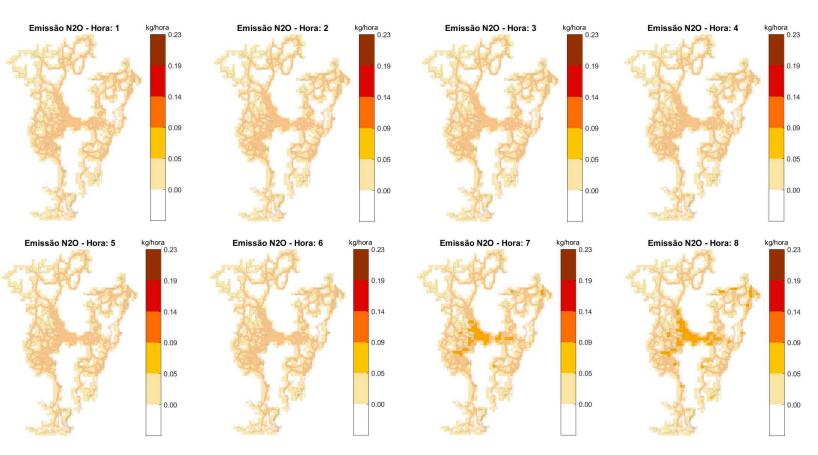


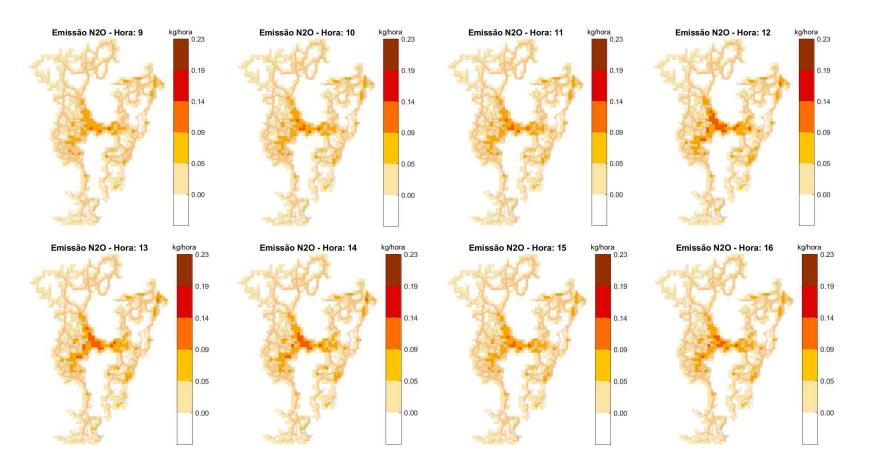


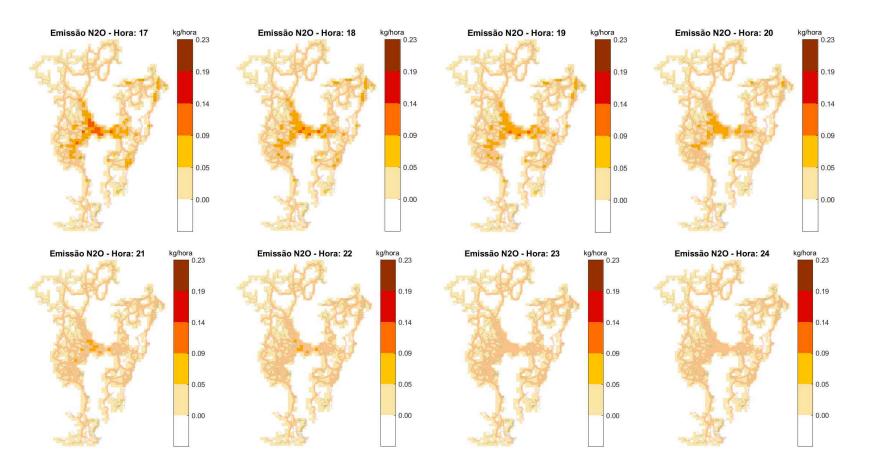

b) Hidrocarbonetos (HC)

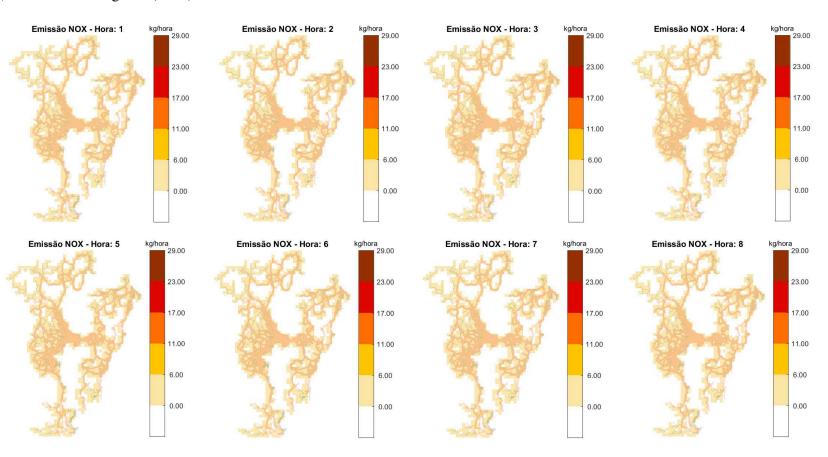


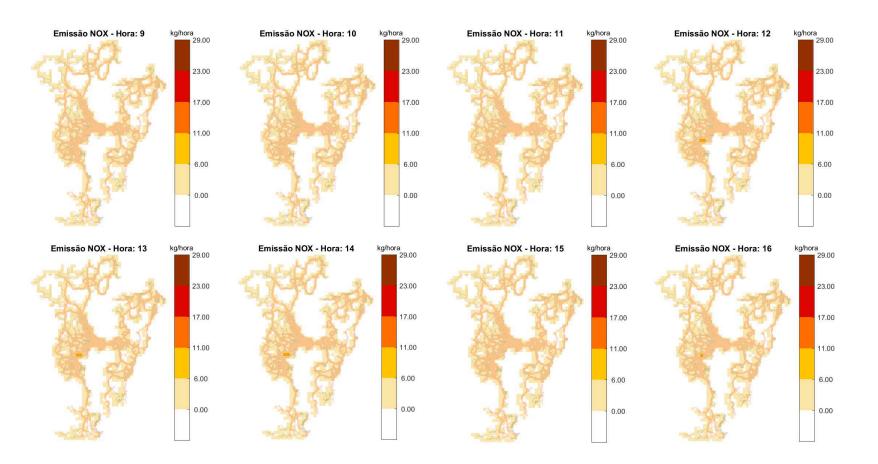


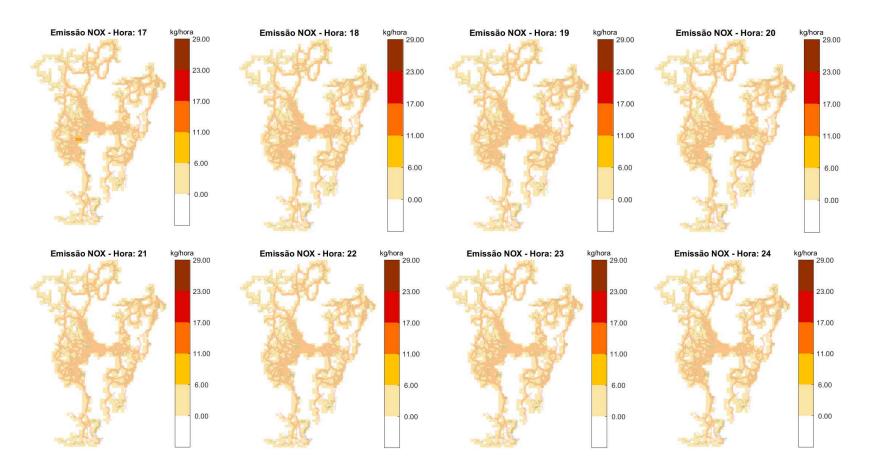

c) Material particulado (MP)






d) Óxido nitroso (N_2O)





e) Óxido de nitrogênio (NOx)

