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Resumo Estendido

Com o advento da internet das coisas (IoT), existem dispositivos que podem se co-

municar com a internet enviando e recebendo dados. Muitos desses dispositivos são

utilizados em casas, salas, escritórios para prover um melhor conforto ou até poupar

energia e tempo dos usuários. Um sistema de controle para ambientes inteligentes

deve automaticamente ajustar seus parâmetros e controlar seus dispositivos, para as

preferências do usuário, baseado em dados previamente coletados dos sensores de

dispositivos inteligentes que apontam o comportamento e interação do usuário com o

ambiente. Esse trabalho descreve o desenvolvimento de um sistema que leva os atuais

requerimentos da Internet das Coisas em consideração.

Uma solução para ambientes inteligentes da internet das coisas, precisa contar com

vários módulos que desempenham funções distintas. Para implementação de um ambi-

ente inteligente, esse projeto considera quatro componentes principais. Primeiramente,

uma sala inteligente onde existem vários sensores e atuadores disponíveis para cont-

role das distintas variáveis do ambiente. Um gateway inteligente que faz a ponte entre

os dispositivos da sala e a internet, além de detectar usuários. Um aplicativo híbrido

que permita o usuário controlar e monitorar o sistema remotamente através da internet,

recebendo em tempo real os dados provenientes de sensores do ambiente. Finalmente,

um algorítimo ciente de contexto para controle automático do ambiente.

Para implementação da sala inteligente, foi escolhida uma sala do Laboratório de Inte-

gração de Software e Hardware (LISHA) da UFSC. Essa sala já havia sido parcialmente

instrumentada com dispositivos inteligentes em projetos prévios de internet das coisas,

capazes de medir consumo energético de quatro tomadas e três lâmpadas, além de

controlar o ar-condicionado e lâmpadas. Para isso foram utilizados microcontroladores

EPOSMote III. Esses microcontroladores rodam o sistema operacional EPOS e pos-

suem conectividade sem fio IEEE 802.15.4. O firmware presente nas lâmpadas estava

funcional, enviando mensagens Modbus do consumo a cada segundo, entretanto,

todas as tomadas tiveram seu firmware reprogramado para agir da mesma maneira.

Foram também desenvolvidos nodos extras para a coleta de dados de luminosidade e

temperatura internos e externos, presença e umidade.

Um gateway de controle embarcado para internet das coisas estende as funcionali-

dades de um simples gateway, provendo inteligência e recursos para processamento

das aplicações locais. O gateway é capaz de filtrar e avaliar as mensagens Modbus

recebidas dos microcontroladores além de implementar tarefas de gerenciamento de

mais alto nível. Esse gateway foi implementado na plataforma Intel Galileo 2a geração.



A placa foi conectada a um microcontrolador EPOSMote III, que recebe as mensagens

Modbus pela rede IEEE 802.15.4 e as encaminha através de comunicação serial USB

para serem processadas pela placa Galileo. Além da conectividade IEEE 802.15.4, a

placa também foi conectada via Ethernet a um roteador sem fio IEEE 802.11, que além

de prover conectividade à internet para a placa, permite que ela esteja localizada na

mesma sub-rede a qual o celular dos usuários da sala se conectam. Isso permite que

a placa escaneie a sub-rede e identifique os usuários presentes no ambiente. Essa

plataforma também possui uma instância de um servidor HTTP para estabelecer comu-

nicação entre ela e o servidor. Sensores e LEDs foram adicionados a placa para obter

ainda mais informação e fornecer feedback do estado dos serviços desempenhados

pela placa. Um Daemon integra todas essas atividades executando-as paralelamente

com threads.

Uma aplicação híbrida, lida com uma questão crítica de projetos para internet das

coisas, a portabilidade. Já que a grande maioria dos dispositivos de IoT podem ser

remotamente controlados, um usuário deve ter acesso ao controle desses dispositivos

da maneira mais conveniente possível. Por esse motivo foi implementado um aplicativo

híbrido baseado no framework Apache Cordova, que gera aplicativos para diferentes

plataformas a partir de uma única implementação. O aplicativo desenvolvido possibilita

que o usuário monitore os dados do ambiente em tempo real e controle todos os

dispositivos possíveis. Para isso é estabelecido um protocolo de comunicação através

de requisições HTTP REST com o servidor.

Nesse projeto, os dados coletados de sensores de dispositivos inteligentes são usados

para definir contextos e preferências do usuário. Uma combinação de técnicas e

conceitos de machine learning e data mining são utilizados para realizar predições

de controle para os dispositivos baseados no contexto atual. Um classificador de

floresta randômica é aplicado nos dados coletados da sala e nos dados previamente

inseridos para o controle de um dado dispositivo, para obtenção da relevância dos

dados para o controle de um dado dispositivo. Feito isso uma rede neural é treinada,

baseada nos dados coletados da interação do usuário com a sala, utilizando somente

os dados relevantes para o treino. Treinada a rede, o algorítimo faz predições de

controle da sala. Os conceitos de reinforcement learning são utilizados para atribuir

recompensas ou punições as predições da rede, onde uma predição certa (quando

não existe intervenção ou ajuste por parte do usuário após uma predição de controle)

é recompensada sendo adicionada ao conjunto de dados do usuário, e uma errada

(quando o usuário faz alguma alteração para uma dada predição de controle do

algorítimo) é punida adicionando as novas preferências do usuário e retreinando a rede.

Dessa maneira, o algorítimo continuamente aprende os comportamentos e preferências



do usuário. Ao final das predições, pode ser adicionado um otimizador, com heurísticas

de redução de consumo energético. Nesse trabalho foi utilizado um controlador fuzzy

onde foram implementadas regras de economia de energia no uso de lâmpadas de

acordo com a luminosidade.

A implementação dos componentes do sistema foram devidamente validados, avaliando

suas respectivas métricas. Para validação e coleta de resultados, o sistema funcionou

durante um período de aproximadamente duas semanas na sala inteligente do Labo-

ratório de Integração de Software e Hardware da UFSC. O sistema foi configurado para

procurar por apenas um usuário e aprender a controlar uma das lâmpadas da sala de

acordo com o comportamento deste. Todos os requisitos funcionais e não funcionais

delineados no projeto foram cumpridos.

A utilização de um gateway embarcado para controle se mostrou bastante efetiva. O

gateway foi capaz de detectar o usuário presente na sala e controlar os dispositivos

de acordo com as predições feitas pelo algorítimo ciente de contexto. A filtragem e

avaliação das mensagens recebidas evitou que dados errôneos fossem incorporados

nos bancos de dados e permite a redução de processamento nos microcontroladores.

O aplicativo implementado foi capaz de controlar e monitorar a sala. O uso de um

framework de desenvolvimento para gerar aplicações híbridas permitiu que isso fosse

possível de diferentes plataformas (Android e Web foram testadas).

Dados contextuais do ambiente se mostraram muito uteis para o controle e a otimização

de consumo energético, validando o conceito proposto por esse trabalho. A arquitetura

do algorítimo, utilizando técnicas de data mining para redução da dimensionalidade

dos dados, acompanhado das capacidades de modelagem de não-linearidades das

redes neurais, também se mostrou adequada para a aplicação em questão.

Palavras-chave:Ciência de Contexto, Machine Learning, Internet das Coisas, Am-

bientes Inteligentes, Inteligência de Ambientes, Computação Pervasiva, Automação

Inteligente, Sistemas Embarcados, Data Mining, Computação Ubíqua.





Abstract

With the advent of the Internet of Things, devices can now receive and send data to

the Internet. Many of these devices are used in homes, rooms and offices for better

comfort, save user’s time and energy. A complete smart space control system should

automatically adjust its settings to the user preferences based on data previously

collected from the smart things. In this project we use environmental data collected

from sensors of the smart things to define contexts and preferences of the user for

such. By feeding contextual data to a context-aware decision engine, composed by

a combination of machine learning and data mining techniques and concepts. The

context-aware decision engine is capable of identifying important data co-relations and

use the environment’s contextual information to make intelligent control decisions and

adjust the environment’s settings to the user’s preferences and reduce the overall power

consumption, yielding better services to the user and improving human-technology

interaction.

Keywords: Context-Aware, Machine Learning, Gateway, Internet of Things, Smart-

Environment, Ambient Intelligence, Pervasive Computing, Intelligent Automation, Ubiq-

uitous Computing, Embedded Systems, Data Mining.
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1 Introduction

In the upcoming world of the Internet of Things (IoT), devices contain numerous

new capabilities, including the ability to receive and send data to the Internet. According

to CISCO [1] and Business Insider [2] intelligence report on IoT, by 2020 there will be

approximately 50 billion devices connected to the Internet. Of these amount, the report

claims that the smart spaces market will make up roughly 27% of the whole IoT Market.

These smart spaces consist of a series of electronic devices that are used to perform

functions ranging from security to comfort and entertainment.

Among many reasons for the increasing popularity of the IoT, the most prominent

are Convenience and Cost Reduction. Convenience is strongly related to time-saving.

In today’s world, where everything is moving so fast, every second has its value. The

proof for that is that most of the technologies we use today are based on convenience.

For example, cars get us where we need to go quicker and computers get work done

faster. Smaller conveniences in the home will be desirable because they allow the home

to save the user’s time as well.

As civilization grows, it constantly needs more energy to power itself, and so

does the cost of energy. This leads to heavy pressure on efficient use of energy. Smart

systems help the user do this and save them money at the same time. The smart home

system is able to monitor certain processes that use energy in the house and can control

the amount of energy being used. A primary example would be with lights, as they are

often left on when they don’t need to be. A smart home system can be configured to

turn the lights off after a certain amount of time, or when there is no user present in the

environment. The smart home system may also allow the user to control the lights from

his phone so they can be turned off.

Even though much has been developed in the field of the IoT, of the current

devices on the market only a few make use of the data surrounding them. Moreover, most

of them underperform due to the lack of adequate autonomy and learning ability, ending

up just being used to remotely control some appliances. Meanwhile, the exponential

growth of the number of controllable devices the user must manually adjust to his

preferences every time he enters the room may make his life yet harder.

A complete smart space control system should automatically adjust its settings

to the user preferences based on data previously collected from the smart things. All

of this data (indoor and outdoor temperature and lighting, time, season, particular and

overall energy consumption, air humidity, CO2, etc.) can be used to define contexts and

the preferences of the user for such. Improving technology access to context can enrich
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human-technology interaction which yields services more useful to the user.

With this scenario in mind, this document describes the development of a system

that takes the current IoT requirements into account. Sensors in the room gather data

from the environment and feed it to the system. Machine learning and data mining

algorithms are able to extract contextual meta-data and continuously learn the user’s

behavior and interaction with the environment. The information from these algorithms is

used to automate control decisions for the devices and assist in energy efficiency.

The remainder of this document is organized as follows: Chapter 2 provides

a brief overview of the main terms and technologies used and referred to along the

work. Chapter 3 provides an overview of the current state-of-art in control of smart

environments. The main objectives and requirements of this work are detailed in Chapter

4. Chapter 5 covers the system implementation. The results of the implementation are

discussed in Chapter 6. Finally, Chapter 7 provides the final conclusions and project

outlook.
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2 Background

This chapter describes the main concepts, technologies, and tools that were used

in this work, as well as in the research and development field. The theoretical background

was the first stage of the project development, which allowed the understanding of

Internet of Things, Embedded Systems and Machine Learning techniques leading

concepts. Besides, this study made possible the familiarization with the primary tools

and technologies currently employed in this kind of systems. The following sections

provide a brief overview of these topics and pointers to the bibliographic sources.

2.1 Internet of Things

The Internet of Things (IoT) is the concept of connecting any device to the

internet. These devices may range from cell phones, coffee makers, washing machines,

headphones, lamps, wearable devices and almost anything else one may imagine. This

vast range also applies to components of machines, for example, a jet engine of an

airplane or the drill of an oil rig. The IoT is a giant network of connected “things” (which

also includes people). The relationship may be between people-people, people-things,

and things-things [3].

2.2 Smart Environments

The concept of smart environments evolves from the definition of ubiquitous

computing that promotes the ideas of "a physical world that is richly and invisibly

interwoven with sensors, actuators, displays, and computational elements, embedded

seamlessly in the everyday objects of our lives, and connected through a continuous

network."

Cook and Das [4] define smart environment as "a small world where different

kinds of smart device are continuously working to make inhabitants’ lives more com-

fortable." Smart environments aim to satisfy the experience of individuals from every

environment, by replacing the hazardous work, physical labor, and repetitive tasks with

automated agents.

Smart environments are broadly classified to have the following features [5]:

• Remote control of devices, like power line communication systems to control

devices.
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• Device Communication, using middleware, and Wireless communication to form a

picture of connected environments.

• Information Acquisition/Dissemination from sensor networks.

• Enhanced Services by Intelligent Devices.

• Predictive and Decision-Making capabilities.

2.3 Context-aware computing

Context-aware computing is a style of computing in which situational and envi-

ronmental information about people, places, and things is used to anticipate immediate

needs and proactively offer enriched, situation-aware and usable content, functions,

and experiences. Such context-aware systems adapt according to the location of use,

the collection of nearby people, hosts, and available devices, as well as to changes

to such things over time. A system with these capabilities can examine the computing

environment and react to changes to the environment [6].

2.4 Data Mining

Data mining (sometimes called data or knowledge discovery) is the process of

analyzing data from different perspectives and summarizing it into useful information

- information that can be used to increase revenue, cuts costs, or both. Data mining

software is one of some analytical tools for analyzing data. It allows users to analyze data

from many different dimensions or angles, categorize it, and summarize the relationships

identified. Technically, data mining is the process of finding correlations or patterns

among dozens of fields in large relational databases [7].

2.4.1 Random forests

One of the crucial functions of data mining is to analyze the relevance of a given

variable to another. This way it is possible to reduce the size of the analytical space and

improve the accuracy of the used algorithms.

Random forests or random decision trees are an ensemble learning method for

classification, regression and other tasks, that operate by constructing a multitude of

decision trees at training time and outputting the class that is the mode of the classes

(classification) or mean prediction (regression) of the individual trees. Random decision

forests correct for decision trees’ habit of overfitting to their training set.
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Random forests can be used to rank the importance of variables in a regression

or classification problem in a natural way. The measure the variable importance in a

data set is made during the fitting process. The out-of-bag error for each data point

is recorded and averaged over the forest. To measure the importance of a feature

after training, the values of the feature are permuted among the training data and the

out-of-bag error is again computed on this perturbed data set. The importance score

for the feature is computed by averaging the difference in out-of-bag error before and

after the permutation over all trees. The score is normalized by the standard deviation

of these differences. [8]

2.4.2 Extra Trees Classifier

Adding one further step of randomization yields extremely randomized trees, or

ExtraTrees. These are trained using bagging and the random subspace method, like in

an ordinary random forest, but additionally the top-down splitting in the tree learner is

randomized. Instead of computing the locally optimal feature/split combination (based

on, e.g., information gain or the Gini impurity), for each feature under consideration, a

random value is selected for the split. This value is selected from the feature’s empirical

range (in the tree’s training set, i.e., the bootstrap sample) [9].

The Extra Trees Classifier1 implements a meta-estimator that fits some random-

ized decision trees (a.k.a. extra-trees) on various subsamples of the dataset and use

averaging to improve the predictive accuracy and control over-fitting. Additionally, this

classifier can rank the features of datasets accordingly to a selected feature.

2.5 Machine Learning

Machine learning is a field of artificial intelligence (AI) that provides computers

with the ability to learn without being explicitly programmed. Machine learning focuses

on the development of computer programs that can teach themselves to grow and

change when exposed to new data.

The process of machine learning is similar to that of data mining. Both systems

search through data to look for patterns. However, instead of extracting data for human

comprehension, as is the case in data mining applications, machine learning uses that

data to detect patterns in data and adjust program actions accordingly. Machine learning

algorithms are often categorized as being supervised or unsupervised. Supervised

algorithms can apply what has been learned in the past to new data. Unsupervised

algorithms can draw inferences from datasets [10].

1 ExtraTreesClassifier, <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
ExtraTreesClassifier.html>, Accessed: January/2017

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
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2.5.1 Artificial Neural Networks

An artificial neural network (ANN) learning algorithm, usually called "neural net-

work" (NN), is a learning algorithm that is inspired by the structure and functional aspects

of biological neural networks. Computations are structured concerning an interconnected

group of artificial neurons, processing information using a connectionist approach to

computation. Modern neural networks are non-linear statistical data modeling tools.

They are usually used to model complex relationships between inputs and outputs, to

find patterns in data, or to capture the statistical structure in an unknown joint probability

distribution between observed variables [11].

2.5.2 Fuzzy Logic and Fuzzy Control

Fuzzy logic is an approach to computing based on "degrees of truth" rather than

the usual "true or false" (1 or 0) Boolean logic on which the modern computer is based.

Fuzzy logic includes 0 and 1 as extreme cases of truth (or "the state of matters" or "fact")

but also includes the various states of truth in between so that, for example, the result of

a comparison between two things could be not "cold" or "hot" but "38% of coldness."

Fuzzy controllers are very simple conceptually. They consist of an input stage, a

processing stage, and an output stage. The input stage maps sensor or other inputs,

such as switches, thumbwheels, and so on, to the appropriate membership functions

and truth values. The processing step invokes each applicable rule and generates a

result for each, then combines the results of the rules. Finally, the output stage converts

the combined result back into a particular control output value [12].

2.6 Microcontrollers

A micro-controller (or MCU, short for micro-controller unit) is a small computer

(SoC) on a single integrated circuit containing a processor core, memory, and pro-

grammable input/output peripherals. This project comprises two different MCUs with

different processing capabilitie, which are described below.

2.6.1 Intel Galileo Gen. 2

The Intel Galileo Gen 2 board2, shown in figure 1, is based on the Intel Quark

SoC X1000, a 32-bit Intel Pentium-class system on a chip (SoC). It is the first board

based on Intel architecture designed to be hardware and software pin-compatible with

shields designed for the Arduino Uno R3. The Galileo board is also software-compatible

with the Arduino Software Development Environment.

2 Intel Galileo Gen 2, <https://www.sparkfun.com/products/13096>, Accessed: January/2017

https://www.sparkfun.com/products/13096
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Figure 1 – Intel Galileo Gen. 2 Board

Source: Adapted from Sparkfun Electronics

In addition to Arduino hardware and software compatibility, the Galileo board

has several PC industry standard I/O ports and features to expand native usage and

capabilities beyond the Arduino shield ecosystem. A full sized mini-PCI Express slot,

100Mb Ethernet port, Micro-SD slot, USB TTL UART header, USB Host port, USB Client

Port, and 8 MByte NOR flash come standard on the board. The genuine Intel processor

and surrounding native I/O capabilities of the SoC provides for a fully featured offering

for embedded system development.

2.6.2 EPOSMote III

EPOSMote III [13] is a micro-controller developed at LISHA. This piece of hard-

ware consists of a Texas Instruments CC2538 SoC, that combines a powerful ARM

Cortex-M3-based MCU system with up to 32KB on-chip RAM and up to 512KB on-chip

flash with a robust IEEE 802.15.4 radio, all in a 8x8mm2 QFN56 footprint.

2.7 Operating Systems

The choice of an operating system is directly tied to the hardware available,

application and the tasks that the system should perform. In the subsections below, are
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Figure 2 – EPOSMoteIII Board.

described the operating systems chosen for this project and the reason for the choice.

2.7.1 Ubilinux

The application running in the Intel Galileo Gen. 2 board complies many different

functionalities: controlling GPIO pins, parsing sensor data, scanning the network for

a specified MAC address and interfacing applications through Ethernet. This requires

many different packages and features from the operating system. This vast range of

features is only provided by a general purpose OS, such Linux. Linux comes in many

different distributions that aim for different uses.

Instead of using the Linux image available on many of the Galileo Gen. 2 tutorials,

for this project an alternative embedded Linux distribution based on Debian Jessie was

chosen, called Ubilinux3. This distribution is targeted at embedded devices that have

limited memory and storage capabilities, such as the Intel Galileo Gen. 2. This Linux

distribution uses the same package manager as many other Debian-based distributions,

the apt-get, and therefore, has access to a wide range of packages.

Also, there is a python module, called wiringx864, developed by Emutex that

provides a straightforward and unified API to talk to the GPIO pins on Intel Arduino

capable boards, such as Galileo Gen. 2. This made possible the elimination of the

Arduino programming interface from our application, bringing everything together in a

single development environment.

3 Ubilinux, <https://emutex.com/products/ubilinux>, Accessed January/2017
4 Wiringx86, <https://github.com/emutex/wiring-x86>, Accessed January/2017

https://emutex.com/products/ubilinux
https://github.com/emutex/wiring-x86
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2.7.2 EPOS

The operating system used in EPOSMote III is the EPOS5. The Embedded

Parallel Operating System aims at automating the development of embedded systems

so that developers can concentrate on what really matters: their applications. EPOS

relies on the Application-Driven Embedded System Design (ADESD) [14] method

to guide the development of both software and hardware components that can be

automatically adapted to fulfill the requirements of particular applications. EPOS features

a set of tools to support developers in selecting, configuring, and plugging components

into its application-specific framework. The combination of methodology, components,

frameworks and tools, enable the automatic generation of application-specific embedded

system instances. Figure 3 shows a diagram of the EPOS and EPOSMote interaction.

Figure 3 – EPOS@EPOSMoteIII.

2.8 Programming Languages

The proposed system complies many features, functionalities and still should

attend to certain QoS requirements such as performance, resource usage, reliability,

etc. Every programming language has its advantages and drawbacks. The following

subsections describe the programming languages used in this project.

5 EPOS, <http://epos.lisha.ufsc.br>, Accessed January/2017

http://epos.lisha.ufsc.br
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2.8.1 BASH

Bash6 is the GNU Project’s shell. Bash, the Bourne Again SHell, is an sh-

compatible shell that incorporates useful features from the Korn shell (ksh) and C shell

(csh). It is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2 Shell and Tools

standard. It offers functional improvements over sh for both programming and interactive

use. In addition, most sh scripts can be run by Bash without modification. It’s reasonably

robust for automating and integrating disparate executables, and more importantly it’s

installed by default on nearly every flavor of Unix.

2.8.2 C++

C++7 is a general-purpose programming language. It has imperative, object-

oriented and generic programming features, while also providing facilities for low-level

memory manipulation. It was designed with a bias toward system programming and

embedded, resource-constrained and large systems, with performance, efficiency and

flexibility of use as its design highlights. This language is used for programing the

EPOSMote III firmwares.

2.8.3 Python

Python 3.58 was chosen as the main programming language for both the gateway

and the context-aware decision engine. Python is a widely used, high-level, general-

purpose, interpreted, dynamic programming language. Its design philosophy empha-

sizes code readability, and its syntax allows programmers to express concepts in fewer

lines of code than possible in languages such as C++ or Java. The language provides

constructs intended to enable writing clear programs on both small and large scale.

Python supports multiple programming paradigms, including object-oriented, imperative

and functional programming or procedural styles. It features a dynamic type system

and automatic memory management and has a large and comprehensive standard

library. For this reason was the choice for implementation of the gateway daemons and

machine learning algorithms.

2.8.4 HTML and CSS

HTML is a computer language devised to allow website creation. These websites

can then be viewed by anyone else connected to the Internet. It is relatively easy to

learn, with the basics being accessible to most people in one sitting; and quite powerful

6 BASH, <https://www.gnu.org/software/bash/>, Accessed January/2017
7 C++, <https://isocpp.org/>, Accessed January/2017
8 Python 3.5, <https://www.python.org/downloads/release/python-350/>, Accessed January/2017

https://www.gnu.org/software/bash/
https://isocpp.org/
https://www.python.org/downloads/release/python-350/
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in what it allows you to create. It is constantly undergoing revision and evolution to meet

the demands and requirements of the growing Internet audience under the direction of

the W3C, the organisation charged with designing and maintaining the language.

2.8.5 JavaScript and JQuery

JavaScript [15] is a high-level, dynamic, untyped, and interpreted programming

language. It has been standardized in the ECMAScript language specification. Alongside

HTML and CSS, JavaScript is one of the three core technologies of World Wide Web

content production; the majority of websites employ it, and all modern Web browsers

support it without the need for plug-ins.[6] JavaScript is prototype-based with first-

class functions, making it a multi-paradigm language, supporting object-oriented,[8]

imperative, and functional programming styles.[6] It has an API for working with text,

arrays, dates and regular expressions, but does not include any I/O, such as networking,

storage, or graphics facilities, relying for these upon the host environment in which it is

embedded.

jQuery [16] is a fast, small, and feature-rich JavaScript library. It makes things

like HTML document traversal and manipulation, event handling, animation, and Ajax

much simpler with an easy-to-use API that works across a multitude of browsers. With a

combination of versatility and extensibility, jQuery has changed the way that millions

of people write JavaScript. Query Mobile is a HTML5-based user interface system

designed to make responsive web sites and apps that are accessible on all smartphone,

tablet and desktop devices.

2.9 Libraries and Modules

Along with the programming languages several libraries and modules were used

to provide them with the additional required functionalities. The most important in the

scope of this project are listed and described in the following subsections.

2.9.1 Pandas

Pandas9 is a Python package providing fast, flexible, and expressive data struc-

tures designed to make working with “relational” or “labeled” data both easy and intuitive.

It aims to be the fundamental high-level building block for doing practical, real world data

analysis in Python. Additionally, it has the broader goal of becoming the most powerful

and flexible open source data analysis / manipulation tool available in any language. It

is already well on its way toward this goal.

9 Pandas, <http://pandas.pydata.org/>, Accessed January/2017

http://pandas.pydata.org/
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2.9.2 Flask

Flask10 is a small and powerful Python framework for the development of web

applications. This framework is extensively documented and provides RESTful request

dispatching, which is used to communicate the server, the application and the gateway.

2.9.3 Keras

Keras11 is a high-level neural networks library, written in Python and capable

of running on top of either TensorFlow or Theano. It was developed with a focus on

enabling fast experimentation.

2.9.4 Theano

Theano12 is a Python library that allows you to define, optimize, and evaluate

mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs

and perform efficient symbolic differentiation.

2.9.5 SkFuzzy

Scikit-Fuzzy13 is a collection of fuzzy logic algorithms intended for use in the

SciPy Stack, written in the Python computing language. This module allows the creation

of fuzzy control algorithms, visualization of the fuzzy sets and simple integration.

2.9.6 Scikit-Learn

Scikit-learn14 is a free software machine learning library for the Python program-

ming language. It features various classification, regression and clustering algorithms

including support vector machines, random forests, gradient boosting, k-means and

DBSCAN, and is designed to inter-operate with the Python numerical and scientific

libraries NumPy and SciPy.

2.9.7 Network Mapper

The tool used to sweep the network searching for MAC addresses is called

Nmap15. Nmap ("Network Mapper") is a free and open source utility for network discovery

and security auditing. Nmap uses raw IP packets in novel ways to determine what hosts

10 Flask Web Application Framework, <http://flask.pocoo.org/>, Accessed January/2017
11 Keras, <https://keras.io>, Accessed January/2017
12 Theano, <http://deeplearning.net/software/theano/>, Accessed January/2017
13 SkFuzzy, <http://pythonhosted.org/scikit-fuzzy/>, Accessed January/2017
14 Scikit-Learn, <http://scikit-learn.org>, Accessed January/2017
15 Network Mapper (Nmap) <https://nmap.org/>, Accessed January/2017

http://flask.pocoo.org/
https://keras.io
http://deeplearning.net/software/theano/
http://pythonhosted.org/scikit-fuzzy/
http://scikit-learn.org
https://nmap.org/
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are available on the network, what services (application name and version) those hosts

are offering, what operating systems (and OS versions) they are running, what type of

packet filters/firewalls are in use, and dozens of other characteristics. It was designed to

rapidly scan large networks, but works fine against single hosts.

2.9.8 Apache Cordova

Apache Cordova16 (formerly PhoneGap) is a popular mobile application develop-

ment framework. It is an open source software that enables software programmers to

build applications for mobile devices using CSS3, HTML5, and JavaScript instead of re-

lying on platform-specific APIs like those in Android, iOS, or Windows Phone. It enables

wrapping up CSS, HTML, and JavaScript code depending upon the device platform.

It extends the features of HTML and JavaScript to work with the device. The resulting

applications are hybrid, meaning that they are neither truly native mobile application nor

purely web-based.

16 Apache Cordova, <https://cordova.apache.org/>, Accessed January/2017

https://cordova.apache.org/
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3 Related Work

The lack of knowledge regarding the state-of-the-art of an individual research

field may lead to many misconceptions during the development phase, and therefore is

of great importance. This chapter contains a brief presentation of the related works. The

works presented in this chapter relate to the one presented in this document from basic

approaches, evaluations or possible further applications. They also provide enough

information for the comparison of techniques and strategies.

In the paper "Middleware for the Internet of Things: A Survey" [17], the authors

outline a set of requirements for IoT middleware and present a comprehensive review

of the existing middleware solutions. The proposals of existing middlewares for the IoT

are diverse and involve various design approaches and support different requirements.

The author’s paper puts these works into perspective and presents a holistic view of

the field. In doing this, the key characteristics of IoT infrastructure (heterogeneous,

resource-constrained, ultra-large-scale network and number of events, context-aware,

etc.) and applications (Real-time, Diverse, Secure, etc.), as well as the requirements of

IoT’s middleware are identified. Based on these requirements, a comprehensive survey

of these middleware systems focusing on current, state-of-the-art research has been

presented. Most of these proposals have been reviewed and summarized in terms

their supported functional, nonfunctional, and architectural requirements. Finally, open

research issues, challenges and recommended possible future research directions

are outlined. Although the existing middleware solutions address many requirements

associated with middleware in IoT, some requirements and related research issues

remain relatively unexplored, such as scalable and dynamic resource discovery and

composition, system-wide scalability, reliability, security and privacy, interoperability, inte-

gration of intelligence, and context-awareness. Design decisions and implementations in

the project described by this document followed the guidelines from this survey and took

specially interoperability, integration of intelligence, context-awareness requirements

and challenges into account.

Lee and Chung propose a system architecture for context-aware home applica-

tions covering all aspects of ubiquitous computing and network including applications,

middleware, gateway, OS, sensor network, etc. [18]. They approach this problem by

generating and defining applications that are proper to show ubiquitous computing appli-

cations at home. Secondly, listing the technologies needed to develop such scenarios.

The authors focused on four main scenarios: Media-Services, Healthcare Services,

Control Services and lastly Management Services. Figure 4 illustrates the structure

of the proposed system. The lowest level of the system is components that directly
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Physical Context
Collector

lighting, noise, humidity,
temperature

User Context
Collector

location, ID, activity
physical condition

Computing Context
Collector

processor, I/O device,
network

Context Information DBMS
storing and retrieving various context data in systematic structure

Context Management
making situational information from raw context data

Intelligent Decision Engine
making decision how to act based on context

u-Media u-Healthcare u-Control u-Management

Application Specific Adaptive Layer
transparent bridging between various applications and context information

Figure 4 – Structure of the Context-Aware Home Application Server

Source: [18]

sense context. Context information DBMS manages context information using ordinary

DBMS and offers upper layer the access to it. Context Management constructs high-

level situational information. The Intelligent Decision Engine operates like an intelligent

agent. It should be able to present the information and services to a user or execute a

service. Lastly, The Application Specific Adaptive Layer should provide a system with

the capability to bridging various application and context information. Despite the com-

plete description of the system architecture, the system architecture was not validated,

because the system was not implemented.

An operational definition of context and context-aware systems is provided by

Dey in the paper "Understanding and Using Context" [19]. The author characterizes

context as any information that can be used to characterize the situation of an entity. An

entity is a person, place, or object that is considered relevant to the interaction between

a user and an application, including the user and applications themselves. Further,

the author defines a context-aware system as any system that uses context to provide

relevant information and/or services to the user, where relevancy depends on the user’s

task. He also proposes which are the main features that should be implemented in a

context-aware system: i) presentation of information and services to a user; ii) automatic

execution of a service for a user; iii) tagging of context to information to support later

retrieval. In the paper a new abstraction is introduced, the situation. Situations, however,

rely on human classification and require too much user input. The system proposed

in this work, on the other hand, proposes a composition of data mining and machine

learning techniques to make user classification unnecessary.
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The study presented by [20] aims at developing an indoor temperature control

method that could provide comfortable thermal conditions by integrating heating system

control and the opening conditions of building envelopes. Artificial neural network (ANN)-

based temperature control logic was developed for the control of heating systems and

opportunities at the building envelopes in a predictive and adaptive manner. Analysis

results revealed that the ANN-based control logic improved the indoor temperature

environment with an increased comfortable temperature period and decreased over-

shoot and undershoot of temperatures outside of the operating range. The ANN-based

temperature control logic was able to maintain the indoor temperature more comfortably

and with more stability within the operating range due to the predictive and adaptive

features of ANN models. The proposed logic did not show significant superiority in

energy efficiency over the conventional logic.

The authors Zheng, Wang and Black approach context-awareness in a smart

home with the detection and recognition of human activity [21]. Their smart home had a

set of state-change sensors installed and was tested during two weeks. Their system

is based on a self-adaptive neural network called Growing Self-Organizing Maps that

exhibits several appealing features in the analysis of patterns encoded in daily activity.

Even though their method has proven to be very suitable for detecting and recognizing

human activity, it does not address some crucial issues such as automatic control based

on context and composition of machine learning techniques to improve the results of

the system.

In the work of Wanglei and Shao [22], the authors propose the implementation of

an Adaptive Neuro-Fuzzy Inference system (ANFIS) to optimize current home environ-

ment and make responses based on previous habitual behaviors. Their implementation

combines fuzzy control and neural networks. They also propose the use of K-means

clustering algorithm to deal with the main problems related to the use of such algorithms,

which are caused by the high number of variables, the exponential growth of fuzzy rules

and back-propagation algorithm slow learning. The implementation reported consists of

5 layers:

1. Fuzziness of the variable. The output is membership degree of the corresponding

category.

2. Right value of the rules. The output is the multiplication of the membership degrees.

3. Normalization Output is the standardization of the value.

4. Defuzziness of the variables. The output is the weighted value for each rule.

5. Output of ANFIS.
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To evaluate their implementation, the authors used Sunlight and Lamplight measured

through sensors, the open ratio of the curtain by user experience. Data was collected

from 6:00 to 17:00 every 3 minutes. 220 sets collected (150 training sets and 70 testing

sets). Even though the authors claim their approach can overcome the exponential

growth of fuzzy rules due to the variables number and learning speed of usual back-

propagation algorithms, they did not evaluate any of these points.

Zhang et al. describe in their paper [23] a smart home control system based

on information fusion. Their proposed framework includes internet access and data

acquisition modules, in-house networking services with wireless connectivity, embedded

computational units in home appliances and an information fusion controller based

on fuzzy logic and neural networks. Fuzzy logic is used to combine heterogeneous

information from different sources and to execute an inference mechanism in terms

of IF-THEN rules. Neural Networks were used to provide the system with learning

ability. The case study for this scheme consisted of the control of an alarm clock able to

generate a suitable alarm lead time. The system acquires weather and traffic conditions

and uses the fuzzy controller and neural networks to determine a suitable alarm time.

The proposed system has proven to be successful in generating a suitable alarm lead

time. Differently then what is proposed in this work, the authors use fuzzy controller to

generate the inputs for the neural network. In this work fuzzy controllers are used as

optimizers able to enhance energy efficiency. Additionally, the authors assume only a

few variables that they consider relevant as input for their system, they do not consider

a real IoT environment where there are numerous sources of data and the user does

not know enough to select the most appropriate variables to use in the system.

Ye et al. propose an adaptive smart home control system composed of two

learning algorithms: a toddler algorithm based on ant colony optimization to learn user

operation rules and an unnamed correlation algorithm to identify rule relations [24]. The

algorithms run in a central controller uses the feedback information from the household

appliances to find out the user’s habits. The nodes of this system proposed in their work

use PLC (Power Line Carrier) modules to communicate with each other. The authors

claim in the paper that the system has reached the design requirements, however, they

identify two unsolved issues in their system. It needs a long time to learn the rules of

user behavior and after it has learn a rule, it is very difficult to modify that rule.

It is possible to conclude that there are still lots of points that most of the current

existing approaches do not deal with. This work, takes into account many of the issues

encountered in the related researches and proposes a novel composition of technologies

to implement a smart environment.
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4 Project Goals and Requirements

This chapter describes the main goals and requirements of this project. The

fundamental components of the system are described and for each one the primary

requirements are specified.

4.1 Development of an Intelligent Gateway and Integration

with Smart Room

As IoT grows and billions of devices need to connect to the world, one of the most

critical components of future Internet of Things systems may be a device known as an

"IoT gateway." IoT gateways perform several key functions such as device connectivity,

protocol translation, data filtering and processing, security, updating, management and

more. Newer IoT gateways also operate as platforms for application code that processes

data and becomes an intelligent part of a device-enabled system. The system described

in this document considers a gateway that isolates smart things from the TCP/IP world,

integrating different technologies and providing an environment for secure operation [17]

4.1.1 Intelligent Gateway Main Requirements

• User Detection: The gateway should be able to scan the local network and detect

users by the MAC address of their smartphone.

• Bridge different communication protocols: The devices inside LISHA’s Smart

Room communicate through Modbus messages over IEEE 802.15.4. The user

and server on the other hand, communicate with the gateway via TCP/IP over

Ethernet. Therefore the gateway must be able to successfully bridge these two

standards.

• Parse and Filter Sensor Data: The smart devices inside the room send raw data

in Modbus messages to the gateway. The gateway must be able to parse the

Modbus messages as well as convert sensor data to units of the International

System and filter outliers of erroneous data.

• Communicate with the Internet: User commands and server queries are re-

ceived and issued by the gateway through HTTP REST requests.

• Periodically Log Environment Data to the Server: Environment data from sen-

sors are used for the training and preference prediction of the context-aware



40 Chapter 4. Project Goals and Requirements

control algorithm. For this reason data should be logged periodically accordingly

to an adequate sampling period.

• Query Context-Aware algorithm for environment Adjustments: The gateway

must be able to issue prediction queries to the server running the context-aware

algorithm for the connected user.

• Ensure QoS: All the described functions must run in parallel, so the user comfort

is not impaired.

4.2 Development of a hybrid application

Portability is a crucial issue in IoT projects. Since most things are capable of being

remotely controlled, a user must be able to have access to what he wants in the closest

platform. If a user is surfing the Internet on his computer, it is easier to open another

tab in the browser than to find his smartphone and initiate an application to control a

device or check the current consumption of an appliance. Therefore, cross-platform

implementations of the system are crucial. The implementation of such, however, is not

trivial. Android applications are implemented in Java while web apps can be implemented

in a series of other languages such as HTML, JavaScript, CSS, Java e etc.

4.2.1 Hybrid Application Main Requirements

• Cross-Platform Availability: It should be possible to run the application in differ-

ent platforms and devices.

• Remote device control capabilities: A user should be able to remotely turn

devices on and off, independently of where he is.

• Real-Time data visualization: A user must be capable of checking the current

device power consumption, temperature and every other environment information

available.

• Data History Visualization: The application should be able to query user history

and display the data in form of a time-series chart.

4.3 Development of a Context-Aware Environment Control

Algorithm

Most of Supervisory Control And Data Acquisition (SCADA) systems are still

able to cope with the current IoT and industrial technologies. These systems work
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with pre-defined rules and devices, but the slightest change may cause the whole

system to be re-adapted. The addition of a new device to the network, for example, may

require a technician to integrate the technology, evaluate the impact of the device and

reformulation of a series of rules. When we consider Cisco and Business Insider IoT

market and device number expectations, it is clear to notice that these systems will not

be capable of dealing with this. SCADA systems also fall short on many other features

that are very desirable in the future world of the IoT, such as data aggregation, predictive

analytics, etc.

Intelligent control in smart environments can be realized by analyzing the data

in a sensor network and the user’s previous behavior of operation to the available

appliances and devices, without user intervention. This control system can predict and

control the household appliances intelligently to make whole home environments more

environmentally friendly and comfortable. To improve the learning ability of home control

system, to take full advantage of the sensor network data we propose an Adaptive

Context-Aware decision engine, that uses previous user meta-data to learn how to adapt

the room to the user preferences automatically. By identifying key correlated variables,

we can select the most relevant data for the control of an individual device.

4.3.1 Context-Aware Algorithm Main Requirements

• Automatic Identification of Relevant Information: Smart Environments are

composed of a series of mixed data sources. The use of the entire dataset for

training and forming the control rules of certain devices may lead to overfitting

and unreliable actions. The context-aware control algorithm should be able to

identify the features of data that are relevant for the control of an individual device

to provide better statistical support to the decisions taken by the algorithm.

• Inclusion of previous pre-defined rules: To prevent the decision engine from

being idle in the bootstrap phase (while there is not enough user behavior infor-

mation for the algorithm to be successfully trained), the context-aware algorithm

should be able to incorporate previous rules or user preferences.

• Continuous User Preference Learning: New user behaviors may show up with

time. For this reason, the system should be able to keep learning from data.

• User-Specific Preference Prediction: Environment adjustment predictions should

be made according to the user that is currently present in the given environment.

• Heuristic-based Energy Footprint Optimization: Since in general users are not

concerned, or not capable of watching the whole time the energy consumption

of the devices they use in day-to-day activities, the system should implement
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optimizers for the prediction of the context-aware algorithm that takes energy

saving heuristics into account.

4.4 System Integration

A system is an aggregation of subsystems cooperating so that the system can

deliver the overarching functionality. System integration involves integrating existing

often disparate systems. The above-described modules and subsystems should be

joined as a single system, ensuring that each integrated subsystem performs the

required functions.

4.4.0.1 System Integration Requirements

• Successful communication between disparate modules: Modules must ex-

change data successfully. This includes the acknowledgement of messages and

and checking whether data did not get corrupted.

• Resume operation after shutdown without errors: If a subsystem or the whole

system comes to fail, it should be able to resume operation normally after detecting

the fault.

• Maintain functioning without significant overhead: The subsystems share

resources and must not affect each other’s functionalities or performance in any

significant way.

• Ensure non-existence of dead-locks: Should different threads come to hang in

execution, they should not prevent one another from finishing.

4.5 Validation

Validation is the process of checking that a software system meets specifications

and that it fulfills its intended purpose. It may also be referred to as software quality

control. The primary metrics for the evaluation of the system are: i) prediction accuracy

of the user’s preferences regarding a given context; ii) ability to reduce the energy

consumption of controllable devices through power saving heuristics; and iii) ability to

learn new user behaviors with time.

For a successful system outcome, all of them must be attended. These perfor-

mance indicators must be met to indicate that the system has been built according to

the requirements and design specifications as well as ensuring that the product meets

the user’s needs.
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5 Project Development

This chapter details the development process of the project. Firstly, a general

overview of the system is made, describing the main components and how they interact

with each other. Secondly, the Smart Room is described. The following sections describe

the other system’s modules and functionalities detailing the implementation.

5.1 System Overview

The system proposed by this project is made of four main components. These

components are shown in Figure 5. The user application, the cloud server that hosts

both the database and context-aware decision engine, the Smart Room at the Soft-

ware/Hardware Integration Lab, and lastly, the Internet of Things Gateway.

User

Smart Room

Database Context-Aware
decision engine

rescient

Hybrid App

rescient
rescient

IoT Gateway

EthernetIEEE 
802.15.4

IEEE 
802.11

rescient

Sensors

Actuators

Server

Figure 5 – System Overview

The hybrid application provides the user interface to the system. It is called hybrid

application due to the framework used for the development, it allows the generation of

cross-platform applications, in other words, the resulting application can run either on

a web browser or a mobile device. It can show real-time data as well as data history
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from the smart room sensors. The user is also allowed to control the smart devices

through the hybrid application. Figure 6 presents a use case diagram for the hybrid user

application. This application interfaces with the HTTP server via RESTful requests.

Hybrid Application

Turn Power-Saver
Mode On / Off

Dimmer Lamps

Turn Devices
On / Off

View Data
History

View Real-time 
Data

App User

Figure 6 – Use case diagram for User Application.

The server is responsible for a series of functions, it receives data from the

gateway and stores it in the database, relays commands from the application to the

gateway and hosts the context-aware decision engine. The decision engine queries

information from the database, selects the most relevant features for the control of a

certain output and trains a neural network to learn how to control the room based on

the user’s previous behavior. The result from the neural network may or may not be

optimized by a fuzzy controller. The server functionalities are illustrated by the use case

diagram on Figure 7.

The smart room features a set of EPOSMote III microcontrollers with a series of

sensors employed for periodically reporting the measured data via Modbus messages

over IEEE 802.15.4 protocol. The sensors are used to collect data such as energy

consumption of power outlets and lamps, temperature, air humidity, luminosity, etc. The

motes are also capable of actuating on devices, on the lights, for example, the motes

can turn them on or off and control the luminosity intensity. The use case diagram shown

in Figure 8 present the basic functions of the EPOSMote III.

A gateway is used to bridge the IEEE 802.15.4 devices (EPOSMote III) with

the Internet. This gateway consists of an Intel Galileo Gen. 2 Board that is connected

via serial USB to an EPOSMote III. The EPOSMote III is used as a message relay, it

receives the Modbus messages from other Motes inside the smart room and forwards
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Figure 7 – Use case diagram for the server.

Receive Modbus Message

Send Modbus Message

Write Digital Output

Write Analog Output

Read Analog Input

EPOSMote III

Figure 8 – Use case diagram for EPOSMote III.

these messages to the Galileo board. It is also able to send Modbus messages that

come from the Galileo board to any mote in the room. In the other end, the Galileo board

is connected to a wireless router via Ethernet cable, therefore is virtually located in the

same subnetwork as any other device connected to the router. Additionally, the board

is also connected to presence, temperature and luminosity sensors, and 5 LEDs that

provide information about connectivity and operation for the user. Data collected in the
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gateway is converted into JSON and sent to an HTTP web server via RESTful requests

and stored in the database. Figure 9 displays a use case diagram with the functions

that should be performed by the gateway.

Check Internet 
Connectivity

Issue and Handle
HTTP RequestsWrite Analog Output

Write Digital Output

Read Analog Input

Convert Data to JSON

Filter and convert 
sensor data

Parse EPOSMote III
Modbus Messages

Read Digital Input

Query predictions
from server

Detect User in Network

Gateway

Figure 9 – Use case diagram for the Gateway.

5.2 LISHA’s Smart Room

The Software/Hardware Integration Lab (LISHA) at Federal University of Santa

Catarina (UFSC) already had a smart room. In former Internet of Things projects, some

smart things were developed and deployed for testing inside one of the Lab’s room.

Later these devices were used to automate UFSC’s Smart Solar Building [25]. The floor

plan of the room with the position of the installed devices is illustrated by Figure 10.

In this project, the EPOSMoteIII with EPOS operating system were used as the

base hardware for all mobile nodes. The node’s firmware is written in the programming

language C++. Communication between leaf and central nodes are made wireless via

an IEEE 802.15.4 network with a star topology. The devices periodically report sensor

measurements to the central node through the exchange of ASCII Modbus messages,

without any previous data conversion (data is sent in raw format). Table 5.2 shows the

Modbus message format, while Table 5.2 shows some of the message examples using

Modbus for the devices in the room.

Data conversion to meta-data is done entirely in the gateway, which puts data

into the correct format and posts it for database storage in the cloud.
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Figure 10 – Smart Room at LISHA UFSC

Field
Length
(char.)

Function

Start 1 Starts with colon (’:’)
Address 2 Station Address
Function 2 Indicates the function codes (i.e. read/write coil/inputs)
Data n Data + length are function-dependent
CSM 2 Checksum for integrity checks
End 2 Carriage return and line feed (CR + LF)

Table 1 – Modbus Message Format.

Device ID Type Functions Registers

0xA0 light A0
Write Single Coil (0x05)

Write Single Register (0x06)
Read Holding Register (0x03)

Turn light A0 On/Off
Dimm light A0
Read Energy Consumption

0xAC Air Conditioner
Write Single Coil (0x5)

Write Single Register (0x06)
Turn AC On/Off
Select temperature

0xB0 Power Outlet B0 Read Register (0x03) Read Energy Consumption

Table 2 – Modbus Message Examples for the devices in the Smart Room
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5.2.1 Power Outlets

Another device developed at LISHA is called the SmartPlug, shown in Figure 11.

The smart plug is a device that allows the control and energy consumption measurement

of appliances. Four smart plugs were already installed in the smart room, but were

inactive. All the EPOSMote III inside the power outlets were reprogrammed to send

every second a Modbus message reporting the current energy consumption.

Figure 11 – Smart Plug.

The analog read values are sent raw to the gateway. The gateway is responsible

for the Modbus message parsing and data conversion, as it holds a table for conversion

of all measurements from the mobile nodes. Figure 12 shows a picture of the power

outlets with EPOSMoteIII inside.

Figure 12 – Power Outlet with Smart Plug.

5.2.2 Lights

The lights inside the smart room were the only fully-functional devices already

installed. They did not require any additional reprogramming or installation. Similar to

the power outlets, the lights in the smart room also use a smart-plug for measuring
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energy consumption and turning them on/off. The firmware used for the lights is a little

bit more complex, as it also handles the dimerization of the lights.

5.2.3 External Sensing Node

Since the intelligent system relies on contextual data to achieve better perfor-

mance, it was speculated that the system could benefit from data outside the room such

as luminosity, temperature, and humidity. For that reason, an extra sensing node was

deployed outside the room. Two additional sensors were connected to the EPOSMoteIII.

One measuring luminosity and other temperature and humidity. Each component is

better explained in the following sections.

5.2.3.1 Luminosity

To measure luminosity a Light-Dependent Resistor (LDR) of 5mm was cho-

sen. Both the LDR and the circuit schematic, which was used for the measurements

connected to an analog input of EPOSMote III, are illustrated by Figure 13.

Figure 13 – Light-Dependent Resistor and schematic for connection to EPOSMoteIII.

Source: ProjectShop DB

The EPOSMote III has a 12-bit AD converter for the analog inputs. The value

read from the analog input in the mote, to which the LDR is connected to is sent to the

gateway and mapped to values ranging from 0% to 100%.

5.2.3.2 Temperature and Humidity

The measurements of external temperature and humidity were made using the

DHT11 sensor. Different from the LDR, that is analog, the DHT11 is a digital transducer.

The output pin of the DHT11 is connected to a digital GPIO pin of the EPOSMoteIII. The

MCU must send a start signal to ask the transducer for the information. The transducer

answers with a bit stream that differentiate 1s and 0s by the low and high signal periods.
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Figure 14 – DHT11 Temperature and Humidity sensor.

Source: Arduino Forum

When EPOSMote III sends a start signal, DHT11 changes from the low-power-

consumption mode to the running-mode, waiting for the MCU to complete the start

signal. Once it is completed, DHT11 sends a response signal of 40-bit data that include

relative humidity and temperature information to the MCU. Without the start signal from

MCU, DHT11 will not give back the response signal. Once data is collected, DHT11 will

change to low power-consumption mode until it receives a start signal from MCU again.

The overall communication process between the transducer and the micro-controller is

shown on Figure 15.

Figure 15 – Overall communication process between EPOSMoteIII and DHT11.

Source: Micropik DHT11 Datasheet

5.2.3.3 External Sensing Node Implementation

Two additional classes were developed to handle the LDR and DHT11 sensors.

The microcontroller firmware was rewritten to incorporate these two new classes and

report the data from the sensors via Modbus messages.

The above described components were brought together in a breadboard and

connected to EPOSMote III. The resulting prototype and respective connection schematic

is shown in Figure 16.

To protect the circuit and the microcontroller, both were placed in a case. In figure

17 the node is shown placed outside the window and connected to a power-bank as its

power source.



5.3. Intelligent Internet of Things Gateway 51

1 5 10 15 20

1 5 10 15 20

A

B

C

D

E

F

G

H

I

J

R2
10kΩ

DHT11

LDR

3.3V GND

EPOSMote III
Digital Pin

EPOSMote III
Analog In Pin

Figure 16 – EPOSMote III Circuit prototype Schematic.

Figure 17 – External sensing node.

5.3 Intelligent Internet of Things Gateway

An embedded control gateway for the Internet of Things extends the functionality

of a simple gateway by providing processing resources and intelligence for handling local

applications. This can take the form of shared processing resources where the gateway

performs tasks that would otherwise occur on nodes. An embedded control gateway can

evaluate and filter sensor data as well as implement high-level management tasks. After

evaluating and filtering sensor data, a gateway can trigger certain events, according to

some thresholds or rules.

Having an intelligent embedded control IoT gateway can reduce the complexity
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and cost of end points. Depending upon the application, this can result in significant

system savings in an application such as a Smart Home, where the gateway connects

to an array of sensors. Consolidating processing in the gateway, such as sensor data

filtering, enables nodes to leverage a shared resource, making each node simpler and

lower in cost.

The same holds for enabling connectivity. IP is a complex protocol to implement

with relatively high overhead for simpler IoT nodes. Instead, simple nodes can connect to

each other and to the gateway via IEEE 8002.15.4. The gateway then bridges connection

to an IP-based WAN interface like Wi-Fi or Ethernet. In both of these cases, savings

include lower processing, memory, and power requirements. Therefore, nodes can be

less expensive as well as more efficient.

Enabling intelligence in a gateway addresses interoperability issues on a local

level while minimizing the changes required to connect appliances. Rather than require

full intelligence in each device, the gateway can provide the base intelligence for

all devices. An intelligent gateway also better addresses the issues that arise from

connecting disparate nodes, compared to users having to connect each device or

appliance to the Internet manually.

5.3.1 Sensors and Actuators

A series of sensors and actuators were connected to the Galileo board. The

sensors were responsible for gathering the contextual data inside the room, and the

actuators for providing user feedback. These sensors require different electronic con-

nections and different code implementations. All of them were placed inside a case

developed by the group. Figure 18 shows the resulting gateway case. Each sensor,

electronic connection and python implementation are shown in the following sections.

5.3.1.1 LM35

The LM35 series are precision integrated-circuit temperature sensors, whose

output voltage is linearly proportional to the Celsius (Centigrade) temperature. The read

of the temperature can be easily done in the Galileo board by connecting the transducer

signal pin to an analog input from Galileo. The python class created to handle this

transducer is shown below and is easily imported as a module by the main daemon. The

first measurements proved to have a little bit of noise from the power grid. For this reason

we used a 1uF capacitor along with the LM35 transducer. It delayed the dynamic of the

sensor but improved the readings and, since temperature dynamic is slow, this delay

caused no problem to the system. The LM35 transducer and the electronic schematic

are shown in Figure 19.
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Figure 18 – Galileo gateway case with sensors and actuators.

Figure 19 – LM35 transducer and connection schematic.

Source: Texas Instruments.

The python class implementation used by the gateway daemon is displayed in

Figure 20. The class is accessible by including it in the Daemon.

Figure 20 – UML lm35 sensor class diagram.

Heading

from sensors.temperature import Lm35

Attributes
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• unit: Indicates the desired unit of measurement, where ’c’ is Celsius ’f’ is Fahren-

heit and k is Kelvin. If none provided takes Celsius as default.

• pin: Valid analog input pin. From 14 to 19.

• gpio: GPIOGalileoGen2 object to provide access to the I/O pins.

Methods

• __init__(pin, unit): Object initializer. Takes pin and unit as parameters.

• get_value(): Reads the current value of the temperature and converts it to the

respective unit indicated in the attribute.

5.3.1.2 Light-Dependant Resistor

In the same way as the mobile sensing node developed with EPOSMote, we

used an LDR sensor to measure luminosity inside the room. The sensors were almost

identical to be able to compare results.

Differently from the LDR class implemented for the EPOSMote III, which was in

C++ and required different libraries, Figure 21 shows the one implemented to be used

in the gateway.

Figure 21 – UML LDR class diagram for Galileo.

Heading

from sensors.light import LDR

Attributes

• pin: Valid analog input pin. From 14 to 19.

• gpio: GPIOGalileoGen2 object to provide access to the I/O pins.

Methods

• __init__(pin): Object initializer. Takes pin number as parameter.

• get_value(): Reads the current value of the indicated pin and return in percent.



5.3. Intelligent Internet of Things Gateway 55

5.3.1.3 Passive Infrared Sensor

The presence sensor used is shown in Figure 22. The connection of such sensor

to the Galileo board is very straight-forward. The Galileo board just needs to do a digital

read of the GPIO port to which the sensor is connected. If the read is 1 the sensor is

detecting something and, if the read is 0, the sensor is not detecting anything.

Figure 22 – Presence Sensor.

Source: Adafruit.

The most trivial implementation of all the sensors is the PIR sensor. The python

implementation is depicted in Figure 23.

Figure 23 – UML PIR class diagram.

Heading

from sensors.presence import PIR

Attributes

• pin: Valid digital pin. From 0 to 13.

• gpio: GPIOGalileoGen2 object to provide access to the I/O pins.

Methods
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• __init__(pin): Object initializer. Takes pin number as parameter.

• get_value(): Reads the current value of the indicated pin and return the corre-

sponding boolean value.

5.3.1.4 Feedback LEDs

The gateway case also features 5 color LEDs that are used to provide feedback

to the user. Every LED has its own meaning, as shown below:

• Green: Galileo is turned on.

• White: User is present in the network (user_pin).

• Yellow 1: The Galileo board is connected to the Internet (internet_pin).

• Yellow 2: Blinks when parsing data received from other EPOSMote III nodes

(data_pin).

• Red: Indicates that the Board is currently not using the context aware engine to

predict how to adjust the room (alarm_pin).

The most trivial implementation of all the sensors is the PIR sensor. The python

implementation is depicted in Figure 24.

Figure 24 – UML Feedback class diagram.

Heading

from actuators import Feedback

Attributes

• user_pin: Valid digital pin. From 0 to 13.

• internet_pin: Valid digital pin. From 0 to 13.

• data_pin: Valid digital pin. From 0 to 13.
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• alarm_pin: Valid digital pin. From 0 to 13.

• gpio: GPIOGalileoGen2 object to provide access to the I/O pins.

Methods

• __init__(pin): Object initializer. Takes pin number as parameter.

• on(pin): Turns the LED indicated by the pin attribute on.

• off(pin): Turns the LED indicated by the pin attribute off.

• blink(pin, period): Turns LED indicated by the pin attribute on/off in periods of

milliseconds.

A circuit was also developed to enable connection of all the devices to the GPIO

ports of Galileo. Figure 25 illustrates the electronic connections of the sensors to the

board while Figure 26 shows the inside of the case developed for our gateway.

5.3.2 User Detection

In this work, the adaptive context-aware system makes predictions based on

previous user preferences. In order to detect a user in the room and make the adequate

predictions for him, there must be a way of detecting when and which user is inside the

room. Merely by using a single presence sensor, it is possible to detect a user inside

the room, but not differentiate between them. For this reason, the MAC address of

smartphones were chosen to be used as user identifiers. Every person nowadays has

a smartphone and every smartphone has a unique MAC address which is accessible

through the network.

The Galileo board was connected to a wireless router through an ethernet cable

to put both the board and the connected user in the same subnet. If both the user and

the board are connected to the same subnet, Galileo can search the network for the

MACs which the registered users are assigned. If the MAC address is found on the

network sweep done by the gateway daemon, the system knows that it should make

predictions based on that user preferences.

User detection is implemented with the help of Linux utilities. The developed

python script makes calls to both BASH scripts and shell commands to access the

network and verify if a given MAC address is connected. To do that the Nmap tool is used

to sweep the network for the user’s MAC. Once a user is found, checking if the device is

still online is achieved by pinging the assigned IP address. While there are successful

pings within a 5-minute interval the user is considered to be online, else wise offline.

Since most routers work with IP lease times of close to a week, it possible to optimize



58 Chapter 5. Project Development

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2

5V

A0

A
N

A
LO

G
 I
N

A
R

E
F

S
C

L

S
D

A

G
N

D

R
E
S
E
T

3V3

A1 A2 A3 A4 A5

VIN

5V 3V3

POWER

GNDGNDIO
R

E
F

JTA
GREBOOT

RESET

ICSP

COIN

01
T
X

R
X

DIGITAL(PWM )
10/100 LAN

PWR

FUSE F4B1

USB

CTS

TX0

RX1

RTS

GND

CLIENT

USB
HOST

SDIO

+-

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A

B

C

D

E

F

G

H

I

J

LM
35

PIR 

220Ω 10kΩ

LM35
1μF LDR

Digital I/O Pins

Analog In Pins

5V / GND

Figure 25 – Galileo Circuit prototype Schematic.

the performance of the script accessing Linux ARP tables. Before sweeping the network,

the script pings the last IP address to which the user was connected, if the packet

reaches the destination (something is connected to the IP), Linux ARP table entries

are checked to verify if the IP matches the MAC address. The class implementation for

searching users is illustrated in Figure 27. The flow of user detection process is depicted

in Figure 28.

Heading

from scripts.user_detection import User

Attributes

• connected: Whether the user is currently connected to the network or not.

• script_path: Path to the bash scripts used by the operation.

• last_connected: Last instant that the user was connected to the network.
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Figure 26 – Inside Galileo Case

Figure 27 – UML User class diagram.

• name: Name of the user.

• mac_addr: MAC address of the user’s smartphone.

• ip: IP address to which the user is currently connected.

• last_ip: Last known IP to which the user was connected.

Methods

• __init__(script_path, mac, name, last_ip): Object initializer.

• validate_ip(): Checks if the IPs assigned to the user are valid addresses.

Returns 1 if IP is valid and 0 if IP is not valid.

• search_net: Calls bash script that pings the last known IP and verify if Linuxs

ARP table’s MAC matches or/and scan the network to verify if the object’s MAC



60 Chapter 5. Project Development

address is found in the up hosts. If the ping is successful but the MAC in the ARP

table is different, reset last_ip. If the MAC address is found updates both ip and

last_ip variables.

• find_user(period, lock): If the smartphone is not connected, searches the

network by calling search_net. If the user is connected, pings IP, if no pings are

successful in a 5 minute interval set user as not connected. The lock attribute is

used to prevent that 2 User objects search the network at the same time due to

the memory usage of the Nmap tool.

Search User

last_ip?

IP Ping Success?

 True 

Run Network Scanner

 False IP corresponds to MAC?

 True 

Time Since Connected > 300 s?

 False 

 False 

Query user preference

 True 

 False 

connected = False

 True 

User Found?

 False 

update ip and last_ip

 True 

connected = True

Figure 28 – User Detection Flow Chart
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5.3.3 Internet Connectivity Checking

Checking internet connectivity is much easier than searching for users in the

network. We just try to ping http://www.google.com/. When ping occurs with success,

the gateway is connected to the internet. The connectivity verification is very useful. If

the system is not connected to the web, then the data points that were previously stored

in the server, must be stored locally until connection to the server is restored. The same

principle holds for querying predictions for the user. The Gateway maintains a local copy

of the neural network weights that were trained in the server1, so when the internet

connectivity is out, it processes the predictions on the Galileo board itself. The python

implementation is depicted in Figure 29.

Figure 29 – UML Connectivity class diagram.

Heading

from scripts.connectivity import Connectivity

Attributes

• host: Desired host address. Set to "google.com" by default.

Methods

• __init__(period, host): Object initializer.

• check(): Issues a ping per second to the host to verify if it is online, if no pings are

successful within 5 seconds connectivity to host is down. Returns 0 if connectivity

to host is down and 1 if up.

5.3.4 Integration with EPOSMote III

To integrate the Internet with the Network of things (IEEE 802.15.4) an EPOSMote

III was connected to the Galileo board with a USB cable. This mote is the central node

of the network. This EPOSMote III is programmed to forward every packet received

from other nodes to the gateway via Serial USB connection.

1 The Galileo board does not have enough processing resources to train a neural network, but it
can process the feed forward to get an output prediction on account of a little system overhead if
connectivity is out.
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On the Galileo side of the Gateway, there is a thread running that is responsible

for parsing the Modbus messages and converting it to the adequate units according to

the Modbus ID in the message received. The serial connection is kept open, between

the mote and the Galileo board, and for that reason it is necessary to always issue a

serial buffer flush before reading the messages. Otherwise, depending on the period

between the serial reads, the Galileo board is going to parse messages received a

long time ago. A Gateway serial read is considered complete when all the IDs from the

registered devices are read.

The class developed to handle the EPOSMote III connection in the gateway is

depicted by the diagram in Figure 30.

Figure 30 – UML EPOSMoteIII class diagram.

Heading

from sensors.eposmote import EPOSMoteIII

Attributes

• mote: Serial object responsible for the connection with the microcontroller.

• coil_byte: Modbus message positional byte which corresponds to the coil num-

ber. Varies depending on dev.

• first_msg_byte: Modbus message positional byte which corresponds to the

beginning of the Modbus messsage. Varies depending on dev.

• last_msg_byte: Modbus message positional byte which corresponds to the last

message byte. Varies depending on dev.

• id_factor: Key:value pairs with device ID and conversion factor.

• data: Stores the resulting key:value pairs in the data dictionary.

Methods
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• __init__(dev): Object initializer. Takes the device port as parameter, set to

’/dev/tty/ACM0’ by default, and devices’ IDs and conversion factors.

• write(msg): Writes a Modbus message and sends it.

• on(modbus_id, coil): Composes and writes the Modbus message to turn on the

device with modbus_id at the given coil.

• off(modbus_id, coil): Composes and writes the Modbus message to turn off

the device with modbus_id at the given coil.

• dimmer(modbus_id, percentage): Composes the Modbus message to dimmer

the device with modbus_id by the percetage. 0 dimerization means maximum

power and 99 corresponds to the minimum.

• convert_power(raw): Takes the raw value from the Modbus message, verifies if

it is between the possible thresholds and uses the conversion factor to turn the

raw value into Wh.

• convert_luminosity(raw): Takes the raw value from the Modbus message, veri-

fies if it is between the possible thresholds and uses the conversion factor to turn

the raw value into %.

• convert_hum(raw): Takes the raw value from the Modbus message, verifies if it

is between the possible thresholds and uses the conversion factor to turn the raw

value into %.

• convert_tmp(raw): Takes the raw value from the Modbus message, verifies if it

is between the possible thresholds and uses the conversion factor to turn the raw

value into degree Celsius.

• convert_all(messages): Compares the array of Modbus messages with IDs and

factors from id_factor and issues the appropriate unit conversions. Results from

the conversions are stored in data.

• parse_data(period): Runs as a thread in the Daemon. Periodically flushes the

serial buffer, waits until all the Modbus messages with IDs listed in id_factor are

received or uses all the messages received before the timeout.

From times to times occurred segmentation faults in the daemon and it crashed.

The problems was identified as a problem with the serial connection between the Galileo

board and EPOSMote III. For some reason, the serial connection at some point stopped

working and it implied in a future segmentation fault. To solve this issue, along with the

parser timeout was added a USB reset code developed in C. If at any point a timeout
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occurred during data parsing due to unavailability of the serial connection (e.g. no data

received in the whole period) the python program made a call to the systems shell and

executed the USB reset program.

5.3.5 Server Communication

Communication with the cloud server is straightforward. If the gateway is con-

nected to the internet, it sends data to the cloud whenever possible. However, if internet

connectivity is not available, all communication with the server is stopped, and the data

is stored in the gateway until connectivity is restored.

The gateway uses an HTTP REST API to enable communication with the cloud

server. Everything is done in python using the requests module. Data from the Daemon

is POSTed to the cloud server in JSON format to be stored and, when prediction queries

are done to the server, GET requests are used. The sequence diagram shown in Figure

31 exemplifies the process. A mote reads the value from the sensor and reports it to the

relay mote, connected to the gateway, via Modbus message. The relay then forwards the

message to the gateway, which parses the message (Modbus decoding, data filtering

and unit conversion) and issues an HTTP Post to the Server.

Figure 31 – Sequence Diagram of Data Gathering and Server Storage.

The other part of the server communication consists of answering queries from

the mobile application for current data or remote device control. The handling of HTTP

requests is done with Flask, a python microframework for web development.

5.3.6 Daemon

The Daemon is the core of the gateway. It integrates all the above described

components into a parallel and synchronized environment. The implementation is

illustrated by the diagram in Figure 32. The attributes and methods are described below.

Attributes
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Figure 32 – UML Daemon class diagram.

• luminosity: Object of Class LDR. Deals with the luminosity sensor from the

Galileo Board.

• temperature: Object of Class Lm35. Deals with the temperature sensor from the

Galileo Board.

• presence: Object of Class PIR. Instantiates the PIR sensor connected to the

Galileo board.

• users: Array of User objects. Objects are created accordingly to contents of the

file referred to by users_path.

• internet: Connectivity object. Used to verify web connectivity availability status.

• gateway: Instance of the EPOSMote III connection to the Galileo board.

• app: Flask object that instantiates the REST request handlers.

• context: Key:Value pairs representing the most recent data collected.

Methods

• __init__(scripts_path, users_path, dev): Daemon initializer. Takes paths to

important files required by the objects and the device port to which the mote is

connected.

• check_presence(period): Loop function that every period of seconds checks

the presence sensor and alters the context variable. Additionally, turns the lights

on/off if no registered user is connected but a person in the room is detected.

• read_sensors(): Gets the values from the luminosity and temperature every

period seconds and updates the respective entry in the context variable. Also

copies the gateway.data key:value pairs to the context variable.
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• encode_log(period): Every period seconds, calls read_sensors to refresh the

context variable with current data, and encodes the context dictionary into a JSON

string and issues a PUT request to the server.

• predict(period): Periodically makes device control predictions for the User who

was first detected. If internet connection is available queries the predictions from

the server. If connection to the internet is not available, but the user file contains a

copy of the ANN weights calculates the output locally, else does nothing.

• check_conn(period): Updates periodically the status of the internet connectivity.

• find_users(period): Reads the user file in user_path and for every user cre-

ates an object and a users[].find_user(period, lock) thread that periodically

search the network for connected users or verifies if they are still connected.

• run(): Creates all the threads (gateway.parse_data(period); app.run(host,

port); check_presence(period); encode_log(period); predict(period); check_conn();

users[].find_user(period, lock)) and start the threads.

5.4 Hybrid Application

Hybrid mobile applications are built in a similar manner as websites. Both use

a combination of technologies like HTML, CSS, and JavaScript. However, instead of

targeting a mobile browser, hybrid applications target a WebView hosted inside a native

container. This enables them to do things like access hardware capabilities of the

mobile device. This enables the generation of cross-platform applications, yielding many

advantages such as, if bug is found in a common codebase it needs to be fixed only

once, it is possible to use existing programming talent rather than learning platform

specific development language. This results in faster development and reduced costs.

5.4.1 Remote Device Control

One of the features that cannot be missing in any new Internet of Things device is

remote control. A user should be able to remotely turn devices on and off, independently

of where he is. If the user left the room and only later realized that he forgot the lights

on, instead of going back to the place to turn the lights off, he must be able to do that

from where he is.

In LISHA’s Smart Room, as shown in Section 5.2, there are devices capable of

being remotely controlled. One of the features included in the app, is a set of controls

that, allow the user to select his preferred settings. The person can choose both turning
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Figure 33 – Available options for the user in the application.

on and off the devices as well as adjusting the power consumption (light power is

controlled through dimerization).

To do that, a graphical user interface (GUI) was developed where the user can

chose the appropriate settings. This interface is shown in Figure 33. The event handlers

for these buttons were implemented using JQuery.

Communication between the application and the gateway is achieved through

an HTTP REST API from Jquery called AJAX. Whenever a button is pressed or the

slider is set to a new value in the user interface, the application sends a GET request

to the server. The server then relays this command to the gateway. The command is

received by the Flask request handler that accesses the EPOSMoteIII class and writes

the Modbus message to control the physical device. This process is illustrated by the

sequence diagram in Figure 34.

Figure 34 – Sequence Diagram of remote commands from app to gateway.
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5.4.2 Real-time Data Visualization

Another very important feature that an application for the Internet of Things must

have is real-time data visualization. A user must be capable of checking the current

power consumption of the devices, temperature and every other information available

about the smart things.

Observing data such as energy consumption has a very important influence on

user behavior. The user may notice that an appliance connected to a smart power outlet

is damaged and consuming double the power it should. The user can also observe

some behaviors that cause high energy consumption and change the way he behaves

in order to reduce his energy consumption footprint.

Data update, the same way as the remote control feature, is also done through

HTTP GETs to the server. A page named "Context" was implemented in the application

to show every available environment data from the Room. Another page named "Energy"

was developed to focus on energy consumption data. We also chose to use a JavaScript

charting module (ZingChart), that allows the user to see a time series of the consumption

in a 2 minute window. Both pages show the current value for every measurement. Figure

35 shows the resulting application interface running on an Android smartphone.

Queries to the server for current data were also done using HTTP GET requests

periodically. The message from the server, in this case, is a JSON object with values for

all the devices available.

Figure 35 – Application Context and Energy Pages on Smartphone Browser.
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5.4.3 Data History Visualization

Data history visualization allows the identification of periodic patterns and corre-

lation between the devices. Therefore we’ve developed another page in the application

named "History", that shows data over time for the wanted period. Figure 36 shows the

result of the implementation for the query of the last 2000 data points.

Similarly to the previous described features, history is queried using HTTP GETs

to the server. The application receives a list with the defined number of data points for

the variable.

Figure 36 – Light power consumption over time (Last 2000 datapoints).

5.5 Adaptive Context-Aware Algorithm

A context-aware algorithm must be able to know how to control every device

available according to current room context. In this project, the control predictions are

made through a combination of machine learning and data mining techniques. Data

mining technique, Random Tree Classifier, is applied to the dataset to identify the most

relevant data relations. The DNNs (MLPs) are used to classify the output of a certain

device according to relevant contextual data. Finally, fuzzy logic is applied based on

heuristics to optimize the usage (energy consumption, comfort, etc.) of the device.

Predictions are individually tailored for every user. Profiles are distinguished by the

smartphone’s MAC address connected to the gateway network.

A python class was developed to use DNNs to classify a device’s output according

to relevant data from the current context. An object of this class should be initialized

with the name of the device, the path for a simple training set containing data for basic
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configuration, the path for the test set, the file path of the user’s corrections to the engine

decisions and a number of inputs and outputs for the files. With this information, a Brain

object is created for predicting classification of the output in the current context, while

relevant data is inferred from the datasets.

5.5.1 Contextual Data

As stated in Sections 5.2 and 5.3, a series of sensors were deployed in the room

to get as many information as possible. In the scope of this project, the context of the

smart room is defined by the following set of measurements:

• A0: Whether light A0 is turned on or off.

• A0_pw: light A0 power consumption.

• AC: Whether the Air Conditioner is turned on or off.

• B00_pw: Power consumption for the first plug in the power outlet B0.

• B01_pw: Power consumption for the second plug in the power outlet B0.

• B10_pw: Power consumption for the first plug in the power outlet B1.

• B11_pw: Power consumption for the second plug in the power outlet B1.

• year: Year of the measurement.

• month: Month of the measurement.

• day: Day of the month of the measurement.

• weekday: Day of the week of the measurement.

• hour: Hour in which the measurement was made.

• minute: Minute in which the measurement was made.

• external_lum: Luminosity outside the smart room.

• internal_lum: Luminosity inside the smart room.

• external_temp: Temperature outside the smart room.

• internal_temp: Temperature inside the smart room.

• smartphone: Whether user smartphone is connected or not.

• present: Whether presence sensor is detecting user or not.
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• humidity: Air Humidity.

This data composes four sources of information for the context-aware decision

engine:

1. Prior Knowledge Data (PKD): Data that may or may not be introduced by the

user (or factory) to initialize the decision engine with pre-defined rules. Prior

knowledge may come from observations of the control rules from SCADA systems.

The more possibilities this data covers, the better the results obtained from the

output of the decision engine training. Data from rules can be a subset of the

whole contextual dataset and are general for every user. PKD can be interpreted

as the factory control settings for the device.

2. Room Data (RD): For the great part of the day (night) there is no user present

in the room. Data stored from that period is what is called the room data. For

itself, the room data does not provide much relevant information regarding the

specific device control for the users. However, when used along with User data,

the decision engine can learn the impact of a certain user being detected in the

room.

3. User Room Data (URD): User room data is all the contextual information for the

period that a given user has spent inside the smart room.

4. User Commands Data (UCD): The decision engine periodically predicts device

adjustments for the user. There may come a time when the user does not agree

with the changes made by the decision engine. When that happens, the user

uses the hybrid application to adjust the devices to his preferred settings. The

new configuration chosen by the user are stored separately. Predictions from the

decision engine that are successful (without negative feedback from the user in

10 minutes) are also incorporated by the user commands data.

5.5.2 Context-Aware Decision Engine Training

Training machine learning techniques is not a trivial task. Many aspects must

be taken into account when designing the data mining and machine learning algorithm

structures. Otherwise results may be invalid or misinterpreted. In ANNs, for example, the

usage of irrelevant or noisy data may affect the accuracy of the training and model the

system incorrectly. The usage of insufficient data points to represent a given behavior

may yield in the same result. In opposition, the use of too complex ANN topologies or/and

strict parameters in data mining algorithms shall over fit the model and incapacitate it

from generalizing the output well enough.
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That is why, in this work, a novel approach is developed aiming at the control

of devices using contextual data. Figure 37 depicts how the distinct datasets are used

to model user’s preferences and control devices. Each step is further discussed in the

following sections.

Figure 37 – Neural Network relevant feature selection and training.

5.5.2.1 Automatic Selection of Relevant Features

In this work, context is defined by a set of 20 variables. Training a Neural Network

with 20 inputs would be a cumbersome process. Not only it would take a very long

time to process, but the data that would be needed to train such network would have

to cover almost every possible scenario. Else wise the accuracy of the neural network
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predictions would not be trustful. Therefore, reduction of the data space is needed. This

reduction yet must account for the relevance and representativity of a given variable to

the control of an individual device.

Selecting data relevance is no trivial task, however, especially when data vari-

ables have different meanings and limits. Temperature, for example, may assume a

broad range of positive and negative values, while the luminosity is measured in percent

from 0 to 100. The selection of a data mining method able to identify the adequate

features to train a neural network is substantial for the success of the training.

An algorithm that can attend to that purpose is the Extra Trees Classifier. It

implements a meta-estimator that fits some randomized decision trees on various

subsamples of the dataset. This method also uses averaging alongside with other

statistical tools to improve the accuracy of feature importances.

This algorithm is fed with three of the data source previously mentioned. Prior

knowledge data, room data, and user room data. Additionally, the target output variable

is informed so that the algorithm can rank the features accordingly. There are data

sources that may be directly affected by the output of the controlled device, which in

the algorithm would mean false relevances. Therefore, these variables are marked and

taken out of consideration when selecting the relevant features. The feature importance

ranking is expressed in percentage, where the sum of all importances for the control

accounts for 100%. Relevant features for a given output are the top N variables with

relevance above a given threshold.

5.5.2.2 Context-Based Adaptive Learning

Contextual data is used to classify how devices should operate. This classification

processes in this work is done through trained neural networks that learn from user

behavior how to classify the output or mode of operation of an individual device according

to previous data from the user and environment interaction.

Prior knowledge (e.g. rules already developed for other systems such as SCADA)

can be incorporated into the neural network to avoid the cold-start phase2 of machine

learning systems. When no previous knowledge is provided to the system, it causes a

trade-off. The sooner the system begins to control the room, the less representative

data it has, and, therefore, the worst will be the predictions that it will make. On the

other side, the longer the system gathers representative data, better the accuracy of the

predictions, but longer the intelligent control system idle time. The features provided by

the prior knowledge data are considered relevant.

2 Cold-start is a potential problem in computer-based information systems which involve a degree
of automated data modeling. Specifically, it concerns the issue that the system cannot draw any
inferences for users or items about which it has not yet gathered sufficient information.
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Prior knowledge only, however, not necessarily best represents the user’s prefer-

ences. The user may disagree with a prediction that was made by the system based

solely on prior knowledge (e.g. factory rules). In this case, the person would adjust the

settings of the room accordingly to his preferences. This sort of scenario is approached

with reinforcement-learning-like3 feedback technique. When the decision engine makes

a correct device control prediction, and the user does not correct it (e.g. does not

change any device) within a period of 10 minutes, this prediction is appended to the

user command data. After that occurs, no other prediction is added to the dataset while

the predictions values do not change. A correct prediction is considered to have the

same weight of a user command. When the user issues a command after a prediction

from the system, it represents a negative feedback to the decision engine, which means

that the predicted device control was not ideal. This feedback triggers a back-off for

the retraining of the control ANN of every device affected by the user feedback. During

the back-off period, the system does not query any predictions. The predictions are

resumed either after the ANN is completely trained and a fixed time has elapsed, or

a relevant change in context occurs. The feedback context (User Command Data) is

joined with the prior knowledge data to compose the ANN’s new training set.

As stated previously, the topology of the ANN may vary in the number of layers,

the number of neurons per layer, inputs, outputs, activation functions, error function,

optimizer, batch sizes, etc. There are no known heuristics or formulas for determining

the best topology of an ANN. This process is usually done through trial and error. Thus,

the decision engine should be capable of automatically generating diverse network

topologies and cross-evaluating the accuracy achieved by each one to chose the best.

The cross-evaluation is done by shuffling the User Room Data and taking 1/3 of it to

check the accuracy of the predictions. The ANN topology with highest accuracy score is

implemented to make the predictions.

This composition of data mining and machine learning techniques provides the

context-aware decision engine with an adaptive capacity. The system can learn along

with user experience inside the given environment which are the relevant environment

variables to control a given device and how they were controlled previously by the user.

5.5.3 Preference Prediction

Preference prediction is very straight-forward. After the ANNs have already been

trained, the calculations to obtain the output are simple matrix multiplications. When

the engine receives a query to predict the control of a given device, it extracts the

3 Reinforcement Learning is a type of Machine Learning, and thereby also a branch of Artificial Intelli-
gence. It allows machines and software agents to automatically determine the ideal behavior within a
specific context, to maximize its performance. Simple reward feedback is required for the agent to
learn its behavior; this is known as the reinforcement signal.
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relevant data from the current context and feeds it to the ANN. The ANN makes the

multiplications and generates the classification of the device control.

5.5.4 Fuzzy Optimizer

Users are not used to considering energy efficiency when controlling room

devices. Lights are usually just turned on, and not dimerized accordingly to the sunlight

or any other factor along the day aiming to save energy. For that reason, trying to impose

this kind of behavior into a neural network may require the user to be continuously aware

of the power consumption of the devices An intelligent gateway, however, must be able

to optimize energy consumption.

Fuzzy logic controllers are an excellent approach to solving the power consump-

tion optimization problem. Most people do not know how to model a mathematical model

that would control something according to his preferences. However, most people can

describe their preferences qualitatively, or even, how to optimize energy with little impact

on comfort, based on IF-THEN statements.

For example. Describing a control equation that adjusts the temperature of the

room to optimize the air conditioning system’s power consumption without considering

human comfort is a very complicated thing to do. In counterpart, it is very easy for a

person to describe how to improve the power consumption based on qualitative terms

such as cold, cool and warm. Rules defined by this person would be something like "If

the temperature inside is COLD and the temperature outside is HOT, THEN AC power

should be set to LOW". Figure 38 depicts an example of a fuzzy set with triangular

membership functions. From the rules and fuzzy sets provided, the controller calculates

the power of the AC.

Figure 38 – Fuzzy temperature set example.

This sort of energy efficiency heuristics are common knowledge and, therefore,

easily generalizable, which makes the system even better for the user since he does not
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need to think of the rules. The user may adjust the intervals (e.g. COOL temperature

ranges from 10 to 30 instead of 0 to 40) to his preferences improving his comfort while

optimizing energy efficiency. For these reasons, fuzzy controllers were chosen to be

used as optimizers after the output of the ANNs.

In this project, a fuzzy controller that uses internal and external luminosity was

implemented to adjust the devices in a way that power is saved and user comfort is not

much affected. This optimizer can be used by activating the power-saving mode in the

user application. If the user feels that the adjustments are not to his liking, he can turn it

off.

Figures 39, 40 and 41 illustrate how the luminosity variables are split in fuzzy

sets to be used in the optimizer.

Figure 39 – Fuzzy set representation for internal luminosity.

Figure 40 – Fuzzy set representation for external luminosity.
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Figure 41 – Fuzzy set representation for light dimmerization.

These fuzzy sets are brought together through fuzzy rules that consider energy

optimization in their core. Take one of the rules for example:

IF (in_light is LOW && ex_light is HIGH) THEN (set lamp_dimmer HIGH)

It states that, if internal luminosity is low but external is high, there is no need to turn the

lights on at full brightness, high dimerization would save energy.

All rules described by an optimizer are processed, and an output value is calcu-

lated. This output is then passed on to the gateway so that the device is adjusted for

lower power consumption.

5.5.5 Adaptive Context-Aware Decision Engine Implementation

The decision engine, which was named Prescient, runs on a server and is

composed of two parts. The intelligence encapsulates the complete implementation for

the data mining and machine learning algorithms. The services encapsulate the HTTP

Server and handle the REST requests from the application and the gateway.

The intelligence is encapsulated in a Class called Brain. Brain objects are created

to learn how to control a particular device. They implement the whole learning and

predicting process described in section 5.5 and may or may not use optimizer objects

that extend fuzzy controllers. Figure 42 presents a UML class diagram that depicts the

implementation of the Classes that compose the intelligence of the decision engine.

Heading

from NN import Brain

Attributes



78 Chapter 5. Project Development

Figure 42 – UML Brain Class Diagram.
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• name: ID of the device that the Brain object will learn to controll.

• input_col_n: Number of input collumns of the prior knowledge Dataset.

• output_col_n: Number of ouput collumns of the prior knowledge Dataset.

• X: Matrix with the inputs from the dataset.

• y: Matrix with the outputs from the dataset.

• model: Most recent ANN trained and compiled model. The model is implemented

by Keras Sequential Class.

• optimizer: The optmizer object. Applies heuristics to optimize the device energy

consumption.

• relevant_features: Holds a list of the relevant features from the dataset that

were calculated by the ExtraTreesClassifier.

Methods

• __init__(name, dir_path, input_col_n, output_col_n): Object initializer. Takes

the ID of the device to assign to the Brain object, the directory path where the

user’s datasets are stored, the number of input and columns in the prior knowl-

edge dataset. Additionally, the object initializer assigns the datapoints to respective

matrices, creates the ANN model, if more data is already available, trains the

network.

• learn(): Function triggered by adjustments made by the user when he does not

agree with the predictions of the decision engine. It issues the whole retraining of

the ANN. If there are enough new entries since the last feature evaluation (10%

more) it reevaluates the features. The ANN topology is automatically evaluated

and the best model is assigned to the model attribute.

• predict(context): Takes the current context dictionary and predicts how the

device should be controlled. If an optimizer exists for the device it also handles

the optimization computation.

• save(path): Saves the ANN weights and topology.

• gen_eval_topology(input_dim, output_dim, min_layers, max_layers, min_neurons,

max_neurons, config_n): Generates multiple topology configurations according

to the parameters trains all and compare the scores of accuracy to select the best

one. The chosen one is assigned to model.
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• evaluate_features(ctrl_var, X): Issues an ExtraTreesClassifier to select the

most relevant features in the dataset for the control of the device.

Optimizer objects may extend either Dummy or FuzzyController classes. The

dummy is a blank class that does not optimize anything. The FuzzyControler class

instantiates a fuzzy controller based on the parameters passed to the object initializer.

Heading

from Optimizer import FuzzyController

Attributes

• opt_var: Variable that will be optimized. Usually the ID assigned to name of the

Brain object.

• ctx_vars: String with the IDs of context variables useful to the optimization.

• intervals: Matrix with the names of the intervals. Each line represents a fuzzy

set’s interval’s names.

• membership_type: The membership function to be used in the fuzzy controller. It

is set to trimf (Triangular Membership Function) by Default.

• intervals_range: Matrix with the points to be used to define the intervals

• rules: Set of fuzzy control rules based in power optimization heuristics.

Methods

• __init__(opt_var, intervals, membership_type, intervals_range, rules):

Object initializer. Creates the fuzzy controller with information from the parameters.

• optimize(context): Computes the result of the fuzzy controller based on the

current context.

The Brain class along with the Flask server compose the Prescient Class. Pre-

scient contains the full implementation of the server. It can respond to the gateway

as well as application REST requests and relay commands or messages from one to

another. The prescient class is illustrated in the diagram of figure 43.

Attributes

• server: Flask object that instantiates the HTTP server and REST request handler.

• cluster: String of Brain objects.

Methods
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Figure 43 – Prescient UML Class diagram.

• __init__(data_dir_path): Object initializer. Takes a path to where the data is

stored. From the data it creates all the Brain Objects to control the devices. In the

data directory the server keeps a list of the controllable devices to instantiate the

objects. Finally it ends by running the Flask HTTP server.

• think(json_data): Receives a JSON object with current context and for every

Brain object predicts how to control (and optimize) it. If during a Back-off does

nothing. Returns a dictionary of key:value pairs with the predicted adjustments

that is forwarded to the gateway.

• assimilate(json_data): Receives the changes made manually by the user to

the devices. Starts a back-off period and verifies which Brain objects are affected

by this changes and when necessary creates multiple threads to re-train the ANNs.

• log(json_data): Receives a JSON object from the gateway to be logged on the

server.

• relay_command(): Bridges the commands to devices from the mobile application.
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6 Results and Analysis

In this chapter, the whole system implementation is validated. Both the experi-

ments and results for each component of the system are detailed and discussed. The

results hereby presented are based on the developed system functioning during a period

of approximately two weeks in LISHA’s Smart Room. The system was configured to

search for only one user’s smartphone and control the light A0 status (On/Off) and

power1. Both the gateway and the server use threads to run periodic, constant or on de-

mand functions. The periods and timeout limits of the threaded functions are presented

in Table 6. During this time a total of 307500 contextual-datasets were collected.

Gateway Threaded Function Period Timeout Limit
Gateway Request Handler Constant None
Data Parser 5 Seconds 4.8 Seconds
Logger Period 15 Seconds None
User Finder 15 Seconds None
Connectivity Checker 10 Seconds 5 Seconds
Control Prediction Period 20 Seconds None
Server Threaded Function Period Timeout Limit
Server Request Handler Constant None
ANN Training On Demand None
ANN Topology Evaluation On Demand None

Table 3 – Threaded function default periods and timeout limits.

6.1 Data Parsing

The Smart Room implementation was supposed to gather data from devices

and send them through Modbus messages over the IEEE 802.15.4 wireless protocol

to a central network node. As stated in the previous chapter, the motes were already

physically installed in the room lights and power outlets. The firmware running on these

devices were updated to send data every second with the correct IDs expected by the

gateway. The external sensing unit was implemented from scratch, and a new firmware

was developed to handle the DHT11 sensor. All the data was sent to the Gateway

mote that received the messages and forwarded them via Serial USB connection to the

Galileo board where they were parsed. To verify if the messages were being correctly

delivered to the gateway Linux minicom tool was used.

1 During the development of the project, two of the three lights installed in LISHA’s room presented
malfunction due to electrical problems in the building and could not be further used.
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Figure 44 – Parsing time plot of 1000 data parses.

Total Samples 1000
Average Parse Time 2.781 Seconds
Parse Time Std. Deviation 0.416 Seconds
Parsing Maximum Time 3.718 Seconds
Parsing Minimum Time 1.800 Seconds

Table 4 – Wireless message parsing time statistics.

In our implementation, every mote sends one message per second. That ac-

counts for roughly eight messages. The average message parsing and conversion time

for messages received from the EPOSMote III were measured to verify if all the mes-

sages could be received in a period shorter than the threads. The Information is logged

to the server every 15 seconds. The parsing thread period chosen was 5 seconds, to

avoid receiving and logging invalid data (the latest valid dataset is committed to the

server). A set of 1000 parsing time measurements were made to verify if it was possible

to achieve under the 5 seconds period. The average receiving and parsing time of all the

messages from the devices was calculated as 2.758 seconds (running multi-threaded

along with the other threads on the daemon). A table with the complete statistics for the

parsing time is shown in Table 4. The set of measurements and average parsing period

are shown in Figure 44.

To verify the need for data filtering in the gateway, an additional counter was

implemented in the parser to test the number of invalid measurements. During the

period were parsed approximately 2.5 million messages. Of these individual measures,

the parses considered 322 to be invalid measurements. That represents approximately

0.013% error rate. Later, it was discovered that the DHT11 sensor used in the external

sensing unit presented a defect and sometimes gave an incorrect measurement. Never-

theless, the error in the sensor justifies the data filters implemented by the parses. If an
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erroneous data point is incorporated into the training of the ANNs, it may corrupt the

entire decision engine.

6.2 User Detection

The user detection thread is supposed to scan the network for the user’s smart-

phone MAC ID in the format "XX:XX:XX:XX:XX" where every X represents a hexadecimal

symbol. To enable this to be done, the Galileo board was connected to the wireless

router, which provided it with an IP address in the same subnet as the smartphone and

internet connectivity.

The user detection implementation approaches the problem in two different

ways, when the user has not connected to the network, and when the user has already

connected to an IP in the network. If the user has never connected to the network, the

DHCP server has not yet leased any IP address to the smartphone’s MAC, which means

that it will lease a new one. To discover which IP was leased to the smartphone, the

Nmap tool is used. A set of 150 measures of the Nmap network scan were made. The

measurements were made with all the threads of the gateway running. The plot of the

measurements is shown in Figure 45 and the statistical values for the measurements in

Table 5.

Figure 45 – Nmap Scan time plot of 150 network scans.

Nmap is not, however, the best way to verify if the user is connected if it already

had an IP in the network associated with its MAC address. When the user already has

an IP address leased to it’s device, checking that IP with pings before issuing an Nmap

scan is very useful. Pings to an IP are much faster than network scans. To analyze and

confirm this hypothesis, the same set of measurements were made with ping configured
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Total Samples 150
Average Nmap Scan Time 5.343 Seconds
Nmap Scan Time Std. Deviation 1.749 Seconds
Nmap Scan Maximum Time 12.118 Seconds
Nmap Scan Minimum Time 3.602 Seconds

Table 5 – Network Scan with Nmap time statistics.

to make three echo request tries. Figure 46 presents a scatter plot of the measurements

obtained and Table 6 presents the statistics.

Figure 46 – IP ping check plot of 150 pings of 3 echo request tries.

Total Samples 150
Average Ping Check Time 2.304 Seconds
Ping Check Time Std. Deviation 0.154 Seconds
Ping Check Maximum Time 2.702 Seconds
Ping Check Minimum Time 2.133 Seconds

Table 6 – IP ping check time of 3 echo request tries statistics.

From the data presented it is simple to note that pings are much faster than Nmap

scans when trying to verify if a known user is present in the network. Nmap, though

very useful when trying to discover to which IP address a MAC address is connected,

is too sophisticated and requires too many resources from a constrained embedded

platform such as Galileo. It takes up to 12 seconds to make one verification if the MAC

is connected. Especially when considering that a smartphone may be in power-saving

mode, where it disables the connection for periods of time, the Nmap scans may take

too long to detect it. The usage of such tool, however, is necessary when a MAC address

has never been connected to the network, or there is doubt to whether it may have

switched IP addresses.
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Pings, on the other hand, have the advantage of well-behaved times with small

standard deviation. A ping worst-case scenario is still faster than Nmap’s best scan time.

Because of that, it is possible to check more frequently for the connection without any

significant impacts on the gateway performance. Provided that arp table lookups are

issued to confirm the MAC addresses when needed. Internet connectivity checking is

achieved in the same manner, though pings may take longer to reach remote servers

and, therefore, perform worse than inside a subnetwork.

The association of both scanning techniques proved to be very successful in

detecting the user’s smartphone, which indicates that smartphones may be used as IDs

for the context-aware decision engine profiles.

6.3 Adaptive Context-Aware Decision Engine

An ideal context-aware decision engine for controlling IoT devices should be sen-

sitive and responsive to the presence of people and all information that surrounds. This

decision engine makes devices work in concert to support people in carrying out their

everyday life activities, tasks and rituals in an easy, natural way using information and

intelligence that is hidden in the environment’s context to automate them, emphasizing

user experience. These systems must be able to accomplish some key aspects to make

use of information and yield practical actions to the user.

The core components of the system described in this work are evaluated accord-

ing to their metrics to verify the applicability of this approach to solving the context-aware

control problem of smart environments.

6.3.1 Topology Evaluation

The topology of a neural network refers to the way the Neurons are connected,

and it is a major factor in the system’s functioning and learning. The most common

topology in supervised learning is the fully connected network, also known as a dense

MLP network. All input values to the network are connected to all neurons in the hidden

layer (hidden because they are not visible in the input or the output). The outputs of the

hidden neurons are connected to all neurons in the output layer, and the activations of the

output neurons constitute the output of the whole network. Such networks are popular

partly because theoretically they are known to be universal function approximators (with,

e.g., a sigmoid or Gaussian nonlinearity in the hidden layer neurons) [26].

Nevertheless, the choice of an optimal topology brings better predictions to the

system. The developed topology evaluation method can vary a series of settings of

the neural networks generating as many models as needed to compare and chose the

one with the best accuracy. In the case of two models providing the same precision, it
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selects the model with lesser complexity for two reasons: processing the calculations of

a less complex model is faster and due to it be less likely to overfit the data.

The main problem of evaluating such topologies is the time required to process

these evaluations.

To verify this question, a series of assessments, generating 20 different models,

were run. These generated topologies were equal in the activation function (sigmoid),

input and output dimensions, optimizer (adam) and loss functions (mean squared error).

The same configuration used during the experiments. The dataset was based on the one

obtained at the end of the two-week experimental period but extrapolated to show how

the number of training examples and topology configuration may affect the evaluation

time of the best topology. All the measurements were made with python time module,

and ran on an Intel i7-4700MQ CPU @ 2.40 GHz x 8 with 12GB DDR3 @ 1600 MHz

memory on Ubuntu 16.04. Figure 47 shows the ANN topology evaluation time for

different configurations of hidden layer number and hidden neurons number according

to the number of lines in the training set.

Figure 47 – Increase of ANN traning time according to topology complexity and size of
the training set.

In this project, due to the system design that divides the training data into a

separate dataset (UCD), it was not possible to reach a number of data points for the

ANN topology evaluation to impact the decision engine or cause any complications.

This point, however, should be considered when designing a system that may come

to deal with too complex ANN topologies. If this gets to a stage, where the topologies

become too complicated to be processed in standard CPUs, and dedicated GPUs

would need to be instantiated as the backend of the ANN abstraction modules to provide

high-performance processing. The use of higher processing power would only remediate

the problem, as a greater number of data entries and ANN complexity would soon reach
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the GPU’s maximum processing power.

The way the system proposed by this work was modeled, a good solution would

be to use only the latest K entries of the user command dataset. Since correct predictions

are re-included in the UCD, current behaviors are preserved in the most recent data

entries. Another good impact of using only the latest points is that old habits and

behaviors learned by the network that no longer occurred can be forgotten. Moreover,

new patterns are more easily absorbed by the neural network since they are more

representative to the K entries than to the whole dataset.

6.3.2 Incorporation of Prior Knowledge

In the system proposed by this work, the main objective is for the system to

learn how to control the light. The previous knowledge considered in this case was

simply the rule: If a user is present in the room; Then the light should be on. PDK is

introduced in the same format that the data is stored in the other datasets. Every column

is representing an environment variable and every row an observation at a particular

time. The main reason to incorporate prior knowledge in the ANN is to increase ANN

prediction accuracy, by stating beforehand relevant features to control a device and

providing enough data to avoid erroneous predictions due to lack of representative

examples (cold start).

Prior knowledge incorporation to the decision engine may be very useful. Many

times there is a lack of proper (experimental) training data, and it is compensated for

by the introduction of prior knowledge about the process. Not only that, it augments

the training data and brings better support to the experimental data. It can be obtained

either from other well-known and validated processes or may be defined by the users

according to their preferences.

6.3.3 Relevant Feature Selection

In a future where close to 30% of billions of intelligent devices will be installed

inside rooms, homes and buildings, programming devices with rules that consider

all data collected from the environment is a cumbersome task. The evaluation of the

relevant feature selection was done after the 2-week period where the system had

already learned how to control the light. This was done to verify the dataset’s impact on

the feature selection. Firstly we analyze only the prior knowledge. Secondly, the effect

of the inclusion of the Room Data (RD) (where there is no profiled2 user in the room)

on the feature importance. Lastly, the User Room Data (URD), to check, which of the

context variables were particular to the user.

2 Even though only one user was profiled, more people did use the room.
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Figure 48 presents the three observations of feature relevance. The sum of all

relevances accounts to 1. Features are considered relevant and used by the ANN if

they achieve a minimum of 10% of relevance threshold. For the control of the light, the

internal luminosity and light power consumption were marked as irrelevant because they

are causes of the light control and not reasons to control it.

Figure 48 – Feature relevances evolution with PKD, PKD + URD, PKD + RD and PKD +
RD + URD.

As expected, for the previous knowledge data, the algorithm detected only the

smartphone as relevant for the control of the light. In the ANN terms, it meant that the

neural network would be trained only with the smartphone feature of all datasets.

When user room data was appended to the prior knowledge data, it is possible

to note a shift in the data source importances. From this change, we can infer that

the environment variables that matter the most are the external luminosity (e.g. day or

night) and the time of day. It makes a lot of sense that both are relevant since they are

closely related. The higher relevance still for the luminosity is justified by the fact that

even during the day, there may be cloudy days where the luminosity is low, and there is

need to turn on the lights. The presence of the B00 power consumption in the relevant

features may seem strange at first sight. However, during the period of data collection

and experiments, a projector was connected to the B00 power outlet, and whenever it

was turned on, the lights were turned off by the user.

The association of prior knowledge with room data proved that for other users

also the external luminosity and time of day are closely connected. Lastly, the association

of all datasets exemplifies the generalization for the room control.
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The four examples show four possible scenarios of application for the usage

of feature detection before the neural network training. Respectively, when someone

might want to limit or program rules, when a single profiled user uses room (e.g. home

office), when no profiled user uses the room (e.g. building hall or shared space) and,

lastly, when there is a mix of profiled and non-profiled users that have access to the

environment. This last scenario represents the one utilized in this work.

If the datasets become too sparse with time and the algorithm is no longer able

to find consistent correlations between data sources, a similar approach to the one

described in the model evaluation could be adopted, where a set of the latest K data

entries are selected, to verify the most recent correlations.

6.3.4 Device Control Prediction

The gateway was configured to only query for predictions when a profiled user

was detected in the room. Even though more people used the room, it would be hard

for the author of this work to interact with the room to correct the controls predicted if

required. Figure 49 shows two side by side snapshots of the ANN outputs. The first one

represents the control prediction for light A0 for the ANN trained only with PKD. The

PKD trained the ANN to turn the lights on according to the presence of the user inside

the room. At this point, the only relevant feature of the data for the control of the light

was the smartphone being connected to the network. This behavior is shown in the left

plot. No matter the power consumption measured in the B00 outlet, the lights are turned

on if the user is present in the network and off if it is not.

Figure 49 – Device control prediction before and after the inclusion of B00 power con-
sumption in relevant features.

As shown in the Feature Selection, along the 2-week period, the power consump-

tion(B00_pw), hour and external luminosity were also selected as relevant features for

the light control. The ANN was continuously trained when a prediction was corrected by

the user. The snapshot of the right of Figure 49, represents the control prediction of the
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ANN after two weeks of training. Here is possible to note that with the inclusion of the

B00_pw in the list of relevant features for the control of light along with the adjustments

made by the user stored in the UCD the ANN learned that whenever there is a surge

in the values of B00_pw (Meaning that the projector was turned on and the power

consumption is rising) the light A0 should be turned off.

Figure 50 shows the instant execution timeline where the projector is turned on.

As the projector heats energy consumption rises. The first moment when the gateway

queries a prediction and the power consumption of the projector, the ANN predicts that

the light should be turned off (indicated by the blue vertical line). When the projector

is turned off, a little while later, the power consumption drops radically about 30W (the

fan keeps on a little while longer to cool the projector). After that, at the first moment, a

prediction is queried with the new context (indicated by the vertical red line), the ANN

output is to turn on the light.

Figure 50 – Instants in execution where the changes in context of power consumption
imply in the ANN predicting to turn light Off and On.

As predictions are only queried when the user is connected to the network, it

was expected that Hour and external luminosity variables would have no impact on the



6.4. Fuzzy Control Energy Footprint Optmizer 93

predictions from the ANN. Further investigations could be done to check how the system

would perform making predictions constantly, even when no profiled user is present in

the room.

6.4 Fuzzy Control Energy Footprint Optmizer

In Figures 51, 52 and 53 it is possible to see the predicted output for the light

dimmer in a context where internal luminosity measure is at about 25% and external

luminosity is at about 45%. This exact scenario, from when the figures were made,

represents a sunny day with the light inside the room turned off. The calculation resulted

in the dimmer value to which the light should be adjusted when turned on.

Figure 51 – Fuzzy results for internal luminosity of 25.45%.

Figure 52 – Fuzzy results for external luminosity of 45.8%.
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Figure 53 – Lamp dimerization output calculated by the fuzzy controller.

The fuzzy controller based on external and internal luminosity has proven to be

an excellent approach to reducing the energy consumption footprint of the light. When in

power saver mode, the decision engine makes the computations of the fuzzy controller

and applies it to the result of the ANN. Figure 54 shows a snapshot of the light A0’s

energy consumption time series where the power saving mode is turned on (indicated

by the red vertical line). This particular adjustment had almost no impact on illumination

comfort and provided a reduction in the energy consumption of approximately 35%.

Figure 54 – Device Control Prediction after the Inclusion of B00 Power Consumption in
Relevant Features.

Even though in this project only a fuzzy controller was implemented to be used

as an optimizer, the system design is capable of implementing a series of techniques as

optimizers.
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System Component Requirement Attended

Intelligent
IoT Gateway

User detection

Bridge different communication
protocols

Parse and filter sensor data

Communicate with the internet

Periodically logging of
environment data

Query context-aware algorithm
for environment control

QoS ensurance

Hybrid
application

Cross-platform availability

Remote device control capabilities

Real-time data visualization

Data history visualization

Context-aware
decision engine

Automatic identification of
relevant information

Inclusion of prior knowledge

Continuous user preference learning

User-specific preference prediction

Heuristic-based energy
footprint optimization

System
integration

Successful communication between
disparate modules

Resuming operation after
shutting down

Maintain functioning without
significant overhead

Ensure non-existence of dead-locks

Table 7 – System attended requirements

This Section along with the description of the system development in Section 5

show that the requirements of the project were fully attended by the system proposed,

according to each one’s respective metrics, and implemented in this work. Table 7 lists

each component’s requirements and whether they were attended or not.
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7 Conclusion and Future Work

In this work the implementation of an Adaptive Context-Aware Monitoring and

Control system is described. The system comprises three main parts: i) Intelligent

Gateway for the Internet of Things based on Intel Galileo Gen. 2 and EPOSMoteIII,

responsible for providing intelligence to leaf nodes and bridging smart-devices (Modbus

over IEEE 802.15.4) to the internet (TCP/IP over Ethernet); ii) Hybrid application that

allows user remote control and monitoring of the room appliances and devices; iii)

Adaptive Context-Aware decision engine that is able to select the best adjustments of

the room according to user preferences.

The use of an intelligent embedded control IoT gateway can reduce the complexity

and cost of end points, while providing the user with better services. In order for that

to happen the gateway must be able to take on high-level management tasks such

as sensor data filtering, enabling connectivity and user profiling though MAC address

detection. The implementation of the gateway based on the Galileo Gen. 2 board was

able to successfully deal with these issues. The user detection with the use of Nmap was

slower than expected in some cases, but the use of pings along with the ARP tables of

the system could circumvent this issue. Data parsing performance was sufficient and the

error rate of the received data was very low, nevertheless, redundancy of measurements

was implemented to minimize the chances of not having new data to send to the server.

An application for remote control and monitoring this sort of smart spaces is

very useful. They provide the user with basic capacity for configuring the devices as he

wishes, as well as providing feedback for the decisions. The developed app was able to

successfully control and monitor the room, both from the smartphone and website. The

use of a framework for developing hybrid applications allowed the implementation of a

portable app with cross-platform availability. The choice of communication technologies

for the exchange of messages with the server also has proven to be right.

Contextual-data analysis is very important and can provide the system with a

vast range of new applications or functionalities. Between these functionalities are

predictive analysis and automatic environment device control. Deep Neural Networks

can learn to interpret complex real-world sensor data, and are among the most effective

learning methods currently known for that purpose. ANNs may encounter multiple

drawbacks when dealing with lack of data (cold-start) or highly-dimensional data. These

drawbacks, however, can be avoided. The composition of data mining and machine

learning techniques, such as the use of an extra-trees classifier to select relevant

features of data that should be used by the ANNs, proposed by this project was very
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successful to reduce the data dimensionality without loss of relevant data for the

training of the ANNs. The incorporation of prior knowledge by the ANN avoided the

cold-start issue and improved the success of the relevant feature selection. The use of

feedback concepts from reinforcement learning provided the context-aware engine with

a continuous learning capability, which means that new user behaviors will be learned

by the system.

Contextual environment data demonstrated to be very useful for the optimization

of energy consumption of devices. Users are usually worried about the energy con-

sumption of their appliances, but very seldom, worried enough to keep adjusting the

settings of the appliances many times during the day. Fuzzy logic and Fuzzy control

were able to provide a power-consumption reduction while maintaining an acceptable

level of user comfort based in simple power-saving heuristics.

Future works are going to focus of the inclusion of new devices and new sources

of information such as user’s activity, location and condition, and new controlable devices

for further validation of the developed context-aware algorithm, as well as evaluate and

test yet other machine learning and data mining techniques for the automatic control of

smart environments.

A demonstration video of the system working in LISHA’s smart room is available

at: <https://www.youtube.com/watch?v=G7WMr-fjB-4>
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