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2018





Mateus Viana de Oliveira e Costa

FORCE CAPABILITY OF PLANAR CABLE-DRIVEN ROBOTS

Dissertação submetida ao Programa de
Pós-Graduação em Engenharia Mecânica
para a obtenção do Grau de Mestre em
Engenharia Mecânica.
Orientador: Daniel Martins, Dr. Eng.
Coorientador: Henrique Simas, Dr. Eng.

Florianópolis
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RESUMO

O desenvolvimento da robótica permitiu que diversas atividades insalubres
antes realizadas pelos seres humanos pudessem ser completamente realizadas
por manipuladores mecânicos. Com isso, a economia mundial vem se reorga-
nizando e os seres humanos podem concentrar-se em atividades intelectuais.
Neste caso, para que esse efeito se amplifique, é necessário que existam dis-
positivos robóticos capazes de realizar os mais diferentes tipos de atividades
e que se adequem às mais diferentes caractéristicas econômicas. Robôs pa-
ralelos atuados por cabos, tema central desse trabalho, apresentam-se como
um dos dispositivos mais promissores para compor essa nova ordem mundial
graças a diversas caracterı́sticas. Entre elas, destacam-se o elevado espaço de
trabalho, o baixo custo de produção e o rápido enrolamento dos cabos per-
mitindo caracterı́sticas dinâmicas únicas. Outro aspecto significativo desse
tipo de equipamento é que a flexibilidade dos cabos os tornam mais indi-
cados para interações com seres humanos. Porém, mesmo com todas essas
qualidades, diversos aspectos sobre esses dispositivos ainda estão em aberto
na academia. Entre eles destaca-se a motivação desse trabalho, que é a ca-
pacidade de força desses dispositivos e, a partir dessa informação, a definição
de mapas de capacidade de força e do espaço de trabalho wrench-feasible.
Para tanto, o primeiro aspecto dessa pesquisa foi definir o modelo matemático
que fosse capaz de traduzir todas a estática desse dispositivo. Neste caso, o
aspecto de maior complexidade, foi a constante alteração do número de ca-
bos atuados dos dispositivos. Com isso, para que o modelo matemático do
robô fosse verossimil, se fez necessário tratá-lo como um dispositivo recon-
figurável além de estabelecer leis que representassem tal recofigurabilidade.
Concluı́da a definição dos modelos planares possı́veis se fez necessário a
definição de métodos capazes de estabelecer a capacidade de força desses ma-
nipuladores. Para tanto, o método de Davies foi associado ao método de fator
de escala e a otimização com restrições. Um sistema de transição inteligente
varia o método de solução de acordo com o modelo atuado do dispositivo.
Finalmente, o método proposto por esse trabalho foi definido e consolidado
em um algoritmo. Os principais passos do método são a definição dos mod-
elos matemáticos possı́veis do robô, o estabelecimento e iteração entre todas
as ações à serem aplicadas no efetuador e a solução da capacidade de força
para cada um dos passos da iteração utilizando o modelo matemático apro-
priado. Concluı́das essas etapas, um mapa de capacidade de força é definido.
Além da definição do método, foram obtidos mapas de capacidade de força
para robôs por cabos planares com 2, 3 e 4 cabos além de espaço de trabal-



hos wrench-feasible para configurações com 2 e 3 cabos. Taı́s informações
permitem uma avaliação precisa sobre a capacidade desses dispositivos de re-
alizarem tarefas e seguirem trajetórias que envolvam força. Por último, foi
realizada uma comparação entre os resultados obtidos nesse trabalho e algu-
mas pesquisas da literatura. Por fim, o método proposto apresentou-se como
mais eficiente, quando comparado com métodos sem a transição inteligente,
além de garantir, através do conceito de restrição exata, a pose da plataforma
móvel do dispositivo.
Palavras-chave: Robôs por Cabos. Capacidade de Força. Espaço de
Trabalho. Estática. Método de Davies.



RESUMO EXPANDIDO

Introdução
Esse projeto de pesquisa propõe a definição da capacidade de força de robôs
paralelos planares atuados por cabos. Esse parâmetro de performance é
definido como a máxima força ou torque que um manipulador é capaz de
aplicar no ambiente ou é capaz de suportar em situações estáticas ou quasi-
estáticas. Algumas aplicações da avaliação da capacidade de força são o
projeto ótimo de robôs e a definição de caracterı́sticas de robôs já construı́dos
como o espaço de trabalho de força e os mapas de capacidade de força.
Manipuladores paralelos são mecanismos de cadeia fechada compostos por
um efetuador com n graus de liberdade e uma base fixa, conectados através
de pelo menos duas cadeias cinemáticas independentes. A principal vantagem
desse tipo de dispositivo é a sua elevada capacidade de carga e sua precisão
de posicionamento. Porém, modelos convencionais de robôs paralelos
apresentam espaço de trabalho extremamente reduzido quando comparados
a robôs seriais. A adoção de cabos na estrutura cinemática de robôs paralelos
atuados por cabos busca principalmente aproveitar das vantagens de robôs
paralelos convencionais e reduzir algumas de suas desvantagens. Entre as
diversas vantagens da alteração dessa configuração cinemática destaca-se
principalmente a possibilidade de expansão do espaço de trabalho desses
dispositivos para dimensões nunca antes imaginadas em robôs paralelos. Por
outro lado, essa alteração de configuração resulta em um dispositivo muito
mais complexo de ser modelado e controlado.

Objetivos
Robôs por cabos podem ser considerados uns dos dispositivos mais promis-
sores da atualidade. Caracterı́sticas como amplo espaço de trabalho e baixo
custo fazem com que este equipamento seja extremamente interessante para
aplicações como paletização e pick-and-place. Porém, esse dispositivo ainda
não possui a popularidade que sua capacidade permite. O objetivo princi-
pal deste trabalho foi contribuir para a geração de conteúdo teórico sobre
robôs por cabos visando principalmente auxiliar no projeto e adoção deste
equipamento. Para tanto, foram desenvolvidas ferramentas teóricas que aux-
iliam o entendimento e aplicação dos robôs paralelos atuados por cabo para
diferentes ambientes e tarefas. Por esse motivo, a capacidade do dispositivo
suportar e exercer forças foi escolhida como tema deste trabalho. O método
aqui proposto permite também que projetistas de robôs criem mapas de ca-
pacidade de força para orientarem seus clientes e utilizem tais mapas para
otimizarem o projeto desses dispositivos. Outro aspecto a ser considerado,



com o método aqui proposto, é a avaliação da capacidade de força em tempo
real, permitindo assim que o robô otimize comportamentos como sua geração
de trajetória baseado em sua capacidade de força.

Metodologia
A capacidade de força é definida como a habilidade de um robô de exercer
ou suportar forças diante de sua configuração cinemática e da capacidade de
seus atuadores. Porém, como os cabos que compõem esses dispositivos são
capazes apenas de realizarem forças unidirecionais e não compõe a cadeia
cinemática do dispositivo quando não acionados. Nesse caso, dois conceitos
foram utilizados para determinar a configuração do dispositivo e o modo
de atuação da forças no mesmo. Primeiramente, robôs por cabos foram
considerados como dispositivos intrinsecamente reconfiguráveis tendo sua
configuração fı́sica sendo constantemente alterada de acordo com as ações
que atuam na sua plataforma móvel. Nesse caso, o segundo conceito, da
restrição exata, foi utilizado para determinar se a orientação da força externa é
capaz de gerar um dispositivo estaticamente determinado capaz de suportar a
ação proposta. Concluı́da a avaliação da configuração do dispositivo, a rotina
de determinação da capacidade de força pode prosseguir. Nesse caso, um
sistema inteligente busca automaticamente o melhor método para a solução
do modelo estático do robô e posteriormente a definição da capacidade de
força do dispositivo. Finalmente, a união dos conceitos aqui apresentados e
organizados em um algoritmo com processos iterativos permitem a criação
de mapas de capacidade de força e de mapas tridimensionais de espaço de
trabalho e de trajetória de força. Para tanto, basta que sejam definidas as
direções de interesse das ações na plataforma móvel do robô e também as
possı́veis posições da plataforma móvel.

Resultados e Discussão
O principal aspecto operacional de um robô é a sua capacidade de realizar
tarefas. Nesse caso, para tarefas que demandam força é crucial que a
capacidade de força do dispositivo seja conhecida. Nesse caso, o principal
resultado deste trabalho é um método capaz de avaliar de forma precisa e
rápida a capacidade de força de robôs planares atuados por cabos. Para
ilustrar a adoção do método foram gerados mapas de capacidade de força
de dispositivos com 2, 3 e 4 cabos. Também foram produzidos mapas de
trajetória de força e do espaço de trabalho de força de robôs com dois cabos.
Finalmente, os resultados do método aqui proposto foram comparados aos
resultados propostos por Abdelaziz. Nesse caso, observou-se que o mapa
de capacidade de força proposto por esse autor não avaliava completamente a
determinação estática da plataforma como o método aqui proposto resultando
em avaliações imprecisas da capacidade de força.



Considerações Finais
Segundo alguns autores, o potencial máximo de robôs paralelos atuados por
cabos ainda não foram explorados. Eles afirmam que esses dispositivos
ainda estarão presentes em diversas áreas, podendo até reescrever as regras
de manipulação robótica. Porém, o crescimento dessa área está diretamente
ligada aos resultados obtidos nas pesquisas desses dispositivos. Assim, a
principal contribuição deste trabalho para a popularização desse dispositivo
foi a definição de um método de avaliação de robôs por cabos capaz de definir
de forma rápida e precisa a capacidade de força desses dispositivos baseado na
teoria de mecanismos. A primeira tarefa alcançada foi a definição do modelo
matemático do robô. Para tanto, cada cabo foi modelado como uma estrutura
RPR e as condições de tracionamento tratadas como uma reconfigurabilidade
natural do dispositivo. Nesse caso, o método de Davies foi aplicado para
resolver o modelo estático do robô. Além disso, a plataforma móvel do
equipamento foi analisada como um corpo livre que deveria ser exatamente
restrita pelos cabos e forças externas para definir completamente a sua
pose. Dois métodos de solução foram aplicados nesse projeto, o método
de fator de escala e a otimização com restrições. No primeiro, as soluções
foram obtidas sem um processo iterativo mas sua aplicação é restrita apenas
para sistemas planares de dois cabos. Adicionalmente, a otimização com
restrições é utilizada em situações com um número superior de cabos.
Finalmente, o principal aspecto desse projeto foi a variação inteligente entre
essas abordagens criando um precedente para utilização dessa abordagem em
outros sistemas reconfiguráveis.

Palavras-chave: Robôs por Cabos. Capacidade de Força. Espaço de
Trabalho. Estática. Método de Davies.





ABSTRACT

The development of robots allowed that several unhealthy activities, previ-
ously performed by humans, to be completely done by mechanical manip-
ulators. As a result, the world economy has been reorganizing and human
beings can concentrate on intellectual activities. Later, to amplify this ef-
fect, it is necessary robotic devices capable of performing the most different
types of activities and that adapt to the most different economic situations.
Cable driven parallel robots, the central theme of this work, are one of the
most promising devices on this subject thanks to its many characteristics.
Among them, the high dimension workspace, the low production cost and the
fast winding of the cables stand out, allowing unique dynamic characteristics.
Another significant aspect of this type of equipment is that the flexibility of
the cables makes them more suitable for interactions with humans. However,
even with all these qualities, several aspects of these devices are still open in
academia. Among them, is the motivation of this work, which is the force
capacity of these devices and, from this information, the definition of force
capacity maps and the wrench-feasible workspace. The first aspect of this re-
search was define the mathematical model that could translate all the nuances
of this type of device. In this case, the greater complexity was the constant
change in the number of actuated cables. Thus, in order for the mathematical
model to be reasonable, it was necessary to treat the cable robot as a recon-
figurable device and to establish laws that represented such reconfigurability.
After summarize the possible planar models, it was needed to define meth-
ods that were able to establish the force capability of these manipulators. For
this, the Davies method was associated to the scale factor method and the
constrained optimization. An intelligent transition system varies the solution
method according to the current device?s model. Finally, the method pro-
posed by this work was defined and consolidated in an algorithm. The main
steps of the method are the definition of all the possible robot’s mathematical
models, the establishment and iteration between all the actions to be applied
in the end-effector and the solution of the force capability for each of the
iteration steps using the appropriate mathematical model. After completing
these steps, a power capacity map is defined. In addition to the definition of
the method, force capability maps were obtained for planar robots with 2, 3
and 4 cables. Additionally, wrench-feasible workspace maps for 2 and 3 wire
configurations were defined. This information allows an accurate assessment
of the ability of these devices to perform tasks and follow trajectories involv-
ing force. Furthermore, a comparison was made between the results obtained



in this study and some studies in the literature. Finally, the proposed method
was presented as more efficient when compared to methods without the smart
switch, besides guaranteeing, through the concept of exact restriction, the
pose of the robot’s mobile platform.
Keywords: Cable Robots. Force Capability.Workspace. Statics. Davies
Method.
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1 INTRODUCTION

This research proposes the force capability definition for planar
cable driven parallel robots. This performance parameter is defined as
the maximum force or torque that a manipulator is able to apply in the
environment or it is able to support in static or quasi-static situations. Some
applications of the force capability are the optimum robot design and the
definition of robots’ characteristics such as the force-feasible workspace and
force capability maps.

1.1 CABLE DRIVEN PARALLEL ROBOTS

A parallel manipulator, as opposed to classical serial manipulators,
is a closed-loop mechanism composed of an end-effector having n degrees
of freedom and a fixed base, linked together by at least two independent
kinematic chains. The main advantages of these devices are the load-
carrying capacity and its good positioning accuracy. The main drawbacks
of conventional parallel robots are their small workspace and the singularities
that can appear during it’s operation (MERLET; GOSSELIN, 2008).

Cable driven parallel robots are a special class of parallel mechanisms
whose legs were replaced by cables. These devices were developed by
Landsberger & Sheridan in 1985 to surpass some of the workspace limitations
of traditional parallel robots. However, new challenges were created by this
new configuration such as the need to avoid sagged cables. There are two
main strategies to surpass this limitation. The parallel cable robot can be fully
defined by its cables or by forces made at the robot end-effector (GOSSELIN,
2014).

One of the main characteristics of cable driven parallel robots is
the possibility to change its workspace by just changing the length of the
kinematic chains’ cables. It can be easily done by coiling the tendons onto
a drum. Since it can be coiled very fast, this type of robot has very high
end-effector speeds and accelerations. Regarding the number of cables it is
possible to be increased to modify the workspace, to carry higher loads or to
increase safety due to redundancy (BRUCKMANN et al., 2008).

The first documented prototypes of working cable driven parallel
robots were developed at the United States and Japan. According to Pott
et al. (2013), the Robocrane (1989), developed for large scale manipulation
by the National Institute of Standards and Technology (NIST) (ALBUS;
BOSTELMAN; DAGALAKIS, 1992) appears to be the first prototype of
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a cable driven parallel robot. Later, Falcon was developed by Kawamura
(KAWAMURA et al., 1995) to be a fast pick-and-place robot, and Tadokoro
et al. (1999) build a device to be a robotic mobile system to rescue victims
of earthquakes. Lafourcade, Llibre and Reboulet (2002) implemented a cable
driven parallel robot for motion generation in wind tunnels (Fig. 1).

Figure 1: Sacso - A cable driven parallel robot for Wind Tunnels. Available
at Lafourcade, Llibre and Reboulet (2002).

Researchers at the German university of Duisburg-Essen (BRUCK-
MANN, 2010) developed a low weight prototype called Segesta to evaluate
the kinematic, control and design studies. Later, the String-man robot, was
developed at the German Institute Fraunhofer IPK. The main goal was to aid
patients on rehabilitation focused in force control and safety. (SURDILOVIC;
BERNHARDT, 2004). French researchers at INRIA developed a family of
robots called Marionet that includes a small scale prototype for high speeds,
a portable crane for rescue and components for personal assistance (MER-
LET, 2008). At China, researchers have developed the biggest cable robot of
the world for positioning and orientation of a telescope reflector called FAST
(Fig. 2) (DUAN et al., 2008).

Since 2006, the Fraunhofer Institute develops a family of robots called
IPAnema for inspection, manipulation and assembly operations in medium
and large scale (POTT; MEYER; VERL, 2010). According to the researchers,
the main goal of this research is develop a device based on industrial level
components to produce a result with high reliability and robustness, using the
state of the art of motors, amplifiers and control components (POTT et al.,
2013).

In Brazil, the development of cable robots has mainly been done
in three universities. The Military Institute of Engineering (IME) and the
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Figure 2: Cable driven parallel robot Fast. Available at Duan et al. (2008).

Federal Universities of Uberlandia (UFU) and Santa Catarina (UFSC). The
SAMUCA prototype was developed by Travi (TRAVI, 2009) at IME. In
UFU was developed a model for shoulder rehabilitation (NUNES, 2012).
Finally, at UFSC, specially in the robotics laboratory several studies related
to kinematic and static properties of cable driven parallel robots have been
conducted by Muraro (2015) for the project: Reconfigurable Platform for
bedridden patients.

Even with almost thirty years of development, cable robots still have
not reached a commercial status. There are some issues of these devices that
still needs to be addressed at research centres. One of the open issues is the
force capability of these devices.

1.2 FORCE CAPABILITY

The creation of autonomous robots that are able to act in unpredictable
environments has been a long-standing goal of robotics, artificial intelligence,
and cognitive sciences. To do so, robots must be provided with a certain
level of independence in order to face quick changes in the environment
surrounding them (MEJIA; SIMAS; MARTINS, 2014).

In this case, strategies must be developed to allow robots to interact
autonomously outside the predictability of research centres or universities
facilities. In this context, when a physical contact with the environment is
established, a process-specific force need to be exerted and this force has to
be controlled against to the particular process preventing the overloading or
damaging the manipulator or the objects to be manipulated (WEIHMANN et
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al., 2011).
One of the main tools that have been continuously researched and

developed along the last years in order to provide the robots with a high level
of independence is the force capability. This tool is defined in an informal
way as the capacity of a mechanical system to apply the quantity of force
possible while it consumes the quantity of internal energy. This is one of
the tools with the higher potential to optimize the performance of mechanical
systems (MEJIA, 2016).

The interaction between a robot or a machine and its environment can
be categorized in two classes. The first class is referred to unconstrained
motion of non-contact tasks without any environmental influence on the
robot. Several industrial applications such as pick-and-place, spray painting,
gluing, and arc or spot welding belong to this category (MEJIA et al., 2015).

In contrast to the non-contact tasks, many complex advanced applica-
tions of robots and machines (packaging, assembling, or machining) require
that the end-effector of such device to be coupled with other objects which
can move, this kind of applications can be categorized as contact tasks.

The contact tasks can be furthermore divided into two subclasses:
essential force tasks and compliant motion tasks. The first subclass requires
the end-effector to establish a physical contact with the objects in the
environment and exert a process-specific force. In these tasks, a synergy
between the control of the end-effector position and interaction forces is
required; some examples of this kind of tasks are deburring, roughing,
bending, polishing, and others. In these tasks, the force has to be controlled in
relation to the particular process in order to prevent overloading or damaging
the tool or the objects to be manufactured (MEJIA; SIMAS; MARTINS,
2016).

In the second subclass, the tasks focus on the end-effector motion,
which has to be realized close to the constrained surfaces, and it must be
compliant (i.e., capable to reacting to the interaction forces). In this second
subclass, the problem of controlling the robot is joined to the problem of
accurate positioning (as in part-mating process). In the future of robotics,
the interaction with the environment is fundamental and more and more tasks
will include and require interaction.

In this research proposal we will focus on the contact task class and
within this context, the force capability in robots will be studied. As a direct
consequence, generalized methods to solve the force capability problem in
planar parallel manipulators will be proposed.

In a formal way, the force capability of a robot, machine or mecha-
nisms is defined as the maximum force that can be applied (or sustained) for
a given pose, based on the limits of its actuators. The force capability of a
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mechanical device is dependent on its design, posture, actuation limits and
redundancies.

The wrench capability analysis is essential for the design and perfor-
mance evaluation of mechanical devices. For a given pose, the end-effector
is required to move with a desired force/moment or to sustain a specified
wrench. Thus, the information of the joint torques that will produce such
conditions could be investigated. This study is referred to as the inverse static
force problem. An extended problem can be formulated as the analysis of the
maximum wrench that the end-effector can apply into the wrench spaces.

The task space capabilities of a mechanical device to perform motion
and/or to exert forces and moments are of fundamental importance in the
design of robots. Their evaluation can be useful to determine the structure
and the size of the device that best fit the designer’s requirements or they can
be used to find a better configuration or a better operation point for such a
device to perform a given task.

Control of robots can conceptually be divided into position control
and force control. Position control has been the main means of control for
industrial and other existing robots. Although force control has been drawing
attention of researchers and engineers since the early days of robot develop-
ment, successful practical applications of force control are still quite few. In
the future, however, the force control will be definitely needed in order to
widen the application area and to increase dexterity of manipulators in in-
dustrial environments (for example, assembly, deburring, polishing, handling
flexible parts, etc.) and also in non-industrial environments (hospital, home,
town, space, etc. for service, maintenance, welfare, entertainment, etc.).

1.3 WORK PURPOSES

The main objective of this research is to define the force capability of
cable driven parallel robots and by this means provide force capability and
workspace maps. This objective will be achieved by some specific objectives
that are:

• To define the statics of cable driven parallel robots through the Davies
Method.

• To inspect conditions and factors that influences the force capability of
the robot.

• To develop a method to determine the force capability of CDPRs.

• To define the force capability maps for cable driven robots.
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• To determine the workspace maps based on the force capability.

1.4 JUSTIFICATION

Cable robots are one of the most promising devices in the present. It’s
unique features like large workspace and low cost makes it suited for a wide
range of applications such as palletizing and pick-and-place. However, this
robot still not as popular as it could be.

In this case, the motivation of this research is to contribute to the
academic background regarding this robot and to provide theoretical tools
that are able to help in the design and implementation of cable-driven parallel
robots. To do so, the force capability, one of the main performance parameters
of robots is analyzed.

Thus, the proposed method is meant to allow designers to create force
capability maps during the robot project and also to improve the robot design
using the method results. Additionally, robot buyers could also use the maps
provided by the method to define the robot’s ability to execute tasks and
improve the tasks for the robot configuration. The high performance of the
proposed method also allows real-time applications such as define the robot
force capability of each point of a trajectory.

1.5 OVERVIEW OF THIS WORK

This work is divided into 7 chapters.
In Chapter 1, the concept of cable driven parallel robot is presented

and some devices are analysed. The concept of force capability is also
introduced alongside this work purposes and an overview.

In Chapter 2, the theoretical tools that are need to fully understand
this work is presented. Thus, concepts such as the degree of freedom, the
correspondence between mechanisms and graphs, the screw theory and the
Davies Method are introduced.

In Chapter 3, a brief introduction about industrial robots is done
starting with serial manipulators and showing the main advantages of cable
robots. Finally, a classification of these devices and the solution of its static
model is made.

In Chapter 4, the force capability is presented alongside a literature
review on this subject. Further, some methods about the wrench polytopes
analysis are presented alongside our proposed method. Furthermore, some
case studies are showed to better explain our proposed method.
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In Chapter 5, the concept of cable robots workspace is presented
alongside some of the previous works on this subject. Further, a method
is proposed to solve the wrench-feasible workspace and trajectory using the
method that was proposed for the force capability.

In Chapter 6, a discussion is done regarding some results that are
available in the literature and the ones that were obtained with the proposed
method.

In Chapter 7, some conclusions and further works are presented. Thus,
the performance of the method is reviewed and works such as the analyses of
spatial robots are proposed as further works.
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2 THEORETICAL TOOLS

This chapter presents some of the theoretical tools that are used in this
work. Davies (1981) proposed a method to apply the Kirchhoff’s circulation
laws in the analyses of multi-loop kinematic chains. Its main purpose was
to find a set of independent instantaneous screws associated with any two
bodies in kinematic chains when the configuration of this chain is given.
Thus, an analogy between electrical current (flow variable) and voltage
(effort variable) with mechanical screw wrenches and motions, respectively,
is proposed. This association allows to analyse separately the motion and the
action of a set of coupled rigid bodies just by the means of graph and screw
theory.

The following sections introduce some important concepts on mech-
anisms, graphs and screw theories. Further information can be found in the
work of Cazangi (2008).

2.1 LINKS AND JOINTS

Rigid bodies are defined as material bodies whose deformation under
stress is negligibly small. The use of rigid bodies makes the study of
kinematics of mechanisms easier. However, for light-weight and high-speed
mechanisms, the elastic effects of a material body may become significant and
must be taken into consideration. The individual rigid bodies in a machine or
mechanism are called links. Joints (Fig. 3) are elements that adds constraints
to the relative motion between two members or links by connecting them. The
relative motion permitted by a joint is governed by the form of the surfaces of
contact between the two members. The surface of contact of a link is called a
pair element. Two paired elements form a kinematic pair (TSAI, 2000).

Tsai (2000) classifies kinematic pairs according two main character-
istics: the type of contact between the paired elements and the number of
constraints. In the first classification, pairs are divided into lower pairs, when
one element envelopes the other, and higher pairs when they have just a line
or a point contact. The most common mechanical joints are presented in Fig.
3. The revolute joint, R, allows two links to rotate about an axis defined by
the joint geometry, imposing five constraints on the paired elements.
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Figure 3: Some of the most popular mechanical joints. Available at Tsai
(2000).

2.2 DEGREES OF FREEDOM

Degrees of freedom (DoF’s) refer to the number of independent
parameters required to completely specify the configuration of a mechanism
in space, and perhaps is the first concern in the study of kinematics and
dynamics of mechanisms. Except for some special cases, it is possible to
define the degrees of freedom of a mechanism in terms of the number of
links, number of joints, and types of joints incorporated in the mechanism
by a general expression. Tsai (2000) defines the following parameters to
facilitate the derivation of the degrees of freedom equation.

• ci: degrees of constraint on relative motion imposed by joint i.

• F : degrees of freedom of a mechanism.
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• fi: degrees of relative motion permitted by joint i.

• j : number of joints in a mechanism, assuming that all joints are binary.

• ji: number of joints with i DoF; namely, j1 denotes the number of 1-
DoF joints, j2 denotes the number of 2-DoF’s joints, and so on.

• L: number of independent loops in a mechanism.

• n: number of links in a mechanism, including the fixed link.

• λ : degrees of freedom of the space in which a mechanism is intended to
function. For spatial mechanisms, λ = 6, and for planar and spherical
mechanisms, λ = 3. λ is called the motion parameter.

Intuitively, the DoF’s of a mechanism correspond to the DoF’s of all
the moving links subtracted by the degrees of constraint imposed by the joints.
Since the total number of constraints imposed by the joints, according to Tsai
(2000), is given by ∑

j
i=1 ci the net degrees of freedom of a mechanism is

M = λ (n−1)−
j

∑
i=1

ci (2.1)

The constraints imposed by a joint i and the degrees of freedom
permitted by the joint are related by

ci = λ − fi (2.2)

Substituting Equation 2.2 into Equation 2.1 yields to the Chebychev-
Grübler-Kutzbach criterion:

M = λ (n− j−1)−
j

∑
i=1

fi (2.3)

This criterion is valid only if the constraints imposed by the joints
are independent and do not introduce redundant degrees of freedom. It is
also possible to establish an equation that relates the number of independent
loops to the number of links and number of joints in a kinematic chain. Tsai
(2000) defines that a kinematic chain whose number of independent loops is
increased from 1 to L has the difference between its number of joints and
links increased by L-1, it yields to the Euler’s equation:

ν = j−n+1 (2.4)

Or, in terms of the total number of loops, we have
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L̃ = j−n+2 (2.5)

Combining Eq. 2.4 with Eq. 2.3 yields to the loop mobility criterion

j

∑
i=1

fi = F +λL (2.6)

2.3 CORRESPONDENCE BETWEEN MECHANISMS AND GRAPHS

A graph consists of a set of vertices that are linked together by a set
of edges. Graphs are denoted by the symbol G, the vertex by set V , and the
edge by set E. We call a graph with v vertices and e edges a G(v,e) graph. A
circuit is denoted as a path of alternating vertices and edges, beginning and
ending at the same vertex were each vertex appears once (TSAI, 2000).

A tree (T ) is a connected graph that contains no circuits, with v
vertices. According to Tsai (2000), any two vertices of T are connected by
only one path and contains (v− 1) edges. The connection of any two non-
adjacent vertices of T with an edge leads to a graph with one and only circuit.

A spanning tree (T ) is a subgraph of the connected graph G that
contain all its vertices. The edge set E of G can be decomposed into two
disjoint subsets, called the arcs and chords. The arcs of G consist of all the
elements of E that form the spanning tree T , whereas the chords consist of
all the elements of E that are not in T . The union of the arcs and chords
constitutes the edge set E (TSAI, 2000).

In general, the spanning tree of a connected graph (G) is not unique.
The addition of a chord to a spanning tree forms precisely one circuit. A
collection of all the circuits with respect to a spanning tree forms a set of
independent loops or fundamental circuits. Figure 4a shows a (5,7) graph G,
Figure 4b shows a spanning tree T , and Figure 4c shows a set of fundamental
circuits with respect to the spanning tree T (TSAI, 2000).

A cutset is a edge set, that separates the graph into two sub-graphs
when it is removed. A fundamental cutset (cutset-f ) is obtained by a single
edge of the graph tree and a set of chords. In contrast, the fundamental
circuit (circuit-f ) is obtained by a single chord and a set of tree branches.
In addition the cutsets-f may be represented by a Cutset-f Matrix denoted by
[Q]k×e = [qi, j] composed by the following rules (CAZANGI, 2008).

• qi, j = 1 if ei belongs to the f-cutset ki and has the same orientation that
the tree branch that defines it.

• qi, j =−1 if ei belongs to the f-cutset ki and has an opposite orientation
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compared to that the tree branch that defines it.

• qi, j = 0 if ei does not belong to the cutset-f ki.

In the same manner, the circuits-f may be represented by a circuits-f
matrix denoted by [B]l×e = [bi, j] composed by the following rules defined in
Cazangi (2008).

• bi, j = 1 if ei belongs to the same circuit-f li and has the same orientation
that the chord that defines it.

• bi, j = −1 if ei belongs to the same circuit-f li and has an opposite
orientation with respect to the chord that defines it.

• bi, j = 0 if ei does not belong to the cutset-f li.

Figure 4: A spanning tree and the corresponding fundamental circuits.
Available at Tsai (2000).

2.3.1 Structural Analysis

Structural analysis studies the nature of connections among the mem-
bers of a mechanism. Since the topological structure of a kinematic chain can
be represented by a graph, many useful characteristics of graph theory can be
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applied to analyse kinematic chains. Table 1, by Tsai (2000), describes the
correspondence between the elements of kinematic chains and graphs.

Table 1: Correspondence between mechanisms and Graphs. Available at
(TSAI, 2000)

Graph Symbol Mechanism Symbol
Number of vertices v Number of links n
Number of edges e Number of joints j
Number of vertices of
degree i

vi Number of links hav-
ing i joints

ni

Degree of vertex i di Number of joints on
link i

di

Number of indepen-
dent loops

L Number of indepen-
dent loops

L

Total number of loops
(L+1)

L̃ Total number of loops
(L+1)

L̃

Number of loops with i
edges

Li Number of loops with i
joints

Li

2.4 CONCLUSIONS

In this chapter, some fundamental concepts regarding mechanism and
machine theory were analysed, such as the concept of degrees of freedom,
informations about links and joints and the graph theory. Thus, the statics and
kinematics behaviour of mechanisms can be fully understood. To do so, the
screw theory alongside the Davies’ method is introduced. In this case, a new
geometric element called screw allows the representation of the instantaneous
state of motions and actions of rigid bodies in space. Further, the concept of
screw wrench and screw twist alongside the adaptation of Kirchhoff’s circuit
laws for mechanics were presented, and applied to fully define all actions
and moments in a mechanism. Finally, the use of this well substantiated and
traditional concepts will allow to increase the reliability and robustness of the
proposed method.
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3 BIBLIOGRAPHIC REVIEW

The Robotics Institute of America defines a robot as a “re-programmable
multi-functional manipulator designed to move materials, parts, tools, or spe-
cialized devices, through variable programmed motions for the performance
of a variety of tasks”. Although most people perceive robots anthropomor-
phically, today’s industrial robots are mechanical manipulators somewhat hu-
manoid in appearance. Robot manipulators were first introduced in the late
1940s to handle hazardous materials and to work in space exploration and for
flexible automation (TSAI, 1999).

Robots can be categorized according to several classifications such as
working purposes, operation environment and others. Here, since our main
focus is to introduce a parallel architecture, they will be classified based on its
kinematic structure. In this case, there are three main classes serial, parallel
and hybrid manipulators.

3.1 SERIAL MANIPULATORS

A serial chain is a sequence of links and joints that begins at a base and
ends with a end-effector. Currently, serial manipulators, like the one shown
in Fig. 5, is based on a serial kinematic chain and are the most common
type of manipulator used in robotics, mainly because its large workspace and
simple operation. However, there are some drawbacks, such as high energy
consumption and low payload to weight ratio.

Figure 5: Serial Robot Kuka IIWA. Available at Cobots (2018)
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According to Verhoeven (2004), the energy consumption of these
devices is rather high because each actuated joint has to carry not only
the load, but also all the subsequent links with their actuators. Further,
the capability of handling large masses is limited since heavy loads require
stronger links and this increases energy consumption even further. In fact,
in most manufacturing applications the payload, the robot capacity to carry
weights, is quite small when compared to the mass of the whole manipulator.

Moreover, high velocities and accelerations can be easily achieved,
especially when revolute joints are employed. Thus, links act as levers and
therefore the end-effector generally moves faster than the joints. High preci-
sion operation is possible, especially in small-scale applications (workspaces
up to about 1 m).

Verhoeven (2004) also addresses problems with large-scale operation.
According to him, the leverage effect of long links increases substantially the
torque on actuated joints whereas the bending of links and vibrations of large
amplitude affects automatized/precise motions.

Contrasting, tendon-driven serial manipulators (Fig. 6), whose actu-
ators are fixed, are considerably more energy efficient. However, in three-
dimensional applications it is very difficult to guide the tendons around joints.
Therefore, this concept is used in practice mainly for planar systems (VER-
HOEVEN, 2004).

Figure 6: Tendon-driven Serial Manipulator. Available at Yin and Bowling
(2018)
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3.2 PARALLEL ROBOTS

According to Merlet and Gosselin (2008), a parallel manipulator
can be defined as a closed-loop mechanism composed of an end-effector
having n degrees of freedom and a fixed base, linked together by at least
two independent kinematic chains, commonly called legs or limbs of the
manipulator. In 1947, Gough established its basic principles allowing
positioning and orientation of the moving platform to test tire wear and tear.
However, early in 1928, an example (Fig. 7) of such structure was patented
by Gwinnett (1931) to be used as a platform for a movie theater.

Figure 7: Gwinnett (1931) platform for movie theater.

Gough (1956) prototype (Fig. 8) was based on a hexagonal platform
whose vertices are all connected by spherical joints to the robot limbs. A
linear actuator allows the modification of the total length of the moving
links (legs) that were connected to the base by a universal joint. Stewart
(1965) suggested the use of such structure for flight simulators and the
Gough mechanism is sometimes referred to as Stewart platform. The same
architecture was also concurrently proposed by Kappel as a motion simulation
mechanism (MERLET; GOSSELIN, 2008).

According to Gosselin (2014), the mechanical properties of parallel
mechanisms make them most appropriate for tasks that require large payload
to weight ratios or very demanding dynamic trajectories (e.g. high-speed
robots). Indeed, while the payload to mass ratio is typically smaller that 0.15
for serial 6R industrial robots, can be larger than 10 for parallel structures,
allowing them to operations such as machining (Fig. 9).

Further, it is well-known in structural engineering that designs involv-
ing links that are subjected to only tension and compression constitute an
optimal use of materials. Thus, many of the most successful designs of par-



50

Figure 8: Gough (1956) parallel manipulator for test tires.

Figure 9: Stewart platform for machining. Available at AMRC (2018)

allel mechanisms involve some links that are subjected to only tensile and
compressive loads. Moreover, it is only natural to extend the reasoning one
step further and consider parallel mechanisms that involve members solely in
tension, thereby leading to the concept of cable-driven parallel mechanisms
- also referred as tendon-driven parallel mechanisms - introduced by Lands-
berger (1985) and Miura, Furuya and Suzuki (1985) (GOSSELIN, 2014).

According to Irvine and Irvine (1992), cables are flexible elements
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that are able to support very large tensile loads per unit weight, representing
a more effective use of materials compared to struts, which explains why
they have been employed in construction and in machines since antiquity.
Cable-driven parallel robots (CDPR) combine the principles of parallel
mechanisms with the properties of cables, leading to potentially very effective
mechanisms. Moreover, some of the main advantages of these devices are:

• They can have large workspaces since huge amounts of cables can be
wound on spools and the weight of the robot limbs are incredibly small
compared to rigid links.

• Very energy efficient since the actuators are fixed, the payload is
subdivided between actuators and the robot legs are light.

• They are appropriate to handle very heavy loads, like cranes and
the wound speed allows them to achieve very high accelerations and
velocities.

• They can be designed in extremely large scale (up to several kilometers
as the works of Duan et al. (2008)) as well as in micro-scale applica-
tions.

• Unlike in the case of cranes, motion is highly predictable and can be
controlled without manual interaction.

Figure 10: Ipanema Cable Robot. Available at Pott et al. (2013)

On other hand, some theoretical questions about cable-driven parallel
robots remains unanswered and have been addressed by many researchers.
Verhoeven (2004) enumerates some of them:
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• The robot stiffness, since cables are much more compliant than rigid
links;

• The collision of cables with each other, with the load or with the
framework;

• The workspace complexity due mainly to the unidirectional behaviour
of the cable limbs;

• The optimal distribution of tension between tendons, especially in
highly redundant systems.

3.3 CLASSIFICATION

Cable robots were first classified by Ming and Higuchi (1994) who
divided them into two main classes the Completely Restrained Parallel
Manipulator - CRPM and the Incompletely Restrained Parallel Manipulator
- IRPM. Ten years later, Verhoeven (2004) divided the CRPM class in two,
adding the category Redundantly Restrained Parallel Manipulator - RRPM.
The classification is made based in the difference between the number of
cables nc and the number of degrees of freedom nd of the manipulator:

• IRPM (Incompletely Restrained Parallel Manipulator): In the IRPM
configuration the number of cables is inferior to the number of degrees
of freedom, thus they cannot completely define the position of the
mobile platform, requiring the presence of external forces at the end
effector.

nc ≤ nd (3.1)

• CRPM (Completely Restrained Parallel Manipulator): The CRPM has
the exact amount of cables that are needed to fully constrain the end
effector. In this case, no external force is needed to define the platform
position.

nc = nd +1 (3.2)

• RRPM (Redundantly Restrained Parallel Manipulator): The RRPM has
a number of cables that is bigger than the amount needed to completely
restrain the parallel manipulator. Thus, during operation some of its
cables may remain sagged or tightening themselves.

nc < nd +1 (3.3)
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Table 2: Classification of the cable driven mechanisms according to its
controllable degrees of freedom. (VERHOEVEN, 2004).

Class DoFs Type of Movement
1T 1 Linear movement of a point.
2T 2 Planar movement of a point.

1R2T 3 Planar movement of a body.
3T 3 Spacial movement of a point.

2R3T 5 Spacial movement of a bar.
3R3T 6 Spacial movement of a body.

Verhoeven (2004) also classifies the cable driven parallel robots
according to the number of controllable degrees of freedom and the type of
moment that the end effector is able to perform, as shown in Tab. 2 and Fig.
11.

Figure 11: Verhoeven (2004) classification of Cable Driven Parallel Robots

The works of Gosselin (2014) also propose a classification method
for cable driven parallel robots. There, the author divides them into two
classes, fully-constrained mechanisms - FCMs and cable-suspended parallel
mechanisms - CSPMs. In this case, the CSPMs (Fig. 12a) requires the
presence of external forces in the end effector (mainly gravity) to fully define
its posture. In contrast, FMCs (Fig. 12b) can fully define its posture just by
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(a) Fully-constrained mechanisms (b) Cable-suspended parallel mechanism

Figure 12: Gosselin (2014) classification demonstration.

its own configuration since they are designed in a way that allows its cables
to pull themselves.

3.4 CONCLUSIONS

The presence of robots in the industrial environment is constantly
increasing. However, most of these devices are serial robots with rigid links
with many drawbacks such as energy consumption and reduced workspace.
Cable Robots, such as the skycam (CONE, 1985), can allow the development
of systems in a scale that was never thought before in a significantly reduced
price. Thus, to increase the popularity of these devices in the industrial
environment some advances in the academic field must be done. To do so, this
chapter presented an introduction about this device, a classification proposal
for some of the available CDPRs and the solution of the robot static model.
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4 FORCE CAPABILITY OF CABLE ROBOTS

Force capability is defined as the robot ability to exert or support a
specified force according to its kinematic configuration and the actuators
maximum torque/force. On cable robots, the unidirectional actuation leads
to some issues in the determination of its force capability. Thus, before
the capacity definition, the behaviour of the robot’s mobile platform is
analysed alongside each possible actuation. In this case, the concept of exact
constraint, proposed by Blanding (1992), is used to define poses where the
mobile platform is able to perform or support forces.

Moreover, the concepts of instantaneous twist and wrench capability
are essential for the design and performance evaluation of serial and parallel
manipulators. According to Firmani et al. (2008), an instantaneous twist is
a screw quantity that contains both angular and translational velocities of the
end-effector, i.e., V = {γT ;vT}T . Whereas, a wrench is a screw quantity
that contains the forces and moments acting on the end-effector, i.e., F =
{ f T ;mT}T . For a given pose, the required task of the end effector is to move
with a desired twist and to sustain (or apply) a specific wrench (FIRMANI
et al., 2008). These kinematic conditions are achieved with corresponding
velocities (q̇) and joint torques (τ) respectively. The relationship between the
task and joint spaces is defined by the well known linear transformations,
where J is defined as the Jacobian matrix:

ẋ = Jq̇ (4.1)

τ = JT F (4.2)

In addition, an extended problem can be formulated as the analysis of
the maximum twist or wrench that the end-effector can perform in the twist
or wrench spaces, respectively. Thus, the knowledge of maximum twist and
wrench capabilities is an important tool for achieving the optimum design of
manipulators (FIRMANI et al., 2008).

For instance, according to Mejia (2016), by being able to graphically
visualize the twist and wrench capabilities, comparisons between different
design parameters, such as the actuator force capabilities and the dimensions
of the links, can be explored. Also, the performance of an existing
manipulator can be improved by identifying the optimal capabilities based
on the configuration of the branches and the pose of the end-effector
(FIRMANI et al., 2008). This work focus on the wrench capabilities of planar
manipulators actuated by cables.
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4.1 FORCE CAPABILITY INFLUENCE FACTORS IN MANIPULATORS

According to Mejia (2012), the manipulator force capability is influ-
enced by a series of factors, among which the most important are:

• The type of the applied wrench;

• Kinematic redundancy;

• Environment possible reactions;

• The manipulator working mode;

• Manipulator singularities;

• The actuators capacities and limitations;

• Geometrical characteristics and configuration of the manipulator;

• Manipulator stiffness.

In this case, the concept of manipulator stiffness is formalized as the
relation between the forces and the deformations caused in the end effector.
A bigger stiffness will lead to less deformation, considering the same forces
and moments acting in the end effector (SALISBURY, 1980).

Weihmann (2011) shows a study about the influence of such factors in
the force capability of manipulators, using practical examples and simulations
of two planar manipulators. The author also exemplifies how different
configurations for the same contact point can be achieved by the use of
kinematic redundancy.

Nokleby et al. (2005) determines that the force capability of a
manipulator is defined by its less powerful actuator, subject to actuation
saturation. Thus, after the definition of the less powerful joint, the maximum
torque/force is applied in this joint and, by equilibrium equations, the
interaction actions among the manipulator and the environment is defined
(MEJIA, 2012).

4.2 PERFORMANCE INDICES

According to Gosselin and Angeles (1991), an enormous amount of
performance indices were formalized in the literature, but most is focused
in kinematics of manipulators. Further, Mejia (2012) elucidates that perfor-
mance indices for force capability of manipulators are presented by Gosselin
and Jean (1996) and Finotello et al. (1998).
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For Mejia (2012), performance indices aims to provide direct informa-
tion about specified manipulators characteristics. Thus, in the development
phase, indices are used as reference for topology, geometry and construc-
tive characteristics of manipulators. Further, in operational phase, the per-
formance indices can be used to define a proper posture and distribution of
forces and torques in actuators (GOSSELIN; JEAN, 1996; FINOTELLO et
al., 1998).

For Finotello et al. (1998), manipulability is the capability of a
manipulator to perform a specified task with a known configuration and aims
to characterize the kinematic condition of a manipulator. Further, the concept
of manipulability was extended to statics, introducing the force ellipsoid,
the most popular static performance index in literature. Furthermore, force
ellipsoids were used to define force capability quantitative measures of
manipulators.

Further, for Mejia (2012), the concepts of maximum available value
(MAV) and maximum isotropic values (MIV) are also popular performance
indices in statics. In this case, MAV is the maximum force or moment that
a manipulator can apply in any direction and MIV as the maximum value of
force or moment that the manipulator can exert in all possible directions.

Finotello et al. (1998) and Nokleby et al. (2005) treat the forces and
moments separately, leading to different values of MAV and MIV. In this
case, the nature of actions between the manipulator and the environment are
characterized by the terms strong sense and weak sense. Thus, for forces, the
strong sense is obtained with zero moments. Likewise, in the weak sense,
moments can assume any value. Further, for moments, a similar concept is
applied with forces being zero or assuming any value.

Firmani et al. (2008) defines some performance indices for parallel
manipulators in a specified position using the concepts of MAV and MIV as
follows:

• Maximum force with a prescribed moment (F pm
app): is the maximum

force that a manipulator is able to apply in a direction, considering a
specified moment. If the value of the moment is zero, the concept of
F pm

app is equal to the MAV in the “strong sense”.

• Maximum isotropic force with a prescribed moment (F pm
iso ): is the

maximum force that a manipulator is able to apply in all directions,
considering a specified moment. If the value of the moment is zero, the
concept of F pm

iso is equal to the MIV in the “strong sense”.

• Maximum allowable force (Fmr
app): is the maximum force that the

manipulator can apply in a direction with an associated moment. Thus,
it is similar to the concept of MAV in the “weak sense”.
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• Maximum allowable isotropic force (Fmr
iso ): is the maximum force

that the manipulator is able to apply in all directions with an associated
moment. Thus, it is similar to the concept of MIV in the “weak sense”.

• Maximum moment with a prescribed force (Mp f
z ): is the maximum

moment that the manipulator can apply, considering a specified force.

• Maximum moment with a prescribed maximum isotropic force
(Mi f

z ): is the maximum moment that the manipulator can apply,
considering a maximum isotropic force.

• Maximum moment with a prescribed maximum force (Mr f
z ): is

the maximum moment that the manipulator can apply, considering a
maximum force.

• Maximum moment with a free force (Mmr
z ): is the maximum moment

that the manipulator can apply, considering a free force.

4.3 LITERATURE REVIEW ON THE WRENCH CAPABILITY

According to Mejia (2016), the measurement of robots manipulating
ability was first introduced by Yoshikawa (1985), where the velocity and force
manipulability ellipsoids were defined. Currently, three different approaches
for determining force capabilities have been proposed in the literature:
constrained optimization, wrench ellipsoid and wrench polytope (FIRMANI
et al., 2008).

4.3.1 Constrained Optimization

The constrained optimization approach, in general, involves an ob-
jective function that maximizes either the magnitude of the force (F) or the
moment (Mz), one equality constraint (F = J−T

τ) and a set of inequality con-
straints (τimin ≤ τi ≤ τimax ), indicating the actuator output capabilities.

Mejia (2016) summarizes some previous studies with this approach.
According to him, Kumar and Waldron (1988) investigated the force distribu-
tion in redundantly-actuated closed-loop kinematic chains and concluded that
there would be zero internal forces using the Moore-Penrose pseudo-inverse
solution. Tao and Luh (1989) developed an algorithm to determine the mini-
mum torque required to sustain a common load between two joint-redundant
cooperating manipulators. Nahon and Angeles (1992) described the problem
of a hand grasping an object as a redundantly-actuated kinematic chain, by
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minimizing the internal forces in the system using quadratic programming
(QP).

Further, Weihmann et al. (2011) and Mejia, Simas and Martins
(2014) proposed methodologies to evaluate the wrench capability of planar
parallel manipulators using differential evolution algorithms (DE). Buttolo
and Hannaford (1995) analysed the force capabilities of redundant planar
parallel manipulator. Torques were optimized using the ∞− norm resulting
in higher force capabilities when compared to the pseudo-inverse solution.

Nokleby et al. (2005) developed a methodology to optimize the force
capabilities of redundantly-actuated planar parallel manipulators using an n-
norm, for large values of n, and a scaling factor. After, Nokleby et al. (2007)
used these methods to obtain results for 3-RRR, 3-RPR and 3-PRR parallel
architectures with redundant and non-redundant actuation. Furthermore, Zibil
et al. (2007) implemented this approach to spatial parallel manipulators.

According to Mejia (2016), in general, constrained optimization
methods, used as primary tool are usually slow due to the numerical nature
of the algorithm and the inaccuracies due to the existence of local minima.
Based on these limitations, in this work, two new approaches to solve the
wrench capability problem are proposed as an attempt to reduce the time
and effort needed to solve such a problem avoiding simultaneously the use
of optimization algorithms or iterative processes. The method proposed by
Mejia (2016) are based on the classic scaling factor method and on classical
gradient-based optimization methods.

First, some improvements are proposed on the classic scaling factor
method proposed by Nokleby et al. (2005) in order to avoid the use of an
optimization algorithm. These improvements result in the definition of a
modified scaling factor method that solves the wrench capabilities problem
in an easier, faster and more direct way. When used in conjunction with the
Davies method, the modified scaling factor method proposed by Mejia (2016)
constitutes a powerful tool used to solve the wrench capability problem.

4.3.2 Wrench ellipsoid

According to Firmani et al. (2008), the wrench ellipsoid approach is
based on bounding the actuator torque vector by a unit sphere τττTτττ ≤ 1. Thus,
the torques are mapped into the wrench space with Eq. 4.3, yielding a force
ellipsoid FT JJT F≤ 1. However, Firmani et al. (2008) define this approach as
an approximation because joint torques are normalized (τττTτττ ≤ 1), yielding
a hypersphere in the torque space. Thus, the correct model of the joint
torques/forces must be an m-dimensional parallelepiped in the torque/force
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space due to the nature of extreme torque capabilities of each actuator.

τττ = JT F (4.3)

Thus, Mejia (2012) defines the wrench ellipsoid as a graphical
representation of the relation between manipulator actuation and resultant
actions in the end effector.

Fx

Fy

O

Figure 13: Force ellipsoid

Further, since the ellipsoid depends of the Jacobian matrix, each new
manipulator configuration leads to a new ellipse. Furthermore, Weihmann
(2011) summarize some considerations regarding the application of force
ellipsoids:

• They are applied only when the manipulator presents only one joint
type. In this case, mapping of manipulators with two or more types of
joints would present dimensional inconsistency.

• They do not evaluate the links weight. Thus, the torques that are needed
to equilibrate the gravitational forces are neglected, which can lead to
incorrect results.

• They do not consider restrictions in the maximum manipulators torque.
Thus, even normalizing the maximum torque of the most robust unit
joint, some points of the torque maps could not be reached and,
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consequently, the force ellipse does not represent accurately the real
condition.

• Unitary norm excludes the possible combinations of the mapping
torques. Thus, if the considered joints possesses the same torque ca-
pability, in the bi-dimensional cases the torques should be represented
by a square and not a circle.

Even with all restrictions the wrench ellipsoid provides directions in-
dicatives where the manipulator possesses the major mechanical advantages.
Thus, these informations can be useful to find optimized solutions for the ap-
plication of forces and moments limits. Further, in the presence of kinematic
and actuation redundancy, its applicability is limited because does not pro-
vide information such as, from an initial configuration, how to improve the
force capability for a specified direction through changes in the posture of
the manipulator or how to efficiently distribute the torques in the actuators
(GOSSELIN; SEFRIOUI, 1991).

4.3.3 Wrench polytope

According to Firmani et al. (2008), wrench polytope approach consid-
ers the complete region in which the actuator can operate and is compared to
the wrench ellipsoid in Fig. 14. Thus, assuming a manipulator with two actu-
ated revolute joints whose extreme capabilities are τiext =±1 Nm, for i = 1,2,
Fig. 14a describes the generation of an ellipse as a result of mapping a circle
and Fig. 14b shows the generation of a polygon (in general, a polytope) as a
result of mapping a square.

Figure 14: Mapping of ellipsoids and polytopes from the joint space the task
space. Available at Firmani et al. (2008).
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Further, the inner circle and the inner square of Fig. 14a and 14b,
describe the torque limits in the torque space, respectively (bottom and left
axes); whereas, the outer ellipse and polygon describe the wrench capabilities
in the wrench space (top and right axes). Furthermore, the lines that connect
the inner to the outer shapes illustrate the linear transformation. Finally, Fig.
14c shows how the circle and ellipse are inscribed within the square and
polygon, respectively.

In general, according to Firmani et al. (2008), each actuator torque/force
defines an orthonormal axis in Rm. The extremes of each torque constrain the
torque/force space with a pair of parallel planes along each axis. Thus, an
m-dimensional parallelepiped is obtained by pairs of parallel planes which
bounds the feasible region where the manipulator can operate. A linear trans-
formation, such as the equation of the forward static force, maps vector τττ

from Rm(joint torque space) to Rn (wrench space).

4.4 WRENCH POLYTOPE ANALYSIS

4.4.1 Joint space parallelepiped

According to Firmani et al. (2008), the ith joint torque variable, which
is bounded by τimin and τimax , can be represented in the joint torque space as
two parallel planes in Rm, being n the dof of the task space coordinates and
m the number of actuated joints. Thus, with m joints, there are 2m planes
or m pairs of parallel planes, whose combination forms an m-dimensional
parallelepiped yielding the region of joint torque capabilities. Further, if all
the torque capabilities were equal, the m-dimensional parallelepiped would
result in a hypercube. Also, if the magnitude of the extreme torques were
equal, i.e., |τimin | = |τimax |, the parallelepiped would be centro-symmetric;
otherwise it would be skewed. A vertex of the m-dimensional parallelepiped
defines the intersection of m extreme torque planes. Thus, a vertex occurs
when all joint torques are at their extreme capabilities, i.e.,

v j =
[
τ1ext τ2ext · · · τ1ext

]
(4.4)

where τiext denotes the extreme capabilities of the ith actuator, i.e., τimin or
τimax . According to Firmani et al. (2008), the total number of vertices(vTm ) in
the m-dimensional parallelepiped is vTm = 2m.
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4.4.2 Linear transformation

According to Firmani et al. (2008), Visvanathan and Milor (1986)
investigated problems involving the mapping of a parallelepiped under a
linear transformation. Further, Firmani et al. (2008) propose a linear
transformation from Rm to Rn, such as F = J−T

τ , to obtain a polytope
from a m-dimensional parallelepiped. Furthermore, an n-dimensional convex
polytope is bounded by (n− 1)-dimensional facets or hyperplanes, e.g.,
linear edges in R2 bounding a polygon or planar facets in R3 bounding a
polyhedron. Thus, a polytope P can be completely characterized by mapping
all the vertices of the parallelepiped and enclosing them in a convex hull, i.e.,

P = convh
{

J−T v j, j = 1, · · · ,2m} (4.5)

where convh detones a convex hull operator which encloses all the extreme
points forming the feasible region of the torque space in the wrench space.
Finally, the total number of vertices in the polytope (vTn ) depends on the
dimension of the two spaces (FIRMANI et al., 2008).

4.4.3 Non-redundant planar manipulators

According to Firmani et al. (2008), the number of vertices in the
polytope, for non-redundant manipulators (n = m), is equal to the number
of vertices in the m-dimensional parallelepiped, i.e., vTn = vTm = 2m, and the
vertices of the polytope are the image of the vertices of the m-dimensional
parallelepiped, i.e.,

p j = J−T v j (4.6)

where p j and v j are the vertices of the polytope and parallelepiped, respec-
tively. Further, according to Firmani et al. (2008), the linear transformation
also makes the edges and facets of the polytope as the corresponding image
of the edges and facets of the m-dimensional parallelepiped. Thus, for planar
parallel manipulator the vertices of the wrench polytope are found as follows: fx

fy
mz

=

γ1,1 γ1,2 γ1,3
γ2,1 γ2,2 γ2,3
γ3,1 γ3,2 γ3,3

τ1ext

τ2ext

τ3ext

 (4.7)

where γi, j denotes the elements of J−T . So, there are eight vertices (23) due
to the combination of the extreme torque capabilities. Furthermore, the linear
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Figure 15: Linear transformation of a parallelepiped to a polytope of a non-
redundant parallel manipulator through projection of vertices, edges, and
facets. Available at Firmani et al. (2008).

transformation of the torque capabilities of a non-redundant planar parallel
manipulator from the torque space to the wrench space is illustrated by Fig.
15. Additionally, the corresponding image of the vertices, edges, and facets
between the parallelepiped and the polytope is also shown in Fig. 15.

Finally, Firmani et al. (2008) defines some characteristics of the
wrench polytope:

1. Any point outside the polytope is a wrench that cannot be applied or
sustained;

2. Any point inside the polytope is achieved with actuators that are not
working at their extreme capabilities;

3. Any point on a facet of the polytope has one actuator working at an
extreme capability;

4. Any point on an edge of the polytope has two actuators working at their
extremes;

5. Any vertex of the polytope has all three actuators working at their
extremes.

4.4.4 Redundant manipulators

Additionally, according to Firmani et al. (2008), for redundant ma-
nipulators (n < m) the number of vertices in the polytope is less than the
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vertices of the m-dimensional parallelepiped, i.e., vTn < vTm . In this case, the
polytope vertices are formed with the mapping of some of the vertices of the
m-dimensional parallelepiped, i.e.,

pk ⊂ J−T v j (4.8)

with k < j. Thus, points that do not belong to the vertices of the polytope are
internal points in P. Further, all the projected vertices of the m-dimensional
parallelepiped in Rn, defined as the potential vertices (p j) of the polytope are
determined as follows:

p j = J−T v j (4.9)

 fx
fy

mz

=

γ1,1 γ1,2 · · · γ1,m
γ2,1 γ2,2 · · · γ2,m
γ3,1 γ3,2 · · · γ3,m




τ1ext

τ2ext
...

τmext

 . (4.10)

Furthermore, the number of external vertices may vary. For instance,
a cube’s projection on a plane may lead to six external vertices (general
projection) or four external vertices (projection normal to a coordinate axis).
Thus, the number of vertices of the wrench polytope depends on the pose
of the manipulator, which defines the elements of the linear transformation
matrix, J−T (FIRMANI et al., 2008).

Additionally, Fig. 16 illustrates the geometrical interpretation of the
internal points of a planar manipulator with redundancy. Thus, the torque
capabilities are mapped from R4 to R3. Furthermore, the resulting polytope
is represented as a wireframe and is formed by the convex hull of the extreme
points. As a result, all the subplots of Fig. 16 shows the same polytope
with each sub-plot showing regions in which one of the actuator torques
is working at its extreme capabilities. In this case, the darker and lighter
regions denote the two extremes timin and timax , respectively. Additionally, the
unshaded region represents the space in which the actuator works within its
capabilities (FIRMANI et al., 2008).

Hence, while for a nun-redundant manipulator each facet of the m-
dimensional parallelepiped corresponded to a facet of the polytope, for a
redundant manipulator this projection leads to volumes in the polytope. Also,
each edge of the polytope is defined with the projection of three torques set at
their extremes; while, each facet is formed with two torques at their extremes.
According to Hwang, Lee and Hsia (2000), further actuation would result in
more complicated polytopes and the number of internal points will increase
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Figure 16: Polytope of a redundant planar parallel manipulator with shaded
regions showing torques at extreme capabilities: a) Extremes of τ1, b)
Extremes of τ2, c) Extremes of τ3, and d) Extremes of τ4. Available at Firmani
et al. (2008).

exponentially.
Finally, Firmani et al. (2008) also defines some characteristics for the

resulting wrench polytope of a redundant manipulator:

1. Any point outside the polytope is a wrench that cannot be applied or
sustained;

2. Any point inside the polytope is achieved with actuators that may or
may not work at their extreme capabilities;

3. Any point on a facet of the polytope has m-2 actuators working at their
extremes;

4. Any point on an edge of the polytope has m-1 actuators working at their
extremes;

5. Any vertex of the polytope has all m actuators working at their
extremes.
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4.5 SCALE FACTOR METHOD

According to Frantz et al. (2015) and Weihmann, Martins and Coelho
(2012), the scale factor method, presented by Nokleby et al. (2005), consists
in the application of a unitary force on the end effector with a desired direction
seeking out to define the manipulator joint that is being more loaded in a
specific configuration. Thus, this strategy allows to incorporate the saturation
limit of the actuators in the problem of force/moment capability of robotic
manipulators.

In this case, a unitary screw wrench ($F ) is used to represent the
desired direction of the force in the end effector. Thus, Eq. 4.11 shows the
unitary wrench, the force intensity ( fapp) and the force in the end effector
(Fapp) (NOKLEBY et al., 2005)

Fapp = fapp$F . (4.11)

Further, the wrench in the end effector, Fapp, can be written dividing
the forces portion ( fx, fy) and the moment(mz) with Fapp = { f T ;mT}. Thus,
since $F is unitary and the moment (mz) is zero, the applied force Fapp can be
represented by:

Fapp = fapp

cos(θ)
sin(θ)

0

 . (4.12)

Further, allows to obtain the forces and moments in the manipulator
actuators based on the Jacobian matrix and the applied force (Fapp)

τ = JT Fapp. (4.13)

Furthermore, after the definition of all the torques and forces needed
to apply or support an unitary force it is possible to define the scale factor (Φ)
of each of the i joints’ actuators. In this case, the scale factor (Φ) of each
actuator is the ratio between the actuation limit (τimax ) of the actuator and the
torque/force value (τi) found for the actuator when a known action is applied
defined by (FRANTZ, 2015):

Φ = min
∣∣∣∣( timax

ti

)∣∣∣∣ . (4.14)

Thus, the manipulator scale factor (Φ) is defined as the minimum of
the scale factors, indicating the ratio that the known force can be increased
without surpass the saturation limit of the most critic actuator. Finally, the
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maximum torque/forces, defined as the force capability of the manipulator, is
defined as the product of the unitary action applied initially and the obtained
scale factor. Thus, he maximum torques/forces (τ) of the actuators can be
determined by (FRANTZ, 2015):

τ = JT
ΦFapp. (4.15)

To illustrate, Fig. 17 represents how the initial unitary forces fx and fy
imply in an unitary force capability. Thus, after the application of the scale
factor the maximum force capability is easily obtained by the factors Φ fx and
Φ fy, increasing the force until the saturation limit of each joint actuator.

x

y

O Φ fx

Φ fy

fx

fy

ΦFT

FT

θ

Figure 17: Application of a scale factor Φ in the screw wrench of the end
effector. Available at Frantz (2015).

Further, changing the force (Fapp) application angle (θ ) in a interval
[0: 2π] and in the absence of singularities in the Jacobian (J) of Eq. 4.15, the
maximum force capability polygon can be obtained, as shown in Fig. 18. This
figure shows the force capability of a generic manipulator in the directions x
and y when a moment mz is equal to zero.

Finally, Frantz (2015) proposes Alg. 1 to run the method of Nokleby
et al. (2005).
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fx[N]

fy[N]

O

Fapp

θ

Figure 18: Force capability map of a generic manipulator.

Algorithm 1: Algorithm to calculate the Fapp by Nokleby et al.
(2005). Available at Frantz (2015).

Data: J, τmax, θ and q
Result: Fapp
Initialization of matrix J;
Initialization of vector of maximum torques τmax;
for 0≤ θ ≤ 2π do

Definition of the screw wrench vector $F ;
Calculation of the unitary torques in the actuators τi;
Calculation of the minimum scale factor Φ;
Calculation of the maximum force Fa pp;
Store Fapp;

end

4.6 MOBILE PLATFORM CONSTRAINTS

As presented in Chapter 3, because of its kinematic model, a planar
cable driven parallel robot allows the mobile platform to have three dofs in
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plane in the same way that a free rigid body would have. Thus, to exact
constraint the mobile platform the cables actuation must constraint the same
three dofs such as the case of Fig. 59b.

For instance, cables that act as actuators could be in two main binary
conditions:

• positive tensioned by its motors by a tension between a minimum and
a maximum value acting as a pure force on the mobile platform

• sagged - tensioned by a force that is less that the required minimum to
tighten the cables or in absence of tension - and not participating in the
definition of the mobile platform position and orientation.

Here, we will analyse how different configurations of cable robots
constrain their mobile platform and how it affects its force capability.
Furthermore, it is important to define that the force capability of a robot is
only defined when its posture is fully defined by its actuators since its end
effector must remain statically determined in presence of the external force.

First, the simplest configuration of a cable robot is a planar device
with a single cable. Even though this situation seams infeasible even complex
devices, such as CRPMs with four cables, will face some situations where just
one limb is actuated. In the case of the single cable robot, the actuated limb
can act freely in the mobile platform or alongside an external force ( fext ).
Thus, four combinations are possible. First, the two configurations that are
shown in Fig. 19, with only the cable acting(Fig. 19a) and with the external
force acting(Fig. 19b) in the same direction of the cable, do not statically
define the configuration of the robot and do not belong to its force capability.

Second, Fig. 20a shows a situation where the external force acts
oppositely to the single cable force. In this case, if the constraint lines are not
coincident such as Fig. 20a the mobile platform will remain undetermined.
Thus, Fig. 20b is the only that participates in the force capability maps since
its exact constraint fully describes the position and orientation of the mobile
platform. The amount of force that the cable supports is the force capability
of the robot in this case.

However, in the situation described by Fig. 20b the constraint lines
must be exactly coincident. On the contrary, a component such as the fext in
Fig. 21 will appear and lead the mobile platform to instability. In this case,
the robot will move until find a position where the external force action line
becomes coincident with the cable limb line.

Additionally, configurations where two cables are being actuated
could lead to situations such as those mentioned before or even define new
possibilities. Wherever there is no external force acting on the platform,
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Figure 19: Single limb actuation configurations. (a) without external force
and (b) with external force.
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Figure 20: External force acting opposed to the cable force in different action
lines(a) and in coincident lines(b).

the possible situations remain the same as the ones with one cable just
substituting the external force ( fext ) by a cable force ( fc2 ). In contrast, in
situations where an external force acts alongside the cables new possibilities
arise. In this case, as proposed by Blanding (1992), it is needed that the
external force acts oppositely to the limbs actuations, as showed in Fig. 22,
and the cables must have different lines of action, to completely determined
the mobile platform posture and force capability.

Further, since the planar motion has only three DoFs, configurations
with more than two cables can fully define the mobile platform. However, it
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Figure 21: External force components in one cable configuration

x

y

O

fc1 fc2

fext

Figure 22: Two cables( fc1 and fc2 ) and one external force( fext ) acting in a
mobile platform.

is needed that the cables lines of action to be different and at least one cable
or the external force need to be opposite to some of the cables.
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4.7 PROPOSED METHODOLOGY

Force capability methods rely on iterative processes to define the
maximum force that a robot is able to exert or support in specific kinematic
configurations. Thus, for each type of robot, the required steps in each
iteration may be different. In cable robots, its natural reconfigurability
requires the robot model to be checked in each iteration. Further, this section
will show how the proposed method handles the robot reconfigurability and
defines the force capability maps. In this case, the cable robot force capability
shows the maximum tension that its cables support according to each external
force direction.

The most usual way to define a force capability map is the rotation of
a unitary force. In this case, it is possible to define how the robot behaves
according to each force direction and also the forces that a robot is able to
exert or support in all possible directions given a specified posture. Thus,
the proposed method needs to map the cable robots natural reconfigurability.
To do so, the cable’s unidirectional force behaviour and the fact that only
actuated limbs are significant to determine the mobile platform will be taken
into consideration using the concepts presented by Blanding (1992) and
summarized in Section A.2. Thus, the first step of the proposed method must
be the definition of the robots static model according to each force direction.

Cable tensions are only greater than zero when the angle between
the external force direction and the cable direction is greater then 90◦ and
smaller that 270◦. Thus, this step must define the angles between the external
force and the limbs allowing to define which cables are being pulled by the
external forces. To do so, each limb tension direction(~cn) and the external
force direction ( ~fext ) were represented as unitary vectors with respect to the
same coordinate frame. Further, the following Equation was applied to each
limb vector:

~cn · ~fext < 0 (4.16)

Thus, since the robot model is defined only with tensioned cables, all
directions with negative dot products are selected. Next, robot configurations
that can fully define its posture are selected using the concepts presented by
Blanding (1992) and summarized in Section A.2.

Further, it is also needed to define the solving techniques that will be
used for each configuration. Moreover, the chosen techniques are based in
the robot static model and in the solutions that are obtained when a unitary
force is applied. Thus, some solving methods, presented here, were gathered
in a way that could allow the proposed method to solve all the possible robots
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configurations and finally obtain the whole force capability map. In this case,
each of the solving methods are summarized here according the number of
actuated cables:

• First, in a single cable configuration the force capability is only defined
as a line of action opposed to the cable force. All other external force
directions are not able to define the posture of the cable robot. In this
case, the force capability is defined only by the cable maximum force
with no solving method needed;

Figure 23: Force capability of a single cable.
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• Second, the lines of action of configurations with two cables are
analysed. If they are coincident, the force capability is equivalent
to configurations with a single cable with the force of both actuators
added. In other cases, the angle between the lines of action will
define a range where the external force can be applied, according to
the principle of exact constraint. Thus, Fig. 24 shows the range where
an external force can be sustained by two cables. In this case, the shape
of the polytope will be defined by the actuator’s force. In this case, for
each external force direction the modified scale factor will be applied
as the solving method.

Figure 24: Force capability range of two cables.

• Third, optimization methods are used to define the force capability
for configurations with more than two cables. If the lines of action
are coincident, the range will be restricted to a single line. If only
two lines of action are non-coincident, the range is defined in the
same way as configurations with two cables. For three of more non-
coincident cables, the external force possible range will be defined by
the maximum angle between two of the actuated cables.

Finally, after the definition of the solving method and the robot model,
the force capability in the desired direction is obtained. Then, the iterative
method can move to the next desired direction. The proposed methodology is
summarized in the Fig. 25 and in the Algorithm 2.
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Algorithm 2: Proposed methodology to define the map of force
capability of cable robots.

Data: τmax and [An]
Result: Fapp
for 0≤ θ ≤ 2π do

Definition of the number of actuated cables (dot product) nc;
Definition of the matrix J by the number of actuated cables nc;
if nc = 1 and the dot product = -1 then

Fapp is equal to the maximum cable force;
else if nc = 2 then

Define Fapp by the scale factor method;
else if nc > 2 then

Define Fapp by a constrained optimization method;
else

Fapp = 0;
end
Store Fapp;

end
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Figure 25: Summary of the proposed Method
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4.8 CASE STUDIES

To illustrate concepts that were shown in previous sections case studies
will be exhibited. First, the static model of a planar CDPR(Fig. 26) presented
in the Chapter 3 will be applied to solve the force capability of a robot with
two cables. In this case, the robot range of action will be analysed before the
definition of the force capability aiming to reduce the number of iterations
needed to fully define the map.

Further, configurations with three and four cables will also be analy-
sed. Thus, the robot behaviour will be better understood and the steps of the
proposed method verified.

Figure 26: Planar Cable Driven Robot for cutting wood - Maslow CNC.
Available at Maslow (2018).
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4.8.1 Case 1: Planar CDPR with two cables

In the first case study, the robot design is defined by two cables (Fig.
27), actuated by motors that are able to generate 1 N of force in each of the
robot legs. In this case, Om defines the central point of the mobile platform
and is horizontally centred with the base. Since in this position the robot is
symmetric the maximum force capability happens when the external force is
acting perpendicularly to the mobile platform and opposed to the cable forces.
The mass and strength of the cable were ignored.

x

y

5m

1.2m

Om•

Figure 27: Robot configuration of a two cables CDPR.

Table 3: Dimensions of the Planar CDPR with two cables.
Component Dimension

Robot Height 1.9 m
Mobile Platform Width 1.2 m

Base Width 5 m

Following the steps proposed in our methodology, the first definition
is the robot static model (Chapter 3). Further, the force capability iterative
process can starts. However, since the map feasible angle is significantly
reduced in two cables configurations, a preprocessing can be done to reduce
the number of iterations.

The preprocessing first step is verify positions where the cables are
being actuated. Thus, since the tension will be greater than zero only when
the angle between the external force and each cable is greater than 90◦ and
less than 270◦ two perpendicular lines to each cable can be used to define
the force capability feasible angle (θcap), Fig. 28. Finally, the definition of
2-RPR robot force capability can be constrained to external force angles that
lay inside this feasible space.
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Figure 28: Force capability angle (θcap) in a two cable configuration.

Second, a solving method may be applied to find the force capability
within the range defined by θcap. In this case, for each desired angle inside
θcap the scale factor method must be applied as presented by Weihmann
(2011), Frantz (2015), Mejia (2016) and Nokleby et al. (2005).

Finally, after all the steps of the iterative process a force capability
map is obtained (Fig. 29). In this case, the desired configuration had only two
cables. However, the scale factor method can also be used in more complex
robots in situations where just two cables are being actuated.
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Figure 29: Force capability polar map of a two cables CDPR .
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4.8.2 Case 2: Planar CDPR with three cables

Expanding the analysis of planar CDPRs, a configuration with three
cables is defined in Fig. 30. In this case, the base and the mobile platform
are triangular with dimensions (5m,5m) and (1.25m,1.25m), respectively.
Further, each cable is able to exert a tension of 1N. The center of mass of the
mobile platform (Om) defines its position. In this section, the force capability
map is defined in two Om positions.

Further, since in this configuration it is impossible for an external force
to act on three cables simultaneously just the scale factor method and the
single cable force is enough to define the force capability map. Thus, a static
model and a Jacobian matrix must be defined for each pair of cables and the
iterative process must select a static model for each external force direction.

Finally, the force capability map is defined as the composition of the
maps of each two cables configuration. Furthermore, a configuration where
three cables acts simultaneously will be also analysed.

c1

c2

c3

5.00

5.00

1.25

y

x

1.25
Om
•

Figure 30: Planar CDPR with three cables.
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First, a configuration where the center of mobile platform (Om) is
positioned in the center of the base is selected. In this case, the angles between
each pair of actuated cables are equal. Thus, since the force capability of each
of the cables are all the same the force capability map must be symmetric.

Fig. 31 shows the force capability map, in a polar plot, of this planar
robot configuration. In this case, since only two cables are being actuated, the
Jacobian matrix is obtained only by the static model available in Chapter 3.
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Figure 31: Force Capability of a 3-RPR with Om centred - Polar Plot.

Further, Fig. 32 shows how each cable is being actuated alongside
the range of external force angle.It is important to denote that actions outside
the range of the force capability map will lead to undesired motions in the
end-effector.
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Figure 32: Force Capability of a 3-RPR with Om centred - Cable Forces Plots
(N per degree) for each cable.
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Furthermore, Fig. 33 shows the force capability map for the planar
CDPR of Fig. 30 but with Om moved from the center of the base to the
position (2,2). In this case, the map symmetry of Fig. 31 is not maintained
and the force capability in north and south-west directions decreases, while,
in the south-east direction, it increases.
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Figure 33: Force Capability of a 3-RPR - Om in (2,2) - Polar Plot.
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Figure 34: Force Capability of a 3-RPR - Om in (2,2) - Cable Forces Plots (N
per degree) for each cable.
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Additionally, a CDPR with three acting cables (Fig. 35) is analysed
by the proposed method. In this case, the constrained optimization was
the solving method used in the external forces feasible angle. Thus, Fig.
36 shows the Cartesian plot of this configuration force capability map
considering three cables that are able to exert 1 N each.
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Figure 35: Configuration of a 3-RPR - Cartesian Plot.
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Figure 36: Force Capability and Configuration of a 3-RPR - Cartesian Plot.
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4.8.3 Case 3: Planar CDPR with four cables

Finally, a planar CDPR with four cables is analysed. In this case,
eight Jacobian matrices must be defined, being four for each combination of
three subsequent cables and four combinations of pairs of subsequent cables.
Thus, for two cables configurations the combinations are: c1− c2, c2− c3,
c3− c4 and c4− c1. Among configurations with three cables, c1− c2− c3,
c2− c3− c4, c3− c4− c1 and c4− c1− c2 selected.

c1

c3c2

c4

5

5

1.2

1.2

Om•

Figure 37: Planar CDPR with four cables.

Again, the force capability map of this planar CDPR will change
according to the position of the mobile platform center (Om). In this case,
if the mobile platform is positioned in the center of the base (Fig. 38), the
force capability map can be fully defined by the scale factor method, because
in this case, there is no external force angle where more than two cables are
being actuated.

Further, Fig. 39 shows how each cable is being actuated according to
changes in the external force angle.
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Figure 38: Force Capability of a 4-RPR - Cartesian Plot.

0 50 100 150 200 250 300 350 400

External Force Orientation [°]

0

2

4

[N
] 
- 

C
a
b
le

 1

0 50 100 150 200 250 300 350 400

External Force Orientation [°]

0

2

4

[N
] 
- 

C
a
b
le

 2

0 50 100 150 200 250 300 350 400

External Force Orientation [°]

0

2

4

[N
] 
- 

C
a
b
le

 3

0 50 100 150 200 250 300 350 400

External Force Orientation [°]

0

2

4

[N
] 
- 

C
a
b
le

 4

Figure 39: Force Capability of a 4-RPR - Cable Forces Plot.
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Finally, moving Om in any direction outside the center of the base it
is possible to fully apply the proposed method to analyse the force capability
of a CDPR. Thus, Fig. 40 shows a force capability map of a CDPR obtained
by the proposed method. Further, Fig. 42 shows how the forces in the robot
cables changes according to the external force angle. In this case, the angular
gaps (Fig. 41) inside the force capability map are due to directions where
only one cable is acting and the external force is not able to fully define the
platform position and orientation.
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Figure 40: Force Capability of a 4-RPR - Proposed Method - Cartesian Plot.
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Figure 41: Zoom in the Force Capability of a 4-RPR - Proposed Method -
Cartesian Plot.
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Figure 42: Force Capability of a 4-RPR - Proposed Method - Cable Forces.

4.9 CONCLUSIONS

Force capability stands as one of the main parameters of robot
performance. With this indicator, a trajectory or task can optimized and a
better suited robot can be picked. Regarding cable robots, the unidirectional
force behavior and the natural reconfigurability makes the definition of the
force capability more complex and important. Since forces in undesired
directions are able to remove the robot from the desired position. However,
besides the importance of force capability maps, the amount of computational
power and time required makes the use of this performance parameter
unusual. The proposed method reduces significantly the time and complexity
of the problem and could be applied to increase the use of this parameter.
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5 DISCUSSION ON CABLE ROBOTS FORCE CAPABILITY

According to Abdelaziz et al. (2017), the available force set that a four
cables configuration (Fig. 43) is able to exert has the octagon of Fig. 44.

Figure 43: 4 cables CDPR evaluated by Abdelaziz et al. (2017). Available at
Abdelaziz et al. (2017)

In this case, according to Abdelaziz et al. (2017), the force capability
map(Fig. 44) in this configuration and position is defined for all external
forces directions.

Figure 44: Available Force Set of a 4 cables CDPR. Available at Abdelaziz et
al. (2017)
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However, according to the principles of exact constraints, presented
by Blanding (1992), some external force directions would lead to an under-
constrained mobile platform and thus should not be presented in the force
capability map of this configuration. Thus, a constrained optimization
method was applied to try to simulate Abdelaziz et al. (2017) aiming to
achieve the same results.

In this case, the constraint about the number of actuated cables was
removed from the analysis. Fig. 45 shows the force capability map that was
obtained while Fig. 46 shows the force distribution in the robot actuators. As
expected, some external forces angles leads to situations where just one cable
is acting which does not obey to the exact constraint principle.
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Figure 45: Force Capability Map by Constrained Optimization - Om at (4,4.5)
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Figure 46: Cable Forces according to the external force angle - Om at (4,4.5)

Further, the proposed method was applied to contrast with the results
obtained by Abdelaziz et al. (2017). In this case, Fig. 47 shows that
there are some external force angles that cannot be sustained( such as the
discontinuities near the left cables) in this position contrasting to the solution
presented by Abdelaziz et al. (2017). Finally, Fig. 48 shows that with our
proposed method the principle of exact constraint is obeyed.
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Figure 47: Force Capability Map by the proposed Method - Om at (4,4.5)
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Figure 48: Cable Forces according to the external force angle - Om at (4,4.5)
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5.1 CONCLUSIONS

The works of Abdelaziz et al. (2017) are one of the most recent
publications in the field of cable robots about force capability. However,
according to Blanding (1992) principles, some of its maps are infeasible
by conventional cable robots. This chapter presented how he was able
to obtain the maps and how the maps should be defined. In this case,
the proposed method also presents a more conservative approach since its
guarantee the platform pose for all feasible directions. Finally, there was a
gain of computational performance as well since most of the obtained map
was done through the scale factor method, a much faster approach when
compared to optimization methods.
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6 CABLE ROBOTS WORKSPACE

According to Gosselin (2014) there are many ways to define the
workspace of a robot manipulator. First, Sciavicco and Siciliano (2000)
define the reachable workspace as a volume in space where the geometrical
center of the mobile platform (Om) can act, whereas the dextrous workspace
is defined as a subset of reachable positions based on pre-determined end
effector orientations. Bruckmann et al. (2008) define the workspace as one
of the main performance characteristic of robots and as an open issue in the
study of cable robots.

Moreover, the workspace definition is directly related to the robot
topology, mainly by their links size and actuators capabilities. Further, in
the study of cable robots there are several definitions of the workspace,
among them the most significant are: dynamic workspace, static workspace,
force closure workspace, wrench closure workspace - WCW, wrench-feasible
workspace - WFW, force-closure workspace - FCW and interference free
workspace.

Barrette and Gosselin (2005) define the dynamic workspace as a
set of all configurations and dynamic conditions where the cables tensions
are positive. Pusey et al. (2004) analyse the static workspace using the
static equilibrium of forces and moments at the robot end effector taking
in consideration only gravity as external force. In this case, the volume
of the static workspace is defined as the set of points where the center of
mobile platform can reach with all its cables tensioned. However, Barrette
and Gosselin (2005) define the static workspace as the dinamic workspace
with all accelerations null.

Further, Lau, Oetomo and Halgamuge (2011) and Gouttefarde and
Gosselin (2006) address the wrench-closure workspace - WCW as the set of
end effector postures where the manipulator is able to sustain a specific set of
external forces and moments, without restraining the forces that each cable is
able to perform.

Furthermore, the wrench-feasible workspace - WFW is defined as a
subset of WCW where the maximum forces in each cable is imposed as re-
strictions. In this case, the WFW is define as the set of postures where the
dynamic system can be satisfied by positive forces acting on the robot cables
for a specific set of external forces, moments, velocities and accelerations sat-
isfying a set of restrictions in the robot cables (GOUTTEFARDE; MERLET;
DANEY, 2007). However, Bosscher (2004) defines WFW as set of postures
where the manipulator is able to exert a set of forces and moments (wrenches).
In this case, this region constitutes the workspace that is used by the robot for
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an specific application.
Also, the force-closure workspace - FCW is defined by (PHAM et

al., 2006) as the set of postures where the equilibrium of forces is satisfied.
According to Diao and Ma (2007), a CDPR finds a condition of forces
equilibrium for a specified posture if, and only if, any set of external forces
and moments applied to the mobile platform can be sustained by a set of
positive cable forces. For Lau, Oetomo and Halgamuge (2011). the set define
by the FCW is the same of WCW.

Additionally, Lau, Oetomo and Halgamuge (2011) analyses the con-
cept of interference free workspace, which is related to the cable collisions
within themselves or with the environment. Thus, this concept analyses geo-
metrical characteristics such as the cable positions and the environment lead-
ing to collisions free paths.

6.1 PROPOSED METHOD

The proposed method for force capability allows to define the set of
wrenches that a robot is able to apply or support in a predefined position.
However, sometimes, the robot has to apply or support a set of wrenches
alongside a trajectory or within a workspace.

Thus, our proposed method was expanded to deal with changes in
the mobile platform position allowing to define a wrench-feasible trajectory
and workspace (WFW). In this case, the trajectory and workspace will be
discretized and the robot force capability will be discretely solved for every
point. Further, this approach could help to understand more about the robot
behaviour and show information such as the weight that a robot is able to
carry during a movement or to help planning a trajectory to reduce the power
consumption of the robot.

The first step of the proposed method is to define the set of wrenches
directions that the robot will have to apply or support. Second, the trajectory
or the workspace range may be defined and discretized. Third, the force
capability is defined for the desired wrench direction and for each of the Om
discretized points. Finally, a map is defined with the maximum force that the
robot is able to support or apply in the predetermined range.

Further, the computational steps to define these maps are summarized
in algorithm 3. In this case, {τmax} represents a vector of maximum forces for
the robot cables, {θ} is the vector of desired directions of the external wrench
and [DOm ] is the matrix of desired positions for the robot end effector. For
each point in [DOm ], a maximum Fapp is defined within the range determined
by {θ}.
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Algorithm 3: Proposed methodology to define the wrench-feasible
workspace and trajectory of cable robots.

Data: {τmax}, {θ} and [DOm ]
Result: [Fapp]
foreach [DOm ] do

Definition of the action matrix [An];
foreach {θ} do

Definition of the number of actuated cables (dot product)
nc;

Definition of the matrix J by the number of actuated
cables nc;

if nc = 1 and the dot product = -1 then
Fapp is equal to the maximum cable force;

else if nc = 2 then
Define Fapp by the scale factor method;

else if nc > 2 then
Define Fapp by a constrained optimization method;

else
Fapp = 0;

end
Store Fapp;

end
end

Besides, the planar robots wrench-feasible workspace (WFW) or
trajectory (WFT) can be represented in a cartesian map with the force
capability defined by colors, if there is only one desired direction or the
focus is just the maximum or minimum force within that range. Furthermore,
configurations with a greater number of desired directions will need more
complex representations.

Finally, sections 6.1.1 and 6.1.2 will show some examples about the
definition of the WFW and the WFT, respectively. In this case, just a single
θ is used to define the maps to allow better representations of the maps.

6.1.1 Wrench-Feasible Trajectory

Robots, such as palletizers, must carry loads, such as boxes, horizon-
tally to the soil within all its workspace. In this case, since the robot force
capability changes according to its position the maximum load that the robot
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is able to carry during all the trajectory must be defined by the position that
has the minimum force capability. Thus, it is guaranteed that the robot will
handle any load within this range in that trajectory without surpass the wrench
capability of its actuators.

5

1.2

Om•

Figure 49: Cable Robot Configuration and Desired Trajectory

Further, Fig. 49 shows a planar CDPR with two cables and a desired
horizontal trajectory (red dashed line). In this case, since the objective is to
carry loads parallel to the soil the force capability is defined vertically in the
same direction as the gravity vector. Futhermore, Fig. 50 shows the force
capability alongside a wrench-feasible trajectory of this cable robot. In this
case, the extremes horizontal positions will define the maximum load that the
robot is able to carry.

0 1 2 3 4 5 6 7 8

x - Robot Position[m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
 -

 D
im

e
n
s
io

n
s
[m

] 
a
n
d
 F

o
rc

e
s
[N

]

Figure 50: Vertical Force Capability Trajectory.
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6.1.2 Wrench-Feasible Workspace

Further, a wrench-feasible workspace represented in Fig. 49. In
this case, the [DOm ] matrix was discretized in X and Y and the θ angle
defined in the same direction as gravity such as the wrench-feasible trajectory.
Furthermore, Fig. 51 shows the wrench-feasible workspace for vertical forces
of the two cables CDPR. Thus, it is possible to observe that it is better to
define trajectories and carry loads far from the base and close to the middle
of the robot.
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Figure 51: Wrench-Feasible Workspace.

6.2 CONCLUSIONS

The main operational aspect of a robot is to move its end-effector
according to a required task. In this case, as presented before, the task could
require the end-effector to support or apply an specific wrench alongside an
trajectory or within a defined space. Thus, the definition of a single force
capability map is not enough to completely analyze the robot. In this case, the
wrench-feasible workspace provides a much wider analyses of the system and
is significantly improved by the method proposed by this project. The main
reason for this improvement is the time reduction provided by pre-processing
using the concept of exact constraint.



102



103

7 CONCLUSIONS

According to Gosselin (2014), the full potential of cable-driven
parallel mechanisms has not yet been exploited. He claims that future
applications in several areas are to be expected which, in some cases, have the
potential to rewrite the rules of robotic manipulation. However, the growth of
this area is significantly connected to the results obtained through its research
on laboratories.

Thus, the main goal of this project is to provide useful information
regarding this equipment and contribute to its implementation. In this case,
this goal was achieved through a novel method that is able to build force
capability and wrench-feasible workspace maps.

Many performance parameters are important to choose and optimize
robots. In this project, the force capability was selected as the main indicator
mainly because one of the main aspects of cable robots is its ability to easily
handle large workspaces and high payloads and thus it is crucial to understand
how the payload will be handled inside a task space or during a trajectory. It
is also important to understand how to optimize tasks and trajectories to take
the best out of cable robots.

The main contribution of this project was the development of an
optimized method to define CDPRs’ force capability, based on mechanism
theory. In this case, the optimization aims to reduce the computation
time needed to fully define a force capability map. To do so, some well
understood concepts, such as the Davies’ Method, the exact constraint, the
scale factor and constrained optimization were applied alongside a smart
switch algorithm.

The first accomplished task was the definition of the robot mathemat-
ical model. To do so, each cable was modelled as a RPR structure and the
tightening conditions treated as a natural reconfigurability. In this case, the
Davies’ method is applied to solve the robot model while loosen cables are
removed from the robot model. Moreover, the robot mobile platform was
analysed as a free body that should be exact constrained by the cables and
external forces to fully define its pose.

Two solving methods were mainly applied in this project, the modified
scale factor and the constrained optimization. In the first, solutions are
obtained without iteration but its application is restricted only for planar
systems with two cables. Additionally, configurations with more actuated
cables requires iterative methods such as the constrained optimization.
Finally, the main aspect of this project was smartly switch through this
approaches and the robot models optimizing the definition of force capability
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and wrench feasible maps.
The proposed method was presented through some case studies and a

discussion. The main goal of the discussion was to reveal that even with a
more conservative approach our method could lead to better and faster results
and guarantee the robot pose through all the force capability map positions.

Finally, the smart switch approach, one of the main contributions of
this work, could be applied for any kind of reconfigurable system allowing to
improve the application possibilities of the Davies’ Method.

7.1 PUBLICATIONS

Alongside the research done during this work, some developments
about the creative design of mechanisms were also done. This resulted in
the following papers:

• An innovative methodology for toggle clamping device design (COSTA,
M. V. O.; MURAI, E. H. ; ROSA, F. S. ; MARTINS, D.). In: 24th
ABCM International Congress of Mechanical Engineering, 2017, Cu-
ritiba - PR. Anais do 24th ABCM International Congress of Mechanical
Engineering, 2017.

• Review and classification of workpiece toggle clamping devices (COSTA,
M. V. O.; MURAI, E. H. ; ROSA, F. S. ; MARTINS, D.). In: 6th Inter-
national Symposium on Multibody Systems and Mechatronics, 2017,
Florianopolis. Multibody Mechatronic Systems: Proceedings of the
MuSMe Conference, 2017.

• State of the art of cable driven robot for transfer of bedridden patients
(FRANTZ, J. C. ; MURARO, T. ; MARTINS, D. ; ROSA, F. S.
; COSTA, M. V. O. ; LUCA, M. R.). In: I Congresso Brasileiro
de Pesquisa & Desenvolvimento em Tecnologia, 2016, Curitiba. I
Congresso Brasileiro de Pesquisa & Desenvolvimento em Tecnologia,
2016

7.2 SUGGESTIONS FOR FUTURE WORK

One of the main aspects of the Davies’ Method application is the
possibility to expand the proposed method to any mechanism. Thus, the
results obtained through this research led to the following suggestions for
future work:
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• To define the force capability of hybrid systems using cables and rigid
links such as exoskeletons.

• To define or propose the force capability of cooperative systems (Fig.
52) with cables and conventional robots.

Figure 52: Cooperative System with Cable and Serial Robots

• To expand the proposed method for spatial cable driven parallel robots.

• To define optimum trajectories based on the wrench feasible work-
space.

• To define the velocity capability, the power capability and the efficiency
of robot models and tasks.

• To define a force controller for cable driven parallel robots.
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POTT, A.; MÜTHERICH, H.; KRAUS, W.; SCHMIDT, V.; MIERMEISTER,
P.; VERL, A. Ipanema: a family of cable-driven parallel robots for industrial
applications. In: Cable-Driven Parallel Robots. [S.l.]: Springer, 2013. p.
119–134.

PUSEY, J.; FATTAH, A.; AGRAWAL, S.; MESSINA, E. Design and
workspace analysis of a 6–6 cable-suspended parallel robot. Mechanism and
machine theory, Elsevier, v. 39, n. 7, p. 761–778, 2004.

SALISBURY, J. K. Active stiffness control of a manipulator in cartesian
coordinates. In: IEEE. Decision and Control including the Symposium on
Adaptive Processes, 1980 19th IEEE Conference on. [S.l.], 1980. v. 19, p.
95–100.

SCIAVICCO, L.; SICILIANO, B. Modelling and control of robot
manipulators. Measurement Science and Technology, v. 11, n. 12, p. 1828,
2000. <http://stacks.iop.org/0957-0233/11/i=12/a=709>.

STEWART, D. A platform with six degrees of freedom. Proceedings of the
institution of mechanical engineers, SAGE Publications Sage UK: London,
England, v. 180, n. 1, p. 371–386, 1965.

SURDILOVIC, D.; BERNHARDT, R. String-man: a new wire robot for
gait rehabilitation. In: IEEE. Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on. [S.l.], 2004. v. 2, p.
2031–2036.

TADOKORO, S.; VERHOEVEN, R.; HILLER, M.; TAKAMORI, T.
A portable parallel manipulator for search and rescue at large-scale
urban earthquakes and an identification algorithm for the installation in
unstructured environments. In: IEEE. Intelligent Robots and Systems, 1999.
IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on. [S.l.],
1999. v. 2, p. 1222–1227.

TAO, J. M.; LUH, J. Coordination of two redundant robots. In: IEEE.
Robotics and Automation, 1989. Proceedings., 1989 IEEE International
Conference on. [S.l.], 1989. p. 425–430.

TRAVI, A. B. Plataforma de Stewart Acionada por cabos. Thesis
(Doctorate) — Instituto Militar de Engenharia, 2009.



113

TSAI, L. Mechanism Design: Enumeration of Kinematic Structures
According to Function. Boca Raton: CRC press, 2000. (Mechanical
Engineering Series).

TSAI, L. W. Robot Analysis: The Mechanics of Serial and Parallel
Manipulators. New York: Wiley, 1999. (Wiley-Interscience publication).

VERHOEVEN, R. Analysis of the workspace of tendon-based Stewart
platforms. Thesis (Doctorate) — Universität Duisburg-Essen, Fakultät für
Ingenieurwissenschaften� Maschinenbau und Verfahrenstechnik, 2004.

VISVANATHAN, V.; MILOR, L. S. An efficient algorithm to determine
the image of a parallelepiped under a linear transformation. In: ACM.
Proceedings of the second annual symposium on Computational geometry.
[S.l.], 1986. p. 207–215.

WEIHMANN, L. Modelagem e otimização de forças e torques aplicados
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The screw theory is a mathematical tool that is able to represent the
instantaneous state of motions and actions of rigid bodies in space, being used
at the kinematic and static analyses of manipulators. It is concerned primarily
with the fundamental relationships among the degrees of freedom, the number
of links, the number of joints, and the type of joints used in a mechanism
(TSAI, 2000). It was first formulated by Mozzi (1763) and later systematized
by Ball (1900). Nowadays the screw theory has been an important subject of
study and found in mechanisms and robotics a fruitful field for its application
(DAVIDSON; HUNT, 2004).

Chasles (1830) has proved that a free rigid body can be moved from
any specified position to any other position by a movement consisting of a
rotation around a straight line accompanied by a translation parallel to the
straight line. However, Poinsot (1851) discovered that any system of forces
which act upon a rigid body can be replaced by a single force and a couple
in a plane perpendicular to the force. Thus, a force and its couple constitute
an adequate representation of any system of forces applied to a rigid body
(BALL, 1900).

Ball (1900) defines the screw as a geometrical element such as a point,
plane or a line that is composed by a straight line, or axis, to which a scalar
quantity of dimension, called the pitch of the screw (h) is added. Thus, Hunt
(2003) exemplifies that in mechanics angular and translational velocity of
a body combine as a twist on a screw; precisely analogously a force and a
couple combine as a wrench on a screw.

The screw ($) can be expressed by the six Plücker homogeneous
coordinates (Eq. A.1), where ~S is the direction vector of the screw, ~S0 is
the position vector of any point at the axis of the screw with respect to the
origin of the coordinate system and L, M, N, P∗, Q∗, R∗ are the Plücker
homogeneous coordinates (CAZANGI, 2008).

$ =


~S

~S0×~S+h~S

=


L
M
N

P∗ = P+hL
Q∗ = Q+hM
R∗ = R+hN

 (A.1)

A.0.1 Motion Analysis

The instantaneous state of motion of a rigid body with respect to
an inertial coordinate system OXY Z can be represented by a screw called
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twist $M . It is composed by an angular differential velocity ω around the
instantaneous rotation screw axis and a translational differential velocity v
coincident with the same axis. Equation A.2 shows how to define the screw
pitch with respect to the body velocities. Equation A.3 represents how the
Plücker homogeneous coordinates from equation A.1 can be rewritten as six
motion coordinates (CAZANGI, 2008).

h =
v
ω

(A.2)

$M =


L
M
N

P∗ = P +hL
Q∗ = Q+hM
R∗ = R+hN

=


~ω

~S0×~ω +h~ω

=


~ω

~VP

 (A.3)

The first three components are related to the angular velocities ~ω by√
L 2 +M 2 +N 2 = |~ω|. The last three components represents the linear

velocity ~VP of a point P at the rigid body that instantaneously coincident
with the origin OXY Z and is obtained by

√
(P∗)2 +(M ∗)2 +(N ∗)2 = |~VP|

(CAZANGI, 2008).
The screw twist $M can be normalized in a geometric element $̂M

without any associated mechanical magnitude and a scalar amplitude (ϕ) with
an angular velocity magnitude (CAZANGI, 2008).

$M =


~ω

~S0×~ω +h~ω

=


~SMϕ

(~SO×~SM +h~SM)ϕ

 (A.4)

$M =


~SM

~SO×~SM +h~SM

ϕ =~$M
ϕ (A.5)
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Where ~SM is the vector of unit directions L, M, N (director cosines)
of the normalized twist, associated by L2 +M2 +N2 = 1. The magnitude is
ϕ = |~ω|. Some values of the screw pitch can lead to particular conditions.
A pure rotation is represented by the screw pitch (h) zero, with v = 0 and
~VP =~S0×~ω .

$M =


L
M
N
P
Q
R

=


~ω

~S0×~ω

=


~SM

~S0×~SM

ϕ (A.6)

A pure translation happens when the screw pitch value is infinite, the
angular velocity ~ω = 0 leading to the screw twist:

$M =


0
0
0

P∗

Q∗

R∗

=


~0

v

=


~0

~SM

ϕ (A.7)

The relative movement of a system of two bodies (i) and ( j) in
motion, with respect to the same inertial referential, can be obtained by the
superposition of its screw twists. If there is a coupling (a) between the bodies
(i) and ( j) represented by the screw twist $M

a , the relative motion can be
obtained by the sum of the screw twists $M

i and $M
j , as follows:

$M
a = $M

i j = $M
i +$M

j . (A.8)

A.0.1.1 Motion Matrix [MD]λ×F

All the screw twists of a mechanism can be represented by a single
Matrix of Motion[MD]λ×F . The number of rows of this matrix is obtained by
the order of the system (λ ) and the columns represents the unitary motions of
each joint (CAZANGI, 2008).

[MD]λ×F =
[
$M

a $M
b $M

c ... $M
F
]

(A.9)

Also, the matrix of motions can be represented as a matrix of unitary
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motions [MD]λ×F that is composed by the normalized screw twists and a
vector of motion magnitudes.

[MD]λ×F =
[
$̂M

a $̂M
b $̂M

c ... $̂M
F

]
(A.10)

The motion magnitudes are organized into a single vector of motion
magnitudes {~φF×1}.

~φF×1 =


ϕa
ϕb
...

ϕF

 (A.11)

A.0.2 Action Analysis

The state of actions of a rigid body, with respect to an inertial
coordinate system OXY Z , can be represented by a screw wrench ($A). It is
composed by a vector who represents the resultant force (~R), whose line of
action coincides with the screw axis, and a binary (~T ) parallel to the referred
axis. The binary (~T ) has units of [force]× [ length ] and can be related to the
resultant by an scalar parameter the screw pitch (h) as shown in Eq. A.12
(BALL, 1900; CAZANGI, 2008).

~T = h~R (A.12)

Analogously to the motion analysis, the Plücker homogeneous coor-
dinates can be rewritten as six action coordinates, as show in Eq. A.13. The
first three components represents the binary ~TP that acts over the rigid body
in a point P that is instantaneously coincident with the origin Oxyz and can
be obtained by

√
P∗+Q∗+R∗ = |~TP|. The last three components repre-

sents the resultant force ~F and can be obtained by
√

L ∗+M ∗+N ∗ = |~R|
(CAZANGI, 2008).

$A =


P∗ = P +hL
Q∗ = Q+hM
R∗ = R+hN

L
M
N

=


~S0×~R+h~R

~R

=


~TP

~R

 (A.13)
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The normalization of the screw wrench($A) leads to a geometrical
element $̂A without any associated mechanical unit and a magnitude ψ with
force units, as presented in Eq. A.15. Regarding the screw pitch, as happened
in the motion analysis, there are two particular conditions. Thus, a screw
pitch (h) zero, leads to a state of pure force at the screw wrench. As opposed
to, a screw pitch infinite represents a state of pure torque at the wrench:

$A =


~S0×~R+h~R

~R

=


(~S0×~SA +h~SA)ψ

~SAψ

 (A.14)

$A =


(~S0×~SA +h~SA)

~SA

ψ = $̂A
ψ (A.15)

A.0.2.1 Action Matrix [AD]λ×C

Similarly to the motion matrix, all the screw wrenches of a mechanism
can be disposed into a single matrix of actions. Thus, the number of rows of
this matrix is obtained by the system order (λ ) and the columns represent the
unitary restrictions of each joint by screw wrenches.

[AD]λ×C =
[
$A

a $A
b ... $A

C

]
(A.16)

Thus, this matrix can be represented as a matrix of unitary actions
[AD]λ×C that is composed by the normalized screw wrenches.

[AD]λ×C =
[
$̂A

a $̂A
b ... $̂A

C

]
(A.17)

The magnitudes composes the vector of action magnitudes {~Ψ}C×1:
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~ΨC×1 =


ψa
ψb
...

ψC

 . (A.18)

A.0.3 Kirchhoff circuit laws

As presented before, Davies has used the Kirchhoff circulation laws
for electrical networks to build an analogy to mechanical systems. Thus, the
kinematic analysis is done by an adaptation of the Kirchhoff voltage law that
is applied for closed loops. In addition, the static analysis is obtained by an
adaptation of the Kirchhoff current law that is applied to nodes (CAZANGI,
2008).

A.0.3.1 Motions in a circuit

The Kirchhoff voltage law defines that the algebraic sum of voltages
that acts in a closed loop is always zero. Analogously, Davies (1981)
establishes that the algebraic sum of screw wrenches that acts in the same loop
is always zero, being called the circuit law. Thus, for any closed sequence of
bodies in relative motion to each other the sum of each motion coordinate is
null. As a result, a mechanism that is moving in space (order λ = 6) has:

∑L = ∑M = ∑N = ∑P∗ = ∑Q∗ = ∑R∗ = 0 (A.19)

Applying the matrix notation (Eqs. A.9, A.11 and A.10) leads to:

∑$M ≡ [MD]λ×F = [M̂D]λ×F{~Ψ}F×1 = {~0}λ×1 (A.20)

A.0.3.2 Actions in a cutset

The Kirchhoff current law establishes that an algebraic sum of currents
flowing into and out of a node is always zero. Analogously, Davies (1981)
defines that the algebraic sum of screw wrenches that acts at the same cutset
is always zero, being called the Cutset Law (CAZANGI, 2008).

This implies that, for any system of connected bodies that are in
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equilibrium, there is a subset of couplings separated by a cutset where the
sum of each coordinate of action of this couplings is null. Thus, for a cutset
in space (order λ = 6):

∑P∗ = ∑Q∗ = ∑R∗∑ = L = ∑M = ∑N = 0 (A.21)

Applying the matrix notation leads to:

∑$A ≡ [AD]λ×C = [ÂD]λ×C{~Ψ}C×1 = {~0}λ×1 (A.22)

A.0.4 Determination of the equation system

As seen before, the fundamental circuits and cuts are subsets of the
independent edges in a graph and can be represented mathematically by the
matrix of circuits [B] and the matrix of cutsets [Q]. Thus, for a mechanism
with one or more circuits, it is possible to determine a system of equations
for kinematics using the Eq. A.20 and the circuits of a kinematic chain’s
graph. Analogously, for a mechanism with one or more cuts, it is possible to
define a system of equations for statics using the Eq. A.22 and the f-cutsets
of kinematic chain’s graph (CAZANGI, 2008).

A.0.4.1 Kinematics: network of unitary motions matrix [M̂N ]λ .l×F

A network of couplings with l fundamental circuits at the space of
order λ can be represented as a set of λ × l equations that defines the
conditions that must be satisfied by F unknowns. The circuits determine
the topological relations between the unknowns that are contained in each
coupling screw twist (CAZANGI, 2008).

The definition of the network of unitary motions matrix [M̂N ]λ .l×F may
be done by the distribution of the normalized twists that belongs to each
circuit, multiplying the matrix of unitary motions[M̂D]λ×F by each line of
the matrix of circuits-f[BM]l×F .

[BMi ]1×F =
[
BMi,1 BMi,2 BMi,1 · · · BMi,F

]
1×F (A.23)
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diag{[BMi ]1×F}=


BMi,1 0 · · · BMi,F

0 BMi,2 · · · BMi,F

. . .
0 0 · · · BMi,F


F×F

(A.24)

[M̂N ]λ .l×F =


[M̂D]λ×F .diag{[BM1 ]1×F}
[M̂D]λ×F .diag{[BM2 ]1×F}

...
[M̂D]λ×F .diag{[BMl ]1×F}


λ .l×F

(A.25)

The circuit law requires that each of the λ components of the screw
twist that belongs to a circuit has sum equal zero. Thus, the matrix [M̂N ]λ .l×F
multiplied by the vector of unknowns of motion magnitudes {Φ}F×1 is equal
to zero, building the system of kinematics equations (CAZANGI, 2008).

[M̂N ]λ .l×F{Φ}F×1 = {~0}λ .l×1 (A.26)

The F unknowns associated by λ .l equations can be rewritten as
function of a subset of FN unknowns (primary variables), where FN is the
net degree of freedom of the kinematic chain. Thus, it is possible to claim
that the movement of the kinematic chain is determined by the definition of
FN unknowns of magnitudes of {~Φ}F×1.

A.0.4.2 Action: network of unitary actions matrix [ÂN ]λ .k×C

A system with λ .k equations may be used to represent an over-
constrained kinematic chain with k f-cutsets in a space of order λ . In this
case, the system of equations shows the conditions that may be satisfied by
C unknowns, whereas the cutset-f defines the topological relations between
the unknowns that are contained in the screw wrenches of each coupling
(CAZANGI, 2008).

The construction of the network of unitary actions matrix [ÂN ]λ .k×C
it is possible through the distribution of normalized wrenches that belongs to
each cutset, multiplying the matrix of unitary actions [ÂD]λ×C by each line of
the cutset-f matrix [QA]k×C (CAZANGI, 2008).

As presented before, to achieve algebraic consistency, k diagonal
matrices of [QA]λ .k×C, where each line i = 1,2, ...,k has its elements arranged
at the main diagonal. Thus, the following equations shows the algebraic
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procedure to build [ÂN ]λ .k×C

[QAi ]1×F =
[
QAi,1 QAi,2 QAi,1 · · · QAi,C

]
1×C (A.27)

diag{[QAi ]1×C}=


QAi,1 0 · · · BMi,C

0 QAi,2 · · · BMi,C

. . .
0 0 · · · QAi,C


C×C

(A.28)

[ÂN ]λ .k×C =


[ÂD]λ×C.diag{[QA1 ]1×C}
[ÂD]λ×C.diag{[QA2 ]1×C}

...
[ÂD]λ×C.diag{[QAl ]1×C}


λ .l×C

(A.29)

The cutset law requires that each of the λ components of the screw
wrench that belongs to a subset of rigid bodies in equilibrium, determined by
a cutset, has sum equal zero.

Thus, the matrix [ÂN ]λ .k×F multiplied by the vector of unknowns of
action magnitudes {~Ψ}C×1 is equal to zero, building the system of static
equations (CAZANGI, 2008).

[ÂN ]λ .k×F{~Ψ}C×1 = {~0}λ .k×1 (A.30)

The C unknowns organized through λ × k equations can be rewritten
in function of the subset of CN unknowns (primary variables), where CN is
the net degree of restriction of the over-constrained kinematic chain. Thus,
it is possible to determine the internal actions of the kinematic chain by the
imposition of the CN variables of magnitudes of {~Ψ}C×1 (CAZANGI, 2008).

A.0.5 Solution of the equation system

Once identified the primary variables in the magnitude vectors, it is
possible to split the system into two subsets: the primary variables (knowns),
identified by the subscript P, and the secondary variables (unknowns)
identified by the subscript S. As a result, the net matrices and the magnitude
vectors may be reorganized to determine the solution of the systems.
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A.0.5.1 Kinematics solution {~ΦS}m×1.

The kinematics equation system is partitioned into FN primary vari-
ables and m secondary variables and rearranged as follows (CAZANGI,
2008):

[
[M̂NS]m×m [M̂NP]m×FN

]{ {Φ̂S}m×1

{Φ̂P}FN×1

}
= {~0}m×1 ∴ (A.31)

[M̂NS]m×m{Φ̂S}m×1 +[M̂NP]m×FN{Φ̂P}FN×1 = {~0}m×1 ∴ (A.32)

[M̂NS]m×m{Φ̂S}m×1 =−[M̂NP]m×FN{Φ̂P}FN×1 (A.33)

The last step is to isolate the vector of variables {Φ̂S}m×1, inverting
the matrix of secondary variables, which leads to the kinematics solution,
as presented in Eq. A.34. Finally, the solution of the system {Φ̂S}m×1 is
obtained by coherent values of the primary variables {Φ̂P}FN×1.

{Φ̂S}m×1 =−[M̂NS]
−1
m×m[M̂NP]m×FN{Φ̂P}FN×1 (A.34)

A.0.5.2 Statics solution {~Ψ}a×1.

Similarly to the kinematics analysis, the system of statics equations
can be divided into CN primary variables and a secondary variables and
rearranged as follows (CAZANGI, 2008):

[
[ÂNS]a×a [ÂNP]a×CN

]{ {Ψ̂S}a×1

{Ψ̂P}CN×1

}
= {~0}a×1 ∴ (A.35)

[ÂNS]a×a{Ψ̂S}a×1 +[ÂNP]a×CN{Ψ̂P}CN×1 = {~0}a×1 ∴ (A.36)

[ÂNS]a×a{Ψ̂S}a×1 =−[ÂNP]a×CN{Ψ̂P}CN×1 (A.37)

Further, the last step is to isolate the variables vector {Ψ̂S}a×1,
inverting the matrix of secondary variables, which leads to the statics
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solution.

{Ψ̂S}a×1 =−[ÂNS]
−1
a×a[ÂNP]a×CN{Ψ̂P}CN×1 (A.38)

Finally, the solution is obtained by applying coherent values to the
primary variables.

A.1 STATICS OF CABLE ROBOTS

The static analysis of cable robots (Fig. 53) through the Davies’
Method requires the definition of a cables’ kinematic model using conven-
tional joints and rigid links. Thus, this configuration must held the same
kinematic properties as the regular configuration with cables, that is, six and
three degrees of freedom in space and plan, respectively. The spatial con-
figuration is done by a prismatic joint connected to the base by a spherical
joint and to the platform by a universal joint. In a planar configuration, the
spherical and universal joints are replaced by rotative joints. The planar con-
figuration is represented schematically in Fig. 53b.

(a)

Base

Platform

a1

c1 c2

a2

b1 b2

(b)

Figure 53: Cable robot with 2 limbs (a) schematic representation and (b)
equivalent kinematic model with two prismatic and four rotational joints.

Further, cable robots kinematic models may be named as conventional
parallel structures using the nomenclature proposed by Tsai (2000). In
this case, a code with a number, that represents the number of limbs, and
three letters, defining the types of joints that composes the mechanism, was
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employed. Furthermore, an underline is used to represent the actuated joint
of the limb. Thus, Fig. 53b shows a 2-RPR robot.

After the definition of the cable robot kinematic configuration, follow-
ing the steps proposed by Cazangi (2008), all the actions (torques and forces)
of the manipulator joints must be defined. To this end, Fig. 54 shows the
actions at the 2-RPR manipulator. Firstly, since the actuation of a cable robot
corresponds to changes in the length of the cable by a motor, the actuation
that represents better this behaviour is a force alongside the axis of the pris-
matic joint, represented by forces in x and y in each prismatic joint. Secondly,
cables are able to rotate freely in a plan, thus, the rotative joints must allow
the kinematic chain to rotate freely offering only reaction forces in x and y.
Finally, a torque in the prismatic joint is also presented, since this component
will not allow any rotation between its adjacent links.

a1

b2

c1 c2

b1

a2

y

x

Figure 54: Actions at the 2-RPR joints.

The 2-RPR mechanism may also be represented by a directed graph
(Fig. 55). In this case, the joints are represented by edges and the rigid
bodies by vertices. The direction of each edge was chosen to simplify the
next steps of the Davies’ Method: all the joints’ actions go from the fixed base
to the movable platform, which is the usual force directions in the actuation
of parallel manipulators. Additionally, an edge (d), representing the external
forces and torques that act between the movable platform and the fixed base,
is added to the mechanism graph. The spanning tree of this graph is also
presented in Fig. 55. The dashed edges shows the chords while the black
edges compose the tree.

Futhermore, all the actions at the mechanism are summarized in Fig.
56. After the definition of the graph and the action edges it is possible to
define the fundamental circuits and cutsets of this graph. The red dashed
lines in Fig. 56 represent five possible cutsets in the 2-RPR graph. Likewise
the fundamental circuits(ν1 and ν2) are represented by dashed lines.
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Figure 55: Directed Graph - 2-RPR Robot
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Figure 56: Actions Graph - 2-RPR Robot

As presented before, after the definition of the fundamental cutsets, it
is possible to define the cutset matrix [Qa](Eq. A.39).

[Qa]5×7 =

a1 b1 c1 a2 b2 c2 d


1 −1 0 0 0 0 0 cutseta1
0 −1 1 0 0 0 0 cutsetc1
0 0 0 1 −1 0 0 cutseta2
0 0 0 0 −1 1 0 cutsetc2
0 1 0 0 1 0 1 cutsetd

(A.39)

Since this analysis is focused on planar robots the order of the screw
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system (λ ) can be reduced to three. In this case, only forces fx and fy
and a moment Mz acts on the manipulator joints. The representation of the
simplified wrench is presented at Eq. A.40. Further, ya1 and xa1 represents
the coordinates of the a1 joint.

$a1 =

−ya1
1
0

a1 fx +

xa1
0
1

a1 fy +

1
0
0

a1 Mz (A.40)

Additionally, the matrix of unitary actions [ÂD]λ×C can be obtained by
the normalized screw wrenches.

[AD]λ×C =
[
$̂A

a1
$̂A

b1
$̂A

c1
$̂A

a2
$̂A

b2
$̂A

c2
$̂A

d

]
(A.41)

Thus, the vector of action magnitudes {~Ψ}C×1 is obtained by all the
actions that are represented in the Fig. 54.

{~Ψ}17×1 =



a1 fx
a1 fy
b1 fx

...
c2 fx
c2 fy
d fx
d fy
dMz


(A.42)

Furthermore, concluded the definition of each joint’s wrench it is
possible to build the action matrix. To do so, each wrench must be inserted in
the respective element of the cutset matrix while the remained spaces may be
filled with zeros.

[ÂN ]15×17 =

a1 b1 c1 a2 b2 c2 d


$̂a1 −$̂b1 0 0 0 0 0
0 −$̂b1 $̂c1 0 0 0 0
0 0 0 $̂a2 −$̂b2 0 0
0 0 0 0 −$̂b2 $̂c2 0
0 $̂b1 0 0 $̂b2 0 $̂d

(A.43)

Finally, the matrix [ÂN ] multiplied by the vector of action magnitudes
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{~Ψ} is equal to zero allowing to obtain the solution of the equation system.

[ÂN ]15×17{~Ψ}1×17 = {~0} (A.44)

Further, the jacobian matrix (J) is needed to defined the force
capability.Thus, the primary and secondary variables must be organized
allowing to obtain the forces in the mobile platform based on the actuator
forces (Eq. A.45).

{Fext}= [J]{v} (A.45)

Furthermore, the external forces are represented by d and must be
defined as secondary variables. In addition, the variables that represents the
forces in the robot joints must be defined as primary variables. Thus, Eq. A.46
shows how the solution of the equation system can be obtained dividing the
ÂN in ÂNP (elements that multiply the primary variables) and ÂNS (elements
that multiply the secondary variables).

d fx
d fy
dMz

=−[ÂNS]
−1
15×3[ÂNP]15×14


a1 fx

...
c2 fy

 (A.46)

Finally, since only the actions on the actuated joints are needed to
define the jacobian matrix, just the lines that multiply the forces in the joints
b1 and b2 are taken from Eq. A.46 to build the jacobian.

{d fx
d fy

}
= [J]


b1 fx
b1 fy
b2 fx
b2 fy

 (A.47)
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A.2 EXACT CONSTRAINTS AND NESTING FORCES

Blanding (1992) defines the concept of exact constraint as a principle
for machine design that could lead to more efficient and low cost machines.
First, as presented in Chapter 3, the concept defines the number of degrees
of freedom that a connection imposes to the body that its restrain. According
to Blanding (1992), the design of mechanical connections between parts of a
device must account for the exact required amount of DoFs of each body in
a mechanism avoiding overconstrains and underconstraints, since this could
lead to undesired forces and moments in the assembly of mechanical devices
or undesired DoFs.

In our case, the concept of exact constraint will be used to analyse
the mobile platform behaviour of cable driven parallel robots. As presented
before, a rigid body is able to perform two translations and one rotation (Fig.
57a) in a space with two dimensions (2D), thus, its exact constraint requires
the constraint of three degrees of freedom. First, a rigid link with two rotative
joins can be used to restrain one DoF of rigid body in plane. Thus, the body
of Fig. 57b remains able to translate alongside y and rotate about z.

x

y

O

(a)

x

y

O

(b)

Figure 57: Motions in a two-dimensional space.

Blanding (1992) also introduces the concept of nesting force as a
magnitude that will ensure that contact is maintained between two objects.
As an example, a book is on the table because gravity is acting as a nesting
force. Thus, the constraint that is presented in Fig. 57b could also be done
by a nesting force (nn f ) in x-direction and a post (Fig. 58a). Additionally,
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Fig. 58b shows an example of overconstraint. In this case, since the action
line of the two constraints are parallel, they lead to an overconstraint which
imposes that the size of the constrained body must be exactly the gap between
the posts or the parts will not fit properly. This leads to practical difficulties,
that could be avoided by the use of a spring instead of one of the posts.
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y

O

fn f

(a)

x

y

O
(b)

Figure 58: Constraint by a post and a nesting force fn f .

According to Blanding (1992), the constraint line defines the instant
center of rotation or virtual pivot point of a constrained body. Thus, since
two parallel lines does not define a virtual pivot point, parallel constraint
lines leads to overconstraint of bodies. As an example, Fig. 59a shows a
configuration with two constraints (one DoF) whose instant center of rotation
(Om) is defined by the two dashed lines, further, the exact constraint of a rigid
body in plane requires the presence of three constraints such as Fig. 59b.
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Figure 59: Two and three constraints of a rigid body in a plan.


