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“Qual é o grande dragão ao qual o espírito não 
mais chama de senhor e deus? ‘Tu deves’ 
chama-se o grande dragão. Mas o espírito do 
leão diz ‘eu quero’. 
 

Assim Falou Zaratustra.” 
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RESUMO 

O início do século XXI apresenta o radar como um utensílio 
indispensável, com aplicações não mais restritas àquelas outrora 
exclusivas da Aviação e da Marinha, permeando a vida do homem 
contemporâneo e variando em diferentes complexidades. Nesse cenário, 
a capacidade de detectar radares proporciona inúmeras vantagens, tanto 
no contexto civil quanto no militar. O mundo moderno, entretanto, não 
raramente impõe restrições de volume, peso e custos à Eletrônica, o que 
se opõe ao processamento complexo demandado por detectores de radar 
para desembaralhar o sinal resultante da superposição de sinais 
recebidos de diversos emissores. Esta pesquisa propõe técnicas de 
processamento de sinais que consideram peculiaridades de 
radiofrequência a fim de amenizar a carga de trabalho do processador, e, 
assim, possibilitar detectores com baixo volume, peso, custos e poder 
computacional disponível. Experimentos foram realizados com um 
protótipo de um Sistema de Medidas de Apoio à Guerra Eletrônica 
(MAGE) com processamento em tablet, baseado em Rádio Definido por 
Software (RDS). Resultados mostram que o desempenho da técnica 
proposta de medição de pulsos se degradou significativamente apenas 
quando as amplitudes dos pulsos foram ≤ 3.7 mV na entrada do RDS 
empregado. Eles também mostram que o método sugerido de medição 
de direção de chegada exibiu distribuições gaussianas para as medições, 
com desvio padrão tão maior quanto menor a amplitude dos pulsos 
recebidos, o que permite, através do segundo, efetuar inferências sobre o 
primeiro. Beneficiando-se disso, o algoritmo de agrupamento de pulsos 
desenvolvido definiu, diante de 6 distribuições, agrupamentos com taxas 
de enclausuramento ≥ 92.71 %. Por fim, resultados também 
demostraram que o algoritmo de reconhecimento de padrões, ao receber 
padrões de 4 radares simulados, com diferentes tipos de varredura de 
antena, desembaralhou os 4 padrões, com taxas de atribuição apropriada 
do intervalo de repetição de pulsos ≥ 96.30 %, além de estimar o 
intervalo de repetição de pulsos com erros da ordem de 10��. Este 
estudo é indicado para as áreas de Processamento de Sinais de Radar, 
Medição de Direção de Chegada, Reconhecimento de Padrões e Guerra 
Eletrônica. 
 
 
Palavras-chave: Detector de radar. Guerra Eletrônica. Sistema MAGE. 
RDS. Medição de pulsos. Medição da direção de chegada. Agrupamento 
de pulsos. Desembaralhar por intervalos. 



 
 

 



  

RESUMO EXPANDIDO 

Introdução 

O século XX proporcionou à humanidade uma forma inovadora de 
sensoriamento eletrônico chamada radar, oriunda de interações entre a 
tecnologia e a filosofia militar. Inicialmente, esses dispositivos eram 
aplicados exclusivamente para defesa aérea, a partir de plataformas 
terrestres, marítimas e aéreas. Eles provaram-se efetivos em vigilância 
de longo alcance, em detecção de alvos próximos e à baixa altura, no 
controle de armas e no guiamento de mísseis. Posteriormente, 
proporcionaram segurança ao controle de tráfego aéreo, separando 
aeronaves entre si, bem como disponibilizando informações 
meteorológicas e leituras precisas de altitude às tripulações. Aplicações 
marítimas são análogas às da Aviação, e o uso do radar permite medidas 
de distância entre embarcações, detecções de ilhas e faróis, a 
coordenação de tráfico próximo a portos, além do guiamento de mísseis 
contra embarcações inimigas. O início do século XXI apresenta o radar 
como um utensílio indispensável, e suas aplicações são cada vez mais 
comuns, variando em diferentes complexidades, do monitoramento de 
ventos e precipitações por meteorologistas e o mapeamento da crosta 
terrestre por geólogos, até o monitoramento da velocidade de veículos 
nas rodovias e a abertura de portas automáticas nos centros comerciais. 
Em um cenário como esse, a capacidade de localizar e identificar 
radares proporciona inúmeras vantagens, tanto no contexto civil quanto 
no militar. O mundo moderno, contudo, não raramente impõe restrições 
de volume, peso e custos aos equipamentos eletrônicos. Em 
contraposição a isso, para discriminar sinais de radares, detectores 
devem efetuar um processamento complexo para desembaralhar o sinal 
resultante da superposição de sinais recebidos de diversos emissores, 
que podem estar posicionados, cada um, a uma diferente direção e 
distância. 

Objetivos 

O objetivo da presente pesquisa é propor técnicas de processamento de 
sinais que considerem peculiaridades da área de radiofrequência para 
amenizar a carga de trabalho demandada ao processador, e, assim, 
possibilitar o desenvolvimento de detectores com baixo volume, peso, 
custos e poder computacional disponível. 
 



 
 

Metodologia 

Para atingir o objetivo proposto, primeiramente, um cenário simples de 
Guerra Eletrônica é descrito, e, a partir dele, a complexidade envolvida 
no funcionamento de um detector de radar genérico é derivada. Uma 
arquitetura abrangente de detector, porém já com vistas à economia de 
recursos computacionais, é proposta, e peculiaridades relacionadas a 
radiofrequência são apontadas. Em seguida, os diversos estágios de 
processamento, como a detecção de pulsos, a medição da direção de 
chegada, o agrupamento de pulsos segundo essa medição e a 
necessidade de desembaralhar padrões em cada um dos agrupamentos, 
são desenvolvidos. A técnica de medição de pulsos apresentada é 
baseada nas variações da envoltória do sinal resultante da superposição 
de sinais recebidos de diversos emissores. Ela pode detectar pulsos que 
estão sobrepostos no domínio do tempo, o que diminui a taxa de pulsos 
perdidos dentro de um determinado padrão, evitando assim 
complicações no reconhecimento do mesmo, no último estágio de 
processamento. O método proposto para a medição da direção de 
chegada visa permitir a medição deste parâmetro, sem ambiguidades, 
em regiões angulares nas quais as antenas do arranjo apresentam lóbulos 
secundários. Dessa forma, o setor angular de interesse pode ser dividido 
por um número menor de canais do que aquele possibilitado por técnicas 
analíticas convencionais, que operam apenas na região do lóbulo 
principal das antenas. Isso possibilita a economia de recursos 
computacionais pelo fato de os pulsos recebidos serem processados, no 
estágio de medição de pulsos, em menos canais, além da economia de 
custo, volume e peso associados aos canais. O algoritmo de 
agrupamento de pulsos se beneficia da confiabilidade da medição da 
direção de chegada para criar agrupamentos de pulsos que serão 
entregues ao último estágio, de reconhecimento de padrões. As 
características das distribuições das medições de direção de chegada, 
associadas ao conhecimento do sistema e da amplitude dos pulsos, 
permitem inferências sobre como cada agrupamento deve ser formado, o 
que proporciona acurácia e economia de recursos computacionais para o 
método. Por último, um algoritmo baseado apenas nos intervalos entre 
pulsos sequenciais desembaralha padrões presentes em cada um dos 
agrupamentos que foram formados com base na direção de chegada. 
Para esse estágio final, foram aplicadas mudanças sobre o método 
clássico e consagrado de Mardia. Elas possibilitaram a supressão do 
estágio de busca sequencial e a determinação das faixas de períodos 
adequadas para análise de padrões dentro de cada agrupamento, além de 



  

uma estimativa precisa do intervalo de repetição de pulsos. Para 
validação das técnicas propostas, experimentos foram implementados 
com um protótipo de um Sistema de Medidas de Apoio à Guerra 
Eletrônica (MAGE) baseado em Rádio Definido por Software (RDS) e 
com processamento em dispositivo do tipo tablet. 

Resultados e Discussão 

O desempenho da técnica de medição de pulsos degradou-se 
significativamente apenas quando as amplitudes dos pulsos foram  
menores ou iguais a 3.7 mV na entrada do RDS empregado. Tais 
resultados sugerem que o algoritmo evita que, acima desse limiar, 
pulsos sejam perdidos, mesmo quando os mesmos estão sobrepostos no 
domínio do tempo, o que evita complicações no reconhecimento de 
padrões, no último estágio de processamento. O método de medição de 
direção de chegada apresentou distribuições com características 
gaussianas para as medições. As distribuições apresentam desvio padrão 
tão maior quanto menor a amplitude dos pulsos, o que permite, através 
do segundo, efetuar inferências sobre o primeiro. Essas características 
das distribuições sugeriram que o agrupamento dos pulsos baseado na 
direção de chegada, realizado no próximo estágio de processamento, 
pudesse ser efetuado com uma estimativa de densidade kernel baseada 
na função gaussiana, ou a partir de uma filtragem dos histogramas das 
medições por filtros gaussianos. O algoritmo de agrupamento de pulsos 
formou, em um cenário com 6 distribuições de medições de direção de 
chegada, agrupamentos de pulsos com taxas de enclausuramento 
maiores ou iguais a 92.71 % quando o fator de ajuste do tamanho dos 
agrupamentos foi configurado para 2. Essas taxas, aliadas ao 
desempenho da técnica de medição de pulsos, garantem que os padrões 
de intervalos de repetição de pulsos sejam entregues ao último estágio, 
responsável por reconhecê-los, com poucas corrupções. Por fim, o 
algoritmo de reconhecimento dos padrões de intervalo de repetição de 
pulsos, ao receber um agrupamento de pulsos contendo padrões de 4 
radares simulados que apresentavam diferentes tipos de varredura de 
antena, desembaralhou os 4 padrões e apresentou taxas de atribuição 
apropriada do intervalo de repetição de pulsos maiores ou iguais a  
96.30 %. Além disso, a técnica proposta para estimativa do intervalo de 
repetição de pulsos apresentou erros da ordem de 10��. Esses resultados 
mostram que a supressão da busca sequencial contida no método de 
Mardia, que salvou recursos computacionais, não causou prejuízos no 
desempenho do algoritmo. 



 
 

Considerações Finais 

Os métodos introduzidos nesta pesquisa permitem que sinais de radares 
sejam totalmente processados e desembaralhados uns dos outros. Cada 
passo dos algoritmos, assim como o todo, foi desenvolvido para 
demandar poucos recursos computacionais, o que, associado aos poucos 
canais de recepção necessários, resultam em baixo peso, volume e 
custos para o detector de radar, de forma a cumprir o objetivo do 
trabalho. A comparação dos parâmetros medidos desses sinais com um 
banco do dados pré-cadastrados pode fornecer, finalmente, a 
identificação dos radares. Este estudo é recomendado para as áreas de 
Processamento de Sinais de Radar, Medição de Direção de Chegada, 
Reconhecimento de Padrões e Guerra Eletrônica. 

Palavras-chave: Detector de radar. Guerra Eletrônica. Sistema MAGE. 
RDS. Medição de pulsos. Medição da direção de chegada. Agrupamento 
de pulsos. Desembaralhar por intervalos. 



  

ABSTRACT 

The beginning of the 21st century presents the radar as an indispensable 
utility, with applications no longer restricted only to those formerly 
exclusive of Aviation and Navy, permeating the life of the contemporary 
man and varying in different complexities. In this scenario, the ability to 
detect radars provides numerous advantages, both in the civilian and 
military contexts. The modern world, however, often imposes volume, 
weight, and costs constraints on Electronics, which opposes the complex 
processing demanded by radar detectors to deinterleave the signal that 
resulted from the superposition of signals received from many emitters. 
This research proposes signal processing techniques that look at 
radiofrequency peculiarities in order to soften the processing workload 
and to allow the design of radar detectors that present low volume, 
weight, costs and available computational power. Experiments were 
carried out with a prototype of an Electronic Support Measures (ESM) 
system with tablet processing, based on Software-Defined Radio (SDR). 
Results show that the performance of the proposed pulse measurement 
technique degrades significantly only when the pulse amplitudes are  
≤ 3.7 mV at the input of the used SDR. They also show that the 
suggested direction-finding method presents Gaussian distributions for 
the measurements, with a standard deviation as high as the lower the 
amplitude of incoming pulses, which allows, according to the latter, to 
make inferences about the former. Benefiting from this, the developed 
pulse-clustering algorithm defined, in front of 6 distributions, clusters of 
pulses with enclosure rates ≥ 92.71 %. Finally, the results show that the 
proposed pattern recognition algorithm, when it received a cluster of 
pulses with patterns of 4 simulated radars, with different types of 
antenna scan, deinterleaved the 4 patterns, with rates of correct 
assignment of the pulse repetition interval ≥ 96.30%, besides estimating 
the pulse repetition interval with errors of the order of 10��. This study 
is recommended for the areas of Radar Signal Processing, Direction 
Finding, Pattern Recognition and Electronic Warfare. 

Keywords: Radar detector. Electronic Warfare. ESM system. SDR. 
Pulse measurement. Direction finding. Pulse clustering. Interval-only 
deinterleaving.  
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���� – minimum SNR on the receiver output to achieve a specific ��; 
� – standard deviation of Gaussian function; 
��  – physical temperature of the antenna; 
�� – time relative to leading or trailing edge; 
�� – time relative to one frame of data; 

�� – radiation temperature of the antenna; 
�� – time relative to one sample; 
� – elevation angle; 
��� – elevation angle referred to the receiver coordinate system; 
��� – elevation angle referred to the transmitter coordinate system; 



  

��� – event in which an edge lies on �� intervals between samples; 

�(�) – input of an ideal logarithmic receiver; 
�⃗� – vector of normalized PAs in each channel in a specific ��� and FC; 
�� – elements of �⃗�; 

� – wavelength; 
��� – moving average window;  
�� – threshold weighting factor; 
��(����) – weighted threshold of ���� bin of CDIF histogram; 
���(����) – weighted threshold of ���� bin of CDIF of subcluster �; 

and 
�� – reference impedance. 
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1 INTRODUCTION  

1.1 THE CONTEXT 

In the 20th century, interactions between technology and military 
philosophy provided the world with the advent of an innovative way of 
electronic sensing called radar.  

Initially, the chief application of such devices was for air defense 
from land, sea and/or air. In this scenario, radars have proved effective 
in long-range air surveillance, short-range detection of low-altitude 
targets, weapon control, missile guidance and noncooperative target 
recognition. In an offensive way, fighter aircraft have used air-to-air 
radar to target enemies and launch their radar-guided missiles against 
them. Furthermore, specialized military aircraft could carry more 
sophisticated airborne radars to surveille large areas of the theatre of 
operations and send bombers against threats. In Civil Aviation, radars 
have provided safety on the air traffic control, they have allowed the 
separation of aircraft between each other, as well as they have displayed 
weather information and accurate altitude readings to crews. Maritime 
applications are analogue to those of Aviation in both civilian and 
military contexts, with the use of radars to measure bearing and distance 
between ships, to detect islands and lightships, to coordinate traffic in 
waters that are close to ports and to guide missiles against war  
vessels [1]. 

The beginning of the 21st century features radars as an 
indispensable utility, and their applications are becoming increasingly 
common, varying in different complexities, from the monitoring of wind 
and precipitation by meteorologists and the mapping of Earth’s crust by 
geologists to the monitoring of vehicle speeds on the roads and the 
opening of automatic doors in shopping centers, among many others. 

In a world populated by so many radars, the capability to locate 
and identify them provides lots of advantages, in both civilian and 
military contexts. 

One of the civilian applications of radar detectors regards weather 
disruptions on air traffic radar controls. The processing of the pulsed 
weather radar signals of aircraft themselves, even those weak due to 
reflections in heavy clouds, can provide the location and the 
identification of emitters, if a synchronized network of receivers is set 
up. Fig. 1.1 illustrates this application. 
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Fig. 1.1 – Radar detector network to control air traffic. 

 
Source: own elaboration. 

In Defense, radar detectors can work mainly as complete 
Electronics Intelligence (ELINT) or Electronic Support Measures 
(ESM) systems if their receivers are wideband and pattern recognition 
methods are used. These systems are designed to intercept, locate, 
classify and identify radiofrequency (RF) emitters through the passive 
monitoring of the electromagnetic environment. In front of the most 
advanced modern radars, they are considered successful when they 
"detect while stay undetected". To do that, they must be able to receive 
and process the weakest signals transmitted by the furthest emitters [2]. 
Radar Warning Receivers (RWR), which warn crews about threatening 
radars, present the same range constraints, but missile guidance systems 
usually do not. In their case, the maximum range is commonly 
determined by the propulsion system. 

It is worth mentioning at this point that the modern world often 
requires features of low volume, weight and costs to its electronic 
equipment. For instance, a radar detector embedded in an anti-radiation 
missile head cannot exceed a certain size, and the RWR of a nation that 
resists in an asymmetric war cannot be expensive or hard to build. These 
factors result in the need of radar detectors that require low 
computational power, in parallel to the constraints of volume, weight 
and costs. Fig. 1.2 exemplifies an ELINT system embedded on a tablet 
device, which would present features of low volume, weight and costs, 
besides furtiveness, accessibility to where trucks do not go and 
communication with other devices using conventional networks. 
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Fig. 1.2 – An ELINT system embedded on a tablet. 

 
Source: own elaboration. 

1.2 RESEARCH QUESTIONS 

In front of the context described on Section 1.1, the following 
research questions are unavoidable:  

a) “How to design equipment such as radar detectors having 
restricted resources?” 

b) “Is it possible to design them with low volume, weight, costs 
and processing capabilities?” 

1.3 THE PROBLEM 

Despite the need of low computational power required by the 
modern world, the complexity demanded by radar detectors to process 
radar signals makes their design very challenging. Before locating and 
identifying surrounding radars, detectors must deinterleave the signals 
thereof. 

Fig. 1.3 exemplifies a simple Electronic Warfare (EW) scenario, 
in which a radar detector must deal with the signals of ��� = 3 radars 
that are embedded on 3 different platforms. On the illustrated case, each 
radar emits a pulsed signal with a specific pulse width (PW) and pulse 
repetition interval (PRI) pattern, at a specific frequency of carrier (FC). 



36 

 

Fig. 1.3 – A simple EW scenario faced by a radar detector. 

 
Source: own elaboration. 

Regarding the envelopes and the FCs of the signals of Fig. 1.3, 
the resulting signal on the receivers of the radar detector is similar to the 
one illustrated on Fig. 1.4, in both time and frequency domains. Some 
pulses of different radars can be superimposed in the time domain. 

Each illustrated radar operates at a specific FC and presents an 
antenna with gain ���(���,���), considered function only of its 
elevation ��� and azimuthal ��� angles. The radar detector, however, 
faces emitters whose FCs are unknown to it. Its antennae do not have 
necessarily similar radiation patterns in front of each radar signal. 
Therefore, the gain of the receiving antennae ���(���,���,�) is also a 
function of the wavelength � on this work. On Fig. 1.4, discriminating 
signals by their PW or FC is enough to deinterleave them. However, 
modern radars may present agility on these parameters, thereby making 
approaches based solely on them unreliable [1, 2].  

Fig. 1.4 – Type of the resulting signals on the detector’s receivers. 

 
Source: own elaboration. 
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On Fig. 1.3, an azimuthal angle ��� is associated to the position 
of each radar around the detector. On the example, none platform can 
move fast enough in a considerable range in front of the PRI time order, 
which makes the position of emitters a reliable parameter, in which the 
measurement of the direction of arrival (DOA) is based. Clustering 
pulses according to their DOA is sufficient to deinterleave them on the 
case of Fig. 1.3, because the radars are azimuthally far away from each 
other. To measure DOA without degrading the probability of 
interception (POI), a multichannel architecture, consisted of ��� 
mechanically fixed antennae and synchronized receivers [3], is used. 
Direction-finding (DF) methods based on the pulse amplitude (PA) 
require directive antennae. These antennae are designed to present 
suitable gain functions ���(���,���,�) dependent on angles ��� and 
���, which allows, for a single received pulse, the measuring of 
different values of PA in the channels. Fig. 1.5 exemplifies a case in 
which the patterns of ��� = 4 antennae are distributed on the azimuth 
and two pulses are received with different PAs on the system channels. 

Fig. 1.5 – Example of amplitude-based DF method. 
(a) Normalized radiation patterns dividing the azimuth, (b) the 
receiving of a pulse from ��� = 170°; and (c) from ��� = 255°. 

 
(a) 

 
(b) 

 
(c) 

Source: own elaboration. 



38 

 

When platforms are azimuthally close to each other, or a unique 
platform has multiple radars, pulses from various radars lie in the same 
DOA-based cluster. On these cases, the PRI patterns within these 
clusters must be distinguished. The missing pulses phenomenon, 
consisted of the absence of a number of pulses in a pattern, hampers 
recognition methods of PRI patterns, usually requesting more processing 
stages to make it succeed [2]. 

Each radar of Fig. 1.3 may employ a different peak power ��� to 
its pulses. Furthermore, they may use specific antenna scan patterns, 
changing the ��� and ��� angle values each time in their antenna gain 
functions ���(���,���), which amplitude-modulates pulses. Still, they 
are located at different distances � from the radar detector. The received 
peak power ��� of a pulse arriving at the input of the receivers of the 
radar detector is defined by the one-way radar equation [2]: 

��� =
��� ���(���,���) ���(���,���,�) �

�

(4��)� ��
 

(1.1) 

where �� encompasses losses of all stages of propagation, whether or 

not guided. The trio ���, ���(���,���) and � results in a wide range of 
possible received amplitudes ��� in (1.1), which requires a wide 
dynamic range of the detector. This issue is faced on radar detectors 
with nonlinear receiver transfer functions.  

After these initial considerations, the EW scenario of Fig. 1.3 
may be redrawn in more detail, as illustrated on Fig. 1.6: 

Fig. 1.6  – Redrawing of Fig. 1.3 in more detail. 

 
Source: own elaboration. 
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The approach of this work is to develop signal processing 
techniques that look at the mentioned RF peculiarities. The techniques 
aim to soften the processing workload, thereby allowing the design of 
radar detectors with low volume, weight, costs and available 
computational power. 

Fig. 1.7 suggests the schematic of a radar detector to handle with 
the context illustrated on Fig. 1.6. On the proposed schematic, the higher 
the number ��� of channels, the greater the accuracy in DF techniques 
[4], the need of computational power to process the received pulses in 
each of the ��� channels, the volume, the weight and the costs. 

The system performance to detect a specific pulse is found from 
the development of (1.1), which shows the detector range ����  [2]: 

���� = �
��� ���(���,���) ���(���,���,�) �

�

(4�)� ���� ��
 

(1.2) 

where ���� is the sensitivity of the radar detector, evaluated as [5]: 

���� = ���� � (�� + ��) ����                    

= ���� �� � (�� + ��) ����  

(1.3) 

Fig. 1.7  – Radar detector schematic to handle the context of Fig. 1.6. 

 
Source: own elaboration. 
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where ���� is the minimum signal-to-noise ratio (SNR) required by the 
signal processing algorithm on the output of the receivers to achieve 
specific rates of probability of detection �� and false alarm �� of pulses; 

���� is the same parameter, but referred to the receiver input; �� is the 
noise figure of the receivers; ���� is the bandwidth on the receiving; �  
is the constant of Boltzmann, ��  is the antenna physical temperature; 
and �� is the antenna radiation temperature, defined as [6]: 

�� =
1

��
� � � (���,���) �′(���,���) ��

��

�

�

�

 

(1.4) 

where �(���,���) is the thermic radiation distribution function 
comprised by ����; �′(���,���) is the normalized radiation intensity 
function of the antenna; and �� is the antenna beam solid angle. 

To handle the wide range of FCs exemplified on the context of 
Fig. 1.4, tunable and wideband receivers are classically employed on 
radar detectors [7]. Fig. 1.8 illustrates the simplified block diagrams for 
both a scanning super-heterodyne (tunable) and a crystal video 
(wideband) types of radar receivers.  

Scanning super-heterodyne receivers – Fig. 1.8 (a) – do not cover 
all the frequency range of interest instantaneously. Therein, a tunable 
filter sweeps the range of frequency of interest and the admitted signals 
are beaten with the signal of a voltage-controlled oscillator (VCO), 
which down-converts them to an intermediate frequency (IF). POI is not 
near a hundred percent in super-heterodyne receivers, but the 
narrowband low-noise amplifiers (LNA) of such receivers typically 
determine, in (1.3), low values of noise figure �� [7]. On the other 
hand, POI is a hundred percent in crystal video receivers – Fig. 1.8 (b) – 
but their wideband LNAs, among other factors, tend to make them 
present higher values of �� than super-heterodynes. Furthermore, the 
receiving bandwidth ���� appears in both (1.3) and (1.4). These 
features result in a sensitivity ���� that is greater on systems based on 
wideband receivers than on systems based tunable ones, if the other 
parameters are unchanged [7]. This drawback of the wideband receivers 
can be minimized if a channelized architecture takes place, which 
increases weight, volume and costs. Additionally, tunable receivers 
provide FC information, while wideband ones do not. Both types of 
receivers are widely employed on radar detectors, and, therefore, the 
signal processing techniques proposed on this research consider both.  
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Fig. 1.8 – Simplified block diagram of classical radar 
receivers. 
(a) crystal video and (b) scanning super-heterodyne. 

 

(a) 

 

(b) 

Source: own elaboration. 

A logarithmic response on receivers increases the dynamic range 
of the system in relation to the dynamic range of a system with linear 
response, if the other parameters are unchanged. This enables the 
processing of a wide range of combinations of the trio ���, ���(���,���) 
and � in (1.1), but it requires a compensation function to recover the 
linearity of the system on the processing. 

On the first stage of the processing, samples of all receivers, 
which present a sampling rate �� of the analog-to-digital (A/D) 
conversion, are loaded. High values of �� define high resolutions of 
measurements of PW and PRI on the following stages of the processing, 
but, considering ��� channels, the processor must load ��� �� samples 
per second. If the measurement of the DOA parameter is based on 
amplitudes, rather than on phase or time of arrival (TOA), there exist a 
non-enforceability of high values of ��. On measuring PW, TOA and 
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DOA, the processor workload is proportional to ��� ��, where �� is the 

time-density of the measured pulses. The pulse measurement algorithm 
states the minimum SNR required by the processing, ����. The pattern 
deinterleaving processing workload is proportional mainly to the 
number ��� of radars, with less dependence on the density of pulses �� 

and none on the number of channels ��� and the sampling rate ��. 
In conventional analytical DF methods, to perform well in the 

context of Fig. 1.6, the antennae must present wideband behaviour so 
that their radiation patterns vary minimally as a function of the 
wavelength � within the range of FC of interest [8]. Conventional PA-
based approaches also require the pattern of the antennae to be close to 
Gaussian functions, with a main lobe basically covering their respective 
sectors of interest, and the most insignificant possible sidelobes, such as 
the one illustrated on Fig. 1.9. 

Fig. 1.9 – Adequate pattern for amplitude-based 
analytical methods. 

 
Source: own elaboration. 

In practice real wideband antennae may present patterns that vary 
with �, besides unforeseen sidelobes. Analytical methods require a high 
number ��� of channels to divide the angular sector of interest in a way 
that each subsector is exclusively covered by main lobes. 

Now, the processing box of Fig. 1.7 can be expanded to explicit 
the present work, as shown in Fig. 1.10, considering every peculiarity 
approached in this section. 
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Fig. 1.10 – Expansion of the processing box of Fig. 1.7. 

 
Source: own elaboration. 

1.4 OBJECTIVES 

1.4.1 General objective 

The general objective of this work is: “to propose signal 
processing techniques that look at RF peculiarities in order to soften the 
processing workload and to allow the design of radar detectors which 
present low volume, weight, costs and available computational power”. 

1.4.2 Specific objectives 

To achieve the general objective, the following means are 
specific objectives: 

a) state an efficient way of measuring pulses, considering the 
phenomenon of pulse superimposing and the nonlinearity 
of receivers, solving tasks (a) and (b) of Fig. 1.10; 

b) define a DF method that considers antenna sidelobes and � 
dependence, to reliably measure pulse DOAs using as few 
channels as possible, thus solving task (c) of Fig. 1.10; 

c) determine an efficient way of clustering pulses based on 
their DOA, thereby solving task (d) of Fig. 1.10; and 

d) determine an efficient way to deinterleave different radar 
signals contained in each DOA-based pulse cluster, 
solving task (e) of Fig. 1.10. 
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1.5 THIS WORK AND THE STATE-OF-THE-ART 

Recent published papers employ different signal processing 
approaches to process pulses, deinterleave patterns and classify signals 
as a means to identify radars. The subject is sensitive and may require 
confidential data, and, therefore, the literature regarding it is sparse and 
rare. 

To identify patterns of the PRI parameter of interleaved incoming 
radar signals, Ahmad, Ayeni and Kamal [9] have designed an algorithm 
that utilizes the Hilbert transform to obtain the analytical version of 
signals before a Hamming window function is used to smooth their 
instantaneous power (IP). Following, the first, the second and the third 
orders of differences of sequential TOAs of received pulses are 
evaluated and they are used to form rules and to allow the application of 
a rule-based classifier, which determines the level of PRI agility, but 
which can handle only pulsed signals with stable and staggered PRI. 
The entire method is not computationally light. 

Gençol, Kara, and At [10, 11] have proposed the use of wavelets 
to extract features from the signal generated from differences of 
sequential TOAs of received pulses, to recognize PRI modulation 
patterns such as stable, jittered, stagger, dwell & switch, sliding and 
periodic. A multiresolution decomposition of the second difference of 
sequential TOAs is done by utilizing a discrete Haar wavelet, followed 
by a support vector machine algorithm that classifies the signals. While 
the works present capability of handling modern scenarios, the wavelet 
multilevel decomposition requires the computation of large matrixes.  

Kim et al.  have chosen, rather than the difference of sequential 
TOAs, the PA parameter in a pattern recognition method based not on 
the PRI parameter, but on the scanning of the radar antenna. In their 
work [12], an older approach of correlating the disposition of PAs with a 
plurality of known scan patterns [13] benefits from the insertion of a 
new feature analysis, namely, the variance of the difference in the 
amplitude peak-to-peak intervals. It also benefits from the definition of a 
new category of scan pattern entitled ‘unidentified’, which allows a 
decision tree classifier to reduce its false classifications in the categories 
‘conical’, ‘circular’, ‘sector’, ‘raster’ and ‘helical’. The identification of 
the radar antenna scan pattern can easily reveal the associated mission 
and the level of threatening of the radar, but PA-based methods are 
sensitive to reflection and scattering phenomena, becoming useful only 
in air-to-air engagements, since only in this operational condition the 
communication channel is clean enough.  
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Despite this constraint, Gençol, Kara, and At have also presented 
a work based on the PA [14], in which its tracking is faced as a 
nonlinear least squares estimation problem, and so the scan rate of the 
radar antennae can be estimated and it can feed a neural network 
clustering method, alongside DOA, FC and PW parameters. 

The approach of Liu and Cui [15] also clusters DOA, FC and PW 
parameters. It has origins on the density-based clustering method of 
[16], but its self-adaptive features allow the determination of the density 
threshold by the data itself and the generation of multiple density 
thresholds per the characteristics of the incoming radar signals. 

In the work of Sheng, Hou and Si [17], clusters are defined by the 
smallest spheres that enclose a nonlinear transformation of vectors 
consisted of the PW and FC parameters of incoming pulses. 
Nevertheless, the authors themselves assume that the number of 
computations required by this method, known as support vector 
clustering, is very high and impracticable. Therefore, they suggest 
dividing the entire set of pulses in smaller subsets, but the method is 
restricted to environments that are not electromagnetically dense.  

Regardless of the type of the clustering method that is used, the 
increasingly ability presented by modern radars of varying the 
parameters of PW and FC requires also increasingly elaborated 
techniques and computational power on all the multiparameter 
clustering-based radar detectors [2]. 

In the literature, the above approaches consist of the state-of-the-
art of processing pulses, classifying patterns and identifying radars in 
modern scenarios, but they are not useful to the purposes of this work, 
since they do not prime for simplicity and they demand great 
computational power. 

To reach the objectives of this work, rather than designing 
complex and demanding algorithms, the approach of work achieves 
robustness by examining simple details of the problem defined on 
Section 1.2 – such as, for instance, the superimposing of pulses in the 
time domain, which leads in the missing pulses phenomenon in 
traditional detectors; the irregularities in antenna patterns, which cause 
DOA measurement ambiguities; and the features of the receiver 
employed, that reflect on the POI, on the availability of FC information 
and on the features of the DOA measurement distributions. After such 
considerations on the early stages, substantial enhancements are 
promoted, first, to a Gaussian kernel density estimator, allowing the 
glimpse of a Gaussian filter whose purpose is to cluster pulses by their 
DOA, and then to a classical interval-only deinterleaving method [18]. 
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Frame 1.1 shows the features of the state-of-the-art radar signal 
processing works and of the present research, for comparative purposes. 

Frame 1.1 – Features of the state-of-the art and of this work. 

Work Year Approach Restrictions Simplicity 
Low 

processing 
power 

Missing 
pulses 

sensitive 

[9] 2015 

Hilbert 
transform / 
filtering / 
rule-based 
classifier 

only 
stable and 
staggered 

PRI 

no no yes 

[10] 2015 

wavelet 
transform / 

support 
vector 

machine 

none no no yes 

[12] 2014 

correlate PA 
and scan 
patterns / 

decision tree 

only air-
to-air 

no no yes 

[14] 2017 

nonlinear 
least squares 

/ neural 
network 

clustering 

only air-
to-air 

no no yes 

[15] 2015 

self-adaptive 
density-
based 

clustering 

none no no yes 

[17] 2017 
support 
vector 

clustering 

only non-
dense EM 
scenarios 

no no yes 

Ours 2018 

Gaussian-
filtering 

DOA 
measures / 
enhanced 

interval-only 
method 

none yes yes no 

Source: own elaboration. 
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1.6 RELATED PUBLISHED WORKS 

The knowledge employed on this research was obtained during 
the development of the following works, during the master’s degree 
program: 

 Paper 1: Polarization diversity on ESM systems [19]. 

Vehicle: Journal of Microwaves, Optoelectronics and 
Electromagnetic Applications (JMOe); 

Abstract: Polarization diversity antenna arrays are applied to 
Electronic Support Measures (ESM) systems since the 1980s. 
However, even today modern systems are conceived with the 
employment of the traditional and inconvenient spiral antennae 
and there are no studies that evidences most of the benefits of 
this technique applied to them. This paper aims at showing not 
only the advantages on polarization matching issues, but also 
the benefits in gain, in simpler truncation effect problems and in 
costs and time spent on design and production. After a brief 
approach strictly applied to ESM of the main features of spiral 
antennae and bow-tie antennae compounding a polarization 
diversity array, equations of the power available from the last 
were developed from the concept of effective length. The 
results demonstrate that the array could provide a power 8.7 dB 
higher than a modern spiral would to an ESM system when it 
receives vertical or horizontal linearly polarized waves, which 
multiplies by 2.7 the range of the system, besides also 
presenting a better performance in case of circularly polarized 
incident waves. This work has contributed to propose a 
replacement to the very common use of spiral antennae on the 
upcoming ESM system projects. This study is recommended for 
the areas of Electronic Warfare, Electromagnetic Devices and 
Applications and Ultra-Wideband Antennae. 

 Paper 2: Proposta de um MAGE RDS com processamento em 
tablet: desafios de hoje e perspectivas do amanhã [20]. 

Vehicle: Revista Spectrum 2016; 

Abstract: The voluble interactions between military philosophy 
and technologies related to advances in digital signal processing 
show that the concept of Software Defined Radio (SDR) could 
be used to develop a new way of Electronic Support Measures 
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(ESM) on tablets. The 5G technology expectations, that 
promises a revolution in telecommunications, justifies the 
proposition of a research that aims an SDR ESM System with 
tablet processing. This paper discusses the main challenges and 
the prospects for the future related to the research of this 
equipment. 

 Paper 3: SDR-based radar-detectors embedded on tablet 
devices [21]. 

Vehicle: 2017 SBMO/IEEE MTT-S International Microwave & 
Optoelectronics Conference (IMOC 2017). 

Abstract: Software-Defined Radio (SDR) technology has 
already cleared up passive radar applications. Nevertheless, 
until now, no work has pointed how this flexible radio could 
fully and directly exploit pulsed radar signals. This paper aims 
at introducing this field of study presenting not only an SDR-
based radar-detector but also how it could be conceived on a 
low power consumption device as a tablet, which would make 
convenient a passive network to identify and localize aircraft as 
a redundancy to the conventional air traffic control in adverse 
situations. After a brief approach of the main features of the 
equipment, as well as of the developed processing script, indoor 
experiments took place. Their results demonstrate that the 
processing of pulsed radar signal allows emitters to be 
identified when a local database is confronted. All this 
commitment has contributed to a greater proposal of an 
Electronic Intelligence (ELINT) or Electronic Support 
Measures (ESM) system embedded on a tablet, presenting 
characteristics of portability and furtiveness. This study is 
suggested for the areas of Software-Defined Radio, Electronic 
Warfare, Electromagnetic Devices and Radar Signal 
Processing. 

 Paper 4: Demonstrador de um sistema MAGE com a antena do 
P-95 e processamento em tablet [22]. 

Vehicle: XIX Simpósio de Aplicações Operacionais em Áreas 
de Defesa (SIGE 2017); 

Abstract: A Software-Defined Radio (SDR)-based Electronic 
Support Measurement (ESM) system demo with tablet 
processing and the antenna of the ESM system of the P-95 
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aircraft is presented. Experiments showed that the system, when 
confronted with characteristic emissions of radar signals, was 
able to detect pulses and their parameters with an error rate of 
about 0.05% when only one signal was received or when a 
complex electromagnetic environment was simulated. The 
system was also able to detect superimposed pulses, in addition 
to identifying simulated emitters according to a pre-recorded 
database. The results of this work suggest that the processing 
capacity of the tablets and the SDR technology approach now 
allow ESM systems to operate on these portable and convenient 
devices. 

 Paper 5: Precise techniques to detect superimposed radar 
pulses on ESM systems [23]. 

Vehicle: IET Radar, Sonar & Navigation; 

Abstract: The latest works on the radar pulse deinterleaving in 
Electronic Support Measures (ESM) systems have not 
completely solved the missing pulses problem yet. We present a 
pulse detection algorithm that aims at, if not eliminating it, 
diminishing the rate of pulses not detected because of the fact 
of being superimposed in other ones. Experiments set up on an 
ESM system based on Software-Defined Radio (SDR) showed 
that the algorithm detection rate was near a hundred percent and 
the false alarm rate was near zero when pulse amplitudes were 
higher than 3.9 mV in the SDR input. This work is suggested 
for the areas of Digital and Radar Signal Processing and 
Electronic Warfare. 

1.7 OUTLINE OF THE DISSERTATION 

This study is further organized and structured as follows: 
 Chapter 2 carries about the pulse measurement algorithm; 
 Chapter 3 shows the proposed DF technique; 
 The DOA-based clustering of pulses is shown in Chapter 4; 
 The deinterleaving procedure to be made inside each  

DOA-based cluster is approached on Chapter 5; and 
 Chapter 6 concludes the dissertation. 





51 

 

Fig. 2.1 – Interleaved signals received by a radar detector. 

 
Source: own elaboration. 

2 PULSE MEASUREMENT 

All the recent published papers about radar signal processing 
mentioned on Section 1.5 [9-17] have in common the fact that they are 
somehow sensitive to missing pulses – a phenomenon mentioned on 
Section 1.2 in which the radar detector does not detect every pulse 
emitted by a radar and which makes pattern recognition methods not 
succeed on deinterleaving radar signals, or makes them request more 
processing stages to do that [2].  

In the classical work of Mardia [18], this problem was already 
identified, and the author dealt with it weighting the threshold level to 
be exceeded on histograms that register occurrences of differences of 
sequential TOAs. On this approach, if missing pulses avoided the 
threshold surpassing, true PRI patterns would not be detected. On the 
other hand, if the threshold was excessively lowered by the weighting, 
false PRI patterns would be indicated. Subsequent papers based on 
histograms, for instance [24, 25], have tried to improve the threshold 
weighting, but they have not found a better solution to this issue. 

A technique frequently employed to measure pulses relies on the 
crossing of a predefined threshold level by the PA envelope. 
Unfortunately, common detection algorithms fail when two or more 
pulses from different emitters overlap [2], which could lead to the 
occlusion or distortion thereof. Fig. 2.1 consists of an extract of Fig. 1.6 
and illustrates the signal resulted from the superimposing of pulses of 
radars 1-3.  

This chapter introduces a pulse measurement technique that can 
process pulses which are superimposed in the time domain, such as the 
couple consisted of the first pulse of Radar 1 and the first pulse of Radar 
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2 and the couple consisted of the last pulse of Radar 1 and the last pulse 
of Radar 3. The proposed method is related to tasks (a) and (b) of Fig. 
1.10 and differs from conventional ones in that it focuses on the 
variations of the resulting amplitude envelopes.  

To explain the development of the algorithm, studies of the 
behaviour of a generic radar detector receiver subjected to two pulses at 
a time are presented. Cases in which pulses present different FC and in 
which components present nonlinear response are covered, as well as 
A/D conversion issues. Moreover, an experiment implemented on a 
Software-Defined Radio (SDR)-based ESM system showed that the 
performance of the proposed algorithm degrades only when the 
amplitude envelopes are lower than 3.7 mV on the input of the used 
SDR.  

2.1 PRELIMINARIES 

The presence of two or more pulses at the same time in a generic 
radar detector receiver may result in an amplitude envelope other than 
the superposition of the single envelopes, depending on their FC and/or 
phase-mismatching. Nevertheless, enough information is available to 
detect superimposed pulses if an algorithm based on comparing 
variations of the resulting envelope is used, since to the beginning and to 
the end of each pulse are associated certain variations of the envelope 
which are symmetric between each other. 

The comparison between variations, however, must consider 
peculiarities of radar detectors, which look to handle various 
combinations of ���, ���(���,���) and � in (1.1), commonly presenting 
nonlinear receivers in the modern context, as explained in Section 1.2. 
In the output data of such a receiver, the comparison of the variations 
related to the begin and to the end of a pulse fails if those variations do 
not occur close to the same amplitude level. Therefore, signal 
processing techniques, for instance [26], must be used to correct the 
nonlinearity of a system that uses the proposed algorithm. 

In parallel, priming for the greater possible values of ����  in 
(1.2), the processing must request the lowest possible value of ����, 
when amplitude variations related to noise are significant with respect to 
variations related to the amplitude envelope of pulses. This issue must 
be faced with a variation threshold level. 

Moreover, the relation between the rise/fall time of pulses of a 
radar signal and the sample time of the A/D converter of the radar 
detector can lead to the spreading of pulse edges among various samples 
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of the measured data and can influence on how the sample value 
variations become arranged. It can make the variations that characterize 
begin and end of a pulse to be different between each other. Consider a 
pulse with random TOA and rise time equal to ��. Fig. 2.2 illustrates the 
sampling of its leading edge by an radar detector with sample time of ��. 

Fig. 2.2 – The sampling of the leading edge of a 
generic pulse. 

 
Source: own elaboration. 

Observe that the leading edge illustrated in Fig. 2.2 lies on 4 
intervals between samples, occupying them even if not completely. The 
probability of the event ���, in which a leading edge lies on exactly �� 

intervals between samples, is: 

������� =

⎩
⎪
⎨

⎪
⎧2 − �� +

 �� 

��
, (�� − 2) �� < �� ≤ (�� − 1) ��

�� −
 �� 

��
, (�� − 1) �� < ��  ≤  �� ��

0, ��ℎ������

 

�� = 1,2,3,…   (2.1) 

If PW is random, (2.1) is used for the probability ������� as well, 

related to the trailing edge of the same pulse, but ������� ≠ ������� if 

rise and fall times are different. Even if ������� = �������, both edges of 

a specific pulse are not necessarily going to lie on the same number of 
intervals between samples, and even in cases in which both edges are 
spread in the same number of intervals, the variations between the 
samples related to each edge are rarely going to present similar 
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arrangements of absolute values. The solution to this problem is to 
calculate the moving average of the variations of the sample values. In 
this procedure, variations that lie beneath the moving average window 
are all computed, independent of their arrangement. The moving 
average local maxima, within the range of the window size, characterize 
position of edges. As it differently affects each sample, noise prevents 
the moving average procedure from resulting in repetitive sequenced 
elements, which would make not possible to find local maxima. Noise 
can also make the local maxima to be displaced – an issue that must be 
considered on the pulse parameter measurements on low SNR cases. 
The moving average window size should be defined per the lowest 
bandwidth radars that the radar detector is designed to confront. 

2.2 CASE STUDIES 

Several case studies exemplifying the issues presented on  
Section 2.1 can be made with the aid of the hypothetical pulses 
described on Table 2.1, whose parameters were purposely dimensioned 
for the convenience of the examples: 

Table 2.1 – Hypothetical pulses. 

Id 
TOA 
(ns) 

PW  
(ns) 

PA 
(μV) 

FC 
(GHz) 

Initial 
Phase 

Rise 
(ns) 

Fall 
(ns) 

P1 3 20 10 1 0 0.25 0.25 
P2 8 10 10 1 0 0.25 0.25 
P3 8 10 10 1 150° 0.25 0.25 
P4 8 10 10 3 0 0.08 0.08 
P5 8 10 10 10 0 0.02 0.02 
P6 3 10 20 1 0 0.25 0.25 
P7 37 (42) random 10 1 0 26.4 22.6 

Source: own elaboration. 

2.2.1 Superimposed pulses on a generic receiver 

Suppose that P1, combined with P2, P3, P4 or P5, was available 
on the terminations of a linear-response frequency-independent antenna, 
whose performance and receiving gain ��� are not function of the 
wavelength �. The resulting amplitudes (in blue) and the crossing of a 
threshold level (in dashed black) by their envelopes (in red) are shown 
in Fig. 2.3, considering a low noise floor of -110 dBm/Hz@50Ω. 
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Fig. 2.3 – Superimposed signals 
 (a) P1+P2, (b) P1+P3, (c) P1+P4 and (d) P1+P5. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Source: own elaboration. 
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A common amplitude envelope-based algorithm detects only P1 
in all the cases of Fig. 2.3 – as in all the cases the envelopes cross up the 
threshold level only in the begin of P1 and then they cross it down only 
at its end – even when the superimposed pulses are frequency separated. 
A worst case, in which two minor and untrue pulses would be indicated, 
would occur if P3 initial phase were nearer 180° in Fig. 2.3 (b), as the 
envelope would cross down the threshold in the begin of P3, computing 
a pulse end, and would cross it up at its end, recording a pulse begin. 

2.2.2 Nonlinearity correction and low SNR case 

Logarithmic receivers are frequently used on radar detectors to 
obtain radar signals on baseband while handling with extensive 
combinations of ���, ���(���,���) and � in (1.1). The output �(�) of an 
ideal logarithmic receiver can be modelled as the envelope  
function �(�) of a logarithmic scale of the IP of its input �(�):  

�(�)= � �10 ��� �� 
�(�)

��

�

 �� 
(2.2) 

where � is a gain factor and �� is a reference impedance. Suppose that a 
frequency-independent antenna, located at a distance � = � from two 
radars located at a single platform, provides a receiver with the already 
seen P5 together with P6, which TOA is 3 ns and PW is 10 ns. Fig. 2.4 
shows the superimposed pulses and the resulting envelope on the 
antenna terminations, again with -110 dBm/Hz@50Ω of noise floor at 
this stage. Observe that P5 and P6 have different amplitudes. 

Fig. 2.4 – Combination of P5 and P6 at antenna 
terminations. 

 
Source: own elaboration. 
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Consider that the radar detector receiver has a response such as 
that modelled on (2.2), with � = 100, �� = 50 Ω and a receiver  
input-referred noise floor of -90 dBm/Hz. Fig. 2.5 illustrates the receiver 
output, which represents the envelope of the input IP after gain stages, 
in dBm scale. In addition to the case of Fig. 2.4, in which � = �, cases 
in which the receiving antenna would be located at distances � = 2 �, 
� = 4 �, � = 8 � and � = 16 � from the platform are also considered.  

Fig. 2.5 – Output of a logarithmic receiver with P5 and P6. 

 
Source: own elaboration. 

The input-referred noise floor appears on the output as  
-70 dBm/Hz. The higher the distance �, the lower the SNR and the 
higher the presence of variations related to noise on the output. The 
response of the modelled receiver makes the leading and trailing edges 
of P5 not to be characterized by the same variations on the output signal 
in all the illustrated cases. The same occurs with the edges of P6. The 
inverse function ��(�) of the nonlinear response of (2.2) is: 

��(�)=  �
��
�
10

�
�(�)
��

�
 

(2.3) 

The nonlinearity correction of the cases of Fig. 2.5, obtained using the 
output of (2.2) as an input of (2.3), are represented in Fig. 2.6. Observe 
that the variations related to the leading and trailing edges of P5 present 
close absolute values. The same happens with the variations of P6. Also, 
the variations related to P5 and P6 are practically indistinct from those 
relative to noise on the cases in which � = 8 � or � = 16 �, indicating 
that in these cases the SNR is not enough to occur proper processing.  
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Fig. 2.6 – Nonlinearity correction of signals of Fig. 2.5. 

 
Source: own elaboration. 

2.2.3 Sampling 

Regarding to A/D conversion, Fig. 2.7 illustrates the sampling of 
the envelope leading edge of P7, whose rise time is 26.4 ns, by a radar 
detector whose sample time is 10 ns: (a) shows the P7 leading edge at 
TOA = 37 ns, and (b) shows the sample value variations related to it; (c) 
exemplifies the case if TOA of P7 were not 37 ns, but 42 ns, and (d) 
illustrates the new arrangement of sample value variations.  

On the case in which the TOA of P7 was 37 ns, the edge 
measurement resulted in 4 variations between samples, as shown in (b); 
but if TOA were 42 ns, there would be only 3 variations related to the 
edge, as illustrated in (d).  

Consider, from now on, a pulse with random TOA, random PW, 
rise time of 26.4 ns and fall time of 22.6 ns. Its leading edge does not fit 
in only 1 interval between the samples of a radar detector with sample 
time �� = 10 ns; it does not fit in only 2 intervals as well – that is why 
the third sentence of (2.1) determines that the probability ��(��) is zero, 
just as ��(��). Using the second sentence of (2.1), the probability ��(��) 
is 36 %. According to its first sentence, ��(��) is 64 %. The priorly 
mentioned leading edge is not long enough to lie on 5 or more intervals, 

so again the third sentence of (2.1) rules, defining �����,�,�… � = 0. In 

relation to its trailing edge, ��(��) = 0, ��(��) = 0, ��(��) = 74 %, 

��(��) = 26 %, and �����,�,�… � = 0. The probability that both leading 
and trailing edges of a pulse with both rise time and fall time like those 
of P7 are spread among exactly 3 intervals is only 26,6 %, while among 
exactly 4 intervals is only 16,6 %. 
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Fig. 2.7 – P7 measurements at 10 ns sample time. 
(a) TOA = 37 ns, (b) variations related to (a),  
(c) TOA = 42 ns, and (d) variations related to (c) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Source: own elaboration. 
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Fig. 2.8 illustrates the moving average procedure of the P7 
sample variations in both TOA = 37 ns and TOA = 42 ns cases, with a 
moving average window size of 5 samples. The local maxima are 
highlighted. 

Fig. 2.8 – Moving average of P7 sample value variations 
when (a) TOA = 37 ns and (b) TOA = 42 ns. 

 
(a) 

 
(b) 

Source: own elaboration. 

Despite the different arrangements of variations shown on  
Fig. 2.7 (b) and (d), Fig. 2.8 (a) and (b) show similar dispositions of the 
moving averaged variations, with the same sample being identified as 
the local maximum. This indicates that the moving average procedure 
makes the algorithm robust to the sampling issues.  

The moving average window size is dimensioned according to 
the lowest bandwidth radars the radar detector is designed to confront. 
In parallel, the higher the window size, the greater the number of 
mathematical operations performed on the procedure and the required 
computational power. 
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2.3 PROPOSED ALGORITHM 

Besides the details presented in Section 2.1 and Section 2.2, 
another issue received special attention on the design of the proposed 
pulse measurement algorithm: the higher the sampling rate �� of a radar 
detector, the higher its resolution in the detection of PW and PRI, as 
mentioned in Section 1.2. This means that the maximum performance 
should always be sought, thereby allowing the largest amount of data to 
be processed by the hardware. Fig. 2.9 shows the flowchart that 
represents the algorithm to be presented. 

Fig. 2.9 – Variation-based pulse detection algorithm flowchart. 

 
Source: own elaboration. 



62 

 

The first step of the algorithm is to correct the nonlinearity on the 
amplitude data vector. If the receiver response is like that modelled on 
(2.2), the amplitude data vector is simply used as an input of (2.3). If the 
response is of another type, as long as it is a nonmemory one, it may be 
modelled by polynomial regression, so that its inverse function may be 
approximated and applied to the amplitude data vector on this stage. 
Thereafter, variations between the nonlinearity corrected amplitude data 
elements are calculated and the moving average procedure is done. To 
circumvent the high sampling rate �� issue, a procedure to unlink the 
processing of the algorithm and the high number of samples takes place. 
In the moving average vector, only the absolute values that exceed a 
variation threshold level are verified as local maxima; the moving 
average variations related to those that satisfy these two conditions are 
registered as potential beginnings or ends of pulses. From now on, the 
demanded computational power is related to the time-density �� of 

pulses of the environment and not to the ��. Following, each registered 
moving average variation is compared only to the afterward registered 
moving average variations. The first symmetric one, respecting a 
tolerance, defines the end of the pulse and permits the extraction of 
parameters as PW, TOA and PA. When a variation is detected as the end 
of a pulse, it is removed from the list of potential beginnings of pulses.  

2.4 EXPERIMENTAL SETUP 

The validation of the proposed algorithm has occurred with its 
implementation in a prototype of a four-channel SDR-based ESM 
system with processing on a tablet device. Its testings were performed in 
front of a pulse emitter also based on SDR. 

The prototype utilizes ��� = 4 log-periodic receiving antennae, 
model LP850, with nominal frequency range from 850 MHz to  
6500 MHz, from Kent Electronics [27]. Also, it uses ��� = 4 NooElec 
RTL-SDRs™ [28] as receivers, all of them set with an �� = 2.4 MS/s. 
The channels of the prototype are synchronized by known pulses 
emitted by a sun-flower antenna. As a processor, it uses a Microsoft 
Surface Pro 4™ [29] tablet device. Despite the high quality of the 
Surface Pro 4 tablet, this device has not the same computational power 
of modern radar signal processors, which employ parallel and graphics 
processing unit computing [30-33]. Therefore, it has provided a great 
opportunity to verify the algorithm applicability with low computational 
capability available, according to the general objective of this work.  
Fig. 2.10 depicts the prototype of the SDR-based ESM system. 
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Fig. 2.10 – SDR-based ESM system prototype. 

 
Source: own elaboration. 

The algorithm was run in Matlab™ [34]. The transfer function of 
the RTL-SDR was characterized and approximated by a polynomial 
regression of order 5, which resulted in: 

�(�)=  
1.8

10�
�� −
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10�
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2.3

10�
�� −

6.5

10�
�� +

2.3

10�
� −

2.8

10�
 (2.4) 

The observation of (2.4) shows that the response of the RTL-SDR 
is close to an ideal linear one. The RTL-SDR output values were applied 
in the inverse function of (2.4), therefore the system response was really 
close to an ideal linear one. The moving average window size was equal 
to 4 samples. The variation threshold level was defined from a 
histogram of sample values, which discriminated the most common 
sample values, presumed to be those from noise. There are lots of ways 
of defining threshold levels and they will not be covered on this work. It 
is important to realize that the definition of the variation threshold based 
on histograms of the amplitude data vector makes the algorithm to 
become more sensitive on the cleanest environments. It is expected 
significant false alarm rates at low level signals. A fixed threshold value 
would avoid this behaviour, at the cost of diminishing the superimposed 
pulses detection rate. 

The test signals, summarized on Table 2.2, were generated by an 
USRP® B200 SDR from Ettus Research [35], firstly with an  
�� = 50.0 MS/s, and after with an �� = 1.0 MS/s, to verify the robustness 
of the algorithm in front of low bandwidth radars. Various gain settings 
were used, so different rates of probability of detection of pulses �� and 
of false alarm �� could by verified according to different SNR cases.  
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Table 2.2 – Pulses emitted by USRP B200. 

Id 
First TOA 

(μs) 
PW  
(μs) 

PRI  
(μs) 

PA  
(ref) 

FC  
(GHz) 

�� 
(MS/s) 

P8 0 10 40 1 0.5 50.0 
P9 5 10 40 0.5 0.5 50.0 
P10 0 100 400 1 0.5 1.0 
P11 50 100 400 0.5 0.5 1.0 

Source: own elaboration. 

In the first experiment, only P8 was emitted, so detection �� and 
false alarm �� rates could be calculated for cases in which there were 

not superimposed pulses. In the second and third experiments, the PA 
parameters of P8 and P10 were the reference ones, and the PA of P9 and 
P11 were set to be half thereof. The final PAs available on the  
RTL-SDR input for all the cases were defined by the USRP B200 gain 
and are specified on each line of Table 2.3 to Table 2.5 on Section 2.5. 
Each experiment was done in a unique data frame of the RTL-SDR with 
size of � = 65,536 samples. Considering an �� = 2.4 MS/s, the time �� 

relative to one frame was approximately 27.3 ms. Both P8 and P9 pulses 
were repeated in intervals of 40 μs. That means that, for each amplitude 
case, the pulse P8 was received 683 times, in the first experiment. The 
couples of superimposed pulses P8 and P9 were received 683 times, in 
the second experiment. Both P10 and P11 pulses were repeated in 
intervals of 400 μs, which totalized 68 couples of pulses in the period 
relative to each amplitude case. Fig. 2.11 (a) and (b) illustrate, after the 
nonlinearity correction, received couples of P8 and P9 when the USRP 
B200 gain was set to 47 dB and 23 dB, respectively. 

2.5 RESULTS AND DISCUSSION 

Because the proposed algorithm is based on instantaneous 
variations of sampled amplitudes, the results shown are based on the 
PA, and not on the average power or on specific SNR values. The PRI 
values of 40 μs (P8 and P9) and 400 μs (P10 and P11) were chosen just 
to repeat the receiving of the superimposed pulses for enough times to 
estimate �� and �� rates in a unique RTL-SDR data frame. These PRI 

values are unusual for pulsed signals which present their PW, and 
results based on the average power or SNR values would not be realistic 
ones. Both �� and �� rates were calculated, in all the cases, relative to 

the total number of the pulses emitted by the USRP B200 in the period. 



65 

 

Fig. 2.11 – A couple of received superimposed pulses 
with a gain of (a) 47 dB and (b) 23 dB in the USRP B200. 

 

(a) 

 

(b) 

Source: own elaboration. 

The results of the first experiment, in which P8 was received by 
the RTL-SDR alone 683 times, are summarized on Table 2.3, for each 
amplitude case. It shows that the algorithm provides �� near a hundred 
percent and �� near zero for any of the measured cases, in which the 

isolated pulses presented PA ≥ 3.9 mV. 
The results of the second experiment, in which 683 couples of 

superimposed P8 and P9 pulses were emitted by the USRP B200, are 
presented on Table 2.4. The algorithm exhibits a �� near a hundred 
percent when PA ≥ 3.7 mV., with the presence of 10 or fewer impostors 
on these cases (first to sixth lines). The last line indicates a drop of 
performance, expected to occur on amplitude cases that result on a SNR 
below a specific value not discriminated here, for the reasons mentioned 
on the beginning of this section. This performance would hamper the 
deinterleaving processing in a hypothetical (and very unlikely) situation 
in which all the pulses were superimposed.  
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Table 2.3 – Results of P8 alone. 

PA of P8  
(mV) 

Detected 
pulses 

�� 
(%) 

False 
alarms 

�� 

(%) 
44.5 683 100 0 0 
31.5 683 100 0 0 
23.0 683 100 0 0 
15.7 683 100 0 0 
11.0 683 100 0 0 
7.6 683 100 0 0 
5.0 683 100 0 0 
3.9 667 97.66 16 2.34 

Table 2.4 – Results in front of P8 and P9 superimposed pulses. 

PA of  
P8 (mV) 

PA of  
P9 (mV) 

Detected 
pulses 

�� 
(%) 

False 
alarms 

�� 

(%) 
44.5 22.0 1366 100 0 0 
31.5 15.5 1366 100 5 0.37 
23.0 11.8 1366 100 2 0.15 
15.7 7.9 1365 99.93 1 0.07 
11.0 5.4 1356 99.27 10 0.73 
7.6 3.7 1364 99.85 2 0.15 
5.0 2.4 1274 93.26 92 6.73 
3.9 1.9 597 43.70 376 27.52 

Table 2.5 – Results in front of P10 and P11 superimposed pulses. 

PA of P10 
(mV) 

PA of P11 
(mV) 

Detected 
pulses 

�� 
(%) 

False 
alarms 

�� 

(%) 
44.5 22.0 136 100 0 0 
31.5 15.5 136 100 1 0.74 
23.0 11.8 135 99.26 2 1.47 
15.7 7.9 136 100 1 0.74 
11.0 5.4 135 99.26 2 1.47 
7.6 3.7 136 100 2 1.47 
5.0 2.4 123 90.44 5 3.68 
3.9 1.9 45 33.09 6 4.41 

Source of tables: own elaboration. 

 

Table 2.5 shows the results in front of superimposed P10 and P11 
pulses, which both presented �� = 1.0 MS/s. Again, on the last line, we 
see a drop on performance, inherent to SNR cases which are below a 
specific value. In fact, Table 2.5 shows a behaviour on results similar to 
that of Table 2.4, validating the robustness of the algorithm in front of 
low bandwidth pulsed signals. 
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2.6 FINAL REMARKS OF THE CHAPTER 

The classification and identification of radars, which occurs with 
the deinterleaving of radar pulses, still suffers from the missing pulses 
problem, despite the efforts of latest works to make algorithms more 
robust with respect to this matter. 

After preliminaries and case studies, a pulse measurement 
algorithm which is able to process superimposed pulses and decrease 
missing pulses rate was presented.  

The proposed algorithm accomplishes tasks (a) and (b) of  
Fig. 1.10. It is based on the variations of the sampled amplitude 
envelope resulted by the superposition of pulses. It considers linear or 
nonlinear response receivers, high and low SNR situations, as well as 
the emitters bandwidth in front of the sampling rate of the radar 
detector. 

An experiment set up with the prototype of an SDR-based ESM 
system with processing on a tablet device and an SDR pulse emitter 
showed that the performance of the proposed algorithm degrades only 
when the amplitude envelopes are lower than 3.7 mV on the input of the 
used SDR. 
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3 DOA MEASUREMENT 

In the modern technological context, from the detector’s point of 
view, the most reliable radar signal parameter is the position of the 
emitter relative to the detector, which enables the DOA parameter 
measuring. The reason for this, besides natural phenomena such as jitter 
and multipath, is that radars, even the civilian ones, are increasingly 
capable of employing agility features on FC, PW and PRI. None 
platform of today can move around fast enough to change its position in 
a considerable range in front of the time order of the PRI [1, 2, 7]. 

Recent works cannot exploit this reliability while achieving the 
objective stated on Section 1.4.1. On the one hand, phase or TOA-based 
methods either are computationally heavy, or they require complicated 
hardware [36-39]. On the other, most of the amplitude-based techniques 
utilize analytical formulae, offering the advantage of requiring low 
computational power, but demanding such a high number ��� of 
antennae to divide the angular sector of interest so that only the main 
lobes of their radiation patterns are computed. In this way, patterns are 
considered close to Gaussian functions, like that of Fig. 1.9 [8, 40-43].  

The present method, related to the task (c) of Fig. 1.10, pushes 
the needed number of channels ��� to its inferior limit, with a technique 
that is not restricted to main lobe zones. Hence, it saves mathematical 
operations related to measuring pulses in lots of channels, besides the 
volume, weight and costs related to the channels themselves. The real 
pattern of each antenna, not necessarily Gaussian ones, and the PAs of 
each single pulse found in every channel are considered and compared, 
using simple operations, with a pre-registered matrix of relation of PAs. 

Very few works, such as [44], consider the real patterns of the 
employed antennae. However, they do not compute that the performance 
of even those antennae presumed to present wideband behaviour vary as 
a function of FC. They evaluate DOA using only two antennae, allowing 
ambiguities to happen in angular sectors out of the main lobe.  

Below, the design of the algorithm is shown with the aid of case 
studies of analytical methods subjected to real antennae patterns. 
Thereafter, the algorithm is presented in detail and simulations are 
performed. Experiments made on the roof of a building with the same 
SDR-based ESM system used on Section 2.4 showed that the DOA 
measurement distributions present Gaussian features, with a standard 
deviation � as high as the lower the SNR. Finally, the influence of the 
type of receiver used on the system, tunable or wideband, is discussed.  
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Fig. 3.1 – Conventional amplitude-based DF methods. 
(a) patterns of two antennae in the DF function domain; and  
(b) inverse of DF function evaluation. 

  
(a) (b) 

Source: own elaboration. 

3.1 PRELIMINARIES 

Common amplitude-based DF algorithms find azimuthal DOA 
using the inverse function of formulae, with small variations, as [40-43]: 

��(���)=  
������(���)− �������(���)

������(���)+ �������(���)
 

(3.1) 

where ��: ������,������� → [-1, 1] is the azimuthal DF function. This 

function is defined from ����� to ������, which are the azimuthal angles 

��� that respectively maximize the gains ���(���,���,�) of the left and 
the right receiving antennae, for a specific elevation angle �, in a 
specific wavelength �. Both ����� and ������ can also be interpreted as 

the ��� to where the main lobes of the left and the right antennae are 
respectively directed. ������(���) and �������(���) are the PA of the 

same pulse found on the two receivers employed on the measuring.  
This approach considers, from ����� to ������, the patterns of real 

antennae as ideal Gaussian functions, like that of Fig. 1.9, which are 
bijective functions. For instance, Fig. 3.1 (a) illustrates Gaussian 
patterns of two antennae which aim to cover 60° of the azimuth of a DF 
system that needs ��� = 6 channels to cover the whole azimuth. The DF 
function is defined here as ��: [0,60°] → [-1, 1], a bijective function. 
The inverse function of ��(���) is ���: [− 1,1] → [0,60°], which 
provides a DOA measurement without ambiguities – Fig. 3.1 (b). 
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As seen in Section 1.2, in realistic scenarios, radar detectors face 
emitters that can operate with an FC parameter situated at a wide range 
of positions on the RF spectrum. Because of that, in (1.1) and (1.2), the 
gain ��� of the receiving antennae of the system, which does not have 
information about incoming signals, must be considered a function of � 
or FC – and therefore is written as ���(���,���,�).  

Fig. 3.2 shows the real radiation patterns of a generic spiral 
antenna, presumed to present wideband behaviour, measured at various 
FC within its nominal operational frequency range. The formats of the 
patterns, in any measured FC, barely behave like Gaussian functions 
from the center of their main lobes, at the azimuthal angle of 180°, to a 
range of +60°, until the angle of 240°, or to a range of -60°, until the 
position of 120°. Beyond the left and the right ranges of 60°, they 
present significant sidelobes. Their receiving gain ��� functions, defined 
from the center of the main lobe, to the left or to the right, are not 
bijective functions beyond a 60° range. Conventional amplitude-based 
��(���) functions, such as (3.1), are not invertible in these cases.  

To operate amplitude-based DF techniques in angular sectors 
outside the main lobe, more than two channels of the system are needed, 
so ambiguities are extinct. The relation of PAs in every channel of the 
system must be compared with a pre-registered matrix that contains the 
relation of PAs in each channel of the detector when signals are incident 
from various azimuthal angles. This procedure considers every sidelobe 
of the antennae of the radar detector. 

Fig. 3.2 – Example of pattern as a function of �. 

 
Source: own elaboration. 
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Observing the patterns of Fig. 3.2, the sidelobes in a specific FC 
are not even close to that of another FC. Comparisons between a pre-
registered matrix obtained in a specific FC and signals with another FC 
generate significant errors. To face that, knowledge of the FC parameter 
of each received pulse is needed and the pre-registered matrix to be used 
in the comparison must be defined accordingly.  

Perceive that a simple way to avoid the inconveniences of the 
sidelobes would be to define the DF function domain with harder angle 
constraints. To cover the total azimuth in such a case, however, the radar 
detector would require more channels – and this incurs in negative 
effects considering the general objective of this research. To achieve this 
objective, the DOA measurement must be done with minimal volume, 
weight, costs and computational power, which means that it must 
demand as fewer channels as possible.  

3.2 CASE STUDIES 

3.2.1 Operation in the main lobe zone 

Suppose that a radar detector with ��� = 8 channels is equipped 
with eight spiral antennae identical to that of Fig. 3.2, each one pointed 
to a specific sector of 45° of the azimuth. 

A pulse that presents FC = 4 GHz is measured in the eight 
channels of the detector before an amplitude-based analytical DF 
technique that uses (3.1) takes place. The domains of the eight DF 
functions, in this circumstance, are defined in ranges of 45°, as  
���: [(� − 1)× 45°,� × 45°] → [− 1,1],� = 1,2,… ,8. Fig. 3.3 (a) 
illustrates the distribution of the radiation patterns of the eight antennae 
dividing the 360° of the azimuth, at FC = 4 GHz. The functions were 
linearized and normalized from 0 to 1. Fig. 3.3 (b) demonstrates the 
DOA obtaining through the numerical evaluation of the �� function 
stated by (3.1).  

The pattern of the spiral of Fig. 3.2, at FC = 4 GHz, does not 
present sidelobes in a range of 45° to the left or to the right from the 
center of its main lobe. With the division of the whole azimuth in eight 
equal angular sectors of 45°, every sector is covered exclusively by the 
main lobe of the pattern of two spirals. There are no ambiguities in the 
DOA measurement. Nevertheless, the costs, the volume and the weight 
of the equipment are relative to eight receiving channels, and, 
considering the time-density �� of pulses, the processor must be capable 

of handling 8 �� pulses per second in the pulse measurement algorithm. 
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Fig. 3.3 – Amplitude-based DF technique at 4 GHz with 8 spirals. 
(a) distribution of patterns in the azimuth; and (b) DOA evaluation. 

 
(a) 

 
(b) 

Source: own elaboration. 

3.2.2 Sidelobe ambiguity 

Now, suppose that another radar detector presents only ��� = 4 of 
the spirals of Fig. 3.2, each one directed to a specific sector of 90° of the 
azimuth. It receives a pulse with FC = 16 GHz. Fig. 3.4 shows the 
linearized and normalized patterns of the antennae along the azimuth. It 
also demonstrates the estimation of DOA using the inverse of (3.1). 
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Fig. 3.4 – Amplitude-based DF technique at 16 GHz with 4 spirals. 
(a) distribution of patterns in the azimuth; and (b) DOA evaluation. 

 
(a) 

 
(b) 

Source: own elaboration. 

 

The DF functions are defined in ranges of 90°, and they are 
described as ���: [(� − 1)× 90°,� × 90°] → [− 1,1],� = 1,2,3,4.  
At FC = 16 GHz, the radiation pattern of the spirals presents sidelobes 
within the range of 90° from the center of its main lobe, to the left and to 
the right, which makes the equation stated in (3.1) not characterize 
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bijective functions. That is why the curves of Fig. 3.4 (b), obtained from 
inverting (3.1), do not look like functions.  

It is clear, here, that the evaluation of analytical DF functions on 
angular sectors that present sidelobes of the radiation pattern may 
hamper the measurement. In the sector concerning spirals 1 and 2, from 
0 to 90°, for instance, it is not possible to determine DOA, without 
ambiguities, if �� ≤ -0.52, or 0.15 ≤ �� ≤ 0.30, or 0.58 ≤ ��≤ 0.60 or  
0.83 ≤ �� ≤ 0.87 or �� ≥ 0.97. 

In the illustrated case, ambiguities happen because the sidelobes 
make signals present repetitive values of amplitudes in the two related 
channels, in different azimuthal angles. In order to achieve our general 
objective and operate with a minimal number of channels ���, which 
causes the division of the azimuth in angular sectors that are greater than 
the main lobes of the antenna patterns, ambiguities must be solved.  

Observe that, in Fig. 3.4 (a), the radiation patterns of spirals 3 and 
4 present small sidelobes in the azimuthal sector from 0 to 90° – which 
means that channels 3 and 4 have information that may be able to 
contribute on solving the ambiguity issue of channels 1 and 2. 

3.2.3 Frequency of carrier dependence 

At last, consider that the same radar detector of Section 3.2.2, 
equipped with ��� = 4 identical spirals which present the radiation 
patterns of Fig. 3.2, receives a pulse with FC = 10 GHz. Fig. 3.5 (a) 
illustrates the covering of the whole azimuth by the radiation patterns of 
the spirals, at 10 GHz. Fig. 3.5 (b) demonstrates the new evaluation of 
the DF function. 

Besides the ambiguities due to sidelobes which are also present at 
10 GHz (now at different locations in the graph), there is the presence of 
an additional issue: the difference of responses of the DF function at 10 
GHz and at 16 GHz.  

For instance, observe that, in the sector concerning spirals 1 and 
2,  at 16 GHz, on Fig. 3.4 (b), a value of �� = -0.5 is associated to a 
DOA = 54°, but at 10 GHz, on Fig. 3.5 (b), �� = -0.5 is associated to a 
DOA = 68°. At 16 GHz, a �� = 0.8 is associated to a DOA = 29°, but, 
at 10 GHz, this value is associated to a DOA = 16°. 

This behaviour causes a unique platform that present two radars 
with different FC to be indicated at two different azimuthal positions to 
the operator of the radar detector – and it indicates that traditional 
methods are not robust to the variation of the FC parameter.  
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Fig. 3.5 – Amplitude-based DF technique at 10 GHz with 4 spirals. 
(a) distribution of patterns in the azimuth; and (b) DOA evaluation. 

 
(a) 

 
(b) 

Source: own elaboration. 

 

The variation of radiation patterns with FC, even in antennae 
which are presumed to present wideband features, evokes the need to 
associate the known of FC to amplitude-based DF methods, so that the 
precise measurements can be done according to the proper patterns of 
the employed antennae – a factor that is not considered on other 
amplitude-based DF works [40-44]. 
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3.3 PROPOSED ALGORITHM 

Consider a radar detector with ��� channels. A measuring 
procedure, in a specific FC, divides the azimuth in �� equally spaced 
angular sectors.  

In each of the �� measurements, to which different azimuthal 
angles ��� are associated, ��� normalized values of PA are respectively 
registered in the ��� receiving channels. This procedure generates a 
collection of vectors �⃗�, � = 1,2,… ,��, whose elements are ��,  

� = 1,2,… ,���, each one containing the relation of PA in each channel, 
in a specific measured ��� and at the specific FC. Let � be the whole set 
which contains the collections �� = {�⃗�,�⃗�,… �⃗��

} ⊂ ℝ���,  

� = 1,2,… ,���, measured at ��� different FCs of interest.  
Once � is known and pre-registered in the radar detector 

database, consider that, to each incoming pulse with known FC, an  
���-dimensional vector �⃗ of normalized PAs, measured in each channel, 
is associated. 

The DOA of a pulse can be estimated, firstly, through the 
argument � = 1,2,… ,�� that minimizes the Euclidean distance 
between �⃗ and the vector �⃗�, contained in a specific �� subset, consulted 
per the FC of the pulse, which defines the discrete ���� domain: 

�(�⃗,�⃗�)= ‖�⃗ − �⃗�‖ =  ����� − ���
�

���

���

 

(3.2) 

The evaluation of the Euclidean distance between �⃗ and the �� 
vectors �⃗� of a specific �� subset takes 3 ����� mathematical 
operations to complete: ����� of them are operations of subtraction, 
����� of exponentiation, (��� − 1) �� of sum and �� of square root.  

Eq. (3.2) computes the pattern of each antenna of the array, but 
each one of them influences differently in the resulting value of every 
evaluation. The use of the weighted Euclidean distance, however, 
equally considers every antenna of the array in each computation: 

�′(�⃗,�⃗�)=  ���
�� − ��
��

�

����

���

 
(3.3) 
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The computation of (3.3) takes ����� more mathematical 
operations to conclude than does (3.2), due to the new division 
operation.   

The DOA resolution in the presented method is proportional to 
the number �� of vectors �⃗� contained in each subset ��, which defines 
the discrete ���� domain. In parallel, the higher the number ��� of 
elements in each vector �⃗�, the more information may be available to be 
used in both (3.2) or (3.3). However, the higher the couple �� and ���, 
the higher the number of calculations performed on these equations. The 
number ��� of �� subsets registered in the detector database per FC 
barely influences in the workload.  

The key steps of the presented DOA measurement algorithm are 
summarized in Frame 3.1. 

Frame 3.1 – Summary of the presented DF technique. 

i. Load FC and vector �⃗ of measured PAs 
of incoming pulse; 

ii. Consult the proper pre-registered subset 
��, according to the FC of the incoming 
pulse; 

iii. Evaluate Euclidean distance between 
vector �⃗ and every vector �⃗� ⊂ ��; 

or 

Evaluate weighted Euclidean  
distance between vector �⃗ and every 
vector �⃗� ⊂ ��; 

iv. Assign DOA as the ��� associated to the  
� = 1,2,… ,�� that minimized the 
evaluated Euclidean distances or 
weighted Euclidean distances.  

Source: own elaboration. 

If the receivers are not capable of measuring FC, the detector 
must be designed with a � set that contains vectors �⃗� obtained from the 
FC that maximizes the accuracy rate of the DOA measuring along all of 
the FC range of interest. The step iii is executed using these vectors. 
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3.4 SIMULATIONS 

Consider the detector of Section 3.2.2, with ��� = 4 antennae 
whose patterns are illustrated on Fig. 3.4 (a). From each of the azimuthal 
positions ��� = 80°, 130°, 215° and 250°, a thousand pulses arrive at  
16 GHz – an FC in which, previously, �� = 360 measurements, in 360 
different azimuthal positions ���, were made to obtain a subset  
�� = {�⃗�,�⃗�,… �⃗���} ⊂ ℝ� and generate the discrete ���� domain.  

In relation to Fig. 3.4 (b), at 16 GHz, analytical methods would 
fail to measure DOA without ambiguities in these ��� cases. Suppose 
that the algorithm presented in Chapter 2 is employed to measure the 
incoming pulses and their PA in each channel, considering absence of 
noise firstly, and the presented DF technique is used to measure DOA.  

Fig. 3.6 shows, in the discrete ���� domain, the measured DOA 
histogram, simulated using (3.2). It validates the proposed method, 
which accurately measures DOA without ambiguities in the absence of 
noise. The result obtained with (3.3) is identical in this noiseless case. 

Now, consider the case in which noise influences in the PA 
measurement in each channel. Consider that a thousand pulses arrive 
from ��� = 140° at 16 GHz. Fig. 3.7 shows the superimposed results of 
the simulation using both (3.2) and (3.3) when additive white Gaussian 
noise (AWGN) was added to pulses using the Matlab™ [34] function of 
same name. The function SNR parameter is equal 40, but that does not 
mean that the real SNR of the signal is 40, for reasons explained on 
Section 2.5. The formats of the pulses in each channel are also shown so 
their PA can be seen in front of the noise. The simulation is repeated for 
a value of 20 on the SNR parameter of the AWGN Matlab function and 
its results are illustrated on Fig. 3.8, on the same scale as that of Fig. 3.7. 

Fig. 3.6  – DOA measurements in the absence of noise. 

 
Source: own elaboration. 
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Fig. 3.7  – DOA measurement simulation at high SNR. 
(a) histogram; and (b)-(e) examples of pulse format at channels 1-4 

  
(a) (b) 

   
(c) (d) (e) 

Source: own elaboration. 

Fig. 3.8  – DOA measurement simulation at low SNR. 
(a) histogram; and (b)-(e) examples of pulse format at channels 1-4 

  
(a) (b) 

   
(c) (d) (e) 

Source: own elaboration. 
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Fig. 3.9 – Definitive disposition of the antennae. 

 
Source: own elaboration. 

Fig. 3.7 and Fig. 3.8 exemplify, in the discrete ���� domain, the 
behaviour of the distributions with the SNR, with Gaussian features and 
a standard deviation � as high as the lower the SNR. Fig. 3.8 shows that 
the weighted Euclidean distance, (3.3), places the Gaussian mean � 
more accurately at ������ than does the Euclidean distance, (3.2).  

3.5 EXPERIMENTAL SETUP 

The same prototype of ESM system used in Section 2.4, which 
employs ��� = 4 LP850 antennae [27] and NooElec RTL-SDRs [28], 
was used to verify the presented amplitude-based DF technique. The 
final disposition of the antennae on the array have assumed a disposition 
inclined at 45° with the horizon, due to the polarization issues of ESM 
systems studied on [19]. This disposition cannot be changed from now 
on. Fig. 3.9 depicts, without connections, the new and definitive 
disposition of the antennae, supported on a wooden stand. 

As in Chapter 2, the experiment was performed with the aid of 
emissions from the USRP B200 from Ettus Research [35], and the 
algorithm was run in Matlab™ [34]. The � set was pre-registered as a 
�(�,�,�) matrix on the ESM system database. The FC chosen to verify 
the method was 1.5 GHz. The � matrix measuring procedure, performed 
on a building rooftop, counted on �� = 180 outdoor measurements 
along the whole azimuth. Thus, the resolution of the system on the 
discrete ���� domain was equal to 2°, and the � matrix dimensions 
were 180 × 4 × 1, which can be seen as 1 page containing a 180 × 4 
matrix. Operational equipment whose receivers can discriminate FC 
must contain in their � matrix as many FC pages as the wanted accuracy 
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Fig. 3.10 – Estimated prototype normalized patterns at 1.5 GHz. 

 
Source: own elaboration. 

 

of DOA measurements against the variation of this parameter. 
The procedure for obtaining the � matrix allowed the estimation 

of the normalized patterns, in outdoor conditions, of the four LP850 
antennae of the prototype along the azimuth. The angular position of the 
antennae, their mutual coupling, reflections on the wooden stand and 
everything else that influences on their performance are regarded on this 
measurement. Fig. 3.10 shows the patterns, normalized per the values 
found in all the four receivers. Observe that, differently from the case 
studies of Section 3.2, the antennae do not present identical patterns.  

To estimate ����, the weighted Euclidean distance, (3.3), was 
used. The signals emitted by the USRP B200 had PW = 400 μs and  
PRI = 4 ms. First, they were emitted from a position of ��� = 126°, and 
then from ��� = 250°. In each position case, the receiving consisted of 
50 data frames, each one with a size of � = 262,144 samples, of the 
RTL-SDR, whose sampling rate �� = 2.4 MS/s resulted in a receiving 
period of 5.46 s, which corresponds to 1,365 received pulses. 

3.6 RESULTS AND DISCUSSION 

 Fig. 3.11 shows, in the same graph, the measuring of DOA of the 
1,365 pulses emitted from each position ��� = 126° and ��� = 250°. 
Again, SNR is not specified for the reasons stated on Section 2.5, and 
therefore formats of pulses are exemplified. The test was repeated with 
the USRP B200 emitting with a gain 12 dB lower and its results are 
illustrated on Fig. 3.12, on the same scale as that of  Fig. 3.11. 
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Fig. 3.11  – Results from DOA measurements. 
(a) histogram; and (b)-(e) pulse example from ��� = 126° at channels 1-4. 

  
(a) (b) 

   
(c) (d) (e) 

Source: own elaboration. 

Fig. 3.12  – Results with signals 12 dB below. 
(a) histogram; and (b)-(e) pulse example from ��� = 250° at channels 1-4. 

  
(a) (b) 

   
(c) (d) (e) 

Source: own elaboration. 
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Results of both Fig. 3.11 and Fig. 3.12 show a behaviour similar 
to that of Fig. 3.7 and Fig. 3.8, with distributions of measurements with 
Gaussian characteristics, with a standard deviation � as high as the 
lower the SNR in the channels. Moreover, they evidence that, despite 
the existing dissimilarity between the antennae patterns, the proposed 
technique correctly places the mean � of the Gaussians close to the 
DOA angle related to the real ��� – in the illustrated cases, at  
DOA = 126° and DOA = 250°. 

On Section 1.2, on the explanation around (1.3) and (1.4) about 
the kinds of receivers typically used on radar detectors, the noise figure 
�� of the related LNAs and the bandwidth in the receiving ����, 
wideband receivers tend to admit more noise than tunable receivers, if 
the other parameters are unchanged. Thus, it is expected that the 
distributions of DOA measurements of the proposed algorithm present 
higher standard deviations � on systems using wideband receivers rather 
than on systems employing tunable receivers, if the other elements 
remain unchanged.  

The Gaussian characteristics of the distributions verified on these 
results suggest, at first, that a nonparametric density estimator based on 
the Gaussian function may be used to cluster pulses according to their 
DOA, but the various standard deviations � of various distributions 
found on an electromagnetically dense environment, besides the type of 
receiver used on the system, generate the challenge of choosing the 
correct scale of the Gaussian function of the estimator.  

3.7 FINAL REMARKS OF THE CHAPTER 

The most reliable radar signal parameter, from the detector’s 
point of view, is the position of the emitter relative to the detector, 
which enables the DOA parameter measuring. Modern radars are 
increasingly capable of employing agility features on FC, PW and PRI, 
but none platform of today can move around fast enough to change its 
position in a considerable range in front of the time order of the PRI. 

This chapter presented a method related to the task (c) of  
Fig. 1.10 that pushes the number of necessary channels ��� to reliably 
measure DOA to its inferior limit. The proposal saves the mathematical 
operations related to measuring pulses in lots of channels, besides the 
volume, weight and costs related to the channels themselves.  

The design of the algorithm was demonstrated with the support of 
case studies of traditional analytical methods subjected to real wideband 
antennae patterns.  
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Experiments performed in outdoor conditions, on the roof of a 
building, with the same prototype of SDR-based ESM system used on 
Section 2.4 showed that the DOA measurement distributions of the 
method present Gaussian features, with a standard deviation � as high as 
the lower the SNR.  

The Gaussian characteristics of the distributions verified on these 
results suggested that a nonparametric density estimator based on the 
Gaussian function may be used to cluster pulses according to their DOA 
on the task (d) of Fig. 1.10. 

The influence of the type of receiver used on the system, tunable 
or wideband, was discussed. 
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4 PULSE CLUSTERING 

Once pulses were measured and have their DOA assigned, before 
identifying surrounding radars, detectors must employ pattern 
recognition methods to deinterleave the pulses of different emitters from 
one another [2, 7], as seen in Section 1.2. Various cutting-edge works 
cited on Section 1.5 [9-17] succeed in doing this task, but they demand 
great computational power and they are not aligned with the objective of 
this research, stated in Section 1.4.1. 

This chapter presents an algorithm that takes advantage of the 
reliability of the position of emitters relative to the detector, measured 
by the DOA parameter. The technique, related to the task (d) of  
Fig. 1.10, separates pulses in DOA-based clusters before a final method 
of pattern recognition is employed. It aims to soften the final stage, 
allowing it to be laborious only when two or more radar platforms are 
azimuthally close, or a single platform has more than one radar. 

Fig. 4.1 is based on the scenario of Fig. 1.3, but shows a new 
situation in which the terrestrial platform has turned on another radar. 
The radar detector, thus, receives interleaved pulses from two radars 
coming from the azimuthal angle associated with the terrestrial platform 
(��� = 240°). It also receives pulses from the radars embedded on the 
aerial (��� = 300°) and maritime (��� = 50°) platforms. On the 
exemplified scenario, clustering the received pulses by their DOAs is 
sufficient to separate the signals that come from the three platforms. The 
final deinterleaving stage is therefore necessary only to discriminate the 
signals of the two radars of the terrestrial platform.  

Fig. 4.1 – The clustering of pulses according to their DOA. 

 
Source: own elaboration. 
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The DF technique presented on Chapter 3 provides distributions 
with Gaussian characteristics on the discrete ���� domain, with a 
standard deviation � as high as the lower the SNR of incoming signals. 
Taking advantage of that, the proposed method starts from a 
nonparametric kernel density estimator, using the Gaussian basis 
function, aiming to detect pulse concentrations and to cluster them. The 
outcome of this endeavor is a parametric Gaussian filtering procedure. 
The procedure benefits from the fact that the knowledge of the PA 
parameter of the incoming pulses allows the prediction of the standard 
deviation � of their distributions. This is possible because the features of 
the system, such as the type of the employed receiver, tunable or 
wideband, and the behaviour of the employed DF technique are 
previously known. This proposal requires less mathematical operations 
to conclude than the nonparametric approach. 

To expose the development of the algorithm, the Gaussian 
filtering procedure is derived from a traditional kernel density estimator 
that employs the Gaussian basis function. Following that, considerations 
of real DOA measurement distributions obtained on Section 3.5 are 
studied with the aim of improving the performance of the clustering, 
besides saving mathematical operations. After the presentation of the 
detailed algorithm, at the end of the chapter, a complex scenario, with 6 
distributions of DOA measurements, is processed, and the benefits and 
drawbacks of the method are discussed. 

4.1 PRELIMINARIES 

As seen on Chapter 3, the distributions of DOA measurements of 
the proposed DF technique present Gaussian characteristics. In the 
discrete ���� domain, the mean � of each Gaussian indicates the 
azimuthal angle ��� from where pulses come, and the standard 
deviation � is a function of their PA. 

To detect where, on the discrete ���� domain, pulses are 
concentrated and to cluster them according to these concentrations, the 
algorithm must find the means � and the standard deviations � of the 
Gaussians. The maximum values of a kernel density estimate, with the 
Gaussian basis function, at various scales, would accomplish that. Given 
a set of DOA measurements, with �� measured ���� samples,  
� = 1,2,… ,��, this technique would evaluate, in the discrete ���� 
domain, the mean of the Gaussian kernel function of the distances until 
each measured ���� [45]: 
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where ℎ is a Gaussian scaling factor that strongly interacts with the 
standard deviation � of the Gaussian distributions of DOA 
measurements and exhibits a strong influence on the resulting density 
estimate.  

A maneuver to avoid the uncertainty generated by the interaction 
between the scale ℎ and unknown standard deviations � of various 
distributions found on a complex scenario is to evaluate (4.1) in a large 
range of ℎ values. This range is defined according to a pre-visualization 
of the behaviour of the standard deviation � of the distributions related 
to the DF technique, within the dynamic range of the employed 
receivers. Evaluating (4.1) in this range and identifying which ℎ value 
results, in each ����, in the maximum value of density estimate 
provides not only the location of clusters, but also their size. The 
number of mathematical operations in this procedure, however, is 
proportional to the number �� of different scaling factors ℎ contained in 
the range. The knowledge of the real standard deviation � of the 
distribution would circumvent the waste of computational power related 
to the evaluation of (4.1) in a large range of ℎ values related to the 
whole dynamic range of the receivers.  

In fact, it is possible to estimate which is the adequate ℎ value to 
use in (4.1) in each situation. The PAs of the incoming pulses are 
known; the system is known; and there is a relation between this 
parameter and the standard deviation � of the Gaussian distribution of 
the DOA measurements. 

The number of mathematical operations associated to the 
evaluation of (4.1) following the steps above is also related to the 
number �� of possible measured DOAs, which make up the discrete 
���� domain, in the DF technique. This evaluation, in each of the �� 
scales ℎ, takes 6 ���� operations to conclude: ���� of them of 
subtraction, ���� of them of division, ��(2 �� + 1) of multiplication, 
���� of exponentiation and ��(�� − 1) of sum.  

With the aim of saving operations, rather than evaluating (4.1), 
the histogram ℎ��� of the measured ���� samples can be filtered, in the 
���� domain, by pre-generated Gaussians � on the same scales ℎ: 
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As in the first described procedure, the identification of which ℎ 
value results, in each ����, in the maximum filtered value estimates 
location and size of clusters. Now, however, the number of operations in 
each scale ℎ is only 2 ��ℎ: ��(ℎ + 1) of multiplication and  
��(ℎ − 1) of sum.  

Although the DOA measurement distributions present Gaussian 
characteristics, they are not ideal Gaussians. Mainly in low SNR cases, 
the distribution of a unique radar may look like various distributions of 
different radars which are azimuthally close. If the system had only the 
information of the distributions of DOA measurements, it would not be 
possible to distinguish, in this case, if there is only one radar in a low 
SNR case or if there are various radars which are azimuthally close. 
This issue is solved, alongside with the correct choice of scales of 
Gaussian filters, with the definition of a scaled moving average 
procedure, whose window should be as high as the lower the PA of 
pulses, which smooths the distributions of DOA measurements. The 
choice of the correct scales ℎ and the moving average windows ��� 
ensures robustness to the method in front of distributions that are not 
close to Gaussian functions. 

4.2 CASE STUDIES 

4.2.1 Close to ideal Gaussian case 

Fig. 4.2 is an extract of Fig. 3.11, and shows the distribution of 
DOA measurements, in the discrete ���� domain, related to the first 
experiment with pulses coming from ��� = 126° made on Section 3.5. 

Fig. 4.2 – Histogram of DOA (��� = 126°). 

 
Source: own elaboration. 
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The filtering procedure of this distribution, with Gaussians at  
�� = 13 scales ℎ, from ℎ = 3° to ℎ = 15°, generates the filtered matrix 
plotted on Fig. 4.3. Here, the lowest and highest ℎ values are chosen 
according to the standard deviations � of the Gaussian distributions pre-
visualized when the DF technique processed pulses from the highest to 
the lowest limits of the dynamic range of the receivers, respectively. The 
scale of ℎ = 3° is related to the strongest detectable pulses below 
saturation, and the scale of ℎ = 15° is associated to the weakest 
detectable pulses above the noise floor of the receivers. 

Fig. 4.3 – Filtering of histogram of Fig. 4.2. 

 
Source: own elaboration. 

The local maximum found on DOA = 126° and ℎ = 7° indicates 
that a cluster of pulses should be centered at DOA = 126°, with a 
specific size that would be equal to 7°, if the distribution of Fig. 4.2 
were an ideal Gaussian function. The data that generated Fig. 4.2 show 
that the pulses, in fact, are distributed from DOA = 117° to  
DOA = 130°, which totalizes a range of 14°. This indicates that a cluster 
size adjusting factor (CSAF) must be employed to estimate the size of 
clusters, due to the fact that the distributions are not ideal Gaussians. 

4.2.2 Not close to ideal Gaussian case 

Fig. 4.4 is an extract of Fig. 3.12, and shows, in the discrete ���� 
domain, the distribution of DOA measurements related to the second 
experiment made on Section 3.5, with pulses coming from ��� = 250°. 

If the procedure of Section 4.2.1 were reproduced here, 3 clusters 
would be wrongly indicated at DOA = 246°, DOA = 250° and  
DOA = 262°. However, the knowledge of the PA of the pulses related to 
this distribution allows a prediction about its standard deviation �, since 
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Fig. 4.4 – Histogram of DOA (��� = 250°). 

 
Source: own elaboration. 

the features of the system and the behaviour of the employed DF 
technique with the employed receivers are previously known, permitting 
two extra actions: 

a) a scaled moving average procedure, with a window size ��� 
according to the PA of the received pulses and the predicted 
standard deviation � of the distribution, to smooth and unite 
it in a unique form; and 

b) the choice of specific values of scales ℎ to avoid the 
interpretation of the single distribution as 3 different ones; 
this choice enables the saving of mathematical operations. 

From now on, the DOA distributions are mapped into a  
���� × �� plane. One of its axes is associated to the DOA parameter. 
The other is originated from the PA parameter and it is related to a scale 
of predicted standard deviations ��.  

The scale of predicted standard deviations �� respects the 
behaviour of the DF technique and receivers employed on the system. 
The highest predicted standard deviation �� of the scale is associated 
with the highest standard deviation � that is observed on the 
distributions of DOA measurements of the system. The results of 
Section 3.6 show that these distributions happen when the PA is 
minimal within the dynamic range of the system. Therefore, pulses 
whose PAs are near the noise floor of the receivers are put on the 
highest predicted standard deviation �� of the scale. Analogously, 
pulses whose PAs are close to the saturation level of the receivers are 
put on the lowest predicted standard deviation �� of the scale, which are 
defined according to the lowest standard deviation � that is observed on 
the distributions of DOA measurements of the system. The relation 
between the PA parameter and the scale of predicted standard deviations 
�� is considered linear on this work. 
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Fig. 4.5 (a) plots the distribution of Fig. 4.4 on the ���� × �� 
plane, and (b) plots its scaled moving average. On the illustrated case, 
the scale of predicted standard deviations �� was divided in 13 values. 
These values match the �� = 13 scales (from ℎ = 3° to ℎ = 15°), that 
were chosen according to the behaviour of the DF technique with the 
receivers that were used on the experiments of Section 3.5, namely the 
NooElec RTL-SDRs [28]. Remember that the second experiment of 
Section 3.5 was originated from emissions from the USRP B200 [35] 
with a gain 12 dB below from the first. The weak PAs, in that occasion, 
were registered and, now, they predict the highest values of the standard 
deviation � that the distributions may present with the employed DF 
technique. That is why the pulses are distributed among the highest 
values of the predicted standard deviations �� axis, which indicates to 
the algorithm the use of wide moving average windows ���; as well as 
high scaling factors ℎ in the Gaussian filtering, on the next step. 

Fig. 4.5 – Plot of the ���� × �� plane. 
(a) the pulse histogram is distributed not only in a DOA axis, but 
also in an axis of predicted standard deviations ��; and (b) a scaled 
moving average procedure smooths the histogram on the DOA axis. 

 
(a) 

 
(b) 

Source: own elaboration. 
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The PAs from the pulses from the distribution defined the 
filtering only at the scales ℎ = 14° and ℎ = 15°. Fig. 4.6 shows the 
maximum values, in each DOA, of the distribution filtered only at these 
�� = 2 scaling factors. Finally, the peak that indicates the local of the 
cluster is obtained. The scaling factor ℎ in which it happens indicates the 
size of the cluster. 

Fig. 4.6 – Gaussian-filtered distribution. 

 
Source: own elaboration. 

The spread of distributions of the discrete ���� domain on a 
���� × �� plane presents the drawback of enabling that a distribution 
with a high �� value hides behind another with low ��, from the 
prospect of the DOA axis. This happens when more pulses compose the 
lower �� distribution thereby causing its filtering to present a higher 
value than the one of the higher ��. In this case, the cluster size is 
identified as being smaller than it should be to encompass all the pulses 
from both distributions. The cluster is delivered to the final 
deinterleaving stage with missing pulses. If the clusters were identified 
by the local maxima of the ���� × �� plane, rather than by the peaks of 
the maximum values in each DOA, this drawback would be eliminated. 
However, like [12, 13], the algorithm would be highly sensitive to 
reflections or scattering, being useful only in air-to-air engagements. 

Consider now a scanning of the radar antenna, that amplitude-
modulates pulses, with a circular pattern. In this case, when the antenna 
sweeps over the radar detector, the PAs gradually increase until a 
maximum value and then they decrease. The strongest pulses are close 
in the time domain, as well as in the �� axis. Even if a cluster does not 
comprise every received pulse, it will comprise the strongest pulses in a 
way that their PRI pattern is preserved within the cluster – and that is 
what matters to the final deinterleaving step. The other scan patterns 
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cause the clustering of the strongest pulses to be similar to the circular 
one, and so they also do not hamper the proposed method in any way. 

Yet, the ���� × �� plane may drastically reduce the number of 
operations, when compared to using the whole range of scales ℎ. A 
trade-off happens between the demanded computational power and the 
missing pulses possibility. The technique to be presented prioritizes the 
computational power saving and keeps the ���� × �� plane. 

4.3 PROPOSED ALGORITHM 

Consider a set of pulses distributed in a �� × ��-dimensional 
array �, whose elements are ���, � = 1,2,… ,�� and � = 1,2,… ,��. 

The �� rows � are related to their measured DOAs, in the discrete 
���� domain, and the �� columns � are related to the scale of predicted 
standard deviations �� of their DOA distributions, per their PAs: 

� = �

��� ⋯ ����
⋮ ⋱ ⋮

���� ⋯ �����

� 
(4.3) 

 The algorithm starts with the scaled moving average technique, 
which consists of a moving average procedure in each column � of �, 
i.e., in the elements indexed with a specific �, and � = 1,2,… ,��, with 
a moving average window ��� ∝ �: 

��(�,�)=
1
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(4.4) 

The operations related to (4.4) are executed only in columns that 
show at least a nonzero element, because the moving average of a 
column in which all the elements are zero is another column with only 
zero elements. Then, each column � of ��, whose elements are ����, 

that shows nonzero elements is filtered by a Gaussian vector, at the 
proper scale ℎ�, chosen to match its related predicted standard deviation 

��, in a way similar to (4.2), now defined as: 

ℱ(�,�)=
1
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(4.5) 



96 

 

Following, a ��-dimensional vector �⃗ is generated with the 
maximum values of each of the �� rows of ℱ . The centers of the 

clusters are indicated by the peaks of �⃗. Back in ℱ , in each row that 

presents the same index of a peak of �⃗, the column � that presents the 
maximum value is searched. This search defines the size of the clusters.  

Then, the size of clusters is adjusted by an arbitrary CSAF, since 
the distributions are not ideal Gaussians. Finally, all the pulses that lie in 
the range of a cluster are included in it. They are delivered together with 
the other pulses of the cluster to the final deinterleaving stage. Observe 
that a pulse can make up more than one cluster. 

Frame 4.1 summarizes the steps of the presented DOA-based 
pulse clustering method. 

Frame 4.1 – Summary of the presented pulse clustering technique. 

i. Load the array �, containing the pulse distribution 
according to the measured DOA and ��; 

ii. Execute the scaled moving average procedure on the 
columns of � that present nonzero elements, generating 
the array ��; 

iii. Filter each column of �� that presents nonzero elements 
with a Gaussian at the proper scale ℎ�; 

iv. Get the maximum values of each row of the filtered �� 

array, named ℱ , generating a vector �⃗; 

v. Find vector �⃗ peaks, defining the center of the clusters; 

vi. Find, in each row of ℱ  that presents the same index of a 

�⃗ peak, the columns in which the maximum happens, 
thereby defining the size of the clusters; 

vii. Adjust the size of clusters by the factor CSAF; and 

viii. Deliver together, to the final deinterleaving stage, the 
pulses that are encompassed together by each cluster. 

Source: own elaboration. 
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4.4 EXPERIMENTAL SETUP 

The validation experiment of the proposed clustering technique, 
similar to the experiments of sections 2.4 and 3.5, counted on the aid of 
a prototype of ESM system based on SDR with processing on a tablet 
device running Matlab™ [34]. A complex scenario was simulated by 
time-joining, in the same ���� × �� plane, pulses received from the 
USRP B200 in 6 different occasions, all of them specified in Table 4.1: 

Table 4.1 – Pulsed signals joined in the ���� × �� plane. 

Id ��� (°) USRP B200 gain (dB) Number of pulses 
S1 30 80 1,444 
S2 44 80 1,369 
S3 126 71 1,406 
S4 126 59 1,399 
S5 250 59 1,400 
S6 330 80 1,416 

Source: own elaboration. 

Fig. 4.7 shows, separately and at different scales, the DOA 
measurement distributions of each signal of Table 4.1. Observe the 
following peculiarities that have influenced on the results: the employed 
DF technique has assigned DOA = 54° to some pulses of S1; in parallel, 
it is harder to visualize in the graphs, but the data demonstrate that some 
pulses of both S3 and S4 had their DOA measured as  
DOA = 180°; lastly, a DOA = 358° was assigned to some pulses of S6. 

The signals S3 and S4 were purposely chosen to verify the 
relevance of the drawback mentioned on Section 4.2.2. This drawback 
opposes the need of computational power and it allows, in the filtering 
procedure, that a distribution with a high predicted standard deviation 
�� hides, from the perspective of the DOA axis, behind another one with 
a low ��. It makes thereby the cluster present a smaller size than it 
should to encompass all the pulses from both distributions.  

The value of the moving average window ��� was defined as 
identical to the column index of the �� axis, ��� = �, in degrees. The 
scale of predicted standard deviations �� was defined from 1 to 13 to 
match the scales ℎ, defined from ℎ = 3° to ℎ = 15°. The results were 
obtained with two values for the factor to adjust the size of the cluster: 
CSAF = 1 and CSAF = 2. The ���� × �� plane is illustrated on Fig. 4.8 
with the pulse distributions from S1 to S6. 
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Fig. 4.7 – DOA histogram of signals of Table 4.1. 

 

Source: own elaboration. 

Fig. 4.8 – Complex scenario on the ���� × �� plane. 

 
Source: own elaboration. 
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4.5 RESULTS AND DISCUSSION 

On the first step of the algorithm, namely, the scaled moving 
average procedure illustrated on the ���� × �� plane of Fig. 4.9, the 
distributions with high predicted standard deviation �� values became 
smoother than the distributions with low �� values. This happens due to 
the employment, along the �� axis, of moving average windows ��� 
that are proportional to the �� itself. 

Fig. 4.9 – Scaled moving average of scenario of Fig. 4.8. 

 
Source: own elaboration. 

Owing to the diversity of PAs of the incoming pulses, the 
filtering step occurred at �� = 12 scaling factors, from ℎ = 4° to  
ℎ = 15°, and only the mathematical operations related to ℎ = 3° were 
saved. Fig. 4.10 shows the maximum values, in each DOA, of the 

filtered distribution, named vector �⃗. 

Fig. 4.10 – Gaussian-filtered distribution. 

 
Source: own elaboration. 
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The peaks of �⃗, in Fig. 4.10, defined the center of 8 clusters, each 
one centered at the DOAs specified in the second column of Table 4.2, 
which summarizes the results with a CSAF = 1. Its third column shows 
in which scale ℎ of the Gaussians the maximum filtered distribution 
happened. The number of pulses encompassed by the cluster when 
CSAF = 1, a case in which the cluster size was defined equal to the 
Gaussian scale ℎ, is shown on the fifth column, and the percentage of 
pulses emitted by the USRP B200 that were comprised by each cluster 
is shown on the sixth column. 

Table 4.2 – Results with CSAF = 1. 

Id 
DOA 

(°) 
Scale ℎ 

(°) 
Cluster 
size (°) 

Number of 
pulses 

% relative to pulses 
emitted by B200 

C1 30 4 4 1,346 93.21 
C2 44 5 5 1,351 98.68 
C3 54 10 10 48 - 
C4 124 11 11 2,143 76.40 
C5 180 14 14 5 - 
C6 248 15 15 1,128 80.57 
C7 330 7 7 1,389 98.09 
C8 358 8 8 18 - 

Source: own elaboration. 

The sum of the number of pulses in the eight clusters of Table 4.2 
results in 7,428, showing that 1,006 (11.93 %) of the 8,434 received and 
processed pulses stayed out of the clusters.  

The clusters C3, C5 and C8 are all related to the DOAs 
inaccurately measured by the DF algorithm at DOA = 54°, DOA = 180° 
and DOA = 358°, cited on the second paragraph of Section 4.4. 

The cluster C4 encompasses only 76.40 % of the pulses of S3 and 
S4 together. This low rate confirms the drawback mentioned on  
Section 4.2.2 and on the third paragraph of Section 4.4, in the  
���� × �� mapping procedure, of the possibility of a distribution with a 
high �� hiding, from the perspective of the DOA axis, behind another 
one with a low ��.  

Besides that, the encompassing rate of pulses of the cluster C6, 
that deals with a distribution of S5, which is not close to a Gaussian 
function, is also low (80.57 %).  

Table 4.3 shows the results of the experiment with CSAF = 2. 
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Table 4.3 – Results with CSAF = 2. 

Id 
DOA 

(°) 
Scale ℎ 

(°) 
Cluster 
size (°) 

Number of 
pulses 

% relative to pulses 
emitted by B200 

C1 30 4 8 1,386 95.98 
C2 44 5 10 1,351 98.68 
C3 54 10 20 296 - 
C4 124 11 22 2,788 99.39 
C5 180 14 28 5 - 
C6 248 15 30 1,298 92.71 
C7 330 7 14 1,389 98.09 
C8 358 8 16 18 - 

Source: own elaboration. 

The sum of pulses contained in the eight clusters is higher (8,531) 
when CSAF = 2 than when CSAF = 1, as the clusters present wider 
ranges. This number is higher than the total number of received and 
processed pulses (8,434). The reason for this is that 97 pulses (1.15 %) 
were in the range of two clusters, being counted twice. 

The cluster C3 reaches pulses concentrated around  
DOA = 44°, thereby encompassing considerably more pulses than when 
CSAF = 1. C5 and C8 remain unchanged. 

The encompassment rate of C4 rises from 76.40 % to 99.39 %. It 
shows that the choice of the CSAF value faces the drawback, in the 
���� × �� mapping procedure, of the possibility of a distribution with a 
high �� hiding, from the prospect of the DOA axis, behind another one 
with a low ��. The rate of C6 increases from 80.57 % to 92.71 %, 
demonstrating that the CSAF also makes the algorithm robust to 
distributions that present a certain dissimilarity with Gaussians, in 
parallel to the robustness provided by the ���� × �� plane. 

Observe that the change of CSAF from a value of 1 to 2 
drastically decreased the missing pulses phenomenon that would happen 
in the last deinterleaving stage. Despite this advantage of the use of 
CSAF, its oversize turns the introducing of unique pulses in various 
clusters into a real problem to the final stage, which demands great 
computational power to recognize patterns in these cases. The choice of 
the CSAF, as well as the proportionality factor between the moving 
average window ��� and column � of the ���� × �� array, ought to 
consider the employed receivers and the noise features thereof, which 
are highly dependent on its type, tunable or wideband. 
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In both CSAF cases, the filtering has used �� = 12 scaling factors 
from the 13 available ones, due to the diversity of PAs of the incoming 
pulses. Therefore, only a few mathematical operations were saved. That 
suggests that the saving of operations should not be taken into account 
on the implementation of the ���� × �� plane on radar detectors which 
are specifically made to operate in electromagnetically dense scenarios. 
It indicates that only the robustness of the algorithm to distributions that 
are not close Gaussians and the drawback of the possibility of a 
distribution hide behind another should be considered. 

4.6 FINAL REMARKS OF THE CHAPTER 

This chapter presented an algorithm which takes advantage of the 
reliability of the position of emitters relative to the detector, measured 
by the DOA parameter. The technique, related to the task (d) of  
Fig. 1.7., separates pulses in DOA-based clusters, thereby softening the 
final signal processing stage, namely the interval-only pattern 
recognition presented on Chapter 5. 

A Gaussian filtering procedure was derived from a traditional 
kernel density estimator that employs the Gaussian basis function. 
Thereafter, real DOA measurement distributions obtained on Chapter 3 
was considered with the aim of improving the performance of the 
clustering.  

The knowledge of the system, in parallel to the availability of the 
PA of the incoming pulses, allowed the implementation of a ���� × �� 
mapping procedure that may drastically reduce the number of related 
mathematical operations. 

A complex scenario, with 6 distributions of DOA measurements, 
was processed to verify the proposed method. When the adjusting factor 
CSAF was equal to 2, the encompassment rates of the clusters were  
≥ 92.71 %. 
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5 DEINTERLEAVING INSIDE DOA CLUSTERS 

The techniques presented so far on this study have considered RF 
peculiarities to reliably form DOA-based pulse clusters. In a radar 
detector, the final stage of the radar signal processing is to deinterleave 
pulses from various radars that may be in the same cluster [2, 7]. 

This chapter proposes a simple and computationally light 
interval-only algorithm, related to the task (e) of Fig. 1.10, to conclude 
the radar signal processing. It suggests changes in the initial steps of the 
classical technique of Mardia [18] to dispose of its sequence search 
procedure and save mathematical operations. 

In the work of Mardia [18], the exceeding of a weighted threshold 
by occurrences of bins of cumulative histograms of various orders of 
differences of sequential TOAs (CDIF) indicates whether possible PRI 
patterns are present. If a possible PRI is indicated, a sequence search 
method detects, in the time domain, a sequence of three pulses with the 
possible PRI, and a projection starts searching pulses from that pattern. 

Mardia’s method is simple and computationally light, but, with 
the aim of saving mathematical operations, thereby processing more 
data, Milojevic and Popovic tried to improve the weighted threshold 
definition [24], so fewer orders of TOA difference evaluations would be 
needed. Unfortunately, the proposed threshold definition depends on 
unknown parameters of the electromagnetic environment, and not only 
on the parameters of the system, which turns the new method not useful 
to practical radar detectors. Moreover, the technique keeps the sequence 
search procedure, which makes it, as well as its predecessor, not robust 
to clusters that comprise pulses that were measured on data frames that 
eventually presented a large group of missing samples, cases in which 
TOA sequences present gaps. Also, in [18, 24], a computationally light 
definition about the size � of the frame to be processed is not presented. 

Our proposal consists of small changes in the algorithm of 
Mardia. It registers in a matrix not only the forward evaluated 
differences of TOAs that are counted on the CDIF histogram, but also 
the backward ones, thus avoiding the sequence search procedure. It also 
presents a simple way of defining the size � of the frame to be 
processed, besides a method of precisely estimating PRIs that are not 
exact multiples of the time �� relative one sample of the A/D converter. 

Below, the Mardia’s method is revisited. Thereafter, the proposed 
changes are described, and the resulted algorithm is shown in detail. At 
last, a cluster containing the patterns of ��� = 4 radars is deinterleaved. 
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5.1 CLASSICAL APPROACH 

Mardia has suggested an algorithm that combines cumulative 
histograms of differences of sequential TOAs, denominated CDIF, and 
sequence search techniques [18]. Consider the TOA of a pulse as the 
position of its leading edge in the time domain. Fig. 5.1 illustrates, 
punctually with a value of 1 in the discrete sample time domain, TOAs 
of a sequence of pulses of a unique radar signal, whose PRI = 100 
samples of the radar detector A/D converter.  

Fig. 5.1 – Pulse sequence of signal whose PRI = 100 samples. 

 
Source: own elaboration. 

To achieve the highest possible resolution on the PRI estimation, 
the CDIF histogram bin-width must be the lowest one possible: 1 
sample of the radar detector A/D converter. Fig. 5.2 shows the 
registering of occurrences of the first forward difference of sequential 
TOAs – i.e., the difference between each TOA and its first subsequent 
TOA – of Fig. 5.1. Possible patterns are indicated by the exceeding of a 
weighted threshold ��(����)= � × ��/����, consisted of the size 
� of the data frame multiplied by a weighting factor �� over each 
possible difference of TOAs ����. In the case of Fig. 5.2, it is possible 
to discover the PRI pattern, because, in the data frame related to  
Fig. 5.1, in which � = 1000 samples, ten intervals of 100 samples may 
happen. The threshold, weighted in this example by a factor �� = 0.8, 
is therefore defined as 8 for ���� = 100 samples. This threshold is 
surpassed by the 9 occurrences of the difference of sequential TOAs in 
the bin ���� = 100 samples.  

The weighting factor �� is arbitrarily chosen. A value close to 1 
avoids the indication of a true PRI pattern if there are missing pulses, 
but an excessive decrease of this value may cause the indication of false 
PRI patterns in complex scenarios. 
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Fig. 5.2 – Histogram of first differences of 
TOAs of Fig. 5.1. 

 
Source: own elaboration. 

Although the simple case of Fig. 5.1 can be easily solved by the 
first forward differences of sequential TOAs, when more than one PRI 
pattern is present in the same DOA-based pulse cluster, more steps are 
necessary. Fig. 5.3 shows the TOAs of a sequence of pulses of two radar 
signals: one equal to that of Fig. 5.1, presenting PRI = 100 samples, 
interleaved with another whose PRI = 80 samples. 

Fig. 5.3 – Pulse sequence of two radar signals. 

 
Source: own elaboration. 

Fig. 5.4 illustrates the histogram of the occurrences of the first 
forward differences of TOAs related to Fig. 5.3. The histogram does not 
reveal any occurrence in the bin ���� = 100 samples, because the signal 
whose PRI = 80 samples does not allow it. Furthermore, it contains only 
four occurrences in the bin ���� = 80 samples, as the signal whose  
PRI = 100 samples recurrently interrupts this pattern. 
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Fig. 5.4 – Histogram of first differences of 
TOAs of Fig. 5.3. 

 
Source: own elaboration. 

In Fig. 5.4, the weighted threshold ��(����) is not exceeded by 
the occurrences of any bin of the histogram, obtained with the first 
forward differences of sequential TOAs. Thus, the second order of 
forward differences of sequential TOAs – i.e., the difference between 
each TOA and its second subsequent TOA – are evaluated, and their 
occurrences are added to the same histogram of Fig. 5.4, now shown on 
Fig. 5.5 and treated as a cumulative histogram, ����(����). 

Fig. 5.5 – CDIF evaluated until the second 
difference order. 

 
Source: own elaboration. 

With the registering of the second order of forward differences of 
sequential TOAs on the histogram, both bins of ���� = 80 samples and 
���� = 100 samples exceed their own weighted threshold ��(����). 
However, to avoid false PRI indications that may happen due to the 
interactions between different patterns, a confirmation is required. 
Higher orders of the forward differences of sequential TOAs are 
evaluated not only until the occurrences of a specific bin exceeds its 
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threshold, ����(����)> ��(����), but also until the occurrences of 
the bin of its second harmonic does so, ����(2 × ����)> ��(����), 
or until a pre-determined order of differences, defined by the number of 
pulses of the cluster. Fig. 5.6 shows the CDIF of the third forward 
differences. 

Fig. 5.6 – CDIF evaluated until the third 
difference order. 

 
Source: own elaboration. 

At first, it seems that the pattern with PRI = 80 samples is 
indicated, as ����(80)> ��(80) and ����(160)> ��(160). 
However, ����(160)< ��(80). In the illustrated scenario, the 
threshold conditions are satisfied only on the fourth order of forward 
differences. In this occasion, ���� = 80 samples is declared a possible 
PRI, and a method called sequence search is initialized. If various bins 
simultaneously achieve the conditions to enter the sequence search, only 
the least ���� related to them is declared a possible PRI able to enter it. 

On the sequence search, initially, a sequence of three pulses that 
are separated by intervals equal to the possible PRI is searched. Once 
the sequence is found, it is taken as reference, and a projection through 
the whole sample time domain verifies if there are leading edges around 
positions displaced from multiples of the possible PRI. At the end, the 
number of detected edges is compared with another threshold. If the 
sequence search confirms a pattern, the PRI in question is assigned to its 
pulses, they are deleted from the cluster and the process may start again.  

This procedure processes firstly the lower PRI patterns and, once 
they are recognized, their pulses are deleted from the cluster. As a result, 
the higher PRI patterns are processed with the absence of those pulses 
that were interrupting them.  

It is possible, in a sequence, for a leading edge to be displaced 
from its expected location, due to the very common case in which the 
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incoming pulsed signal PRI is not an exact multiple value of the time �� 
relative to one sample of the radar detector A/D converter. In [18, 24], 
the authors have not presented a way of estimating the precise PRI of 
the incoming pulses, with decimal or centesimal specifications. 
Moreover, natural jitter and measurement inaccuracies of the A/D 
converter contribute to this phenomenon of displacement of leading 
edges. Due to these factors, the only way of reliably implementing the 
sequence search is by a self-adjusting loop that continuously corrects the 
projection of the possible PRI along the whole frame of data, respecting 
a tolerance of samples. Still, if a frame eventually presents a large group 
of missing samples, the sequence may break and the procedure may fail. 

At last, neither Mardia nor Milojevic and Popovic presented a 
computationally light solution to the issue about the size of the frame to 
be processed. For instance, consider that a DOA-based pulse cluster 
presents pulses emitted by two radars, but, due to their radar antenna 
scans, one pattern begins and ends before the other inside the cluster, 
and there is only a time-intersection between them. If the whole data 
frame relative to all the pulses contained in the cluster is considered, the 
weighted threshold ��(����)= � × ��/���� will be unachievable 
for both patterns, as the size � of the data frame will be oversized. The 
methods of both [18, 24] divide the cluster in smaller pieces in the time 
domain and process independently each one of them. The processing of 
a piece does not influence on the processing of another piece. 

5.2 PROPOSED CHANGES 

5.2.1 Suppression of the sequence search procedure 

In the proposal of Mardia [18], after the CDIF histograms are 
formed, the data related to the various orders of the forward differences 
of sequential TOAs are discarded. Once both the occurrences of a bin 
����(����) and ����(2 × ����) exceed the threshold ��(����), the 
sequence search begins, which, in resume, consists in a verification, in 
the time domain, if there exist other pulses located at distances near the 
possible PRI after and before each pulse. 

Given that the forward differences of sequential TOAs at various 
orders are evaluated in the initial steps of the algorithm, the information 
about the existence of pulses at a distance near the possible PRI after 
other pulses was already evaluated in the occasion of the satisfaction of 
the weighted threshold conditions. The missing information is only 
about the existence of pulses at a distance near the possible PRI before 



109 

 

other pulses. This information can be raised by verifying if pulses are 
registered as being located near the possible PRI after another pulse. 
Another possibility is to evaluate, in the initial steps, in parallel to the 
forward differences of sequential TOAs, at the same orders, the 
backward differences of sequential TOAs – that is, the difference 
between each TOA and its precedent TOAs. Two matrixes containing 
the forward and backward differences of sequential TOAs related to 
each pulse are registered in the formation of the CDIF. 

Now, when a possible PRI is indicated by the satisfaction of the 
weighted threshold conditions, all the pulses containing values close to 
the possible PRI in the forward and backward differences of sequential 
TOAs matrixes are marked as being part of the sequence. To prevent 
pulses from wrongly being marked due to the interactions of patterns, 
the second harmonic of the possible PRI is also checked in both the 
forward and the backward differences relative to each pulse. It is not 
necessary to count how many pulses are a part of the sequence: this 
calculation is already done in the formation of the CDIF histogram. 

This procedure not only substitutes the self-adjusting loop of the 
sequence search, but it also provides robustness in front of the 
possibility of the cluster have been generated by a frame eventually 
presented a large group of missing samples. 

5.2.2 Precise PRI estimation 

Disregard, at this moment, the natural jitter and measurement 
inaccuracies of the A/D converter. The CDIF histogram bin-width of 1 
sample causes signals that present simple PRIs that are not exact 
multiple values of the sample time �� to have their counts spread 
between two bins. A moving average, with window size equal to 2 
samples, is necessary to avoid that this spread makes the threshold not 
be reached by a bin. After a bin ����′� of the moving averaged ����′ 
histogram exceeds the weighted threshold, the precise ��� can be 
estimated by its expectation �′, obtained through the weighted average: 

�′(���)=  
����′� ����′(����′�)+  ����′��� ����′(����′���)

 ����′(����′�)+ ����′(����′���)
  (5.1) 

By computing the natural jitter and measurement inaccuracies of 
the A/D converter, the moving average window is increased according 
to the behaviour of the system in front of these phenomena, and extra 
terms around the ����′� are inserted on (5.1). 



110 

 

5.2.3 Definition of the size of the frame to be processed 

Regarding the size of the frame to be processed, this work 
proposes that, firstly, the algorithm runs over the entire frame related to 
the first TOA until the last TOA contained in the whole DOA-based 
cluster, no matter the period related to it. Ordinarily, the backward and 
forward differences of TOAs related to each of the pulses of the whole 
cluster are registered. If the weighted threshold conditions related to the 
whole DOA-based cluster are satisfied by some bin of the CDIF 
histogram (fundamental and second harmonic), the forward and 
backward differences of TOAs of each pulse are verified. Those pulses 
presenting differences close to the possible PRI and its second harmonic 
have their PRI assigned. Then, these pulses are excluded from the DOA-
based cluster and the process may start again without them. 

If the weighted threshold conditions related to the whole  
DOA-based cluster are not satisfied by any bin of the CDIF histogram 
until a pre-defined maximum order of differences, defined by the 
number of present pulses, the cluster is divided in small subclusters, 
according to its inner time-density of pulses. A kernel density estimator, 
like the one described by (4.1) in Chapter 4, but now in the sample time 
domain, indicates concentrations of pulses. A comparison of variations 
of the kernel density estimate indicates the begin and the end of each 
time-density-based subcluster. This comparison is such as that made on 
the pulse measurement algorithm, in Chapter 2. It includes the moving 
average step described there.  

The time-length �� of the subcluster � defines its new threshold 

function ���(����)= �� × ��/����. A �����(����) histogram is 

generated for the subcluster �. It is verified by the new weighted 
threshold ���(����), always respecting a maximum order of 

differences of TOAs, which is defined by its number of pulses present.  
At any moment, if a �����(����)> ���(����) and  

�����(2 × ����)> ���(����), not only the pulses of the subcluster � 

have their forward and backward differences of TOAs verified, but all 
the pulses of the entire DOA-based cluster have it. The detected PRI is 
assigned to all of them. All these pulses are excluded from the whole 
cluster – and from every subcluster as well. Following, the algorithm 
may begin again evaluating the first order of differences of sequential 
TOAs and mounting the �����(����) histogram from that time-density-

based subcluster �. Now, however, the already PRI-assigned pulses are 
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absence. The algorithm stops when there is a minimum number of 
pulses left in the DOA-based cluster. 

5.2.4 Extra threshold condition 

The procedure presented in Section 5.2.3 allows, in a 
computationally light way, the processing of received data related to 
large periods. This is possible due to a method that identifies small  
time-density-based subclusters, related to patterns that begin and end 
within the DOA-based cluster.  

However, if a pattern that occurs in a large period is interrupted 
by pulses of various shorter patterns, the interrupted pattern needs the 
evaluation of high orders of differences of sequential TOAs until its 
threshold conditions can be satisfied. In this occasion, the occurrences in 
the bins of the harmonics of the PRI of the interrupted pattern may 
become close to the occurrences of the bin of the fundamental. Then, 
before the occurrences of the bin of the fundamental exceed the 
threshold, it happens the threshold exceeding by the occurrences of the 
bins of the related second and fourth harmonics – since their thresholds 
are divided by 2 and by 4, in relation to that of the fundamental. In this 
case, the second harmonic is falsely indicated as a possible PRI. 

Due to this possibility, it is necessary to introduce a new 
threshold condition in the algorithm: whenever the occurrences of a bin 
of a specific ���� exceeds the weighted threshold, the bins of its first 
three subharmonics (����/2, ����/3 and ����/4) are verified, and the 
occurrences in each one of them may not be higher than those of the bin 
related to ���� itself. 

The final algorithm threshold conditions can be resumed so as: 

a) the occurrences of a bin related to a specific ���� exceed the 
threshold related to it, ����(����)> ��(����); 

b) the occurrences of the bin 2 × ���� exceed the threshold 
related to ����, ����(2 × ����)> ��(����); and 

c) the occurrences of the bins related to ����/2, ����/3 and 
����/4 may not be higher than those related to d���, 
����(����/�)< ����(����), � = 2,3,4. 

Fig. 5.7 shows the flowchart that represents the final presented 
algorithm. 
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Fig. 5.7 – Proposed algorithm flowchart. 

 
Source: own elaboration. 
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5.3 VALIDATION 

The proposed algorithm was implemented in Matlab™ [34]. A 
DOA-based cluster containing signals from ��� = 4 radars was 
simulated as if it were the data acquisition of 4 frames of the ESM 
system prototype based on the NooElec RTL-SDR [28]. It was 
simulated that the RTL-SDR was operating with a sampling rate of �� = 
2.4 MS/s, and that each frame had size of � = 65,536 samples, which 
totalizes a receiving period of 109.2 ms. The large period of 4 frames of 
the RTL-SDR was considered due to the need of synchronization of the 
system on real operations [3], as mentioned in Section 1.2.  

On realistic scenarios, different functions of radar antenna gain 
���(���,���) and different scan patterns amplitude-modulate signals. 
Hence, pulses of some radars may be undetected in relevant periods of 
the processing. This peculiarity was also simulated, thereby testing the 
method described in Section 5.2.3, concerning a computationally light 
definition of the frame size to be handled by the interval-only algorithm.  

Table 5.1 summarizes, in view of the above described parameters 
of the RTL-SDR, the ��� = 4 simulated pulsed signals, R1-R4, 
considering a different radar antenna scan pattern to each one.  

Table 5.1 – Pulsed signals in the same DOA-based cluster. 

Id 
Scan  

pattern 
Illumination  
period (ms) 

PRI  
(μs) 

PRI  
(samples) 

Number  
of pulses 

R1 circular 8.1 - 19.2 254.5 610.9000 44 
R2 sector 55.4 - 58.2 104.5 250.8000 27 

R3 
lobe  

switching 

2.0 
29.3 
56.6 
83.9 

- 
- 
- 
- 

8.8 
36.1 
63.4 
90.7 

48 115.2000 566 

R4 lock on 0 - 109.2 200 480.0000 547 

Source: own elaboration. 

The third column of Table 5.1 refers to the radar antenna scan 
pattern issue. It is related to periods in which the PAs are sufficient to 
the detection of pulses, allowing a TOA to be measured. The fourth 
column shows the signal PRIs, in μs, and the fifth one shows the same 
parameter, but related to the sample time �� of the RTL-SDR. Observe 
that the PRIs of R1-R3 are not exact multiple values of ��, so the precise 
PRI estimation, obtained with (5.1), can be verified. 
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The distribution, in the sample time domain, of the signals of 
Table 5.1 is illustrated in Fig. 5.8. 

Fig. 5.8 – Timeline of R1-R4 signals inside cluster. 

 
Source: own elaboration. 

The threshold factor was defined as �� = 0.8. The maximum 
order of differences of sequential TOAs, to the whole DOA-based 
cluster and to the time-density-based subclusters, was defined as 20 or 
as the number of pulses into the cluster/subcluster divided by 5, the least 
of them. The ����′ histogram moving average window was equal to 2. 
The kernel density estimator scale was defined as 5,000 samples, and 
the moving average window of its variations was 200 samples. 

Firstly, on the processing of the whole DOA-based cluster, the 
algorithm evaluated the differences of sequential TOAs and their related 
CDIF until the order 10, when the occurrences ����(480) and 
����(960) exceeded the weighted threshold ��(480), indicating a 
pattern with PRI = 480 samples, related to the signal R4. Fig. 5.9 shows 
the CDIF histogram of that occasion, with the mentioned occurrences 
highlighted. 

Fig. 5.9 – CDIF evaluated until the tenth 
difference order. 

 
Source: own elaboration. 
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On the above processing, the couple ����(960) and 
����(1920) exceeded ��(960) before the evaluation of the tenth 
order of differences of sequential TOAs. This happened because the 
pattern of R4 is interrupted various times along the time-line shown on 
Fig. 5.8 by the pulses of R1-R3. It was the extra threshold condition 
detailed on Section 5.2.4 that contributed to prevent that a pattern with 
PRI = 960 samples were falsely indicated. 

After the correct exclusion of the pulses which presented 
differences of TOAs close to both 480 and 960 samples in both the 
forward and the backward differences of TOAs matrixes, the processing 
of the whole DOA-based cluster began again, and the differences of 
sequential TOAs and their related CDIF were evaluated until the 
maximum pre-determined order of 20, with no more patterns indicated. 

In this way, the algorithm entered in the procedure described in 
Section 5.2.3. The kernel density estimator was used as described by 
(4.1) in Chapter 4, but in the sample time domain, to define the time-
density-based subclusters. Fig. 5.10 illustrates the evaluated density 
estimate. This figure can be faced to Fig. 5.8. Notice that the pulses of 
R4 were already deleted from the DOA-based cluster. 

Fig. 5.10 – Estimate of the time-density of pulses. 

 
Source: own elaboration. 

The variations related to the density estimate illustrated on  
Fig. 5.10 are illustrated on Fig. 5.11. Similar to the procedure of the 
pulse measurement algorithm presented on Chapter 2, the local peaks of 
the moving average of the density variations characterize begins and 
ends of the subclusters.  
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Fig. 5.11 – Variations related to the pulse time-density estimate. 

 
Source: own elaboration. 

Table 5.2 summarizes the identified time-density-based 
subclusters. Observe that 6 subclusters are indicated, due to the scan 
pattern of R3 and to the absence of the pulses of R4. The scanning of R3 
causes 4 concentrations of pulses. The pulses of R4 occupied the whole 
DOA-based cluster and, at this stage, was already deleted. 

Table 5.2 – Detected time-density-based subclusters. 

Id 
begin  

(samples) 
begin  
(ms) 

end  
(samples) 

end  
(ms) 

SC1 4,856 2.0 21,104 8.8 
SC2 19,016 7.9 46,016 19.2 
SC3 70,288 29.3 86,648 36.1 
SC4 132,832 55.3 139,608 58.2 
SC5 135,840 56.6 152,200 63.4 
SC6 201,392 83.9 217,632 90.7 

Source: own elaboration. 

On the processing of the subcluster SC1, only two orders of 
differences of sequential TOAs were needed so the threshold conditions 
were satisfied. Fig. 5.12 shows the related CDIF histogram. It seems that 
the threshold conditions are not satisfied, as ����(115)< ��(115), 
����(116)< ��(116), ����(230)< ��(115) and, finally, 
����(231)< ��(116). Observe that a moving average procedure, in 
which the window size is equal to 2 samples, compute together the 
occurrences in both ���� = 115 samples and ���� = 116 samples, and 
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Fig. 5.12 – CDIF of subcluster SC1, until the second 
order. 

 
Source: own elaboration. 

also those in both the ���� = 230 samples and ���� = 231 samples, 
resulting in a ����′ moving averaged histogram. 

The estimation of the precise PRI using (5.1) in the data related to 
the case of Fig. 5.12, with 4 digits after the decimal point, was evaluated 
as �′(���) = 115.2014 samples, a value close to the PRI of R3. This 
was the PRI value assigned to the pulses related to the pattern. 

When the pattern of SC1 was recognized as presenting a  
PRI = 115.2014, the backward and forward differences of sequential 
TOAs matrixes related to all the pulses of the whole DOA-based cluster 
were verified. All the pulses presenting values close to both 115.2014 
and 2 × 115.2014 in both matrixes had their PRI-assigned as 115.2014. 
Thereafter, they were excluded from the whole DOA-based cluster, 
becoming also absent from the time-density-based subclusters SC3, SC5 
and SC6, as they were a part thereof. 

The processing of the subcluster SC2 was similar to its 
predecessor, SC1, diverging from it only by the fact that it did not cause 
pulses from other subclusters to be identified as being part of the same 
pattern. The processing also benefited from the moving average 
procedure, and the precise PRI was estimated as �′(���) = 610.9048 
samples, close to the PRI of R1. Fig. 5.13 illustrates the related CDIF 
histogram, that were mounted with differences of TOAs until the second 
order. 

The SC3 processing consisted of only a verification that the 
subcluster had zero pulses, and then the maximum order of differences 
of sequential TOAs was also defined as zero. Therefore, no evaluation 
was made, and the algorithm skipped to the next subcluster, saving 
computational power. 
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Fig. 5.13 – CDIF of subcluster SC2, until the 
second order. 

 
Source: own elaboration. 

The SC4 processing occurred up to the third order of differences 
of sequential TOAs, and its precise PRI was estimated as  
�′(���) = 250.8000. Fig. 5.14 shows the related CDIF histogram. 

Fig. 5.14 – CDIF of subcluster SC4, until the 
third order. 

 
Source: own elaboration. 

The processing of the subclusters SC5 and SC6 did not happen, 
due to the fact that in the end of the processing of the subcluster SC4 
there was not a sufficient amount of pulses in the DOA-based cluster to 
characterize a pattern. 

Table 5.3 summarizes the results of the above described 
processing by showing the variations of the evaluated precise PRIs in 
front of the true PRIs of R1-R4. It also shows, for each signal, the 
number of pulses that had their PRI correctly assigned. 
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Table 5.3 – Results of the interval-only technique. 

Id 
Measured PRI  

(samples) 
Variation relative  

to original (%) 
Correct-PRI 

assigned pulses 
% relative  
to original 

R1 610.9048 7.8 × 10−6 43 97.73 
R2 250.8000 0 26 96.30 
R3 115.2014 1.2 × 10−5 559 98.76 
R4 480.0000 0 547 100 

Source: own elaboration. 

The third column of Table 5.3 shows that the precise PRI 
estimation technique provides PRI measurements with errors of the 
order of 10��. Also, the rates of correct-PRI assigned pulses contained 
on its fifth column demonstrate that the substitution of the sequence 
search procedure by the forward and backward matrixes did not 
jeopardize the performance of the method. 

The interval-only techniques presented on this chapter allow the 
discovering and the deinterleaving of PRI patterns within DOA-based 
clusters of pulses. 

Once radar signals are completely deinterleaved from one 
another, their parameters can be compared with a pre-registered 
database to finally identify each one of them. 

5.4 FINAL REMARKS OF THE CHAPTER 

This chapter was related to related to the task (e) of Fig. 1.7. It 
presented a simple and computationally light interval-only algorithm to 
conclude the radar signal processing in a radar detector, recognizing PRI 
patterns inside the DOA-clusters available after the accomplishment of 
the task (d) Fig. 1.7.  

The method is based on the Mardia’s classical technique [18]. It 
has changed the initial steps of the algorithm proposed in [18], 
registering in a matrix not only the forward evaluated differences of 
TOAs that are counted on the CDIF histogram, but also the backward 
ones. This maneuver enabled the avoidance of the sequence search 
procedure is avoided and the saving of mathematical operations. 

Also, a simple way of defining the size of the frame to be 
processed, and a method of precisely estimating PRIs that are not exact 
multiples of the time �� relative to the sample of the A/D converter were 
presented.  
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At last, a DOA-based cluster containing ��� = 4 patterns was 
deinterleaved as an example. Results showed that the precise PRI can be 
estimated with an error of the order of 10��, and at least 96.30 % of the 
pulses of the patterns had their PRI correctly assigned. 
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6 CONCLUSIONS 

Radars emerged in the 20th century as an innovative way of 
electronic sensing. They resulted from interactions between technology 
and military philosophy.  

Nowadays, they feature as an indispensable utility. Their 
applications are becoming increasingly common, varying in different 
complexities, and the capability to locate and identify them provides lots 
of advantages, in both civilian and military contexts. 

However, the complexity to process radar signals makes the 
design of radar detectors very challenging. In a modern scenario, before 
discriminating radar signals, detectors must deinterleave the signal 
resulted from the superposition of signals received from many emitters, 
which can be positioned, each one, at a different direction and distance. 
In parallel, the modern world frequently requires characteristics of low 
volume, weight and costs on its electronic equipment. 

From these issues, the research questions stated on Section 1.2 
have arisen. These questions are about the way of designing radars with 
restricted resources and the possibility of doing it with low volume, 
weight, costs and processing capabilities. 

To face the requirements imposed by the research questions, this 
work aimed at proposing signal processing techniques that considers RF 
peculiarities to soften the processing workload and to allow the design 
of radar detectors which present low volume, weight, costs and available 
computational power. 

First, in Chapter 1, the problem related to this research was 
introduced and modelled. The necessary tasks to accomplish the related 
radar signal processing were summarized in Fig. 1.10.  

A pulse measurement technique that can process pulses which are 
superimposed in the time domain, thereby contributing to diminish the 
missing pulses phenomenon was presented on Chapter 2. The proposed 
method, related to tasks (a) and (b) of Fig. 1.10, differs from 
conventional ones as it focuses on the variations of the resulting 
amplitude envelopes of signals. An experiment implemented on an 
SDR-based ESM system showed that the performance of the proposed 
algorithm degrades only when the amplitude envelopes are lower than 
3.7 mV on the input of the used SDR. 

A DF technique that pushes the number of employed channels 
��� that are necessary to reliably measure the DOA parameter to its 
inferior limit was presented on Chapter 3. This method, related to the 
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task (c) of Fig. 1.10, contributes to save mathematical operations related 
to measuring pulses in lots of channels. It also contributes to save the 
volume, weight and costs related to the channels themselves. The 
method is not restricted to the main lobe zone of the antennae of the 
radar detector, allowing each antenna to cover a larger angular sector 
than they would do in conventional analytical methods. The real pattern 
of each antenna and the PAs of each single pulse found in every channel 
are considered and compared with a pre-registered matrix of relation of 
PAs, using a weighted Euclidean distance evaluation. Experiments with 
the same prototype of SDR-based ESM system used on Chapter 2 
showed that the DOA measurements of the method present distributions 
with Gaussian features, with a standard deviation � as high as the lower 
the SNR.  

Taking advantage of the reliability of the position of the emitter 
relative to the detector, a DOA-based pulse clustering technique was 
introduced on Chapter 4. The clustering method, related to the task (d) 
of Fig. 1.10, uses a parametric Gaussian filtering procedure. It benefits 
from the fact that the knowledge of the PA parameter of the incoming 
pulses allows the prediction of the standard deviation � of their 
distributions, since the features of the system and the behaviour of the 
employed DF technique are previously known. A complex scenario with 
6 distributions of DOA measurements was processed, and, when the 
adjusting factor CSAF = 2, the encompassment rates of the clusters  
were ≥ 92.71 %. 

At last, an interval-only method was derived, in Chapter 5, from 
the classical technique of Mardia [18], to recognize PRI patterns inside 
the DOA-clusters. The proposed algorithm, related to the task (e) of  
Fig. 1.10, changes the initial steps of the algorithm proposed in [18], 
registering in a matrix not only the forward evaluated differences of 
TOAs that are counted on the CDIF histogram, but also the backward 
ones, so the sequence search procedure is avoided and mathematical 
operations are saved. The chapter also presented a simple way of 
defining the size of the frame to be processed, and a method of precisely 
estimating PRIs that are not exact multiples of the time �� relative to the 
sample of the A/D converter. Results showed that the precise PRI can be 
estimated with an error of the order of 10��, and at least 96.30 % of the 
pulses of the patterns had their PRI correctly assigned. 

The methods introduced on this research allow that radar signals 
be fully deinterleaved from one another. Every step of the algorithms, as 
well as the whole of the work, was designed to be computationally light.  
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The proposed methods answer the research question (a) of 
Section 1.2, as they describe the way of designing radar detectors with 
restricted resources. This dissertation as a whole shows that it is possible 
to do that with features of low volume, weight, costs and processing 
capabilities, thereby answering the research question (b) of Section 1.2. 

Aligned with these features, on a future work, the pulse and DOA 
measurement algorithms, respectively presented on chapters 2 and 3, 
may be implemented on field programable gate arrays (FPGA). In 
parallel, the pulse clustering technique and the interval-only pattern 
recognition method, respectively described on chapters 4 and 5, may be 
implemented on a Raspberry Pi [46]. Regarding the technological 
tendencies of today, another future work would be to embed the whole 
system on a drone and share the information about the surrounding 
radars via Internet of Things (IoT). 
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