
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO TECNOLÓGICO

DEPARTAMENTO DE AUTOMAÇÃO E SISTEMAS

Jean Caetano Perufo Damke

Modeling and Development of a Web
Application for Data Analysis of Air Systems on

Jet Engines

Florianópolis
2018

Jean Caetano Perufo Damke

Modeling and Development of a Web

Application for Data Analysis of Air Systems on
Jet Engines

Relatório submetido à Universidade
Federal de Santa Catarina como requisito
para a aprovação na disciplina DAS 5511:
Projeto de Fim de Curso do curso de
Graduação em Engenharia de Controle e
Automação.
Orientador: Prof. Ricardo José Rabelo

Florianópolis
2018

Jean Caetano Perufo Damke

Modeling and Development of a Web
Application for Data Analysis of Air Systems on

Jet Engines

Esta monografia foi julgada no contexto da disciplina DAS5511: Projeto de Fim de
Curso e aprovada na sua forma final pelo Curso de Engenharia de Controle e

Automação.

Florianópolis, 30 de Julho de 2018

Banca Examinadora:

Ricardo Grützmacher
Orientador na Empresa

Rolls-Royce Deutschland LTD CO & KG

Prof. Ricardo José Rabelo
Orientador no Curso

Universidade Federal de Santa Catarina

Prof. Leandro Buss Becker
Avaliador

Universidade Federal de Santa Catarina

Matheus Alberto Ambrosi
Debatedor

Universidade Federal de Santa Catarina

Gabriel Monteiro de Souza
Debatedor

Universidade Federal de Santa Catarina

RESUMO

 O trabalho apresentado neste documento foi realizado na empresa Rolls-Royce

Deutschland CO & KG, na sede localizada em Dahlewitz, na Alemanha. A Rolls-Royce

Deutschland é uma subsidiária da Rolls-Royce Plc, uma fabricante de sistemas de

potência para diversos setores da indústria. A Rolls-Royce Deutschland (RRD) é um

dos ramos focados em aviação, desenvolvendo motores a jato de diversos portes, e

possui duas sedes, uma em Dahlewitz, na região metropolitana de Berlin, e uma em

Oberusel, próximo de Frankfurt am Main.

 O presente trabalho foi desenvolvido no departamento de Secondary Air

Systems, responsável pela modelagem dos fluxos de ar secundários dos motores a

jato, que são utilizados por vários outros sistemas.

 O problema atacado por este trabalho foi a dificuldade de visualização e

comparação de dados dos sistemas de ar secundários. Atualmente a visualização e

comparação é feita através de planilhas Excel, que limitam o trabalho em vários

quesitos.

 A solução apresentada foi a modelagem e desenvolvimento de um sistema web

para comparação e visualização destes dados. Este sistema tomou como base a

aplicação desenvolvida pelo aluno e por outro estagiário ao longo do semestre que

precedeu o semestre de desenvolvimento deste PFC, e que continuou sendo

aprimorada ao longo deste. Ambas as aplições são focadas na apresentação de

dados através de ilustrações técnicas interativas e gráficos, e ambas foram

desenvolvidas utilizando as mesmas tecnologias, das quais as principais são as

linguagens Elixir e GraphQL e a biblioteca ReactJS.

 A metodologia do trabalho foi um misto de desenvolvimento ágil com

ferramentas clássicas de modelagem UML. Tal abordagem se deu pela

impossibilidade de se realizar uma metodologia ágil pura, como foi a aplicação do

semestre anterior. Isso ocorreu devido à ausência da pessoa do departamento de

Secondary Air Systems que estava supervisionando o projeto. Por tal motivo, o

trabalho passou por um período de 2 meses em que não houve possibilidade de

realizar reuniões ou consultas rápidas, o que seria fundamental para a aplição de uma

metodologia ágil ao longo do projeto todo.

Como resultado, o trabalho gerou a modelagem completa de uma aplicação

que resolve o problema descrito nos parágrafos anteriores, além da implementação

de uma versão prévia dessa aplicação. Segundo estimativas, tal aplicação possui o

potencial para gerar uma grande redução de custo para a empresa, além de aproximá-

la de uma integração entre os diversos sistemas corporativos dela.

Palavras-chave: Rolls-Royce, Aplicação Web, Elixir, React, GraphQL.

ABSTRACT

 The work presented in this document was developed in Rolls-Royce

Deutschland CO & KG, Dahlewitz site, Germany, a manufacturer of jet engines. The

work was made inside the department of Secondary Air Systems, which is responsible

for the modelling of the secondary air flows inside these types of engines. The problem

that this work aimed to solve was the visualization and comparison of data. Currently,

this task is made via Excel spreadsheets, which is a very limited tool. The solution

presented was the modelling and development of a web application which took as base

the application developed in the previous semester by this student and another intern.

Both applications are focused on presenting data through technical illustrations and

graphs, and both were developed using the same technologies, whose main ones are

the language Elixir and GraphQL and the library React. The methodology implemented

was a mix of Agile and standard UML practices, a combination that brought as a result

a complete model of the application in a short period of time, and an initial version of it

already implemented.

Key-words: Rolls-Royce, Web-application, Elixir, React, GraphQL.

LIST OF FIGURES

Figure 1: Schedule March/April .. 22

Figure 2: Schedule May/June .. 23

Figure 3: Schedule June/July ... 23

Figure 4: Use-Case Diagram ... 27

Figure 5: Layout Navigation Bar ... 29

Figure 6: Layout TDM Screen .. 30

Figure 7: Layout TDM Measurement Units .. 30

Figure 8: Layout TDM Validation .. 31

Figure 9: Layout Validation Graph ... 32

Figure 10: Layout Plot Screen – Parameter Selection 32

Figure 11: Layout Plot Screen.. 33

Figure 12: Layout SPAN Screen .. 34

Figure 13: Conceptual Entity-Relationship Model .. 37

Figure 14: Database .. 38

Figure 15: Mutation .. 39

Figure 16: Schema Type .. 40

Figure 17: Simple Query .. 40

Figure 18: Complex Query ... 41

Figure 19: Query Resolver ... 41

Figure 20: SPAN Screen .. 42

Figure 21: SPAN Screen with Graph ... 43

Figure 22: SPAN Screen with Sidebar and Bottombar collapsed................. 43

Figure 23: TDM Screen .. 44

Figure 24: Flow Values Query.. 46

Figure 25: Test Files Query ... 47

Figure 26: TDM Boxes Query .. 48

LIST OF ACRONYMS

BU – Basic User

ER – Entity Relationship

ERF - Experiment Request Form

JS - Javascript

PFC – Projeto de Fim de Curso

RR – Rolls-Royce

RRD - Rolls-Royce Deutschland

SAS – Secondary Air Systems

SLN – Solution (Document)

SPAN – Suite of Programs for Air Networks

SPU – Special User

SU – Super User

TDM – Test Data Manager

UFSC - Universidade Federal de Santa Catarina

UML – Unified Modeling Language

URL – Uniform Resource Locator

SUMMARY

Contents

1 Introduction .. 10

1.1 Main Goal .. 10

1.2 Specific Goals ... 10

1.3 Technology Stack .. 11

1.4 Methodology .. 11

1.5 Solution and Alternatives .. 11

1.6 Graduation .. 12

1.7 Next Chapters ... 12

2 Company, problem and Solution.. 13

2.1 The Company .. 13

2.2 The Problem .. 14

2.3 The Solution .. 14

2.3.1 Methodology ... 15

2.3.2 Technology Stack ... 15

2.4 Concepts ... 18

2.4.1 Initial Concept ... 18

2.4.2 The Future .. 18

2.5 Methodology .. 18

3 Modelling ... 20

3.1 Tasks .. 20

3.2 Schedule ... 22

3.3 System General View .. 24

3.4 Use Case Diagram and Requirements .. 26

3.5 Layout Definition ... 29

3.6 Database ... 34

4 Implementation .. 39

5 Results ... 42

5.1 Verification .. 44

5.1.1 Database check .. 44

5.1.2 Functionality and Requirements Check .. 48

6 Considerations and Perspectives .. 51

6.1 Result Analysis .. 51

6.2 Future Perspectives .. 52

References ... 53

Appendix A – Table of Requirements ... 55

10

1 INTRODUCTION

 The work presented in this document aims to solve a problem inside the

department of Secondary Air Systems of Rolls-Royce Deutschland CO & KG. The

issue is the visualization and comparison of data related to tests and simulation of air

flows on jet engines, which is currently done using Excel spreadsheets, a very limited

tool.

 The selection of the subject was made from two different perspectives. One

from the company, that needed a relevant project that solved or improved one process

of the company. Also, it would be interesting if the student could keep working in

something related to the software developed in the semester before, and this software

would be somewhat of an extension of the previous one. From the student’s side, a

project that encompassed many areas of study inside the Control and Automation

Engineering course was desired, because this would mean that the student would have

the oportunity to gain experience in many areas.

1.1 Main Goal

 The main goal of the work developed was to improve one task inside the

company, which, as already mentioned, is the visualization and comparison of test data

with simulation data in air systems of jet engines. This task is part of two different

processes related to the validation of models and certification of engines. This means

that these processes are crucial for the company, and improving it is of utmost

importance for the goal of increasing the efficiency of the company as a whole.

 The goal of improving this task was based in the current low-efficiency of the

process, which is done via excel spreadsheets, and thus comes with a lot of limitations

such as being available for a single project, the impossibility of showing only some data

to specific users and of integrating with other systems inside the company.

1.2 Specific Goals

11

Diving into the more specific goals, the objective was to develop a web

application, which was named Engino TDM, that enabled the employees to achieve

the main goal, described in the section above, while being easy to use, easy to

maintain and upgrade, and easy to integrate with other systems.

1.3 Technology Stack

Since this application would reuse some of the code from the application

developed in the previous semester, called Engino, it was decided that the technology

stack and other aspects involving the modeling of the application presented in this

thesis would be similar to the ones chosen for Engino. This was necessary for its

maintainability, since the future employees who would be responsible for Engino would

also be responsible for this application, and thus it is required that both application

share the same tech stack in order to prevent an overhead of language requirements

for those employees.

1.4 Methodology

 The methodology used in this project was a mix of agile development with

practices from UML. This approach was selected because it was not possible to have

regular encounters with people who understood the problem during the whole period

of the work, something that would be crucial if a pure agile methodology was selected.

On the other hand, the project is a web application and does not required a large

amount of documentation, since it was developed by a single person with the

counseling of another, and it needed to be delivered as soon as possible. Because of

these reasons, practices from both agile development and UML were adopted.

1.5 Solution and Alternatives

As mentioned in the topics above, the final product of this work had some

technology and platform requirements which, in order to enable a fast development,

12

limited the choosing of the type of solution and used to achieve it. Besides that, it was

possible to make different approaches to the modeling of the solution, apart from the

methodology, already described in the item before.

For the modeling of the solution, some simple UML diagrams were used,

alongside a list of requirements. The application layout was only modelled via simple

drawings that described the components of the layout and the transition between some

of them, and it was later sketched in a digital format, presented later in this document.

The UML diagrams used in the project were only a use case diagram and the

entity-relationship diagram for database modelling. During the project, the use of other

diagrams were cogitated, like sequence diagrams or components diagrams, but after

analysing the benefits they would bring, it was decided it was not worth to spend time

on them. This decision is better explained in section 2.5.2.

1.6 Relation with Undergrad Course

This work fits the scope of the undergrad course of Control and Automation

Engineering because it includes aspects of software modeling, database modeling and

systems integration, while improving processes inside a company. Also, the selection

of modern technologies that was made enabled the learning of programming

languages not taught in the university, which is a great improvement in a person’s

professional life.

1.7 Next Chapters

On the next chapters the complete development of the application will be

presented, divided into several subtopics that detail the decisions, the modeling and

implementation of the solution, finishing with the results of the work. After that, the

conclusions of the work will be presented, along with the future perspectives for the

project.

13

2 COMPANY, PROBLEM AND SOLUTION

 This chapter will describe the location in which this project was developed, what

issue it was aiming to solve, and present the solution thought for the problem.

2.1 The Company

The project was developed inside the Secondary Air Systems (SAS)

department of Rolls-Royce Deutschland, Dahlewitz site. The SAS is a subdivision of

the Whole Engine Systems RRD, which is a subdivision of the System Design

department.

The Secondary Air Systems department is accountable for designing,

evaluating and optimising the internal and external air system of jet engines, with

respect to sealing and cooling flows, bearing load and anti-icing management as well

as customer and handling bleed air supply.

This project is an initiative of improving one task inside the department that is

present in two different processes. The task to be improved is the comparison between

air systems data from simulations and data from tests. This is part of the processes of

validation of an engine and the process of predicting the impact of design modifications

into air systems of an engine.

Currently, this process is done via an excel spreadsheet, in which data from

three different sources (one for simulation data, one for test data and one that list the

parameters available in test data) need to be copied and adapted into the file, in order

for a macro in excel to compare them. After copying it, the user can visualize boxes

that contain values from simulation and test data that are related, and limit deviations

can be set for the spreadsheet to show, in a more intuitive way, which values are

wrong.

After analysing the comparison between test and simulation data, the

department can validate if the results from the tests are accurate, and if not, they will

report the inaccuracies in order to get the tests fixed.

Another use of the results of the comparison are to publish the prediction of

flows generated by the simulation to other departments, who can then validate the

design the engine.

14

2.2 The Problem

The process described above had a series of limitations that could be solved

in order to make it more efficient. A list of identified limitations is described as follow:

 The comparison between test data and simulation is currently limited

for a single engine project. To make it available for different engines the

spreadsheet would have to be almost completely changed.

 The fact that many people would have their own version of the

spreadsheet could cause a problem of versioning, in the case

somebody forgets to update the main shared file with the others.

 Because the comparison is done via a spreadsheet, it is not possible to

limit the visualization of only part of the information. This means it is not

possible to share the file with people outside of the department.

 The process is not available for integration with other softwares of

services inside Rolls-Royce, since it is made via an excel spreadsheet.

This might become a huge problem in the future, when the data from

different systems inside the company should be all connected.

2.3 The Solution

Through the limitations shown in the previous section, it was possible to realize

that there is much room for improvements in this process, so that its efficiency can be

increased.

In order to solve all the problems described above, the most suitable solution

would be a web application, which would not only solve the problems mentioned, but

would also bring the following advantages:

 Expanded functionalities: Creating a web-application for solving the

problem presented would expand the possibilities of functionalities by

the use of open libraries. One example of these libraries that was used

in the project is LeafletJS, a library for manipulating maps.

 Flexibility: With an increasing amount of data, Excel files get big and the

performance drops. The only way of saving data within Excel are

15

worksheets, which need an intelligent visibility to avoid flooding the user

interface. Web based technology has room for individual data handling

which can be automated without letting the user know about the

complexity.

2.3.1 Methodology

The decision of the methodology was heavy influenced by the absence of the

Secondary Air Systems supervisor for this project, who wouldn’t be available during

the period between 26/04 and 27/06. By this reason, the period before 26/04 was

focused on the creation of documents that translated the idea behind the project.

This was a decisive factor when deciding what documents to generate,

because the time for understading the project was very limited. Also, this precluded

the possibility of a pure agile development methodology, since after the mentioned

date, it would be impossible to have regular meetings for evaluating and deciding the

next steps of the project.

More details about the methodology will be detailed in section 2.5.

2.3.2 Technology Stack

Because the application to be developed (Engino TDM), was an extension of

the application developed by the student and another intern in the previous semester

(Engino), the choice of technology stack had limitations. It was possible to extend the

list of libraries used for both backend and frontend, but the main languages and

libraries used for the project needed to be the ones listed below:

React

React is a JavaScript library that divides the application into components, and

only renders and updates them when they need to. This enables React applications to

have an excellent performance, and also a higher productivity, because it provides a

simple way for the code to be very reusable. Compared to other technologies such as

AngularJS, React has a very smooth learning curve and a very easy-to-read code.

16

Also, it is currently the most adopted frontend framework/library, and it has the best

satisfaction rate between developers who use front-end frameworks.

Babel

Babel is a transpiler that enables people to write JavaScript code in the new

ECMAScript 6 (also known as ECMAScript 2015) standard. This is a standard released

in 2015 that a lot of browsers still don’t support, but it enables programmers to write

code faster and in a more intuitive way. Because of the lack of support by the browsers,

a transpiler such as Babel is needed to convert the code into the fully supported

ECMAScript 5.

React-Router

React-Router is a library made to be used along with React. It is the responsible

for handling the URL of a React web application. With it we can render specific React

components according to the active URL.

Material-UI

This is a library that implements the Material Design, which is a set of design

rules for applications made by Google, into React Components. The use of this library

not only makes the application much prettier and user-friendly, but also highly

increases productivity, since it comes with a lot of ready-to-use React Components.

Material-UI-Icons

This library is an implementation of google’s Material Icons. It comes with a lot

of React Components that render icons. The benefits are the same as the use of the

Material-UI, style and productivity.

LeafletJS

17

This is a pure open-source Javascript library for implementing interactive web

maps. It is the responsible for all the interaction with the engine illustrations. This library

is very compact and very simple to use.

React-Leaflet

React-Leaflet is responsible for implementing the LeafletJS library into React

Components, providing a good integration with the rest of the code.

Phoenix

Phoenix is a backend web framework built with the language Elixir. It was

selected because it provides a great improvement in performance, since Elixir

compiles to the language Erlang, which was designed for high concurrency while

having a small server footprint. The Phoenix framework makes the development

environment very productive, allowing developers to deliver new features in a very

small amount of time.

GraphQL (Apollo and Absinthe)

GraphQL is a language for making and managing queries that was implemented

in this project through 2 different libraries: Apollo for the frontend and Absinthe for the

backend. GraphQL helps a lot with performance issues for retrieval of complex data

from databases, because it retrieves data much more efficiently than the usual Rest

APIs.

PostgreSQL

PostgreSQL was chosen because it is easily integrated with Phoenix. Also,

PostgreSQL can be easily compiled from its source, something that it is usually

irrelevant for projects, but had a good significance for us, because of some restrictions

on the servers inside the company.

18

2.4 Concepts

 The concept of how the application should work can be divided into two different

concepts. One is the initial concept, in which the application should be in the end of

the period of the student’s work. The other one is a concept for the future integration

with other systems inside the company.

2.4.1 Initial Concept

With the application developed in this work, the process should have an

improved efficiency, since it won’t need to be adapted for each new file, and it will also

be available for different engine projects.

The flow of the process would be changed in a way that the user would

download the files from one of the three data sources mentioned in the description of

the process, and then upload the file into the application, via a form. For the simulation

data, this would be enough to make the data available and ready to be used for the

comparison or visualization. For test files this would also be enough to enable the data

to be available for comparison, but the user could also have the option to put some

inputs to complement the uploaded data.

2.4.2 The Future

 For the future, the ideal solution would be to skip the download and subsequent

upload of files into the system. This means that Engino TDM should have live access

to the data from the three different sources.

 Even though this is the most suitable solution, because of compatibility and

administration issues, this integration is something that takes a lot time to be

implemented, and thus is out of the scope of this work.

2.5 Methodology

19

 Because of the reasons explained in item 2.2.1, the methodology implemented

was a mixture of agile methodology with standard UML, and the project was divided in

two major periods, separated by the departure date of the supervisor.

 Before this date, the interaction between supervisor and student followed

principles of an agile methodology, while trying to generate documents from UML

standards. This means that both had a very frequent interaction, so that the student

could understand the problem and propose a solution, which would then be translated

into UML diagrams. However, because of the short time-span for the project, an agile

development was desired, and therefore only the UML documents that were judged as

strictly necessary were created. These documents were the Use Case Diagram, the

list of requirements, and, for the database, a conceptual ER model.

 In a case where a pure agile development was implemented, the UML

documents would not be created, and all the understanding of the application would

be made by the interactions between supervisor and student. This would enable the

project to be focused in the implementation, and consequently more of the application

would be ready by the end of the working period. However, this approach was

impossible to be implemented as a whole, for the reasons already presented.

 The opposite approach would be the implementation following the UML

standards, with the creation of many diagrams to describe the application. However,

this approach is something suitable for teams with many members and without a close

interaction with the clients, because in this case the UML diagrams would enable the

team to have a common understanding of the problem, and present the idea of the

concept to the client in a more understandable way.

 Since this project was developed by one person with the consultancy of another,

the methodology aimed was the agile development. However, because of the time

limitation of supervision, the mixed approach was chosen.

20

3 MODELLING

 In this chapter all the steps of the modelling of the application will be presented,

starting with the list of tasks needed to be done in order to complete the application,

then presenting the time division for each task, the modelling UML specifications,

layout and the database.

3.1 Tasks

In order to complete the modelling, planning and implementation of the

application, a list of tasks, that was later converted into a schedule, was created, and

the items in it, with their earlier descriptions, are presented below:

Study of the Problem: The first step before starting the development of the

system is the study of the problem, in order to understand what the application

is solving, where the application fits and how is this task currently done.

General View of the System: As Wazlawick (2004) suggests, in the beggining

of a software project, it is interesting to have a text that shortly describes the

application. This helps to understand the main goal of the project and present

the idea to other stakeholders.

Use Case Diagram: Creation of a simple use case diagram, envisioning

making the task of raising the software requirements easier.

Requirements: The main document of the early-phase of the project. Lists all

the requirements for the software in a table-shaped document.

Layout: The creation of the layout of the application, showing the screens and

transition between them, should be made via simple drawings and drafts to

show the behavior of layout components.

21

Further UML Diagrams: The creation of UML diagrams other than the Use

Case Diagram.

Database Modelling: Modeling of the database using Relational Entities.

Review of Documentation: Period of time used to review the documents

created.

Creation of Database: The database that will be used is PostgreSQL, and it

will be created using the framework Phoenix, whose development language is

Elixir.

Queries in the Backend: In order to retrieve the data using the Elixir

language, some queries must be created. This will be done using the library

Absinthe, which is an implementation of GraphQL for Elixir.

Processing Scripts: Since the data that will feed the database is currently in

text documents and spreadsheets, there is a need to create processing scripts

that can parse the data and then store it in the database. These scripts should

be created using the language Elixir.

Front-end Implementation: Will be made using the libraries ReactJS, Redux,

React-Router and Material-UI.

Queries in the Frontend: In order for the Frontend to treat the returned data,

it will be necessary to implement the queries in the frontend. This will be done

using the library Apollo, which is an implementation of GraphQL for React.

Integration with Other Systems: A verification of the possibility to integrate

the application with the other systems that are data sources should be done.

Review of the Application: Realize tests with the application to check if it

meets the requirements and raise bugfixes.

22

Bugfixes: Fix the bugs raised in the previous item.

Documentation: Creation of documents describing how Engino TDM should

be used and describing the application and its code, enabling future

developers to change the code easily.

3.2 Schedule

 After defining the necessary steps to develop the application, a schedule for the

project was created. The schedule was focused on the creation of documents until

April 26th, since during this period the student would still have supervision. After this

date, the schedule was focused on development. The images below show the division

of the tasks on time.

Figure 1: Schedule March/April

23

Figure 2: Schedule May/June

Figure 3: Schedule June/July

 Along the development, changes in the schedule needed to be done. The two

greatest motives behind the changes were due to the need to cooperate in other

projects, and due to the complexity of some tasks that were not initially predicted.

 For these reasons, the effective time division was different from the one

predicted by the schedule, and one of the main differences was the absence of further

UML diagrams for the application, apart from the ER diagram that was used later for

the database modelling. The decision of not having further UML diagrams was made

after an evaluation of the remaining time to complete the modelling. As the time was

growing short, the need to have a good model of the database seemed more important.

24

Apart from that, a list of possible UML diagrams were evaluated, and none showed a

good cost-benefit relationship.

 The two most likely UML diagrams to be implemented were the components

diagram and the sequence diagram. However, a sequence diagram would not make

much sense in a single-page application, in which the user can navigate through all

the application as he wishes and the components are completely dynamic. On the

other hand, a component diagram could be used to represent all the components in

the application, however, the amount of components would bring a great difficulty in

modelling this kind of diagram, and in the end it would not be used, since the division

in components that can be made using React makes is already sufficient and more

intuitive to understand the code in the future.

 Another change in the schedule was in the division between the implementation

of backend and frontend, which was not so separated. In the early stages of the

application, the backend code was made alltogether, before implementing the

frontend. However, in order to prevent creating unnecessary parts of the code, the rest

of the backend was created “on the go”. This means that parts of the backend, such

as complex queries in the database, were created only in the moment they were

needed.

 The last difference from the original schedule was the evaluation of the

possibility to integrate with other systems. This task was postponed for the period after

the deliver of this document. This was decided after the difficulties in the

implementation appeared, as it was seen that the project would need to be extended.

Moreover, this is a task that is dependant on other departments, and in order for being

able to implement this, a lot of bureaucracy would have to be surpassed.

3.3 System General View

 The first outcome of the project was the General View of it. According to

Wazlawick (2004), the general view of a system is a text without a specific structure

that describes the main ideas about a system. For the project, the general view created

was the following:

25

Engino TDM General View

“Engino TDM is a web application focused on the visualization and comparison

of secondary air systems data from Rolls-Royce Deutschland, Dahlewitz site. The

application aims to make the process of generating data overviews and validating test

data faster and more intuitive.

The data that will be presented are simulation data, originated in the software

SPAN (Suite of Programs for Air Networks) and stored as formatted text files; and data

from engine tests, which are stored as excel spreadsheets.

The system has 3 main functionalities, which are:

 Comparison of data from SPAN and measured engine data via an interactive

technical illustration that gives the user the ability to zoom in or out and move

through these 2D drawings of the engines, showing pressure and temperature

data in specific points of the engine (nodes).

 The visualization and comparison of data from SPAN, which also uses

interactive technical illustrations, but with an additional functionality of

visualizing the air flows of a system

 The comparison of data from various engines, through a plot that can be

accessed by clicking in one of the points from the previous functionalities, or

can be manually configured by the user to show the data he wants

In order for the system to achieve these 3 main functionalities, it needs to have a

lot of multiple smaller functionalities that together make the system behave as

expected. Some of these functionalities are the selection of which datasets (from test

data and SPAN) are going to be used for the interactive illustrations; selection of which

parameters are going to be plotted; the possibility to add nodes on the comparison of

SPAN and test data; the possibility to upload SPAN files, test files, and instrumentation

lists; possibility to visualize, edit and delete the available datasets (test and SPAN files)

and instrumentation list; validation of the difference between SPAN and test data to

check if it is among user-defined limits; selection of which parameters are going to be

used to calculate the pressure and temperature average values presented in nodes

with test data; possibility to select which parameters are going to be used to calculate

26

the scaled and predicted values of SPAN data; and the possibility to convert the values

into different measurement units.”

3.4 Use Case Diagram and Requirements

After creating the text for the General View, a simple Use Case Diagram was

created, in order to facilitate the process of creating requirements. A Use Case

Diagram represents the main actions and interactions that users of the system can

make. Actors are the different types of users that are going to use the system, and the

cross-reference table associates which of the requirements are associated with each

use case.

The system has 3 types of actors, separated into Super Users, Special Users

and Basic Users. The Basic user only has capabilities to visualize the data and to

change the application state, but not the database. Meanwhile, the Special Users have

access to database, while having the same basic privileges as the basic users. The

Super Users have all the capabilities of the special users and can also manage users.

 The image below shows the use cases and the relationship between the

actors, in which, for visualization purposes, the use cases are only related to their

lowest level type of user.

27

Figure 4: Use-Case Diagram

The following table shows the description of each use case along with the cross-

reference between them and the requirements, which can be found in Appendix A. The

actors are representing by their acronyms: Super User (SU), Special User (SPU), Basic

User (BU).

Name Actors Description
Cross-

Reference

Manage Users SU
Creating, deleting or editing the users

of the system
F18, F19, F20

Manage Test
files

SU, SPU
Uploading, editing and deleting test

files
F2, F5

Manage SPAN
files

SU, SPU
Uploading, editing and deleting SPAN

files
F1, F4

Manage
Instrumentation

list files
SU, SPU

Uploading, editing, deleting and
changing the content of
instrumentation list files

F3, F6, F9

Edit relationship
between test and

SPAN
SU, SPU

Set the relationship between the test
parameters and SPAN nodes

F12, F30, F31

Change Scaling
and Prediction

Data
SU, SPU

Change the parameters used to
calculate the scaled and predicted

values of SPAN
F13, F14, F15

Save Custom
Setup

SU, SPU
Save the current state of the program

(which datasets are selected, what
parameters are plotted, etc)

F8

28

Load Custom
Setup

SU, SPU,
BU

Load the saved state of the program
(selected datasets, plot configuration,

etc)
F9

Visualize and
compare SPAN

Data

SU, SPU,
BU

Select and compare SPAN data from
different runs

F14, F15, F25,
F26, F27, F28

Compare Test
VS SPAN Data

SU, SPU,
BU

Select and visualize the comparison
between SPAN and test data

F14, F15, F16,
F17, F29

Plot Data
SU, SPU,

BU
Select parameters and plot them F22, F21

Change
Measurement

units

SU, SPU,
BU

Change the measurement units used
in the system

F23

Change
validation data

SU, SPU,
BU

Change which data is used to
calculate the parameter average

values for test data
F24, F32

Save Current
User Setup

SU, SPU,
BU

Save the current state of the program
(which datasets are selected, what

parameters are plotted, etc)
F10

Load Current
User Setup

SU, SPU,
BU

Load the saved state of the program
(selected datasets, plot configuration,

etc)
F11

Using the definition by Raul Sidnei Wazlawick, a document of requirements is

a document that contains all the functionalities of the system. The requirements can

be divided into two categories:

- Functional requirements (F), which list everything the system should do

- Non-functional requirements (NF), which represent restrictions about how

the system should do its functional requirements

- Supplementary Requirements (S), that are applied to the system as a whole,

not only to specific functions

Functional requirements can be divided into:

- Plain Functional Requirements, that are performed with the perception of

the user. This requirements are usually events and responses of the system,

that is, any exchange of information between the interface and the external

environment

- Hidden Functional Requirements, that are performed without the explicit

perception of the user.

29

Because of the size of the list, the complete table of requirements is shown in

the Appendix A of this document.

3.5 Layout Definition

 After the complete understanding of the problem and an extensive analysis of

the requirements, a layout definition was built. This layout was validated by the

supervisor from Secondary Air Systems department.

 The layout proposed is presented below, with a description of the image after

each one.

Figure 5: Layout Navigation Bar

 This first picture shows the navigation bar of the application. It has the

functionality of changing between the three main screens (TDM, SPAN and Plot),

loading and saving different setups, searching for nodes or flows, changing the

accuracy criteria, changing the measurement units and selecting different engines. It

also contains a link to the admin page, which is shared with the Engino application.

30

Figure 6: Layout TDM Screen

 The picture above shows the main screen of the application, whose functionality

is to compare nodes from simulation (SPAN) data and parameters measured during

tests.

Figure 7: Layout TDM Measurement Units

31

 The image above depicts how the measurement units should be presented, via

a translucid dialog with the selection options for units that the user can make.

Figure 8: Layout TDM Validation

The validation screen shows which parameters are going to be used in the

comparison. This is necessary because some parameters are actually the average of

multiple parameters, and in some cases, an isolated parameter can have an undesired

influence in the average.

32

Figure 9: Layout Validation Graph

 In the validation screen, the user should be able to click on a parameter to open

a graph showing the information about that parameter in time (in different extracts).

Figure 10: Layout Plot Screen – Parameter Selection

33

 The plot screen is a general screen in which the user should be able to select

the parameters that he wants to plot, being able to compare different parameters from

different test data, and also parameters from different engines. This first image (above)

shows how the user should select the parameters, via a map that show the available

parameters for the selected test data. The next image will show a representation of the

graph itself.

Figure 11: Layout Plot Screen

 The last one, the SPAN screen, shows the information related to the

simulation data. In this screen the user can visualize nodes and flows and compare

them via tables of graphs.

34

Figure 12: Layout SPAN Screen

3.6 Database

The database modelling started by the creation of a list of data elements, and

then a list of assumptions related to the data that would be stored in the database.

These assumptions gathered the correlation between different types of data, and it was

essential for the creation of the ER model that will be presented afterwards.

 The essential types of data listed were:

 Engine Type: The project of an engine, also called Engine Common Name

 Engine Number: One version of the engine project

 Engine Build: One of the builds of an engine

 Engine View: One visual representation of an Engine Type

 Test file: The file that contains test data

 Test Parameters: An information about one measurement location in an engine

 Extracts: The instants in time when test data was collected

 SPAN file: A simulation file

35

 Flow: The definition of a flow in a simulation file

 Flow Points: The points which a flow contain

 Nodes: Points in an engine where simulation data was calculated

 Instrumentation List: List containing all information about instrumentation

 ERF: Experiment Request Form, a document that stablishes what are the

requirements for an experiment.

 SLN: Document that declares a solution for a raised issue.

The list of assumptions is the following:

 Test parameters can be in multiple engine types.

 Each engine type contains multiple engine numbers, but one engine number

can only be associated with only one engine type, even though it is possible to

have equal engine numbers across different engine types.

 Each engine number contains multiple engine builds, but one engine build is

always associated to only one engine number, even though it is possible to have

equal engine builds across different engine numbers.

 Each test file is associated to a single engine build, but an engine build contains

multiple test files.

 Each test file contains multiple parameters, and each parameter can be

associated to multiple test files.

 Test parameter names are unique. OBS: Test parameters can repeat for

different engines. This means that the same name can appear in different

engines.In this case, they will be considered different parameters, because

even though they have the same functionality, they will probably have different

positions on the technical drawing.

 Each engine type contains multiple SPAN files, but each SPAN file is associated

with a single engine type.

 Each SPAN file has multiple flows, and each flow can be in multiple SPAN files.

 Each SPAN file has multiple nodes, and each node can be in multiple SPAN

files.

 Each instrumentation list is associated with only one engine type, and each

engine type contains only one instrumentation list.

36

 Each instrumentation list contains multiple parameters, but one parameter can

be in a single instrumentation list (considering that parameters with the same

name in different engines are different parameters).

 Each flow is associated with one starting node and one end node, but nodes

can be associated with multiple flows.

 Each flow is associated with multiple flow points, but one flow point is always

associated to one unique flow.

 One ERF can be associated with multiple engine builds, and each engine build

can have multiple ERFs.

 Each ERF contains multiple parameters, and each parameter can be in multiple

ERFs.

 The combination between ERF, Engine Build and Parameter is unique.

 Each combination of ERF, engine build and parameter can be associated with

multiple SLNs, and one SLN can be associated with multiple combinations.

With this list of assumptions, a conceptual Entity-Relationship model was

created, following the concepts presented by Heuser (2009). This model is presented

in the image below. In it, the attributes were hidden, in order to improve the

visualization.

37

Figure 13: Conceptual Entity-Relationship Model

With the ER model, it was possible to create the database, also using the

methodology explained in Heuser (2009).

The final model of the database is presented below. For the creation of the final

version some minor changes were made. Also, the database for users was not

included in the modelling because the application will share the same database as the

Engino application.

In the picture below the tables of the database with its relationships are shown.

In each table, the first column shows the type of each database table column, the

second shows the column name, and the last one depicts which of the columns are

primary keys (P) and foreign keys (F).

38

Figure 14: Database

 From the tables shown in the image above, the tables Engine No/Build, Engine

Type and Engine View are from Engino database, so this ones were not created.

39

4 IMPLEMENTATION

 This chapter will present the implementation of the application modelled, a step

that started after the modelling of the database. The first task was to translate the

database into the migrations used by the Absinthe library, which is an implementation

of GraphQL for Elixir. The migrations are translated into database creation or updating

commands later when the user executes the migration command in the command line.

The image below shows an example of a mutation. This one is responsible for creating

the table for the output files.

Figure 15: Mutation

 After the creation of the migrations, it was time for the creation of the schemas,

which are the representation of data that will be available for querieng in the frontend.

In this step only the basic schemas and schema types were created, alongside simple

queries. As mentioned in the 2.5.2 section, the complex queries were implemented

later, as they were needed. The image below shows the type definition for the output

files, defined in Elixir.

40

Figure 16: Schema Type

 In the next image a simple query is presented, defined as a field. This means

that by defining this query, we will have the output files available as simple GraphQL

fields.

Figure 17: Simple Query

In order to have a good separation of the Engino code from the Engino TDM

backend, a different context in the Phoenix Framework, which are used to separate

parts of the code with different functions.

 After the creation of the database and the main queries in the backend, the

implementation of the frontend started, in a cyclic implementation which the frontend

was made, and then, if complex queries were needed, they were made in the backend

also.

 The image below shows and example of the definition of a complex query in the

schema.

41

Figure 18: Complex Query

The next image shows the function that was called to resolve this query, which

needed to perform a join between different tables in the database.

Figure 19: Query Resolver

The frontend was implemented using the library React, alongside Redux and

React-Router, which are libraries for handling the states of the application and the url

of it, respectively. Also, the frontend used the library LeafletJS, in its React

implementation, called React-Leaflet, which is an open library for dealing with

interactive maps, and used also the Material-UI library, which implements the Google

Material Design principles into react components.

 In the next section, the results of this work will be presented, including images

of the implementation of the application.

.

42

5 RESULTS

 The work described in this document had as main result the complete modelling

of the application that solves the issues raised by the Secondary Air Systems

Department.

 Also, an initial version with some basic functionalities was developed during the

period of this work. This initial version of the application already has some core

functionalities which enables the use of it for improving the efficiency of the

department’s processes.

 In the following images it is possible to see what parts of the application are

already made. For export control reasons, the information in the application was

replaced by constant numbers and random positioning, and the image was replaced

by an image of a jet engine found on the internet.

Figure 20: SPAN Screen

43

Figure 21: SPAN Screen with Graph

Figure 22: SPAN Screen with Sidebar and Bottombar collapsed

44

Figure 23: TDM Screen

5.1 Verification

In order to verifiy that the application was working and met the requirements for

it, some initiatives were made. The first was a verification of the consistency of the

database and of the simple queries required to have the application working properly.

After that, a usability proof was done, in order to check what was achieved, and then

this was compared to the requirements raised in section 3.4, available in Appendix A.

5.1.1 Database check

In order to check that the database was created correctly and had the correct

relationship between tables, a set of “dummy” data was inserted in it. This data was

stored via a seeds file, a file that can be programmed to insert information in the

database via implemented backend functions on Elixir. The image below shows part

of the seeds file used to create this dataset.

45

After creating the seeds file, some queries that required a complex relationship

between data were tested in the GraphiQL, an interface for making queries using

GraphQL that can be installed together with Apollo, the GraphQL library for ReactJS.

 The queries selected to be tested were the queries for the Flow Values, the Test

Files and TDM Boxes. The Flow Values query was selected because it has a

relationship with the Flow Points, Output Files and Span Nodes. The image below

shows this query (on the left) and its result (on the right).

46

Figure 24: Flow Values Query

 The next tested query was the query for Test Files, retrieving all Param Values

of the file, along with the Test Parameter related to it and the Param Limits related to

that Test Parameters. This is presented in the image below.

47

Figure 25: Test Files Query

 The last tested query was the query for the TDM Boxes, which are the

responsible for relating the Test Parameters with the SPAN Nodes. The image below

shows this query.

48

Figure 26: TDM Boxes Query

 Through the analysis of the result of the query, it was possible to identify that

the information was being correctly related and the queries were returning the right

data.

5.1.2 Functionality and Requirements Check

 The next step to check if our application fulfill its requirements was to make a

functionality check, comparing it with the requirements table of Appendix A. In a

general manner, by simply using it, it was possible to see that the application could

compare data from test and simulation, as shown in Figure 23, and visualize simulation

data with a large level of details and enabling comparison between them, as it is shown

49

in Figures 20, 21 and 22, thus achieving the main goal described in section 1.1.

However, in order to have a more precise analysis of the results, the list of

requirements was reviewed, to see which of the requirements were met.

One thing to consider is that the list of requirements was made for the full

version of the application, which covers a lot more than the first version of the

application, shown in this document, does. Also, requirements related to user access

were dependant of another system that still doesn’t classify users in groups, and

therefore could not be implemented.

 Still, from all the functional requirements, 34 in total, only 7 that were not related

to user access were not implemented, and only one not related to user access out of

7 suplementary requirements. The table below list the requirements and presents if

they were completely implemented, partially implemented or not implemented at all.

Requirement Status

F1 Upload SPAN Files
Implemented completely, apart from user access

requirements

F2 Upload Test Files Implemented partially

F3 Upload Instrumentation List

files
Implemented partially

F4 Manage SPAN Files
Implemented completely, apart from user access

requirements

F5 Manage Test Files Implemented partially

F6 Manage Instrumentation List

Files
Implemented partially

F7 Edit Instrumentation List Files Not implemented

F8 Save Custom Setup Not implemented

F9 Load Custom Setup Not implemented

F10 Save Current User Setup Not implemented

F11 Load Current User Setup Not implemented

F12 Edit Relationship between

Test and SPAN

Implemented completely, apart from user access

requirements

F13 Edit Scaling and Prediction

Data

Implemented completely, apart from user access

requirements

F14 Select Engine Project Implemented completely

F15 Select SPAN file Implemented completely

F16 Select Engine Build Implemented completely

50

F17 Select Test Data Implemented completely

F18 Create New User Not implemented

F19 Edit User Not implemented

F20 Delete User Not implemented

F21 Manage Grouping Tags Implemented partially

F22 Select Plot Parameters Not implemented

F23 Change Measurement Units Not implemented

F24 Change Validation Data
Implemented completely, apart from user access

requirements

F25 Select Flow Model Implemented completely

F26 Select Master Source Implemented completely

F27 Visualize SPAN Data Implemented completely

F28 Compare SPAN Data Implemented completely

F29 Compare SPAN data with

Test Data
Implemented partially

F30 Edit Comparison Nodes
Implemented completely, apart from user access

requirements

F31 Manage Test Only Nodes
Implemented completely, apart from user access

requirements

F32 Manage Validation Filtering

Tags
Not implemented

F33 Accuracy Criteria Implemented partially

F34 Manage ERF Association Not implemented

S1 Log of Changes Implemented partially

S2 Tech Stack Implemented completely

S3 Landing Page Implemented partially

S4 URL Not implemented

S5 Close Application Not implemented

S6 Browser Compatibility Implemented completely

S7 Login Implemented partially

51

6 CONSIDERATIONS AND PERSPECTIVES

 As mentioned in the last item of the previous section, the work presented in this

document had as result the complete modelling of an application, with the creation of

many documents that describe it and enable the development with an easy

understanding of it. Beyond that, an initial version of Engino TDM was implemented,

using modern technologies for web-applications. This initial version is already very

usefull for improving the process efficiency, and can already be used to reduce the

costs of the company.

 The cost impact calculated for the full version is of a cost saving ranging from

10.000 euros to 20.000 euros per year. This cost-saving was calculated taking as a

base the amount of time that dealing with ineffiencies of the current version takes away

per week, which can range from 2.5 to 5 hours for the whole department. Multiplying

this value by the number of weeks in a year (54) and by the cost of an engineer for the

company (80€ per hour), we get the mentioned value range.

 In addition to that, there is a cost saving for each implementation for new

engines, which by estimation should take away 20 hours. Multiplying by the cost of an

engineer for the company, there is a cost saving of approximately 1.600€ for each new

engine added in the TDM.

 Beyond that, there are costs that cannot be estimated now, such as the cost

saving of integrating the systems in the future, which will have a very high value.

6.1 Result Analysis

 With the results presented in chapter 5 it was possible to see that the work

developed by the student produced a good documentation for the software and also

an initial version of it, already working and fullfilling some requirements.

 However, the schedule made was done envisioning the complete application.

This could not be done, not only because of external tasks that took some time, but

also because of the lack of experience in some languages used, something that not

only made the implementation much slower, but also caused a wrong prediction of how

much time would have to be spent in each task.

52

 For this reason, some parts of the project were left out of the final scope of the

project. These parts will be developed by the student itself in the following month, and

by the next intern, who will have the complete documentation to help him.

 Despite the need to limit the scope of the project, the work developed already

produced a very good result, with a good documentation that can serve as guideline

for future developers and the initial version of it, which already solves partially the issue

presented in the beggining of this document. Also, the complexity of the project was

very big, something that adds even more value to the results of this project.

6.2 Future Perspectives

 The presented work opens a lot of opportunities inside the department for future

work. The first step for further development is to deliver the complete version of the

application, which would then bring all the benefits mentioned previously in this

chapter.

 After this first step, the possibility of integration with the systems that provide

the data used in Engino TDM should be explored, because this would enable the

application to have access to live data, and exclude the need to download the data

from one of the sources just to have it uploaded into TDM afterwards.

 Beyond this step, there is a possibility to integrate Engino TDM with other

systems inside the company, because of the great flexibility it presents. Also, because

TDM is now a web-application, there is a lot of room for implementing new

functionalities via open-source libraries.

53

REFERENCES

WAZLAWICK, R. S. Análise e Projeto de Sistemas de Informação Orient. a
Objetos, Ed. Campus, 2004.

ELMASRI, R.; NAVATHE S. B. Sistemas de Banco de Dados. 6. ed. Editora
Pearson, 2011.

HEUSER, C. A. Projeto de Banco de Dados. 6. ed. Série Livros Didáticos –
Instituto de Informática da UFRGS, número 4. Editora Bookman, 2009.

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I.. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

Overview – absinthe - HexDocs. Available on: <https://hexdocs.pm/absinthe/>.
Accessed on July 02.

Kernel – Elixir – HexDocs. Available on <https://hexdocs.pm/elixir/>. Accessed on
July 02.

Phoenix – HexDocs. Available on <https://hexdocs.pm/phoenix/>. Accessed on July
02.

Ecto – HexDocs. Available on <https://hexdocs.pm/ecto/>. Accessed on July 02

ReactJS, React Reference. Available on: <https://reactjs.org/docs/react-api.html>.
Accessed on February 19.

Redux – Official Site. Available on: <https://redux.js.org/>. Accessed on July 02.

React Router: Declarative Routing for React.js. Available on:
<https://reacttraining.com/react-router/>. Accessed on July 02.

Leaflet – Official Site. Available on: <https://leafletjs.com/>. Accessed on July 02.

GitHub – PaulLeCam/react-leaflet. Available on:
<https://github.com/PaulLeCam/react-leaflet>. Accessed on June 29.

Material-UI – Official Site. Available on: <https://material-ui.com/>. Accessed on June
29.

Material Design – Official Site. Available on: <https://material.io/>. Accessed on June
29.

Agile Alliance, The Agile Manifesto. Available on:
<https://www.agilealliance.org/agile101/the-agile-manifesto/ >. Accessed on
June 24.

GitHub, Facebook, React - Sites Using React. Available on:
<https://github.com/facebook/react/wiki/sites-using-react >. Accessed on

https://hexdocs.pm/absinthe/
https://hexdocs.pm/elixir/
https://hexdocs.pm/phoenix/
https://hexdocs.pm/ecto/
https://reactjs.org/docs/react-api.html
https://redux.js.org/
https://reacttraining.com/react-router/
https://leafletjs.com/
https://github.com/PaulLeCam/react-leaflet
https://material-ui.com/
https://material.io/
https://www.agilealliance.org/agile101/the-agile-manifesto/
https://github.com/facebook/react/wiki/sites-using-react

54

June 24.

State of JS. Available on: <http://2016.stateofjs.com/2016/frontend/>.
Accessed on June 29.

Carbon Five, Elixir and Phoenix: The Future of Web Apps? Available on:
<https://blog.carbonfive.com/2016/04/19/elixir-and-phoenix-the-future-of-webapis-
and-apps>. Accessed on June 24.

How to GraphQL, GraphQL is the better Rest. Available on:
<https://www.howtographql.com/basics/1-graphql-is-the-better-rest/>.
Accessed on June 24.

ReactJS, Thinking in React. Available on: <https://reactjs.org/docs/thinking-in-
react.html>. Accessed on May 9.

ReactJS, Components and Props. Available on:
<https://reactjs.org/docs/components-and-props.html>. Accessed on May
19.

http://2016.stateofjs.com/2016/frontend/
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/components-and-props.html

55

APPENDIX A – TABLE OF REQUIREMENTS

Here complete table of requirements for the Engino TDM project is listed.

F1 Upload SPAN Files Hidden ()

Description: The system must enable the user to upload the SPAN files, processing them and storing
them in the database

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF1.1 Type of
data

The data from the SPAN file must be a
formatted plain text. If the data is not
in the specified format, it should show
an error on the interface.

Implement
ation

(X) ()

NF1.2 Access
Control

Only people with special user access
should be able to upload

Security (X) (X)

NF1.3 File types
Upload

Two types of files should always be
uploaded together, they are the BASE
and OUTPUT types.

Integration (X) (X)

F2 Upload Test Files Hidden ()

Description: The system must enable the user to upload the test files, processing them and storing
them in the database

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF2.1 Type of
data

The data from the text file must be a
formatted excel spreadsheet. If the
spreadsheet does not contain
necessary rows, it should show an
error on the interface.

Implement
ation

(X) ()

NF2.2 Access
Control

Only people with special user access
should be able to upload

Security (X) (X)

NF2.3 Default
Test Units

The system should have a default set
of test units that will be loaded when
the user is uploading a file

Interface (X) (X)

NF2.4 Test Units The user should be able to define the
units for the file he is uploading.

Interface (X) (X)

F3 Upload Instrumentation List files Hidden ()

Description: The system must enable the user to upload instrumentation list files, processing them
and storing them in the database

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF3.1 Type of
data

The data from the instrumentation list
must be a formatted excel
spreadsheet. If the spreadsheet does
not contain necessary rows, it should
show an error on the interface.

Implement
ation

(X) ()

56

NF3.2 Access
Control

Only people with special user access
should be able to upload

Security (X) (X)

NF3.3
Performance
Parameters

The user should be required to set the
performance parameters when
uploading an instrumentation list

Interface (X) (X)

F4 Manage SPAN Files Hidden ()

Description: The system must enable the user to delete SPAN files and edit the information about it

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF4.1 Access
Control

Only people with special user access
should be able to manage SPAN files

Security (X) (X)

NF4.2 Show
OUTPUT Files

Only the OUTPUT files should be
displayed, not the BASE files

Interface (X) (X)

NF4.3 Delete
BASE Files

If an OUTPUT file is deleted, the
system should check if there is any
other OUTPUT file related to the same
BASE file. If there isn’t, the system
should delete the BASE file

Integration (X) (X)

F5 Manage Test Files Hidden ()

Description: The system must enable the user to delete test files and edit the information about it

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF5.1 Access
Control

Only people with special user access
should be able to manage test files

Security (X) (X)

NF5.2 Change
Units

The user should be able to change the
measurement units for that file

Interface (X) (X)

F6 Manage Instrumentation List Files Hidden ()

Description: The system must enable the user to delete instrumentation list files and edit the
information about it

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF6.1 Access
Control

Only people with special user access
should be able to manage
instrumentation list files

Security (X) (X)

F7 Edit Instrumentation List Files Hidden ()

Description: The system must enable the user to edit the content of instrumentation list files

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF7.1 Access
Control

Only people with special user access
should be able to edit instrumentation
list files

Security (X) (X)

57

NF7.2
Performance
Parameters

The users should have the option to
change the performance parameters
for the selected instrumentation list

Interface (X) (X)

F8 Save Custom Setup Hidden ()

Description: The system must enable the user to save the current setup of the system as a custom
setup.

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF8.1 Stored
Variables

The variables that should be saved are:
- X plot variables
- Y plot variables
- Selected Test Data
- Selected SPAN Prediction
- Selected Extract
- Selected Engine Project
- Selected Engine Build
- Selected Flow Model
- Selected Master Source
- Selected Nodes
- Selected Flow Nodes
- Accuracy Criteria
- Measurement Units

Interface (X) (X)

NF8.2 Access
Control

Only people with special user access
should be able to save custom setups

Security (X) (X)

F9 Load Custom Setup Hidden ()

Description: The system must enable the user to load custom setups of the system.

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF9.1 Stored
Variables

The variables that should be saved are:
- X plot variables
- Y plot variables
- Selected Test Data
- Selected SPAN Prediction
- Selected Extract
- Selected Engine Project
- Selected Engine Build
- Selected Flow Model
- Selected Master Source
- Selected Nodes
- Selected Flow Nodes
- Accuracy Criteria
- Measurement Units

Interface (X) (X)

F10 Save Current User Setup Hidden (X)

58

Description: The system should automatically save the current setup of the system as the user setup.

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF10.1 Stored
Variables

The variables that should be saved are:
- X plot variables
- Y plot variables
- Selected Test Data
- Selected SPAN Prediction
- Selected Extract
- Selected Engine Project
- Selected Engine Build
- Selected Flow Model
- Selected Master Source
- Selected Nodes
- Selected Flow Nodes
- Accuracy Criteria
- Measurement Units
- Current Screen
- Map Center
- Map Zoom Level

Interface (X) (X)

F11 Load Current User Setup Hidden (X)

Description: The system should automatically load it’s the saved user setup into the system.

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF11.1 Stored
Variables

The variables that should be loaded
are:

- X plot variables
- Y plot variables
- Selected Test Data
- Selected SPAN Prediction
- Selected Extract
- Selected Engine Project
- Selected Engine Build
- Selected Flow Model
- Selected Master Source
- Selected Nodes
- Selected Flow Nodes
- Accuracy Criteria
- Measurement Units
- Current Screen
- Map Center
- Map Zoom Level

Interface (X) (X)

F12 Edit Relationship between Test and SPAN Hidden ()

Description: The system must enable the user to change the relationship between SPAN nodes and
test parameters

59

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF12.1 Access
Control

Only people with special user access
should be able to edit the relationship
list

Security (X) (X)

F13 Edit Scaling and Prediction Data Hidden ()

Description: The system must display the parameters used to calculate the scaling and prediction
data for SPAN, and enable users to edit it

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF13.1 Access
Control

Only people with special user access
should be able to edit the scaling and
prediction data

Security (X) (X)

F14 Select Engine Project Hidden ()

Description: The system must retrieve all the available engine projects and show it to the user, who
can then select the desired one

Non-Function Requirements

Name Restriction Category Mandatory Permanent

F15 Select SPAN file Hidden ()

Description: The system must retrieve all SPAN files for the selected Engine Project and present it to
the user, who can then select the desired one

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF15.1 Select
Engine Project
First

The user must have already selected
an Engine project

Interface (X) (X)

NF15.2 Select
Multiple Sources

In the functionality of comparing SPAN
data, the user must be able to select
multiple data sources

Interface (X) (X)

F16 Select Engine Build Hidden ()

Description: The system must retrieve all engine builds for the selected Engine Project and present it
to the user, who can then select the desired one

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF16.1 Select
Engine Project
First

The user must have already selected
an Engine project

Interface (X) (X)

F17 Select Test Data Hidden ()

60

Description: The system must retrieve all test data files for the selected Engine Build and present it
to the user, who can then select the desired one

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF17.1 Select
Engine Build First

The user must have already selected
an Engine Build

Interface (X) (X)

F18 Create New User Hidden ()

Description: The system must enable super users to create new users

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF18.1 Access
Control

Only people with super user access
should be able to create a new user

Security (X) (X)

NF18.2
Confirmation

The system should ask the user to
confirm the action before saving the
changes in the database

Interface () (X)

NF18.3 Existing
User in LDAP

The system should check if the user ID
is in the LDAP database. If not, should
throw an error

Security () ()

F19 Edit User Hidden ()

Description: The system must enable super users to edit the information about other users

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF19.1 Access
Control

Only people with super user access
should be able to create a new user

Security (X) (X)

NF19.2
Confirmation

The system should ask the user to
confirm the action before saving the
changes in the database

Interface (X) (X)

F20 Delete User Hidden ()

Description: The system must enable super users to delete other users

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF20.1 Access
Control

Only people with super user access
should be able to delete a user

Security (X) (X)

NF20.2
Confirmation

The system should ask the user to
confirm the action before saving the
changes in the database

Interface (X) (X)

NF20.3 Delete
Associated Setup

When a user is deleted, the setup
associated with his account should
also be deleted

Integration (X) (X)

F21 Manage Grouping Tags Hidden ()

61

Description: The system must enable users to create, edit, and delete tags for parameters, in order
to enable the user to plot and compare parameters of different Engine Projects

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF21.1 Access
Control

Only people with special user access
should be able to create a new user

Security (X) (X)

NF21.2 Multiple
Parameters

The user must be able to add tags to
multiple parameters at once

Interface (X) (X)

F22 Select Plot Parameters Hidden ()

Description: The user can select different and multiple parameters to be presented on the plot

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF22.1 Select on
Click

The user should be able to go to a plot
by clicking in a node in the GAs.

Interface (X) (X)

NF22.2 Tagging The system should check for tags of
the selected parameters, and retrieve
other parameters with the same tag,
allowing the user to select if he wants
to display these parameters or not

Interface (X) (X)

NF22.3
Checkboxes

The plot should display checkboxes so
that the user can hide or show
parameters

Interface (X) (X)

NF22.4 Auto-
update

The plot should be updated
automatically if the user has changed
any information on it, like selecting or
unselecting parameters

Interface (X) (X)

NF22.5 Scaling The SPAN data to be shown in the plot
should be first pass by the scaling and
prediction equations

Interface (X) (X)

F23 Change Measurement Units Hidden ()

Description: The system should allow the user to select the measurement units he wants

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF23.1 Store
Conversion
Factors

The system should have a database
with conversion factors and
conversion sums between different
measurement units

Interface (X) (X)

NF23.2 Auto-
Update

The system should be dynamic, so that
all the values are recalculated when
the measurement units have changed

Interface (X) (X)

NF23.3
Parameters

The units should be stored for the
following parameters:

- Mass Flow
- Volume Flow
- Pressure
- Temperature
- Power

Interface (X) (X)

62

- Power/Temp
- Load
- Length
- Area
- Volume
- Angle
- Velocity
- Rot. Speed

NF23.4 Monitor
Units Storing

The Monitor units should be
associated with the setups

Interface (X) (X)

F24 Change Validation Data Hidden ()

Description: The system should show the parameters and enable the user to toggle which are used
to calculate the average for the related points

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF24.1 Auto-
Update

The system should be dynamic, so that
all the values are recalculated when
the one parameter have changed

Interface (X) (X)

NF24.2 Colors The validation data should be shown
in different colors, to describe which
of the parameter values are according
to the accuracy criteria (calculated
against the average value)

Interface (X) (X)

NF24.3 Toggle
values

The user should be able to toggle
which parameters are used to
calculate the average value

Interface (X) (X)

NF24.4
Parameter
Grouping

All the parameters should be grouped
by the GA code when shown

interface (X) (X)

NF24.5 Plots The user should be able to open a plot
coming from this screen. The plot
should show In the Y axis the values of
each of the composing parameter, and
in the X axis the extracts

interface (X) (X)

NF24.6 Access
Control

Only users with special user access
should be able to change validation
data

Security (X) (X)

F25 Select Flow Model Hidden ()

Description: The User should be able to select which Flow Model to use in the visualization of nodes
and flows on the SPAN comparison functionality

Non-Function Requirements

Name Restriction Category Mandatory Permanent

F26 Select Master Source Hidden ()

63

Description: The User should be able to select which Master Source to use in the visualization of
nodes and flows on the SPAN comparison functionality

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF26.1 Select
Flow Model First

The possibility to select the Master
Source should only be available after
the user already selected the Flow
Model

Interface (X) (X)

F27 Visualize SPAN Data Hidden ()

Description: The system should enable the user to visualize nodes and flows from the selected
master source

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF27.1 Auto-
Update

The flows and nodes should be
updated automatically if the user has
changed the selected master source

Interface (X) (X)

NF27.2 Toggle
Nodes

The user should be able to toggle the
visualization of nodes

Interface (X) (X)

NF27.3 Toggle
Flow nodes

The user should be able to toggle the
visualization of flow nodes

Interface (X) (X)

NF27.4 Toggle
Flow lines

The user should be able to toggle the
visualization of flow lines

Interface (X) (X)

NF27.5 Dynamic
flow lines

The flow lines should be scaled
according to the massflow, and have a
higher weight and opacity according to
it

Interface (X) (X)

NF27.6 Dynamic
Visualization

The system should recalculate the
weight and opacity of the flows
according to the zoom level and view
position

Interface () (X)

NF27.7 Scaling All the data must be scaled with the
current settings before being shown

Interface (X) (X)

NF27.8 Search
Nodes

The user should be able to search for
specific nodes or flows, and pan into
the node or flow in the case that the
node is found

Interface () (X)

F28 Compare SPAN Data Hidden ()

Description: The system should enable the user to compare data from SPAN

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF28.1 Different
Master Sources

The user should be able to compare
data from different SPAN master
sources

Interface (X) (X)

NF28.2 Flows
and Nodes

The two different types of data that
should be compared are Flows and
Nodes

Interface (X) (X)

64

F29 Compare SPAN data with Test Data Hidden ()

Description: The system should enable the user to compare data from SPAN with data from tests

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF29.1
Validation

The user should be able to see if the
validation of that data is among
certain limits

Interface (X) (X)

NF29.2
Parameters

The system should show both
temperature and pressure values

Interface (X) (X)

NF29.3 Special
Nodes

The view of the comparison between
SPAN and test should show the special
nodes fixed in the corner of the screen

Interface (X) (X)

NF29.4 Toggle
Performance
Parameters

The user should be able to toggle the
visualization of the performance
parameters

Interface (X) (X)

NF29.5 Filter
Nodes

The user should be able to filter the
displayed nodes according to the
validation filtering tags and according
to the grouping tags

Interface (X) (X)

NF29.6 Search
Nodes

The user should be able to search for
specific nodes or flows, and pan into
the node or flow in the case that it is
found

Interface () (X)

NF29.7 Toggle
Validation

The user should have the option to
deactivate the display of the validation
if he wants

Interface (X) (X)

NF29.8 Check
ERF

When a user selects a test file to show
the information, the system should
check if the parameters in that test file
are also in the ERF table

Integration (X) (X)

NF29.9 Toggle
Complete Values

The user should be able to toggle the
visualization of only boxes that are
complete, that is, with the Span and
test data, and with the data present in
the ERF table

Interface (X) (X)

F30 Edit Comparison Nodes Hidden ()

Description: The user should be able to add, edit or delete information about test parameters on the
comparison nodes

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF30.1 Access
Control

Only people with special user access
should be able to add, edit or delete
information on comparison nodes

Security (X) (X)

NF30.2
Verification

When a user save changes, the system
should verify if the node information
in the database is still equal to the
initial information about the node. If it
is not, notify the user that some

Interface () (X)

65

change was made and it will be
overwritten

NF30.3 Values
Position

The user should also be able to change
the position of the values table

Interface (X) (X)

F31 Manage Test Only Nodes Hidden ()

Description: The user should be able to create, edit, and delete nodes that contain only test
parameters information

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF31.1 Access
Control

Only people with special user access
should be able to manage new nodes

Security (X) (X)

NF31.2 Node
Position

The user should be able to define the
position of test only nodes

Interface (X) (X)

NF31.3 Values
Position

The user should also be able to change
the position of the values table

Interface (X) (X)

F32 Manage Validation Filtering Tags Hidden ()

Description: The user should be able to add tags to parameters, in order to filter them when he is
visualizing and changing them

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF32.1 Access
Control

Only people with special user access
should be able to add filtering tags

Security (X) (X)

F33 Accuracy Criteria Hidden ()

Description: The user should be able to change the accuracy criteria, which are responsible for
checking if the pressure and temperature values are inside the defined limit

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF33.1 Setup
Configuration

The Accuracy criteria should be stored
and loaded along with the setup
configurations

Integration (X) (X)

NF33.2
Parameters

The parameters that should be defined
are:

- Pressure accuracy in %
- Temperature accuracy in %

Interface (X) (X)

NF33.3 Error
criteria

The user should be able to define
multiple error criteria, such as
checking if the absolute value is higher
than some limit, if the value is equal
some value and if the value contain
only certain digits

Usability () (X)

NF33.4 Standard
Error Values

If no error criteria is defined, the
system should compare with a
standard error criteria, which is: The
value is lower than -9000 and the only
present digit is 9

Interface (X) (X)

66

F34 Manage ERF Association Hidden ()

Description: The system must store an ERF table with a relationship between ERF, build number and
parameter

Non-Function Requirements

Name Restriction Category Mandatory Permanent

NF34.1 Access
Control

Only people with special user access
should be able to add filtering tags

Security (X) (X)

NF34.2 Show
Table

The application should show the ERF
Association similarly to a table in excel

Interface (X) (X)

NF34.3 Editing The Application should enable the
users to edit the association similarly
to an excel table

Interface (X) (X)

NF34.4 Copying
data

The application should enable the user
to copy cells from excel files and paste
it in the association table in the app

Interface (X) (X)

Supplementary Requirements

Name Restriction Category Mandatory Permanent

S1 Log of
Changes

The system should store a log of changes
made in the database

Implement
ation

() (X)

S2 Tech
Stack

In order to be possible to integrate the
new application with Engino, the following
languages should be used:

 Elixir (Phoenix) – Backend

 ReactJS – Frontend

 GraphQL – Integration

 PostgreSQL – Database

Implement
ation

(X) ()

S3 Landing
Page

The initial page of the application should
be the one that is stored in the User Setup.
If none is defined, the landing page should
be the one of the comparison between
SPAN and Test nodes

Interface (X) (X)

S4 URL The system should save the information
about the system in the URL. The
information saved are:

- Engine Project
- Map Center
- Zoom Level

Interface () (X)

S5 Close
Application

When the user closes the application, the
system should verify if there aren’t any
unsaved changes, and notify the user that
those changes will be lost.

Interface () (X)

S6 Browser
Compatibilit
y

The application should work in Internet
Explorer 11

Compatibili
ty

(X) ()

67

S7 Login In order for the users to access the
application, they must make a login. Only
registered users should have access to it.

Security (X) (X)

