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Resumo
Sistemas de geração baseados em aerofólios cabeados (AWES - Airborne Wind

Energy Systems) correspondem a uma nova tecnologia para captação da energia

eólica. No modo pumping-kite o aerofólio desenrola um cabo ligado a um tambor

em solo, gerando energia através do desenrolamento do cabo sob alta tração. Após

um período de geração, o cabo atinge um valor máximo e uma fase de recolhimento

é iniciada. Nesta fase a máquina elétrica, antes utilizada como gerador, é acionada

como motor gastando uma parcela da energia gerada para enrolar a quantia de cabo

desenrolada. Para reduzir a energia gasta e prover um melhor aproveitamento ao sis-

tema uma manobra de baixa tração do aerofólio é realizada durante o recolhimento do

cabo.

A trajetória seguida pelo aerofólio, juntamente com a velocidade de desenrola-

mento e enrolamento do cabo e atuações adicionais que afetam o voo do aerofólio

formam um conjunto complexo de variáveis que influenciam o saldo energético do sis-

tema e, consequentemente, a viabilidade do mesmo. Devido à importância do tema,

diversos trabalhos da literatura abordam esta tarefa, no entanto, uma solução definitiva

ainda não foi encontrada.

Durante a fase de geração, é apresentada em [31] uma expressão para a veloci-

dade de desenrolamento que maximiza a potência instantânea gerada. No entanto,

uma potência média de ciclo mais elevada é obtida por uma velocidade de desenrola-

mento mais baixa, reduzindo a potência instantânea gerada e aumentando a duração

da fase de geração. Este resultado é obtido em [12] através de uma otimização it-

erativa de todo o ciclo de operação. Neste mesmo trabalho é proposto um sistema

de controle para manter o aerofólio em uma trajetória em lemniscata. Este trabalho

adapta a otimização proposta em [12] para uma otimização on-line que determina a

velocidade de desenrolamento e a elevação da trajetória em lemniscata ótimos. Ao

operar com uma otimização on-line, consegue-se adaptar a solução para diferentes

condições de vento e incorporar restrições físicas e de operação à solução encon-

trada.

Poucos trabalhos abordam em detalhes a geração de trajetória para a fase de recol-

himento do aerofólio. Diversos trabalhos, como [14] e [17], abordam indiretamente

este problema ao proporem um problema de otimização off-line para determinar uma

trajetória completa de voo. Estes trabalhos, no entanto, fornecem uma solução para

uma única condição de vento e empregam problemas de otimização muito complexos

para serem executados em tempo real. Uma segunda abordagem utilizada é definir

algumas características das referências utilizadas durante a fase de recolhimento. Em

[23], por exemplo, o aerofólio é controlado através da tração e de uma atuação de



escoamento de vento, que modifica as propriedades aerodinâmicas do aerofólio e é

comumente chamada de depower. Durante a fase de recolhimento, rampas de coe-

ficientes fixos são utilizadas e o valor final de tração é determinado através de uma

otimização iterativa ao longo de diversos ciclos de operação. Uma abordagem similar

é utilizada para otimizar a fase de recolhimento em [12], que dá continuidade ao tra-

balho apresentado em [28]. Neste caso as referências de tração e depower também

são limitadas a rampas, no entanto, as variáveis de decisão são os coeficientes das

rampas.

Neste trabalho é proposto o emprego de um controle preditivo não-linear baseado

em modelo (NMPC) com um critério econômico para aproximar a solução que otimiza

a potência média de ciclo. Já é encontrado frequentemente na literatura o uso de

NMPC para seguir trajetórias geradas off-line. Em contraste, neste trabalho propõe-se

uma função custo que pondera a potência instantânea gasta e a velocidade de recol-

himento a cada instante da trajetória. Esta função custo busca capturar o fator de

decisão instantâneo que qualquer algoritmo de geração de trajetória deve realizar. A

potência média de ciclo busca ser maximizada através de um breve estudo do efeito

resultante da variação dos pesos da função custo. Os resultados obtidos mostram

que a solução proposta atinge resultados similares à soluções off-line de otimização

sendo suficientemente simples para ser executada on-line. O emprego de um NMPC

permite a adição intuitiva de diversas restrições permitindo uma solução flexível e cus-

tomizável.

A principal contribuição deste trabalho é o projeto de um algoritmo de otimiza-

ção on-line para sistemas pumping-kite que apresenta bons resultados para diferentes

condições de vento e possibilita a incorporação de diversas restrições de operação.

Palavras-chave: Energia eólica com aerofólios cabeados. Geração de trajetória.

NMPC. Modo pumping-kite.



Abstract

Airborne wind energy systems (AWES) represent a novel high-altitude wind power

harnessing technology in which the aerodynamic forces acting on suspended tethered

aircraft are employed to produce electricity. In the so-called pumping-kite mode, the

effects of such forces on the available aerodynamic surfaces are used to reel-out the

tether and drive a generator on the ground, which is known as the traction phase. After

a maximum tether length is reached the retraction phase takes place. During this part

of the operating cycle, the tether is reeled back in while spending a fraction of the

energy produced in the previous phase. In order to reduce the energy consumption

and provide a better overall performance for the whole system, the trajectory of the

aircraft must be carefully designed. This work proposes an on-line optimization strategy

to adapt the airfoil trajectory to the current wind conditions and system parameters

during both operation phases. The proposed algorithms, which were designed and

tuned targeting an optimal average cycle-power, and also take into account the mutual

influence of both phases of the pumping cycle, are shown to achieve performance

levels similar to those obtained by more conventional off-line optimization methods

while successfully complying with several operation and constructive constraints.

Key-words: Airborne wind energy. NMPC. Trajectory optimization. Pumping-kite

mode.
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Chapter 1

Introduction

The U.S Energy Information Administration (EIA) predicts that the global energy

consumption will increase by 48% in the next 30 years. Given that production is still

heavily dependent on fossil fuels – which are responsible for up to 86% of the to-

tal energy harvested directly from natural resources worldwide [4] – this dependency

has the potential to severely impact the economy, similarly to what happened in 1970,

when growth in consumption associated with political issues in the middle-east caused

petroleum prices to spike overnight, leading to a generalized crisis [30]. Besides, stud-

ies show that the burn of substances such as petroleum derivatives and coal are likely

the main culprits behind the severe climate and environmental changes that have been

observed in the last few decades. Motivated by the many drawbacks associated with

the consumption of fossil fuels, an increasing effort has been made by governments in

order to leverage the use of renewable energy sources. The results of this effort can be

seen in Figure 1.1, which depicts historical consumption trends for the most important

energy sources, together with a prediction of their behavior for the upcoming years.

One of the most promising renewable energy sources is the wind. It is estimated

that 13% of the world land area has winds faster than 6.9 m/s, which is more than

enough to power the entire planet [6]. By 2015, wind power installed capacity was of

approximately 432 GW, which is 22% more than that in 2014. According to the Global

Wind Energy Council, wind energy accounted for 3.7% of the global electricity in that

year.

After decades of enhancement, the conventional wind energy technology consists

of a horizontal axis turbine mechanically coupled to three blades and mounted on the

top of a tower. The evolution and scaling of this technology focuses on two main as-

pects: increases in the tower height, which results in having the blades exposed to

stronger and more consistent winds, and increases in the turbine’s diameter, so that

a bigger area of wind can be intercepted. Although a continuous reduction of wind

energy costs has been observed, most of the investment in wind farms still requires

governmental subsidies or other kind of incentives in order to be economically attrac-

tive. A greater cost reduction is necessary to effectively change the scenario, yet,

recent reports (e.g [5]) do not foresee any design changes in the near future capable

of substantially reducing the cost of electricity produced by conventional wind turbines.
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Figure 1.1: Global energy consumption trend since 1990 together with a prediction for the next
30 years

Source: [4]

This has motivated recent research for new technologies that can effectively lower this

cost.

1.1 Airborne wind energy

Among the novel technologies for producing electricity from renewable resources,

a new class of wind energy converters has been conceived under the name of Air-

borne Wind Energy (AWE) systems. This new generation of systems employs wings

or aircraft in order to reach winds blowing at atmosphere layers that are inaccessible

to traditional wind turbines [10]. AWE technology is able to reach higher altitudes than

conventional wind turbines, where the wind is generally stronger and more consistent,

as depicted in Figure 1.2, while allowing for a reduction in the construction and installa-

tion costs of the power plant. Moreover, since most locations offer a good wind potential

at higher altitudes, deployment sites for AWE systems are much easier to find, which

makes the technology even more appealing. These advantages do not come cheaply.

The aircraft need to stay in constant movement to maintain themselves in the air, re-

quiring a more complex control system. AWE systems replace an intrinsically stable

system by an intrinsically unstable one [14].

AWE systems generally comprise two main components: a ground unit, and at

least one aircraft that are mechanically or sometimes even electrically connected by

2



(a)

(b)

Figure 1.2: Wind availability and average speed at (a) 50m; and (b) 200 m height. Darker
colors identify regions with faster winds.

Source: [29]

ropes, often referred to as tethers. Among the different concepts, one can distinguish

ground-generation systems, in which the conversion of mechanical energy into elec-

trical energy takes place on the ground, and airborne-generation systems, in which

the conversion happens at the aircraft and the electricity is transferred to the ground

through the tether.

In the last decade, developments in the AWE sector have experienced an extremely

rapid acceleration. Several companies have entered the business of high-altitude wind

energy, registering hundreds of patents and developing a number of prototypes and

demonstrators. Research teams all over the world are currently working on different

aspects of the technology, including control, electronics and mechanical design [10].

1.2 The UFSCkite group

The UFSCkite group was founded in late 2012 at the Department of Automation

and Systems of the Federal University of Santa Catarina, in Florianópolis, Brazil. Its

goal is to push the AWE technology forward towards the level of reliability, efficiency

3



Figure 1.3: The UFSCkite group as one of the institutions involved with AWE worldwide as of
June 2015

Source: [29]

and economical viability required for large-scale industrial deployment in the upcoming

years. Starting with only three members, it has rapidly grown to a multidisciplinary

team with expertise in areas such as modeling and simulation, filtering and flight control

algorithms, industrial automation, power electronics, and embedded systems, carrying

out research and development activities in a complementary fashion

The UFSCkite group is currently building a novel 12 kW ground-generation AWE

prototype, which is expected to perform fully autonomous flight and produce electricity

in order to demonstrate the concept of AWE to the academic community as well as to

potential industry partners and investors.

1.3 Motivation

Despite the promising outlook in terms of economical feasibility, as pointed out in

[11, 20], AWE technology is currently at an intermediate development stage, with sev-

eral challenges yet to be overcome before it can reach the market. Tether technology,

aerodynamics and wing design, sensors, control and energy conversion are all fields

where AWE-oriented research is required either to solve technical bottlenecks or to

improve off-the-shelf solutions that are being already used [16].
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Ground-generation, or pumping-kite AWE systems with a fixed ground station such

as that under development by the UFSCkite group represent the most common concept

within the AWE community. The operation of these devices comprises a two-phase

cycle. In the first phase, known as the traction, active, or generation phase, the aircraft

is driven in a way to produce lift force, and consequently traction force on the tethers,

which in turn induce the rotation of electrical generators. In the retraction, passive,

or recovery phase, motors rewind the ropes thereby bringing the aircraft back to its

original position with respect to the ground. In order to have a positive balance, the

net energy produced in the generation phase has to be larger than the energy spent in

the recovery phase. This positive balance must be guaranteed by the control systems,

which are responsible for adjusting the aircraft’s aerodynamic characteristics through

the manipulation of control variables aiming at keeping it in flight and also at maximizing

the cycle power.

The trajectory followed by the aircraft during the different phases of the pumping-

cycle can vary, and has direct implication in the amount of power harvested from the

wind, as it influences the magnitude of the lift force produced. While in the traction

phase the most widely adopted approach is to fly in a circular or eight-shaped trajectory,

in order to maximize the so called apparent wind and hence the traction force on the

tether. On the other hand, the choice of an optimal trajectory for the retraction phase

of pumping-kite systems still remains as one of the greatest challenges within AWE,

given the sensitivity of the system to changes in the many inputs available, as well as

to parameter uncertainty and wind disturbances.

1.4 Objectives

The aim of this work is to develop a cycle-power optimization strategy based on

commonly available measurements and estimated variables for AWE systems operat-

ing in pumping-kite mode. The designed optimization scheme must yield, at every time

instant of the digital control scheme, optimal values for variables such as the tether

reeling speed and for the depower command, while allowing for stable operation dur-

ing both the traction and retraction phases. Moreover, it must guarantee, to some ex-

tent, robustness in face of uncertainties and varying operating conditions such as wind

gusts. Finally, all resulting algorithms must be validated in a simulation environment,

and later adapted for integration into an actual AWE prototype.

More specifically, the purposes of this work are:

• To study cycle-power optimization approaches presented in the literature and al-

ready in use by the AWE community;

5



• To identify requirements, and to specify an optimization solution capable of meet-

ing them;

• To design a solution according to the specifications resulting from the previous

item, and to implement it in software;

• To evaluate the performance of the developed solution in a simulation environ-

ment, and determine its advantages and drawbacks with respect to other solu-

tions in the literature.

1.5 Document structure

This document is organized as follows:

• Chapter 2 presents the AWE technology, trough a general overview, discussing

the mathematical models used in this work and the UFSCkite system in detail,

painting the full picture of where the developed solution will be applied;

• Chapter 3 provides a brief theoretical introduction to topics fundamental to the

comprehension of the document, including an overview of Optimal Control Prob-

lems (OCP), and Nonlinear Model Predictive Control (NMPC) techniques. It also

reviews the recent AWE literature, describing the current state-of-the-art in path

optimization for pumping-kite systems;

• Chapter 4 presents the problems that motivated this work and fully states the

proposed solution;

• Chapter 5 presents the implementation process of the solution, some problems

found and the required changes and the results obtained in a simulation environ-

ment;

• Chapter 6 finally summarizes the accomplishments of this work, discusses its

importance and limitations, and presents a series of subjects for future investiga-

tions.

1.6 Notation and units

Within this document vectors are denoted by bold characters, their Euclidean norm

by ‖.‖, and scalar values by non-bold characters. In situations involving more than one

reference frame, the frame in which a vector is expressed is indicated by a superscript.
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The symbol xk indicates the k–th sample of a discrete signal x, and when the quantity

represented by x is originally continuous, xk refers to its discretized version. When

charting vectorial signals, the x, y, and z components are represented in different col-

ors, as indicated in the legend. Scalars are always charted in blue. Otherwise explicitly

noted, all quantities are described in the International System of Units (SI).
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Chapter 2

Airborne wind energy systems

Airborne Wind Energy (AWE) systems harvest wind power by exploiting the aero-

dynamic forces acting on lightweight suspended structures anchored to the ground by

means of one or more tethers. This technology is able to reach higher altitudes than

conventional wind turbines, where the wind is generally stronger and more consistent,

while allowing for a reduction in the construction and installation costs of the power

plant, among other advantages as discussed in [12, 11, 27, 24, 10].

Research on AWE systems started in the mid seventies, with a seminal work in [24],

and despite the apparent abandonment during the nineties, the field recovered and

experienced an extremely rapid expansion in the last decade. A number of systems

based on different concepts have already been analyzed and tested.

Several institutions are entering the business of high-altitude wind energy, register-

ing hundreds of patents and developing a number of prototypes and demonstrators.

Research teams and companies all over the world are currently working on different

aspects of the technology including control, electronics and mechanical design [10].

Currently, many companies have small-scale solutions that are not yet fully au-

tonomous. These solutions are aimed to remote power and micro grids generation and

generate around 30KW of power. This market already corresponds to an immense

speculated market, however, the main accomplishment of such solutions was to vali-

date the concept of AWE systems, attracting new investments for the next stage of the

technology [19]. With a proven robust flight control and energy generation capabilities,

investors now want to enable the existing solutions to scale up the generated power

with some companies already planning to achieve 1MW of rated power by the end of

the decade.

This chapter aims to provide a notion of what exists under the AWES umbrella and

explain in detail the approach addressed in this work.

2.1 Classification

Apart from sharing the characteristic of using a structure suspended in the air to

generate energy, the different approaches to AWE vary in several different aspects.
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Due to the many differences in the existing approaches there are different classifica-

tions to AWES. The classifications hereafter presented are heavily based on [10].

According to this reference, AWES can be classified in terms of the principle that

sustains the system in the air in two groups: systems that rely on aerostatic forces, and

systems that depend on aerodynamic forces.

The systems based on aerostatic forces usually use gases lighter than the air, like

helium, to float a generating structure connected to the ground through one or more

tethers. The floating structure contains a generator, very similar to traditional wind

turbines, adapted to work with higher wind speeds while having a low weight. Figure

2.1 shows a system based on this principle developed by the company Altaeros.

Figure 2.1: Static aerogenerator constructed by Altaeros Energies [1].

Systems that depend on aerodynamic forces for buoyancy can be further classified

depending on the kind of aerodynamic force that they use to generate power. Since

they depend on aerodynamic forces, all systems in this group need to stay in movement

to stay airborne and are connected to the the ground by tethers for fixation and possibly

to transfer generated energy. The first group exploits the drag forces in the systems

trough mechanisms similar to traditional generators employed on-board. The second

group exploits the lift force that is used to keep the systems in flight to traction a cable

connected to a generator in the ground. In the latest approach it is necessary that the

cable moves to generate power. This is achieved by either a moving generator or by a

cable of variable length in combination to a reel-in back strategy.
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(a) (b)

Figure 2.2: AWES based in (b) drag forces and (a) lift forces.

Source: Adapted from [2, 3]

Another common classification criterion is in terms of the generating unit location.

Among the systems previously described, there are those that employ airborne gen-

erators that operate while flying, and some of them employ generators on the ground.

The main implication of this difference is that systems that generate energy in flight

are required to convert energy in the flying structure and transmit energy through the

supporting cable. This results in more complex electrical subsystems and cable re-

quirements. In ground generating systems this complexity resides in more traditional

systems in the ground and the tethers that hold the airfoil only transmit mechanical

energy to the generator. Systems representing each of these classes can be seen in

figure 2.2

The final classification criterion presented here is in terms of the airfoil structure.

This classification is fairly different for ground-generation and airborne-generation. Here

will be presented only the classification for ground generation airfoil types since it is

more relevant to this work.

Initially, a big number of research groups chose to use flexible airfoils since they

can withstand fall damage and are usually cheaper than rigid or semi-rigid structures.

However, these last are proven to have better aerodynamic efficiency and are easier

to handle during landing and take-off procedures, making many companies choose to

switch to these structures. Supporting Leading Edge (SLE) kites keep their form with

inflated internal structures. This makes them easier to handle during landing and take-

off in comparison to foil kites, that keep their form with the passing air. However, foil

kites have higher aerodynamic efficiency, despite the higher number of bridles, and

can be one order of magnitude larger in size.

Different airfoil structures depend on different control mechanisms, are subject to

different physical limits and different wind forces. Therefore, to adapt the solutions pro-

posed in this work to different airfoil structures it is necessary to adapt the mathematical
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models, the control variables and the restrictions imposed in the model.

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Different airfoil types in AWES. (a) LEI-SLE Kite; (b) LEI-C C kite; (c) Foil Kite; (d)
glider; (e) Swept rigid wing; (f) Semi-rigid airfoil.

Source: Adapted from [10].

Different wing types are exemplified in figure 2.3.

2.1.1 Pumping-kite mode

This work focuses on a specific group of AWES that operates in the pumping kite

mode. This is a very common ground generation mode of operation that can be em-

ployed using any kind of wing. As already mentioned, AWES that generate energy

on the ground require movement of the supporting tether to generate energy. This is

achieved by either moving the generation unit or unwinding the tether. There are a few

variations of moving base AWES, as in the trajectory of the moving base or its struc-

ture. Moving the generation structure makes it difficult to transfer the energy to the grid

and can be the source of many problems. Unwinding the tether avoids these problems

but creates another one: the need to rewind the tether back at some point. This can

be done through a retraction maneuver where the generator on the ground acts as a

motor, spending a fraction of the produced energy while the airfoil is positioned to re-
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duce the traction force on the cable. After a determined amount of cable is rewinded

a new system’s operation cycle begins. This strategy is called the pumping kite mode

and one cycle of operation is called a pumping cycle, illustrated in figure 2.4.

(a)

(b)

Figure 2.4: Pumping kite and moving-ground-station AWES

Source: Adapted from [10]

Through the rest of this document the operating stage where energy is generated

and the cable is being unwinded will be refered to as active phase, traction phase

or generation phase. The phase where the cable is rewinded will be called passive,

retraction or recovery phase.

The kite flight trajectory is very important in both operation stages, making its control

an essential part of the system’s operation. In the active phase, the airfoil trajectory is

defined to maximize the wind mechanical power harvested by the airfoil. In the passive

phase, the objective is to reduce the wind power, consequently reducing the traction

and making it easier to rewind the cable, however, the traction can not be reduced too

much, otherwise the kite would stall and fall.
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Equally important as the flight trajectory, the unwinding and rewinding speed of the

tether in both stages severely affects flight stability and power generation.

2.2 Modeling

To enable a more in depth understanding of the pumping kite system and also to

allow the development of the control and optimization solutions intended in this work it

is necessary to study the mathematical modeling of pumping-kite systems.

It is said that a control solution is only as good as the system’s model and sensors

on which it is based. This statement encourages the use of more accurate models,

however, this accuracy is usually consequence of a more complex model and model

complexity requires more computational time and complex solutions. The most com-

plex models describe the airfoil’s suffered forces and deformations in detail. These

models are often used in complex simulations but the high associated computational

cost make them unsuited for on-line optimization and control applications [12]. In the

case of real-time computations the models must be relatively simple.

2.2.1 Aerodynamics

A fixed aerodynamic profile under a constant velocity airflow We suffers the action

of two forces: a lift force (Fl) and a drag force (Fd). The drag force is always in the

same direction of the airflow while the lift force is always perpendicular. In aircraft and

in ground-generation AWES the lift force is the one explored to produce mechanical

work. In this case the drag is undesired and an ideal profile would produce infinite lift

and no drag. This concept leads to the notion of aerodynamic efficiency (E), that is

expressed as the ratio of the lift force module by the drag force module.

E =
Fl

Fd

(2.1)

Several effects influence each of these forces making a fully analytical formulation

hard to obtain and unpractical to use. In practice these effects are condensed in lift

and drag coefficients cl and cd that are used to calculate the forces module (Fl and Fd)

through equations 2.2a and 2.2b, where ρ is the air density, A is the airfoil projected

area and We is the effective wind speed module. The effective wind is the actual speed

of the wind around the airfoil and can be expressed mathematically as We = Wn − ṙ,
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where ṙ is the airfoil velocity.

Fl =
1

2
ρAcl(α, ud)W

2
e (2.2a)

Fd =
1

2
ρAcd(α, ud)W

2
e (2.2b)

The aerodynamic coefficients depend on the angle that the effective wind hits the

airfoil. This is expressed by the angle of attack α that is defined relative to the chord

line. All of the aforementioned concepts are depicted in figure 2.5. There is commonly

an actuation method upon the airfoil such as ailerons or similar techniques. For the pur-

pose of generality, we included a generic actuation named ud that has an independent

effect from α on the aerodynamic coefficients cl and cd.

Figure 2.5: Aerodynimic forces (Fl and Fd) and angle of attack (α).

Source: Adapted from [27]

2.2.2 Wind

The study and modeling of wind phenomena is quite complex, making wind speed

and direction prediction across the land and at higher altitudes the topic of many re-

searches. In the wind energy scenario the interest is usually on low altitude wind,

studying how it changes with altitude and in short periods of time. Wind changes dur-

ing longer periods of time are also studied in an attempt to predict the energy production

capacities of different locations in the future.

In the case of AWE, we assume that the airfoil operates in the atmospheric bound-

ary layer, that extends up to 600 m above ground, in which the logarithmic wind shear

model is a good approximation of the wind speed variation with altitude. This model,

stated in equation 2.3, depends on three parameters: a reference wind speed vref at

a reference altitude zref and the surface roughness z0, that represents the logarithmic
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gain with altitude due to air friction with the rough terrain.

Wn(z) = Vref
ln( z

z0
)

ln(
zref
z0

)
(2.3)

The shear wind model only captures the variation of the average wind speed with

altitude, Wn(z). Since the wind can blow in any direction it needs to be denoted as a

vector. We assume that the nominal wind is always parallel to the ground and, since

wind generators want to always be aligned to the wind, we define a coordinate system

where the x axis is aligned to the nominal wind vector hence the nominal wind is

Wn(z) =

Wn(z)

0

0

 . (2.4)

The actual wind speed relative to the ground is composed by the nominal wind plus

disturbances. These disturbances can be modeled to a certain degree by mathematical

equations that capture the effect of gusts, however, in this work we will not assume any

disturbance models.

Finally, the wind from the perspective of a moving airfoil needs to account for the

airfoil’s moving speed. This leads to the equation of the effective wind, also called

apparent wind. Where Vk is the airfoil speed and Wd are the wind disturbances.

We = Wn + Wd −Vk (2.5)

With this framework the pumping-kite models used for the rest of this work can be

introduced.

2.2.3 Point-mass model

This model, presented in [15, 9] is built upon a simpler version published in [13],

and aims at describing a tethered airfoil in a pumping-kite configuration by a set of

six dynamic states that describe the airfoil’s position and velocity in polar coordinates,

namely the azimuth angle φ, the polar θ angle and the Cartesian distance form the

origin l, together with their first-order time derivatives. The airfoil plus control pod is

represented as a single equivalent point massm at Cartesian coordinates r and subject

to aerodynamic, gravitational, apparent, and line traction forces. This point mass is

assumed to be anchored to the ground by a rigid segment of variable length r = ‖r‖ = l,

subject to aerodynamic, apparent and gravitational forces only. Additionally, the tether

can be modeled as a second point mass at half the total r distance with mass mt(r)

15



dependent on the tether length. The tether mass is expressed as

mt(r) = (1/4)ρtπd
2
t r (2.6)

where ρt is the is the volumetric mass density of the tether and dt is its diameter.

Unlike its predecessor, this model considers variations of the aerodynamic coeffi-

cients as functions of the airfoil’s angle of attack, leading to more realistic results.

More specifically, this model initially defines two reference frames: the inertial refer-

ence frame (ex, ey, ez), which is centered at the system anchorage point on the ground,

and whose ex and ez axes are aligned with the nominal wind vector wi
n = [wnx, 0, 0]T

and with the negative of the gravity vector g, respectively; the local reference frame

(eθ, eφ, er), centered at the aircraft center of gravity and whose axes are defined as

eθ = ∂r
∂θ

1
r
, eφ = ∂r

∂φ
1

r sin θ
, and er = eθ × eφ. r is defined in the inertial frame as

r =

r sin θ cosφ

r sin θ sinφ

r cos θ

 . (2.7)

Figure 2.6: Representation of inertial and local coordinate systems.

Source: Adapted from [29]

The aforementioned coordinate systems are depicted in figure 2.6.

Note that the unit vectors (eθ, eφ, er) in the inertial frame are the columns of the

rotation matrix that rotates from inertial to local frames
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Rl
i =

[
eθ eφ er

]
=

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ

 . (2.8)

The kite speed is expressed in the local frame as

V l
k = [rθ̇, rφ̇ sin θ, ṙ]T (2.9)

A simple and elegant way to derive the equations of motion is to use Lagrangian

mechanics, where the configuration of a system is described by an arbitrary, indepen-

dent set of generalized coordinates q ∈ Q. Since the tether length constraint is inher-

ently considered in the polar coordinate system, the Lagrange function of the system

is defined as

L (q, q̇) = T (q, q̇)− V (q) (2.10)

where T (q, q̇) is the kinetic energy of the system as function of its generalized

coordinates and their derivatives, and V (q) represents its potential energy as function

of the generalized coordinates at any time instant.

The Lagrange function applied to the model proposed in polar coordinates is ex-

pressed as

T (q, q̇) =
1

2
(m+

1

4
mt)[ṙ

2 + r2(θ̇2 + φ̇2 sin2 θ] (2.11a)

V (q) = (m+
1

2
mt)gr cos θ (2.11b)

From this point the equations for θ̈, φ̈ and r̈ can be obtained by soling the Euler-

Lagrange equation

d

dt

∂L

∂q̇
− ∂L

∂q
= Fq (2.12)

for each qi coordinate, where Fq is the vector of generalized forces acting on the

system, i.e. the aerodynamic forces. We arrive at the general expression for the model

equations:

θ̈ =
1

meqr
[(m+

1

2
mt)g sin θ − 2meqṙθ̇ −

∑
Fθ
ext]

φ̈ =
1

mr sin θ
[−2meqφ̇(ṙ sin θ + rθ̇ cos θ)−

∑
Fφ
ext]

r̈ =
1

m
[−(m+mt)g cos θ +meqr(θ̇

2 + φ̇2 sin2 θ)−
∑

Fr
ext]

(2.13)
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In the equations above, Fθ
ext, Fφ

ext and Fr
ext are the components of the external forces

on each spheric coordinate, and meq = (m+ 1
4
mt).

For the rest of the derivation analytical expressions for the external forces need to

be derived. Since the motion in the azimuth direction is ignored in this work, the rest of

the derivation will assume the airfoil is operating in the φ = 0 plane, reducing the state

space to θ, l and its first time derivatives.

The only external forces acting up on the airfoil are the aerodynamic forces and the

tether traction. The tether traction acts only in the direction of er, since the tether is

assumed to be a perfect line, and can only be negative since a positive traction would

mean that the tether is pushing the airfoil. This is depicted in figure 2.7. To fully

express the model it is necessary to arrive at a expression for the aerodynamic forces

acting on the airfoil and the tether. The effective wind can now be fully expressed in a

given state considering no disturbance as

W l
e = Wl

n(z)−Vl
k =

[
cos θWn − rθ̇
sin θWn − ṙ

]
(2.14)

Figure 2.7: Different forces acting on the airfoil

Source: Adapted from: [28]

The angle of attack can be defined as

α = α0 +4α = α0 + atan

(
We[r]

We[θ]

)
(2.15)

Where α0 is the angle from the airfoil chord line to the plane perpendicular to er, as

shown in figure 2.8. This angle is defined by the airfoil structure and can be either fixed

18



or variable, providing way to manipulate indirectly the aerodynamic forces. In this work

we will consider a fixed α0 since a different control input will be used to affect these

forces.

Figure 2.8: Decomposition of airfoil angle of attack.

Source: [12]

Finally the airfoil lift and drag forces can be calculated using equations 2.2a and

2.2b. leaving only the cable aerodynamic forces left to be calculated. While the cable

lift is negligible its drag can have a huge influence on the flights dynamics, mainly when

flying at high speeds. The tether drag force influence on the airfoil is expressed as

Fd, t =
1

8
ρAtcd,tW

2
e (2.16)

with At = rdt cos ∆α being the tether area projection perpendicular to the wind

and cd,t the tether drag coefficient. Considering the kite and the tether drag one can

formulate a equivalent drag coefficient cd,eq for the tether-airfoil system, defined as

cd,eq(α, ud) = cd(α, ud) +
ntcd,trdtcos(∆α)

4A
(2.17)

With the perfectly stiff tether assumption the airfoil efficiency can be defined as

E = cl/cd,eq.

We can now state the complete form of the equations of motion:
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θ̈ =
1

meqr
[(m+

1

2
mt)g sin θ − 2meqṙθ̇ +

1

2
ρAW 2

e (−cl(α, ud) sin ∆α + cd,eq(α, ud, r) cos ∆α)]

r̈ =
1

m
[−(m+mt)g cos θ +meqrθ̇

2 +
1

2
ρAW 2

e (cl(α, ud) cos ∆α + cd,eq(α, ud, r) sin ∆α)− Tt]
(2.18)

In equation 2.18, the tether traction Tt is a manipulated variable. However, in many

cases the tether acceleration is manipulated, in which case Tt and r̈ switch sides in

equation 2.18.

2.2.4 The point-mass wing in dynamic equilibrium

The previously described model models the dynamical behavior of the system.

However there are many relations that are already accounted for in the dynamical

equilibrium of the airfoil, where it moves at constant speed. This motivates the use of

simpler, in-equilibrium model, that can be used for optimization purposes. This model

has been presented in [31] and expanded in many works, including [12], and [15].

When suffering no acceleration, the forces acting on the airfoil, represented in figure

2.7, cancel each other. The analysis on each local coordinate decomposition leads to

the two following equations

Fl sin ∆α− Fd cos ∆α = 0

Fl cos ∆α + Fd sin ∆α− T = 0
(2.19)

In these equations, the weight force is being disregarded, which usually has very

low values relative to the aerodynamic forces. Replacing the expression of the aerody-

namic forces presented in equations 2.2a and 2.2b and the expression of the effective

wind from equation 2.14 a simplified equation for the tether traction in equilibrium at

zero azimuth is found

T =
1

2
ρAcl

1

E

(
1 +

1

E2

) 3
2

(Wn sin θ − ṙ)2 (2.20)

By solving equations 2.19 one can find the dynamic share of the angle of attack:

∆α = arg {cl(∆α + α0) ∗ sin ∆α− cd,eq(∆α + α0, r) ∗ cos ∆α = 0} (2.21)
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2.3 The UFSCKite System

The UFSCKite prototype, focus of this work, is a pumping kite mode AWES of 12KW

rated power that uses a foil kite. In this section the many aspects of the system will be

presented, from the prototype structure and the actuation and measurement hardware

to the control and filtering system. It is important to highlight that the choice of con-

trol strategy and instrumentation were not part of this work, but was already made by

engineers of the UFSCkite group.

2.3.1 Actuation

The kites in pumping kite mode systems usually have two actuation mechanisms:

one to affect the airfoil’s steering, to make curves, and other that reduces the system’s

aerodynamic efficiency, enabling a reduction on the cable’s traction. This last actuation

is usually refered to as "depower" and was previously denoted as ud. The working

principle behind these actuations varies for different wing types. For rigid wings it may

be used structures similar to airplane’s ailerons that change the base angle of attack

α0, whereas in flexible wings it is usually achieved by deforming the airfoil structure

which alters the aerodynamic coefficients. Since the system considered in this work

uses a foil kite, the steering and depower actuations will be further explained for this

specific type of airfoil.

In foil kites, there are usually cables connected to four regions in the airfoil called

lines. The three lines in the "front", near the leading edge exert a stronger traction on

the cables while the back line, called F-line, see figure 2.9, exerts a smaller force, thus

offering a smaller resistance to the intended actuations on the airfoil [12].

The cables connected to the F-line are control cables of variable length. They can

be released or pulled either differentially, to give a a steering command, or together, to

have a depower effect.

Motors are necessary to pull or release the control cables. In the presented system,

these motors are located in a control module that flies close to the airfoil and to which

are connected all the tethers of the airfoil. This scheme allows for a single traction

tether to be used to connect the control module, also called control pod, to the gen-

erator on the ground and, as the actuation tethers can be smaller, it allows for faster

actuation. On the other hand, the flying control unit adds weight and complexity to the

system besides requiring an energy source to power it. Alternatively, the control and

traction tethers could all be attached directly to a single control unit on the ground. The

disadvantages of such alternative is the drag produced by the extra cables and the

additional actuation delay. Both schemes are depicted in figure 2.10.
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Figure 2.9: Attachment lines to the airfoil and control lines position.

Source: Adapted from [12]

2.3.2 Measurement

The measurement scenario in AWES is quite diverse with many solutions still being

explored. The UFSCKite system during the development of this work has measurement

information of the following physical quantities: tether length, speed and acceleration,

kite position, main tether traction and wind speed.

The tether’s position, speed and acceleration can be directly obtained from the

digital inverter that controls the ground unit motor/generator. To achieve better precision

an external encoder is used on the motor’s rotation axis.

The kite position is measured indirectly through two measurements: the main tether’s

direction and length and a radio frequency triangulation system. In the first case, two

encoders measure the angles of the tether relative to a reference direction in the ground

plane. To calculate the kite position from this information the cable is considered to be

perfectly stretched in a line. In reality the tether presents a small curve due to its weight

and the aerodynamic drag that it suffers, but the assumption is a good approximation if

the tether is under a sufficiently high traction. The radio frequency triangulation system

measures the distance of the kite to four anchor points in the ground using the round

trip time of radio signals from the anchor points to a radio module attached to the kite.
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(a) (b)

Figure 2.10: AWES control using (a) a control pod and (b) through the power tethers.

Source: Adapted from [10]

This second system is still under experimentation phase but it provides a more exact

measurement since it is not influenced by the tether curve.

The tether’s traction is measured using load cells, being simple and efficient.

The wind speed is measured with an off-the-shelf anemometer at a reference alti-

tude. This measurement is then used as reference wind speed (Wref ) at a reference

height (zref ). Besides the wind speed, the anemometer also provides the wind direction

on the ground plane. Note that a measurement of the wind at the kite’s altitude is not

available. This, among other reasons to be mentioned, motivates the need of a filtering

strategy to determine model parameters.

2.3.3 Filtering

Filtering can be employed for different purposes in a AWES but the two most signifi-

cant applications are fusing sensor data to provide a more reliable position and velocity

data, and estimating diverse system parameters.

This works was developed considering that the filtering algorithms of the target

system are able to provide an estimation of the aerodynamic coefficients depending

on the airfoil’s angle of attack and its depower actuation, besides also estimating the

current angle of attack. Since such filtering algorithm was not available at the time

this work was developed the aerodynamic coefficient surfaces were built using curves

borrowed from the literature for the variation with respect to the angle of attack and

adding a sigmoid curve factor to the depower actuation, yielding the surface shown in

figure 2.11
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Figure 2.11: AWES Aerodynamic efficiency as a function of the angle of attack (alpha) and
the depower actuation (dep).

Source: Original

2.3.4 Control architecture

While all other topics covered in this section influence the work developed the con-

trol architecture already employed by the UFSCKite group is certainly what influences

the most, since the solution proposed in this work should be compatible with the UF-

SCKite prototype. The architecture employed follows a decentralized control strategy,

where the flight path and the tether length of the system are controlled locally.

The steering command is computed to make the kite follow a predefined lemniscate

trajectory through a course angle controller. The full design of this system can be

studied in [12]. Separately, the reeling speed of the winch is manipulated to impose an

off-line generated traction trajectory by a traction control system. At last, the depower

reference is generated together with the the traction trajectory and is directly applied

by the servomotors.

The use of a decentralized control approach allows for the design of controllers with

faster processing times and overall better results. The reference generation is closely

related to the airfoil’s trajectory in space and is where the solution proposed in this work

fits the control architecture.

Solutions currently found in the literature are able to generate off-line optimized

references for tether traction, depower actuation and kite trajectory parameters. The
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main problem for this approach is that the off-line calculated trajectories are optimized

for a given nominal wind condition and for a expected set of system parameters.

The kite trajectory parameters previously mentioned are the parameters that define

a fixed lemniscate shaped trajectory. This target trajectory defines course angle refer-

ence, a variable based on which the steering input is computed. The course angle is

the direction of the kite movement on the eθxeφ plane.
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Chapter 3

Related Work and theoretical

background

The main points of study required for the development of this work were AWES,

previous works of optimization of pumping-kite systems and general optimization and

predictive control. Since this is the first work in the UFSCKite group to attempt to use

predictive control for a pumping-kite system and the first experience of the author with

optimization and predictive control, there was a lot to be covered. This chapter attempts

to condense the most essential information in two sections, one to cover the required

knowledge of predictive control and optimization, and another to review the strategies

adopted in previous works.

3.1 Nonlinear model based predictive control

Model predictive control (MPC) is an advanced control technique that has reached

a high number of industrial processes since its initial adoption. The general idea behind

this class of controller is to use a mathematical model to predict the dynamical behavior

of a system and calculate a control action that minimizes a chosen cost or objective

function. From this general idea, the different MPC techniques vary in three main

aspects:

• The prediction Model

• The objective function

• The method to obtain the control law

The most widely used MPC techniques, the Dynamical Matrix Control (DMC) and

the General Predictive Control (GPC), use linear models based on the step response

and transfer functions, respectively, and use a very similar objective function and con-

trol law formulation. The most common cost function is composed of a tracking er-

ror penalization factor and a control variation penalization factor. These factors are
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weighed for each future discrete sample time in a finite prediction horizon of N sam-

ples where N is expressed by a beginning sample N1 and an ending sample N2, with

N = N2−N1+1. The future control increments are calculated up toNu ∈ {1, 2, 3, ..., N2}
samples. The cost function is then expressed as

J(∆u) =

N2∑
j=N1

δ(j)[ŷ(t+ j|t)− w(t+ k)]2 +
Nu∑
j=1

λ(j)[∆u(t+ j − 1)]2

For MIMO systems there is a δi weight vector for each controlled variable yi and a

λi weight vector for each manipulated variable increment ∆ui. Similarly, in the multi-

variable case, different control and prediction horizons can be defined for each variable.

The optimal control vector is calculated for the entire control horizon Nu, however,

only the first control is applied. After that, the horizon is shifted and fed with new

measurements from the system. This is called the receding horizon strategy.

The quadratic form of the cost function leads to good convergence properties of nu-

merical methods and even to a known analytical solution given by the Linear-Quadratic

Regulator (LQR). This solution, however, is for the unrestricted case with an infinite

horizon. By using a quadratic programming solver, the solution subject to a set of

linear restrictions given by A∆u ≤ b and Aeq∆u = beq is found.

From these classical methods many variations and sophistications have been pre-

sented. Since most real processes are inherently non-linear, linearization techniques

are used to obtain the model. For many processes this procedure is acceptable, be-

cause the linearized model represents the system very well around the linearization

point. For other processes, however, a more complex representation is necessary.

According to [25] there are three main different approaches for nonlinear model

predictive control:

• MPC with non-linear prediction models on the objective function

• Methods based on particular models

• Methods based on linearization

The first approach is perhaps the most natural as it attempts to use the non-linear

model equations to directly derive the objective function. This approach uses non-

linear optimization methods such as interior-point methods (IP) or sequential quadratic

programming (SQP). The receding horizon characteristic is maintained but the opti-

mization problem to be resolved in each time step adopts a more general form
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minimize
u

f(W,Y,up,u)

subject to h(u) = 0

g(u) ≤ 0

where W is the future reference vector, Y the vector with future and past controlled

variables, up the past control variables and u the present and future control variables.

Besides that, f needs to have a single output and f , h and g need to be continuous

and at least two times differentiable.

The second approach uses particular non-linear models to approximate the real

model, like Volterra Series or Hammerstein models [26] [7]. This may be interesting if

the selected models are a good approximation for the system as they may facilitate the

optimization process.

The third approach consists in using a linearized version of the model for the con-

troller synthesis. Usually these formulations encompass linearization at multiple opera-

tion points of the system and a modeling error treatment technique. Another approach

is to linearize the system at every sample period, by replacing the nonlinear problem

with a sequence of linear problems, achieving simplification but not guaranteeing opti-

mality or convergence [18].

The first model predictive controllers to be applied in AWES employed the first ap-

proach using the non-linear models directly to predict the system. The most recent

successful approaches have come closer and closer to successive linearization ap-

proach described last. For this reason, the next sections describes briefly the general

formulation of non-linear optimal control problems, an adaptation of this class of prob-

lem for real-time solution, as a MPC technique, and finally a practical non-linear MPC

as in [25] is presented.

3.1.1 Optimal control problems

Just like the general idea of MPC, optimal control problems (OCP) use a system

model and a given cost function to calculate the future control actions that minimize the

cost function. Unlike the MPC, this more general class of problems are not designed

to be applied online and calculated at every step. This section is heavily based in the

summary presented in [17] and does not cover in detail the inner works of the optimiza-

tion algorithms employed. The focus of the section is to state how these optimization

problems are defined to later show how a NMPC approach is derived.

Optimal control problems usually define an optimization problem that falls in the

class of nonlinear programming (NLP), a particular class of problems in the continuous
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optimization class of problems that fits the following formulation:

minimize
w∈IRn

f(w)

subject to h(w) = 0

g(w) ≤ 0

where f : IRn → IR, g : IRn → IRm and h : IRn → IRp.

OCP usually are based in state-space representation of systems. Where the sys-

tem is fully represented by a set of state variables such that its dynamical behavior is

described by the first time derivative of these variables and is affected by control inputs

u(t) and disturbances q(t).

ẋ(t) = Φ(x(t),u(t),q(t))

Since most real life processes are continuous one may implement a continuous

optimal control problem, or calculate a discrete equivalent of the system and build a

discrete optimal control problem. For continuous optimal control problems, however,

the most successful approach has been direct methods that replace the continuous

problem into a discrete and finite non-linear problem.

Discrete optimal control

Discrete systems are usually periodically sampled continuous systems such that the

time evolution depends on an integer representing the sample number that implicitly

multiplies the sample period. Discrete system dynamics can be modeled by an update

law such as:

xk+1 = Φk(xk,uk,qk), k = 0, 1, 2, ..., N − 1

Where once again the concept of prediction horizon is employed. A generic cost

function can be defined for NLP of a general discrete OCP, with a term L(xk,uk) that

is evaluated for every sample time within the prediction horizon and a E(xN) term that

penalizes the final state differently. These terms are commonly denominated stage

cost and final cost, respectively. The NLP then solves for both the values of control

inputs and the controlled variables in every sample time in the horizon while ensuring

the dynamic constraints imposed by the dynamical equations of the system.
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minimize
x0,u0,x1,...,uN−1,xN

N−1∑
k=0

L(xk,uk) + E(xN)

subject to xk+1 − Φ(xk,uk) = 0, k = 0, ..., N − 1;

h(xk,uk) ≤ 0, k = 0, ..., N − 1; r(x0,xN) ≤ 0.

Besides the dynamical equations of the system, it is also included general path

constraints h at boundary conditions imposed by r. Path constraints ensure general

constraints like control variable saturations, skew rate saturation, overshoot require-

ments, etc while boundary conditions may include periodicity constraints, i.e. x0 = xN ,

fixed initial states and set-points.

Continuous optimal control

Conceptually the continuous OCP formulation is analogous to discrete OCP but the

states and manipulated variables evolve in the continuous domain. This way, the stage

cost is evaluated in a integral and optimization horizon is expressed in a continuous

time interval [0, T ], resulting in the following NLP

minimize
x(.),u(.)

∫ N−1

0

L(x(t),d(t))dt+ E(x(T ))

subject to ẋ(t)− Φ(x(t),u(t)) = 0, t ∈ [0, T ];

h(x(t),u(t)) ≤ 0, t ∈ [0, T ];

r(x(0),x(T )) ≤ 0.

As commented before, one of the most successful methods for solving an OCP

are the called direct methods. The idea behind these methods is to use numerical

simulation methods in a discrete and defined time grid 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tN = T ,

where tk+1 − tk = tk − tk−1 is not necessarily true. As a result, the infinite set of

decision variables x(t) and u(t) is reduced to a finite amount xk and uk that represent

the previous set at the discretization nodes. The constraints are also evaluated only at

the discretization nodes completely transforming the previous continuous OCP into a

discrete OCP formulation.

Within the direct methods there are still different methods to discretize the continu-

ous dynamics. Here will be presented two of the most common methods: single shoot-

ing and multiple shooting. Another common construction that will not be presented

here is the direct collocation.
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Single shooting

The single shooting method models the control u(t) by piece-wise polynomials in

the time grid defined by 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tN = T . The most common modeling

is piece-wise constant control so the control is defined as U = (u0,u1, ...,uN−1), with

uk constant in the interval [tk, tk+1]. In this way the states x(t) can be defined by a

numerical integration algorithm, the initial state x0 and the controls U, being written as

x(x0, t,U). As a result, the general continuous OCP can be completely rewritten as

minimize
x0,U

∫ N−1

0

L (x(x0, t,U),U) + E (x(x0, tN ,U))

subject to h (x(x0, tk,U),uk) ,uk ≤ 0, k = 0, 1, ..., N − 1;

r (x(x0, tN ,U)) ≤ 0.

Multiple shooting

The multiple shooting method, initially proposed in [8], models the control as a

piece-wise polynomial in the same way that the single shooting method does. The

difference between the methods is how the multiple shooting method treats the state

variables discretization. Instead of modeling it as a function of the initial state and the

controls, it leaves the state variables at the discretization nodes as a decision variable

for the NLP and numerically integrates the dynamic equation to restrain the calculated

solution to a set that respects the systems dynamic equations.

Φk(xk,uk)− xk+1 = 0

Finally, the stage cost factor of the objective function is approximated by the cost at

each discretization node that approximates the integral of the original stage cost from

[tk, tk+1]:

∫ N−1

0

L(x(t),d(t))dt =
N−1∑

0

∫ tk+1

tk

L(Φk(tk+1,xk,uk),d(t))dt =
N−1∑

0

lk(xk,uk)

Giving the final NLP below.
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minimize
x0,...xN ,U

N−1∑
0

lk(xk,uk) + E (xN)

subject to x0 − x0 = 0,

Φk(xk,uk)− xk+1 = 0, k = 0, 1, ..., N − 1,

h (xk,uk) ,uk ≤ 0, k = 0, 1, ..., N − 1,

r (xN) ≤ 0.

The first constraint determines the system initial condition and the last one can

ensure zero reference tracking error, for example.

3.1.2 Online optimization problem

The OCPs presented so far can all be used to build a PNMPC with some sort of

adaptation. The discretized time intervals would be required to have a fixed time step

and the receding horizon procedure would have to be followed, solving the OCP at

every sample time with updated measurements and applying only the present manipu-

lated variables calculated. However, a concern that was not previously present arises:

the need to solve the OCP as fast as possible. Solving the OCP faster means that

a smaller sample period can be used enabling the control system to react faster to

unknown disturbances.

Many works in the AWE community use an algorithm that adapts a nonlinear opti-

mization algorithm into a a real-time NMPC. The algorithm, that will be briefly explained

here, is commonly addressed as the real-time iteration scheme.

This scheme adapts the Sequential Quadratic Programming (SQP) optimization al-

gorithm, that solves a sequence of optimization subproblems, each of which optimizes

a quadratic model of the objective subject to a linearization of the constraints. However,

instead of optimizing multiple subproblems in one MPC iteration, the real-time iteration

scheme solves only one subproblem at each MPC iteration and takes advantage of

the shifting horizon concept to have enough time to find a solution for the nonlinear

problem. This is only possible when using shift initialization, that is, when using the

shifted solution of the previous MPC iteration as the initial guess for the optimization

problem of the current iteration. With that, the current solution has already been solved

for multiple times since the current time entered the prediction horizon.

When using the shift initialization it is necessary to guess a value for the last sample

time of the horizon, since it has not been solved for previously. The most simple and

effective method to obtain a good initial guess is to just repeat the last value of the

previous horizon. This is even more effective when the decision variables are under
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variation constraints, limiting the real solution to the vicinity of the guess.

3.1.3 PNMPC

The approach previously presented to NMPC is originated in general optimal control

problems and adapted for an on-line controller case. That resulted in a control strategy

very different from the classical MPC algorithms. A second approach was studied that

is more closely related to the classical MPC techniques, allowing to apply the extensive

knowledge, variations and techniques of the linear case to the non-linear case.

In this section, the practical non-linear model predictive control (PNMPC) technique

proposed in [25] based on the linearization of the system at every sample period will

be presented, together with some techniques that can be used to compensate model

mismatch and improve model robustness.

The PNMPC technique was developed directly in the discrete domain and uses the

concept of free and forced response used in the GPC and DMC techniques. This di-

vides the system response in two parts: the response due to the previous control inputs,

keeping the future control signal constant, and the response due to future variations of

the control signal.

This separation is always valid for linear time invariant systems by the principle of

superposition. In this case, the vector of predicted variables within a prediction horizon

N is given by

Ŷ = F(
−→
U ,
−→
Y ) +G∆u

Where
−→
U is the vector of previous manipulated variables and

−→
Y the vector of pre-

vious controlled variables. ∆U represents the present and future increments of the

manipulated variables within the control horizon Nu. The expression for the free re-

sponse can be rewritten using the state variables of the system instead of the previous

controlled and manipulated variables.

In the most general case, the non-linear dynamic equations of the system can be

used to rewrite any system dependent on a process variable u to a dependency on an

u0 and a ∆u vector. The non-linear state space representation is

yk = f(xk)

xk = Φ(xk−1,uk−1)

where yk, xk and uk may represent a single or multiple control, state and ma-
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nipulated variables, respectively. From these equations the predictions ŷk+j for j =

1, 2, ..., N can be rewritten as

ŷk+j = f(Φ(...Φ(Φ(xk−1,∆uk),∆uk+1), ...),∆uk+j−1) = Φ∗(xk,∆U)

The PNMPC technique proposes to approximate the Φ∗ function by its first order

Taylor series approximation. This allows for the vector of predictions to be written as

Ŷ = Φ∗(xk, 0) +
∂Φ∗

∂∆U

∣∣∣∣
∆U=0

∆U = F +GPNMPC∆U

Where GPNMPC is the jacobian of the Φ∗ function defined in the SISO case as

GPNMPC =


∂ŷk+1

∂∆uk
0 ... 0

∂ŷk+2

∂∆uk

∂ŷk+2

∂∆uk+1
... 0

... ... ... ...
∂ŷk+N

∂∆uk

∂ŷk+N

∂∆uk
... ∂ŷk+N

∂∆uk


∣∣∣∣∣∣∣∣∣∣
∆u=[0,0,...,0]

(3.1)

Practical procedure to obtain GPNMPC and F

One of the main advantages of the PNMPC is that it can be used with any type

of model if it is possible to simulate the model. This is possible through the use of

a practical procedure that allows to obtain the values of the GPNMPC matrix and the

free responses F by running multiple simulations. The procedure, described bellow, is

repeated at each sample time and for each system output.

1. The free response F is obtained by executing the model with the past inputs and

outputs and with the ∆u =
[
0 0 0 ... 0

]
.

2. The first column of the GPNMPC matrix is obtained by first obtaining a Y1
P vec-

tor by executing the model with the past inputs and outputs and with ∆u =[
ε 0 0 ... 0

]
where ε is a relatively very small value. Then GPNMPC(:, 1) =

Y1
P−F

ε

3. The other columns of GPNMPC are obtained similarly by exciting a different ele-

ment of ∆u.

This procedure allows the algorithm to be executed with arbitrarily complex models,

however, it requires repeated simulations of the system every time the GPNMPC matrix

and the free responses are updated.
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Model mismatch treatment

In [25] it is also proposed a model mismatch treatment to the PNMPC technique

as depicted in figure 3.1. it considers a fixed additive correction factor η(k) for each

uncorrected system output ysc(k) during all the prediction horizon. This correction is

calculated by filtering and integrating the prediction error of each system output defined

as e = ŷ(k|k − 1)− y(k).

Figure 3.1: Block diagram for model mismatch and noise treatment.

In most cases a first-order filter in the form of F (z) = 1
fdz−1−1

is used. The same

author also defines a procedure to determine the integration gain of the filter ki and its

time constant fd to specify a critically damped response for the corrected error dynamic.

3.2 Pumping-kite optimization strategies

Contrary to wind turbines, where the trajectory of the blades (airfoils) is given by

the physical constraints of the rotor, pumping-kite systems require a path optimization

to maximize the energy production of the system. Overall, the path optimization is

closely related to the control architecture employed and most of the previous work in

this area falls in one of the two following categories: works that used decentralized

control architectures, computing the kite steering and the tether’s reeling speed con-

trol inputs separately, and works that employ multi variable control to jointly determine

these control inputs. The groups with decentralized control strategies tend to also em-

ploy different optimization strategies for the traction and retraction phases. The off-line

trajectories used in the second case are usually the product of an off-line OCP.

Much of the work in power optimization of pumping-kite systems focused on the

optimal path on the fixed tether length sphere during the traction phase. However, this
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path is defined mostly by the airfoil’s steering command, what is not the focus of this

work.

3.2.1 Off-line path generation

Following the strategy to calculate an off-line optimum solution as OCP, in [22] an

OCP with closed orbit constraints, where the final state is equal to the initial state, is

defined to maximize the mean power generated in a pumping-cycle considering just

one eight-figure. The mean power generated is the ideal cost function as it weights not

only the total energy of each phase but also how much time is spent generating and

consuming energy. The problem was discretized using direct multiple shooting method,

and it was used as control inputs to the kite roll angle, lift coefficient and length of tether.

This solution resulted in a asymmetrical eight-shape where the final part of the path,

performed close to the φ = 0 plane, was used to reel-in the tether back to the initial

condition.

A very similar formulation was implemented in [21]. In that work, an optimal circular

orbit for a rigid wing pumping-kite system is calculated. The set of manipulated vari-

ables set is composed of the tether reeling acceleration, and the angles of the ailerons

and elevator of the airfoil, that have steering and depower effects on the trajectory. To

restrict control input variation, the decision variables for the optimization problem are

the derivatives of the manipulated variables.

All the works presented so far are limited to off-line optimal path calculations. In

[17], a closed optimal trajectory for a pumping-kite system with flexible airfoil and eight-

shaped traction phase is calculated through an optimal control problem formulation.

Then, it proposes a path-following NMPC combined to an estimation algorithm to follow

the off-line calculated optimal path. Similarly to the previously presented works, the off-

line path is calculated to maximize the average cycle power, and also like the previous

works, it uses direct multiple shooting to discretize the problem and interior-point non-

linear optimization to solve the created NLP.

The solution given by the OCP varies depending on the initial condition and the

problem formulation. The problem described above was constructed using different

coordinate systems, obtaining different results. The author speculates that the different

formulations alter the solver convergence resulted in different local optima. Figure 3.2

shows the solution to the most successful formulation at different iterations of the NLP

solver.
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Figure 3.2: NLP solution iteration optimizing a pumping-cycle average cycle power.

Source: [17]

The work presented in [17] is interesting because it also considers how the op-

timal control can be applied and addresses some of the consequences of using an

off-line generated optimal path. An off-line generated path is only optimal for the set
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of parameters and wind conditions for what it was generated, however, an economical

NMPC that would attempt to solve for the maximum average cycle-power trajectory is

unfeasible due to the complexity of the control problem, the required prediction horizon

and lack of convergence guarantees once the cost function is non-linear. To address

these problems a tracking NMPC with an on-line estimator and a time warping strategy

is employed. The time warping tries to adapt the optimal path calculated to the cur-

rent wind condition and the on-line estimator enables a good path following even with

parameter variation.

3.2.2 Traction phase optimization

While all the previously presented works are based on a closed trajectory OCP

formulation other works aim to optimize different criteria in specific operation moments.

These methods are usually less computationally expensive and easier to be adapted

to on-line optimizations. In [32] it is argued that the off-line optimization approach

leads to suboptimal results due to different wind conditions and system model errors.

Besides, it is defended that the "location of the path" with respect to the wind direction

is much more important than the path shape. One of the first works in this approach

was [15], that used the in-equilibrium airfoil model to define traction and retraction

phase by constants polar angles θ, reeling speeds ṙ, and lift and drag coefficients

cl and cd. A single constant value could be used to describe each phase because

it was assumed that the tether length variation ∆r would be small compared to the

optimal operation length r∗. This assumption, however, leads to very short traction and

retraction phases what is undesired in practice when one accounts for the transition

time between phases, when the airfoil is not in perfect traction or retraction conditions.

In [31], it is presented a reeling-out factor expression that maximizes the instan-

taneous power during the traction phase. The reeling-out factor is a relation of the

reeling-out speed with the wind speed, resulting in the optimal value ṙ∗ = 1/3sinθcosφWn,

where Wn is the nominal wind speed at the airfoil position. In [12], a pumping cycle

optimization is proposed that maximizes the average cycle power by an iterative pro-

cess considering a given retraction phase strategy. This resulted in a reeling-speed

25.8% lower than the one that maximized the instantaneous power, obtaining a 9.3%

increase in the cycle power. This happens because a smaller reeling-speed generates

less power but during a longer period of time, therefore increasing the net power gen-

erated during the whole pumping-cycle. This result is supported by the OCP previously

presented in [17]. Figure 3.2 shows the optimization iterative solution where a solution

with an extra lemniscate is achieved.

It is common, in the optimization of the traction phase, to not approach the opti-
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mization of the lemniscate or circle φ position. It is quite easy to show that the best

φ position of flight is directly aligned to the wind speed, what in the inertial coordinate

system corresponds to φ = 0. Therefore, systems where the speed direction can be

measured will align the center of the path trajectory with the wind direction.

3.2.3 Retraction phase optimization

In spite of being complementary to the traction phase, only a few papers have

been published with the focus on the retraction phase. However, observe that it does

not matter that the traction phase generates huge amounts of energy if this energy

needs to be spent during the airfoil recovery. Ideally, an optimization strategy needs

to consider how each phase affects each other and always aims to maximize the cycle

power.

During the evolution of pumping-kite systems different retraction maneuvers were

proposed. With flexible airfoils, like kites, is where the most options were discussed.

According to [28] there are three maneuvers that can be used to perform a kite retrac-

tion in a pumping-kite system:

• Wing glide maneuver: consists of pulling the kite like a flag, with the apparent

wind aligned to lateral axis of the kite.

• Low-power maneuver: consists of first leading the kite to the border of the wind

window, that is, to a region where the wind provokes a weaker aerodynamic force,

and only then rewinding the tether with a very low traction force.

• Dive maneuver: consists of using a continuous depower actuation to rewind the

tether while it is heading to the border of the wind window.
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Figure 3.3: Different retraction maneuvers present in the literature.

Source: [28]

The first maneuver was proposed in [15] along with an optimization strategy similar

to the one proposed for the traction phase, where it approximated the kite behavior

during the retraction phase by the behavior in a single trajectory point. Once again this

optimization strategy becomes inadequate if the tether length variation during operation

is not very small. The maneuver itself also faced problems in account to the challenges

to re-orient the kite after the retraction has ended.

The low-power maneuver, also proposed in [15], presents a very reliable way to

retract the kite and a smaller control challenge with respect to the previous maneuver,

what encourages its use in real life systems still under development. In fact, it has

been successfully used in systems with no depower actuation. The main problem with

this maneuver is that it takes a long period of time to complete diminishing the power

generation time and consequently the cycle-power.

For being able to remedy the low-power maneuver problem while avoiding the re-

orientation challenges of the wing glide maneuver, the dive maneuver is the choice

of many systems. During this maneuver the kite must be guided to the border of the

wind window, i.e. the kite "dives" toward the gorund station while the polar angle θ

decreases, where the traction force is weaker.

In [12] a retraction optimization is presented where the optimal retraction trajectory

is defined by a traction force reference trajectory and a depower actuation trajectory.

For simplicity and actuation limitations both trajectories were defined as ramps with

fixed coefficients so that the only decision variables were the final values of traction

force and depower. This process, however, was only applied as an off-line optimization.

In [23], it is studied the influence of choosing different wind window border locations
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to head to during the retraction phase with constant traction forces and the variation

of the optimal traction force with the wind condition. Figure 3.5 shows the normalized

cycle power for different traction forces and retraction way-points. A retraction way-

point defines a (θR, φR) points for which the kite is headed during the retraction phase.

The effect of different way-points can be seen in figure 3.4.

Figure 3.4: Retraction trajectory with different way-points.

Source: Adapted from [23]
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Figure 3.5: Normalized cycle power for different retraction way points (θR, φR) and traction
forces with a reference wind speed of 9 m/s. Dark blue curve - (90,0)o; green - (90,30)o; red -
(90,60)o; yellow - (90, 90)o; light blue - (60, 90)o; black - (30, 90)o

Source: Adapted from [23]

It can be observed that the optimal path for the retraction phase for most wind con-

ditions is to move the airfoil against the wind in the φ = 0 plane. The main advantage

of this trajectory is that as the kite moves in the direction of the ground station it comes

closer to a position where the tether goes straight up. This results in a gradually big-

ger gravity force in the direction of the tether, reducing even more the tether traction.

In very strong wind conditions, however, the φ = 0 trajectory presented a sufficiently

strong apparent wind to attain the reference traction force without the need to increase

the tether reel-in speed, resulting in suboptimal solutions.

The final optimization solution in [23] proposed an iterative strategy to define the

retraction way-point and the final traction force in order to maximize the average cycle

power considering that the traction varies from the traction phase value to the defined

final traction in a ramp with fixed coefficient.

3.2.4 Phase transitions and the transition phase

The first optimization strategies just discussed did not account for the maneuver

between the traction and retraction phases and vice-versa. In the closed-orbit OCP

approach this was naturally accounted for and this was a strong argument in favor of

the use of this approach.
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More recent works have addressed this issue thoroughly, defining conditions for the

beginning of each phase and pondering the time and power of these transitions. The

transition from the traction to the retraction phase however, is almost seamless, once

it is guaranteed that the retraction phase begins at the same point in space where the

traction ends. The retraction phase, on the other hand, has its end defined only by the

tether length and it frequently ends at a low θ value where the airfoil is near the zenith.

To start another traction phase the airfoil needs to move to the traction phase region,

what may take some seconds to happen. To work with a closed orbit with no undefined

intervals this period where the airfoil moves from the end of the retraction phase to the

beginning of the traction is called the transition phase.

With this in mind the full set of conditions to change from one phase to the other

can be presented.

• From traction to retraction phase: tether length must have reached a maximum

value and, to ensure a smooth transition, the airfoil must have its velocity vector

as close as possible to upwards. The latter condition can be θ̇ ≥ 0 and |φ̇| ≤ ε,

where ε is a very small value.

• From retraction to transition phase: The tether length must have reached a

minimum value.

• From transition to traction phase: The airfoil must have reached a minimal

polar angle θ ≥ θmin.

In systems where there is no transition phase, the traction phase begins at the

retraction end-point. In [23] it is argued that this is undesired because a premature

traction phase initiation will reel-out the tether with a smaller tether traction, resulting in

a smaller power generation.

3.3 Final remarks

This chapter covered the most relevant works that affected the solution to be pro-

posed in this work. In the nonlinear model predictive control the general two ap-

proaches were presented, providing options for the design of the solution. However,

several other algorithms and techniques on the topic were not studied or discussed,

characterizing a vast field of exploration for alternative works. The second section

covered the different trajectory optimization options that serve as reference or as a

comparison for the solution that will be proposed in the following chapter.
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Chapter 4

Trajectory optimization strategy

This chapter covers the design and details of the trajectory optimization algorithms

proposed for each phase of a pumping-kite system. The solutions are proposed con-

sidering the system’s control architecture and the requirements that will be presented,

and based on the reviewed related works.

The requirements of a trajectory optimization strategy are invariably related to the

solution’s optimality, its robustness to noise and uncertainties, and its performance.

The first two requirements are exclusively related to the algorithm’s design and do

not depend on the hardware used for implementation. Performance requirements,

however, are dependent on both implementation choices and algorithm design and

indirectly affect the other requirements, since a limited computational time limits the

optimization algorithms complexity. Moreover, a lengthier computational time limits the

execution frequency of the algorithm leading to slower response to disturbances.

With all that in mind, the performance requirement was the first to be settled. Based

on the system dynamics it was desired that the algorithm runs at least ten times per

second, defining a target sample time of 100 ms. Considering the currently employed

hardware, a 1GHz single core single board computer, that is a very ambitious target.

However, this requirement does not need be directly tied to the current hardware, given

that a second computation unit dedicated to the optimization algorithms could be added

or the current one could be upgraded. Using the hardware as a degree of freedom

relaxes this requirement, but this target value must be kept in mind as a complexity

limit for the proposed solution.

To evaluate the solution’s optimality is also not easy. In most cases the problem

formulation seeks to guarantee that the solution is optimal based on a given criterion,

but even in this case it is necessary to address the possibility of local optima, that

is still a challenge in non-linear optimization. The most promising approach found

in the literature is to define a closed OCP for the complete pumping cycle, however,

previous solutions have only used this approach to generate off-line trajectories due to

the high computational cost of non-linear optimization algorithms, lack of consistency

of the solvers, and the resulting problem size on account of the pumping cycle duration,

which is typically in the range of a few minutes.

Although the traction phase optimization algorithms presented have shown good
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results and are light enough to be executed on-line, as done in [23], the retraction

phase algorithms are still either too slow to be executed on-line or depend on the mea-

surement of multiple pumping-cycles to converge. The reviewed works also define

rigid trajectories for depower and traction force during the retraction phase. These pre-

defined trajectories are usually based on equipment limitations and do not account for

constraints in execution time, making the solutions susceptible to constraint transgres-

sions in case of sudden strong winds or dead wind.

In summary, the ideal solution would be an economic NMPC that directly max-

imizes average cycle power, however, this solution is unadvised due to high problem

complexity and no convergence guarantees. The tracking-NMPC solutions address the

previous solution problems, however it restricts the solution to a given wind condition.

Solutions specific to the traction and retraction phases are able to obtain good results,

but it is harder to prove that they achieve the optimal solution in respect to cycle power,

specially in the case of the retraction phase, where the existing algorithms restrict the

shape of the reference signals to ramps.

The proposed solution in this work aims to combine the best of both approaches

discussed. A traction phase on-line optimization algorithm is proposed, adapting the

work presented in [12] to a lighter on-line algorithm. For the retraction phase, an eco-

nomic PNMPC with a quadratic cost function, which avoids convergence problems, is

proposed with the goal of maximizing the retraction speed while minimizing the instan-

taneous power spent. At last, the transition strategy adopted is revised achieving a

complete pumping-cycle path planning.

The rest of this chapter will approach each phase separately and in more details.

Since the retraction phase is where most of this work contributions are present it will

be addressed first.

4.1 Retraction phase

Once more, the purpose of the path optimization in this phase is to define a set of

traction force and depower references that lead to the most economical kite retraction,

that is the one that maximizes the average electrical power generated in a pumping cy-

cle. This formulation by itself is already implicitly limiting some aspects of the retraction

phase, among which the most relevant is the steering influence on the airfoil’s trajec-

tory. The steering is removed from the optimization problem by limiting the retraction

trajectory to the φ = 0. In [23], a retraction on the φ = 0 plane is shown to be the best

solution for most cases due to the effect of the system’s weight on the tether traction

force. By adopting this retraction trajectory it can be assumed that steering control
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system will maintain the airfoil constantly in the φ = 0 and the steering dynamics can

be completely removed from any models used in the optimizations.

4.1.1 Algorithm choice

The real time iteration scheme NMPC derived from general OCP formulations pre-

sented in [17] was the first algorithm considered for this work. It had already been

successfully used to implement tracking-NMPC and had very good reported computa-

tional time. Besides that, the implementation of this algorithm is fairly simple through

the use of the ACADO toolbox. However, the PNMPC was chosen in the end for two

reasons. The first was the lack of a simple analytical model for the aerodynamic coef-

ficients curves. The estimation of the aerodynamic coefficients curves is still under

development with only an initial approximation of the shape of these curves being

available. To implement a fully analytical model in ACADO it would be necessary to

approximate these curves even further by polynomial approximations or by tangential

planes at each sample period. It was undesired to adopt such measures without having

a throughout understanding of the effect of these simplifications. The second reason

for using the PNMPC was the lack of familiarity with the real time iteration scheme.

The aforementioned solution is heavily derived from general OCP and NLP knowledge

that is not the expertise of the author or of the UFSCKite group as a whole. By using

the PNMPC, the extensive knowledge of traditional MPC theory is more easily adapted

and integrated to the proposed solution, allowing this work to achieve a more robust

and trustworthy implementation.

4.1.2 Cost function

By proposing a dedicated PNMPC to the retraction phase, the problem could be fur-

ther broken down. The main difficulty with a PNMPC that aims to directly maximize the

cycle power is that the algorithm must consider the complete retraction phase trajectory

to take its decisions. Since the retraction duration is at least two orders of magnitude

longer than the system’s dynamic times a huge prediction horizon is required. The pro-

posed formulation, however, aims to directly translate the instantaneous compromise

that must be made at every instant of the retraction phase in the cost function, which

is "is it worth spending more power to reel-in the airfoil faster?". With that in mind, the

following cost function was proposed

46



J(∆ud,∆T) =

N
rp
2∑

j=N
rp
1

δrp(j)[r̂p(t+ j|t)− wrp(t+ k)]2 +

NP
2∑

j=NP
1

δP (j)[P̂ (t+ j|t)− wP (t+ k)]2

+

NT
u∑

j=1

λT (j)[∆T (t+ j − 1)]2 +

N
ud
u∑

j=1

λud(j)[∆ud(t+ j − 1)]2

(4.1)

where the vectors of future increments of the traction force ∆T and of the depower

actuation ∆ud are the decision variables, the fist two summations penalize the error of

the predicted tether reeling speed r̂p and predicted mechanical power P̂ , to a reeling

speed reference wrp and a mechanical power reference wP , respectively. These errors

are considered in two different prediction horizons defined by N
rp
1 and N

rp
2 , and by

NP
1 and NP

2 . The last two summations penalize module of the future increments of

the control inputs within a control horizon defined by NT
u and Nud

u . The contribution

of each of these terms to the final cost is weighted by specific weights to each term.

The reference errors weights are denoted by δrp and δP , and the weights for the control

inputs variations are denoted by λT and λud.

This is a generic MPC cost function penalizing the reeling speed and mechanical

power tracking errors and the variation of the control inputs. The true purpose of the

cost function is to maximize the reeling speed and minimize the power consumption.

However, by writing it as a reference error it takes a more traditional form and the in-

tended purpose still can be obtained by setting a very negative reeling speed reference,

i.e. to reel-in the tether faster, and a positive or null mechanical power reference.

Definition of weights

With the proposed solution the energy and time spent during the retraction phase

will depend on the weights assigned to each of these variables in the cost function,

more specifically, on the ratio of δrp(j)/δP (j) at each instant. After the first results

are obtained, a brief study will be conducted on the ideal ratio of the weights. The

cost function formulation above assumes that the weights at each time instant can

be different. Hopefully, a constant weight ratio during all the retraction phase will be

sufficient to achieve a near optimal solution. More complex weight heuristics can be

explored in further works.
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4.1.3 Constraints

Since the constraints are an essential part to guarantee a robust flight of the airfoil

it deserves a space to be discussed. In the PNMPC, the constraints are implemented

as a set of linear constrains in the form of A ∗∆u = B, where ∆u is the manipulated

variables future increments. To ensure robust flight of the airfoil and that the phys-

ical limitations of the electrical machine are respected, the following constraints are

imposed.

1. Maximum and minimum tether traction force: the maximum traction traction sup-

ported by the tether must be respected to avoid tether rupture, while a minimum

tether traction force is necessary to ensure the airfoils controllability.

2. Maximum and minimum depower actuation: the depower actuation is normalized

so that 0 ≤ ud ≤ 1. Besides these hard limits, sometimes it is necessary to restrict

even further the depower range to avoid unstable flight.

3. Tether reeling speed saturation: given by the electric machine maximum speed.

4. Tether reeling acceleration saturation: also given by the electric machine.

5. Electric power saturation: also given by the electric machine maximum power

rating. This constraint is applied to the mechanical power in practice since it is

the actual predicted variable. The systems efficiency can be used to translate

from one domain to the other.

6. Minimal apparent wind: a minimal apparent wind component perpendicular to the

tether direction ensures the airfoil controllability. This restriction was previously

used in [17] and will indirectly limit a combination of a minimal tether traction

force and the depower actuation, making the minimal traction force constraint

redundant. In this work the minimal apparent wind component was calculated as

W τ
a = (sinθ ∗Wn − ṙ)) ∗ E.

Constraints1 and 2 limit the manipulated variables, therefore the controller can guar-

antee that they will be feasible. The remaining ones, however, can only be exerted upon

the predicted value of the outputs that are calculated from the linearized model at the

current sample time. Therefore, the future predicted mechanical power vector P, for

example, would be calculated as P = GP
PNMPC∗∆u+fP , where fP is the free response

of the system’s mechanical power.

Also note that, besides the mechanical power and the tether speed the constraint

set creates the need to linearize and calculate the minimal apparent wind. This leads

to an extra system output that does not appear in the cost function.
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Soft constraints

Since the output constraints are subject to model and linearization errors, they often

result in impossible formulations for the quadratic optimization problem. This happens,

for example, when a controlled variable briefly disrespects a max/min constraint and

cannot return to the allowed region in one sample time.

To avoid optimization problems with no solution during the system operation, a con-

straint relaxation technique was used which consists in adding a constraint error deci-

sion variable ε to all controlled variables constraints. For example, a maximum power

constraint P ≤ Pmax would become P ≤ Pmax + ε. To ensure that all ε will remain as

close as possible to zero an extra term is added to the optimization cost function with

very high weight.

4.1.4 Model mismatch treatment

The model mismatch treatment proposed by [25] for the PNMPC is also applied

to guarantee that the output restrictions will be respected in steady-state regimen. It

is possible that the treatment would not be necessary due to the estimation algorithms

employed in the system, however, by adding the correction the solution becomes more

general and self sustainable.

The main sources of prediction error will probably lie in the aerodynamic coefficients

estimation and in the variations of the wind. Since a wind gust model is not employed

in the internal model, only the average nominal wind speed is taken into consideration.

The incorporation of a wind gust model or the use of stochastic control algorithms to

deal with the wind unpredictability can be subjects of future works.

The model mismatch treatment is applied to each output model free response con-

sidering that the error will remain constant during the entire prediction horizon, as

proposed in the original work where. The correction is calculated by integrating and

filtering each output’s prediction error.

4.1.5 System model and problem formulation

The system model was not addressed so far in this chapter because it does not

change the PNMPC algorithm procedure and is even less important when the free

response and the GPNMPC matrices are being calculated through simulation, which

is the case for this work. However, it is imperative that, in future works, a less time

consuming alternative is implemented to achieve a better performance.
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The internal model used for the PNMPC is the point-mass model presented in sec-

tion 2.2.3. One important modification to the formulation presented is the addition of

the traction force control dynamics. The addition of the traction force controller inserts

extra dynamics to the system, with an additional state space variable given by the trac-

tion force itself, which was previously treated directly as a manipulated variable. The

traction force reference replaces it as a manipulated variable and the following dynamic

equation is added to the model that assigns a fixed error dynamic to the traction error.

Ṫ =
(uT − T )ktrJL

rd
, (4.2)

where uT is the traction force reference, ktr is the gear box transmission gain, rd is the

system’s drum radius, and JL is the system’s moment of inertia.

With all the essential parts of the controller defined, the whole retraction phase

pseudo-code can be stated.

Algorithm 1 Retraction phase procedure

1: procedure Retraction phase
2: loop:
3: Update measurements
4: if r ≤ rmin then
5: goto Transition Phase.
6: Calculate free responses and GPNMPC matrices
7: Construct QP problem
8: Solve for traction force and depower increments
9: Increment and apply controls

4.2 Traction phase

The traction phase optimization algorithm developed here is heavily based on the

optimization presented in [12]. First, the traction phase optimization problem will be

reviewed, then, later, the solution proposed will be presented.

As a specification from the steering control system, it is assumed in this work that

the lemniscate will be the airfoil’s trajectory during the traction phase. The airfoil’s

lemniscate trajectory, more specifically, the lemniscate of Bernoulli, could be parame-

terized by the distance of its focci, and the (φl, θl) coordinates of its center. However,

since the optimal φl position of the trajectory is trivially obtained as φl = 0, the optimal

trajectory parameters to be defined during the traction phase are only the lemniscate’s

elevation θ∗l and the focus af . Although in many previous works these parameters are

considered to be constant during the whole trajectory, a more general and optimal solu-
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tion would consider them to be time variant or, at least, dependent on the tether length.

The optimal trajectories found in works that employ closed orbit OCP are a good ref-

erence to evaluate the importance of varying the lemniscate elevation and its focuses

during the traction phase. In [17], by specifying a minimal height constraint instead of

a maximum θ for the airfoil’s trajectory a 2.1% larger cycle power efficiency was ob-

tained, indicating that a varying lemniscate elevation during the traction phase can be

beneficial. No similar results were found to the variation of the lemniscate’s focus coor-

dinate, instead, by qualitatively comparing the OCP results, that have no constraint in

the φ coordinate, it is observed that the airfoil’s movement tend to broaden as the tether

length increases, suggesting that a fixed lemniscate focus a is a good approximation.

Besides the airfoil’s trajectory, the optimal traction phase is also defined by the

optimal tether reeling-out speed ṙ∗, variant during the phase, the optimal tether length

r∗ and the optimal tether variation ∆r∗ around r∗.

In summary, in a discrete time system the most general traction phase trajectory

could be defined by: the lemniscate focus vector a, the lemniscate polar angle vector

θ∗l , the tether reeling-out speed vector ṙ∗, the optimal tether length r∗ and the tether

variation ∆r∗.

4.2.1 Modifications to on-line optimization

In [12] an iterative algorithm is proposed to define the optimal tether length r∗, the

optimal constant tether reeling-out speed ṙ∗, the optimal angle of attack α∗ and the

optimal constant lemniscate polar angle θ∗l for the traction phase but optimizes, at the

same time, the retraction phase. In an effort to adapt the iterative algorithm to an on-line

optimization, the time and energy spent in the retraction phase can be obtained from

the last cycle’s retraction phase instead of the retraction phase optimization, enabling

the definition of an non-iterative optimization problem that maximizes the average cycle

power and computes the r∗, ṙ∗, α∗ and θ∗l set. The optimal angle of attack does not

need to be optimized for this work since a foil kite with fixed base angle of attack is used,

however, the equilibrium angle of attack needs to be determined to properly calculate

the traction force. This calculation can be incorporated in the optimization problem by

defining the angle of attack as a decision variable and using equality constraints to

ensure the equilibrium condition.

It is very challenging to determine an optimal tether length variation, without ac-

counting in detail for the effect of the transition and retraction phases, what is very hard

to incorporate in a sufficiently fast optimization algorithm. As an example, the iterative

optimization procedure proposed in [12] took more than one minute to complete. For

this reason, it was decided to adopt a fixed relative tether length variation where the
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tether variation is defined as a fraction of the optimal tether length,

∆r∗ = ctvr
∗

where ctv is the tether variation coefficient. The optimal tether variation coefficient can

be studied off-line to obtain better results. If the tether variation coefficient is too big,

the airfoil will operate too far from the optimal tether length. On the other hand, a too

short coefficient will be more affected by the transition phase time. A larger tether

variation also has an impact on the retraction phase’s end position since it implies a

longer retraction phase resulting in a lower end polar angle θ.

As a final adaptation to an on-line algorithm, it is proposed to make a two step op-

timization: a first optimization in a slower frequency to define r∗, and consequently,

∆r∗, and another, in a faster frequency to define ṙ∗ and θ∗l based on the current tether

length, thus enabling the algorithm to provide a different optimal tether speed and ele-

vation angle at each moment of the retraction.

With the proposed modifications, many of the general trajectory parameters are

optimized, with the exception of the lemniscate focus and tether variation, being the

former approximated by a constant, off-line calculated value, whereas the later is ap-

proximated by a fixed relation with the optimal tether length that can also be optimized

off-line.

Reeling speed control

Apart from the optimization procedure described so far it is also necessary to control

the reeling speed to match the optimal reeling speed calculated by manipulating the

tether traction. The reeling speed control proposed is shown in figure 4.1. During the

average power optimization, the tether traction reference Tref that corresponds to the

optimal reeling speed ṙ∗ will be calculated. However, the algorithm’s internal model

may contain errors with respect to the real system, leading to a different reeling speed

after the traction control loop stabilizes.

This work proposes the use of a similar model mismatch treatment applied to the

retraction phase to correct the reeling speed error in the traction phase. Figure 4.1

shows the proposed treatment, containing a similar first order filter and an integrator

with a integration gain ki, added to the simplified control traction loop.

52



Figure 4.1: Block diagram illustrating the correction treatment integration to the traction control
loop.

Source: Original

One may rightfully question if the model mismatch treatment proposed interferes

with traction loop controller. Indeed, if not carefully designed, the addition of the treat-

ment may yield unexpected results. To avoid this problem, the dynamics of the optimal

reeling speed error must be much slower than the traction control loop dynamics, sep-

arating, therefore, the two controllers in different frequency regions. The longer con-

vergence time of the reeling speed error does not present a problem for the system’s

operation as the traction force controller already addresses the problem of wind gusts

and the optimal reeling speed should not vary a lot during the traction phase.

4.2.2 Optimization equations and constraints

Due to the relative simplicity of the model used, the complete non-linear optimization

problems constructed can be shown here.

Operation point optimization

The optimization problem that defines the optimal tether length and its variation will

be addressed, henceforth, as the operation point optimization.

Unfortunately, The definition of the optimal polar angle and the optimal tether reeling

speed at the optimal operation point is not trivial and must be jointly computed in the

optimization problem. For this reason, the complete set of variables, including tether

speed, polar angle, and angle of attack is computed aiming to maximize the cycle

power.
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The cycle power is calculated by approximating the traction phase’s total generated

energy by the optimal instantaneous power times the phase duration. Since we are

treating the transition phase as a separate phase, its time and energy also needs to be

accounted for in the cycle power:

Pcyc =
Ptrac∆ttrac + Pret∆tret + Ptrns∆ttrns

∆ttrac + ∆tret + ∆ttrns

where P denotes average power and ∆t the total phase time. The subscripts trac, ret,

and trns reference the traction, retraction and transition phases, respectively.

The average powers and phase times of the retraction and transition phases are

approximated by the values of the last retraction and transition phases. The aver-

age power of the traction phase is given by the instantaneous maximum power P ∗ =

T (α, θ∗l , r
∗, ṙ∗)ṙ∗, where T is the traction force at the optimum point given by equation

2.20. The total traction phase time is approximated by a constant tether reeling speed

through the entire ∆ttrac = ∆r∗

ṙ∗
= ctvr∗

ṙ∗
length. The cycle power thus becomes

Pcyc =
T (α, θ∗l , r

∗, ṙ∗)ctvr
∗ + Pret∆tret + Ptrns∆ttrns

ctvr∗

ṙ∗
+ ∆tret + ∆ttrns

Besides the model equations and the cost function, the optimization process also

needs to incorporate the problem’s constraints. The complete set of constraints for the

operation point optimization are:

1. Maximum tether traction force;

2. Minimum lemniscate elevation angle;

3. Maximum tether reeling speed;

4. Maximum and minimum optimal tether length;

5. Electric machine’s power saturation;

6. Minimum airfoil altitude;

7. Equality constraint to define α;

Finally, the complete optimization problem is presented
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minimize
r∗,θ∗l ,ṙ

∗,α
Pcyc(r

∗, θ∗l , ṙ
∗, α)

subject to

(r∗, θ∗l , ṙ
∗, α) ≤ uUB

− (r∗, θ∗l , ṙ
∗, α) ≤ −uLB

T (α, θ∗l , r
∗, ṙ∗)− Tmax ≤ 0

ṙ∗T (α, θ∗l , r
∗, ṙ∗)− Pmax ≤ 0

r∗ cos θ − hmax ≤ 0

cl ∗ sin(α)− cd ∗ cos(α) = 0

where hmax is the maximum altitude and the last constraint corresponds to the equality

constraint used to define α and is obtained by the the cancellation of forces on the

tangent plane. This expression also considers that the set of aerodynamic forces are

much stronger than the set of remaining forces, disregarding the later set.

Tether reeling speed and lemniscate elevation optimization

The second optimization problem defined, that optimizes the tether reeling speed

and the lemniscate elevation for the current tether length, follows the same constraint

and cost function of the operation point optimization. However, in this problem the

optimal tether length is not a decision variable since the tether length considered is the

measured current tether length.

4.2.3 Complete traction phase procedure

The complete traction phase procedure is shown bellow

Algorithm 2 Traction phase procedure

1: procedure Traction phase
2: loop:
3: Update measurements
4: if r > (1 + ctv

2
)r∗ and θ̇ < 0 and −ε < φ̇ < ε then

5: goto Retraction phase.
6: r∗ ← opertaion_point_optimization().
7: (ṙ∗, θ∗l )← speed_and_theta_optimization()

The two separate optimizations can also be executed at different frequencies, since

the result of operation point optimization is expected to change far more slowly than

the reeling speed and polar angle optimization.
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4.3 Transition phase

The general procedure during the transition phase is well defined: to maneuver the

airfoil as fast as possible to the traction phase start region.

Reviewing the transition maneuvers adopted by other groups, a simple, yet com-

plete, transition phase is proposed in the following steps:

1. After the end of the retraction phase, set the tether reeling speed and depower

actuation directly to zero respecting the corresponding variation saturations;

2. Also, set the steering controller to follow the traction phase path;

3. When the airfoil’s polar angle is bigger than a threshold polar angle, or when the

tether traction force reaches a maximum threshold, the transition phase ends,

and the tether begins to reel-out.

This simplified transition procedure addresses the following concerns: it guarantees

that the tether traction force stays in acceptable limits, and it avoids a high speed dive

towards the ground.

The addition of the maximum traction force as an alternative condition to end the

transition phase may result in the traction phase beginning earlier, while the airfoil is not

yet on the optimal position. However, the tether traction force surpassing the threshold

is already a good indicator that a decent power generation can be achieved, even if not

in the optimal position.

The choice to start following the traction phase’s path during the transition may

result in a slightly longer transition phase but avoids the risky maneuver of diving the

airfoil directly into the ground since the traction phase trajectory will point it to the side

at the same time.
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Chapter 5

Implementation and Results

The trajectory optimization algorithm presented in chapter 4 was implemented in

MATLAB in order to allow for integration with a simulation model of a pumping-kite

AWES and to facilitate the tuning of the several parameters available.

This chapter’s first section focuses on the implementation and results of the algo-

rithm employed for the retraction phase of the pumping cycle. Since this phase takes

place entirely on the φ = 0 plane, a simplified simulation model without steering dy-

namics, as described in section 2.2.3, was utilized. Besides allowing for the retraction

optimization algorithm to be tested in more stable conditions, which does not jeopardize

the validity of the simulation, this approach also reduces the time needed to simulate a

full retraction.

The second section, on the other hand, covers the implementation and results ob-

tained with the algorithm employed for the traction phase. Note that although a simpler

model obtained for the dynamic equilibrium situation defines the optimization problem,

the full three-dimensional point-mass model was used for the purpose of validation.

Except for some minor modifications, both the simulation environment and the steering

controllers were taken from a previous work.

In order to compare the results with other trajectory optimization algorithms pro-

posed in the literature, a well- defined metric is necessary. If all parameters and en-

vironment conditions used in other works were accurately reproduced, then the cycle

power itself could be used as a comparison criterion, given that it is the measurement

being optimized. To abstract away the effects of the wind conditions and of the char-

acteristics specific to each AWE system, the Loyd factor ηLoyd is used. This quantity is

given by

ηLoyd =
Pcyc
PLoyd

with

PLoyd =
2

27
ρAW 3

nclE
2,

which expresses the relationship between the cycle power and the Lloyd theoretical

power limit PLoyd for a pumping-kite system.
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The full set of values used to parameterize the simulation models are presented in

table 5.1.

Table 5.1: Nominal system parameters

Parameter Value (unit)
Air density 1.2kg/m3

Gravity acceleration 9.82m/s2

Airfoil’s plus control pod’s mass 7kg
Airfoil’s projected area 12m2

Airfoil’s aspect ratio 5
Airfoil’s fixed base angle of attack 6.8o

Tether’s density 970 kg/m3

Tether’s drag coefficient 1.2
Tether’s diameter 0.005m
Number of tethers from control pod to ground station 1
Electric machine’s moment of inertia 0.25 kg.m2

Drum’s moment of inertia 0.1 kg.m2

Drum radius 0.2m
Reference wind speed 7m/s
Reference wind measured altitude 15m
Surface roughness 0.05m

5.1 Retraction phase

To evaluate how the implemented solution impacts the cycle power without simulat-

ing the whole pumping-cycle, an approximation of the duration and average power of

the traction phase was used.

In a first simulation scenario, the system was simulated with the exact same model

used in the PNMPC algorithm, eliminating the influence of model mismatch and allow-

ing for a more objective comparison with other solutions. This close-to-ideal scenario

also facilitates the job of finding an initial good set of multiple controller parameters that

affect the solution, namely the cost function’s weights, the horizons sizes and the value

of the different restrictions.

The results shown in figure 5.1 were obtained using a reeling speed reference of

−40m/s and mechanical power reference of 0KW , and the following set of normalized

weights:
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λrp = 14

λP = 1

δT = 0.02

δud = 0.02

δksi = 1000

The weights were normalized by dividing them by the corresponding variable satu-

ration and the length of the prediction or control horizon. By doing this, the magnitude

of the variables will not affect the cost function. Additionally, the length of the horizons

used were

Nrp = 5

NP = 5

NuT = 3

Nuud = 3

Figure 5.1: Results for the retraction phase with nominal model parameters and wind condition.
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It can be seen that the obtained result is mainly defined by the set of constraints

which was already the case for the ramp solutions previously used. However, this

solution, differently from the ramps, allows for a more extensive use of the depower ac-

tuation that presents a peak to first decelerate the airfoil and reduce the tether traction

force to later stabilize it in a value that respects the minimal apparent wind imposed.

Another interesting effect observed is that the tether reeling speed stabilizes at zero

while the kite has not fully decelerated. When using tether traction ramps, the tether is

still reeled out for a brief period at the beginning of the retraction, producing a subop-

timal amount of power since the kite is moving out of the high power zone. This effect

has the drawback of adding an extra length of tether to be reeled in, which represents

a waste of both time and energy.

The full set of restriction values used is presented in table 5.2.

Table 5.2: Problem constraints

Constraint Value
Tether traction force saturations 300 - 80000 N
Tether traction force variation saturation ±50000 N/s
Depower actuation saturations 0 - 1
Depower actuation variation saturation 0.5 un./s
Tether reeling speed saturations ±7 m/s
Tether reeling acceleration saturations ± 9.82 m/s2

Electric power saturations ±100000 W
Minimal apparent frontal wind 970 kg/m3

It is important to highlight that the actual cycle power obtained and the overall char-

acteristics of the curves are directly related to the set of constraints employed, the

weights, and the cost function itself. The algorithm presented generates tether traction

force and depower actuation references that are not limited to ramps. In addition, the

results show the potential of using an heuristic economic NMPC to approximate the op-

timal retraction trajectory, which allows for the application of an on-line algorithm with

a generic and flexible set of constraints.

Since the controller is actually weighing the instantaneous power and the current

speed, very short prediction horizons are necessary to obtain good results. In fact,

even with single sample prediction horizons a satisfactory result is obtained. This sug-

gests that a real-time implementation of this technique is far simpler than other NMPC

based algorithms previously proposed for trajectory generation.
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5.1.1 Optimal weight for different wind conditions

A pumping-kite system like other power generating systems, is designed for a nom-

inal condition, in this case, for a nominal wind speed. When deployed in real sites,

however, diverse wind conditions are encountered, demanding good performance in

different scenarios.

The set of weights identified for the nominal wind condition may not be appropriate

to different wind conditions. In an attempt to overcome this disadvantage and aiming at

providing a more general and flexible solution, a brief study was performed in search

of a weight heuristic that provides a near optimal solution to different wind conditions.

This study focused on finding the optimal ratio between the weights of the tether

reeling speed and mechanical power reference errors for different wind speeds, in-

creasing the importance given by the controller to the retraction speed with respect

to that given to power consumption. To achieve this, the system was simulated with

different reference wind speeds Wr and different weight ratios. Figure 5.2 shows how

the average cycle power, and the Loyd factor changes for each wind condition with the

variation of the weights.

Figure 5.2: Loyd factor ηLoyd for different cost function weights and for different wind conditions.

Source: Original

The precise effect of the variation of the weight ratio is hard to understand because

the weights themselves do not completely define the trajectory. However, two important

characteristics were found to have a close relation to the weights.

When varying the weight ratio, the final reeling speed at which most of the tether is

reeled-in changes. By increasing the weight of the reeling speed error, the tether may
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be reeled at a faster speed, resulting in a shorter retraction phase, but with more power

required from the electric machine. This effect was consistently observed, and contrary

to initial intuition, the fastest possible reeling speed is not the most advantageous as

can be seen for the scenarios of wr = 6 and wr = 7 in figure 5.2.

A second important characteristic of the generated trajectories is the moment at

which the tether begins to be reeled in. The less significant the reeling speed error is,

the smaller the polar angle at which the tether starts to be reeled in. In this condition,

the airfoil is at a higher altitude but the wind direction allows for a faster retraction with

lower tether traction force. These two factors explain the local optima observed for the

three different wind conditions considered. An unexpected effect observed is that the

Loyd factor decreases with very high wind speeds, e.g. from wr = 7 to wr = 9. This

happens because a higher amount of energy is necessary to reel-in the tether with

stronger winds.

Finally, by observing the approximated local optima in these different measured

wind conditions, a heuristic is proposed that defines the weights ratio as a function of

the measured wind speed. A simple, yet good, approximation observed was to define

λrp/λP = 0.8 ∗Wr

This heuristic may not be the best way to define this relation once the optimal solu-

tion would also depend on the surface roughness and the measured wind altitude, for

example, being valid only for a specific system and site. However, the procedure could

be repeated for each specific case and already achieves a close to optimal average

cycle power to a variety of wind conditions.

5.1.2 Model mismatch treatment

Another important component to achieve a robust flight operation is a well calibrated

and functional model mismatch treatment. The main purpose of the treatment is to

avoid that constraints on the output variables are not unknowingly disrespected.

Many of the system parameters are constructive and well known and therefore do

not have a significant error in practice. The factors that cause the most significant

errors are the measurements and estimations errors on the state variables, that is,

the position and speed of the kite, and errors on the aerodynamic coefficients. It is

reasonable to consider the errors on the system state as measurement noise with zero

mean, therefore it shall not cause a steady-state error on the outputs. The aerodynamic

force coefficients, however, are not yet well studied and it is possible that the estimated

values have a significant steady state error. In this chapter, a constant multiplicative
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error to the aerodynamic coefficients is considered, which affects the aerodynamic

forces and, consequently, all output variables.

Figures 5.3 and 5.4 compare the outputs of the optimizer when the model’s aerody-

namic coefficients are subject to a 20% multiplicative error. The errors were combined

to also result in a bigger efficiency error, by combining a 20% increase in drag a 20%

decrease in lift and vice versa. Keep in mind that the actual nominal model and wind

conditions are the same for all three results presented in figures 5.3 and 5.4.

Figure 5.3: System outputs in presence of a constant multiplicative error to the aerodynamic
coefficients and with no model mismatch treatment. Blue line - no mismatch; orange line -
reduced efficiency in internal model; yellow line - increased efficiency in the internal model.

Source: Original

In figure 5.3, significant errors can be observed in all three variables. Besides

the expected difference in the final apparent wind and the electric machine power, the

model error also affected the moment when the tether begins to be reeled-in.

In the presence of the model mismatch treatment, however, all outputs converge

to a same final value respecting the correspondent constraints. Before this final value

is reached, the constant changes on the system do not allow for the model mismatch

correction to fully stabilize, consequently, it is very hard to assure that the constraints

imposed on the variation of the outputs will be perfectly respected.

To obtain the presented results the model mismatch treatment filter was calculated
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Figure 5.4: System outputs and airfoil’s position in presence of a constant multiplicative error to
the aerodynamic coefficients with model mismatch treatment. Blue line - no mismatch; orange
line - reduced efficiency in internal model; yellow line - increased efficiency in the internal model.

Source: Original

to achieve a critically damped model error response with a double pole on 0.4, with a

sample period of 0.1s. This is a fairly fast response. To achieve a more robust system

under the presence of disturbances it may be necessary to design a filter that leads to

a slower error dynamic. The designed filter had a single pole on 0.16 and a integration

gain of 0.36.

5.2 Traction phase

As previously mentioned, the traction phase trajectory optimization algorithm, de-

signed in chapter 4, was integrated to a simulation with a three dimensional pumping

kite model and a steering control system proposed by [12] with a lemniscate trajectory.

To better observe the effect of the proposed solution, the optimal reeling speed is

directly imposed to the system instead of being indirectly set trough the traction force
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control. The optimal reeling speed calculated by the algorithm, that considers the airfoil

at a φ = 0 position, was used to calculate the optimal speed at different positions of

the lemniscate trajectory according to ṙ = ṙ∗cos(φ). This relation does not take into

account the trajectory’s variations in θ, whose amplitudes are much smaller than the

variations in φ. However, for a more general solution, the algorithm could be adapted

to determine, instead of the optimal reeling speed, an optimal reeling coefficient κ that

determines the reeling speed as ṙ = Wnκsin(θ)cos(φ), which would present less vari-

ations throughout the trajectory and would account for θ, φ and Wn variations without

executing the optimization again.

The simulations performed represent a pumping-kite system’s traction phase in

which a total of 200m of tether length is released. The main points to be observed

in these simulations are:

• Verify whether approximating the cycle power with the previous retraction phase

energy spent and time can provide good results. In this case, the data from the

previous retraction phase will be used.

• Verify the effects of running the reeling speed and elevation angle optimization

multiple times during the traction phase.

• Provide a first notion of the computational cost of such optimizations.

The obtained results are presented in figures 5.5, 5.6 and 5.7. In figure 5.5

the complete airfoil trajectory can be seen. It is noticeable that a relatively low reeling

speed is being employed and that there is no significant variation in the elevation angle

nor in the reeling speed throughout the trajectory. By further examining these variables

it is clear that, in fact, no variation occurs to the optimal elevation angle calculated,

however, the optimal reeling speed r∗p increases as the nominal wind speed increases

due to the higher operation altitude.

The values for reeling speed obtained approximately match the results obtained

with the full cycle optimization in [12], where it was observed that the optimal reeling

speed considering the cycle power was 25.8% lower than the value that maximizes

the instantaneous power. That alone resulted in a 9.3% increase in the cycle power.

In this work, the reeling speed found was in average 22.24% lower than the value

that maximizes the instantaneous power. This shows that the approximation of the

retraction phase duration and consumed energy can be used to obtain much faster

results for an cycle power optimization without significant difference in the results. The

increase in the reeling-out speed as the nominal wind at the airfoil altitude increases is

also very relevant but similar results could be obtained without the need to frequently

execute the optimization by using a fixed reeling coefficient κ.
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Figure 5.5: Three dimensional airfoil trajectory during the simulation.

Source: Original

Figure 5.6: Tether reeling speed with and without φ angle correction.

Source: Original

The polar angle was expected to increase with the tether length, making the airfoil

maintain an approximately constant altitude. This expectation is based on results of

off-line trajectory optimizations as the one shown in figure 3.2, however, the optimal

operation altitude depends on several factors and there is no guarantee that a near

constant altitude solution is the best solution for different wind profiles. More experi-

mentation with different wind profiles will be required to further investigate the elevation

angle variation.

It can also be observed that the optimal reeling speed has sudden variations. This

happens because the optimization was not executed at every time step but at a slower

frequency. Although the optimization routine runs relatively fast in MATLAB with a

modern computer, finishing in approximately 200 ms, it is more realistic to assume a

slower execution frequency in a real implementation, since the hardware limitations are
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Figure 5.7: Nominal wind speed at the airfoil’s altitude (blue) and airfoil’s altitude (orange)
during the simulation. The red dots indicate the end of each lemniscate figure where the the
airfoil is at φ = 0.

Source: Original

usually more strict in practice.

In a second scenario of simulation, the wind speed was increased and the power

and tether traction constraints were reduced to 50kW and 3000N. The objective of this

simulation is to observe how the optimizer would react to tougher conditions.

Figures 5.8 shows the resulting kite trajectory. The trajectory is shown from a lateral

view to highlight the elevation angle variation. It can be seen that the trajectory goes,

right at the start, to a smaller polar angle and gradually increases as the tether is reeled

out.

Figure 5.8: Lateral view of the airfoil’s trajectory during a simulation under high wind conditions
and severe restrictions.

Source: Original

The number of complete lemniscates also indicates that the reeling speed is much
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smaller than the previous scenario. This is confirmed in figure 5.9, where it is clear

that the reeling speed is kept at a low value during the whole trajectory. Both these

differences are explained by observing the tether traction force and the electric ma-

chine’s power in figure 5.10, where it is clear that both the tether traction force and

the mechanical power are at the constraints’ limits. The optimizer reduced the reeling

speed to reduce the mechanical power, however, with a lower reeling speed the trac-

tion force is increased, requiring a smaller elevation angle to remain within the imposed

constraints.

Figure 5.9: Tether reeling speed with and without φ angle correction under high wind speeds.

Source: Original

It is important to remember that the traction force and power values considered

in the optimization are an approximation of the cycle power considering the airfoil in

equilibrium at the central position of the lemniscate. Therefore the actual values con-

sidered by the optimization are the ones correspondent to the red dots in figure 5.10.

The observed tether traction force and mechanical power values violate the constraints

at other trajectory points. This must be considered when defining the restriction values.

Figure 5.10: Total tether traction force and machines mechanical power under high winds and
severe restrictions. The red dots indicate the beginning of a lemniscate loop.

Source: Original
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Chapter 6

Final remarks

This work presented an on-line trajectory generation strategy for a pumping-kite

energy generation system. The solution proposed was designed to achieve a near

optimal cycle power while allowing it to adapt its operation to a large set of operation

constraints. An economic NMPC was used to generate the retraction phase trajectory,

and previously proposed optimization procedures for the traction phase were adapted

into an online optimization. A simple criterion to operate during the transition phase was

suggested, covering, in the end, all operating phases of a pumping-kite system. The

solution proposed aimed to combine the best of the solutions found in the literature by

allowing for multiple operational and physical constraints and the current wind condition

to be taken into account in a decentralized control architecture.

The retraction phase strategy proposed showed promising results, obtaining a be-

havior close to the optimal off-line generated ramps from the literature but allowing for

more complex reference curves than the previously used ramps, consequently better

exploiting the system’s capacities. A model mismatch treatment was applied to guaran-

tee zero steady-state prediction error for the NMPC controller and avoid disrespecting

constraints. The use of soft constraints enabled a more robust MPC execution, avoid-

ing the construction of QP problems with no solution. The cost function employed

allows for the use of very small prediction horizons resulting in a fast solution, while still

obtaining a very good cycle power.

The proposed solution also does not directly optimize the cycle power. Although a

brief study was conducted to propose a weight heuristic that improves this metric, the

final solution proposed is fairly simple, and it is believed that a slightly more complex

heuristic can further improve the results.

A traction phase optimization strategy borrowed from the literature was adapted to

a real time optimization by approximating the cycle power in the cost function using val-

ues measured in the previous retraction and transition phases. It was also broken down

into two different optimization procedures: an operation point optimization, and a tether

speed and elevation angle optimization, each with different execution frequencies. The

cost function simplification obtained very close results to the off-line optimization rou-

tines in which it was based. The on-line optimization of the reeling-speed and the

elevation angle also achieved excellent constraint compliance, successfully adapting

69



the solution to a restrict set of constraints.

Inspired by the model mismatch treatment applied to the PNMPC, a similar treat-

ment was proposed to ensure that the optimal reeling speed calculated would be ap-

plied through the traction control.

This work did not cover a simulation scenario where either the traction phase model

mismatch treatment, or the operation point optimization could be tested. However,

similar implementation of both algorithms were implemented and obtained good re-

sults, since the operation point optimization is almost identical to tether reeling speed

and elevation angle optimization, and a model mismatch treatment was applied to the

retraction phase. A full-cycle integrated simulation under the presence of disturbances

will be conducted in future works to validate these two points and two provide a bet-

ter approximation of the cycle power obtained with the complete solution. Only then a

more fair comparison can be made with full cycle optimization works.

6.1 Future works

As previously mentioned, the most critical future work is to provide a full imple-

mentation of the trajectory optimization on-line algorithm and validate it under a full-

cycle simulation under the presence of noise and wind gusts. This will enable a more

thorough evaluation of the proposed solution and test the remaining modifications pro-

posed.

Although good results were obtained in initial simulations, the proposed solution

was also not tested in a real system. Therefore, after a complete version of the solution

is validated in simulation, a natural next step for this work would be to implement an

embedded version of the proposed algorithms in C, using a QP framework, and check if

it is applicable in practice. For the purpose of a practical implementation many changes

to the NMPC algorithm can be made to allow for a faster execution time, and better

response. Here are some possible modifications:

• Instead of using the full aerodynamic surfaces in the NMPC model, approximate,

at each NMPC iteration, the surfaces by polynomials or tangential planes, provid-

ing analytical expressions for the aerodynamic coefficients and, consequently, to

the full model.

• Use an automatic differentiation tool and analytical expressions for the model

dynamics to calculate the free responses and GPNMPC matrices without requiring

to simulate the system.
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• Recalculate the GPNMPC matrices only after a few sample periods, assuming that

the previous linearization is still a reasonable approximation of the system.

Due to the simplicity of the employed model, a significant model mismatch is ex-

pected. In particular, a real system will present significant computational delays for

the acquirement and processing of information and actuation dynamics. The depower

actuation is further jeopardized as the references are calculated in the ground unit and

must be sent to the airborne control pod. This adds on extra delay for the data trans-

mission. This problem can be mitigated by measuring the mean actuation delay and

including it in the NMPC model. This would require a bigger prediction horizon but can

significantly improve the results.

Finally, to use a simpler economic NMPC to generate a retraction trajectory is a new

approach of retraction phase optimization, being first explored in this work. Countless

variations of MPC algorithms, cost functions and weight heuristics can be explored,

potentially achieving better results.

For the traction phase optimization it is imperative to integrate the already imple-

mented solution with the traction control system and the model mismatch treatment. A

more intuitive and direct control architecture to deal with the wind gusts problem can

be investigated as the reeling speed correction control loop may require a very slow

dynamic to avoid interaction with the inner control loops. A further investigation of the

tether reeling speed and elevation angle variations under different wind conditions must

be carried to identify the most relevant effect that defines observed behavior and the

discrepancy found by other trajectory optimization works.
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