

Brunno Vanelli

Comparison and benchmarking for SLAM in mobile
robots

Final paper submitted in partial fulfillment of the requirements for
the degree of BEng. in Automation and Control Engineering of the
Universidade Federal de Santa Catarina.
Advisor: Prof. Dr. Marcelo Roberto Petry

Universidade Federal de Santa Catarina

Centro de Blumenau

Departamento de Engenharia de

Controle e Automação e Computação

Blumenau
2019

Don’t panic.

Acknowledgements

It is always hard to find words to acknowledge all the people that were and are im-

portant during all these years. If I happen to forget anyone, Sir or Madam, truly your

forgiveness I implore.

I want to first thank my parents Augustinho and Isabel, and my sister Jaquelline, for

supporting me for all these years I’ve been an unproductive member of society (hopefully

that will end soon).

To my close friends for sharing laughs and eventually food during 5 long years. I’ll

quickly address the five that went through pretty much everything in university with me.

Stephan, with an unbeatable amount of side pockets that serve no particular purpose.

André, who has a very hard time distinguishing colors. Juliano, who graduated with

honors with his astonishing 8,83 score. Guilherme, my distant cousin and finally Rômulo,

who probably spend more time in the bus back home than in the university.

To my friend Gabriela for all unlicensed psychological support provided to each other.

To all my professors at UFSC who dedicate their lives to transmit their knowledge

forward. A special thanks to professor Marcelo Roberto Petry who oriented me during

this dissertation even when far away.

To my supervisors and colleagues at Fraunhofer IPA that during my internship allowed

me to learn so much about robotics and got me fascinated on the field.

To all the people I met in the weirdest of circumstances in Stuttgart area and around

the world, making my stay a lot better and giving me the opportunity to learn many

different cultures. To the survival machine that showed me not all genes are selfish.

And finally, to the open-source community, without whom this work wouldn’t be

possible. In their free time, they coded the operating system I was working on, the

framework that I was working on, the tools and used and even helped me solve the bugs

in my code I didn’t even know I had.

"Did you ever hear the tragedy of Darth Plagueis the Wise?

I thought not. It’s not a story the Jedi would tell you.

It’s a Sith legend.

Darth Plagueis was a Dark Lord of the Sith, so powerful and so wise he could use the

Force to influence the midichlorians to create life...

He had such a knowledge of the dark side that he could even keep the ones he cared about

from dying.

The dark side of the Force is a pathway to many abilities some consider to be unnatural.

He became so powerful... the only thing he was afraid of was losing his power, which

eventually, of course, he did.

Unfortunately, he taught his apprentice everything he knew, then his apprentice killed

him in his sleep.

It’s ironic he could save others from death, but not himself."

(Sheev Palpatine)

Resumo

A robótica está presente na indústria há décadas, mas a adoção de robôs trabalhando

em estreita colaboração com os seres humanos ainda é um desafio. Embora muito tenha

sido desenvolvido no campo dos robôs assistivos, eles ainda são incipientes por causa

de toda a tecnologia necessária para interagir com os usuários de maneira significativa.

Este trabalho de conclusão de curso tem como objetivo discutir uma tarefa específica em

robôs móveis chamada SLAM, ou Mapeamento e Localização Simultânea. Essa tarefa

compreende a capacidade do robô para mapear ambientes desconhecidos sem informações

prévias. Uma estrutura é proposta para analisar metodologicamente o resultado de difer-

entes algoritmos de SLAM. O estudo de caso será apresentado usando o Care-o-bot, o

robô assistivo desenvolvido na Fraunhofer IPA. Dados de sensores de varrimento a laser

e odometria são utilizados, e as reconstruções resultantes dos algoritmos mais populares

disponíveis no framework ROS (Robot Operating System), como Gmapping, Hector, Karto

e Cartographer, serão apresentados e comparadas. As métricas de erro quadrático médio

e erro de deslocamento serão calculadas para cada algoritmo, bem como os cálculos pro-

postos para distorção do mapa e uso da CPU e da memória. Os resultados mostram boas

métricas para Gmapping e Cartographer, escolhas populares na comunidade ROS, com o

Cartographer tendo os mapas mais precisos. Hector e Karto são opções alternativas para

dispositivos com menor poder de computação, já que podem consumir muito menos CPU

nas configurações padrão, além de fornecer boa localização.

Palavras-Chave: 1. SLAM 2. Gmapping 3. Hector 4. Karto 5. Cartographer

Abstract

Robotics has been present in industry for decades now, but the adoption of robots

working closely to humans is still challenging. Although much has been developed in the

field of assistive robots, they are still incipient because of all the technology required to

interact with users in a meaningful way. This paper aims at discussing a specific task

in mobile robots, SLAM, or Simultaneous Localization and Mapping. It comprises the

ability of the robot to map unknown environments while having no previous information.

A framework is proposed to methodologically analyse the mapping results for different

SLAM algorithms. The case study will be presented using Care-o-bot, the assistive robot

developed at Fraunhofer IPA. Data from laser scanners and odometry is used, and the

resulting reconstruction from the most popular algorithms available on ROS (Robot Op-

erating System) will be presented and benchmarked, namely Gmapping, Hector, Karto

and Cartographer. Comparisons on mean square error and displacement error will be cal-

culated for each algorithm, as well as proposed calculations for map distortion and CPU

and Memory usage. The results show good stats for Gmapping and Cartographer, some

of the most popular choices in the ROS community, Cartographer having the most accu-

rate maps. Hector and Karto seem alternative options for devices with lower computing

power, as they can consume far lower CPU on default settings, as well as providing good

localization.

Keywords: 1. SLAM 2. Gmapping 3. Hector 4. Karto 5. Cartographer

List of figures

Figure 1 – Robots per thousand workers in the industry from 1995 to 2014. 13

Figure 2 – Examples of Assistive and Social robots. 15

Figure 3 – Evolution of Care-o-bot. 16

Figure 4 – Localization stack flowchart. 17

Figure 5 – Topic initialization. 20

Figure 6 – Gazebo simulation suite. 24

Figure 7 – STL Link files. 25

Figure 8 – COB 4 full robot with both manipulators. 28

Figure 9 – LWA4P extended arm. 29

Figure 10 – Dependency graph of cob_simulation with depth 3. 30

Figure 11 – Laser Scanner. 34

Figure 12 – Forward kinematics of mobile robot. 35

Figure 13 – Steps when building an occupancy grid. 37

Figure 14 – Illustration of occupancy grid for a single sensor. 37

Figure 15 – Occupancy grid algorithm for multiple sensors proposed by Elfes. . . . 38

Figure 16 – High-level System overview of Cartographer. 41

Figure 17 – Selected maps for testing. 44

Figure 18 – Representation of metrics taken. 44

Figure 19 – Occupancy grid representation of ground truth and SLAM generated

map. 46

Figure 20 – Point cloud representation of ground truth and SLAM generated map. 46

Figure 21 – Alignment of point clouds from Figure 20. 47

Figure 22 – Scripted map generation for Gazebo. 49

Figure 23 – Running the automated parser node with Gmapping. 56

Figure 24 – Results of mapping for first map. 59

Figure 25 – Results of mapping for second map. 60

Figure 26 – Results of mapping for third map. 61

Figure 27 – Incorrect mapping from Gmapping on test 2. 62

Figure 28 – CPU and Memory usage for Gmapping running map test 2. 63

Figure 29 – CPU and Memory usage for Hector running map test 2. 64

Figure 30 – CPU and Memory usage for Karto running map test 2. 64

Figure 31 – CPU and Memory usage for Cartographer running map test 2. 65

List of tables

Table 1 – Base command API. 31

Table 2 – Torso and head command API. 31

Table 3 – Arms and grippers command API. 31

Table 4 – Laser Scan API. 32

Table 5 – Cameras API. 32

Table 6 – Miscellaneous API. 32

Table 7 – Data collected for the first map (lower is better). 59

Table 8 – Data collected for the second map (lower is better). 60

Table 9 – Data collected for the third map (lower is better). 61

Table 10 – Results of running ICP over maps (lower is better). 62

Table 11 – Results of free space mapping accuracy (lower is better). 63

Acronyms

API Application Program Interface

COB Care-o-bot

DART Dynamic Animation and Robotics Toolkit

DOF Degree of Freedom

ICP Iterative closest point

IMU Inertial measurement unit

IPA Institut für Produktionstechnik und Automatisierung

LIDAR Light Detection And Ranging

ODE Open Dynamics Engine

ROS Robot Operating System

RPC Remote Procedure Call

SDF Simulation Description Format

SLAM Simultaneous localization and mapping

UFSC Universidade Federal de Santa Catarina

URDF Unified Robot Description Format

XML Extensible Markup Language

Table of contents

1 INTRODUCTION . 13

1.1 Objectives . 18

1.2 Structure . 18

2 BACKGROUND THEORY . 19

2.1 Robot operating system . 19

2.1.1 Packages . 20

2.1.2 Topics . 20

2.1.3 Services . 21

2.1.4 Message types . 21

2.2 Transformations . 22

2.3 Simulation . 23

2.3.1 URDF . 24

2.3.2 SDF . 25

2.3.3 Physics engines . 25

2.3.4 Sensors and actuators . 26

2.4 Care-o-bot . 27

2.4.1 Base . 27

2.4.2 Torso . 28

2.4.3 Arms . 28

2.4.4 Head . 29

2.4.5 Package organization . 29

2.4.6 Basic API . 30

3 SLAM . 33

3.1 Sensors . 33

3.2 Localizing the robot . 34

3.2.1 Wheel odometry . 34

3.2.2 Laser odometry . 35

3.3 The localization and mapping problem 36

3.4 ROS SLAM algorithms . 38

3.4.1 Gmapping . 38

3.4.2 Hector . 39

3.4.3 Karto . 39

3.4.4 Cartographer . 40

3.5 Evaluating SLAM performance 40

3.6 Proposed evaluation techniques 42

3.7 Experimental maps . 43

3.8 Pose metrics . 44

3.9 Map alignment metric . 46

3.10 Free space metric . 47

4 EXPERIMENTS AND RESULTS 49

4.1 Building an accurate map . 49

4.2 Setting up the SLAM algorithms 50

4.2.1 Gmapping . 51

4.2.2 Hector . 51

4.2.3 Karto . 52

4.2.4 Cartographer . 52

4.3 Collecting data . 54

4.4 Running the automated reconstruction 55

4.5 Parsing the data . 56

4.6 Exporting the map . 57

4.7 Results . 58

5 CONCLUSIONS . 66

5.1 Final considerations . 66

5.2 Future work . 67

5.3 Contributions . 67

REFERENCES . 68

13

1 Introduction

The robot development in the last century was able to revolutionize the industry by

providing flexibility, reliability and quality to the production line, since robots often can

perform tasks faster, more accurately and with fewer errors than humans. Human labor

that was often repetitive and risky was steadily replaced by robotic labor, with precise

movements and increasing automation over time, as shown on Figure 1.

Figure 1 – Robots per thousand workers in the industry from 1995 to 2014 [1].

Even though robots are increasingly present in the industry, using robots to assist

persons in everyday life might be more challenging. Many authors propose their use in

places like schools, hospitals, and homes, including wheelchair robots, companion robots,

manipulator arms for the psychically disabled and elderly populations, etc [2]. However,

the dynamic and heterogeneous environment, the energy constraints and the safety are

still issues in domestic use robotics.

According to Feil [2], assistive robots are defined as ones that give support to a human

user, whereas socially interactive robots are the ones that merely can interact with humans

in the form of gestures, speech, etc. The intersection between these two groups is called

socially assistive robots, not focusing on the interaction itself but using it as a mechanism

to provide aid or assistance.

Fong [3] defines 8 traits in socially interactive robots:

• Embodiment: defined as the body capabilities of the robot, the morphology, and

Chapter 1. Introduction 14

design to deal with the ambient. Social robots design is often taken into consid-

eration because the user must be comfortable engaging with the robot. Also, the

number of sensors and actuators the robot has will expand its capabilities.

• Emotion: complements the embodiment in the robots by interacting in a social

context. Integrating emotion in robots can create empathy and make people treat

them like they treat other humans. Emotions can be displayed both as an expression,

in the form of moving lips, eyebrows, eyes, and LEDs, as well as in the form of

speech, in voice tone, loudness, and pitch. Body language also takes place in full-

body robots.

• Dialogue: Creating a meaningful dialogue between two or more parties is hard even

in the form of low-level dialogue. Natural language processing are still features under

development and remain a great challenge to robots. Robots can also use dialog

in a non-verbal way, communicating in gestures and facial display, in addition to

displaying emotions.

• Personality: in order to correlate with users, robots must develop personality traits

that will distinguish them from other robots.

• Human-oriented perception: to interact, robots must perceive the environment as

humans do. In social situations, this includes people tracking, speech recognition,

gesture recognition, and facial perception.

• User modeling: in addition to design and perception, they must act based on people

personality, learning the user’s personality to create a model on how to react.

• Socially situated learning: continuously learning for improving communication or

acquiring new skills is essential, whether by teaching or imitation.

• Intentionality: lastly, humans must feel that the robot has a purpose and acts ra-

tionally. This can be achieved by demonstrating goal-directed behaviors or demon-

strating attention to key objects in the scenario.

Feil goes further and defines the socially assistive robot with additional properties

relative to Fong’s definition:

• User Populations: defines the characteristics of the user, like age, impairment, and

need. He categorizes the user populations as elderly, individuals with physical im-

pairments, individuals in convalescent care, individuals with cognitive disorders and

students.

• Task: the author cites as task examples tutoring, physical therapy, daily life assis-

tance, and emotional expression.

Chapter 1. Introduction 16

Pepper, seen on on Figure 2c, was developed to fit into the category of both emotional

expression and tutoring. It was aimed at the concept of the robot learning together with

children using the robot’s display to teach English, characterizing it as a socially assistive

robot. A remote human teacher would help the process by orienting the classes. Instead

of just showing the contents in the screen, creating boredom, the robot engaged in playful

activities with the kids, including telling them to search for a specific object in the room

or repeating gestures with the robot, compelling the children to participate actively [6].

The Care-o-bot, or COB, for short, is described as a robotic home assistant aimed at

helping people with mobility impairments in their daily lives. The target group includes

elders, disabled, people with health conditions and with movement restraints. Its tasks

include setting the table, carrying objects like books and drinks around, dealing with

medication, helping the patients standing up, as well as serving as a companion to the

person. The robot can also do other tasks usually performed by a nurses and doctors, like

monitoring the patient with conditions in their daily routines, reminding them to take

medication and calling emergency in case of incidents [7].

Figure 3 – Evolution of Care-o-bot.

The Care-o-bot evolution throughout the years can be seen on Figure 3. The first

prototype was built in 1997, but it didn’t pack many capabilities as the technology was

very limited. It was soon followed by Care-o-bot II, in 2002, equipped with a manipulator,

two cameras, laser scanners, and a hand-held control panel. Version II presented great

improvements in navigation, computer vision, and manipulation, but was still rudimen-

tary, having problems in low light conditions and dynamic environments (the 3D scans

could only be run once because of processing constraints) and was not recommended for

inexperienced users [7].

The third generation came in 2008, using a better 7DOF (Degrees of Freedom) arm and

3 finger gripper with tactile feedback. It also became a lot more user-friendly, applying

the concepts of embodiment and presenting a less bulky body with smoother surfaces and

Chapter 1. Introduction 17

less visible mechanical parts. The robot body was divided into a working side (in the

back, where the manipulator stands) and a serving side (on the front, to interact with

users) [8].

The fourth generation was presented in 2015 and focused heavily on emotion design.

It was developed to appear familiar and sociable, and avoid the uncanny valley [9], where

human-like robots can cause strangeness or even fear. It featured a multi-modal user

interface capable of displaying facial expressions with a minimalistic pair of eyes to display

a wide range of emotions. The spherical joints in the torso and head allow more agility,

the body is smaller and more efficient and more sensors and 3D cameras were installed.

One of the many challenges of assistive robots is navigating the environment. As they

need to reach places in the house like the kitchen or the bedroom, they sometimes need to

be aware of how to navigate through the rooms and corridors to reach the final destination.

The approach described in Siegwart, Nourbakhsh and Scaramuzza[10] for this problem is

running algorithms in different layers: perception, to extract meaningful data from the

environment using available sensors; localization, to determine where it is relative to the

environment; cognition, in order to take action given the inputs; and motion control, in

order to output the right commands to the motors [10]. Figure 4 shows us the guidelines

to build a localization stack in a mobile robot.

Encoder
Prediction of

Position
(e.g. odometry)

Map data base Matching

Position Update
(Estimation)

Observation

YES

matched
observations

raw sensor data or
extracted features

Pe
rc

ep
tio

n

position

predicted position

Figure 4 – Localization stack flowchart [10].

As we can see, it is necessary to sense the state of the robot and the world. This is

done through encoders in the wheels, GPS, or other forms of localization, in the form of

odometry, or in observations, using 3D cameras, LIDAR (Light Detection And Ranging),

Sonar (Sound Navigation and Ranging), etc. This data is fed to a matching algorithm,

together with a map database, resulting in an estimated position update, that will be

used as feedback for the next iteration.

However, this approach is only as accurate as the map is. Many algorithms aim to solve

Chapter 1. Introduction 18

the mapping problem accurately, but there is no standard way of telling how accurate each

algorithm is because there is no agreement on which benchmarks to use. The difficulties

in comparing visual data and the absence of the ground truth impose challenges when

comparing maps generated by different algorithms [11].

1.1 Objectives

The goal of this paper is to propose a framework to methodically compare and eval-

uate accuracy of mapping algorithms. We will test the proposed framework against the

most popular algorithms available in the open repositories, namely Gmapping, Hector,

Karto and Cartographer, using data from simulated Care-o-bot. The results will be then

discussed and compared against what is currently present in the literature about mapping

benchmarking.

The following tasks are specific objectives:

• Revision of literature for SLAM comparison metrics.

• Implement an algorithm for the generation of maps based on the ground-truth rep-

resentation.

• Simulation of proposed SLAM algorithms in the Care-o-bot robot.

• Comparison of results using proposed metrics.

• Publish all test data and algorithms in an open-source repository.

1.2 Structure

This work is structured as follows. Chapter 2 shows the background theory in order to

understand how the tests were performed. It includes an introduction to the Robot Oper-

ating System (ROS) used in all experiments, as well as an introduction to COB hardware.

Chapter 3 explains the mapping problem into more detail and gives an introduction to

how each tested algorithm works. This chapter also presents a review of the literature to

come up with good metrics and an algorithm approach for comparison. A custom way of

generating accurate maps is proposed and simulated using Care-o-bot. The resulting laser

scan and odometry data is exported into public datasets, so that they can be reused for

further testing or even for different algorithms not tested in this dissertation. Chapter 4

shows how the experiments are set, the results obtained using the proposed metrics, and

a brief discussion. Finally, Chapter 5 presents conclusions and discusses future work in

this topic.

19

2 Background Theory

2.1 Robot operating system

There are many problems when developing robot applications, especially because of

the complexity of those systems. As more and more functionality is added to the robot,

the code base becomes fluttered with intricate dependencies and entangled libraries. ROS

(Robot Operating System) is not an operating system per se, but a framework that allows

coders to readily develop and test solutions with modularity and code reusability in mind.

It was built in an agnostic package system that allows integration with many packages

available from the ROS Open-source community, a lot of them implementing support

libraries and proof-of-concept algorithms, as well as core infrastructure.

The main aspects of ROS are [12]:

• Peer-to-peer: even though the ROS framework relies on a master or namespace

as a lookup mechanism, the communication is established between peers, avoiding

unnecessary routing through slow links when the recipient is on the same subnet.

• Tools-based: instead of building an intricate framework, ROS relies on a set of tools

written to perform specific tasks, including various tools for compilation, tap data

stream, data plotting, configuration, documentation generation, etc. Custom tools

can even be written by the user in the form of new packages.

• Multi-lingual: since communication between nodes relies only on XML-RPC, they

can be implemented in any language, either by explicitly writing the full library

that interacts with the ROS Core or building a wrapper for the ROS C++ library.

• Thin: many robots implementations have parts of the code that could be reused in

another project if they weren’t so entangled with all existing code. ROS proposes

an architecture where the code is separated into packages that hold no dependency

on ROS. All packages can be built individually using CMake, different from the

traditional software paradigm where one CMake file builds the entire project.

• Free and Open-source: ROS source code is publicly available and released under

the BSD License, allowing you to copy, modify and redistribute the source code,

including for commercial purposes.

The execution of ROS is separated into smaller pieces of code that do particular tasks,

called nodes. Each time ROS Core is launched, a collection nodes that are required for

execution are spawned: the ROS master, that provides support for the registration of

Chapter 2. Background Theory 20

all subsequent nodes, the ROS parameter server, to register parameters during execution

time, and the rosout node, for logging purposes. Once the core is launched, every other

node can be spawned.

2.1.1 Packages

In order to better build robotic systems, ROS adopts a packaged architecture, making

every subsystem of the application separate from all the others. Every package can contain

new nodes, libraries, configuration or even datasets.

The main advantage of this approach is making the code more organized in its own

subsystems, that specialize in doing a specific task well so that other packages can use

this functionality. Packages can also be written independently of language, as long as it’s

supported by ROS.

2.1.2 Topics

In order for nodes to communicate, they interact by publishing messages in topics.

Topics are anonymous buses where each node can publish messages following the message

type standards. Each node can then subscribe to topics that are relevant to them and

act upon data captured on the topic. Message can even be recorded and played back to

support applications that will need the information later in time.

Laser
Scanner

Master

ad
ve

rtis
e("

sc
an

")

Viewer

subscribe("scan")

connect("scan", TCP)

TCP Server address
connect(TCP Server Address)

LaserScan data messages

TCP

XML/RPC

Figure 5 – Topic initialization [13].

The topics are implemented in the XML-RPC protocol, using a master node in order

to provide name resolution. In order for a publisher to connect to a subscriber, they do

Chapter 2. Background Theory 21

the following steps [13]:

1. Subscriber register with the master the topics it will be listening to.

2. Publisher register with the master the topics it will be publishing to.

3. Master informs the subscriber of a new publisher.

4. Subscriber requests a topic connection with the Publisher and negotiates a transport

protocol.

5. Subscriber connects using the selected protocol.

The process described above is illustrated in Figure 5. It’s important to notice that,

once the connection is established, the communication is maintained peer-to-peer, using

former protocols like TCPROS, built over TCP, and UDPROS, built over UDP. This not

only provides faster communication inside the same network by not requiring the mes-

sages to be relayed through the master but also enables communication through available

networks of the Internet protocol suite, including 802.11X wireless transmission.

The topic configuration also enables true agnostic packages, since the communication

between them will be done using a standardized communication medium, loosely coupling

the packages and making them easily maintainable. Debugging can also be done using

command-line tools that wiretap this medium and display the information exchanged by

nodes.

2.1.3 Services

The topic communication can be very useful in many-to-many communication but

lacks support when sending messages or commands that require a response. When a

reply is needed, it is a better practice to use services instead of topics. This is especially

true for tasks that need a lot of computing power but only need to be executed once in

a while, so instead of calculating it in every iteration, the service can be run just when

requested and return data to the caller. The request is usually done in a similar way to

Remote Procedure Calls (RPCs) in programming languages.

2.1.4 Message types

Since nodes need to understand each other, they talk following pre-defined mes-

sage standards, and the message files themselves are packages that define the content

of each message. To avoid confusion, each topic is initialized using a pre-defined message

type and every node has to conform to it. Let’s take a look at the message definition

geometry_msgs/Twist.msg, that is used in navigation to define linear and angular veloc-

ity for the joints:

Chapter 2. Background Theory 22

1 Vector3 l i n e a r

2 Vector3 angular

Note that the Vector3 is not a base type message, but is another type of message

defined at geometry_msgs/Vector3.msg:

1 f l o a t 6 4 x

2 f l o a t 6 4 y

3 f l o a t 6 4 z

The variable types that cannot be expanded into other definitions are called primitive

types. The primitive types are:

• bool

• int8

• uint8

• int16

• uint16

• int32

• uint32

• int64

• uint64

• float32

• float64

• string

• time

• duration

Message types for services are done in a similar way, but since services support re-

sponse, the message will consist of two individual messages. If we look at a standard

definition found in std_srvs/SetBool.srv:

1 bool data

2 −−−

3 bool s u c c e s s

4 s t r i n g message

This service is used for setting a boolean variable to true or false, that can be activating

or deactivating an actuator. The response consists of a boolean that tells if the operation

was successful and a message for better description in case of error.

2.2 Transformations

Transformations, or tfs, for short, are the way ROS deals with coordinates frames in

space. As the poses for each link in the robot might change over time, it keeps track of

these changes and provides tools to assist the user to do transformations with the data.

Suppose a particular robot has a reference fixed frame /world in the origin. The

center of the robot is another frame called base_link. The transformation /world ->

/base_link would indicate the position of the robot relative to the world.

Now, let’s say the robot has a laser scanner sensor /laser_link relative to /base_link,

as it is fixed on the robot. The laser makes a measurement and this result is relative to

Chapter 2. Background Theory 23

the laser position. Let’s call the result /result. The result is then related to /world by

a long chain of transformations.

/world -> /base_link -> /laser_link -> /result

It can be tricky to transform the /result back to /world coordinates. The tf package

gives the user an easy way of setting up a listener on the /tf topic that will listen to the

published transforms and do the required transformations between coordinate frames, so

the user can ask directly for the transform /world -> result instead of transforming

the data himself.

2.3 Simulation

Since deploying a test robot at every code change is costly and time consuming and

ROS only provides the tools to develop a robot system solution, there is a need for offline

simulation of the robots, avoiding having to test every configuration on physical hardware.

In these cases, it can be helpful to set up a rigid body simulation. The normal workflow

for setting up a simulation is [14]:

• Isolating the important variables in the physical process.

• Model the physical system behavior using equations.

• Find a method to solve the equations, given the inputs and the initial state of the

system.

• Write a computer program that can do that simulation.

• Simulate and benchmark the results against the physical system.

Repeating all these five steps for every physical system will lead to the best results,

but can be time-consuming and difficult because all the variables involved. Since the

possibilities for a robot system are often limited, physics engines or physics SDKs (source

development kits) were developed to aid simulation.

While the real world has a lot of complexity, rigid body dynamics can be simplified

in rigid bodies, joints, collisions, friction and springs, elements that are important to the

process. The physical model can be reduced to the laws of motion, using mass, velocity,

acceleration, and force as simulation variables. Since the model and the solution to these

problems are well known, generalized solvers can be written that compute the simulation

at each instant of time, or time steps.

Many simulators implement this generalized solvers, as well as render the 3D models

to show to the user, including game engines like Unity and USARSim (based on Unreal

Chapter 2. Background Theory 24

engine), commercial solutions like Microsoft Robot Studio, Webots and MATLAB, and

open-source projects like Gazebo [15]. Since Gazebo adopts the mentality of the ROS

project of being open and free, it became widely used in the community, and as a result

better developed over time.

Gazebo provides ROS with a framework to simulate and benchmark the robot or even

a group of robots accurately. Figure 6 shows the Gazebo simulation for a supported robot

[16].

Figure 6 – Gazebo simulation suite.

The Gazebo simulator offers:

• Dynamics simulation using multiple physics engines.

• Advanced 3D graphics for high-quality rendering.

• Sensors and noise, to generate reliable sensor data, compatible with real-world sen-

sors.

• Robot models, including ones from the community.

All the robot description is made using a URDF (Universal Robotic Description For-

mat) file or an SDF (Simulation Description Format) file. The URDF file is an XML file

describing all elements of the robot. Even though it’s called “Universal”, it lacks some of

the features like parallel linkages, friction, etc. To get around these issues, a new model

called SDF was developed specifically for use in Gazebo, while the URDF was maintained

for backward compatibility. Every time a URDF file is loaded, it is converted by Gazebo

to an SDF equivalent.

2.3.1 URDF

URDF files starts describing each link of the robot and it’s respective inertia. Fig-

ure 6 show an example of the robot Turtlebot3 Waffle [17] consisting of three links:

Chapter 2. Background Theory 26

out of control. Because of that, the simulator drops physical accuracy in favor of speed,

stability and robustness [18].

Bullet is a Python implementation of physics simulation for robotics, games, and

visual effects that provides forward and inverse dynamics and kinematics, as well as

built-in collision detection. Bullet differentiates itself by being easy to use and provides

integration to machine learning frameworks like TensorFlow [19].

Simbody is a multibody simulator focused on biomedical research. It was developed

to better suit simulation scenarios where engines like ODE may not converge to correct

results due to its lack of fidelity. It is used for neuromuscular, prosthetic, and biomolecular

simulation, as well as design and control of humanoid robots [20].

DART or Dynamic Animation and Robotics Toolkit is another rigid body simulation

that distinguishes itself due to its accuracy and stability. The main purpose of this

simulator is to provide full access to internal kinematic and dynamic quantities [21].

All four engines are used to tackle different problems. By varying the time step, for

instance, you might obtain better results in your simulation with one of the engines.

Usually, when choosing the simulation engine, the relationship between the number of

iterations, error, and speed must be taken into account. Some of the simulations require

greater precision, while others may require real-time performance. For a more in-depth

comparison of the four engines see [22].

2.3.4 Sensors and actuators

Gazebo also allows simulating sensors and actuators that will interact with the world

and send data back to ROS packages. Sensors can include cameras, laser scanners, contact

sensors, IMU, RFID, Sonar, Magnetometer. Actuators can use the ROS control library to

actuate joints. The sensors are described in the SDF or URDF files. The example below

shows an example of a camera description.

1 <gazebo r e f e r e n c e=" camera_link ">

2 <senso r type=" camera " name=" camera1 ">

3 <update_rate>30 .0</ update_rate>

4 <camera name=" head ">

5 <hor i zonta l_fov>1.3962634</ hor i zonta l_fov>

6 

11 . . .

12 </camera>

13 <plug in name=" camera_contro l l e r " f i l ename=" libgazebo_ros_camera . so ">

14 <alwaysOn>true</alwaysOn>

15 <updateRate>0 .0</updateRate>

Chapter 2. Background Theory 27

16 <cameraName>robot /cam1</cameraName>

17 <imageTopicName>image_raw</imageTopicName>

18 <cameraInfoTopicName>camera_info</cameraInfoTopicName>

19 <frameName>camera_link</frameName>

20 <hackBase l ine>0.07</ hackBase l ine>

21 <di s to r t i onK1>0 .0</ d i s to r t i onK1>

22 <di s to r t i onK2>0 .0</ d i s to r t i onK2>

23 <di s to r t i onK3>0 .0</ d i s to r t i onK3>

24 <di s to r t i onT1>0 .0</ d i s to r t i onT1>

25 <di s to r t i onT2>0 .0</ d i s to r t i onT2>

26 </ plug in>

27 </ senso r>

28 </ gazebo>

Listing 2.1 – Exemple of a URDF file for a camera description.

The controller is loaded from a plugin called libgazebo_ros_camera.so and uses as

parameters which topic the camera will correspond to and the intrinsic parameters of the

lenses, update rate and sensor type, as well as the link the camera will be attached to.

There are many pre-built plugins available at Gazebo library, including Cameras (mono

and stereo), Kinect, Laser Scanner, Force and IMU sensors, Differential Drive, Skid Steer-

ing Drive, as well as templates to write your own dedicated plugin.

2.4 Care-o-bot

Care-o-bot is a project for a mobile assistive robot that is modular, developed and

maintained by Fraunhofer IPA. COB’s fourth version, Figure 8, was designed not only

to provide researchers a reliable mobile base, but also to aid research on human-robot

interaction and social behavior [23]. It is composed mainly by a mobile base, a torso, and

a head.

2.4.1 Base

The base features three steerable wheels used for moving the robot on the ground.

Because the modularity, the wheels can be configured to use Ackermann kinematics,

moving forward and backward and rotating on the vertical axis, but also Omnidirectional

kinematics, allowing the robot to move in every direction. The maximum speed supported

is 1,1 m/s. It is also equipped with three 2D laser scanners with 360◦ coverage for object

detection and safety, and the battery pack to power the robot and the control panel.

Chapter 2. Background Theory 29

Figure 9 – LWA4P extended arm.

2.4.4 Head

The head is linked with the torso, allowing for both a pan joint or a spherical joint,

and contain the human interface to interact with the user, including the sound system,

microphone, a touch screen display and optional camera for face recognition.

2.4.5 Package organization

COB is built around ROS and combines different sets of packages for different pur-

poses. Since the robot support different configurations (manipulators, joints, mobile

bases), some packages are optional. Figure 10 shows the dependency graph for the first

three layers of packages. Notice that the arrangement is quite intricate even showing

only the packages written exclusively for COB (not showing other ROS packages used on

COB).

The COB core consist of the following packages and its dependencies:

• cob_msgs: Robot-specific Messages, representing state information like battery sta-

tus, etc.

• cob_srvs: Robot-specific Services.

• cob_description: Robot URDF models for different COB configurations (only

base, base with fixed torso, base with actuated torso, etc).

• cob_bringup: machine configuration, including all scripts and dependencies re-

quired to run COB, both in simulation and real hardware.

COB also features high-level capabilities, some of them being:

Chapter 2. Background Theory 31

The actuators move the three wheels on the base. Since the base kinematics is already

calculated by the node, you only need to publish a geometry_msgs/Twist type message

with linear and angular velocities and the drivers will take care of the rest. The topic

names can be seen on Table 1.

Table 1 – Base command API.

Topic Name Message Type Information
/base/twist_mux

/command_navigation
geometry_msgs/Twist Velocity topics related to navigation

/base/twist_mux

/command_safe
geometry_msgs/Twist

Velocity topics related to teleoperation
with collision checking and smoothing

/base/twist_controller

/command
geometry_msgs/Twist

Low level Velocity topics
for control purposes

Since the torso and the head only have one joint, they receive a set of points forming

a trajectory to follow, given by the control_msgs/FollowJointTrajectory service mes-

sage type. This service returns if the robot was able to perform the trajectory, as well as

the error in the path. The structure can be seen on Table 2.

Table 2 – Torso and head command API.

Topic Name Message Type Information
/torso/joint_trajectory_controller

/follow_joint_trajectory
control_msgs/FollowJointTrajectory Trajectory to move the torso

/head/joint_trajectory_controller

/follow_joint_trajectory
control_msgs/FollowJointTrajectory Trajectory to move the head

The arms, the grippers and the sensor ring are similar to the torso and head, as they

act as a service and receive the same message type. Their API is shown on Table 3.

Table 3 – Arms and grippers command API.

Topic Name Message Type Information
/arm_left/joint_trajectory_controller

/follow_joint_trajectory
control_msgs/FollowJointTrajectory Trajectory to move the left arm

/gripper_left

/joint_trajectory_controller

/follow_joint_trajectory

control_msgs/FollowJointTrajectory Trajectory to move the left gripper

/arm_right/joint_trajectory_controller

/follow_joint_trajectory
control_msgs/FollowJointTrajectory Trajectory to move the right arm

/gripper_right

/joint_trajectory_controller

/follow_joint_trajectory

control_msgs/FollowJointTrajectory Trajectory to move the right gripper

/sensorring

/joint_trajectory_controller

/follow_joint_trajectory

control_msgs/FollowJointTrajectory Trajectory to move the sensor ring ring

For the sensors, there are three lasers scans that cover the entire circumference of the

robot, shown on Table 4. Even though they are separate entities, there are nodes that

transform the three different measurements into a single one for easier use later on.

Chapter 2. Background Theory 32

Table 4 – Laser Scan API.

Topic Name Message Type Information

/base_laser_front/scan sensor_msgs/LaserScan Front laser scan

/base_laser_left/scan sensor_msgs/LaserScan Left laser scan

/base_laser_right/scan sensor_msgs/LaserScan Right laser scan

/scan_unified sensor_msgs/LaserScan Unified laser scan

There are also cameras in the torso, head and in the sensor ring that collect both raw

images and a point cloud representation that includes the distance of each point to the

focal point of the camera. Their respective topics can be seen on Table 5.

Table 5 – Cameras API.

Topic Name Message Type Information

/torso_cam3d_left/rgb/image_raw sensor_msgs/Image
Color image of the
left torso camera

/torso_cam3d_left/depth_registered/points sensor_msgs/PointCloud2
Depth data from
torso left camera

/torso_cam3d_right/rgb/image_raw sensor_msgs/Image
Color image of the
right torso camera

/torso_cam3d_right/depth_registered/points sensor_msgs/PointCloud2
Depth data from

torso right camera

/torso_cam3d_right/rgb/image_raw sensor_msgs/Image
Color image of the
down torso camera

/torso_cam3d_down/depth_registered/points sensor_msgs/PointCloud2
Depth data from

torso down camera

/sensorring_cam3d_front/depth/points sensor_msgs/PointCloud2
Depth data from

sensor ring camera

/sensorring_cam3d_back/rgb/image_raw sensor_msgs/Image
Color image of the

back sensor ring camera

/torso_cam3d_down/depth_registered/points sensor_msgs/PointCloud2
Depth data from

back sensor ring camera

/head_cam3d/rgb/image_raw sensor_msgs/Image
Color image of the

head camera

Finally, there are also other miscellaneous topics to control the lights and text-to-speak

output and publish robot information, shown on Table 6.

Table 6 – Miscellaneous API.

Topic Name Message Type Information

/joy sensor_msgs/Joy Input commands of joystick

/sound/say cob_sound/Say Text for text-to-speak output

/light_base/set_light cob_light/SetLightMode Command for base lights

/light_torso/set_light cob_light/SetLightMode Command for torso lights

/light_torso/set_light cob_light/SetLightMode Command for torso lights

/emergency_stop_state cob_msgs/EmergencyStopState
Laser and button
stop information.

/power_state cob_msgs/PowerState Battery information.

33

3 SLAM

One of the first challenges in indoor navigation for assistive robots is actually finding

where they are. Robot localization is fundamental to not only know where the robot

needs to go, but also find a path to avoid obstacles.

Mapping is an essential tool in this matter, and it connects the areas of concurrent

mapping and localization problem. In themselves, both problems are relatively easy and

well understood: mapping an environment knowing the localization and localizing the

robot having the map in hands are simple tasks. However, the combination of those two

problems is hard to solve [25].

Many SLAM (Simultaneous Localization and Map Building) algorithms emerged to

try and solve these problems, using different approaches and a range of sensors to do the

task. They also combine data from different sensors to provide higher precision. They

often rely on assumptions about the system’s nature. Some of the algorithms assume that

the noise in the sensors can be modeled as a Gaussian distribution and that the movement

of the robot is linear and apply Kalman Filters to predict the current state, based on the

last state and the odometry data.

3.1 Sensors

The laser scanner (Figure 11a) is the most popular way to capture data about the

environment. They work by sending beams of light in a direction and measuring the time

it takes for the light to travel back and forth between the object and the sensor, either

directly, by measuring time of flight, or indirectly, by measuring the phase-shift [26]. As

you want the information to be gathered on more than a single point, the scanner can

rotate a mirror or even the whole sensor to gather measurements from all directions, as

shown on Figure 11b. The LIDARs that do not contain moving parts are called solid

state LIDARs.

In the time of flight measurement, a stopwatch is started when the beam of light is

emitted and stopped when it hits the sensor, giving a measurement of time t. Since the

speed of light c is well known, the calculations are very straight forward, as shown on

Equation (3.1). This form of measurement depends heavily on the quality of construc-

tion, as noise (electronics, radiation in the room) and timing (stopwatch precision, pulse

detection) can lead to significant errors in the final result, and averaging and filtering help

gather more reliable data [10].

D =
c · t

2
(3.1)

Chapter 3. SLAM 35

Figure 12 – Forward kinematics of mobile robot [10].

It is easy to calculate the inverse problem using the inverse matrix R−1(θ), converting

back from the robot coordinate frame to the global frame. The only missing parameter

is how the wheel kinematics translates to the ˙ξR robot velocity, and that will depend

on the robot wheel arrangement (wheel type, number of wheels, radius) and the robot

dimensions.

The main disadvantages of wheel odometry are that the robot is limited to flat terrain,

and even then slippery and small changes to forward kinematics (i.e. the radius of the

wheel changes slightly) can accumulate error over time, as there is not a suitable way to

correct the error without other sources of information.

3.2.2 Laser odometry

Laser odometry bases itself on Laser Scanner data to localize the robot. Instead of

using odometry to watch how the robot moves in the environment, it uses the collected

data to see how the environment moves in relation to the robot.

One approach to this calculation would be taking two consecutive laser scanners and

comparing them. It is assumed that the environment is mostly static so not much should

change from one set of data to the other. The transformation that minimizes the distance

between points from the two sets is then considered to be the movement of the robot in

that time slot [28].

As the small movements are integrated over time, this approach has the same flaws

as wheel odometry, with error accumulating over time. However, the robot can improve

accuracy by keeping a laser scanner measurement history and repeating the minimiza-

tion between many poses. It can also take advantage if it revisits a point in the past

where the measurement was more accurate, as it can use data from that measurement for

comparison.

Chapter 3. SLAM 36

3.3 The localization and mapping problem

The localization process can be expressed mathematically as follows [29]. Since all the

measurements are discrete and supposing we want the localization of the robot through

time, the set of poses over time can be represented as:

Xt = {x0, x1, . . . , xt} (3.5)

The map can also be represented by a variable M as follows. Notice also that the

map is considered to be time-invariant in this case, and only depends on n which is the

number of features in the world.

M = {m0, m1, . . . , mn−1} (3.6)

In order to evaluate both variables Xt and M , it is necessary to have some idea on

how the robot is interacting with the world. This can be for instance the measurements of

robot odometry (wheel or laser odometry) or IMU data. The set of these measurements

is defined as:

Ut = {u0, u1, . . . , ut} (3.7)

To also build the map, the robot will need the set of observations of the world, that can

come as measurements from 3D cameras, LIDAR, sonar, etc. This set of measurements

is defined as:

Zt = {z0, z1, . . . zt} (3.8)

Since every measurement is noisy, the position can only be represented as a belief,

where the belief is the probability that the robot is in a position given the set of inputs

and measurements. This belief depends on the set of observations from the past. This

can be represented as:

bel(xt, M) = p(xt, M |u1,t, z1,t) (3.9)

There are three main approaches to solve this problem and calculate the belief: Ex-

tended Kalman Filters, Particle Filters, and Graph-based.

One of the concerns of mobile robots is how to build a map that is compatible with the

environment and represents obstacles properly. While in some applications it is possible

to have a pre-compiled map from the environment using the floor plan as a reference,

those can be obsolete when dealing with highly dynamic environments or when objects

get in the way. Even in static environments, there is a need to compensate for faulty or

noise sensors, errors in the localization, and the pre-compiled maps should only be used as

complementary information. One of the techniques that emerged to solve these problems,

Chapter 3. SLAM 39

In [32], Grisetti proposed improvements to Doucet et al.[31] techniques in order to

reduce complexity and make the resampling step better. It works by first reducing the

number of particles needed to be stored combining the current laser scan observation and

odometry information, contrary to previous approaches where only odometry was used,

reducing the estimation error and getting a more refined map. The second technique is

using adaptative resampling, meaning that resampling only has to be done when needed,

reducing the problem with particle depletion, when only a few particles are in high-

probability areas and a lot of particles represent pretty old and unreliable information.

3.4.2 Hector

Hector SLAM first emerged in 2013 to solve the very specific problem of mapping in

uneven terrains. It was aimed to be used in rescue robots that have to be robust enough

to drive through ramps and obstacles and still be able to estimate the trajectory and map

without reliable odometry information. Instead of trying to filter data to only include

useful data, Hector pose estimation completely drops odometry data in favor of laser

scanner data. It instead uses a fast LIDAR data scan-matching to estimate odometry.

In order to estimate 6DOF when moving in uneven terrain, the algorithm also needs an

IMU device, and optional localization devices like GPS, barometers, and accelerometers.

All the data is then fused using an Extended Kalman Filter (EKF), and not including

odometry information is a simple way to exclude all errors caused by wheel spin, drift or

slippery ground [33].

3.4.3 Karto

Karto is a graph-based SLAM algorithm developed by Karto Robotics and made open-

source in 2010. Graph-based SLAM, proposed initially by Lu and Milios[34], works by

organizing the robot pose information into a graph and then optimizing it to make it more

consistent and minimize an error function. While the construction of the graph is heavily

sensor dependent, optimizing the graph is computationally expensive and the reason why

Graph-based SLAM took so long to become popular [35].

The graph is constructed representing every pose for the robot as a node in the graph.

Every robot movement is then represented as an edge in the graph that connects the

poses, this data in the edge usually being the odometry information. If the robot comes

back to a known position, the algorithm does the loop closure and connects the graph to

a previously known node. Since odometry is not reliable, it is corrected using the laser

scanner measurements. The scan observation in both poses is then matched to calculate

the virtual transformation that should map one measurement optimally to the other.

Let zi,j be the odometry information between poses i and j and ẑi,j be the expected

Chapter 3. SLAM 40

measurement, the error ei,j can be calculated simply subtracting one from the other, i.e,

ei,j(xi, xj) = zi,j − ẑi,j (3.10)

The goal is to ultimately build a function F (x) using the log-likelihood strategy:

F (x) =
∑

〈i,j〉 ∈ C

eT
i,jΩi,jei,j (3.11)

so that it can be minimized by the optimization algorithm for x∗, i.e,

x∗ = argminx F (x) . (3.12)

In order words, the questions is what is the optimal path that minimizes the observed

error, given the distribution Ω and the measurements z and ẑ. The optimization is the

main problem when dealing with graph-based SLAM, and many different approaches exist

to solve this problem. Karto uses Sparse Pose Adjustment, which takes advantage of the

sparsity on the large matrices required to solve the optimization problem [36].

3.4.4 Cartographer

Cartographer is a fairly recent SLAM technique developed by Google. The concept

behind the algorithm can be seen on Figure 16. The main idea is separating SLAM into

two different problems: local SLAM and Global SLAM. The main objective is not having

to deal with big maps or representations while mapping a new area. Instead, a submap is

created for the local area and updated every new scan. Every scan is also tested against

the submap using a Ceres-based scan matcher, to do pose optimization.

The idea of having submaps is that it is only built using a few scans, meaning that the

estimate should be very close to reality. As the submaps grow larger, so does the error,

meaning that at every few scans a new submap is started. The Global SLAM thread will

then have a collection of submaps to compute the whole map running loop closure [37].

3.5 Evaluating SLAM performance

There is a lot of debate on how to evaluate SLAM performance. Since there are plenty

of algorithms using different techniques, each one of them having their own set of parame-

ters, there is a need to evaluate them and tell which one does better in each scenario. A lot

of this evaluation is done visually, assisted by a human that tells whether the occupancy

grid is adequate considering the building floor plans. But as SLAM algorithms get more

precise, it is difficult to draw conclusions just from the appearance itself. Additionally,

there is the problem of not having the floor plants for publicly available datasets, making

it harder to compare between methods [39].

Chapter 3. SLAM 42

pose calculated by the SLAM and x∗
i the ground truth pose and N the total number of

poses, we can derive the squared error ǫ(x) as follows:

ǫ(x) =
1

N

N
∑

i=1

(xi − x∗
i)

2 . (3.13)

Kümmerle et al.[39] proposes a framework to analyze mapping accuracy that uses

visual inspection in order to estimate the relations between the robot poses and the

environment. The estimation is then compared to the SLAM results and the final metric

is the "deformation energy" required to transform the mapped result into ground truth.

In other words, each of the Nc displacements δi,j is compared against the ground truth

δ∗
i,j using ǫ(δ) given by

ǫ(δ) =
1

Nc

∑

i,j

trans(δi,j ⊖ δ∗
i,j)

2 + rot(δi,j ⊖ δ∗
i,j)

2 (3.14)

for a set of (i, j) pairs. The displacement δi,j is simply calculated by the transformation

from a local measurement between two known poses, from pose xi to pose xj, using a

distance function like the Euclidian Distance. Evaluating the displacement instead of

the global position is great because it makes the evaluation resilient to small errors at

the start of mapping that would impact every subsequent global position, even when

the mapping in the next steps is done correctly. Since the ground-truth displacement

is not available, this implementation relies on the fact that the relation between two

poses can be calculated using the laser scanner, each pose later evaluated by a human.

It also relies on a good enough initial guess, also human assisted. The authors also

assume just evaluating the poses without evaluating the resulting map is enough for

SLAM benchmarking. While this holds true for most cases, it is still very hard to infer

global performance, as global displacements (large enough distance between i and j) also

carry the problem of accumulating human error, as each measurement is supervised.

Santos, Portugal and Rocha[40] propose a more in-depth comparison with the publicly

available SLAM algorithms that run on ROS. The authors ran both noise-free simulation

and real-life experiments with the scenarios and analyzed. The maps collected were

binarized and aligned and error metric was defined as the normalized sum of distances

from all pixels in the resulting map to its nearest neighbour in the ground-truth map.

The error metrics were analyzed, also evaluating the CPU usage for each algorithm. The

authors, however, didn’t provide extensive information on how the maps were aligned,

very crucial since the fit has to be optimal in order to do an adequate comparison.

3.6 Proposed evaluation techniques

In order to better evaluate the algorithms, general guidelines will be respected:

Chapter 3. SLAM 43

• Algorithms available in ROS will be used, to ensure every algorithm is publicly

available for testing.

• Different maps will be tested to ensure no algorithm is favored. In each run, each

algorithm will receive the same working data in the form as ROS bags.

• The scenario will be simulated in a map carefully generated using a public tool, to

make sure everyone can generate the same testing data.

• Maps will test the ability for the algorithm to do accurate mapping, accurate lo-

calization, and loop-closure. Different metrics will be used to ensure all these three

aspects of each map are analyzed.

• Each algorithm will be run using their default configuration. The goal is to test

how each algorithm performs in the general case, instead of finding the optimal

configuration that gives us the best results for a specific test.

The manuscripts discussed in Section 3.5 already give us a good indication of what to

aim for in a comparison algorithm. The first metric chosen is the one described in [39], as

it best describes local error in the form of displacements when analyzing the trajectory of

the robot. Since the ground-truth data is now available and doesn’t have to be inferred

by a human operator, the process can be done autonomously and we can ensure the data

perfectly matches the environment. For comparison, we are also going to include the

squared error metrics proposed in Equation (3.13).

The second comparison method chosen is the one demonstrated in [40], only that

now the approach for lining up the maps and calculating the error metric will be fully

described. This approach will help to analyze the quality of the generated map regarding

the placement of walls and objects, including their orientation and the amount of noise.

The third metric will focus on analyzing the modeled empty space of each algorithm,

to see if the area of the generated room matches the area of the map. This is useful in

combination with the last algorithm to see how good is the scale on each map.

3.7 Experimental maps

The maps have to be designed to include the scenarios encountered in real life. Three

maps were designed and can be seen in Figure 17. The selection aims at testing three key

elements in SLAM: loop closure, scale and localization.

The first map can be seen on Figure 17a. It is meant to test the loop closure capabilities

of each algorithm since the robot will have to do the full circle, come back to the same

point, and then connect the two pathways. The robot starts at the A position, goes into

Chapter 3. SLAM 45

Recalling Section 3.2, the robot position relative to the global reference frame can be

represented by two coordinates for the Cartesian position and one for the orientation.

Let’s define xi = [xc
i , yc

i , θi] and xj = [xc
j, yc

j , θj].

The displacements δi,j and δ∗
i,j are calculated by taking the relative transformation

between two poses i and j:

δi,j = xj − xi =











xc
j − xc

i

yc
j − yc

i

θj − θi











. (3.15)

The goal is to calculate the contributions trans(δi,j ⊖ δ∗
i,j) and rot(δi,j ⊖ δ∗

i,j), re-

spectively the linear displacement and the angular displacement. As mentioned, these

transformations can be calculated using the Euclidian distance as following:

trans(δi,j ⊖ δ∗
i,j)

2 = ((xc
j − xc

i) − (xc∗
j − xc∗

i))2 + ((yc
j − yc

i) − (yc∗
j − yc∗

i))2 , (3.16)

rot(δi,j ⊖ δ∗
i,j)

2 = ((θj − θi) − (θ∗
j − θ∗

i))2 . (3.17)

Kümmerle et al.[39] proposes to select the pairs (i, j) from the dataset using scan

matching evaluated by a human operator. Since our dataset have the ground-truth, all

possible displacements can be evaluated. Given a set o N poses, the linear displacement

can then be represented by:

Linear displacement =
1

N2

N
∑

i=1

N
∑

j=1

trans(δi,j ⊖ δ∗
i,j)

2 (3.18)

and the angular displacement by:

Angular displacement =
1

N2

N
∑

i=1

N
∑

j=1

rot(δi,j ⊖ δ∗
i,j)

2 (3.19)

The squared error is easier to calculate, as it relates only to the current pose. We can

define the same separate metrics for the translation and rotation from the estimated pose

to the ground-truth pose:

trans(di)
2 = (xc∗

i − xc∗
i)2 + (yc∗

j − yc∗
j)2 (3.20)

rot(di)
2 = (θi − θ∗

i)2 . (3.21)

The individual pose errors are then summed across the trajectory and normalized

according to the following equations:

Linear squared error =
N

∑

i=1

1

N
trans(di)

2 , (3.22)

Chapter 3. SLAM 48

pixels in the original image and wm is the number of pixels in the map generated by

SLAM:

ǫ(space) =
wo − wm

wo

× 100 . (3.25)

The signal of the result will also give indications about the mapping. If it is positive,

it means that the original map has more white pixels than the mapped result, meaning

the SLAM was more conservative and mapped less space than available. If it’s negative,

the algorithm actually mapped space that is not there, meaning the navigation layer will,

later on, have to deal with this problem.

49

4 Experiments and Results

4.1 Building an accurate map

It is very important to build accurate maps for SLAM testing, as the resulting map

has to be compared against the ground truth and any inaccuracies might lead to different

results. For that, a map generation script has been written to generate accurate Gazebo

SDF descriptions of the desired map.

To generate a map, we begin with the model we want for the map to be generated

with a small image file. As an example, Figure 22a is 200x200 pixels. We then draw

black pixels that will represent the walls in the generated map. After running the script

to generate the map, the resulting map can be seen on Figure 22b.

(a) Representation of map in an image editor. (b) Generated map in Gazebo.

Figure 22 – Scripted map generation for Gazebo.

The main body for the SDF world description can be seen on Listing 4.1. The only

information that has to be filled is the {robot_start_pose} that will define where the

robot will start within the map. The {content} tag will then contain a list of walls that

compose the test scenario.

1 <?xml ve r s i on=’ 1 .0 ’ ?>

2 <sd f ve r s i on=’ 1 .6 ’>

3 <model name=’ autogenerated ’>

4 <pose frame=’ ’>{ robot_start_pose } 0 0 0 0</ pose>

5

6 { content }

Chapter 4. Experiments and Results 50

7

8 <s t a t i c>1</ s t a t i c>

9 </model>

10 </ sd f>

Listing 4.1 – SDF Header.

Each wall can be represented by the XML shown in Listing 4.2. Each will have a unique

link name guaranteed by an increasing integer called {link_number}. The {size} and

{height} are the dimensions of the wall. Finally, the {position} and {orientation}

represent the location of the wall center in the world, relative to {robot_start_pose}.

1 <l i n k name=’Wall_{ link_number} ’>

2 <c o l l i s i o n name=’Wall_{ link_number} _Co l l i s i on ’>

3 <geometry>

4 <box>

5 <s i z e>{ s i z e } { he ight }</ s i z e>

6 </box>

7 </geometry>

8 <pose frame=’ ’>0 0 0 0 0 0</ pose>

9 </ c o l l i s i o n>

10 <v i s u a l name=’Wall_{ link_number}_Visual ’>

11 <pose frame=’ ’>0 0 0 0 0 0</ pose>

12 <geometry>

13 <box>

14 <s i z e>{ s i z e } { he ight }</ s i z e>

15 </box>

16 </geometry>

17 <mate r i a l>

18 <s c r i p t>

19 <u r i> f i l e : //media/ mate r i a l s / s c r i p t s / gazebo . mate r i a l</ u r i>

20 <name>Gazebo/Grey</name>

21 </ s c r i p t>

22 <ambient>1 1 1 1</ambient>

23 </ mate r i a l>

24 </ v i s u a l>

25 <pose frame=’ ’>{ p o s i t i o n } 0 0 0 { o r i e n t a t i o n }</ pose>

26 </ l i n k>

Listing 4.2 – SDF for a single wall.

4.2 Setting up the SLAM algorithms

The following configuration was used for each of the tested algorithms. If not spec-

ified, the default configuration is being used. Cartographer is the only algorithm that

also requires an external Lua file for configuration. All algorithms require the same hard-

ware setup: a source of odometry, in this case a transformation from the robot fixed

Chapter 4. Experiments and Results 51

frame odom_combined to base_link and the laser scanner data, represented by the topic

scan_unified, that combines the data from all three lasers scanners on the robot base.

Every algorithm cycle then publishes the calculated map into the /map topic and a

correction of odometry using a transformation from map to odom_combined. This trans-

formation is a small displacement between the two frames to account for errors in the

odometry for the robot that accumulates over time and can be reduced by taking the

pose corrected by SLAM.

4.2.1 Gmapping

To start Gmapping, we call the launch file shown in Listing 4.3. It starts the node

slam_gmapping from package gmapping. The laser scan topic is remapped to match the

robot topic name with the remap tag and the odometry frame is provided as odom_combined.

The map_update_interval and number of particles are kept in the default configuration.

The xmin, xmax, ymin and ymax are the initial size of the resulting map in meters and

won’t impact the results, as they are automatically increased if the map needs to be bigger.

The delta is the map resolution and is kept at the default value of 0.05 pixels/meter.

1 <launch>

2 <node pkg=" gmapping " type=" slam_gmapping " name=" slam_mapping " output="

sc r e en ">

3 <remap from=" scan " to=" scan_uni f i ed " />

4 <param name=" odom_frame " type=" s t r i n g " va lue=" odom_combined " />

5 <param name=" map_update_interval " va lue=" 5 .0 " />

6 <param name=" p a r t i c l e s " va lue=" 30 " />

7 <param name=" xmin " va lue="−8" />

8 <param name=" ymin " va lue="−8" />

9 <param name="xmax" value=" 8 " />

10 <param name="ymax" value=" 8 " />

11 <param name=" de l t a " va lue=" 0 .05 " /> <!−− map_resolution −−>

12 </node>

13 </ launch>

Listing 4.3 – Gmapping launch file.

4.2.2 Hector

The Hector mapping node is started using the launch script in Listing 4.4, starting

the node hector_mapping from package hector_mapping. We first remap the laser scan

to the right topic and use the adequate frame names for the map, base link and odometry

link. The pub_map_odom_transform is set to True to publish the transform from map

to odom_combined. The laser_min_dist is set to the minimum value registered for the

COB laser scanners.

Chapter 4. Experiments and Results 52

1 <launch>

2 <node pkg=" hector_mapping " type=" hector_mapping " name=" slam_mapping "

output=" sc r e en ">

3 <remap from=" scan " to=" scan_uni f i ed " />

4 <param name=" map_frame " value="map" />

5 <param name=" base_frame " value=" base_l ink " />

6 <param name=" odom_frame " value=" odom_combined " />

7 <param name=" pub_map_odom_transform " value=" true " />

8 <param name=" laser_min_dist " va lue=" 0 .05 ">

9 </node>

10 </ launch>

Listing 4.4 – Hector launch file.

4.2.3 Karto

The Karto mapping node is started using the launch script in Listing 4.5, starting

the node slam_karto from package slam_karto. We only have to set the scan and

odometry frames. The map_update_interval and resolution are set to the same values

as Gmapping.

1 <launch>

2 <node pkg=" slam_karto " type=" slam_karto " name=" slam_mapping " output="

sc r e en ">

3 <remap from=" scan " to=" scan_uni f i ed " />

4 <param name=" odom_frame " value=" odom_combined " />

5 <param name=" map_update_interval " va lue=" 5 " />

6 <param name=" r e s o l u t i o n " value=" 0 .05 " />

7 </node>

8 </ launch>

Listing 4.5 – Karto launch file.

4.2.4 Cartographer

The Cartographer node requires a lot of configuration compared to the other SLAM

algorithms. Two separate nodes have to be called at start, as seen in Listing 4.6:

the cartographer_node and cartographer_occupancy_grid_node, both from package

cartographer_ros.

The main Cartographer node does all the sub-map generation and takes as param-

eters a Lua file with the algorithm configuration, shown in Listing 4.7. The configura-

tion file uses all the default parameters available in Cartographer example files (in file

backpack_2d.lua), with the exception that the IMU was disabled, as COB doesn’t have

one. The frames were set accordingly and the option provide_odom_frame was set to

Chapter 4. Experiments and Results 53

true to get the map to odometry transform during execution. The laser scan was changed

from multi-echo laser scan to laser scan.

The second node is the occupancy grid node, that reads data from the sub-map list

and republishes into the /map topic as a standard Occupancy Grid message from ROS.

The resolution is also set to 0.05 pixels/meter.

1 <launch>

2 <!−− Arguments −−>

3 <arg name=" conf igurat ion_basename " d e f a u l t=" car tographer . lua " />

4

5 <!−− cartographer_node −−>

6 <node pkg=" cartographer_ros " type=" cartographer_node " name=" slam_mapping "

7 args="−c on f i g u r a t i on _ d i r e c t o ry $(f i n d cob_bringup_sim) / launch

8 −conf igurat ion_basename $(arg conf igurat ion_basename) "

9 output=" sc r e en ">

10 <remap from=" scan " to=" scan_uni f i ed " />

11 </node>

12

13 <!−− cartographer_occupancy_grid_node −−>

14 <node pkg=" cartographer_ros " type=" cartographer_occupancy_grid_node "

15 name=" cartographer_occupancy_grid_node "

16 args="−r e s o l u t i o n 0 .05 " />

17 </ launch>

Listing 4.6 – Cartographer launch file.

1 i n c lude " map_builder . lua "

2 i n c lude " t r a j e c t o r y _ b u i l d e r . lua "

3

4 opt ions = {

5 map_builder = MAP_BUILDER,

6 t r a j e c t o r y _ b u i l d e r = TRAJECTORY_BUILDER,

7 map_frame = "map" ,

8 tracking_frame = " base_l ink " ,

9 published_frame = " base_l ink " ,

10 odom_frame = " odom_combined " ,

11 provide_odom_frame = true ,

12 use_odometry = f a l s e ,

13 num_laser_scans = 1 ,

14 num_multi_echo_laser_scans = 0 ,

15 num_subdivisions_per_laser_scan = 10 ,

16 num_point_clouds = 0 ,

17 lookup_transform_timeout_sec = 0 . 2 ,

18 submap_publish_period_sec = 0 . 3 ,

19 pose_publish_period_sec = 5e −3,

20 t ra jec tory_publ i sh_per iod_sec = 30e −3,

21 range f inder_sampl ing_rat io = 1 . ,

22 odometry_sampling_ratio = 1 . ,

Chapter 4. Experiments and Results 54

23 imu_sampling_ratio = 1 . ,

24 }

25

26 MAP_BUILDER. use_trajectory_bui lder_2d = true

27 TRAJECTORY_BUILDER_2D. num_accumulated_range_data = 10

28 TRAJECTORY_BUILDER_2D. use_imu_data = f a l s e

29

30 re turn opt ions

Listing 4.7 – Cartographer Lua configuration.

4.3 Collecting data

For data collection, we first start the robot using the following command in the com-

mand line:

roslaunch cob_bringup_sim robot.launch robot:=cob4-9 robot_env:=test1

We are using cob4-9 to avoid having to load unnecessary parts of the robot like the

arms or the cameras. We then launch the controller to be able to drive the robot around

using the keyboard using the following command:

roslaunch cob_teleop teleop_keyboard.launch

Finally, the data is recorded using the rosbag tool. We obviously need the /tf,

/tf_static and /scan_unified for the SLAM algorithms. The topic named

/base_pose_ground_truth is the ground truth data and will be later on used for com-

parison between algorithms.

The /base/twist_controller/command and /base/odometry_controller/odometry

are respectively the commands given by the keyboard and the calculated odometry after

the command has been executed by the robot, and are recorded in case the bag files need

to be re-executed. The following command

rosbag record /base/odometry_controller/odometry

/base/twist_controller/command

/base_pose_ground_truth

/scan_unified

/tf

/tf_static

records the data being published in these topics into a file that can be played at will and

work as the real robot is sending the scans. This ensures every algorithm will get the

same working data in the comparisons.

Chapter 4. Experiments and Results 55

4.4 Running the automated reconstruction

All the steps required for data parsing by the SLAM algorithms were automated to

ensure minimal human interaction is required. Once the data has been collected in the

previous step, it can be played using the launch file shown in Listing 4.8.

First, we set the parameters and arguments required. The use_sim_time ensures the

clock will be used from the bag file, to avoid inconsistencies with time. The robot is set

to cob4-9 because this model will be uploaded for visualization purposes, and it’s not

required to run the SLAM. We then select the bag file and the algorithm to run together.

The launch file then calls the mapping algorithm, which will launch one of the files

described on Section 4.2. Finally, we call the rosbag play node that will play back data

already collected to the algorithm, providing clock with the option –clock and with a

delay -d 5 of 5 seconds to ensure all nodes are initialized before replaying data.

The last include calls for the RVIZ visualization if requested, as shown on Figure 23.

1 <launch>

2

3 <!−− F i r s t s e t up sim time −−>

4 <param name=" use_sim_time " va lue=" true " />

5

6 <!−− d e f i n e arguments −−>

7 <arg name=" robot " d e f a u l t=" cob4−9" />

8 <arg name=" bag " d e f a u l t=" t e s t 1 " />

9 <arg name=" slam " d e f a u l t=" gmapping " />

10

11 <!−− Cal l mapping −−>

12 <inc lude f i l e=" $(f i n d cob_bringup_sim) / launch /cob_$(arg slam) . xml " />

13

14 <!−− Play bag data with c l o ck −−>

15 <node pkg=" rosbag " type=" play " name=" p laye r " output=" sc r e en " args="−−

c l o ck −q −d 5 $(f i n d cob_bringup_sim) /bags /$(arg bag) . bag " />

16

17 <!−− Show v i s u a l i z a t i o n i f r eques ted −−>

18 <arg name=" r v i z " d e f a u l t=" f a l s e " />

19 <group i f=" $(arg r v i z) ">

20 <inc lude f i l e=" $(f i n d cob_bringup_sim) / launch / v i s u a l i z a t i o n . launch " >

21 <arg name=" robot " va lue=" $(arg robot) " />

22 </ inc lude>

23 </group>

24 </ launch>

Listing 4.8 – Automated data parser.

Then, the automated reconstruction can be called passing as parameter the bag file

that was saved and the SLAM algorithm to execute on that bag of data using the following

command:

Chapter 4. Experiments and Results 56

roslaunch cob_bringup_sim parse_data.launch

rviz:=true bag:=test1 slam:=gmapping

And that will not only launch the bag data test1 running Gmapping but also launch

a visualization tool to see progress, as shown on Figure 23. The point cloud data resulting

from the laser scanners (in red) will be feed to the algorithms and the resulting map (in

gray) will be published on the map topic. Every algorithm also publishes the transform

from map to odom_combined.

Figure 23 – Running the automated parser node with Gmapping.

4.5 Parsing the data

The data parser is a Python node that will calculate the required metrics. It runs

alongside the SLAM algorithm and constantly imports its information listening to the

topics and computer resource information. When shut down, the node outputs the desired

graphs and metrics. It can be called using the command:

rosrun cob_bringup_sim pipeline.py

The node keeps executing the following tasks in parallel:

• Republishes the ground truth (/base_pose_ground_truth, as described in Sec-

tion 4.3) from the ground truth topic and republishes it as a tf, since it’s easier to

do transformations on.

• Reads the /tf topic and stores a new pose into a pose history whenever the SLAM

pose is updated, as well as the ground truth pose at that point in time.

• Collects data from CPU Usage and Memory Usage with an interval of 0.1 seconds

using the psutil library [43].

Chapter 4. Experiments and Results 57

When the node is shut down, the following tasks are executed:

• The pose history is plotted alongside the ground truth.

• The squared pose error is calculated according to Section 3.8.

• The displacement pose error is calculated according to Section 3.8.

• The CPU and Memory usage are plotted over time.

• The summary is generated including the average CPU usage, average Memory us-

age, translation displacement error, rotation displacement error, translation squared

error, rotational squared error.

4.6 Exporting the map

The map can be exported using the the map_saver node from the package map_server.

To export the map, simply call the node with the option -f and the map name, as in the

following command:

rosrun map_server map_saver -f map_name

Since Cartographer uses a different approach for generating submaps, the data has to

be saved as a .pbstream first to generate the full map. To generate the map, we first have

to tell the node to finish the trajectory calling the /finish_trajectory service. Then,

we export the .pbstream file and use it to generate the map. The following sequence of

commands represent this process:

rosservice call /finish_trajectory 0

rosservice call /write_state "filename: ’${HOME}/file.pbstream’"

rosrun cartographer_ros cartographer_pbstream_to_ros_map

-pbstream_filename ${HOME}/file.pbstream

Because the resulting image for the map doesn’t always have the correct dimensions

(approximately the same as the ground truth map), we have to crop the empty gray areas

before running the map comparisons. We also want to convert from .pgm saved auto-

matically to .png that the algorithm expects. To do that, we simply call the conversion

function from ImageMagick, using the -trim options to trim the gray borders, using the

following command:

convert -rotate 90 map_name.pgm -trim map_name.png

Why the image is rotated 90 degrees is explained in Section 3.9. After exporting the

map, we can calculate the ICP metric using the following command:

Chapter 4. Experiments and Results 58

roslaunch cob_bringup_sim icp_map_comparison.launch

map:=test1 slam:=gmapping

4.7 Results

All the mapping was done in the same machine equipped with an Intel Core i5-

4430@3.00 GHz and 8 GB DDR3 memory. All the CPU measurements reflect the usage

relative to a single core usage, meaning that values higher than 100% represent the usage

of more than one core at a time. The memory measurements are USS or "Unique Set

Size", which is the amount of memory that would be freed if the process was terminated.

The Gmapping version used was 1.3.10 [44], the Hector version used was 0.3.5 [45], the

Karto version used was 0.7.3 [46] and the Cartographer version used was 0.3.0 [47].

The mapping results for the three test maps designed on Section 3.7 can be seen on

Figure 24, for the test map 1, Figure 25, for the test map 2 and Figure 26 for the test

map 3. The respective data collected during execution can be seen on Table 7, Table 8

and Table 9.

At visual inspection, we can see that for the first map (Figure 24), Karto Slam and

Cartographer perform better, as the noise in the walls is lower. They look straight and

sharp, as opposed to Gmapping and Hector, where the walls look noisy. If we inspect the

results of Table 7, we can see that this reflects in Karto having the lowest localization error

between all algorithms for this map for all metrics. Even though the Hector reconstruction

is not as great, it scores second place in localization error, followed by Cartographer and

finally Gmapping, although Cartographer is better at poses and Gmapping is better at

angles.

In the second map, Figure 25, the results are quite the opposite. Hector shows the best

pose estimate in displacement, but Gmapping overcomes in squared error. Karto remains

with good results but Cartographer lags behind. We can actually see why looking at the

map, as Cartographer’s map is tilted relative to the others. This error of orientation at

the start was probably what made Cartographer perform worse in the localization.

In terms of average CPU and Memory usage, the values remained constant throughout

the tests. Gmapping shows the highest usage of CPU among all algorithms, consuming

almost double of Cartographer, in second place. Karto and Hector show low consumption

of CPU, with Hector being the lowest. In terms of memory, Hector jumps ahead in all

tests, followed by Gmapping, Hector and finally Cartographer. It is important to notice

that despite having low CPU and memory footprint, we are only taking into consideration

the SLAM node for Cartographer, and not the obstacle grid node nor the offline tasks

executed by the .pbstream conversion.

Chapter 4. Experiments and Results 59

(a) Gmapping (b) Hector

(c) Karto (d) Cartographer

Figure 24 – Results of mapping for first map.

Gmapping Hector Karto Cartographer

Linear displacement 0.0010116 0.00051379 0.00014934 0.00095104
Angular displacement 4.0385e-05 2.3272e-05 1.2402e-05 0.00010114
Linear squared error 0.0018224 0.00058361 0.00024294 0.00086193

Angular squared error 2.0899e-05 1.6251e-05 6.9566e-06 6.3385e-05
CPU (%) 14.36 3.67 4.74 7.13

Memory (MB) 19.56 26.39 13.18 12.52

Table 7 – Data collected for the first map (lower is better).

Chapter 4. Experiments and Results 60

(a) Gmapping (b) Hector

(c) Karto (d) Cartographer

Figure 25 – Results of mapping for second map.

Gmapping Hector Karto Cartographer

Linear displacement 0.00037009 0.00024439 0.0031410 0.013768
Angular displacement 3.6161e-05 2.6309e-05 1.0607e-05 4.4936e-05
Linear squared error 0.00038672 0.0010135 0.0035834 0.013529

Angular squared error 0.00038672 2.5932e-05 0.00016662 0.00060306
CPU (%) 11.38 3.75 4.72 6.56

Memory (MB) 19.11 26.50 14.45 12.33

Table 8 – Data collected for the second map (lower is better).

Chapter 4. Experiments and Results 61

(a) Gmapping (b) Hector

(c) Karto (d) Cartographer

Figure 26 – Results of mapping for third map.

Gmapping Hector Karto Cartographer

Linear displacement 0.015545 0.013457 0.0050207 0.0012753

Angular displacement 6.0892e-05 9.0999e-05 5.0616e-05 4.7758e-05

Linear squared error 0.022001 0.015299 0.0054754 0.0026521

Angular squared error 0.00055478 0.00080006 0.00033509 2.8089e-05

CPU (%) 12.04 3.73 4.99 6.30
Memory (MB) 19.88 26.32 15.88 14.45

Table 9 – Data collected for the third map (lower is better).

Chapter 4. Experiments and Results 62

In the third map, Cartographer outperforms every other algorithm in every metric,

resulting in a much better map, followed by Karto, and finally Gmapping and Hector

with very similar results. It is clear from analyzing the pose error from all the algorithm

runs that this method is not giving a good way of measuring accuracy, at least for this

test case.

The results of running the ICP matcher with the algorithms can be seen on Table 10.

The best algorithm in all cases was Cartographer, scoring lowest. This means two things:

most of the walls were placed in the correct spot and the noise is low. In the second place,

Gmapping could outperform Hector and Karto, justifying the wide adoption of Gmapping

in the robotic world, as it is far easier to set up than Cartographer. Hector and Karto

were tied in the last position in this test, as Hector was better at the first map, Karto was

better in the second map and the results are approximately the same in the third map.

Gmapping Hector Karto Cartographer

Test 1 0.46144 0.61088 0.75229 0.34752

Test 2 0.55829 0.76593 0.62868 0.51959

Test 3 0.64751 0.78693 0.75315 0.41721

Table 10 – Results of running ICP over maps (lower is better).

When modeling free space, most of the algorithms show the same result, with Gmap-

ping showing slightly better results than the other. One of the problems Gmapping faces,

though, is mapping places inside the walls where it has no information about, as shown

on Figure 27. This results in more free space being shown than normal, which might

indicate why Gmapping has a lower score. All the algorithms have results with a positive

sign, meaning that the less free space was mapped than in fact exists, which is good, as

discussed in Section 3.10.

Figure 27 – Incorrect mapping from Gmapping on test 2.

66

5 Conclusions

5.1 Final considerations

This dissertation presented a framework for methodologically analysing SLAM results

for different algorithms in an assistive robot environment. The framework was tested

using a simulated version of Care-o-bot, developed by Fraunhofer IPA. First, the problem

was stated, emphasizing why mapping is a big challenge in mobile robots. The current

limitations of mapping benchmarks were discussed. The main aspects of ROS and COB

were introduced to give the reader a good understanding of their concepts. The SLAM

problem was detailed and some methodologies were proposed, based on the literature

review about the subject. Tools were developed to aid the process of comparison, including

a map ground-truth generator and a data parser. Finally, four algorithms (Gmapping,

Hector, Karto and Cartographer) were benchmarked and tested against the proposed

framework.

The tests can give us some insight about the metrics chosen to represent the accuracy

of each algorithm. The displacement error and the squared error were consistent with

each other. Those measurements were also coincident with the visual quality of the final

map.

The CPU and memory metrics were important to analyse the footprint of the robot

in each scenario, as well as giving an indication on how the algorithm would behave

with continued execution. Even though the modern dedicated hardware found current

robots like Care-o-bot is quite powerful, their importance comes with the fact that the

lower processing power would require less energy, important in mobile robot depending

on batteries, and allow for more utilities to be executed in the same processor, possibly

reducing the number of processors needed.

Comparison through ICP and free-space were by far the most important, comparing

directly the result of mapping to the exact ground-truth. The ICP comparison gives us a

quantitative metric to compare the maps, that shows exactly by how much the walls are

out of place and how much noise there is in the reconstruction. The free space comparison

shows how well scaled the map, as shorter walls and corridors would increase this metric.

Overall, the chosen algorithms performed very well on all the tests performed. Car-

tographer scored best in the map accuracy, what is expected considering that it was built

to outperform the popular algorithms at the time. It is important to say that few of the

possibilities of Cartographer were explored as it also supports 3D SLAM using a point

cloud. Gmapping showed consistent results, justifying it’s wide adoption in the robotic

world. Hector didn’t perform as well, but it was released to be effective in uneven terrain

Chapter 5. Conclusions 67

in rescue robots, conditions not present in the scenario proposed. Since the original robot

tested with Hector had a very limited processor, the modest CPU usage is very fit for

its purpose. Karto, tied with Hector, showed good enough results, but its lack of docu-

mentation and no recent updates are strong points, and since only a portion of Karto is

released to the public, the majority of its development is kept closed source code.

5.2 Future work

Since the goal was to have small and objective tests, not all aspects of a reliable

SLAM algorithm were covered. The aspect of robustness, for instance, was not explored

in this dissertation. It is important to say that these benchmarks only contemplate 2D

SLAM. There is a wide selection of algorithms that perform 3D SLAM, one of them being

Cartographer, that could be analyzed, as the 3D SLAM can be converted into 2D SLAM

for comparison.

Another aspect not tested here is how the algorithms perform using different config-

urations. Cartographer offers a lot of configurations regarding the scan matching, pose

optimization, filters and even the option to tune Ceres separately. Gmapping offers the

option to tune the number of particles and the resampling threshold.

Other tests might include adding bigger maps, to see how well algorithms perform.

The aspect of large empty areas also needs to be tested, as algorithms that do not depend

on odometry wouldn’t have a reference to follow. The same happens in long corridors or

featureless environments.

Another interesting metric would be fault tolerance. How each algorithm performs

with a noisy sensor or when the odometry has errors (drift, collision or even kidnapped

robot) is very important when designing a fault tolerant localization system.

5.3 Contributions

The main contribution of this dissertation is the tools for generation and comparison

of maps. As the purpose of the proposed techniques is to have reproducible tests, all the

code used is available at the following repository on Github:

<https://github.com/bvanelli/TCC>

68

References

1 DAUTH, W. et al. German robots-the impact of industrial robots on workers. 2017.

2 FEIL-SEIFER, D.; MATARIC, M. J. Defining socially assistive robotics. In: IEEE.
Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on. [S.l.],
2005. p. 465–468.

3 FONG, T.; NOURBAKHSH, I.; DAUTENHAHN, K. A survey of socially interactive
robots. Robotics and autonomous systems, Elsevier, v. 42, n. 3-4, p. 143–166, 2003.

4 SAKAGAMI, Y. et al. The intelligent asimo: System overview and integration. In:
IEEE. Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on.
[S.l.], 2002. v. 3, p. 2478–2483.

5 BRAGA, R. A. et al. Intellwheels-a development platform for intelligent
wheelchairs for disabled people. In: ICINCO 2008: PROCEEDINGS OF THE
FIFTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL,
AUTOMATION AND ROBOTICS, VOL RA-2: ROBOTICS AND AUTOMATION,
VOL 2. [S.l.: s.n.], 2008.

6 TANAKA, F. et al. Pepper learns together with children: Development of an
educational application. In: IEEE. Humanoid Robots (Humanoids), 2015 IEEE-RAS
15th International Conference on. [S.l.], 2015. p. 270–275.

7 GRAF, B.; HANS, M.; SCHRAFT, R. D. Care-o-bot ii—development of a next
generation robotic home assistant. Autonomous robots, Springer, v. 16, n. 2, p. 193–205,
2004.

8 GRAF, B.; PARLITZ, C.; HÄGELE, M. Robotic home assistant care-o-bot R© 3
product vision and innovation platform. In: SPRINGER. International Conference on
Human-Computer Interaction. [S.l.], 2009. p. 312–320.

9 MORI, M.; MACDORMAN, K. F.; KAGEKI, N. The uncanny valley [from the field].
IEEE Robotics & Automation Magazine, IEEE, v. 19, n. 2, p. 98–100, 2012.

10 SIEGWART, R.; NOURBAKHSH, I. R.; SCARAMUZZA, D. Introduction to
autonomous mobile robots. [S.l.]: MIT press, 2011.

11 AMIGONI, F.; GASPARINI, S.; GINI, M. Good experimental methodologies
for robotic mapping: A proposal. In: IEEE. Robotics and Automation, 2007 IEEE
International Conference on. [S.l.], 2007. p. 4176–4181.

12 QUIGLEY, M. et al. Ros: an open-source robot operating system. In: KOBE,
JAPAN. ICRA workshop on open source software. [S.l.], 2009. v. 3, n. 3.2, p. 5.

13 ROS Wiki. Technical Overview. [S.l.]: ROS, 2014, Revision 36. <http:
//wiki.ros.org/ROS/Technical%20Overview>.

14 SMITH, R. Dynamic Simulations: A whirlwind tour. 2004. <http://ode.org/slides/
parc/dynamics.pdf>.

References 69

15 CRAIGHEAD, J. et al. A survey of commercial & open source unmanned vehicle
simulators. In: IEEE. Robotics and Automation, 2007 IEEE International Conference
on. [S.l.], 2007. p. 852–857.

16 KOENIG, N. P.; HOWARD, A. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: CITESEER. IROS. [S.l.], 2004. v. 4, p. 2149–2154.

17 ROBOTIS-GIT. turtlebot3_simulations. [S.l.]: GitHub, 2019, commit a6f8e14.
<https://github.com/ROBOTIS-GIT/turtlebot3_simulations>.

18 SMITH, R. et al. Open dynamics engine. 2005.

19 COUMANS, E.; BAI, Y. PyBullet, a Python module for physics simulation for
games, robotics and machine learning. 2016–2018. <http://pybullet.org>.

20 SHERMAN, M. A.; SETH, A.; DELP, S. L. Simbody: multibody dynamics for
biomedical research. Procedia Iutam, Elsevier, v. 2, p. 241–261, 2011.

21 LEE, J. et al. Dart: Dynamic animation and robotics toolkit. The Journal of Open
Source Software, v. 3, n. 22, p. 500, 2018.

22 PETERS, S.; HSU, J. Comparison of rigid body dynamic simulators for robotic
simulation in gazebo. Open Source Robotics Foundation. Available at http://www.
osrfoundation. org/wordpress2/wp-con tent/uploads/2015/04/roscon2014_scpeters. pdf.
Accessed September, v. 8, p. 2016, 2014.

23 KITTMANN, R. et al. Let me introduce myself: I am care-o-bot 4, a gentleman
robot. In: DIEFENBACH, S.; HENZE, N.; PIELOT, M. (Ed.). Mensch und Computer
2015 – Proceedings. Berlin: De Gruyter Oldenbourg, 2015. p. 223–232.

24 Mojin-Robotics. Care-o-bot 4. [S.l.]: Mojin-Robotics, 2019. <https://www.
care-o-bot-4.de/>.

25 THRUN, S.; BURGARD, W.; FOX, D. A real-time algorithm for mobile robot
mapping with applications to multi-robot and 3d mapping. In: IEEE. Robotics and
Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on. [S.l.],
2000. v. 1, p. 321–328.

26 AMANN, M.-C. et al. Laser ranging: a critical review of unusual techniques
for distance measurement. Optical engineering, International Society for Optics and
Photonics, v. 40, n. 1, p. 10–20, 2001.

27 SICK AG. SICK S300 Safety Laser Scanner Operating Instructions. [S.l.], 2016.

28 JAIMEZ, M.; MONROY, J.; GONZALEZ-JIMENEZ, J. Planar odometry from a
radial laser scanner. a range flow-based approach. In: IEEE International Conference
on Robotics and Automation (ICRA). [s.n.], 2016. p. 4479–4485. Disponível em:
<http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/papers/217>.

29 THRUN, S.; BURGARD, W.; FOX, D. Probabilistic robotics. [S.l.]: MIT press, 2005.

30 ELFES, A. Using occupancy grids for mobile robot perception and navigation.
Computer, IEEE, n. 6, p. 46–57, 1989.

References 70

31 DOUCET, A. et al. Rao-blackwellised particle filtering for dynamic bayesian
networks. In: MORGAN KAUFMANN PUBLISHERS INC. Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence. [S.l.], 2000. p. 176–183.

32 GRISETTI, G.; STACHNISS, C.; BURGARD, W. Improved techniques for grid
mapping with rao-blackwellized particle filters. IEEE transactions on Robotics, IEEE,
v. 23, n. 1, p. 34–46, 2007.

33 KOHLBRECHER, S. et al. A flexible and scalable slam system with full 3d motion
estimation. In: IEEE. Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE
International Symposium on. [S.l.], 2011. p. 155–160.

34 LU, F.; MILIOS, E. Globally consistent range scan alignment for environment
mapping. Autonomous robots, Springer, v. 4, n. 4, p. 333–349, 1997.

35 GRISETTI, G. et al. A tutorial on graph-based slam. IEEE Intelligent Transportation
Systems Magazine, IEEE, v. 2, n. 4, p. 31–43, 2010.

36 KONOLIGE, K. et al. Efficient sparse pose adjustment for 2d mapping. In: IEEE.
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on.
[S.l.], 2010. p. 22–29.

37 HESS, W. et al. Real-time loop closure in 2d lidar slam. In: 2016 IEEE International
Conference on Robotics and Automation (ICRA). [S.l.: s.n.], 2016. p. 1271–1278.

38 Cartographer Documentation. Cartographer. [S.l.]: Google, 2018, Revision f73758e3.
<https://google-cartographer.readthedocs.io>.

39 KÜMMERLE, R. et al. On measuring the accuracy of slam algorithms. Autonomous
Robots, Springer, v. 27, n. 4, p. 387, 2009.

40 SANTOS, J. M.; PORTUGAL, D.; ROCHA, R. P. An evaluation of 2d slam
techniques available in robot operating system. In: IEEE. Safety, Security, and Rescue
Robotics (SSRR), 2013 IEEE International Symposium on. [S.l.], 2013. p. 1–6.

41 BESL, P. J.; MCKAY, N. D. Method for registration of 3-d shapes. In:
INTERNATIONAL SOCIETY FOR OPTICS AND PHOTONICS. Sensor Fusion IV:
Control Paradigms and Data Structures. [S.l.], 1992. v. 1611, p. 586–607.

42 FLANNIGAN, C. icp. [S.l.]: GitHub, 2019, commit 167cc4a. <https://github.com/
ClayFlannigan/icp>.

43 RODOLA, G. psutil - Cross-platform lib for process and system monitoring in
Python. [S.l.]: PyPI, 2019, version 5.6.2. <https://pypi.org/project/psutil/>.

44 ros-perception. slam_gmapping. [S.l.]: GitHub, 2018, commit 5a707e0. <https:
//github.com/ros-perception/slam_gmapping>.

45 tu-darmstadt-ros-pkg. slam_karto. [S.l.]: GitHub, 2016, commit 5717906.
<https://github.com/tu-darmstadt-ros-pkg/hector_slam>.

46 ros-perception. slam_karto. [S.l.]: GitHub, 2016, commit 5d31abf. <https:
//github.com/ros-perception/slam_karto>.

References 71

47 googlecartographer. cartographer_ros. [S.l.]: GitHub, 2017, commit 42d82cb.
<https://github.com/googlecartographer/cartographer_ros>.

	Title page
	Acknowledgements
	Resumo
	Abstract
	Acronyms
	Introduction
	Objectives
	Structure

	Background Theory
	Robot operating system
	Packages
	Topics
	Services
	Message types

	Transformations
	Simulation
	URDF
	SDF
	Physics engines
	Sensors and actuators

	Care-o-bot
	Base
	Torso
	Arms
	Head
	Package organization
	Basic API

	SLAM
	Sensors
	Localizing the robot
	Wheel odometry
	Laser odometry

	The localization and mapping problem
	ROS SLAM algorithms
	Gmapping
	Hector
	Karto
	Cartographer

	Evaluating SLAM performance
	Proposed evaluation techniques
	Experimental maps
	Pose metrics
	Map alignment metric
	Free space metric

	Experiments and Results
	Building an accurate map
	Setting up the SLAM algorithms
	Gmapping
	Hector
	Karto
	Cartographer

	Collecting data
	Running the automated reconstruction
	Parsing the data
	Exporting the map
	Results

	Conclusions
	Final considerations
	Future work
	Contributions

	References

