Rodrigo Travessini

LOW OVERHEAD SINGLE EVENT UPSET
RELIABILITY IMPROVEMENT FOR
SOFT CORE PROCESSORS

Dissertagao submetida ao Programa
de Poés Graduacdo em Engenharia
Elétrica para a obtencdo do Grau de
Mestre em Engenharia Elétrica.
Orientador: Prof. Eduardo Augusto
Bezerra, PhD

Florian6polis

2018

Ficha de identificagao da obra elaborada pelo autor,
através do Programa de Geragado Automatica da Biblioteca Universitaria da UFSC.

Travessini, Rodrigo

Low overhead single event upset reliability
improvement for soft core processors / Rodrigo
Travessini ; orientador, Eduardo Augusto Bezerra,
2018.

92 p.

Dissertagdo (mestrado) - Universidade Federal de
Santa Catarina, Centro Tecnoldgico, Programa de Pés
Graduagdo em Engenharia Elétrica, Floriandpolis, 2018.

Inclui referéncias.

1. Engenharia Elétrica. 2. Processadores Soft
Core. 3. Tolerdncia a Falhas. 4. Injecdo de Falhas.
5. Single Event Upset. I. Bezerra, Eduardo Augusto.
II. Universidade Federal de Santa Catarina.
Programa de Pdés-Graduagdo em Engenharia Elétrica.
III. Titulo.

Rodrigo Travessini

LOW OVERHEAD SINGLE EVENT UPSET
RELIABILITY IMPROVEMENT FOR
SOFT CORE PROCESSORS

Esta Dissertacao foi julgada aprovada para a obtengao do Titulo
de “Mestre em Engenharia Elétrica”, e aprovada em sua forma final pelo
Programa de P6s Graduagio em Engenharia Elétrica.

Florianopolis, 07 de abril 2018.

) P

PFof. Marcelo Lobo Heldwein, Dr.
Coordenador do Curso
Universidade Federal de Santa Catarina

Banca Examinadora: g) E/

Prof. Eduardo Aug"'usto Bezerra, PhD
Orientador

7 2 rﬂ Mu e\o\m’“ Yl
%_/ /4 \W 01 4o Pr
Féf Fabian Luis Vargas) “0 E\e\“c"
Pontificia Universig de Catéhca do& rande do Sul

ederal de Santa Catarina

U niversidade

Este trabalho é dedicado a todos que con-
tribuiram direta ou indiretamente na mi-
nha formagao académia.

AGRADECIMENTOS

Primeiramente agradeco aos meus pais que nunca mediram es-
forgos para que eu pudesse me dedicar aos estudos e possibilitaram
todo o suporte necessario durante essa caminhada. Em igual propor¢ao
agradeco ao meu irmao, a quem eu admiro imensamente e por quem
nutro grande amizade. Quero agradecer também a minha namorada
Soraya pelo companheirismo, amor e compreensdao ao longo de todo
o mestrado. Expresso meu agradecimento ao Prof. Eduardo Bezerra
pela oportunidade de trabalhar nessa area tao fascinante da engenha-
ria. Por fim, estendo meus agradecimentos a todos os meus colegas e
amigos Daniel Severo, Eduardo Schmidt, Frank Kair, Giulia Ciprandi,
Joao Tomazoni, Michelle Medeiros, Paulo Villa, Pedro Rigotti, Ramon
Balthazar, Renan Goulart, Romano Weirich e a todos os outros que de
alguma forma contribuiram nessa jornada.

RESUMO

Os processadores utilizados em aplicagoes embarcadas sdo componen-
tes indispensaveis na eletronica de satélites. Eles sao empregados para
lidar com uma variedade de tarefas, incluindo processamento de da-
dos, tratamento de comandos, além do proprio controle do satélite.
No entanto, como qualquer outro componente eletrénico utilizado no
meio espacial, a exposicao & radiacao ionizante pode induzir diversos
efeitos indesejados, dentre os quais as falhas transientes sdo os mais
recorrentes. Para superar esse problema, os processadores utilizados
em aplicagoes espaciais sao geralmente fabricados por meio de técnicas
nao convencionais que oferecem menor suscetibilidade a danos por ra-
diacdo. Infelizmente, a producdo de chips tolerante a radiacdo requer
longos periodos de teste e desenvolvimento, o que os torna mais caros
que os processadores comerciais. Frente a esta limitacao, processado-
res soft core surgem como uma abordagem alternativa, apresentando
menor custo e a possibilidade de integrar técnicas de tolerancia a falha
para atingir os niveis de confiabilidade requeridos por aplica¢des espaci-
ais. Todavia, as abordagens classicas para prover tolerancia a falhas em
processadores soft core envolvem penalidades significativas em termos
de area e desempenho. Neste contexto, o presente trabalho apresenta
uma estratégia de tolerancia a falhas de baixo custo, na qual apenas as
partes mais vulneraveis do prcessador sao protegidas. A identificacdo
destas partes é baseada nos resultados de uma extensa campanha de
injecao de falhas. Quando comparada a técnicas do estado da arte,
como a de redundancia modular tripla (TMR), a estratégia proposta
resultou eficiente ao fornecer niveis similares de tolerancia a falhas a
um custo de area inferior.

Palavras-chave: Processadores Soft Core. Tolerancia a Falhas. Inje-
¢ao de Falhas. Single Event Upset. Falhas Transientes. LEON3.

RESUMO EXPANDIDO

1 INTRODUCAO

Os processadores embarcados sao amplamente utilizados em apli-
cagoes espaciais e correspondem a um componente indispensavel na
eletronica de satélites. Eles sao empregados para lidar com uma va-
riedade de tarefas, incluindo processamento de dados, tratamento de
comandos, além do proprio controle do satélite.

No entanto, o uso de qualquer componente eletrénico no rigoroso
ambiente espacial exige cuidados especiais. A exposi¢ao a radiagao io-
nizante pode ser nociva a dispositivos desprotegidos, causando diver-
sos efeitos indesejaveis. Um dos efeitos induzidos por radiagao mais
recorrentes sao as falhas transientes (soft errors), que ocorrem sempre
quando um evento radioativo inverte o dado armazenado em uma célula
de memoria, registrador, latch, ou flip-flop. A falha é considerada tran-
siente pois o circuito/dispositivo nao é danificado permanentemente
pela radiagao, e caso novos dados sejam escritos no local afetado, o
dispositivo ird armazena-los corretamente.

Para mitigar os efeitos radioativos, os processadores utilizados
em aplicagOes espaciais sao geralmente fabricados por meio de técnicas
nao convencionais que oferecem menor suscetibilidade a danos por ra-
diacao. Infelizmente, a produgao de chips tolerantes a radiagao requer
longos periodos de teste e desenvolvimento, o que os torna mais caros
que os processadores comerciais.

Dadas as limitagoes de custo e desempenho dos processadores
tolerantes a radiacao, existe um crescente interesse em utilizar compo-
nentes comerciais de prateleira (COTS) em aplicagOes espaciais. Neste
contexto, processadores soft core com cdédigo aberto surgem como uma
alternativa atraente, apresentando menor custo, além de manter a pos-
sibilidade de integrar técnicas de tolerancia a falha para atingir os niveis
de confiabilidade desejados.

Uma das técnicas de tolerdncia a falhas mais amplamente em-
pregadas para proteger processadores é a redundancia modular tripla
(TMR). Quando implementada corretamente, esta técnica possibilita o
mascaramento de qualquer erro dnico, porém com um incremento de
area e energia que pode ultrapassar 200%. Considerando as restrigoes
de area e energia, especialmente no caso de nanossatélites, os custos de
implementar TMR em todo o processador podem ser proibitivos. Nesse

sentido, sao de grande interesse técnicas que empreguem a redundan-
cia somente nas partes mais vulneraveis do processador (redundéancia
parcial), tornando possivel, assim, atender os niveis de confiabilidade
exigidos, sem comprometer outras restrigoes.

Para o melhor emprego de redundancia parcial, é essencial com-
preender como as falhas induzidas pela radiacdo se manifestam no pro-
cessador alvo, e de que forma elas se propagam até as suas interfaces.
Tal informagao pode ser obtida através da realizagdo de experimentos
de injegao de falhas, que por sua vez é considerado um método impor-
tante para avaliar a confiabilidade de um sistema em teste.

Como estudo de caso é investigado o processador LEON3 da
Cobham Gaisler, que é distribuido em cédigo aberto sob a licenca GNU
GPL, e tem como foco principal aplicagoes espaciais criticas.

2 OBJETIVOS

O objetivo principal deste trabalho é apresentar o desenvolvi-
mento de uma técnica de tolerdncia a falhas de baixo custo, visando
mitigar falhas transientes em processadores soft core. A técnica é base-
ada no conceito de redundéancia parcial, no qual apenas as partes mais
vulneraveis do processador sao protegidas, obtendo assim um equili-
brio entre confiabilidade e outras restrigoes de projeto. Como forma de
identificar os locais ideais para empregar a redundéncia, é conduzida
uma extensa campanha de injecao de falhas no processador alvo.

3 METODOLOGIA

Em um primeiro momento foi realizado um estudo acerca do pro-
cessador LEON3, que teve como objetivos: compreender a estrutura do
pipeline do processador; definir uma configuragao para o processador a
ser utilizada neste trabalho (por exemplo, tamanho de cache, inclusao
de modulos opcionais); e entender como a implementagdo VHDL esta
organizada. Tais informacoes foram fundamentais para as etapas res-
tantes e direcionaram algumas das escolhas feitas durante a implemen-
tagao da plataforma de injecao de falhas e da técnica de redundéncia
parcial.

A etapa seguinte abrangeu o desenvolvimento da plataforma de
injecao de falhas. Comegando pela definigdo da estratégia de injegao, e
seguindo com a implementacao propriamente dita. Também fez parte

desta etapa, a definicdo dos modelos de falhas e a descricao dos efeitos
de falha esperados.

Depois de desenvolvida a plataforma de injecao de falhas, o pro-
ximo passo foi conduzir a campanha de injegao no processador LEONS.
A partir desses experimentos foi possivel extrair uma lista dos compo-
nentes mais vulneraveis no processador. Com base nos resultados desta
etapa, fora implementada a técnica de redundancia parcial.

Finalmente, o dltimo passo foi avaliar o desempenho da técnica
proposta. A avaliagdo teve dois momentos: quantificar a melhoria na
confiabilidade do processador através de uma nova campanha de injegao
de falhas e determinar os custos de &rea e desempenho sintetizando o
processador em um FPGA.

4 RESULTADOS E DISCUSSAO

Para realizacao da campanha de injecao de falhas decidiu-se utili-
zar uma técnica baseada em simulagao. Essa escolha foi ao encontro de
trabalhos anteriores, que também optaram pelo mesmo método. Essa
técnica mostrou-se satisfatoria, considerando que permitiu a execucao
da maioria dos testes desejados. A principal limitagdo encontrada, que
j& havia sido relatada em outros estudos, foi o tempo de simulacao.

Os resultados experimentais da campanha conduzida no LEON3
sem nenhuma técnica de tolerancia a falhas empregada revelaram que
a maioria das falhas que levaram o processador a um comportamento
erroneo estavam limitadas a um pequeno grupo de registradores, entre
eles o contador de programa e os operandos da ULA. Além disso, foi
descoberto que apenas um terco das falhas injetadas se propagou para
as interfaces do processador. Esses resultados apresentaram evidén-
cias substanciais de que uma melhoria na confiabilidade era possivel
protegendo apenas as partes mais vulneraveis do processador.

Posteriormente, com a técnica de redundancia parcial implemen-
tada no LEON3, uma nova campanha de injecao de falhas mostrou que
protegendo apenas 30 registradores de um total de 362, ja era possivel
ter uma redugao de seis vezes no numero de falhas que levaram a efei-
tos nocivos. Ao mesmo tempo, os custos em termos de utilizagao de
recursos (por exemplo, registradores e LUTs) do FPGA foram muito
inferiores a uma triplicagdo completa (variado entre 3 e 12 vezes de-
pendendo do recurso em questao). E necessario notar, no entanto, que
a técnica proposta nao é ideal para todas as aplicagoes, e de forma
alguma substitui a técnica classica TMR quando indices maiores de

tolerancia a falha sdo exigidos.

ABSTRACT

Embedded processors are an essential component in most satellite elec-
tronics. They are employed to handle a variety of functions including
data processing, command handling, and satellite control. However,
like any other electronic component used in space, the exposure to ra-
diation may induce many undesired effects, such as soft errors. To
overcome this issue, the processors used in space applications are usu-
ally manufactured through non-conventional techniques that provide
reduced susceptibility to radiation damage and thus are known as rad-
hard. Unfortunately, the production of rad-hard chips requires exten-
sive development and testing, making them more expensive and slower
than commercial parts. Soft core processors appear as an alternative
approach, with lower cost, and the possibility to implement hardening
by design strategies to achieve the required dependability levels of space
applications. Nevertheless, classical approaches for providing fault tol-
erance in soft core processors involve significant area and performance
costs. In this context, the present work introduces a low overhead fault
tolerance strategy which protects only the most vulnerable parts of
the processor. The identification of these parts is based on the results
of an extensive fault injection campaign, also conducted in this work.
When compared to state-of-the-art techniques such as triple modular
redundancy (TMR), the proposed strategy proved to be quite efficient,
providing similar levels of fault tolerance with a much lower area cost.

Keywords: Soft Core Processors. Fault Tolerance. Fault Injection.
Single Event Uptset. Soft Error. LEON3.

LIST OF FIGURES

Figure 1 Energetic particle strike in a silicon device.
Figure 2 Single Event Upset in SRAM
Figure 3 SET latching under different time scenarios.
Figure 4 Effects of SEUs and SETs in the FPGA architecture. ..
Figure 5 Triple Modular Redundancy concept...................
Figure 6 Triple Modular Redundancy applied to sequential logic
Figure 7 Full Triple Modular Redundancy
Figure 8 Time Redundancy concept.......... ...t

Figure 9 Signal probability computation at the output of a bool-
CAIL BALE ..o

Figure 10 Basic flow of the BYU-LANL Partial TMR (BLTmr) tool

Figure 11 A standard compiler flow augmented with Shoestring’s
reliability-aware code generation passes..............oovvviinn...

Figure 12 Emulation-based fault injection platform used in (RE-
BAUDENGO et al.; 2003)covuirin e

Figure 13 Simulation-based fault injection platform used in (TOU-
LOUPIS et al., 2007)t

Figure 14 Dependability terminology used in (ITURBE et al., 2016)
Figure 15 Methodology ...
Figure 16 LEON3 Architecture with Main Peripherals............
Figure 17 LEONS Integer Unit Datapath.........................
Figure 18 LEON3 Processor Core (PROC3)..............oooutt
Figure 19 Fault Injection Environment
Figure 20 Dynamic Instruction Mix.............

Figure 21 TCL Procedure that traverses a root signal and lists all
the internal signals bitwise L

Figure 22 The arrangement used to monitor fault propagation in
the PROCS interfaces

Figure 23 TCL Procedure used for generating a bitflip in a flip-flop
Figure 24 Example logs generated by the Fault Injection Manager
Figure 25 Steps for implementing the PTMR technique
Figure 26 Overall PROC3 Performance
Figure 27 Overall Performance by Workload

33
34
35
36
38
39
40

46
47

48

49

50
ol
93
%)
o7
58
62
64

66

Figure 28 Overall Performance by Module........................ 7

Figure 29 1U3 Performance Split by Pipeline Stage............... 78
Figure 30 Individual Register Performance....................... 79
Figure 31 Fault Propagation in PROC3 interfaces................ 80

Figure 32 Boxplot of the Fault Manifestation Time in PROC3 in-
terfaces. The bottom and top of the box corresponds to the first and
third quartiles, the line inside the box is the median, the whiskers
are at 1.5 IQR, values outside of that range are represented by dots. 81

Figure 33 Expected SBU Tolerancecooviiiiiaan 82
Figure 34 Protected LEON3 Overall Performance................ 82
Figure 35 Triple Modular Redundancy with SET detection....... 87

Table 1
Table 2
Table 3
Table 4

LIST OF TABLES

LEONS3 Configurationcoooiiiiiin... 60
Design Maximum Frequency....................... ... 83
FPGA Resources Utilization......................... ... 83

FPGA Power Consumption....................ooovua... 84

ADC
AMBA
ASIC
COTS
CRAM
CSv
DMR
DSP
DSU
DUT
DWC
ECC
EDC
ESA
ESTEC
FLI
FPGA
GL
GRLIB
GUI
HDL
1P
LRU
LUT
MBU
MMU
PTMR
RTL
SBU
SEE
SET
SEU

LIST OF ABBREVIATIONS

Analog-to-digital Converter

Advanced Microcontroller Bus Architecture
Application Specific Integrated Circuit
Commercial off-the-shelf
Configuration Random Access Memory
Comma-separated Values

Dual Modular Redundancy

Digital Signal Processor

Debug Support Unit

Design Under Test

Duplicate with Comparison
Error-Correcting Code
Error-Detecting Code

European Space Agency

European Space Research and Technology Centre
Foreign Language Interface

Field Programmable Gate Array

Gate Level

Gaisler Research IP Library

Graphical User Interface

Hardware Description Language
Intellectual Property

Least Recently Used

Lookup Table

Multiple Bit Upset

Memory Management Unit

Partial Triple Modular Redundancy
Register-Transfer Level

Single Bit Upset

Single Event Effect

Single Event Transient

Single Event Upset

SPARC
SRAM
STMR
TCL
TMR
VHDL
VHSIC

Scalable Processor Architecture

Static Random Access Memory
Selective Triple Modular Redundancy
Tool Command Language

Triple Modular Redundancy

VHSIC Hardware Description Language
Very-High-Speed Integrated Circuit

CONTENTS

1 INTRODUCTION ...ttt it 25
1.1 OBJECTIVES 27
1.1.1 General Objectives......... 27
1.1.2 Specific Objectives 28
1.2 PUBLICATIONS. . ..o 28
1.2.1 Journal Paper.......... 28
1.2.2 Conference Papers 28
1.3 DOCUMENT STRUCTURE 29
2 BACKGROUNDiiiiiiiiiiiiiiiiieeennn, 31
2.1 FAULTS, ERRORS, AND FAILURES 31
2.2 RADIATION EFFECTS ON ELECTRONIC DEVICES.. 32
2.2.1 Single Event Upset — SEU 33
2.2.2 Single Event Transient — SET 33
2.3 SOFT ERRORS IN FPGAS 35
2.4 FAULT TOLERANCE TECHNIQUES................. 37
2.4.1 Hardware Redundancy............................ 38
2.4.2 Information Redundancy.......................... 40
2.4.3 Time Redundancy 41
2.4.4 Software Redundancy 41
2.5 FAULT INJECTION ... i 42
3 RELATED WORK......oiiiiiiiiiiiiiiiiinnn.. 45
3.1 LOW OVERHEAD FAULT TOLERANCE TECHNIQUES 45
3.2 SOFT ERROR VULNERABILITY ANALYSIS 49
4 METHODOLOGY AND DEVELOPMENT...... 53
4.1 METHODOLOGY ..ot e 53
4.2 LEON3 SOFT CORE PROCESSOR 54
4.2.1 Pipeline Structure oo 56
4.2.2 VHDL Structure and Implementation............. 58
4.2.3 Configuration i 60
4.3 FAULT INJECTION PLATFORM 61
4.3.1 Fault Model.......... 62
4.3.2 Fault Effects Classification 63
4.3.3 Workload Description 64
4.3.4 Implementation Details 65
4.3.4.1 List Design Flip-Flops, 65
4.3.4.2 Fault Propagation Monitoring................, 66

4.3.4.3 Fault Effect Monitoring 67

4.3.4.4 Fault Injection i 68

4.3.4.5 Log Generationcuuuiuiumininennenannnn. 70
4.4 PARTIAL REDUNDANCY TECHNIQUE 71
5 RESULTS AND DISCUSSIONccvn... 75
5.1 FAULT INJECTION IN THE UNPROTECTED LEON3. 75
5.1.1 Overall Performance 75
5.1.2 Integer Pipeline Performance 7
5.1.3 Individual Register Performance 78
5.1.4 Fault Propagation............, 79
5.2 FAULT INJECTION IN THE PROTECTED LEON3.... 81
5.2.1 Owverall Performance 81
5.2.2 Synthesis Area/Performance Overhead............ 82
6 CONCLUSIONS .. ittt i teitiettrennneesenns 85
6.1 FUTURE WORKS 86

REFERENCES ittt 89

25

1 INTRODUCTION

Embedded processors are extensively used in space applications,
and correspond to an essential component in satellite electronics. They
are employed to handle a variety of functions including data processing,
command handling, and satellite control.

Nevertheless, the use of any electronic component in the harsh
space environment demands particular attention. Exposure to ioniz-
ing radiation can be harmful to unprotected devices, causing many
undesired effects. Especially in the case of modern devices, the ever-
shrinking dimensions of manufacturing technologies and the lower sup-
ply voltages lead to an increased susceptibility to those effects, expand-
ing their reach even to terrestrial altitudes (GORDON et al., 2004).

One of the most common radiation-induced effects is the soft er-
ror (BAUMANN, 2004), which occurs when the radiation event reverses
the data state of a memory element (e.g., register, latch, flip-flop). In
contrast with hard errors, which represent real circuit errors that force
the circuit to fail repeatedly in the same manner, soft errors consist
of only data corruption without hardware damage, meaning that the
affected memory element can be corrected, by overwriting the cell with
the original value.

Even though soft errors do not involve hardware damage, they
are no lesser threat if not detected and correctly treated. Many ap-
plications are considered safety critical and thus have very rigid de-
pendability requirements. In such applications, any malfunction may
have severe adverse effects. For example in the case of space applica-
tions, non treated soft errors may lead to a premature end of a satellite
mission, resulting in significant economic and scientific losses.

In view of these effects, space applications traditionally only em-
ployed radiation hardened (rad-hard) processors. These are compo-
nents produced through non-conventional processing techniques that
provide reduced susceptibility to radiation-induced damage. Unfortu-
nately, due to the extensive development and testing required to pro-
duce rad-hard chips, these are expensive parts and lag commercial de-
vices by several technology generations (approx. 10 years) (KEYS et
al., 2008).

Given the cost and performance limitations of rad-hard pro-
cessors, there is a growing interest in using Commercial off-the-shelf
(COTS) components in space applications. The motivation is even
stronger, in the case of some space programmes, such as the Brazil-

26

ian, that encounters restrictions in the acquisition process of rad-hard
components in view of export license limitations ®.

In this context, soft-core processors appear as an attractive al-
ternative by providing processor-specific customization, the possibility
to include custom reliability techniques, and the flexibility to integrate
with customized Field Programmable Gate Array (FPGA) logic (TONG
et al., 2006). Moreover, the FPGAs themselves have several appealing
features, including a significant number of configurable logic, reason-
able operating frequencies, and a plethora of embedded hard-blocks
(such as Analog-to-digital Converters (ADCs) and Digital Signal Pro-
cessors (DSPs)). As a result, several satellite missions have been adopt-
ing soft core processors implemented in FPGAs (KLETZING et al.,
2013; MARKIEWICZ et al., 2004).

However, as most COTS FPGAs are not radiation hardened,
fault tolerance strategies must be employed to improve the system re-
liability in the space environment. In the case of the memory hierar-
chy (e.g., register file, caches and main memory), there are already
well-established techniques, usually based on using Error-Detecting
Codes (EDCs) and Error-Correcting Codes (ECCs) (HAMMING, 1950;
CHEN; HSTAQ, 1984). When dealing with soft errors in computational
or control logic, the most common approach is the use of Triple Mod-
ular Redundancy (TMR) (LYONS; VANDERKULK, 1962). This ap-
proach consists of instantiating three replicas of the original design and
a majority voter. When implemented correctly it provides single error
masking and double error detection, yet the area and power overhead
may reach over 200%.

Considering area and energy constraints, especially in the case
of nanosatellites, the costs of implementing a traditional redundancy-
based fault tolerance strategy in the entire design could be prohibitive.
In this sense, techniques that selectively employ the redundancy in only
the most vulnerable areas of a design are of great interest, making it
possible to achieve the required dependability levels, without compro-
mising others constraints.

There are already some works in the literature, such as (SAMU-
DRALA et al., 2004; PRATT et al., 2006), that propose partial redun-
dancy approaches, also known as selective redundancy approaches, as
an affordable fault tolerance strategy for resource-constrained designs.

The control logic of embedded processors provide an excellent

IFor more information see the International Traffic in Arms Regulations (ITAR)
(22 C.F.R. Parts 120-130) and the Export Administration Regulations (EAR) (15
C.F.R. Parts 730-774)

27

opportunity to explore the use of partial redundancy since they usually
are very elaborate designs that implement hundreds of instructions,
with many of them never being executed, or executed very sparsely in
common workloads. Therefore possibly indicating that large parts of
the design are underutilized and may not require full redundancy in
some applications.

In order to take advantage of partial redundancy, more in-depth
knowledge of how radiation-induced faults manifest in the target pro-
cessor, and how they propagate to its boundaries is fundamental. Such
information is obtainable through fault injection, which in turn is con-
sidered an important method for assessing the dependability of a system
under test (ZIADE et al., 2004).

ARM Research did a very broad study (ITURBE et al., 2016)
in this regard, conducting an intensive fault injection campaign in the
ARM Cortex-R5 CPU core. They concluded that only 10% of the
sequential elements in the Cortex-R5, accounts for more than 70% of
the errors, suggesting that an important reliability improvement can
be obtained by protecting just these most sensitive components.

As a case study, this work investigates the LEONS soft core pro-
cessor from Cobham Gaisler (COBHAM GAISLER AB, 2017), which
was developed targeting critical space applications, supported by the
European Space Agency (ESA). The LEON3 is described using the
VHDL description language, and its source code is freely available for
research and educational use under the GNU GPL license.

1.1 OBJECTIVES
1.1.1 General Objectives

Given the preceding, the primary objective of this work is to
present the development of a low overhead fault tolerance technique
aimed at mitigating soft errors in the control logic of soft-core pro-
cessors. The technique is based on the concept of partial redundancy,
where only the most vulnerable parts of the processor are protected,
hence obtaining a balance between dependability and other design con-
straints. As a means to identify the optimal locations for employing
the redundancy, an extensive fault injection campaign is conducted in
the target processor.

28

1.1.2 Specific Objectives

In addition, the following specific objectives were established for
this work:

e Investigate the radiation effects on electronic components;

e Investigate the LEON3 micro-architecture and its VHDL imple-
mentation;

e Evaluate the different fault injection techniques present in the
literature, and specify one to be applied in the context of this
work;

e Through fault injection, assess the soft error vulnerability of the
LEONS3 processor and identify its most sensitive components;

e Specify and implement a strategy to improve the reliability of the
most vulnerable parts in the LEON3 processor;

e Evaluate the performance of the proposed approach.
1.2 PUBLICATIONS

During the master’s studies, emerged the opportunity to par-
ticipate and contribute to the development of different fault tolerance
strategies for space applications. The outcome is the following publi-
cations submitted to conferences and a journal paper accepted.

1.2.1 Journal Paper

e A Dynamic Partial Reconfiguration Design Flow for Permanent
Faults Mitigation in FPGAs. In: Microelectronics Reliability,
2018. Published. (MARTINS et al., 2018)

1.2.2 Conference Papers

e Processor Checkpoint Recovery for Transient Faults in Critical
Applications. In: 19th IEEE Latin-American Test Symposium
(LATS), 2018. Unpublished. (VILLA et al., 2018)

29

e Processor Core Profiling for SEU Effect Analysis. In: 19th IEEE
Latin-American Test Symposium (LATS), 2018. Unpublished.
(TRAVESSINTI et al., 2018)

1.3 DOCUMENT STRUCTURE

The remaining of this document is organized as follows:

e Chapter 2: Background. Provides an introduction to some
relevant topics in the context of this work, including a review
of the radiation effects on electronic devices, basic concepts of
fault injection, and traditional fault tolerance strategies used on
processors.

e Chapter 3: Related Work. Presents a literature review, cov-
ering studies in the field of soft error vulnerability assessment,
as well as studies that propose low overhead fault tolerance tech-
niques.

e Chapter 4: Methodology and Development. Begins pre-
senting the methodology used in the course of development and
follows with a detailed description of each development stage.
The main topics covered are the structure of the fault injection
platform and the implementation of the proposed fault tolerance
technique.

e Chapter 5: Experimental Results. Presents the results of
the fault injection campaign, along with the evaluation of the
proposed fault tolerance technique.

e Chapter 6: Conclusions. Finally summarizes the accomplish-
ments of this work, discusses its importance and limitations, and
presents future work perspectives.

30

31

2 BACKGROUND

This chapter provides an introduction to some basic concepts
that are required to understand the remaining of this work. It begins
with a review of the radiation effects on electronic devices, describing
the primary mechanisms generators of soft errors. Following is a dis-
cussion of the predominant vulnerabilities to FPGAs devices. Next,
it continues with the presentation of traditional fault tolerance strate-
gies, particularly the ones based on redundancy. Finally, it presents
the concept of fault injection and some of the techniques used for this
purpose.

2.1 FAULTS, ERRORS, AND FAILURES

The taxonomy used in the area of dependable systems is exten-
sive and may vary between different authors. The definitions adopted
in this work are based on (AVIZIENIS et al., 2004).

The most fundamental concepts are those of fault, error, and fail-
ures. A fault may have many different causes. There are the natural
faults, which are physical (hardware) faults that are caused by natural
phenomena without human participation, and there is also the human-
made faults, for instance, the ones originated by mistakes during the
system design. A fault is said active when it causes an error; otherwise,
it is dormant. An error, in turn, is defined as a divergence in part of
the total state of the system that may lead to a subsequent service
failure. An error is detected if an error message or error signal indi-
cates its presence. Errors that are present but not detected are latent
errors. Lastly, a service failure (often abbreviated to failure) is defined
as a deviation in the service delivered by the system from the correct
service expected by a user or another system. One important aspect
to take into consideration is the placement of the system boundaries,
which determines the limits of the system being analyzed. Thus, if an
error remains internal to the system boundaries and does not cause the
system service to deviate, then no failure occurs.

An example can be used to illustrate these concepts. Take for
instance that an energetic particle hits a processor’s arithmetic and
logic unit (ALU) and temporarily changes the value of an internal wire,
characterizing a fault. If that wire is in the adder unit, for example, and
the executing instruction is not using this unit, then no error occurs. On

32

the contrary, if an add instruction is in execution when the fault occurs
and it causes a register to receive an erroneous value, then an error
takes place. Finally, if this error does not cause the service delivered
by this program to deviate, then the system does not present a failure.
If the service differs, a failure occurs.

2.2 RADIATION EFFECTS ON ELECTRONIC DEVICES

When operating in harsh radiation environments, electronic de-
vices can be directly struck by several different particle types (e.g.,
photons, electrons, protons, neutrons or heavy ions), altering their elec-
trical properties and possibly leading to a component failure. The situ-
ation is further worsened on newer devices, as the miniaturization and
the lower operating voltages reduce the energy necessary to a radiation
event induce an error. Therefore, lower energy particle strikes that were
harmless in previous generations can now be considered a threat.

The reverse-biased juction is the most charge-sensitive part of
circuits, particularly if the juction is floating or weakly driven. Figure 1
illustrates the sequence of events that may occur once an energetic par-
ticle hits the substrate of a silicon device. At first, the radiation event
creates an ionization track with free electron-hole pairs (a). Then, when
the resultant ionization track traverses or comes close to the depletion
region, carriers are rapidly collected by the electric field creating a large
current /voltage transient at that node (b). In another phase, diffusion
dominates the collection process, until all excess carriers have been
collected, recombined or diffused away from the junction area (c). In
case the total collected charge (Q.o1;) exceeds a critical charge (Qcrit),
which in turn depends on node characteristics (e.g., total capacitance
in the sensitive volume of the transistor and operating voltage), the
event may induce an error (BAUMANN, 2005a).

The term used to refer to events caused by a single particle
strike is Single Event Effect (SEE). A SEE may be either destruc-
tive (hard errors), when it results in permanent damage to the device
(e.g., burnout, gate rupture, frozen bits), or non-destructive (soft er-
rors), when the event generates only a temporary data corruption (e.g.,
unwanted bitflips in memory cells and registers, that can be resolved
by overwriting the affected bit). Of primary interest to this work, the
following sections describe the main kinds of soft errors.

33

Figure 1 — Energetic particle strike in a silicon device.

lon track lon drift lon diffusion

p-type p-type * p-type
silicon silicon silicon

(a) (b) (c)

Source: Adapted from (BAUMANN;, 2005a).

2.2.1 Single Event Upset — SEU

A Single Event Upset (SEU) happens every time an energetic
particle directly hits a storage element (e.g., memory cell, register,
latch, and flip-flop) causing enough charge disturbance to modify the
stored value (BAUMANN, 2005a). In the most common scenario, the
radiation event affects only a single bit, called Single Bit Upset (SBU).
Higher energy radiation events may cause multiple bits to be modified,
leading to a Multiple Bit Upset (MBU).

Figure 2 depicts how a radiation event may induce an SEU in a
six-transistor Static Random Access Memory (SRAM). At first, before
the radiation event, the cell is storing the value '1’. When the ion hits
the drain of the NMOS transistor M3, it causes a transient change in
the output voltage of the right inverter, which is directly connected to
the input of the left inverter. In case the voltage in the input of the
left inverter falls below the switching threshold, the stored value in the
cell is changed and becomes ’0’, resulting in a SEU.

2.2.2 Single Event Transient — SET

When an energetic particle hits a combinational logic circuit,
instead of a storage element, the collection of a sufficient radiation-

34

Figure 2 — Single Event Upset in SRAM

WL—e ’
Vdd
Particle
Mz}:)_ _Cq/u Strike
[1

Ms
Ms

Q=1—>0

- 4

M1
BL 1 BL

Source: Adapted from (SAJID et al., 2017)

induced charge will generate a transient pulse (i.e., glitch) in the output,
known as Single Event Transient (SET) (BAUMANN, 2005b). In case
the transient pulse is propagated and stored into a memory element,
the SET will generate a soft error.

In contrast with SEUs, which have an error rate independent of
the circuit clock frequency, a SET may only generate a soft error if
the transient pulse arrives at the input of the memory element during
the latching edge of the clock. Due to this behavior, the probability of
latching a transient pulse increase with higher clock frequencies, as well
the longer the pulse width (GADLAGE et al., 2004). Figure 3 shows
SET pulses arriving at the input of a memory element at different
time instants. Note that the considered design is falling edge-triggered,
requiring a SET pulse timed with the falling edge of the clock to induce
an error. In both the top and the bottom data waves, the pulse is
either too early or too late and thus are non-latching SETs. On the
other hand, in the two middle data waves, the SET pulses are aligned
with the clock and are latched into the memory element. Notice that
if the pulse was long enough (i.e., at least as long as the clock period),
it would always be latched.

35

Figure 3 — SET latching under different time scenarios.
Setup Time —«—>«—>— Hold Time
Data |_| ; ; Non-Latching SET

Data H Earliest-Latching SET

Data : Latest-Latching SET

Data ' ' Non-Latching SET

Source: Adapted from (BENEDETTO et al., 2006).

2.3 SOFT ERRORS IN FPGAS

In order to propose efficient fault tolerance strategies aimed at
mitigating soft errors in FPGA-Based soft core processors, it is impor-
tant to understand the particularities of the FPGAs devices regarding
this type of error, specifically how SETs and SEUs may disturb them.

First, in the case of SETSs, they correspond to only a small frac-
tion of the overall failure rate in FPGAs, being much less frequent than
in Application Specific Integrated Circuit (ASIC) devices (HUSSEIN;
SWIFT, 2015; LESEA et al., 2005). This high tolerance is mostly
due to the large capacitive loading present in the signal paths inside
the FPGA structure, consequently increasing the critical charge and
requiring higher-energy particle strikes to induce an error. Besides,
the highest design operating frequencies found in FPGAs are typically
much smaller than what is required for SETs to be a significant con-
tributor to the soft error rate (ALTERA CORPORATION, 2013).

Now, from an SEU standpoint, there are two ways in which an
FPGA can be affected: by upsets in its configuration memory (e.g.,
CRAM), as well by upsets in non configuration bits (e.g., registers and
embedded memory). Figure 4 illustrates both cases, as SEU1 and
SEU?2 respectively.

FPGAs rely on their configuration memory to store the config-
uration bitstream, which is responsible for specifying the behavior of
every logic element inside the device along with the interconnection net-

36

Figure 4 — Effects of SEUs and SETs in the FPGA architecture

SET

p

SEU 2

I:I Configuration Cells

Source: Author.

work between them. Therefore, bitflips in the configuration memory
may deteriorate the original circuit functionality, remaining erroneous
until a new configuration is downloaded into the device.

The probability of an SEU happening in the configuration mem-
ory, consequently the error rate, is highly dependent on the FPGA tech-
nology. SRAM-based FPGAs, which currently dominate the market,
are particularly sensitive to this kind of error (WANG et al., 1999). In
this technology, the configuration memory is implemented with volatile
SRAM switches, which do not retain the configuration when the power
is removed. Non-volatile alternatives, such as flash-based and anti-fuse
FPGAs, provide an improved radiation tolerance at the cost of usu-
ally being one generation (i.e., technology node) behind (WANG, 2003;
POIVEY et al., 2011). In particular, anti-fuse cells are immune to
SEUs, however with the disadvantage of not being reprogrammable.

In order to be used in harsh radiation environments, FPGA de-
vices that do not have SEU-immune configuration cells (e.g., SRAM-
based), must make use of specific fault tolerance strategies aimed at
mitigating fault effects in this particular memory. The most often em-
ployed technique is called configuration scrubbing. This approach in-
volves a periodic refresh of the FPGA’s configuration memory while
the FPGA is operating. The scrubbing prevents the build-up of mul-
tiple configuration faults and reduces the time in which an invalid
circuit is allowed to operate. For further discussion on this strategy
see (CARMICHAEL; TSENG, 2009).

When it comes to SEUs in non-configuration bits, they have

37

similar effects to what is observed in ASICs. Therefore, traditional
techniques based on redundancy may be applied. Section 2.4 provides
further details regarding this form of fault tolerance.

2.4 FAULT TOLERANCE TECHNIQUES

As a means to mitigate radiation-induced faults on electronic
devices, several fault tolerance techniques have been proposed and ex-
perimented. Most works focus on two main classes of approaches. The
first possibility is the development of SEU-hardened components, which
can be realized either through modifications in the fabrication process
or through custom transistor designs. The other alternative is to pro-
tect the device with redundancy, i.e., extra functionalities with the sole
purpose of detecting and correcting errors, that would not be necessary
in a fault-free environment.

In the case of FPGAs, redundancy-based strategies are often
preferred, as they can be used with COTS components. This way, not
requiring the development and fabrication of custom devices, conse-
quently providing a lower cost and better time to market (KASTENS-
MIDT; REIS, 2007).

Redundancy-based strategies are also very flexible. Implemen-
tations can be made at different levels of the circuit design flow, with
varying degrees of protection. For instance, one approach can be made
simple enough only to provide error detection, while other may provide
both detection and correction, but possibly with a higher performance
impact. This great flexibility translates into a wide variety of techniques
present in the literature. Most of the developed strategies fall into four
main categories (GOLOUBEVA et al., 2006): hardware redundancy,
information redundancy, time redundancy, and software redundancy.

Before proceeding with a discussion of the different forms of re-
dundancy, it is important to note that any redundancy scheme im-
plies some penalty to be paid. Each technique contains a combination
of area overhead, performance degradation, and power dissipation in-
crease. The circuit designer must find the best trade-off, in order to
meet the area, time and power constraints, as well the soft error hard-
ness required (KASTENSMIDT; REIS, 2007).

38

2.4.1 Hardware Redundancy

Hardware redundancy consists of the physical replication of hard-
ware components and paths, which allow the design to continue oper-
ation even when some parts fail (KASTENSMIDT; CARRO, et al.,
2006). A straightforward implementation is a technique called Dupli-
cate with Comparison (DWC) or Dual Modular Redundancy (DMR).
In this approach, the module to be protected is replicated, and the
outputs from both replicas are continuously compared. Any identified
mismatch would signalize the presence of errors. Note that in this tech-
nique the comparator should also be protected since it can be itself a
source of errors. Additionally notice, that this simple approach only
provides the detection of errors, but it cannot identify which module is
presenting the wrong output.

To be able to detect errors and also determine the correct out-
put, more than two replicas are necessary. Given this, in 1956 Von Neu-
mann proposed the Triple Modular Redundancy (TMR) scheme (NEU-
MANN, 1956), in which three identical modules perform the same task
concurrently, and a voter compares their outputs, agreeing with the
majority. Figure 5 presents a conceptual representation of this scheme.
In this approach, if only one of the modules presents an incorrect out-
put, the voter could still select the correct output from the other two
replicas, thus entirely masking the error. However, if more than one
module contain errors, the voter cannot identify the correct output, and
the TMR system fails. In other words, the TMR technique can tolerate
at most one module containing errors. For improved fault tolerance,
this technique may be generalized with n identical modules, where n is
typically odd, named N-modular redundancy.

Figure 5 — Triple Modular Redundancy concept

—>» Module 1
Input
—>» Module 2
—>

Output

Module 3

Source: Adapted from (GOLOUBEVA et al., 2006).

39

Although conceptually simple, several factors must be taken into
account when implementing modular redundancy. For instance, if only
SEU mitigation is required, and soft errors due to SET's are infrequent,
the solution provided in figure 6 is suitable. This approach only repli-
cates sequential elements (e.g., flip-flops), i.e., elements vulnerable to
SEU.

Figure 6 — Triple Modular Redundancy applied to sequential logic

Sequential
Logic

P —— e — -

Majority
Voter

Combinational b Q
Logic

U

CLK

Source: Adapted from (KASTENSMIDT; CARRO, et al., 2006).

However, if the system also requires protection from SETSs, the
approach from figure 6 has limitations. First, by not replicating the
combinational logic, all the flip-flops in the sequential logic receive the
same input. As a consequence, in case a SET happens in the combi-
national logic, it may be latched by all three flip-flops, rendering the
majority voter useless and resulting in wrong output. Second, a SET
may also happen in the majority voter, likewise leading to wrong out-
put.

To manage both situations properly, another TMR scheme is nec-
essary. Figure 7 presents the full TMR strategy, which was proposed
by (CARMICHAEL, 2001). Apart from the sequential logic, this ap-
proach also replicates the majority voters and the combinational logic.
This new configuration has a slightly different operation than the pre-
vious one. For instance, if an SEU occurs in one of the flip-flops (i.e.,
sequential logic), all three majority voters will select the correct out-
put, and at the next clock cycle, the correct output can be loaded to
the flip-flop, effectively clearing the SEU. Now, if a SET occurs in one

40

of the combinational logic blocks, the SET may be only latched by one
of the redundant flip-flops, and again the majority voter will be able to
select the correct output. Finally, if a SET occurs in one of the major-
ity voters, the voter output will show the transient for a short period of
time, but since all the circuit is replicated, only one redundant module
is affected and the SET will be voted out at the next majority voter.

Figure 7 — Full Triple Modular Redundancy

L

TR1
TR2 Voter TRVO,
—5

Combinational DO
Logic

[

[TRV1,

Voter

Combinational D1
Logic

L

T T T
E 11

— —] [TRV2,
Combinational D2 Voter

Logic

cLK

Source: Adapted from (KASTENSMIDT; CARRO, et al., 2006).

2.4.2 Information Redundancy

Information redundancy resides on adding redundant informa-
tion to data in order to allow error detection and possibly correc-
tion (PRADHAN, 1996). The techniques that comprise this form of
redundancy are the EDCs and the ECCs.

One example is the parity code. In this scheme, one bit is added
to a string of binary data to ensure that the total number of ones is
odd or even. This parity bit is usually computed when the data string
is generated and stored in memory. Every time the data is read, the
parity bit is recalculated and compared with the previously stored. If
there is a mismatch, it indicates that an error has occurred. Due to
its simplicity, this technique can only detect single bit errors and has

41

no correction capability. If greater robustness is required, several other
techniques may be used, such as CRC, Hamming and Reed-Solomon
codes (LABEL; GATES, 1996).

Note that information redundancy is mainly used for protecting
memory arrays (e.g., cache, register file, main memory), and is com-
monly regarded as difficult to apply to computational or control logic
functions (KIM; SOMANTI, 2001).

2.4.3 Time Redundancy

Time redundancy consists of the repetition of the same task two
or more times, followed by a comparison of the results, to identify
possible errors. In case there is a mismatch between the executions,
another run may be performed to verify if the error is still present or
has disappeared. Figure 8 illustrates the concept. Note that the idea
is similar to hardware redundancy, but instead of using extra hardware
to perform redundant operations in parallel, time redundancy involves
the repetition of tasks in a sequential manner. It is not uncommon to
have hybrid techniques that seek to minimize both the impact on area
and performance (WU; KARRI, 2004; JOHNSON et al., 1988).

Figure 8 — Time Redundancy concept

—>|Data Computation

Data » Computation

Time

Source: Adapted from (GOLOUBEVA et al., 2006).

2.4.4 Software Redundancy

Software redundancy covers an extensive research field. Besides
mitigation of radiation-induced faults, there are various others motiva-

42

tions for employing techniques based on this concept. Another relevant
domain of application is the protection against design and specification
faults, which are not uncommon in software as they are often composed
of a substantial number of states, with little regularity.

Software fault-tolerance techniques can be classified into two
groups: single-version and multi-version. In the single-version ap-
proach, a single software module is modified to include fault detection,
containment, and recovery mechanisms. In the case of multi-version
techniques, multiple versions of the same software module are devel-
oped, frequently using different teams, coding languages or algorithms,
with the goal of minimizing the probability that all versions share a
common fault. For further discussion on this topic see (GOLOUBEVA
et al., 2006; DUBROVA, 2013).

2.5 FAULT INJECTION

Fault injection is a validation technique used for assessing the
dependability of fault-tolerant systems. It consists of inserting (i.e.,
injecting) faults into a system and monitoring the system behavior in
response to a fault. There are several different fault injection strategies
proposed in the literature. According to (ZIADE et al., 2004), they can
be classified into five main categories:

e Hardware-based fault injection — It relies on disturbing the ac-
tual hardware system through the use of external physical sources.
Some examples are heavy-ion radiation, electromagnetic interfer-
ence, and laser fault injection. This type of technique requires
special-purpose hardware to run the experiments. Furthermore,
it involves a high risk of damaging the assessed system.

e Software-based fault injection — This type of technique consists
of reproducing at the software level, the errors that would arise
in the occurrence of faults in either software or hardware. The
injection can be accomplished by corrupting memory contents, or
through the mutation of the application software (i.e., by modi-
fying existing lines of code so that they contain faults).

e Simulation-based fault injection — Consists of using simulation
tools for injecting faults in a model representation of the system
(usually VHDL models). This technique can be used with models
at different abstraction levels (e.g., RTL and GL). A significant
drawback of this technique is the frequently long simulation times.

43

e Emulation-based fault injection — It is conceptually similar to
simulation-based techniques, however, it makes use of FPGAs for
speeding-up fault simulation.

e Hybrid fault injection — This approach is a mix of two or more
techniques, with the goal of combining the best features of each
of them.

When developing or choosing a fault injection technique, differ-
ent properties must be considered (ARLAT et al., 2003):

e Reachability — It consists of the ability of the technique to reach
the possible fault locations in the system being considered. For
instance, hardware-based techniques such as heavy-ion radiation
provide high reachability, as the faults are injected directly into
the actual hardware system. In contrast, software-based tech-
niques are limited to the locations accessible through software
and thus have lower reachability.

e Controllability — It consists of the ability of the technique to con-
trol which of the reachable fault locations are actually injected, as
well controlling the instant when faults are injected. For instance,
heavy-ion radiation has a low controllability, as it is difficult to
focus the injection in specific components, furthermore, the ex-
act injection instant cannot be governed. On the other hand,
simulation-based techniques provide very high controllability, as
any signal value can be corrupted at any specific time.

e Repeatability — It refers to the ability to repeat injection ex-
periments with a very high degree of accuracy, both spatial and
temporal. In that sense, to have high repeatability, the technique
must also have high controllability. Consequently, heavy-ion in-
jection has low repeatability. Simulation-based techniques pro-
vide high repeatability since the experiment can be repeated in
the same signal at the same instant.

e Reproducibility — It refers to the ability to reproduce previous
results when using the same set-up. Usually, high reproducibility
is achievable if the technique has high repeatability. However,
high repeatability is not a requirement for high reproducibility.

e Non-intrusiveness — It relates to the ability of the technique to
avoid or minimize any undesirable impact on the normal opera-
tion of the target system. For instance, software-based techniques

44

frequently have low non-intrusiveness as the injection mechanism
must run on the same system as the software being tested. In
contrast, simulation-based techniques usually do not require any
change in the target system, providing high non-intrusiveness.

Time measurement — It consists of the ability to obtain time
information associated with the monitored events (e.g., measure-
ment of error detection and propagation latency). Usually, for
this purpose, is used a reference model of the system (also known
as a golden model) operating synchronously. Thus, allowing the
identification of the exact time instants in which both models
start to diverge concerning outputs and results.

Efficacy — It consists of the ability of the technique to reduce the
number of non-significant experiments, that is, faults injected in
components not accessed or used throughout the experiment.

45

3 RELATED WORK

Given the increasing interest in using COTS components in space
applications, several studies have been carried out in the last decades
to assess the vulnerability of these components in the space environ-
ment, and also to propose efficient fault tolerance techniques targeting
them. In this context, this chapter presents some of these works, which
were both a source of motivation for this research, as well guided the
development of the proposed technique.

The chapter is organized in two sections. The first one reports
studies that propose low overhead fault tolerance techniques centering
on soft error mitigation. The second one presents studies that inves-
tigate the effects of faults in microprocessors. Both areas are of great
interest in this work, due to the characteristics of the proposed tech-
nique, which will be presented in detail in the upcoming chapters.

3.1 LOW OVERHEAD FAULT TOLERANCE TECHNIQUES

Fault tolerance is an extensive research field. The literature con-
tains techniques with distinct purposes, using varying forms of redun-
dancy, and consequently with different costs concerning area, energy,
and performance. For this section will be presented some techniques
that are in more conformity with the proposal of this work, in the sense
of being oriented to soft errors, and also for aiming at low overhead.

In (SAMUDRALA et al., 2004) the authors proposed a technique
for hardening combinational logic circuits mapped onto Xilinx Virtex
FPGAs against SEUs. The strategy is named Selective Triple Modular
Redundancy (STMR) and is based on the traditional TMR approach;
however, to obtain reduced area overhead, they selectively employ the
redundancy in only the most sensitive circuits. The identification of
the most sensitive circuits is made by analyzing the signal probabilities
of each logic gate within the circuit, i.e., a gate is sensitive if an SEU
on any of the inputs is likely to be propagated to the output of the
gate. Figure 9 presents the equations used to determine the signal
probability for each gate type. Since the technique may require an
increase in the number of majority voters than a traditional TMR,
the authors suggested the use of tri-state buffers present in the Virtex
FPGA to construct SEU immune majority voters. The experimental
results show that the technique can provide immunity against SEUs

46

comparable to the full TMR when used along with other mitigation
features of the Virtex FPGA. The area overhead of the STMR strategy
may reach 60-70% that of TMR.

Figure 9 — Signal probability computation at the output of a boolean
gate

Gate Type | Pout

AND L~

NAND 1 - HiPi

OR >P-1LE

NOR -Gk -TLP

XOR o, PO = P())
XNOR -, PG —PG)
SEU SEU

T BN e
PC= 08 -/ PC=038 -/

Source: (SAMUDRALA et al., 2004).

The idea of protecting only the most critical sections of a design
is also explored in (PRATT et al., 2006). However, instead of protect-
ing the combinational logic, this study aims at mitigating the effects
of SEUs in the configuration memory of the FPGA. The authors label
the configuration bits used by the design mapped onto the FPGA as
sensitive bits and suggest that the sensitive bits can be split into two
categories called persistent and non-persistent. A non-persistent config-
uration bit is a sensitive configuration bit that may introduce functional
errors when upset by radiation; however, it can be repaired with config-
uration scrubbing, and the functional errors disappear. In contrast, a
persistent configuration bit is a sensitive configuration bit, which even
after configuration scrubbing, the introduced functional errors are not
repaired. Hence, the study suggests that TMR could be applied only
to the circuit structures which correspond to persistent configuration
bits. The study also introduces a software tool named BYU-LANL
Partial TMR (BLTmr) which automatically classifies circuit structures

47

based on this concept and applies TMR selectively depending on the
classification. Figure 10 illustrates the basic flow of the developed tool.
The experimental results showed that for a specific design the number
of faults in the configuration bits that led to non-repairable functional
errors reduced in two orders of magnitude with a hardware cost of 40%
over the unmitigated design, which is much lower than a full TMR
approach.

Figure 10 — Basic flow of the BYU-LANL Partial TMR (BLTmr) tool

Partially

Original et Mitigated
Design Constraints Design

| ' t

Create Analysis
Desi (Fccdb);ck Cell Voter
esign S T .
Input to FB, Triplication Insertion
Database eic)

Source: (PRATT et al., 2006).

More recently, the work in (GOMES et al., 2015) explores the
concept of approximate logic circuits to reduce the area overhead of
the TMR technique. The idea consists of only using approximate logic
modules to compose the redundant modules of the TMR. The approxi-
mate circuits are modified versions of the original circuit with a smaller
area, and that differs its output from the original circuit for a small set
of input vectors. Nevertheless, this technique imposes a condition on
the approximate circuits: only one of the modules can differ from the
original circuit at each input vector scenario, therefore allowing the
majority voters to still select two match outputs out of three for any
input vector. For computing the approximate functions, the authors
used a Boolean factorization method, which was also used to select the
best composition of approximate logic. The experimental results show
that for a 4-bit ripple carry adder the fault coverage could go up to
93% with 136% of area overhead and 96% with 168%.

Another recent work that explores approximate logic is presented
in (SANCHEZ-CLEMENTE et al., 2016). However, in this study,
the technique is aimed at FPGA implementations. In this sense, the
valuable logic approximations are the ones that reduce the number of
Lookup Tables (LUTSs) in the circuit, either by eliminating LUTs or

48

by merging contiguous LUTSs. Otherwise, the result is a degradation of
the logic function of the circuit without achieving any benefits in terms
of resource utilization.

The techniques presented so far were all based on hardware re-
dundancy. A different approach is seen in (FENG et al., 2010), where
is described a software-based approach named Shoestring, that pro-
vides probabilistic soft error reliability. The purpose of the Shoestring
technique is to present high soft error coverage with very little over-
head. In order to achieve these goals, the authors proposed a strat-
egy which combines low-weight symptom-based fault detection schemes
with software-based instruction duplication. Symptom-based detection
schemes recognize that applications often exhibit anomalous behav-
ior (e.g., memory access exceptions, mispredicted branches, and cache
misses) in the presence of soft errors. Although symptom-based detec-
tion is inexpensive, it has a limited fault coverage, requiring the use of
other techniques concurrently. In this context, the main contribution
of the Shoestring technique is to efficiently select between relying on
symptoms or applying instruction duplication to each part of the pro-
gram code. The selection analysis runs at compile time, by introducing
additional reliability-aware code generation passes into the standard
compiler flow, as shown in Figure 11. In the experiments conducted by
the authors, the Shoestring technique achieved an overall user-visible
failure rate of 1.6%, with a performance overhead of 15.8%.

Figure 11 — A standard compiler flow augmented with Shoestring’s
reliability-aware code generation passes

(Shoestring Passes

Preliminary
Classification

Vulnerability
Analysis

Code Duplication

e

Code Generation Passes

e

Machine-independent Passes

~
-

Source: (FENG et al., 2010).

49

Finally, note that none of the presented techniques offers “five-
nines” reliability, making them inappropriate for most critical scenarios.
Instead, the techniques focus on less demanding applications, demon-
strating that through partial protection it is possible to have significant
reliability improvements without incurring substantial performance and
area penalties.

3.2 SOFT ERROR VULNERABILITY ANALYSIS

Understanding the fault effect on systems is an important step
towards new efficient mitigation techniques. In this perspective, this
section will present some studies concerning soft error vulnerability
assessment specifically focused on embedded processors. Familiarity
with the methodologies used in these studies played a fundamental role
in the development of this work.

In (REBAUDENGO et al., 2003) is presented a study that an-
alyzes the effects of SEUs in the first processor in the LEON family.
Besides investigating the LEON behavior in the presence of faults, the
authors wanted to compare two alternative fault injection techniques:
a software-based approach and an emulation-based approach.

Figure 12 — Emulation-based fault injection platform used in (REBAU-
DENGO et al., 2003)

e —
RT-level Model

Instrumenter

e
Instrumented
RT-level Model

Instrumentation
architectures

—
v v Workload

Fault List
Manager

Fault Injection
Manager
a

Synthesis Tool

S
Instrumented
Gate-level Model

\ 4
Emulated
system
Fault Injection
Interface

FPGA board

Fault

Classification

Source: (REBAUDENGO et al., 2003).

50

Figure 12 shows the emulation-based platform. In a pre-injection
step, the processor VHDL model is instrumented, synthesized and
mapped to an FPGA device. For running the injection experiments,
a host computer works as Fault Injection Manager and communicates
with the FPGA board, orchestrating the selection of a new fault, its
injection in the system, and the observation of the resulting behavior.

In the results, the authors highlighted the increased reachability
obtainable with a simulation/emulation technique when compared to
software approaches, considering that the latter cannot inject fault in
non-programmer-visible locations such as the pipeline registers. The
authors also state that the emulation technique had an accuracy much
higher than the software one (up to 13 times higher), concluding that
the software approach may lead to significant errors during the error
rate estimation.

A similar study is conducted in (TOULOUPIS et al., 2007) using
the LEON2 processor. In this paper, the authors adopted a simulation-
based fault injection approach, as shown in Figure 13. In the tech-
nique, the primary fault injection support is implemented through a
non-synthesizable VHDL entity that has access to all registers and can
alter their contents at specified times based on the idea of “saboteurs”.
The entire system is simulated in a commercial VHDL simulator (Mod-
elSim), extensively using the simulator’s Foreign Language Interface
(FLI) to implement various entities that deal with the fault injection,
monitoring, and data collection.

Figure 13 — Simulation-based fault injection platform used in (TOU-
LOUPIS et al., 2007)

Simulation Phase

Faults Fault SYSTEM |1})system|
ENet ‘m—" Injector || UNDERTEST [T|"|content:
Data
Analysis
Execution System

Time State
Monitor Monitor

1 1
l FLI
Report

Source: (TOULOUPIS et al., 2007).

51

In the results, the authors present a detailed analysis of the fault
effects in the LEON2 processor, particularly in the pipeline unit. Some
important conclusions are the inefficacy of the LEON2 exception mech-
anism for detecting injected faults, as well the dependence between the
observed fault effects and the processor’s workload.

More recently, a study conducted by ARM research employ-
ees (ITURBE et al., 2016) investigated the effects of soft errors on
the ARM Cortex-R5 CPU core. As in the previous work, the authors
adopted a simulation-based technique to inject faults in the processor
and monitor their effects. The simulator employed was the Synopsis
VCS. This study focused on safety-critical applications and in this
context, the authors chose to use a somewhat conservative and pes-
simistic approach to categorize the effects of the injected faults. In
this approach, two identical processors are simulated running the same
workload in a lock-step fashion, and each time a mismatch is detected
between the ports of both processor, a failure is recorded. Figure 14
illustrates the concept. The approach is deemed pessimistic because it
considers only logic gate masking and micro-architecture level masking
as mechanisms that prevent the faults from generating unwanted ef-
fects. However, it does not consider other important mechanisms such
as software masking. The experimental results showed that less than
10% of the sequential elements in the Cortex-R5 CPU account for more
than 70% of the errors, and these errors are manifested in only 65% of
the CPU output ports.

Figure 14 — Dependability terminology used in (ITURBE et al., 2016)

DCLS Processor

fault
CPU core0 rrop memory
failure

CPU cored comparator o
Source: (ITURBE et al., 2016).

Finally, observe among the presented studies that although they
are directed in different processors with distinct focuses, there is a ten-
dency to adopt simulation-based and emulation-based fault injection
techniques for performing this type of investigation. Nonetheless, all
studies point to the limitation concerning simulation time and the dif-
ficulty of using more representative workloads.

52

53

4 METHODOLOGY AND DEVELOPMENT

This chapter opens with the presentation of the methodology
used during the development and evaluation of the proposed technique.
Next, the chapter continues with a discussion of each development

stage.

4.1 METHODOLOGY

Figure 15 presents the adopted methodology in this work.

Figure 15 — Methodology

Source: Author.

Pipeline
structure
Investigate the —l_
target processor
(LEONS3)
| VHDL modules
¢ organization
Strategy
design |
Implement the fault
injection platform
TCL/VHDL |
coding ¢ Identify the most
vulnerable
Conduct a fault | components
injection campaign
in the unprotected
Fault
rocessor
P _L propagation to
Strategy ¢ interfaces
design | Implement the
partial redundancy
technique in the
VHDL | LEON3
coding ¢ Analysis of area
l and power
Evaluate the Dzl za
performance of the
proposed technique _L
Analysis of fault

tolerance

54

The first step, presented in Section 4.2 consists in carrying out
a study concerning the target processor of this work, which aims to:
comprehend the LEON3 pipeline structure; specify the processor con-
figuration (e.g., cache parameters); and understand how the VHDL
implementation is structured. Such information is fundamental to the
remaining steps and will direct some choices during the implementa-
tion of both the fault injection platform and the partial redundancy
technique.

The following phase, presented in Section 4.3, covers the devel-
opment of the fault injection platform. Starting by the definition of the
injection strategy, and continuing with the implementation itself (e.g.,
development of algorithms). Also belong to this step, the definition of
fault models, and expected fault effects in the LEON3.

After developing the fault injection platform, the next step is to
carry out the injection experiments in the LEON3 without any fault
tolerance strategy applied (i.e., unprotected). From these experiments,
it is possible to obtain several relevant statistics, such as fault propa-
gation paths and fault manifestation times. Most importantly, these
experiments will provide a list of the LEON3 most vulnerable com-
ponents. Section 5.1 presents and discusses the results of the fault
injection campaign.

From the results of the previous step, the partial redundancy
technique is implemented, selectively protecting just the most vulner-
able components. Section 4.4 will discuss implementation-related de-
tails. Note that although this step is in practice executed after the
fault injection, in this text it is presented before. This choice does
not detract from understanding, since the process of implementing the
technique is the same independent of the results, only changing the
locations in which the technique is applied.

Finally, the last step is to evaluate the performance of the pro-
posed technique. The evaluation has two main components: quantify
the improvement in fault tolerance through a new fault injection cam-
paign, and determine the area and performance penalty by synthesizing
the design.

4.2 LEON3 SOFT CORE PROCESSOR

The LEONS is a 32-bit processor compliant with the SPARC V8
instruction set architecture. It was initially developed by the Euro-
pean Space Research and Technology Centre (ESTEC), part of the

55

ESA, and subsequently by the Swedish company Cobham Gaisler AB.
Its design focuses on embedded applications, by combining high perfor-
mance, low complexity, and low power consumption. The processor is
described using VHDL and can be completely customized depending on
the application requirements. Furthermore, the source code is available
under the GNU GPL license (COBHAM GAISLER AB, 2017).

One of the LEON3’s main features is the seven-stage pipeline
with separate instruction and data caches (Harvard Architecture). The
processor also has several optional modules, including a memory man-
agement unit, hardware multiplier and divider, as well as a debugging
support unit. Moreover, the presence of an AMBA-2.0 bus interface,
allows the processor to be integrated with many other Intellectual Prop-
ertys (IPs) from the Gaisler Research IP Library (GRLIB) (GAISLER
et al., 2017). Figure 16 presents a representation of the LEON3 archi-
tecture with the main peripherals, demonstrating the numerous config-
uration possibilities.

Figure 16 — LEON3 Architecture with Main Peripherals

USB PHY RS232 JTAG PHY LVDS CAN PCI

4 A . £ 4
LEON3 Template Design
________ — — — -t -]+ — — 4 — 4

I |
| y k. 2 w L. |
| Serial JTAG Ethernet Spacewire CAN 2.0 PCl |

LEON3 uss Dbg Link | | Dbg Link MAC Link Link
I Processor |
| |
| AMBA AHB |
I I |
| AMBAAPB |

AHB Memory AHB/APB T T

I Controller Controller Bridge |
| VGA ‘ ‘ PS/2 ‘ ‘ UART ‘ ‘ Timers IrqCtrl 1/0 port |
Lo_— = - - — X _— 3t - J— — — — 01— — -

8/32-bits memory bus

| | | 1
| PROM | ‘ /o | | SRAM ‘ ‘SDRAM‘ V|deo PS/2 IF RS232 WDOG 32-bit I/O port

Source: Adapted from (GAISLER et al., 2017).

Beyond the default LEON3 implementation, Cobham Gaisler
also offers a fault tolerant version (LEON3FT), which provides pro-
tection against SEU errors. According to the GRLIB IP Core User’s
Manual (GAISLER et al., 2017), the LEON3FT fault tolerance is fo-
cused on the protection of the on-chip RAM blocks, which are used to

56

implement the register file and the cache memories, and therefore does
not, comprehend the processor control logic, which in turn is investi-
gated in this work.

4.2.1 Pipeline Structure

The LEONS3 processor contains a single-issue pipeline, i.e., at
most one instruction is fetched from memory in each clock cycle. Fur-
thermore, the execution of instructions follows the same order in which
they were organized by the compiler (statically scheduled). The pipe-
line is divided in seven stages (GAISLER et al., 2017):

1. FE (Instruction Fetch) — If the instruction cache is enabled, the
instruction is fetched from the instruction cache. Otherwise, the
fetch is forwarded to the AHB bus. The instruction is valid at
the end of this stage and is latched inside the IU.

2. DE (Decode) — The instruction is decoded and the CALL and
Branch target addresses are generated.

3. RA (Register Access) — Operands are read from the register file
or from internal data bypasses.

4. EX (Execute) — ALU, logical, and shift operations are per-
formed. For memory operations (e.g., LD) and for JMPL/RETT,
the address is generated.

5. ME (Memory) — Data cache is read or written at this time.

6. XC (Exception) — Traps and interrupts are resolved. For cache
reads, the data is aligned as appropriate.

7. WR (Write) — The result of any ALU, logical, shift, or cache
operations are written back to the register file.

Figure 17 presents a block diagram of the LEON3 datapath, il-
lustrating the key operations and components involved in each pipeline
stage. This figure is also important because it contains the main in-
ternal pipeline registers, which are part of the components evaluated
during the fault injection campaign.

l-cache
data addr

FE

Figure 17 — LEON3 Integer Unit Datapath

call/branch addr

'0' jmpatbr
il

- - -Ddiinst l- -

DE

- - - Dr_in

st]--

Prooe Jo- - Primm } - - oo - - -

Regis?jer File
RA rsl rs2 ‘
> y, tbr, wim, psr
T 1]
| | |
- - - Deilnst l - - - -Deﬁpc l- H _DE*OPII l- -Deiopz l ----------
T I 1 | C]
EX w MUL/DIV
t jmpl addr
- - - Dm_inst l - - - -Dm_pc l- H]- - - -|>m_resu|tl- - - -Dm_y l- -----
i
ME ~— D-cache
- - - Dx_inst l - - - -Dx_pc l- 4 - - - - Dx_result l- - -Dx_y l- -----
XC
- - - Dw_inst l - - - -Dw_pc l- ------ Dw_result l- - -Dw_y l- -----
| I
h U
Source: Adapted from (GAISLER et al., 2017).

57

58

4.2.2 VHDL Structure and Implementation

Among the various modules that compose the LEON3 proces-
sor, this work will investigate the one named Processor Core (PROC3),
where most of the processor control logic is implemented. The PROC3
is also composed of two submodules. The larger one, the integer unit
(IU3), implements the entire processor seven stage pipeline. The other
one is the cache controllers (MMU _CACHES), which can be divided
in the instruction cache controller (MMU ICACHE), the data cache
controller (MMU _DCACHE), and the interface between the cache con-
trollers and the AMBA AHB bus (MMU _ACACHE). Figure 18 shows
a block diagram of the PROC3 and indicates the path for the VHDL
files that implement each module.

Figure 18 LEON3 Processor Core (PROC3)

MMU_ICACHE
lib/gaisler/leon3v3/mmu_icache.vhd
Instruction Cache Controller
RFI €— —» CRAMI

MMU_DCACHE
Nlib/gaisler/leon3v3/mmu_dcache.vhd

U3 Data Cache Controller

DBGO €«— /lib/gaisler/leon3v3/iu3.vhd <>
LEONS3 7-stage integer pipline

MMU_ACACHE
/lib/gaisler/leon3v3/mmu_acache.vhd
TBI <€— AMBA AHB Interface 1y AHBO

MMU_CACHES
Jlib/gaislerleon3v3/mmu_cache.vhd
Cache Controllers & AHB Interface

PROC3
fNib/gaislerieon3v3/proc3.vhd
LEONS3 Processor Core with Plpeline & Cache Control

Source: Author.

Also presented in figure 13 are the PROC3 main output inter-
faces (i.e., ports), which will be observed during the fault injection
campaign to identify the fault propagation paths and obtain relevant
statistics such as fault manifestation times. The interfaces connected
to the TU3 are the integer register file (RFI), the processor debug sup-
port unit (DBGO), and the instruction trace buffer (TBI). Moreover,
the ones connected to the cache controller, are the cache memory array

59

(CRAMI), and the AMBA AHB bus (AHBO).

Note that in the LEON3 implementation, the cache controllers
are present even if the design configuration does not contain caches.
The reason for this is that, besides managing every access to mem-
ory, whether it is in cache or main memory, the controllers also have
the function of ensuring the synchronization of these accesses with the
pipeline operation.

Also note, that the PROC3 does not comprise the memory hier-
archy. The register file, the cache memory array, and the main memory
are all modules outside de PROC3. In this sense, the technique imple-
mented in this work will not cover these modules. As stated before,
ECCs are frequently employed as an efficient method to protect mem-
ory arrays and correspond to one of the available protection schemes
in the LEON3FT.

Concerning the VHDL implementation of each discussed mod-
ule, the LEON3 designers adopted a structured VHDL design method-
ology (GAISLER, 2011). The goals of this approach are, among others,
to improve readability, decrease simulation time, and provide a uniform
algorithm encoding. Among the measures suggested in this methodol-
ogy and employed in the LEON3, the most relevant for this work are:

e Using two processes per entity — In this approach, each
VHDL entity has only two processes: one process that contains
all combinational (asynchronous) logic, and one process that con-
tains all sequential logic (registers). In this structure, the com-
plete algorithm can be coded in sequential (non-concurrent) state-
ments in the combinational process while the sequential process
only contains registers, i.e., the state. For example, in the IU3 im-
plementation, the entire pipeline logic is described through non-
concurrent statements in the combinational process. The sequen-
tial process is only responsible for updating the pipeline internal
registers every clock cycle. The objective of this approach is to
improve readability. By reducing the number of concurrent state-
ments, the VHDL code resembles more standard programming
languages such as C.

e Using record types — The VHDL record type is similar to
structures in C. It allows declaring composite objects whose el-
ements can be of different types, including other records. For
modules with hundreds of ports and signals, the possibility of
grouping them according to functionality may considerably im-
prove readability. For example, in the IU3 implementation, there

60

is a record for each pipeline stage that groups all the registers
belonging to that stage, in addition, the records of each stage are
also grouped in another record.

Using subprograms — Subprograms (procedures and func-
tions) allow large algorithms to be split into distinct code seg-
ments, being a powerful method to improve code readability.
Within the context of using two processes per entity, subprograms
may be used to hide the complexity from the combinational pro-
cess. For example, in the LEON3 pipeline implementation, most
of the logic is broken into subprograms, which are called from the
combinational process, making the pipeline operation flow much
more readable.

4.2.3 Configuration

As previously mentioned, the LEON3 processor can be exten-

sively configured, depending on the application requirements and avail-
able resources. Table 1 summarizes the main attributes from the con-
figuration employed in this work. Note that the modules that interface
with the PROC3 (e.g., Debug Support Unit, Instruction Trace Buffer)
were enabled in order to monitor the fault propagation paths.

Table 1 — LEON3 Configuration

Attribute Value

P No of processors 1
rocessor SPARC registers windows 8
Integer Unit MUL/DIV instructions yes
., Enable DSU yes

Debug Support Unit Instruction Trace Buffer yes
Enable Caches yes

Associativity 1

Cache System Set size 4 kbytes
Line size 32 bytes

MMU Enable MMU no

Source: Author.

61

4.3 FAULT INJECTION PLATFORM

In order to choose the fault injection method that best fits the
purposes of this work (i.e., assess the soft error vulnerability of the
LEON3 processor core and identify its most sensitive components),
each property listed in Section 2.5 was revisited:

e Reachability — The technique must be able to inject faults on
any component inside the PROC3.

e Repeatability — The technique must allow the repetition of ex-
periments. Necessary to compare the performances before and
after the implementation of the partial redundancy technique.

e Controllability — The technique must be able to inject faults in
each component inside the PROC3 at any specific time instant,
a requirement for repeatability.

e Reproducibility — The results must be reproducible, to ensure
the credibility of the experiments.

e Non-intrusiveness — The technique must not generate any inter-
ference in the LEON3 operation flow.

e Time measurement — Although not a requirement for the main
objective of this work, the ability to perform time measurement
allows a more in-depth analysis of the effects of the injected faults.

e Efficacy — Not required in this work. All the injection exper-
iments, even in components not accessed or used, correspond
to useful information regarding that component impact in the
LEONS operation.

From the available methods presented in Section 2.5, the one
found to fit those requirements best is the simulation-based fault injec-
tion. In this sense, the HDL simulator chosen for the experiments was
the ModelSim (MENTOR GRAPHICS, n.d.) from Mentor Graphics.

The ModelSim software contains both a Graphical User Inter-
face (GUI) for easy access and operation as well as a console to run
scripts with Tool Command Language (TCL). These scripts can make
use of various built-in commands which provide interaction with the
simulation engine, allowing read and write access to any logic signal
during any time of the simulation. Thus, through the scripts, it is pos-
sible to do both the fault injection as the observation of the fault effects.

62

Figure 19 depicts the fault injection environment, which is composed
of the VHDL Simulator (ModelSim) and the Fault Injection Manager
(TCL Script). Note that the simulated design contains two replicas of
the LEONS3, one for reference (Golden LEON3) and another where the
faults are injected (LEON3).

Figure 19 Fault Injection Environment
Fault Injection Manager

gL

—
List Design
Flip-Flops

~———

)
VHDL Simulator Fault Injection

Model Sim ~————————

Golden Responses
L Fault Effect
Workload Monitoring

Y

Faulty SRR

LEON3 Fault Propagation
Monitoring

—

O

A

Simulator
Commands

Log Generation
-~

Source: Author.

Before proceeding with the implementation details of each part
of the TCL script, the next sections will cover the fault model, the
fault effects classification, and the workload used in this work, given
that these definitions have a direct impact on the implementation.

4.3.1 Fault Model

The adopted fault model for the fault injection campaign is the
SBU. In each experiment, a single fault is injected by inverting the logic
value of the target signal. Multiple faults due to a single radiation event
(MBU) are not addressed in this work. In order to accurately model

63

this effect, it is necessary to have information regarding the final design
layout and the register neighborhood, which are not available during
the HDL simulation.

Furthermore, SETs are also not studied in this work, given their
low contribution to the total soft error rate in FPGAs, as stated in
Section 2.3. In this context, the fault injection experiments will target
only sequential elements (e.g., registers and flip-flops).

4.3.2 Fault Effects Classification

After the end of each fault injection experiment, the data ob-
tained during the simulation is used to classify the fault effects in five
categories. The classification, which is based on the one used in (RE-
BAUDENGO et al., 2003) and (TOULOUPIS et al., 2007), is the fol-
lowing:

e No Effect — The software running in the processor finishes ex-
ecution normally, with correct results, and the content of the
processor core registers match with the golden run.

e Latent — The software running in the processor finishes execution
normally, with correct results, but the contents of the processor
core registers do not match with the golden run.

o Wrong Result — The software running in the processor finishes
execution, but with incorrect results.

e Timed Out — The software running in the processor took an
abnormal amount of time without finishing execution, and the
simulation was interrupted. Many conditions may lead to this
scenario, such as an incorrect branching due to the injected fault.

e FException — The processor detected an unexpected event, gen-
erating a trap and aborting execution.

Note that only the last three categories (i.e., Wrong Result,
Timed Out, and Exception) correspond to effects in which the pro-
cessor exhibited erroneous behavior. For the sake of clarity, the term
harmful effects will therefore be used in the remaining of the text when-
ever referring to any of these effects.

64

4.3.3 Workload Description

Three different workloads were used in the fault injection cam-
paign. These include a proportional derivative controller (PID), a
bubble sort implementation (BSORT) and a hamming encoder (HAM-
MING). The number of iterations executed in each workload was ad-
apted so that all three had almost the same execution time, around
35000 clock cycles. About the composition of each workload, Figure 20
presents the dynamic instruction mix (i.e., distribution of executed in-
structions). In order to obtain these data, a non-synthesizable LEON3
configuration that disassembles instructions to the simulation console
was used.

Figure 20 Dynamic Instruction Mix

100-
I Arithmetic/Logic
80- BN Load/Store
[Miscellaneous
60- I Conditional Branch
Unconditional Branch
40-
20-

BSORT HAMMING PID

Source: Author.

Ideally, a more comprehensive set of applications with a higher
amount of executed instructions would be desirable. However, the to-
tal simulation time required ends up being unaffordable. In addition
to simulation being considerably slower than real-time execution, it is
essential to perform a high number of experiments with each workload
in order to obtain high confidence in the results.

Regarding the compilation of each workload, the LEON3 Bare-
C Cross-Compiler (COBHAM GAISLER AB, 2016) version 4.4.2 was
used.

65

4.3.4 Implementation Details

The following subsections cover the implementation details of
each of the functions performed by the Fault Injection Manager.

4.3.4.1 List Design Flip-Flops

One of the key parts of the fault injection process is the selection
of the locations where the faults will be injected. In the fault model
chosen for this work, these locations will be the flip-flops inside the
PROC3 module. Obtaining a list of all these flip-flops (hundreds) could
be done manually, but it would be an exhausting process and suscepti-
ble to errors. In this sense, an algorithm has been developed that takes
advantage of the centralization of all registers in a few VHDL records,
and automatically lists each flip-flop (single bit) within each record.
So the only part that must be done manually is to list the records of
interest (eight in this work). In order to realize this algorithm, two
commands from Modelsim were required:

1. find — This command locates objects by type and name. It can
be used with the wildcard character (*) to substitute any other
character. For example, it is possible to obtain all the signals
inside a vector with the call: find signals vector name[*]

2. eramine — This command examines one or more objects and
displays current values. The return value gives useful information
regarding the signal type (single bit, vector, array, record). If the
return value has only one character, the signal is a single bit.
Else, if the return value contains curly brackets { }, it is an array
or record.

Figure 21 presents the algorithm implemented in TCL. It re-
ceives as argument a VHDL signal of any type and an empty list.
Through calls to the ezamine command and string comparison meth-
ods, it determines the signal type. If the signal is only one bit, it
is appended to the list, and the algorithm returns. Otherwise, if the
signal is composed of more than one bit, the algorithm is recursively
executed in each of the internal signals, which are obtained through the
find command. By the end, the list will contain all the one-bit signals
that compose the signal that was provided as an argument.

66

Figure 21 — TCL Procedure that traverses a root signal and lists all the
internal signals bitwise

Arguments:

root root signal that will be traversed, it can be a vhdl record, a
vector, or only a bit.
- listName the list variable where the result signals will be written

proc splitsignal {root listName} {
upvar $listName list
set signalValue [examine Sroot]
if {[string length $signalvalue] == 1} {
The the signal is only one bit.. add to list
lappend list $root
} elseif {[string match *\{* $signalvaluel} {
The signal may be a record or an array
if {[llength [find signals -internal -r S{root}.*]]} {
Record
set children ${root}.*
} elseif {[llength [find signals -internal -r ${root}(*)11} {
Array
set children ${root}(*)
} else {
error "Invalid signal type"
}
Traverse the record/array
foreach child [find signals -internal -r Schildren] {
splitSignal $child list
}
} else {
The signal is a vector, traverse through each bit
set bits ${root}(*)
foreach bit [find signals -internal -r $bits] {
splitsignal $bit list
}

return

Source: Author.

4.3.4.2 Fault Propagation Monitoring

This part of the Fault Injection Manager is responsible for mon-
itoring the manifestation of the injected faults on each of the PROC3
output interfaces (listed in Section 4.2.2). Obtaining this results can
help identifying the dominant fault propagation paths inside the pro-
cessor architecture, which represents useful information for proposing
efficient fault detection techniques.

To facilitate this data to be collected, the LEON3 VHDL imple-
mentation was modified to include two instances of the PROC3 module,

67

one where the faults are injected which have both its inputs and out-
puts connected to the rest of the LEON3, and another only for reference
with only its inputs connected. Note that by using this configuration,
it is guaranteed that the PROC3 module used for reference does not
interfere with the operation of the processor.

The comparison between the interfaces of both PROC3 is not
made directly in the TCL script, as it would considerably increase sim-
ulation time. In this sense, a non-synthesizable comparator was added
in the VHDL design. Thus, the TCL script only needs to be executed
when the output of this comparator signalizes mismatches between the
interfaces. Figure 22 illustrates this arrangement for only the register
file interface, but the same approach is extended to all other interfaces.
Note that the output of the GOLDEN PROCS3 is only used for reference
and is not connected to the register file.

Figure 22 — The arrangement used to monitor fault propagation in the
PROCS3 interfaces

PROC3 REGFILE

rfo j&—
rfi

GOLDEN PROC3

Source: Author.

4.3.4.3 Fault Effect Monitoring

This part of the Fault Injection Manager is responsible for mon-
itoring the effects of the injected faults in the processor operation. In
this respect, each of the effects listed in Section 4.3.2 required a different
monitoring approach.

The Exception condition could be readily observed by monitoring

68

events in the LEON3 trap/exception signals, which are part of the Ex-
ception (EX) pipeline stage. This monitoring was entirely implemented
in the TCL script, with a minor impact on the simulation time.

For the detection of the Timed Out condition, each workload was
run once without any fault injected, and the following runs used the
observed runtime as a reference. The condition is only triggered if the
fault provokes an increase in the execution time of more than 10%. By
this means, this approach aims to detect only locking conditions and
not small delays.

For the detection of the Wrong Result condition, the workload
applications were modified to include self-tests. These tests are pe-
riodically executed within the workload to verify if the computations
performed are correct. To externalize the result of the self-tests, so that
the Fault Injection Manager could monitor them, the software triggered
events in the LEON3 general purpose I/O pins each time the self-tests
identified errors.

If the workload has finished execution and none of the conditions
above were identified, the Fault Injection Manager test for a Latent
fault. This test is done by comparing the contents of all registers inside
the PROC3 with the values obtained from a golden run (i.e., without
any fault injected). If there is a mismatch in the comparison, the Latent
condition is triggered.

Finally, if none of the above happened, the result of the injection
experiment is that the fault had no effect in the processor operation
and was overwritten before the end of the simulation.

4.3.4.4 Fault Injection

The primary task executed by the Fault Injection Manager is
naturally the fault injection itself. Since the entire fault injection cam-
paign is composed of hundreds of experiments, the injection process is
confined within a loop. In this regard, the fault injection loop developed
in this work consists of the following steps:

1. Choose a random flip-flop where the fault will be injected. The
selection is done from the list generated by the algorithm pre-
sented in Section 4.3.4.1. It is important to note, that since the
injection target is selected randomly at the bit level, by the end
of the fault injection campaign, the number of injected faults by
register will be proportional to the register size.

69

2. Choose a random instant for when the fault will be injected. The
time interval considered for fault injection is comprehended be-
tween 20% and 90% of the simulation runtime. This prevents
the injection of faults in the processor warm-up phase and also
provides enough time for the fault to propagate.

3. Simulate until the chosen injection instant.

4. Inject the fault by forcing a bitflip in the target flip-flop. Note
that as defined in the fault model, the value is not stuck and
can be normally overwritten during the remaining of the simula-
tion. The ModelSim command used for this purpose is the force
-deposit, as shown in Figure 23

5. Simulate until the workload finishes execution, or the predefined
timeout is reached.

6. Compare the final registers contents to the ones obtained from a
golden run (executed previously), to test for latent faults.

7. Finally, updates all the logs with the collected statistics, for later
analysis.

Figure 23 — TCL Procedure used for generating a bitflip in a flip-flop

bitFlip --
#
- Execute a bitflip in a signal. Only works with one bit signals
#
proc bitFlip {signal} {

set signalValue [examine Ssignall

if {[string length $signalvalue] != 1} {

error "Invalid signal size"

}
if {ssignalvalue eq "U"} {
force -deposit $signal

10

} elseif {$signalvalue eq "0"} {
force -deposit $signal 1 0

} elseif {$signalvalue eq "1"} {
00

force -deposit $signal

}
return

Source: Author.

70

4.3.4.5 Log Generation

The last operation performed by the Fault Injection Manager is
the log generation. This activity consists of compiling all the informa-
tion gathered throughout the fault injection experiments, and exporting
it to structured tables in CSV files. Given the variety of the informa-
tion collected, three distinct tables are generated. The first table, ex-
emplified in Figure 24(a), contains the compilation of the fault effects
observed for each of the signals investigated during the experiments.
The second table, exemplified in Figure 24(b), contains the number of
observed faults and their respective effects in each of the analyzed in-
terfaces. The third and last table, exemplified in Figure 24(c), contains
for each interface the calculated latencies between the injection instant
and the moment the faults manifested.

Figure 24 — Example logs generated by the Fault Injection Manager

Signal Injected No Effect Latent Wrong Result Timed Out Exception Propagated
rba 19 18 0 0 1 0 3
r.bg 26 26 0 0 0 0 4
r.bo(0) 16 12 0 0 4 0 12
r.bo(1) 23 17 0 0 6 0 10
r.hcache 21 21 0 0 0 0 0
(a)
Interface No Effect Latent Wrong Result Timed Out Exception
ahbo 2448 133 422 136 949
rfi 3861 158 698 157 1058
crami 3944 535 592 156 994
tbi 9520 156 638 150 1003
dbgo 1170 133 235 115 872
total injected 29331 13663 733 164 1109
total propagated 13029 602 733 164 1109
(b)
Interface Latencies
rfi 62 73 44 33 64 54 60 46 38
dbgo 24 283 54 46 94 281 89 113 7 37 20
ahbo 37 48 133 139 29 46 94 281 11
crami 12 23 19 4 83 25 114
thi 24 62 23 61 56 73 42 44 41 113 22 39

(©)

Source: Author.

71

4.4 PARTIAL REDUNDANCY TECHNIQUE

Among the forms of redundancy presented in Section 2.4, the
strategy chosen for implementation in this work is a variation of the
TMR technique. The variation happens in the sense that the tech-
nique will not be applied in whole modules, but instead in only the
components identified as most vulnerable in the fault injection cam-
paign. Therefore, a more appropriate denomination that will be used
in the remaining of this work is partial TMR (PTMR).

Following the choice made for the fault model in Section 4.3.1,
the PTMR technique developed in this work is not intended for pro-
tecting the design against SETSs, but rather to protect the sequential
components from SEUs. This option is in accordance with the objec-
tives of this work, in the perspective that sequential elements are more
vulnerable than the combinational elements in FPGAs, and therefore
should be the focus on a partial protection strategy. With this in mind,
the TMR structure adopted is the one from Figure 5 in Section 2.4.1,
where only the sequential elements are replicated, with all three replicas
receiving the same input from the combinational logic.

In order to implement the PTMR technique, the necessary modi-
fications were made directly to LEON3 VHDL model, more specifically
in the VHDL entities containing flip-flops identified as vulnerable. Note
that implementing directly in the VHDL model requires some attention
during the synthesis step, since the tools may perform optimizations
that remove redundant logic. The necessary actions will be described
later in the text.

Furthermore, given the adoption of a structured VHDL design
methodology by the LEON3 authors, the modifications to implement
the PTMR technique could be realized in a systematical way in each
VHDL entity. The necessary steps are summarized below with the
effects of each modification represented in Figure 25.

1. The implementation begins with the definition of a new VHDL
record type containing all the registers that will be protected.
The use of a record type facilitates the recognition of the tripled
registers throughout the code and also respect the design method-
ology. Next, two VHDL signals are declared, using the recently
defined record as the type. The combination of these two new
signals, with the registers already present in the design, set the
triplication of the sequential logic. Figure 25(a) presents the re-
sulting design. Note that the replicated registers are still not

72

connected to the rest of the design.

. The next step consists in defining the majority voter logic and

connecting to its inputs the replicated registers. As there will
be as many majority voters as there are protected registers, a
reasonable approach is to define the majority voter logic in a
VHDL function and call it for each register. Better yet is to have
a procedure that loops over each bit within the record calling
the majority voter function. Observe that this procedure must
be executed at the beginning of the combinational process (from
the two processes per entity approach) so that the voter output
is accessible for the remaining of the combinational logic. Fig-
ure 25(b) presents the design after this step. Note that still only
the majority voter inputs are connected.

. The next step is to disconnect the protected registers from the re-

maining of the combinational logic (except the voter inputs) and
connect the respective majority voters outputs instead, as can
be seen in Figure 25(c). Unfortunately, this step cannot be per-
formed with a straightforward Find & Replace, on the contrary,
it is the most demanding part and requires the manual inspection
of each signal assignment resulting in hundreds of modifications
in the VHDL source code.

. Finally, the last remaining modification is to ensure that all repli-

cas of each protected register receive the same input at the same
instant, as can be seen in Figure 25(d). In the structured VHDL
design methodology, this modification is performed within the se-
quential process and consists of replicating the signal assignments
involving the registers of interest.

73

Figure 25 — Steps for implementing the PTMR technique

—>
—>
—>

Combinational
Logic

|

Wil]

Combinational
Logic

Majority
Voter

Wil |

Combinational
Logic

Majority
Voter

Wi]

Combinational
Logic

Majority
Voter

= = E——

Source: Author.

74

75

5 RESULTS AND DISCUSSION

The presentation and discussion of the results is carried out in
two parts: it begins with an extensive analysis of the fault injection
campaign in the LEON3’s unprotected architecture (i.e., non-fault tol-
erant), and continues with the evaluation of the performance of the
proposed partial redundancy technique. In total, 45000 fault injection
experiments were performed in the non-fault tolerant LEON3, and an-
other 18000 experiments were performed in the version of the processor
with the proposed technique implemented. Note that most of the an-
alyzes that will be presented refer to the aggregate result of the three
workloads, except when expressly mentioned.

5.1 FAULT INJECTION IN THE UNPROTECTED LEON3
5.1.1 Overall Performance

In Figure 26 a plot containing the overall results of the fault in-
jection experiments targeting the LEON3 processor core is presented.
It is interesting to see that even without any mechanism for SEU mitiga-
tion, most of the injected faults were overwritten without compromising
the program execution. This can be explained by the fact that a large
part of the processor components are not used in every instruction, and
the injected faults in those components are masked when new instruc-
tions are fetched into the pipeline. Another relevant result is that the
processor trap/exception mechanism was able to detect only slightly
more than half of the faults that led to harmful effects, with the other
half going completely unnoticed, indicating the need to include other
detection mechanisms in the case of critical applications.

Figure 27 presents a plot with the results broken down by the
workload running on the processor during the experiments. The ob-
served effects are overall consistent throughout all three programs, with
a discrepancy in the BSORT, which presented a more significant oc-
currence of wrong results. This result was surprising, given that the
BSORT had the least amount of arithmetic/logic instructions. The ex-
pectation was that this type of instruction would be more prone to this
effect since the injected faults could lead to wrong calculations. How-
ever, it has been realized that other forms of data manipulation (e.g.,
memory operations) are equally likely to generate this effect in the

76

presence of faults, so that is difficult to draw any conclusion regarding
vulnerability based solely on the distribution of instructions.

Figure 26 Overall PROC3 Performance

no effect latent wrong result timed out exception

Figure 27 Overall Performance by Workload

no effect latent wrong result timed out exception

With respect to the individual performance of each module that
composes the PROC3, the results can be seen in Figure 28. It is possible
to observe that the cache controllers present a much higher ratio of
latent faults than the integer pipeline. This is due to some of the
registers being used on only some specific cache configurations (e.g.,
when using the LRU replacement policy), which causes the injected
faults in those registers to never be overwritten. Note that during
the synthesis step, these registers tend to be removed from the design.
Furthermore, the higher exception value observed in the acache module
is expected, since this module has a small number of registers, and one
of them corresponds to a critical register used for error warning.

77

Figure 28 Overall Performance by Module
100 -

80 -

60 -

40-

20-

no effect latent Wrongl result timed out excepl)tion

5.1.2 Integer Pipeline Performance

Being the integer pipeline the largest module in the LEON3 pro-
cessor core, it is of great interest to analyze it closely. For this purpose,
the TU3 registers were split by pipeline stage, and the SEU vulnera-
bility obtained for each stage was investigated separately. The same
analysis was done in (TOULOUPIS et al., 2007) for the LEON2 pro-
cessor, which has a slightly different pipeline structure with only five
stages, and the conclusions were very similar. The investigation results
are presented in Figure 29.

According to the results, the Fetch stage presents a much higher
rate of harmful effects than the other pipeline stages. This behavior is
expected, since the Feich stage contains only two registers, with one
of them being the Program Counter (PC). Faults injected into the PC
may cause the wrong instruction being fetched, or even an attempt to
read an invalid memory location. Another remark is that the Write-
Back stage contains a high rate of latent faults. This is due to this stage
being composed mostly of special registers that were barely accessed
during the execution of the workloads.

78

Figure 29 TU3 Performance Split by Pipeline Stage

100-
[N Fetch
80- o M= I Decode
SERE .
SBRE Register Access
=t
(]
60 % [Execute 2
- =
Memory =
=
§ FException
40 Write-back
]
20- T o
2 S £ oo S %) ISEx]
Szeood mheS82 Bgsmang SEEEEE
0- : oolo'_‘ - = -Oo‘ofo‘o‘o‘ - —
no effect latent wrong result timed out exception

5.1.3 Individual Register Performance

Figure 30 contains the individual performance of the thirty reg-
isters which presented the highest number of harmful effects and there-
fore are the primary candidates to be protected through the proposed
partial redundancy technique. The registers are sorted with the most
vulnerable placed at the top. Note that as mentioned before, the num-
ber of injected faults by register is proportional to its size. Also, since
the analysis is based on absolute quantities, even though some one-bit
registers presented a 100% exception rate, they are considered less vul-
nerable than larger registers with smaller exception rates, but higher
absolute values. Ideally would be interesting to perform a bit-level anal-
ysis instead of a register-level, as even inside the same register, some
bits may be more or less sensitive to faults. However, the effort required
to implement triplication at the bit-level is considerably higher, requir-
ing modifications to many more lines in the VHDL description. Having
an automated tool to perform TMR insertion would allow following
this approach.

As can be seen in the results, the program counter (r.f.pc) pre-
sented the worst performance by a significant margin, followed by other
important registers such as the fetched instruction (r.d.inst), both the
ALU operands (r.e.op! and r.e.op2) and the ALU operation result
(r.m.result). Note that the non-uniform distribution of harmful effects
between the registers, jointly with the abrupt drop on these effects mov-

79

ing down the plot, is a strong indication that it is possible to achieve
significant improvements in fault tolerance by protecting only some reg-
isters. Moreover, it is interesting to observe how the fault effects relate
to the register functionality. Faults injected in registers used by the
ALU frequently lead to wrong results, while the most common effect of
faults injected in error and trap registers is the generation of exceptions.

Figure 30 Individual Register Performance

iu3/r.f.pc-
iu3/r.d.inst(0) -
iu3/r.e.opl-
iu3/r.e.op2-
iu3/r.m.result -
iu3/r.d.cwp -
iu3/r.a.ctrlinst -
iu3/r.d.pc-
iu3/r.w.s. wim -
iu3/r.x.result -
dcache/r.cetrlics -
iu3/r.a.imm-
iu3/r.a.rsell -
iu3/r.x.nerror -
deache/r.cctrl.des -
iu3/r.e.ctrl.trap -
iu3/r.m.wewp -
iu3/r.m.werr -
iu3/r.d.step -
iu3/r.m.ctrl.trap -
iu3/r.a.ctrl.rd -
iu3/r.e.ctrlinst -
deache/r.stpend -
icache/r.underrun -
acache/r.werr -
iu3/r.x.ctrl.trap -
iu3/r.a.ctrl.trap -
iu3/r.a.wovf -
iu3/r.e.ctrl.rd -
iu3/r.d.mexc ’

0 100 200 300 400 500 600 700

5.1.4 Fault Propagation

Figure 31 presents the results obtained regarding fault propa-
gation to the PROC3 boundaries. The injected bar contains the fault

80

effect distribution of all injected faults, the propagated bar only con-
tains the ones that propagated to one or more interfaces, and the rest
of the bars correspond to the propagation on each interface individ-
ually. As shown in the results, only one-third of the injected faults
have led to a disturbance in the interfaces. Most no effect and latent
faults remained inside the PROC3. Also, as expected, all the faults
that generated harmful effects propagated to at least one interface.

Between the interfaces, the TBI had the highest propagation
rate, mostly due to the high number of no effect faults. This behavior
is consistent since the trace buffer track statistics of all the executed
instructions (e.g., address, opcode and result). As to faults that led to
harmful effects, the register file interface is where they have manifested
the most. It is important to note, however, that the results indicate
that harmful effects cannot be detected by looking to only a single
interface, for complete coverage, a fault detection strategy would need
to look more than one location.

With respect to the fault manifestation times, Figure 32 contains
a box plot with the obtained values in each PROC3 interface. It follows
that for all interfaces, most propagated faults take less than ten clock
cycles to manifest; however, they can remain latent for tens of thou-
sands of cycles before they manifest. Notably, in the cache memory
array interface, more than half of the propagated faults manifested in
the clock cycle following the injection.

Figure 31 Fault Propagation in PROCS interfaces

40000 - I no effect
I latent
30000+ wrong result
20000~ BN timed out
exception

10000- . S
0- | || || .
rfi

injected | propagated ahbo crarmi thi dbgo
no effect 29331 13029 2448 3861 3944 9520 1170
latent 13663 602 133 158 535 156 133
wrong result 733 733 422 698 592 638 235
timed out 164 164 136 157 156 150 115

exception 1109 1109 949 1058 994 1003 872

81

Figure 32 Boxplot of the Fault Manifestation Time in PROC3 inter-
faces. The bottom and top of the box corresponds to the first and third
quartiles, the line inside the box is the median, the whiskers are at 1.5
IQR, values outside of that range are represented by dots.

10000.0- !
iﬂ 1000.0-
o
]
o
= 100.0-
=
o
10.0-
[]
— I I
N T T]
rlﬁ dblgo ahlbo cralmi tllz)i

5.2 FAULT INJECTION IN THE PROTECTED LEON3
5.2.1 Overall Performance

As shown in Figure 30, the concentration of harmful effects in a
small number of registers presents a clear indication of the possibility
of obtaining a significant improvement in the overall reliability by using
a selective protection strategy. The same conclusion can be obtained
by looking at Figure 33, where is derived the expected SBU tolerance
when the most sensitive registers are protected (e.g., through spatial
redundancy). In order to validate these results, the thirty registers
identified as most vulnerable (from Figure 30) were protected using the
partial TMR technique previously introduced, and the fault injection
experiments were redone. Figure 34 contains the updated results. As
expected, the number of latent and no effect faults improved to around
99.25%, which is a 3.71% increase compared to the original version. The
improved fault tolerance means having only one incorrect computation
every 133 faults, whereas in the original architecture there was one
every 22.

82

Figure 33 Expected SBU Tolerance

—
)
(=)

99-
98-
97-
96 -

SBU Tolerance (%

95

Protected Registers (#)

Figure 34 Protected LEON3 Overall Performance

no effect latent Wrongl result timed out excebtion

5.2.2 Synthesis Area/Performance Overhead

In order to evaluate the performance and area penalty of the
proposed technique, three distinct variants of the LEON3 were synthe-
sized for the Xilinx Spartan 6 FPGA (XC6SLX45). The first variant
corresponds to the LEON3 without any custom fault tolerance strategy
applied. The second variant is the LEON3 with the partial redundancy
strategy employed (LEON3 PTMR). Finally, the third variant consists
of the LEON3 with complete triplication of the PROC3, however with-
out tripling any other module (LEON3_TMR).

The tool used in the synthesis was the Xilinx PlanAhead 14.7.
As previously mentioned, with default flags the tool optimize out all
the replicated registers. In order to keep the redundancy, the flag equiv-
alent _register _remouval was set to False.

Tables 2 to 4 present the synthesis results. Note that both the
TMR and PTMR variants showed a small drop in the maximum achiev-

83

able frequency. This decrease occurred mainly due to the inclusion of
the majority voters in the critical path. It is important to observe that
the use of majority voters is different between the TMR and PTMR
approaches. Particularly, the PTMR technique required a more sig-
nificant number of voters (one voter for each protected bit), with the
voters placed internally the PROC3. In contrast, the TMR, technique
had the voters outside the PROC3, with one voter for each output.

Concerning the resources utilization, the advantage of the PTMR
technique is clear, showing only a modest increase over the unprotected
LEON3. Note that the figures in resources utilization comprise the
design as a whole, including parts that were not protected (memory
hierarchy and peripherals), for that reason the TMR overhead is less
than 200% in most resources.

Table 2 — Design Maximum Frequency

LEON3 LEON3 PTMR LEON3 TMR
(Mhz) (Mhz) Overhead (Mhz) Overhead

Frequency 51.031 50.546 -0.960% 50.279 -1.496%

Source: Author.

Table 3 — FPGA Resources Utilization

LEON3 LEON3 PTMR LEON3 TMR
(#) (#) Overhead (#) Overhead

Slice Registers 2864 3720 29.888% 5932 107.123%
Slice LUTs 5664 6249 10.328% 12932 128.319%
DSPs 4 4 0.000% 12 200.000%

Source: Author.

84

Table 4 — FPGA Power Consumption

LEON3 LEON3 PTMR LEON3 TMR
(W) (W) Overhead (W) Overhead
Supply Power 0.903 0.918 1.661% 0.986 9.192%

Source: Author.

85

6 CONCLUSIONS

This work presented a partial redundancy strategy for protecting
the processing logic of soft-core processors from SEUs. The suggested
approach consists of only using TMR in the processor’s registers iden-
tified as most vulnerable. The number of registers protected depends
heavily on the fault tolerance required by the application and other
constraints such as area and power. In the task of identifying the most
sensitive registers, it is proposed to conduct an extensive fault injection
campaign. In this sense, the most sensitive registers are those that in
the presence of faults are more likely to cause the processor to exhibit
erroneous behavior.

Given the characteristics of this study, it was decided to use a
simulation-based fault injection technique. This choice was in agree-
ment with previous works, which also opted for this same method.
This technique proved to be satisfactory, considering that it allowed
the execution of most of the desired tests. The main limitation found,
which had already been reported in other studies, is the simulation
time, which prevented the use of more representative workloads such
as MiBench (GUTHAUS et al., 2001). In the experiments performed,
using an Intel Core i7-4700MQ @ 3.2Ghz with four cores, the total
simulation time was about 15 days. Four instances of the simulator
were run simultaneously, one in each core of the processor, and this
strategy helped avoiding an even longer simulation time.

The experimental results from the campaign in the unprotected
LEONS3 revealed that most of the faults that led the processor to er-
roneous behavior were limited to a small group of registers, mainly
the program counter and the ALU operands. Moreover, was found
that only a third of the injected faults propagated to the CPU core in-
terfaces. These results presented substantial evidence that a reliability
improvement was possible by protecting only the most vulnerable parts
of the processor.

Later, with the partial redundancy technique implemented in
the LEONS3, a new fault injection campaign showed that by protecting
only 30 registers out of a total of 362, it was already possible to have a
reduction over six times in the number of faults that led to harmful ef-
fects. At the same time, the costs in terms of FPGA resource utilization
were much lower than a full triplication (between 3 and 12 times). It
is necessary to note, however, that the proposed technique is not ideal
for every application, and it does not in any way replaces the classical

86

TMR technique when higher fault tolerance levels are required.

Finally, the main contribution of this research was the imple-
mentation and evaluation of the partial redundancy technique, taking
into account that in the considered references this approach had only
been suggested. The importance of this contribution was confirmed by
the community with a paper accepted for oral presentation in the 19*%
Latin-American Test Symposium.

6.1 FUTURE WORKS

The work described in this document represented a first step
towards the goal of developing a complete, low overhead, fault tolerance
technique for soft core processors. As such, this first iteration was not
expected to tackle all the problems at once and, therefore, there are
still many studies to be performed and improvements to be made. In
this sense, the following future works are suggested:

e Explore alternative strategies for identifying the most vulnerable
components in the processor. These strategies could be used in
conjunction with the fault injection campaign, and could even
be used to limit the number of experiments required. One such
alternative is to record the circuit toggle activity while running
a workload. This information could be used to identify unused
or rarely accessed elements, which have a high probability of not
impacting the processor operation even in the presence of faults.

e Develop an automated design flow for employing the partial re-
dundancy in the processor. With automation it would be possible
to employ the redundancy at the flip-flop level rather than the
registers, leading to an even more efficient technique. For im-
plementation by hand, this possibility was discarded due to the
tremendous effort required.

e Evaluate the proposed technique in combination with strategies
to protect the memory hierarchy. With the complete system fault-
tolerant, hardware-based fault injection campaigns could be per-
formed to measure the overall reliability.

e Improve the fault tolerance by including SET mitigation, thus
preventing radiation-induced transients in the combinational logic
from being stored in the registers protected by the PTMR strat-
egy. However, instead of using the Full TMR approach presented

87

in Section 2.4.1, which would result in significant costs in area
utilization, diverting from the proposal of this work (i.e., develop
a low overhead technique), the concept would be to merge both
hardware and time redundancy, as shown in Figure 35. In this
approach, the flip-flops from the TMR strategy are latched at
different time instants, thus ensuring that the radiation-induced
transients are latched by only one of the flip-flops, being subse-
quentially masked by the majority voter. Note that this imple-
mentation requires three separate clock signals, with the clocks
separated by a delay (d). The length of the delay will determine
the maximum SET duration that the circuit can still mask, posing
a trade-off between performance and fault tolerance.

Figure 35 — Triple Modular Redundancy with SET detection

Sequential
Logic

P —— e — -

Majority
Voter

Combinational b Q
Logic

CLK —

CLK+D —

CLK+2D —

U

Source: Adapted from (KASTENSMIDT; CARRO, et al., 2006).

88

89

REFERENCES

ALTERA CORPORATION. White Paper: Introduction to
Single-Event Upsets. 2013.

ARLAT, J. et al. Comparison of physical and software-implemented
fault injection techniques. IEEE Transactions on Computers, IEEE,
vol. 52, no. 9, pp. 1115-1133, 2003.

AVIZIENIS, A. et al. Basic concepts and taxonomy of dependable and
secure computing. IEEFE transactions on dependable and secure
computing, IEEE, vol. 1, no. 1, pp. 11-33, 2004.

BAUMANN, R. C. Radiation-induced soft errors in advanced
semiconductor technologies. IEEE Transactions on Device and
materials reliability, IEEE, vol. 5, no. 3, pp. 305-316, 2005.

. Soft errors in advanced computer systems. IEEE Design &
Test of Computers, IEEE, vol. 22, no. 3, pp. 258-266, 2005.

. Soft errors in commercial integrated circuits. International
Journal of High Speed Electronics and Systems, World Scientific,
vol. 14, no. 02, pp. 299-309, 2004.

BENEDETTO, J. et al. Digital single event transient trends with
technology node scaling. IEEE Transactions on Nuclear Science,
IEEE, vol. 53, no. 6, pp. 3462-3465, 2006.

CARMICHAEL, C. Triple module redundancy design techniques for
Virtex FPGAs. Xilinz Application Note XAPP197, vol. 1, 2001.
CARMICHAEL, C.; TSENG, C. W. Correcting single-event upsets in
Virtex-4 FPGA configuration memory. Xilinx Corporation, 2009.

CHEN, C.-L.; HSIAO, M. Error-correcting codes for semiconductor
memory applications: A state-of-the-art review. IBM Journal of
Research and Development, IBM, vol. 28, no. 2, pp. 124-134, 1984.

COBHAM GAISLER AB. BCC-Bare-C Cross-Compiler User’s
Manual, 2016.

. LEONS3 Processor. Dec. 2017. Address: <http:
//www.gaisler.com/index.php/products/processors/leon3>.

DUBROVA, E. Fault-tolerant design. Springer, 2013.

FENG, S. et al. Shoestring: probabilistic soft error reliability on the
cheap. In: ACM, 1. ACM SIGARCH Computer Architecture News.
2010. vol. 38, pp. 385-396.

90

GADLAGE, M. J. et al. Single event transient pulse widths in digital
microcircuits. IEEFE transactions on nuclear science, IEEE, vol. 51,
no. 6, pp. 3285-3290, 2004.

GAISLER, J. A structured VHDL design method. Fault-tolerant
microprocessors for space applications, pp. 41-50, 2011.

GAISLER, J. et al. GRLIB IP core user’s manual. Gaisler research,
2017.

GOLOUBEVA, O. et al. Software-implemented hardware fault
tolerance. Springer Science & Business Media, 2006.

GOMES, I. A. et al. Exploring the use of approximate TMR to mask
transient faults in logic with low area overhead. Microelectronics
Reliability, Elsevier, vol. 55, no. 9-10, pp. 2072-2076, 2015.

GORDON, M. et al. Measurement of the flux and energy spectrum of
cosmic-ray induced neutrons on the ground. IEEE Transactions on
Nuclear Science, IEEE, vol. 51, no. 6, pp. 3427-3434, 2004.

GUTHAUS, M. R. et al. MiBench: A free, commercially
representative embedded benchmark suite. In: IEEE. Workload
Characterization, 2001. WWC-4. 2001 IEEFE International Workshop
on. 2001. pp. 3-14.

HAMMING, R. W. Error detecting and error correcting codes. Bell
Labs Technical Journal, Wiley Online Library, vol. 29, no. 2,
pp. 147-160, 1950.

HUSSEIN, J.; SWIFT, G. Mitigating single-event upsets. 2015.

ITURBE, X.; VENU, B.; OZER, E. Soft error vulnerability
assessment of the real-time safety-related ARM Cortex-R5 CPU. In:
IEEE. Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2016 IEEE International Symposium on. 2016.

pp- 91-96.

JOHNSON, B. W.; AYLOR, J. H.; HANA, H. H. Efficient use of time
and hardware redundancy for concurrent error detection in a 32-bit
VLSI adder. IEEE journal of solid-state circuits, IEEE, vol. 23, no. 1,
pp- 208-215, 1988.

KASTENSMIDT, F. L.; CARRO, L.; REIS, R. Fault-tolerance
techniques for SRAM-based FPGAs. Springer, 2006. vol. 32.

KASTENSMIDT, F. L.; REIS, R. Fault tolerance in programmable
circuits. Radiation Effects on Embedded Systems, Springer,
pp. 161-182, 2007.

91

KEYS, A. et al. Radiation hardened electronics for space
environments (RHESE) project overview. In: GEORGIA INSTITUTE
OF TECHNOLOGY.

KIM, S.; SOMANI, A. K. On-line integrity monitoring of
microprocessor control logic. Microelectronics journal, Elsevier,
vol. 32, no. 12, pp. 999-1007, 2001.

KLETZING, C. et al. The electric and magnetic field instrument suite
and integrated science (EMFISIS) on RBSP. Space Science Reviews,
Springer, vol. 179, no. 1-4, pp. 127-181, 2013.

LABEL, K. A.; GATES, M. Single-event-effect mitigation from a
system perspective. IEEFE Transactions on Nuclear Science, IEEE,
vol. 43, no. 2, pp. 654-660, 1996.

LESEA, A. et al. The rosetta experiment: atmospheric soft error rate
testing in differing technology FPGAs. IEEE Transactions on Device
and Materials Reliability, IEEE, vol. 5, no. 3, pp. 317-328, 2005.

LYONS, R. E.; VANDERKULK, W. The use of triple-modular
redundancy to improve computer reliability. IBM Journal of Research
and Development, IBM, vol. 6, no. 2, pp. 200-209, 1962.

MARKIEWICZ, W. J. et al. Venus monitoring camera for Venus
Express. Furopean Geosciences Union. 1st General Assembly Nice,
2004.

MARTINS, V. M. G. et al. A dynamic partial reconfiguration design
flow for permanent faults mitigation in FPGAs. Microelectronics
Reliability, Elsevier, vol. 83, pp. 50-63, 2018.

MENTOR GRAPHICS. ModelSim. Address:
<https://www.mentor.com/products/fv/modelsim/>.

NEUMANN, J. van. Probabilistic logics and synthesis of reliable
organisms from unreliable components, Automata Studies. Annals of
Mathematical Studies, vol. 34, pp. 43-98, 1956.

POIVEY, C.; GRANDJEAN, M.; GUERRE, F. Radiation
characterization of microsemi ProASIC3 flash FPGA family. In:
IEEE. Radiation Effects Data Workshop (REDW), 2011 IEEE. 2011.
pp. 1-5.

PRADHAN, D. K. Fault-tolerant computer system design.
Prentice-Hall, 1996.

PRATT, B. et al. Improving FPGA design robustness with partial
TMR. In: IEEE. Reliability Physics Symposium Proceedings, 2006.
44th Annual., IEEE International. 2006. pp. 226-232.

92

REBAUDENGO, M.; REORDA, M. S.; VIOLANTE, M. Accurate
analysis of single event upsets in a pipelined microprocessor. Journal
of Electronic Testing, Springer, vol. 19, no. 5, pp. 577-584, 2003.

SAJID, M. et al. Single Event Upset rate determination for 65 nm
SRAM bit-cell in LEO radiation environments. Microelectronics
Reliability, Elsevier, vol. 78, pp. 11-16, 2017.

SAMUDRALA, P. K.; RAMOS, J.; KATKOORI, S. Selective triple
modular redundancy (STMR) based single-event upset (SEU) tolerant
synthesis for FPGAs. IEEFE transactions on Nuclear Science, IEEE,
vol. 51, no. 5, pp. 2957-2969, 2004.

SANCHEZ-CLEMENTE, A. J.; ENTRENA, L.;
GARCIA-VALDERAS, M. Partial TMR in FPGAs using
approximate logic circuits. IEFE Transactions on Nuclear Science,
IEEE, vol. 63, no. 4, pp. 2233-2240, 2016.

TONG, J. G.; ANDERSON, I. D.; KHALID, M. A. Soft-core
processors for embedded systems. In: IEEE. Microelectronics, 2006.
ICM’06. International Conference on. 2006. pp. 170-173.

TOULOUPIS, E. et al. Study of the effects of SEU-induced faults on
a pipeline protected microprocessor. IEEE Transactions on
Computers, IEEE, vol. 56, no. 12, pp. 1585-1596, 2007.

TRAVESSINI, R. et al. Processor Core Profiling for SEU Effect
Analysis. 2018.

VILLA, P. R. et al. Processor Checkpoint Recovery for Transient
Faults in Critical Applications. 2018.

WANG, J. Radiation effects in FPGAs. CERN, 2003.

WANG, J. et al. SRAM based re-programmable FPGA for space
applications. IEEFE Transactions on Nuclear Science, IEEE, vol. 46,
no. 6, pp. 1728-1735, 1999.

WU, K.; KARRI, R. Fault secure datapath synthesis using hybrid
time and hardware redundancy. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, IEEE,
vol. 23, no. 10, pp. 1476-1485, 2004.

ZIADE, H.; AYOUBI, R. A.; VELAZCO, R., et al. A survey on fault
injection techniques. Int. Arab J. Inf. Technol., vol. 1, no. 2,
pp- 171-186, 2004.

