
Universidade Federal de Santa Catarina
Biblioteca Universitária

Davi Resner

Performance Evaluation of the Trustful Space-Time Protocol

Florianópolis

2018

Davi Resner

Performance Evaluation of the Trustful Space-Time Protocol

Dissertatação submetida ao Programa
de Pós-Graduação em Ciência da Com-
putação da Universidade Federal de
Santa Catarina para a obtenção do
Grau de Mestre em Ciência da Com-
putação.
Orientador: Prof. Dr. Antônio Au-
gusto Fröhlich

Florianópolis

2018

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Resner, Davi
 Performance Evaluation of the Trustful Space
Time Protocol / Davi Resner ; orientador, Antônio
Augusto Fröhlich, 2018.
 190 p.

 Dissertação (mestrado) - Universidade Federal de
Santa Catarina, Centro Tecnológico, Programa de Pós
Graduação em Ciência da Computação, Florianópolis,
2018.

 Inclui referências.

 1. Ciência da Computação. 2. Protocolos de
Comunicação. 3. Internet das Coisas. 4. Design cross
layer. 5. Avaliação de desempenho. I. Fröhlich,
Antônio Augusto. II. Universidade Federal de Santa
Catarina. Programa de Pós-Graduação em Ciência da
Computação. III. Título.

À Julia.

Abstract

Wireless Sensor Networks (WSN) have been implemented in many
di�erent forms over the years. Buildings, homes, farms, rivers, the
weather, assembly lines, and many more physical environments, can all
be monitored and sometimes controlled by a wireless network of cheap
computing devices equipped with di�erent sensors and actuators. As
these networks get connected to the Internet of Things (IoT), it is ever
more important that they operate trustfully, with carefully-designed
and -implemented domain-oriented operating systems and network pro-
tocols.
The Trustful Space-Time Protocol (TSTP) is a cross-layer WSN pro-
tocol designed to deliver authenticated, encrypted, timed, and geo-
referenced messages containing data compliant with the International
System of Units (SI) in a resource-e�cient way. By integrating shared
data from multiple networking services into a single communication
infrastructure, TSTP is able to eliminate replication of information
across services, achieving small overhead in terms of control messages.
However, the complexity of TSTP's features, its broad range - from
application to Medium Access Control, - and its experimental nature
bring diverse requirements beyond those usually considered in most
software designs.
In this dissertation, the protocol design of TSTP is presented in de-
tail, with a description of the message formats and algorithms used for
medium access control, geographic routing, spatial localization, time
synchronization, and security. Then, an implementation is developed
for the Embedded Parallel Operating System (EPOS) and the EPOS-
Mote III WSN platform. To avoid a monolithic implementation of
the cross-layer approach, a component-based design is used, explor-
ing template metaprogramming techniques to adapt and combine basic
building blocks. An event-driven architecture that makes use of zero-
copy bu�ers and metadata is used to handle crosscutting concerns. The
design and implementation are assessed with experiments on the EPOS-
Mote III platform, with a port for the OMNeT++ simulator, and with
an analytic model of network behavior. With the experiments and data
collected from various evaluation tools, parameters of the protocol are
adjusted and optimized, improving TSTP and taking it one step closer
to its goal of being a complete, e�cient solution for IoT-ready WSNs.

Keywords: Cross-layer design; Performance evaluation; Communi-

cation protocols; Internet of Things; Wireless Sensor Networks

Resumo

Redes de Sensores Sem Fios (RSSF) têm sido implementadas de muitas
formas diferentes ao longo dos últimos anos. Prédios, casas, fazendas,
rios, o clima, chãos de fábrica, e muitos outros tipos de ambiente, podem
todos ser monitorados e controlados por uma rede sem �os composta
de dispositivos computacionais baratos equipados com diferentes sen-
sores e atuadores. Com estas redes conectando-se à Internet das Coisas
(IoT, do inglês Internet of Things), torna-se cada vez mais importante
que as mesmas operem de maneira con�ável, com sistemas operacio-
nais e protocolos de comunicação orientados ao domínio de aplicação e
cuidadosamente implementados.
O Trustful Space-Time Protocol (TSTP) é um protocolo cross-layer
para RSSF projetado para enriquecer dados com semântica de unida-
des do Sistema Internacional (SI), autenticação, criptogra�a, tempora-
lidade e georeferenciamento de forma e�ciente. Através da integração
de dados compartilhados por múltiplos serviços de rede em uma única
infraestrutura de comunicação, TSTP é capaz de eliminar a replica-
ção de informação entre serviços, atingindo um sobrecusto modesto em
termos de mensagens de controle. Porém, a complexidade das funciona-
lidades do TSTP, seu amplo escopo - da aplicação ao controle de acesso
ao meio, - e sua natureza experimental trazem requerimentos diversos,
além daqueles normalmente considerados na maioria dos projetos de
software.
Nesta dissertação, o projeto de protocolo do TSTP é exposto em deta-
lhes, com uma descrição dos formatos de mensagem e algoritmos usados
para controle de acesso ao meio, roteamento geográ�co, localização es-
pacial, sincronização temporal e segurança. Então, uma implementação
desenvolvida para o Embedded Parallel Operating System (EPOS) e a
plataforma de RSSF EPOSMote III é apresentada. Para evitar uma im-
plementação monolítica da abordagem cross-layer, um projeto baseado
em componentes é utilizado, explorando técnicas de metaprogramação
com templates para adaptar e combinar blocos básicos. Uma arquite-
tura orientada a eventos que gerencia bu�ers enriquecidos com meta-
dados sem gerar cópias de memória é aplicada para tratar de requisitos
transversais. O projeto e a implementação do protocolo são avaliados
com experimentos na plataforma EPOSMote III, com um porte para o
simulador OMNeT++ e com um modelo analítico de comportamento
da rede. Com base nos experimentos e dados coletados por meio de

várias ferramentas de avaliação, parâmetros do protocolo são ajustados
e otimizados, melhorando o TSTP e trazendo-o um passo mais perto
de seu objetivo de prover uma solução completa e e�ciente para RSSF
integradas à IoT.

Palavras-chave: Design cross-layer; Avaliação de desempenho; Pro-
tocolos de comunicação; Internet das Coisas; Redes de Sensores Sem
Fios

Resumo Expandido

Introdução
Redes de Sensores Sem Fios (RSSF) têm sido implementadas de muitas
formas diferentes ao longo dos últimos anos. Prédios, casas, fazendas,
rios, o clima, chãos de fábrica, e muitos outros tipos de ambiente, podem
todos ser monitorados e controlados por uma rede sem �os composta
de dispositivos computacionais baratos equipados com diferentes sen-
sores e atuadores. Com estas redes conectando-se à Internet das Coisas
(IoT, do inglês Internet of Things), torna-se cada vez mais importante
que as mesmas operem de maneira con�ável, com sistemas operacionais
e protocolos de comunicação orientados ao domínio e cuidadosamente
implementados. Este trabalho avalia e melhora o Trustful Space-Time
Protocol (TSTP) (RESNER; FRÖHLICH, 2015a; RESNER; ARAUJO; FRÖH-
LICH, 2017), trazendo-o um passo mais perto de seu objetivo de prover
uma solução completa e e�ciente para RSSF integradas à IoT.
A IoT destaca desa�os que estiveram presentes em RSSF desde o iní-
cio, mas que puderam ser ignorados até certo ponto em redes e sistemas
auto-contidos. Maior atenção deve ser dada à segurança da comunica-
ção. Mensagens devem ser autenticadas, com integridade veri�cável,
imunes a replays, e às vezes con�denciais. Dados devem ser univer-
salmente interpretáveis em termos de o quê está sendo medido, bem
como quando e onde cada medição foi feita. Deve-se ter evidência para
con�ar nos dados. Garantir todos esses requerimentos adicionais pode
ter um preço proibitivo para os dispositivos de RSSF de baixo custo se
não houver cuidado no projeto e implementação otimizada do Sistema
Operacional e do protocolo de rede.
Há uma vasta disponibilidade de trabalhos na literatura para cumprir
cada um destes requerimentos. Muitas camadas físicas foram propos-
tas, juntamente com uma miríade de protocolos de roteamento e acesso
ao meio (HUANG et al., 2013; PATIL; BIRADAR, 2012). Tais protocolos
foram feitos conscientes de energia (LONARE; WAHANE, 2013); estraté-
gias de agregação e fusão de dados foram utilizadas (LEVIS et al., 2004);
infraestruturas básicas foram enriquecidas com protocolos de localiza-
ção (NIAN; SIVA; POELLABAUER, 2017), temporização (DJENOURI; BA-
GAA, 2016) e segurança (GRANJAL; MONTEIRO; SILVA, 2015); sistemas
operacionais foram enriquecidos para dar suporte a abstrações de alto
nível (DIXON et al., 2012), juntamente com sistemas de gerenciamento
de dados de larga escala (HULBERT et al., 2016). Muitos pesquisadores

têm trabalhado com otimizações cross-layer para protocolos de RSSF
(MENDES; RODRIGUES, 2011).
Aplicações de RSSF muitas vezes requerem muitas ou todas estas funci-
onalidades. Se estas não são garantidas arquiteturalmente, muitas vezes
camadas heterogêneas e auto-contidas de middleware são adicionadas
ao sistema. Tal adição traz um custo de integração e frequentemente
resulta em replicação desnecessária de dados. Um projeto de proto-
colo cross-layer pode eliminar esse sobrecusto, economizar um grande
número de mensagens de controle e melhorar os processos de tomada
de decisão no protocolo anexando informação de controle em pacotes
de dados comuns, subsequentemente organizando e compartilhando tal
informação com todos os componentes do protocolo.
O Trustful Space-Time Protocol tem o objetivo de prover uma solu-
ção completa de comunicação para RSSF/IoT, combinando técnicas
para contemplar todos os requerimentos mencionados. O TSTP é
um protocolo cross-layer orientado a aplicações de RSSF integradas
à IoT. O protocolo e�cientemente provê funcionalidades recorrente-
mente necessárias em tais sistemas: dados con�áveis, temporizados,
geo-referenciados, conformante com unidades SI, que são e�cientemente
entregues a um sink. O TSTP provê tais funcionalidades diretamente
à aplicação na forma de uma entidade completa de rede, o que per-
mite o projeto de cooperações próximas, otimizadas e sinergísticas entre
sub-componentes enquanto elimina camadas de software heterogêneas
adicionais. TSTP integra sincronização temporal, localização espacial,
segurança, controle de acesso ao meio (MAC, do inglês Medium Ac-
cess Control), roteamento e uma API focada nos dados. O projeto
de protocolo fortemente acoplado é mapeado em uma implementação
modular de baixo sobrecusto, explorando técnicas de metaprogramação
de templates para adaptar e combinar blocos básicos. Uma arquitetura
orientada a eventos que usa bu�ers zero-cópia e metadados é usada
para lidar com requisitos transversais.

Objetivos
O principal objetivo deste trabalho é avaliar o desempenho do Trust-
ful Space-Time Protocol. Isto é feito por meio dos seguintes objetivos
especí�cos:

• Implementar o TSTP para hardware de RSSF e um simulador de
RSSF. As escolhas de implementação serão documentadas, com
descrição de técnicas, algoritmos e formatos de mensagens. A
implementação deve ser adequada para controlar ambientes físicos
do mundo real com sensores e atuadores, bem como disponibilizar

os dados gerados para aplicações de mais alto nível;

• Executar experimentos para analizar vários aspectos das imple-
mentações. O comportamento do protocolo em termos de preci-
são da sincronização, latência e consumo de energia será carac-
terizado para diferentes cenários de aplicação. Os sobrecustos de
implementação serão medidos para justi�car as técnicas aplica-
das;

• Otimizar parâmetros e propor melhorias no protocolo para cada
cenário baseado nos resultados das análises.

Metodologia
Neste trabalho, a implementação do TSTP para um dispositivo de
RSSF real é apresentada em detalhes. Esta implementação é validada
com experimentos controlados, com diferentes ferramentas de análise e
debug e a observação de diferentes redes TSTP reais. As análises do
mundo real são complementadas por experimentos de simulação que
investigam cenários diferentes e de maior escala, bem como uma avali-
ação mais controlada de aspectos especí�cos. As análises permitem um
ajuste �no e a melhoria de diferentes aspectos do protocolo para cada
cenário.
Primeiramente, o TSTP foi implementado em C++ no sistema operaci-
onal EPOS para a plataforma EPOSMote III, um dispositivo para IoT
baseado no System-on-Chip CC2538 da Texas Instruments, com um
processador ARM Cortex-M3 a 32MHz. A implementação modular
do TSTP e uma compatibilidade de linguagem de programação per-
mitiram que o mesmo fosse portado sem muitas alterações do EPOS
para o simulador OMNeT++ com o framework Castalia. As princi-
pais mudanças estão no mediador de interface de rede do EPOS para
lidar com o framework de rádio do Castalia e no método de noti�cação
do componente API do TSTP para interagir com a camada de aplica-
ção do Castalia. Como resultado, o simulador implementa um modelo
muito detalhado de uma rede TSTP real, com dispositivos simulados
rodando código muito similar ao que é de fato rodado em dispositivos
EPOSMote III reais.

Resultados e Discussão
Os principais resultados provenientes das análises de desempenho do
protocolo são:

• Os tamanhos de código para ambas as implementações do TSTP
(simulador e EPOSMote III), incluindo todas as funcionalidades,
são comparáveis a duas implementações de terceiros do protocolo
AODV para o mesmo framework de simulação. AODV imple-
menta somente roteamento de mensagens;

• O sobrecusto de tempo para alocação de bu�ers zero-cópia no
EPOSMote III é 2.31µs. O mecanismo de noti�cação usado para
propagação dos bu�ers é responsável por 11.60% do tempo total
de processamento de bu�ers por todos os componentes;

• O código responsável pela sincronização temporal no EPOSMote
III é altamente determinístico temporalmente. O atraso entre en-
viar e receber Start-of-Frame Delimiters (SFD) entre dois dispo-
sitivos tem uma variação de 93.5ns, incluindo atrasos de software
e do rádio. Isso leva a um protocolo de sincronização temporal al-
tamente preciso que é capaz de atingir sincronização instantânea
de sub-microsegundos, como medido em dispositivos EPOSMote
III reais;

• Há um ponto ótimo no tamanho do preâmbulo do MAC que de-
pende da topologia e do tráfego da rede. Selecionando os parâme-
tros do MAC corretamente, redes de larga escala atingem ciclos
ativos dos rádios menores do que 1% enquanto mantém 100% de
taxa de entrega de mensagens, com latências médias em torno de
0.5s;

• Incluir leituras de tempo em cada mensagem para habilitar sincro-
nização especulativa de relógios é bené�co em todos os cenários
considerados quando comparado a estratégias explícitas de sin-
cronização. Para redes pequenas de tráfego intenso, a redução no
número de mensagens leva a um aumento na e�ciência energética.
Para redes maiores com menor tráfego, a inclusão de leituras de
tempo em mensagens de dados melhora levemente as latências e
e�ciência energética, enquanto mantem um melhor limite inferior
na precisão dos relógios da rede;

• Quando a rede não está saturada, o modelo analítico simplista
apresenta resultados similares às simulações detalhadas, sendo
muito mais rápido para executar. Tal modelo é então um pri-
meiro passo apropriado para analizar o comportamento esperado
de novas redes.

O componente de MAC atualmente utilizado pelo TSTP, baseado no
RB-MAC, apresenta muitos benefícios: baixos ciclos ativos; resiliência a
canais ruidosos, melhorada pela possibilidade de utilização de múltiplos
canais sem sobrecusto; habilitar roteamento geográ�co reativo e sincro-
nização especulativa; e permitir que dispositivos com maiores restrições
energéticas economizem mais energia não retransmitindo mensagens de
terceiros. Além disso, o RB-MAC não impõe requerimentos de sincro-
nização de relógio ou escalonamento e estruturamento da rede. Apesar
disso e dos resultados positivos das análises em muitos casos, em ou-
tros o MAC mostrou mau desempenho em termos de taxa de entrega,
e�ciência energética e latência, tornando-o inapropriado dependendo
dos requerimentos da rede. Como trabalhos futuros para melhoria do
MAC, parece promissora a investigação de protocolos síncronos, ha-
bilitados pela sincronização de tempo precisa do TSTP, bem como o
aproveitamento de conhecimento espacial da estrutura da rede, dado
pelas coordenadas TSTP. Outras escolhas de camadas físicas também
teriam um impacto signi�cativo nos gargalos de desempenho, visto que
a maior parte dos parâmetros do TSTP MAC são especi�camente de-
rivados de características de uma camada física IEEE 802.15.4.

Considerações Finais
Este trabalho proporcionou muitas contribuições para o projeto Trust-
ful Space-Time Protocol. Apesar de todos os sub-protocolos que fazem
parte do TSTP terem existido de alguma forma no passado, esta é a pri-
meira vez que o protocolo como um todo foi detalhadamente documen-
tado, implementado e avaliado. Muitas ferramentas reusáveis diferentes
foram desenvolvidas em conjunto com a implementação do protocolo
para ajudar no desenvolvimento, depuração, validação e projeto de no-
vas redes. Hoje, o TSTP é utilizado em duas salas automatizadas e em
uma rede de estações de monitoramento hidrológico, alimentando uma
so�sticada arquitetura de IoT com dados veri�cavelmente autênticos
enriquecidos com semântica de unidades SI, bem como temporização
precisa e coordenadas de criação.

Palavras-chave: Design cross-layer; Avaliação de desempenho; Pro-
tocolos de comunicação; Internet das Coisas; Redes de Sensores Sem
Fios

List of Figures

Figure 1 TSTP component interactions and Bu�er life-cycle. 43

Figure 2 HECOPS deviation heuristic. A and B are anchor nodes
that detect a deviation between them. C is inside the tri(A,B)
area and compensates for the deviation. Figure from (REGHELIN;
FRÖHLICH, 2006) . 45

Figure 3 Accuracy and Stability of Crystal Oscillators. 46

Figure 4 Clock drift of four di�erent EPOSMote III devices in
relation to a �fth. One of the motes (in blue) diverged particularly
quick in this scenario. 47

Figure 5 Example of clock synchronization with PTP. cM (t1) and
cM (t′2) are transmitted with the sync and delay resp messages,
respectively. 48

Figure 6 Example of clock synchronization between A and B with
SPTP. Nodes to the right are closer to the sink. m1 and m2 are
regular data messages being routed towards the sink. m2 can also
be triggered by setting the Time Request bit in m1. 50

Figure 7 Example of an RB-MAC message forwarding. Figure
from (STEINER et al., 2013).. 52

Figure 8 Possible cases for Algorithm 1. In each case, node s sends
a message with d as the destination, which is overheard by node n. 55

Figure 9 TSTP key bootstrapping overview. 58

Figure 10 TSTP key bootstrapping message exchange. 58

Figure 11 SmartData SI unit encoding. 60

Figure 12 SmartData interface. 60

Figure 13 TSTP architecture overview.. 62

Figure 14 EPOS zero-copy bu�er optimized by protocol. 64

Figure 15 Sequence diagram for message allocation and transmis-
sion. 68

Figure 16 Sequence diagram for message reception and processing. 69

Figure 17 TSTP common message Header format.. 71

Figure 18 TSTP Interest message format. 72

Figure 19 TSTP Response message format. 73

Figure 20 TSTP Command message format. 73

Figure 21 TSTP Control sub-header format. 74

Figure 22 TSTP Report message format. 74

Figure 23 TSTP Epoch message format. 75

Figure 24 3D geometry class diagram. 76

Figure 25 3D trilateration for �nding p4's coordinates in a coordi-
nate system relative to p1 and p2, given three known points and
their distances to p4. 76

Figure 26 TSTP MAC's activity diagram. 81

Figure 27 Microframe timing. If tr ≥ 2ts + ti, it is guaranteed
that receiving nodes will have enough listening time to detect and
receive at least one microframe. 82

Figure 28 TSTP MAC implementation's automaton. t transitions
are triggered by timer interrupts, r denotes radio interrupts, and ε
represents a transition that happens without a hardware interrupt
(e.g. a function call at the end of the previous state's function). . . 82

Figure 29 TSTP microframe format. 83

Figure 30 TSTP MAC transmission example with NMF = 3. Re-
ceiver 2 might wake up late due to clock drift and miss the �rst
Microframe, but it receives the second one if tr ≥ 2ts + ti. 84

Figure 31 Single message routed from node 4 to node 0. Each
node can only reach its immediate neighbors. Red bars represent
time spent sending microframes by the node in the corresponding
Y coordinate. Black bars represent time spent sending data by the
node in the corresponding Y coordinate. 85

Figure 32 Network tra�c with permanent collisions. Di�erent col-
ors represent messages with a di�erent ID. Shorter red bars repre-
sent collisions. All sensor nodes generate messages at t=0, but their
contention o�sets may di�er. At t≥0.5, nodes 1 and 2 are hidden
nodes. Node 1 transmits the purple message, which is received by
the sink (node 0). Then, the sink ACKs it, but node 2 is transmit-
ting at the same time, causing a collision at node 1. Then, node 1
retransmits it for not receiving an ACK, and so on. This continues
until the message expires, as contention o�sets are not changed. . . 86

Figure 33 Network tra�c with random backo�. After each trans-
mission, a random component is added to the contention o�set of
non-ACK transmissions, so that hidden node situations eventually
end. 87

Figure 34 Collisions with sink at the middle with backo�. Nodes
1 and 3 are often occupying the channel at the same time, so that

Node 2 (the sink) has a very small chance of correctly receiving a
message. 88

Figure 35 Collisions with sink at the end with backo� and silence.
After a transmission, a node will not transmit anything for a ran-
domized number of MAC periods. This gives nodes more time to
ACK the messages, and hidden node situations are solved quicker. 89

Figure 36 Collisions with sink at the middle with backo� and si-
lence. At around t=0.7, the periods of silence from nodes 1 and 3
are long enough that node 2 has the chance to correctly receive and
acknowledge the messages. 90

Figure 37 Security component's Peer data structure. 92

Figure 38 Security component's Pending_Key data structure. 92

Figure 39 TSTP ECDH Request message format. 92

Figure 40 TSTP ECDH Response message format. 93

Figure 41 TSTP Auth Request message format. 93

Figure 42 TSTP Auth Granted message format. 93

Figure 43 Analyzing a TSTP pcap trace with Wireshark.. 98

Figure 44 Jitter in Start of Frame Delimiter transmission. 102

Figure 45 Actual o�set from the master before calibration, esti-
mated correction value based on previous observations and its cor-
responding error for Node 1 in Figure 46. 104

Figure 46 Three EPOSMote III devices synchronizing with a fourth.
Messages with timestamp are sent by the synchronizer node every
3 seconds. 104

Figure 47 Three EPOSMote III devices synchronizing with a fourth.
Messages with timestamp are sent by the synchronizer node every
15 seconds. 105

Figure 48 Three EPOSMote III devices synchronizing with a fourth.
Messages with timestamp are sent by the synchronizer node every
30 minutes. 105

Figure 49 Environment monitoring node map. The sink is close to
the middle, marked with an X. 113

Figure 50 Delivery ratio for environment monitoring scenario. Ev-
ery line other than d=60s is constant at 100%. 114

Figure 51 Mean latency for environment monitoring scenario. La-
tency grows linearly with the MAC period, determined by the num-
ber of microframes, until a saturation point is reached (around 90
microframes for d=60s). 114

Figure 52 Focus on mean latency for environment monitoring sce-
nario with p > 60s. It grows linearly with the MAC period, deter-
mined by the number of microframes. 115

Figure 53 Estimated network lifetime for environment monitoring
scenario, for varying transmission power levels (p) and application
data period (d). Growing the number of microframes reduces recep-
tion cost, but increases transmission cost and time. Lifetime grows
proportionally with the number of microframes, until a point where
the network starts to spend more energy transmitting than it saves
on listening. For each data period, this optimum point is identi�ed
with a dashed vertical line. The 7dBm 900s line in the simulation
result reached the maximum number of microframes before reaching
the optimal point. 116

Figure 54 Estimated network lifetime and mean latency for selected
con�gurations close to the optimum point of environment monitor-
ing scenario, p=7dBm, d=60s. The optimum network lifetime point
is identi�ed as 43 microframes. 117

Figure 55 Estimated network lifetime and mean latency for selected
con�gurations close to the optimum point of environment monitor-
ing scenario, p=7dBm, d=300s. The optimum network lifetime
point is identi�ed as 168 microframes. 118

Figure 56 Estimated network lifetime and mean latency for selected
con�gurations close to the optimum point of environment monitor-
ing scenario, p=7dBm, d=600s. The optimum network lifetime
point is identi�ed as 253 microframes. 118

Figure 57 Estimated network lifetime and mean latency for selected
con�gurations close to the optimum point of environment monitor-
ing scenario, p=7dBm, d=900s. The optimum network lifetime
point would be beyond 255 microframes. 119

Figure 58 O�ce LISHA node map. Darker shades indicate higher
data periods. The sink is at the rightmost cluster of nodes, marked
with an X. 121

Figure 59 Delivery ratio for LISHA o�ce scenario. At around 35
microframes, the MAC period gets too large to meet 100% of the
expiries. 122

Figure 60 Delivery ratio for selected con�gurations of LISHA o�ce
scenario. In no con�guration the MAC is able to deliver 100% of the
messages. 21 microframes with p=7dBm is the largest microframe
count where it reliably delivers more than 99.99% of messages in

time. 123

Figure 61 Mean latency for LISHA o�ce scenario. Analytic predic-
tions work better for non-saturated networks. The steep increase
in latency is not observed in the simulations, as the analytic model
does not consider dropping expired messages. 123

Figure 62 Estimated network lifetime for LISHA o�ce scenario.
The optimum point is around 50 to 80 microframes. 124

Figure 63 Estimated network lifetime and mean latency for selected
con�gurations of LISHA o�ce scenario. Before reaching the opti-
mum point, lifetime grows linearly. 125

Figure 64 O�ce SSB node map. Darker shades indicate higher
data periods. The sink is marked with an X. 127

Figure 65 Delivery ratio for SSB o�ce scenario. (a) At 5 mi-
croframes, the MAC contention period is too small, leading to too
many collisions and a drop in delivery ratio. At 10 microframes,
it gets the closest to 100%, and falls from 15 and higher. So the
best con�guration for delivery ratio must be in the interval [6,14]
microframes. (b) The best delivery ratio is at p=7dBm and 6 mi-
croframes. 127

Figure 66 Estimated network lifetime for SSB o�ce scenario. Higher
lifetime can be achieved, but only with a signi�cant decrease in de-
livery ratio. 128

Figure 67 Mean latency for SSB o�ce scenario. At 5 microframes,
the short MAC contention period leads to signi�cantly more colli-
sions and an increase in latency. 128

Figure 68 Delivery ratio for LISHA o�ce scenario, p=7dBm, 21
microframes, varying synchronization period. Comparison between
TSTP (Speculative), and a TSTP version that does not include
timestamps in the header and will only synchronize with explicit
keep alives (Explicit). Higher synchronization periods lead to less
explicit messages, so delivery ratio grows. As the synchronization
period grows, both approaches converge, since there will be fewer
keep alives. 132

Figure 69 Average latency for LISHA o�ce scenario, p=7dBm, 21
microframes, varying synchronization period. Comparison between
TSTP (Speculative), and a TSTP version that does not include
timestamps in the header and will only synchronize with explicit
keep alives (Explicit). Higher synchronization periods leads to less
explicit messages, so mean latency decreases. As the synchroniza-
tion period grows, both variations converge, since there will be fewer

keep alives. 133

Figure 70 Number of explicit synchronization messages for LISHA
o�ce scenario. �Theoretical� is one keep alive per node per syn-
chronization half period. �Explicit� sends more keep alives due to
imperfect channel conditions. �Speculative� sends less because it
uses regular data messages as synchronization messages most of
the time. At periods greater than 140s, Speculative reaches zero
explicit synchronization messages. 134

Figure 71 Average clock error for LISHA o�ce scenario. Clock error
should be inversely proportional to synchronization period. How-
ever, as the synchronization period grows, delivery ratio also grows,
and this indicates that nodes are able to access more synchroniza-
tion messages more often, so clock error is actually lower at higher
synchronization periods. For periods >160s (for Speculative) and
>200s (for Explicit), delivery ratio stabilizes and clock error grows
according to the sync period. 136

Figure 72 Energy consumption compared to theoretical explicit ap-
proach for LISHA o�ce scenario. Theoretical energy gain is calcu-
lated comparing the cost of including timestamps in every message
to the savings in number of explicit synchronization messages. 137

Figure 73 Estimated network lifetime for LISHA o�ce scenario.
The Speculative approach saves energy signi�catively. 138

Figure 74 Delivery ratio for SSB o�ce scenario, with p=7dBm and
6 microframes. Similarly to the LISHA variation, delivery ratio
grows as less synchronization messages are generated. 138

Figure 75 Average latency for SSB o�ce scenario. Similarly to the
LISHA variation, latency decreases as less synchronization messages
are generated. 139

Figure 76 Number of explicit synchronization messages for SSB
o�ce scenario. �Theoretical� is one keep alive per node per half
synchronization period. �Explicit� sends more keep alives due to
imperfect channel conditions. �Speculative� sends less because it
uses regular data messages as synchronization messages most of
the time. At periods greater than 140s, Speculative reaches zero
explicit synchronization messages. 140

Figure 77 Average clock error for SSB o�ce scenario. Clock error
should be inversely proportional to synchronization period. How-
ever, as the synchronization period grows, delivery ratio also grows,
and this indicates that nodes are able to access more synchroniza-
tion messages more often, so clock error is actually lower at higher

synchronization periods. 141

Figure 78 Energy consumption compared to theoretical explicit ap-
proach for SSB o�ce scenario. Theoretical energy gain is calculated
comparing the cost of including timestamps in every message to
the savings in number of explicit synchronization messages. The
theoretical approach quickly outperforms the speculative, which is
still better than �Explicit�, an implementation of the theoretical
approach measured under the same conditions as �Speculative�. . . . 142

Figure 79 Estimated network lifetime for SSB o�ce scenario. Both
approaches show similar results. 143

Figure 80 Number of explicit synchronization messages for envi-
ronment monitoring scenario, p=7dBm, d=60s. �Theoretical� is
one keep alive per node per half synchronization period. �Explicit�
sends more keep alives due to imperfect channel conditions. �Spec-
ulative� sends less because it uses regular data messages as synchro-
nization messages most of the time. 145

Figure 81 Number of explicit synchronization messages for environ-
ment monitoring scenario, p=7dBm, d=600s. 145

Figure 82 Average latency for environment monitoring scenario,
d=60s. Only at synchronization periods of 300s the Explicit ap-
proach reaches a slightly better average. 146

Figure 83 Average latency for environment monitoring scenario,
d=600s. Only at synchronization periods of 3600s the Explicit ap-
proach reaches a slightly better average. 146

Figure 84 Average clock error for environment monitoring scenario,
d=60s. 147

Figure 85 Average clock error for environment monitoring scenario,
d=600s. 148

Figure 86 Energy consumption compared to theoretical explicit ap-
proach for environment monitoring scenario, d=60s. 148

Figure 87 Energy consumption compared to theoretical explicit ap-
proach for environment monitoring scenario, d=600s. 149

Figure 88 Estimated network lifetime for environment monitoring
scenario, d=60s. Only at synchronization periods of 300s the Ex-
plicit approach reaches a slightly better average. 150

Figure 89 Estimated network lifetime for environment monitoring
scenario, d=600s. Only at synchronization periods of 3600s the
Explicit approach reaches a slightly better average. 151

Figure 90 Estimated network lifetime and mean latency for SSB

o�ce scenario under di�erent routing metrics. 154

Figure 91 Fairness index and o�set standard deviation for SSB of-
�ce scenario under di�erent routing metrics. 155

Figure 92 Estimated network lifetime and mean latency for environ-
ment monitoring scenario, d=60s, under di�erent routing metrics. 155

Figure 93 Fairness index and o�set standard deviation for environ-
ment monitoring scenario, d=60s, under di�erent routing metrics. 156

Figure 94 Estimated network lifetime and mean latency for environ-
ment monitoring scenario, d=600s, under di�erent routing metrics.156

Figure 95 Fairness index and o�set standard deviation for environ-
ment monitoring scenario, d=600s, under di�erent routing metrics.157

Figure 96 Average latency for environment monitoring scenario,
d=300s. 177

Figure 97 Number of explicit synchronization messages for environ-
ment monitoring scenario, d=300s. 178

Figure 98 Average clock error for environment monitoring scenario,
d=300s. 178

Figure 99 Energy consumption compared to theoretical explicit ap-
proach for environment monitoring scenario, d=300s. 179

Figure 100Estimated network lifetime for environment monitoring
scenario, d=300s.. 179

Figure 101Average latency for environment monitoring scenario,
d=900s. 180

Figure 102Number of explicit synchronization messages for environ-
ment monitoring scenario, d=900s. 180

Figure 103Average clock error for environment monitoring scenario,
d=900s. 181

Figure 104Energy consumption compared to theoretical explicit ap-
proach for environment monitoring scenario, d=900s. 181

Figure 105Estimated network lifetime for environment monitoring
scenario, d=900s.. 182

Figure 106Estimated network lifetime and mean latency for LISHA
o�ce scenario under di�erent routing metrics. 183

Figure 107Fairness index and o�set standard deviation for LISHA
o�ce scenario under di�erent routing metrics. 184

Figure 108Estimated network lifetime and mean latency for environ-
ment monitoring scenario, d=300s, under di�erent routing metrics.184

Figure 109Fairness index and o�set standard deviation for environ-

ment monitoring scenario, d=300s, under di�erent routing metrics.185

Figure 110Estimated network lifetime and mean latency for environ-
ment monitoring scenario, d=900s, under di�erent routing metrics.185

Figure 111Fairness index and o�set standard deviation for environ-
ment monitoring scenario, d=900s, under di�erent routing metrics.186

List of Tables

Table 1 Main bu�er metadata used by TSTP. 66

Table 2 Spatial scaling codes. 72

Table 3 TSTP message types. 72

Table 4 TSTP Interest modes. 73

Table 5 TSTP Control subtypes. 74

Table 6 Code size (bytes) for TSTP components and other proto-
cols.. 100

Table 7 Assessment of time overhead for bu�er management. 101

Table 8 Analytic model parameters. 106

Table 9 Con�gurations for environment monitoring scenario. 112

Table 10 Selected con�gurations for each environment monitoring
scenario. 120

Table 11 Con�gurations for LISHA o�ce scenario. 121

Table 12 Con�gurations for SSB o�ce scenario. 126

Table 13 Selected con�gurations for each o�ce scenario. 129

Contents

1 INTRODUCTION . 31
1.1 BACKGROUND . 31
1.2 PREVIOUS RELATED WORK BY THE GROUP 34
1.3 OBJECTIVES . 35
1.4 METHODOLOGY . 36
1.5 OVERVIEW . 36
2 TSTP DESIGN . 39
2.1 PRINCIPLES . 39
2.1.1 Application Scenario . 41
2.2 ARCHITECTURE . 41
2.3 POSITION ESTIMATION . 43
2.4 TIME SYNCHRONIZATION . 44
2.5 MAC AND ROUTING . 49
2.5.1 Spatial Distortion . 53
2.5.2 TSTP Greedy Forwarding Algorithm 54
2.6 SECURITY . 56
2.7 SMARTDATA . 59
3 TSTP IMPLEMENTATION . 61
3.1 COMPONENT MODEL . 61
3.1.1 Zero-copy Bu�ers . 63
3.1.2 Metadata . 64
3.1.3 Event Propagation . 65
3.1.4 Active Components . 67
3.1.5 Bootstrapping . 70
3.1.6 Interaction with the API Component 70
3.2 COMMON MESSAGE FORMATS . 71
3.3 POSITION ESTIMATION . 75
3.4 TIME SYNCHRONIZATION . 77
3.4.1 Sources of Synchronization Imprecision 78
3.4.2 SPTP Implementation . 80
3.5 MAC AND ROUTING . 80
3.5.1 Collisions and Hidden Nodes . 84
3.6 SECURITY . 91
3.6.1 Key establishment and management 91
3.7 SMARTDATA . 94
4 TSTP EVALUATION . 95
4.1 TOOLS AND DEBUGGING . 95

4.1.1 MAC State Machine Veri�cation 95
4.1.2 Security Library Veri�cation . 96
4.1.3 Network Tra�c Visualization . 97
4.1.4 Simulation Execution . 97
4.2 EPOSMOTE III EXPERIMENTS . 99
4.2.1 Code Size . 99
4.2.2 Bu�er Management . 100
4.2.2.1 Integrity Control . 101
4.2.3 Time Synchronization . 101
4.3 ANALYTIC MODEL . 106
4.3.1 Limitations . 108
4.4 SIMULATION EXPERIMENTS . 108
4.4.1 Sources of Random Variation . 109
4.4.2 MAC Con�guration . 110
4.4.2.1 Environment Monitoring Scenario . 112
4.4.2.2 LISHA O�ce Scenario . 120
4.4.2.3 SSB O�ce Scenario . 126
4.4.3 Synchronization . 130
4.4.3.1 LISHA O�ce Scenario . 131
4.4.3.2 SSB O�ce Scenario . 137
4.4.3.3 Environment Monitoring Scenario . 144
4.4.4 Routing Metrics . 152
4.4.4.1 Expiry Metric . 152
4.4.4.2 E�ort Metric . 152
4.4.4.3 Evaluation . 153
4.5 EVALUATION SUMMARY . 158
4.6 DISCUSSION . 159
4.6.1 Possibilities for MAC improvements 161
5 CONCLUSION . 165

BIBLIOGRAPHY . 167
APPENDIX A -- Additional simulation results . . . 177
APPENDIX B -- Scienti�c Publications 189

31

1 INTRODUCTION

Wireless Sensor Networks (WSN) have been implemented in
many di�erent forms over the years. Buildings, homes, farms, rivers,
the weather, assembly lines, and many more physical environments,
can all be monitored and sometimes controlled by a wireless network
of cheap computing devices equipped with di�erent sensors and actua-
tors. As these networks get connected to the Internet of Things (IoT),
it is ever more important that they operate trustfully, with carefully-
designed and -implemented domain-oriented Operating Systems and
network protocols. This work evaluates and improves the Trustful
Space-Time Protocol (TSTP) (RESNER; FRÖHLICH, 2015a; RESNER;

ARAUJO; FRÖHLICH, 2017), taking it one step closer to its goal of being
a complete, e�cient solution for IoT-ready WSNs.

1.1 BACKGROUND

The concept of a network of cheap and small devices equipped
with a Microcontroller Unit (MCU), sensors, actuators, and wireless
communication hardware, is �tting to many application scenarios such
as building automation, environment monitoring, industrial coordina-
tion, and several others. Usually these networks have at least one
master node, called sink, towards which data gathered by sensor nodes
is routed and ultimately delivered. When the network supports actu-
ation, often the master node is also in charge of triggering command
messages to actuators across the network.

Each application scenario has its own priorities in relation to net-
work requirements. An unwatched network of battery-powered sensors
monitoring temperature of a remote forest will generate sparse tra�c,
but need to stay operative for a long period of time with a limited power
supply. An industrial assembly-line machine with di�erent coordinated
parts might need reliable and low-latency communication with precise
time synchronization, while having access to mains power supply. An
automated o�ce room might need a more balanced energy/time re-
lation, with some devices such as power-consumption-monitoring out-
lets with access to mains power generating non-critical messages, while
other devices such as alarms or movement sensors are powered by bat-
teries and sparsely generate important messages with a strong time
requirement. These issues bring optimization problems involving many

32

variables for the underlying communication protocol to solve for each
particular network.

Such optimization problems are not the only challenges that
modern WSNs need to consider. In the majority of applications, the
most important concern about the network is the data collected. The
produced data often need to be made available to agents outside the
network (such as domain-expert analysts or arti�cial intelligence) for
analysis, who will guide decisions about the physical system of interest,
or prompt command messages that, from the perspective of the WSN,
come from outside the network. A popular way of making the data
available to sophisticated and well-established pieces of software is to
connect the WSN to the Internet in some way. This can be done either
by using a protocol stack such as TCP/IP to communicate with sensor
nodes directly, or by turning the sink into a gateway between the WSN
and the external world � which often means the Internet. Now, devices
once on isolated networks are part of the Internet of Things (IoT).

The IoT highlights challenges that were present in WSNs from
the beginning, but that can be ignored to a degree in self-con�ned net-
works and systems. Greater attention is brought to communication
security. Messages need to be authenticated, with veri�able integrity,
immune to replays, and sometimes con�dential. Data need to be uni-
versally interpretable in terms of what is being measured, and when
and where each measurement was made. One must have evidence to
believe that the data can be trusted. Enforcing the ful�llment of all of
these additional requirements might take a prohibitive toll on the low-
power WSN devices without careful and optimized Operating System
and network protocol design and implementation.

There is a vast body of work in the literature to ful�ll each of
these requirements. Several physical layers have been proposed, along
with a myriad of medium access and routing protocols (HUANG et al.,
2013; PATIL; BIRADAR, 2012). Such protocols have been made energy-
aware (LONARE; WAHANE, 2013); aggregation and fusion strategies
have been employed (LEVIS et al., 2004); basic infrastructures have been
enriched with location (NIAN; SIVA; POELLABAUER, 2017), timing (DJE-
NOURI; BAGAA, 2016), and security protocols (GRANJAL; MONTEIRO;

SILVA, 2015); operating systems have been designed to support higher-
level abstractions (DIXON et al., 2012), along with large-scale manage-
ment systems built to handle the produced data properly (HULBERT et

al., 2016). Extensive research is also being carried out on cross-layer
optimizations for WSN protocols (MENDES; RODRIGUES, 2011).

WSN applications often require many or all of these features. If

33

the needed functionality is not architecturally granted, often times lay-
ers of heterogeneous, self-contained middleware are added. The added
software comes with an integration cost and often results in unneces-
sary replication of data. A cross-layer protocol design can eliminate
this overhead, save a large number of control messages, and improve
decision making within the protocol by pig-tailing control information
on ordinary data packets and subsequently organizing and sharing that
information with all protocol components.

Cross-layer designs are highly promising for WSN and wireless
communication protocols in general (FU et al., 2014). Duty-cycling pro-
tocols at the Medium Access Control (MAC) level are constantly evolv-
ing (HUANG et al., 2013), and even the earlier designs demonstrated
that devices could operate for a long time o� of a pair of AA bat-
teries (POLASTRE; HILL; CULLER, 2004). Network lifetime can be in-
creased even more with energy-aware routing algorithms (OKAZAKI;
FRÖHLICH, 2012). Hardware implementations of symmetric-key secu-
rity algorithms in WSN devices are getting commonplace due to their
wide adoption (e.g. AES being included in the IEEE 802.15.4 stan-
dard (IEEE. . . , 2011)).

The Trustful Space-Time Protocol aims to be a complete commu-
nication solution for WSN/IoT, combining all of these techniques and
more to fully contemplate the aforementioned requirements. TSTP
is an application-oriented, cross-layer protocol for IoT-ready WSNs
that focuses on e�ciently providing functionality recurrently needed by
such systems: trusted, timed, geo-referenced, SI-compliant data that
is resource-e�ciently delivered to a sink. TSTP grants these func-
tionalities directly to the application in the form of a complete net-
working entity, which allows the design of optimized, synergistic, tight
cooperation of sub-protocols while eliminating the need for additional
heterogeneous software layers. TSTP integrates time synchronization,
spatial localization, security, MAC, routing, and a data-centric API.
The tightly-coupled design is mapped onto a low-overhead, modular
implementation, exploring template metaprogramming techniques to
adapt and combine basic building blocks. An event-driven architecture
that makes use of zero-copy bu�ers and metadata is used to handle
crosscutting concerns.

In this work, TSTP's design is detailed with de�nitions of al-
gorithms, sub-components, and message formats and usage. The im-
plementation of TSTP for a real WSN device is presented in detail.
This implementation is validated through controlled experiments, with
analysis and debug tools, and observation of di�erent real-world de-

34

ployments. The real-world analyses are complemented by simulation
experiments that investigate di�erent and larger-scale scenarios, as well
as more controlled evaluations of speci�c aspects. The analyses allow
�ne-tuning and improvement of di�erent aspects of the protocol for
each scenario.

1.2 PREVIOUS RELATED WORK BY THE GROUP

This masters project was realized at the Software/Hardware In-
tegration Laboratory (LISHA) at the Federal University of Santa Cata-
rina (UFSC). Over the last decades, several research projects have been
conducted in the group under the supervision of professor Antônio Au-
gusto Fröhlich in the topic of IoT and WSN protocols. The present
work is built upon the research of many of these previous works. These
works granted the group the required perspective and experience which
led to the idea of the Trustful Space-Time Protocol. What follows is a
list in chronological order of the main past contributions � with their
main authors � that directly in�uenced the present work and ultimately
made it possible.

• Gilles Pokam (1999): Pioneering work in static metaprogramming
frameworks applied to communication systems;

• Eduardo A. Billo (2002): Application of these techniques on the
implementation of a Bluetooth stack;

• Thiago R. C. Santos (2005): Implementation of a component-
based communication framework, with bu�ers circulating from
one component to the next;

• Lucas F. Wanner (2006): Application of these techniques on an
implementation for WSN devices running EPOS and equipped
with the CC1000 radio communication chip;

• Ricardo Reghelin (2006): Design and implementation of HECOPS,
a decentralized location system for sensor networks using cooper-
ative calibration and heuristics;

• Rafael P. Pires (2008): Evaluation of HECOPS;

• Lucas Torri (2008): Application of the IEEE 1451 standard on
WSN devices running EPOS;

35

• Tiago R. Mück (2009): Design and implementation of a commu-
nication framework for Software-De�ned Radio;

• Rodrigo V. Steiner (2010): Performance evaluation of C-MAC, a
Con�gurable MAC framework, on EPOS;

• Alexandre M. Okazaki (2011): Application of energy-aware Ant-
Colony Optimizations on routing protocols for WSNs;

• Peterson Oliveira (2012): Application of the Precision-Time Pro-
tocol (PTP) on WSN devices running EPOS.

The author would also like to acknowledge the following people
and (some of) their direct contributions to the present work:

• Antônio A. Fröhlich: For the idea and high-level design of TSTP,
as well as the direct work in every step of TSTP's conception,
design, implementation, and documentation;

• Gustavo M. Araujo: For the work and guidance on the initial
port of TSTP for the OMNeT++ simulator and the Castalia
framework;

• Jean E. Martina: For the expert guidance in the security aspects
of the protocol;

• Sérgio A. Soares: For the fruitful early discussions and work on
the concrete protocol-level design of TSTP.

1.3 OBJECTIVES

The main goal of this work is to evaluate the performance of the
Trustful Space-Time Protocol. This is done by achieving the following
speci�c objectives:

• Implement TSTP for WSN hardware and a WSN simulator. The
implementation choices will be documented, with descriptions of
techniques, algorithms, and message formats. It should be ad-
equate to control real-world physical environments with sensors
and actuators, and make the generated data available to higher-
level applications;

• Perform experiments to analyze various aspects of the implemen-
tations. The protocol's behavior in terms of synchronization ac-
curacy, latency, and energy consumption will be characterized for

36

di�erent application scenarios. Implementation overhead will be
measured to justify the employed techniques;

• Optimize parameters and propose changes to improve the proto-
col for each particular scenario based on the results of the analy-
ses.

1.4 METHODOLOGY

TSTP is implemented in two platforms. For most of the perfor-
mance evaluations, the OMNeT++ (OPENSIM, 2017) network simulator
with the Castalia (BOULIS, 2017) framework is used. For real-world ap-
plications and evaluation, TSTP is also implemented on the Embedded
Parallel Operating System (EPOS), for the EPOSMote III platform.
By the time of this writing, several TSTP networks are using this lat-
ter implementation for di�erent applications: a smart room at LISHA;
a smart room at UFSC's Smart Solar Building (SSB); and a network
of hydrologic monitoring stations deployed near UFSC. The use of the
protocol in real-world networks helps �nd problems in the implemen-
tation, as well as validate the adequacy of the protocol's features. All
the data produced by TSTP nodes is encapsulated with the SmartData
API and stored at UFSC's IoT servers (LISHA, 2017).

1.5 OVERVIEW

Chapter 2 presents in detail the cross-layer design of the Trust-
ful Space-Time Protocol. TSTP de�nes a novel way of thinking and
programming WSN: instead of focusing on speci�c devices with id-
iosyncratic sensor/actuator hardware, TSTP proposes to think about
space-time regions with geographic characteristics represented by units
of the International System (SI). Devices in those regions might provide
the ability to sense these characteristics and/or modify them. Space-
time coordinates are used as network addresses for each device, and
therefore algorithms for synchronizing space and time are included in
the protocol. Messages are routed geographically as a result of an in-
teraction between a Router and a low-power Medium Access Control
(MAC) component. Security aspects of the protocol are also presented
in this chapter.

Chapter 3 shows that the tight interactions between TSTP's
cross-layer subcomponents do not have to result in a tightly-coupled,

37

monolithic, or overhead-heavy implementation. This chapter brings a
detailed presentation of the component-based implementation that ex-
plores template metaprogramming techniques to adapt and combine
basic building blocks. An event-driven, subscription-based architec-
ture that makes use of zero-copy, metadata-enriched bu�ers is used to
handle crosscutting concerns.

In Chapter 4, several aspects of the protocol are evaluated using
di�erent approaches. Experiments with real hardware are performed
to evaluate the limits of time synchronization and the correctness of
the MAC state machine implementation. Detailed investigations on
the impact of several parameters of the protocol are performed on a
simulator. This chapter also analyzes the implementation overhead,
both in terms of memory and execution time for signi�cative aspects.

The work is concluded in Chapter 5, with a recapitulation of the
main contributions and �nal remarks.

38

39

2 TSTP DESIGN

Parts of this chapter appeared earlier in:

• Design Rationale of a Cross-layer, Trustful Space-Time Protocol
for Wireless Sensor Networks
(RESNER; FRÖHLICH, 2015a)

• Speculative Precision Time Protocol: submicrosecond clock syn-
chronization for the IoT
(RESNER; FRÖHLICH; WANNER, 2016)

• TSTP MAC: A Foundation for the Trustful Space-Time Protocol
(RESNER; FRÖHLICH, 2016)

• Design and Implementation of a Cross-Layer IoT Protocol
(RESNER; ARAUJO; FRÖHLICH, 2017)

TSTP is composed of a suite of sub-protocols that are intimately
integrated in a cross-layer architecture ranging from the Medium Access
Control layer to the Application layer. This chapter presents the main
insights behind the concept of TSTP. Later, several aspects of protocol
design are explored for the architecture as a whole and speci�cally for
each of the sub-protocols.

2.1 PRINCIPLES

In general, to fully describe the relevant characteristics of a mea-
surement by a sensor, one needs to at least determine precisely where
and when the measurement happened, and what is the quantity be-
ing measured. This information might come indirectly, such as �sen-
sor ABC3217, with address 1.2.3.4, reported the value 0x1234 as its
145th measurement.� One would then look at some table to �gure out
where that device with that address is located and when did its 145th

measurement happen, then lookup the datasheet of sensor ABC3217 to
determine what 0x1234 means. Most infrastructures will re�ne and
translate this information automatically along its way from measure-
ment to delivery at the sink to storage to display, and �nally present
useful information to the end user.

TSTP proposes to express information from the beginning in
terms that make sense in the real world. Every TSTP device is aware

40

of its spatial location, has access to a common source of time, and is
aware of what physical quantities it is working with. A measurement
from a TSTP device would be, at any point, directly interpretable as
�a sensor at coordinates 27◦36'01.5�S 48◦31'06.4�W reported the value
42kg at December 1st 2017, 14:32:01 GMT�. Unix time presents a well-
de�ned and simple way of representing time. Coordinate systems such
as Earth-Centered, Earth-Fixed (ECEF) allow a common representa-
tion of space as a triple of coordinates in relation to the center of the
Earth. The International System (SI) of units de�nes a codi�able way
of representing physical quantities.

Another major design principle of TSTP is to avoid unnecessary
replication of information across the infrastructure. Instead of de�ning
logical addresses to locate devices in the network, TSTP uses Space-
Time itself as a network address. This concept might not be applicable
to networks in general, but in most cases it is natural to WSNs. Ul-
timately, one does not want to know �what value is sensor 1.2.3.4

measuring�, but rather �what is the temperature over there now�. A
direct addressing by space and time allows the network to naturally
route messages geographically, and to eventually detect and drop ex-
pired ones. In this context, traditional network addresses are simply
an indirect way of representing space.

To further reduce unnecessary replication of information, TSTP
leverages the broadcast nature of wireless media to allow nodes to peek
at passing tra�c and speculatively make decisions: when necessary,
nodes will look at timestamps and coordinates in TSTP messages to
passively synchronize their clocks and location. They might cancel
their transmissions by detecting that other nodes transmitted equiva-
lent messages.

As TSTP shifts the focus away from particular sensor nodes and
towards data, it becomes even more important to architecturally pro-
vide the basis for trusting the data. TSTP nodes are able to sign
their messages, so that they have veri�able authenticity, integrity, and
timing. Nodes are made aware of their sensor hardware accuracy and
timing limits, so that they will only respond to data requests when
these parameters match. On the advent of aging, broken, or mali-
cious sensors, TSTP provides architectural support for neighbors of an
untrustworthy node to speculatively detect a mismatch between what
that node says a physical quantity is and what their own sensors are
measuring.

To provide a common notion of Space-Time and ful�ll the re-
quirements of an IoT-ready WSN, TSTP includes algorithms for spa-

41

tial localization, time synchronization, Medium Access Control (MAC),
power management, routing, and security.

2.1.1 Application Scenario

TSTP primarily supports ad-hoc, multihop networks of wireless
devices in which most of the tra�c is delivered to a single destination
(all-to-sink). Network addresses are replaced by spatial coordinates,
such that it bene�ts applications concerned more with gathering data
from a physical environment than with addressing particular network
devices. Examples of such applications are:

1. A network of battery-powered devices periodically gathering tem-
perature information from a large open �eld;

2. A room automation system with network-enabled devices attached
to lamps, outlets, and other sensors and actuators, measuring
power consumption and controlling it by commanding lights and
air conditioning units;

3. An alarm system with di�erent sensors to detect physical intru-
sion in a region, �ring alarms when it does.

TSTP is not aimed towards a range of more traditional Internet
applications. For example:

1. Applications that handle non-spatial-sensitive data, such as generic
�le storage services;

2. Applications that handle one-to-many or many-to-many tra�c of
data, such as video streaming or group messaging;

3. Structured networks mostly concerned with granting high through-
put, such as Internet backbone infrastructure.

2.2 ARCHITECTURE

TSTP is designed as a collaboration of 6 protocol components
that interact with each other: MAC, Router, Timekeeper, Locator,
Security, and API. The Timekeeper is responsible for precise clock

42

synchronization across the network. It currently implements the Spec-
ulative Precision Time Protocol (SPTP) (Section 2.4), but any high-
precision protocol could be used. The Locator is responsible for keep-
ing spatial coordinates up to date, particularly in nodes devoid of a GPS
receiver or for which a static location was not de�ned at deployment-
time. It currently implements the Heuristic Cooperative Calibration
Positioning System (HECOPS) (Section 2.3). The Router imple-
ments a greedy, fully-reactive, geographic routing strategy as it decides
when to forward messages from other nodes and implements metrics
for relay selection used by the MAC (Section 2.5). Security is re-
sponsible for encrypting and/or signing messages, as well as managing
cryptographic keys (Section 2.6). The MAC component manages the
network interface and communication channel, sending and receiving
network packets containing TSTP messages (Section 2.5). The API
handles interactions between the applications and the network through
the protocol (Section 2.7).

Unlike traditional layered architectures, components are designed
to interact with one-another to achieve high performance. For example,
MAC and Timekeeper collaborate to leverage the low-level synchroniza-
tion process necessary for demodulation of radio signals, achieving high-
precision timestamping and clock synchronization. MAC and Router
collaborate to de�ne and apply metrics to select winners in channel
access contention. Locator and Timekeeper help Security assess the
validity of messages and implement sophisticated time-aware security
mechanisms.

To avoid tightly-coupled interactions between component imple-
mentations, TSTP employs a vertical data exchange plane model (FU
et al., 2014), orderly delivering metadata-enriched zero-copy network
bu�ers to each component, as illustrated in Figure 1. Components
share information with each other either by means of metadata at-
tached to each bu�er (which is not transmitted through the network),
or the TSTP message itself (which may be transmitted through the
network) contained in the same bu�er. Bu�ers are further explained in
Section 3.1.1.

To prevent replication of information in TSTP messages, instead
of con�ning each component to its own speci�c header of a message,
the full message contained in a bu�er is accessible to any component.
This way, if more than one component need timing control for mes-
sages (e.g. Timekeeper and API), for example, they can all use the
same time �elds, rather than potentially including the same informa-
tion (directly or indirectly) more than once. To enable routing and

43

 Router Timekeeper

MAC

LocatorSecurity

Buffer

Message

Metadata
Control

API Radio

Figure 1: TSTP component interactions and Bu�er life-cycle.

passive synchronization, the TSTP common message header includes
information about the node that is currently transmitting that mes-
sage, such as its coordinates and the precise transmission time. The
TSTP header is fully presented in Section 3.2.

2.3 POSITION ESTIMATION

The Global Positioning System (GPS) has become the de facto
standard for automatic device localization. Although it is a reliable
solution for outdoor environments, nodes operating indoors generally
can't bene�t from it, and adding GPS receivers to a WSN node in-
curs additional energy and �nancial costs. In mobile wireless networks,
there are several algorithms that allow nodes to estimate their location
with no additional hardware, leveraging characteristics of particular
radio signaling technology, such as the Received Signal Strength Indi-
cation (RSSI) provided by an IEEE 802.15.4 implementation (PIRES;
WANNER; FRÖHLICH, 2008), or the Time Di�erence of Arrival (TDOA)
provided by a UWB transceiver (OLIVEIRA et al., 2012).

Given that nodes can estimate their distances to one another
based on physical layer characteristics and there are anchor nodes in
the network that know their own position, there are many techniques
to determine the position of a given node, such as trilateration and
min-max (NIAN; SIVA; POELLABAUER, 2017). The location of anchor
nodes can be determined equipping a subset of the nodes with GPS
receivers, or simply pre-set if a node is not mobile. This makes anchor
nodes more expensive and/or di�cult to deploy, thus it is generally
desirable to reduce their number.

Regardless of the chosen position estimation algorithm, it will
come with a precision limitation. The Heuristic Environmental Con-

44

sideration Over Positioning System (HECOPS) (REGHELIN; FRÖHLICH,
2006) enriches the localization strategy by establishing a ranking sys-
tem to determine the reliability of each estimated position. It uses
heuristics to mitigate the e�ects of measurement errors (which can be
high, especially in low-cost nodes). Such enrichments reduce the num-
ber of necessary anchor nodes by allowing non-anchor nodes to act as
anchors when their con�dence is high enough.

The original implementation of HECOPS uses RSSI values on
IEEE 802.15.4 devices. Nodes maintain a table of neighbor data con-
taining their alleged coordinates, con�dence, and RSSI-based distance
measurements. Every node periodically broadcasts its table, and the
nodes receiving it can update theirs. With enough data from neighbors,
a node n can estimate its position and its con�dence Cn via trilatera-
tion.

To cope with the irregular nature of RF signals and RSSI (or
any other) measurements, HECOPS de�nes a deviation heuristic value,
which is obtained when two anchor nodes estimate their distance to
each other via RSSI and then compare it to their actual distance (since
their coordinates are known). When a deviation is detected between
nodes A and B, it is heuristically assumed to a�ect every node in the
triangular area tri(A,B), illustrated in Figure 2.

A node's con�dence in its location is determined by Equation 2.1,
selecting the 3 reference nodes in its table with the best con�dence.

Cn =

∑3
i=1(Ci × 0.75 + Ctri(i,n) × 0.25)

3
× 0.8 (2.1)

In TSTP, non-anchor nodes build their position estimation ta-
bles simply by observing the TSTP header of passing messages, which
contain the coordinates and con�dence of the transmitting node. The
implementation of HECOPS in TSTP, realized by the Locator compo-
nent, is presented in Section 3.3.

2.4 TIME SYNCHRONIZATION

Time in computing systems is typically kept by counting cycles
of a piezoelectric crystal oscillator. The frequency of oscillation is de-
termined by the cut, vibration mode (longitudinal, transverse), and the
size of the crystal wafer (ZHOU et al., 2008). Imprecisions and defects
in the manufacturing process therefore lead to a deviation in oscilla-
tion frequency across di�erent parts with the same nominal frequency.

45

We expect the required anchor proportion be as small

as possible, without compromising the results accuracy.

For that reason, the HECOPS allows nodes with estimated

positions to be chosen as landmarks. In order not to let

this characteristic compromise the system’s performance,

HECOPS uses a heuristic scheme that gives a value to the

confidence on location information given by nodes. Each

node, when calculating its position, defines a confidence

value on the result obtained. This value ranks the nodes

that should be chosen by a node that has to estimate its

location.

Confidence calculation is based on the confidence

value of the nodes chosen as landmarks and on the con-

fidence of the nodes used in distance calibration related to

that landmarks. In a scale varying from 0 to 1.0, anchor

nodes have maximum confidence on its position, equal to

1.0. The other nodes have confidence limited by 0.8, given

by equation 2, where Cx is the confidence on position that

is being calculated by a node X, Ci the confidence on each

landmark chosen by X (n in total) and Cix the confidence

of the node that, together with the node i, have defined the

deviation applied to the distance between the nodes i and

X, if any (In Figure 2, Cix would be the confidence on

node B, considering i the node A).

Cx = 0.8×

∑
n

i=1
(Ci × 0.75 + Cix × 0.25)

n
(2)

Location information received from anchors is very

trustworthy. But, if the distance estimation of that node

has been calibrated by another node, the confidence is

even greater. For this reason, the weights of 0.75 and 0.25

were attributed for the confidence on a chosen landmark

and the confidence of the node used to calibrate the dis-

tance between them, respectively. Thus, when a node that

has to estimate its position has already chosen its land-

marks and have the estimated distances to all of them, it’s

enough to apply some method to calculate coordinates,

like lateration or min-max [6].

In the beginning, only anchor nodes know their posi-

tions. They start by broadcasting their identification (ID),

coordinates (x,y) and confidence values (Figure 3(a)). The

nodes that receive this message store the information to-

gether with the RSSI reading. If the receiving node al-

ready knows its position, it calculates the distance and de-

viation between itself and the sending node, and broad-

casts this information (Figure 3(b)). This information is

in turn stored by the nodes who wish estimate their posi-

tions.

ID

x y

Confidence

(a) Position information

message.

IDID BA

AB

ABdistance

deviation

(b) Deviation information

message.

Figure 3. Content of exchanged messages

d
=

dev

RSSI

AC

AB

C

0.5 d
A

C

B

dev AB

AB

Figure 4. Determining if two nodes are in the

same direction, in order to use calibration

When a message with deviation information is received

by a node that doesn’t know its coordinates, it checks if it’s

in the same direction than the transmitter, related to the

third node described in the message. If it is, it calibrates

the RSSI reading of a message sent by that third node with

the deviation.

The checking of a node to discover if it’s in the same

direction of another one related to a sending node is made

according to proximity between them. In Figure 4, the

node C receives a message from B about the deviation be-

tween A and B. So, node C verifies if its distance to node

B is lower than the half of the distance to A. In a positive

case, node C calibrates the RSSI reading of the last mes-

sage received from A with the deviation between A and B.

When these conditions are met, hereinafter we will refer

as the “tri” occurrence.

Position information messages are stored by the nodes

that will estimate its coordinates in a list ordered by the

confidence value. When the list size reaches 3 it’s already

possible to execute the position calculation. The 3 nodes

of the list with greatest confidence in their positions are

chosen as landmarks.

3. Simulations and Evaluation

In order to evaluate the location system implemented

in this work, and to allow tweaking of parameters in the

location algorithm, RSSI measurements were collected in

the field, and stored for offline execution. For this, a wrap-

per was developed to allow running the same code devel-

oped for the sensor platforms with EPOS [7], a deeply-

embedded operating system, and in UNIX workstations.

Through this wrapper, the same code that would run in

a sensor node runs in a thread, and message exchanging

is performed through memory copies, using the data col-

lected in the field.

In order to allow this execution scenario, RSSI mea-

surements were collected between every pair of nodes in

a 3× 3 sensor grid, with nodes 5m apart. These measure-

Figure 2: HECOPS deviation heuristic. A and B are anchor nodes that
detect a deviation between them. C is inside the tri(A,B) area and
compensates for the deviation. Figure from (REGHELIN; FRÖHLICH,
2006)

Furthermore, environmental factors such as temperature, aging, drive
level, power supply noise, and vibration-induced noise also a�ect crystal
stability and accuracy.

The accuracy of a crystal is its o�set from the target nominal fre-
quency, while its stability is the spread of its frequency over time (ZHOU
et al., 2008). Figure 3 shows examples for accuracy and stability sce-
narios for crystal oscillators. Oscillators may be stable and accurate,
stable but inaccurate, instable but accurate on the average, and insta-
ble and inaccurate. Inaccuracy in frequency leads to the fact that two
independent clocks, once synchronized, will drift apart without limit.
Figure 4 shows the clock readings of di�erent EPOSMote III devices
drifting apart over time1.

Improving stability and precision of clocks has been the target of
research and development, including Temperature-Compensated Crys-
tal Oscillators (TCXO), Microcomputer-Compensated Crystal Oscilla-
tors (MCXO), and Oven-Controlled Crystal Oscillators (OCXO), all of
which attempt to compensate for systematic and environmental vari-
ations in oscillators (LEWIS, 1991). These mechanisms come at a cost
in terms of system volume, cost, and energy consumption. A com-
plementary option is the employment of network time synchronization
protocols.

Network time synchronization protocols typically work through

1Readings from CC2538's 32MHz timer with ±40ppm accuracy dedicated to
network software.

46

Time

F
re

qu
en

cy

Actual frequency
Nominal Frequency

(a) Accurate and Stable

Time

F
re

qu
en

cy

Actual frequency
Nominal Frequency

(b) Inaccurate and Stable

Time

F
re

qu
en

cy

Actual frequency
Nominal Frequency

(c) Accurate and Unstable

Time

F
re

qu
en

cy
Actual frequency
Nominal Frequency

(d) Inaccurate and Unstable

Figure 3: Accuracy and Stability of Crystal Oscillators

the exchange of timestamped messages between pairs of nodes (CRIS-
TIAN, 1989). Each message typically contains a local timestamp of the
sender. A series of messages are exchanged to estimate the time o�-
set and drift between a pair of nodes (GUSELLA; ZATTI, 1989). The
most widely used protocol of this kind is the Network Time Proto-
col (NTP) (MILLS, 1991). NTP targets Internet hosts and, due to its
multihop nature, su�ers from constantly varying communication de-
lays between hosts. Typical synchronization accuracy for NTP is on
the order of tens of milliseconds, making it unsuitable for time-critical
sensing and actuation applications.

In the wireless embedded sensing context, the Flooding Time
Synchronization Protocol (FTSP) (MARóTI et al., 2004) is the most
widely cited time synchronization protocol. FTSP aims to synchro-
nize an entire multihop network of wireless nodes to a single root node.
The root node periodically broadcasts time synchronization messages,

47

0 100 200 300 400 500 600

−
40

−
20

0
20

40

Time (s)

O
ffs

et
 v

ar
ia

tio
n

(u
s)

Figure 4: Clock drift of four di�erent EPOSMote III devices in relation
to a �fth. One of the motes (in blue) diverged particularly quick in this
scenario.

each of which contains multiple timestamps. FTSP targets platforms
using radios with software-de�ned medium access control (MAC), and
relies on MAC-level timestamping combined with a characterization of
interrupt handling timing. Each transmitted timestamp is acquired as
close to the physical send event as possible. This combination of pre-
cise interrupt handling timing and multiple timestamps per message
allowed FTSP to achieve a 1-hop synchronization accuracy of ∼1.5 µs.

The introduction of the IEEE 1588 standard (IEEE, 2008), the
Precision Time Protocol (PTP), emphasized the need for high precision,
sub-microsecond synchronization for distributed sensing and control
systems (EIDSON, 2006). Compared to NTP, which uses application-
level timestamping of network packets to account for drift and o�set,
PTP can make use of advanced timestamping capabilities in the net-
work interface hardware in order to reduce the temporal interference
introduced by various layers of software. PTP de�nes a hierarchy of
clocks, in which a grandmaster periodically broadcasts Sync messages,
and other nodes send Delay Request messages which are replied by
higher clocks in the hierarchy, so that each node can measure with high
accuracy both network round-trip time and their own clock o�set.

48

cM(t1), cS(t'1)

Master Slave

cM(t1)

cM(t'2)

cS(t2)

cM(t'2)

sync

delay resp

delay req

Figure 5: Example of clock synchronization with PTP. cM (t1) and
cM (t′2) are transmitted with the sync and delay resp messages, re-
spectively.

To successfully synchronize in time, a node needs to estimate its
clock o�set and frequency drift in relation to a reference clock. Let M
denote a master node with a reference clock and S a slave. Let cM (tm)
represent the value of the timestamp counter of node M at physical
time tm, and cS(t

′
m) denote the value of the timestamp counter of

node S when it receives a message containing cM (tm). By collecting 4
timestamps over the exchange of 3 messages, as illustrated in Figure 5,
a slave node is able to estimate the round-trip time dTX according to
Equation 2.2, and adjust its clock by subtracting the o�set φ given by
Equation 2.3.

dTX =
(cM (t′2)− cS(t2)) + (cS(t

′
1)− cM (t1))

2
(2.2)

φ = cS(t
′
1)− (cM (t1) + dTX) (2.3)

Once the o�set is corrected, node S is ready to estimate its
clock frequency drift in relation to M . After it receives a new message
containing cM (t3), the clock drift is given as:

f̂e =
(cM (t3)− cS(t′3))− (cM (t2)− cS(t′2))

cM (t3)− cM (t2)
(2.4)

The accuracy of this estimation is (SCHMID; DUTTA; SRIVASTAVA,

49

2010):

δQ =
1

(t3 − t2) · fM
(2.5)

where fM is the frequency of the clock of node M . The o�set and
drift estimation should be continually re-estimated, as clocks (especially
the cheap clocks present in most WSN platforms) usually drift semi-
randomly over time.

The set of equations presented allows synchronization even if
both nodes are multiple hops away, and do not make assumptions about
the underlying network2. However, protocols such as FTSP require that
the time dTX that timestamps take to travel from Master to Slave is
predictable with small enough jitter. If that is the case, calculating
clock o�sets become trivial, as Equation 2.3 can be applied simply
by observing one timestamp in the network. By observing a second
timestamp, drift can be estimated according to Equation 2.4.

The Speculative Precision Time Protocol (SPTP), developed and
used in the TSTP context, de�nes that synchronization happens hop-
by-hop, and nodes synchronize their clocks with any other node that is
closer to the sink, which is the ultimate reference. By restricting syn-
chronization to neighboring nodes, leveraging low-level timestamping
by the MAC, and timestamping every message, SPTP estimates dTX

to high precision and allows nodes synchronize their clocks completely
passively, just by observing network tra�c, while keeping synchroniza-
tion accuracy close to the maximum possible o�ered by the hardware
platform. If a node is in a region with too sparse tra�c, it can generate
Keep Alive messages, which carry only the TSTP header and prompt
a response from neighboring nodes to collect synchronization informa-
tion. It can also set a Time Request bit on its messages to trigger
responses from neighbors. Figure 6 shows an example where node A
sends a data message towards the sink, and synchronizes its clock to
node B while its message gets routed. SPTP's implementation is shown
in Section 3.4.

2.5 MAC AND ROUTING

By including spatio-temporal data in every message, TSTP de-
vices are able to localize themselves mostly passively, just by overhear-

2PTP allows �follow up� messages or low-level timestamping to improve synchro-
nization accuracy, but these techniques do not change the fundamentals expressed
in the equations.

50

A B

cB(t1)

cB(t1), cA(t'1)
cB(t2)

m2

m1

C

cB(t2), cA(t'2)

m1

m1

m2

Figure 6: Example of clock synchronization between A and B with
SPTP. Nodes to the right are closer to the sink. m1 and m2 are regular
data messages being routed towards the sink. m2 can also be triggered
by setting the Time Request bit in m1.

ing network tra�c. The overhearing of tra�c is possible because the
wireless medium is inherently broadcast, such that any radio transmis-
sion can be received by any listening device in a certain area3. This
broadcast nature brings problems of sender coordination: if more than
one transmission happens at the same time, they might collide and
destroy one another. Furthermore, radio hardware is relatively power-
hungry in WSN devices, and much energy can be wasted by active
radios listening to the channel when there is no ongoing transmission,
i.e. idle listening (POLASTRE; HILL; CULLER, 2004).

WSN protocols usually de�ne duty cycling techniques to mitigate
this problem: radios are turned on periodically to quickly check the
channel, and then turned o� if no activity is detected. This brings a toll
on senders, however, since they do not know if there will be any receiver
awake at all when they transmit their message. The classic solutions
to this problem are either synchronizing and scheduling transmissions,
or sending long preambles (proportional to the sleep period) before
each message, to make sure that receivers will wake up at some point
during the preamble and detect the transmission. Protocols adopting
this latter solution are categorized as Preamble-Sampling MACs. A
perfect, global synchronization is generally a better approach, but very

3Calibrated with compatible frequency and demodulation parameters, and in a
location and moment where the transmitted signal can arrive with enough strength
and without too much destructive interference.

51

hard to achieve in practice, and can incur large overhead in terms of
control messages. Preamble-sampling is generally much simpler, but
may impose large overhead in the transmission of any message.

B-MAC (POLASTRE; HILL; CULLER, 2004) is a well-known ex-
ample of the Preamble-Sampling approach. Transmitters send a long
continuous preamble and when a receiver detects it, the radio is kept on
until reception of the data. In other protocols, such as MFP (BACHIR
et al., 2006), the continuous preamble is divided into a series of small
frames, called microframes, containing a sequence number which serves
as a countdown to the actual data transmission. This allows receivers
to receive a single microframe, switch o� its radio during transmission
of the remaining microframes, and switch it on again just before the
data frame transmission.

In the Receiver-Based MAC (RB-MAC) (AKHAVAN; WATTEYNE;

AGHVAMI, 2011) protocol, senders transmit data without de�ning a
MAC-layer destination. Preambles consist of microframes that contain
useful information such as countdown to data transmission, sender dis-
tance to sink and payload sequence number. All neighboring nodes
within communication range of the sender sense the channel every S
interval, obtain a microframe and extract the information; then, only
eligible receivers (nodes closer to the �nal destination of the message)
go back to sleep and wake up to receive the data at the time indicated
by the countdown. Nodes that receive the data without error are re-
lay candidates, and start a contention timer based on its own distance
to the destination and possibly other factors (e.g. remaining energy),
which when elapsed will trigger a CCA. The node with the shortest
contention time o�set will sense no channel activity and proceed to
transmit the preamble for S units of time. Other relay candidates will
detect the winner's preamble containing the same sequence number,
drop the data and go back to sleep since the packet is already being
forwarded. Figure 7 illustrates this process. As a consequence of the
way relay candidates are determined, packets are geographically routed
to the �nal destination in a greedy way.

RB-MAC is signi�cantly more resilient to lossy links when com-
pared to sender-based MAC protocols (in which sender nodes keep the
addresses of perceived neighbors and de�ne a speci�c neighbor as re-
ceiver for each message) (STEINER et al., 2013). As the number of
network nodes increases, RB-MAC requires fewer retransmissions, con-
sequently reducing latency and energy consumption (STEINER et al.,
2013).

TSTP MAC is the component responsible for interfacing TSTP

52

Figure 7: Example of an RB-MAC message forwarding. Figure from
(STEINER et al., 2013).

with the network with a special care for energy consumption. It cur-
rently implements the mechanisms of RB-MAC. The contention o�set
δ for a message m at any given node is locally calculated as:

δ(m) =
R− (Dm −D)

R
× S (2.6)

with D representing the current node's distance to the message's desti-
nation, Dm representing the message sender's distance to the destina-
tion, and R representing a network-wide parameter corresponding to
the radio range of the nodes. This equation makes nodes closer to the
destination wake up earlier, normalizes the o�set to the period S (since
nodes only route messages that come from nodes more distant to the
destination � as explained in Section 2.5.2, � it holds that D < Dm),
and ensures that, if the destination is extremely far away, neighboring
nodes (that are at the same discrete point in space in the scale of the
total distance) will still have di�erent o�sets.

Messages being routed are kept on each involved node i in a
queue Qi. Each entry eQ in Qi represents a message m that is sched-
uled for transmission or retransmission. In addition to the message, eQ
also holdsm's Id (extracted from the microframes that preceded it), its
Expiry (extracted from its header), its destination Dst (either a previ-
ously assigned sink or extracted from the payload), and the contention
o�set δ.

TSTP uses RB-MAC's implicit acknowledgment (ACK) to con-
�rm the routing of messages. A node only removes a message from

53

its queue when it expires or when another message with the same Id

is overheard in the network (that is, when another node handles the
forwarding of that message towards its destination). The only case in
which an explicit ACK is used is when the message reaches its �nal
destination: that node must retransmit the same message, just to ac-
knowledge the last forwarder and any neighbors that might still have
that message queued. Since this last ACK has a Last Hop coordinate
identical to the destination, the calculated distance of zero won't be
matched by any other node in the vicinity. The rest of this section
concerns routing aspects integrated in TSTP MAC. Further implemen-
tation details of the MAC are exposed in Section 3.5.

2.5.1 Spatial Distortion

The default distance-based contention o�set δ, given by Equa-
tion 2.6, can be made sensitive to other routing metrics according to
application's needs. For example, it may take into account the re-
maining battery charge or bu�er space of a node to ensure that nodes
in an optimal path are not going to have their batteries depleted too
quickly (OKAZAKI; FRÖHLICH, 2012). To accomplish this, TSTP uses
the notion that those additional metrics distort space. A node run-
ning out of memory or consuming too much energy can stretch space,
increasing its distance to the destination so that other nodes in the
vicinity become more likely to win the contention to retransmit a mes-
sage. Conversely, a node transmitting a message that is close to ex-
piring can shrink space, reducing its distance to the destination and
thus increasing the chances of winning the contention and getting the
message transmitted earlier. Equation 2.7 rede�nes the o�set equation
introducing a distortion coe�cient α ∈ [0, 1]:

δ(m) = α× R− (Dm −D)

R
× S (2.7)

The distortion coe�cient α de�nes how much other metrics in-
�uence the perceived distance, and hence the o�set used for contention.
It may take into account virtually any metric of interest, as long as it
is a real number in the interval [0, 1]. A value of α < 1 decreases δ,
increasing the node's likelihood of winning the contention, while α = 1
takes into account only the node's distance to the destination.

54

2.5.2 TSTP Greedy Forwarding Algorithm

To prevent the distortion coe�cient from causing messages to
be forwarded to an incorrect destination, the TSTP Greedy Forward-
ing Algorithm (Algorithm 1) ensures that all messages that a node
receives and are queued for transmission satisfy the Progress Property:
all messages relayed will make positive spatial progress towards the
destination. This property can be written as ∀j∀i{mji ∈ Qi|Di < Dj},
meaning that each message mji from node j overheard by node i will
be stored in node i's transmission queue Qi if and only if the distance
Di from node i to the message's destination is smaller than the distance
Dj from node j to the same destination.

Algorithm 1 TSTP Greedy Forwarding Algorithm

1: procedure GreedyForward(m)
2: queued← false
3: for each eQ ∈ Qi do

4: if m.id = eQ.id then

5: queued← true
6: if Distance(m.LastHop,m.Dst) > Distance(Here,m.Dst)

then

7: delete m
8: else

9: Qi.remove(eQ)
10: delete m
11: delete eQ
12: end if

13: end if

14: end for

15: if queued = false then

16: if Distance(Here,m.Dst) > Distance(m.LastHop,m.Dst) then
17: delete m
18: else

19: Qi.insert(m)
20: end if

21: end if

22: end procedure

Algorithm 1 handles four possible cases, illustrated in Figure 8:

Case 1 (lines 6, 7) : If a copy of the message m is already queued
and m is coming from a node farther from the destination, then

55

m is a retransmission attempt and can be ignored (the local copy
remains on the queue for later retransmission).

Case 2 (lines 8, 9, 10, 11) : If a copy of m is already queued and m
is coming from a node closer to the destination, then this means
that the message has already made positive progress to the des-
tination. The message m is therefore handled as an acknowledg-
ment, causing the local copy eQ to be removed from Qi.

Case 3 (lines 16, 17) : If m is a new message but came from a node
closer to the destination, then it means that this node (the re-
ceiver) would not make positive progress towards the destination.
The message is ignored.

Case 4 (lines 18, 19) : If m is a new message that came from a
node more distant from the destination, then this node can make
positive progress towards the destination. It stores the message
on its queue and becomes a relay candidate for message m.

m1
Qn

s dn

m1
m2

(a) Case 1: n ignores m1, which was
already in its transmission queue Qn.

m1
m2

Qn

n ds

m1 m1

(b) Case 2: n deletes m1 from its
queue, because s is closer to d.

m1
m2

Qn

n ds

m3 m3

(c) Case 3: n ignores m3, because s
is closer to d.

m3
Qn

s dn

m1
m2
m3

(d) Case 4: n adds m3 to its queue,
because n is closer to d than s is.

Figure 8: Possible cases for Algorithm 1. In each case, node s sends a
message with d as the destination, which is overheard by node n.

The following theorem proves that the Greedy Forwarding Algo-
rithm ensures the Progress Property:

56

Theorem 1. The Greedy Forwarding Algorithm will store in queue Qi

any given incoming messages mji from node j overheard by node i if
and only if Di < Dj.

Proof. The proof is by contradiction. Suppose that ∃i,∃j,∃mji{mji ∈
Qi|Di ≥ Dj} and that every Q is only altered by Algorithm 1. The
message mji must have been included in Qi by Case 4 because it is
the only case that includes messages in the queue. But Case 4 only
includes a given messagemji in Qi ifDi < Dj , and since by assumption
Di ≥ Dj , it is not possible that mji was included in Qi by Case 4.
Therefore, since Case 4 is the only case that could include mji in Qi,
it must be true that mji 6∈ Qi, reaching a contradiction.

The theorem assumes that distances are expressed correctly. Dis-
tances may be incorrect either by deliberate manipulation by a mali-
cious node or by imprecision in the localization algorithm. For the �rst
case, since the router takes as parameter the average radio range R
of the network (Section 2.5), nodes drop messages that allegedly come
from a distance greater than R. Besides preventing undesirable e�ects
of radio range asymmetry, this mechanism results in only nodes one
hop away from the alleged source coordinates of the malicious mes-
sage trying to forward it, and from that point on the message will be
routed correctly. Regarding imprecisions in the localization algorithm,
it may break the theorem at hops where nodes are so close that their
relative positions are inverted. However, this will only ultimately route
the message to an incorrect destination if the locations of all nodes are
consistently and heavily skewed in the wrong direction, which is a very
unlikely situation. In both cases the message can take non-optimal hops
towards the destination, but will only be routed to an incorrect �nal
destination if a large portion of the network is heavily compromised.

2.6 SECURITY

The fact that any properly con�gured radio interface can monitor
or participate in WSN communications is very convenient for attack-
ers. Generally, a secure WSN protocol must consider the principles of
con�dentiality, authenticity and integrity (SUO et al., 2012). AES is a
block cipher that can enable these principles while being suitable to
low-power WSN devices. In fact, AES is a popular option in this do-
main, being included in the IEEE 802.15.4 standard (IEEE. . . , 2011),

57

and many devices come with e�cient hardware-accelerated AES en-
gines.

AES requires symmetric keys to be shared between the commu-
nicating parties, and other strategies and/or algorithms are needed to
solve the key establishment problem. Loading a symmetric key in per-
sistent memory at the sensor device before deployment is the trivial
solution for key establishment. This method is unsuitable to many ap-
plication scenarios, however, since leakage of the pre-loaded key grants
third parties the ability to read all private communication (past and
future), and act as the node with the stolen identity.

The use of Elliptic Curve Cryptography is popular for estab-
lishing shared keys over untrusted channels because of its good pro-
cessing/security trade-o�, making it suitable for resource-constrained
devices. There are many e�cient implementations (LUK et al., 2007)
(KARLOF; SASTRY; WAGNER, 2004) and proposals (HUANG et al., 2003)
(FRÖHLICH; STEINER; RUFINO, 2011) for security schemes in WSN and
IoT, but they usually require either that a third-party acts as a Cer-
ti�cate Agent using a secure, out-of-band channel, or that sensitive
cryptographic information (e.g. a pre-set secret) is pre-loaded in the
sensor node.

TSTP's security strategy, outlined in Figure 9, contrasts by mini-
mizing the pre-deployment e�ort, utilizing unique sensor IDs, synchro-
nized clocks, and time and place of deployment as naturally shared
information between a sensor node and the sink. It takes advantage
of hardware-accelerated AES engines for encryption, key derivation,
and One-Time Passwords (OTP) generation using Poly1305-AES, an
AES-based Message Authentication Code which computes a 16-byte
authenticator of a variable-length message using a 16-byte AES key, a
16-byte additional key, and a 16-byte nonce (BERNSTEIN, 2005).

The protocol assumes synchronized clocks, and timestamps are
truncated to a suitable time window, taking into account the clock
synchronization accuracy. Sensor nodes are assumed to hold a unique
identi�er (ID) known only by them and the sink, and Auth is calculated
independently by both as a one-way hash function of the ID. Each party
also holds an Elliptic Curve Di�e-Hellman (ECDH) public-private key
pair.

Figure 10 illustrates TSTP's security two-way handshake pro-
cess. The �rst step for mutual authentication and key establishment
between a sensor and the sink is a regular ECDH agreement, which
will result in a shared Master Secret Kms. This process is started by
the sink, which sends an ECDH Request message. Upon reception, the

58

Sensor Sink

ECDH

Master
Secret

SPTP

Poly

Time
Stamp

ID

ECDH

Master
Secret

SPTP

DB

Poly

IDs,
Auths

Time
Stamp

Auth OTP AuthOTP

Figure 9: TSTP key bootstrapping overview.

Sink Sensor

ECDH Request

ECDH Response

Auth Granted

Auth Request

Figure 10: TSTP key bootstrapping message exchange.

sensor node sends back an ECDH Response containing its own public
key.

Afterwards, the sensor node calculates a One-Time Password
using the Poly1305-AES algorithm, according to Equation 2.8, where
T is the current truncated timestamp. The calculated OTP is then sent
along with the Auth code to the sink in an Auth Requestmessage. The
OTP proves knowledge of both the sensor's ID and the shared Master
Secret.

OTP = Poly1305(Kms, ID, T) (2.8)

For authentication, the sink fetches on its database the corre-
sponding ID for the received Auth and reproduces the OTP calcula-
tion for every pending Kms, until a match is found � in which case
the matching ID and Kms are tied together, and the sink has evidence

59

that Kms was shared with the only legitimate holder of that particular
ID. The sink proceeds by sending back an Auth Granted message con-
taining the Auth OK code, which is the Auth encrypted under a fresh
OTP. If the sensor node can decrypt this message and �nd its Auth, it
has evidence that Kms was shared with the only other legitimate node
that knows its ID: the sink. From this step on, secure messages are
signed with a MAC, and padded and encrypted with AES using a fresh
OTP as key, assuring data con�dentiality, authenticity, integrity and
temporality.

The implementation of the security mechanisms described is dis-
cussed in Section 3.6.

2.7 SMARTDATA

SmartData was conceived to be the primary (if not the only) ab-
straction used by application programmers to interact with the physical
world on a network of sensors and actuators. A SmartData is a piece of
data enriched with enough metadata to make it self-contained regard-
ing semantics, spatial location, timing, and trustfulness. The semantic
aspects of a piece of SmartData is described using a strategy inspired by
the Transducer Electronic Data Sheets in the IEEE 1451 standard (IN-
STRUMENTATION; SOCIETY", 2007). Each piece of data is tagged with
a 32-bit type identi�er designating either an SI Physical Quantity or
plain digital data. Physical quantities are identi�ed by the correspond-
ing SI Unit as illustrated in Figure 11. Derived SI units are expressed in
terms of SI basic units, as for instance Volt in the Figure. Digital data
are simply classi�ed at this level, with actual encoding being speci�c
to each de�ned class.

The SmartData interface is depicted in Figure 12. Although
straightforward and easy to deploy, this interface encapsulates a com-
plex and powerful mechanism to abstract any sort of sensor and actu-
ator on the network. Instances of SmartData can be created using one
of two constructors: the �rst one is used to abstract local transducers,
while the second is used to create local proxies of remote transducers. In
either case, the binding of a SmartData object with the corresponding
transducer is done via the Transducer class parameter. Every trans-
ducer is supposed to declare a constant named UNIT, initialized follow-
ing the scheme presented in Figure 11. SmartData uses that constant
to personify the corresponding SI quantity. For instance, a SmartData
object instantiated with a transducer specifying K (Kelvin) as UNIT

60

4 444445440N1

03691215182124272931

mol+4 cd+4K+4A+4s+4kg+4m+4rad+4sr+4MNT

M = {0 -> direct, 1 -> 1/U, 2 -> Log(U), 3 -> 1/Log(U)}
N = {0 -> Int32, 1 -> Int64, 2 -> Float32, 3 -> Float64}
T = {0 -> Digital, 1 -> SI}

Bit

4 444454440N1

Length (m)

Mass (kg)

4 444544440N1Time (s)

4 443156440N1Volt (kg.m .s .A)2 -3 -1

Smart Data

unitclass0On-off switch

unitclass0Audio

Figure 11: SmartData SI unit encoding.

+operator Value() : Value
+Smart_Data(region, expiry, period, fuser)
+Smart_Data(dev, expiry, period, mode)

+location(): Coordinates
+time(): Time

Smart_Data

local transducer

remote transducer

defines UNIT

Transducer

+wait()

Figure 12: SmartData interface.

represents the SI quantity Temperature. This SmartData can abstract
either a temperature sensor or an air conditioner (i.e. a temperature
actuator). An accelerometer would be exported as a SmartData repre-
senting the SI quantity Acceleration bound through the SI unit m.s−2.

SmartData instances also interface with TSTP, associating local
instances to Interest messages from the network, and triggering sensor
readings at the appropriate times to produce Response messages.

61

3 TSTP IMPLEMENTATION

Parts of this chapter appeared earlier in:

• Speculative Precision Time Protocol: submicrosecond clock syn-
chronization for the IoT
(RESNER; FRÖHLICH; WANNER, 2016)

• TSTP MAC: A Foundation for the Trustful Space-Time Protocol
(RESNER; FRÖHLICH, 2016)

• Design and Implementation of a Cross-Layer IoT Protocol
(RESNER; ARAUJO; FRÖHLICH, 2017)

A cross-layer protocol design can eliminate a large number of
control messages and improve decision making within the protocol by
pig-tailing control information on ordinary data packets and subse-
quently sharing that information among the components of the pro-
tocol stack. In this chapter, the software architecture that was used
to implement TSTP's cross-layered design on the Embedded Parallel
Operating System (EPOS) (LAB, 2017) avoiding a monolithic, tightly-
coupled software is discussed. Template metaprogramming techniques
are applied to implement a component-based, event-driven architecture
that e�ciently moves messages stored in zero-copy bu�ers enriched with
cross-layer metadata across protocol components at the same time as
it eliminates unnecessary dependencies. The implementation of each
sub-component is also presented in detail.

3.1 COMPONENT MODEL

TSTP is implemented as a collaboration of 6 protocol compo-
nents that interact to implement its cross-layer design: MAC, Router,
Timekeeper, Locator, Security, and API. The Timekeeper is respon-
sible for precise clock synchronization across the network. It currently
implements the Speculative Precision Time Protocol (SPTP) (RESNER;
FRÖHLICH; WANNER, 2016), but any high-precision protocol could be
used. The Locator is responsible for keeping spatial coordinates up
to date, particularly in nodes devoid of a GPS receiver or for which
a static location has not been de�ned at deployment-time. It cur-
rently implements the Heuristic Cooperative Calibration Positioning

62

MAC

Router

Locator

Timekeeper

Security

API

«interface»
Component

ObserverObserved

Radio

Buffer

Protocol, Network

Figure 13: TSTP architecture overview.

System (HECOPS) (REGHELIN; FRÖHLICH, 2006). The Router im-
plements the greedy, fully-reactive, geographic routing used by TSTP
as it de�nes and implements the metrics for relay selection used by the
MAC when forwarding messages (RESNER; ARAUJO; FRÖHLICH, 2016).
Security is responsible for the encryption and authentication of mes-
sages and also for the management of cryptographic keys (RESNER;
FRÖHLICH, 2015b). The MAC component manages the communica-
tion channel, sending and receiving network packets containing TSTP
messages (RESNER; FRÖHLICH, 2016). The API handles interactions
between the applications and the network through the protocol1. Fig-
ure 13 illustrates this architecture.

TSTP messages are stored in zero-copy bu�ers, which aggregate
metadata that is used by the components in the protocol while inter-
acting with each other, avoiding explicit function calls between compo-
nents. Bu�ers circulate protocol elements in a �xed ordering de�ned
around the six component categories. On receiving, bu�ers circulate
from MAC to API, passing by Locator, Timekeeper, Router, and Se-
curity. On sending, they follow the path from the application to API
to MAC in the same order, but with a second visit to the MAC. On
the �rst visit to the bu�er, MAC populates headers, basic metadata,
and takes care of the data provided by the application. The bu�er then
goes through all the components for processing (for example, signing
and encrypting by Security) before returning to MAC for injection into

1Interfaces such as SmartData interact with the API component and are seen as
application by TSTP.

63

the network via the Radio hardware mediator2. This cycle is depicted
in Figure 1, and detailed in Section 3.1.3.

3.1.1 Zero-copy Bu�ers

For the implementation of TSTP, EPOS Zero-Copy Bu�ers (SAN-
TOS; FRÖHLICH, 2005) were extended. These bu�ers were �rst de-
vised aiming at high-throughput, low-latency, low-overhead message
exchange between components, but the resource-constrained scenario
in which many IoT devices operate also requires the memory to be dy-
namically allocated with parsimony. As in the original version, data
structures are kept in a ring bu�er with ownership transfered from one
component to another while hiding unnecessary information. However,
di�erently from the original version, the whole ring bu�er is not allo-
cated at initialization-time. Bu�ers are allocated from an optimized
system's heap on demand. This heap avoids much of the overhead of
application-level heaps by assuming allocations and deallocations at
system-level are never malicious and thus storing all the needed control
information along with the allocated memory chunk.

To receive messages from the network, TSTP allocates a zero-
copy bu�er passing information about the maximum payload size, the
combined size of the non-recurring protocol headers, and the size of
the header that must be repeated in case the underlying network re-
quires fragmentation. Allocation takes place considering the Maximum
Transmission Unit (MTU) of the underlying networks, and the result
is a complex object with methods to access any of the elements in
the message. Indeed, the bu�er is modeled as a parameterized class
that takes both the protocol and the underlying network as parameters
to perform optimized allocations. On IEEE 802.15.4 networks, TSTP
does not require nor allows fragmentation, so the resulting zero-copy
bu�er structure is the one depicted in Figure 14a. Other protocol/net-
work arrangements would use the same interface to handle an object
like the one in Figure 14b. The allocated bu�er is shared with the
network adapter for DMA, and an interrupt is used to signalize that a
new packet has been received3.

2In EPOS, hardware mediators realize interfaces for hardware interaction, ab-
stracting most platform-dependent elements. Similar to device drivers.

3EPOS zero-copy bu�ers support network adapters that can handle multiple
packets asynchronously. In this case, the whole ring bu�er is shared with the
adapter, which has full access to the memory bus and utilizes an atomic, per-
bu�er lock shared with the main processor to synchronize concurrent accesses. This

64

Buffer

Fragment

Metadata

Headers }
Control

network
packet

(a) Bu�er without fragmentation.

Buffer

Fragment

Metadata

Headers }
Control

network
packet

Buffer

Fragment

Control

Headers } network
packet

(b) Bu�er with fragmentation.

Figure 14: EPOS zero-copy bu�er optimized by protocol.

The interrupt trigger by the network adapter is propagated to
upper-level protocol components, driving the protocol's state machine
and eventually reaching the application whenever a valid message is
received. After the components have �nished processing the bu�er,
it is released, causing the allocated memory to return to the system's
heap.

To send packets over the network, TSTP allocates a bu�er pro-
viding information about all headers and the payload just like it does
for receiving. The Radio component allocates and MAC initializes the
bu�er. A pointer to the allocated bu�er moves around the protocol
components, alongside methods to access the data given by the appli-
cation. Each relevant component makes its contributions to the headers
and metadata, the Security component encrypts and signs the message
when necessary, and the bu�er returns to the MAC for injection in the
network.

Code Example 3.1 illustrates the internal process of allocating a
zero-copy bu�er, creating a Keep Alive message on the memory pro-
vided, passing the bu�er throughout the components for marshaling,
and �nally inserting it on the MAC's transmission queue.

3.1.2 Metadata

The zero-copy bu�er parameterized class described above takes
both the protocol and the target network as parameters. In this way,
bu�ers can be extended with additional, protocol-speci�c metadata. In-
stead of sharing their data structures to exchange collected knowledge

medium is the case for most Ethernet adapters on Intel and many ARM platforms,
but it is not used in TSTP for IEEE 802.15.4 to preserve as much memory as
possible free for the application.

65

1 void TSTP::keep_alive() {
2 Bu�er ∗ buf = radio−>alloc(sizeof(TSTP::Keep_Alive));
3 new (buf−>frame()) TSTP::Keep_Alive;
4 marshal(buf);
5 radio−>send(buf);
6 }
7
8 void TSTP::marshal(Bu�er ∗ buf) {
9 locator−>marshal(buf);
10 timekeeper−>marshal(buf);
11 router−>marshal(buf);
12 security−>marshal(buf);
13 }

Code Example 3.1: TSTP message creation example.

about the network, components use the metadata in the bu�er for in-
teraction with each other. In TSTP, the metadata is not transmitted
over the network along with messages. When a message is received at a
node, each component that receives the corresponding bu�er populates
and adjusts speci�c portions of the metadata contained in that bu�er.
Similarly, messages coming from the application are encapsulated in a
bu�er that traverses the protocol from component to component. Both
directions follow a pre-de�ned ordering as shown in Figure 1. The main
metadata currently used in TSTP are shown in Table 1.

Besides metadata, TSTP bu�ers carry 9 bytes of control in-
formation: a one-byte lock, a four-byte owner pointer, and a four-
byte message size counter. Each bu�er also carries 127 bytes for the
IEEE 802.15.4 Protocol Data Unit (PDU), which might be transmit-
ted through the network. The common TSTP header, present in the
PDU, is shown in Section 3.2. Methods to access and interpret the
enclosed message are also provided. Bu�ers specialized to other proto-
cols export a link to other fragments of the same message. As TSTP
bu�ers do not need nor support fragmentation, this is not present in
the TSTP-specialized class, causing no memory overhead.

3.1.3 Event Propagation

Events are propagated through the protocol in two di�erent
�ows: from application to the network, and from network to appli-
cation. On the �rst path, from application to the network, events are

66

Name Set by Used by Meaning
RSSI MAC Locator Signal reception strength

for distance estimation
SFD MAC Timekeeper Time of reception for

clock synchronization
ID MAC MAC Message ID to detect

retransmissions
O�set Router, MAC Contention o�set for

MAC channel access
Destined Locator Router, Whether this message
to me MAC, API is destined to this node
Direction Router Any Whether this message

goes towards the sink
Distance Locator Any This node's distance

to the destination
Sender Locator Router Last hop's distance
distance to the destination
Trusted Security API, Whether the message's

MAC authenticity was veri�ed
Relevant Any MAC Signal the MAC that it

must receive the message
Transmissions MAC MAC Incremented each time the

MAC transmits this bu�er

Table 1: Main bu�er metadata used by TSTP.

implicitly propagated as components are invited to visit a bu�er in a
prede�ned order through the invocation of speci�c methods that col-
laboratively marshal a valid network packet. On the counter�ow, from
the network up to the application, events are propagated using the Ob-
server design pattern (GAMMA et al., 1995). When the network adapter
�nishes copying a packet into a previously allocated bu�er and trig-
gers an interrupt, that interrupt is handled by the Radio mediator and
converted into a noti�cation of an observed object (the Radio). TSTP
protocol components are therefore observers of zero-copy bu�ers, as
illustrated in Figure 13.

Figures 15 and 16 show the sequence diagrams for sending and
receiving messages. Speculative space-time synchronization happens
during the execution of the Timekeeper's and Locator's update meth-
ods. The send method of the API ends by inserting the message in the

67

transmission schedule, which is later consulted by the MAC. As the di-
agrams denote, pointers to bu�ers are requested to the radio with the
allocmethod, and only these pointers are passed through components,
eliminating any copies of memory chunks.

Some network interface controllers feature a relatively large pool
of hardware-accessible memory which is mapped into memory directly
accessible by software. In these cases, the network hardware mediator
might return chunks of this memory as a result of calls to alloc, such
that messages are constructed in-place, never leaving memory areas
that the hardware uses to send messages through the network. Some
other devices, such as EPOSMote III, export a very limited amount
of such memory, so that the radio mediator returns chunks of memory
from a pre-determined region of system memory, and copies it to radio-
accessible memory only when the message is actually transmitted. It
is the responsibility of the radio mediator to manage this hardware-
accessible memory. Whenever the radio mediator runs out of bu�er
memory, alloc returns 0.

3.1.4 Active Components

The main TSTP components are passive, i.e., do not execute in
a dedicated thread and are triggered either by hardware interrupts or
other active components, such as the application.

The MAC does not run in a dedicated thread, but implements
a state machine triggered by a dedicated hardware timer (Section 3.5).
Figure 15 does not end with an actual message transmission, but rather
an enqueue operation on the MAC's transmission schedule. This sched-
ule is consulted by the MAC's state machine when appropriate to actu-
ally transmit the message. The MAC does not execute in a dedicated
thread because it needs to observe very precise timing (Section 3.5),
and scheduling overhead could potentially compromise its correct func-
tioning.

Figure 16 shows that the interrupt handler for received radio
messages reaches all the TSTP components, with a decoupling only
when the Application needs to be noti�ed. This design decision is also
motivated by performance concerns, and components' update meth-
ods can't perform time-consuming computations. When such compu-
tations are needed, they should be decoupled from the critical path
of message processing. For example, for the more expensive key es-
tablishment cryptographic operations, during system initialization the

68

a
llo
c()

a
llo
c()

g
e
t_b

u
ff
e
r()

m
a
rsh

a
l(*b

u
ff
e
r)

*b
u
ff
e
r

*b
u
ff
e
r

cre
a
te
_m

e
ssa

g
e
(*b

u
ff
e
r)

m
a
rsh

a
ll(*b

u
ff
e
r)

m
a
rsh

a
l(*b

u
ff
e
r)

m
a
rsh

a
l(*b

u
ff
e
r)

m
a
rsh

a
l(*b

u
ff
e
r)

m
a
rsh

a
l(*b

u
ff
e
r)

se
n
d
(*b

u
ff
e
r)

se
n
d
(*b

u
ff
e
r)

e
n
q
u
e
u
e
(*b

u
ff
e
r)

A
p
p
lica

tio
n

A
P
I

R
a
d
io

M
A
C

Lo
ca
to
r

Tim
e
ke
e
p
e
r

R
o
u
te
r

S
e
cu
rity

F
igure

15:
Sequence

diagram
for

m
essage

allocation
and

transm
ission.

69

d
a
ta

 r
e
ce

p
ti

o
n
 i
n

te
rr

u
p
t

p
re

_n
o
ti

fy
(*

b
u
ff

e
r)

a
cc

e
p
t

n
o
ti

fy
(*

b
u
ff

e
r)

u
p
d
a
te

(*
b
u
ff

e
r)

sy
n
ch

ro
n
iz

e
(*

b
u
ff

e
r)

a
llo

c(
)

*b
u
ff

e
r2

co
p
y
(*

b
u
ff

e
r,

 *
b
u
ff

e
r2

)

se
n
d
(*

b
u
ff

e
r2

)

u
p
d
a
te

(*
b
u
ff

e
r)

sy
n
ch

ro
n
iz

e
(*

b
u
ff

e
r)

u
p
d
a
te

(*
b
u
ff

e
r)

v
e
ri

fy
_d

e
cr

y
p
t(

*b
u
ff

e
r)

a
lt

u
p
d
a
te

(*
b
u
ff

e
r)

u
p
d
a
te

(*
b
u
ff

e
r)

co
p
y
_m

e
ss

a
g
e
(*

b
u
ff

e
r)

n
o
ti

fy
(c

o
p
ie

d
_m

e
ss

a
g
e
)

a
lt

n
o
ti
fi
e
d

p
o
st

_n
o
ti

fy
(*

b
u
ff

e
r)

fr
e
e
(*

b
u
ff

e
r)

fr
e
e
(*

b
u
ff

e
r)

a
lt

R
a
d
io

[a
cc

e
p
t]

[!
a
cc

e
p
t]

M
A

C
O

b
se

rv
e
d

Lo
ca

to
r

Ti
m

e
ke

e
p
e
r

R
o
u
te

r

[r
e
tr

a
n

sm
it

]

S
e
cu

ri
ty

A
P
I

[b
u
ff

e
r-

>
tr

u
st

e
d
]

A
p
p
lic

a
ti

o
n

F
ig
ur
e
16
:
Se
qu
en
ce

di
ag
ra
m

fo
r
m
es
sa
ge

re
ce
pt
io
n
an
d
pr
oc
es
si
ng
.

70

Security component creates a Key Manager active component (a peri-
odic system thread) to manage cryptographic keys.

Besides the key manager, the other active component instanti-
ated by TSTP is a Lifekeeper. It is a periodic thread that triggers the
execution of TSTP's keep_alive method (Code Example 3.1). At ev-
ery execution of the Timekeeper's update method in which it is able to
synchronize in time, it resets the timer for this thread, so that it only
triggers Keep Alive messages when a pre-de�ned period has passed
with no messages on the network (Section 3.4).

3.1.5 Bootstrapping

To be able to function in the network, TSTP devices must be
synchronized in space and time, and authenticated with the sink. A
device with no notion of space can't route messages. A device with
no common notion of time can't successfully run the authentication
algorithms. Each TSTP component implements a bootstrap method,
which is called in the same order as when marshaling a new bu�er:
Locator, Timekeeper, Router, Security, API. The bootstrap method
is invoked once during initialization of the system, and each component
should register as a Radio observer and block until it is successfully
synchronized. This means that Timekeeper only runs after the device
knows where it is, Security only receives messages after the device is
synchronized in time, and the application will only start receiving data
after all the components are initialized4.

3.1.6 Interaction with the API Component

The API component is realized as a singleton class named TSTP,
containing pointers to all the other components. Applications can ask
the protocol for the node's current location with the TSTP::here()

method, which will be redirected to the Locator. Likewise, the current
time in microseconds is consulted with TSTP::now(), and is redirected
to the Timekeeper. TSTP exports to applications the Interested and
Responsive classes to represent Interests and Response capabilities.
Higher-level APIs such as SmartData leverage these entry-points to

4In fact, since TSTP devices can't function properly without authentication and
a notion of Space-Time, in the EPOS implementation the application's mainmethod
won't even be reached before TSTP is initialized.

71

Header Format
Bits: 3 2 1 2 8 3sb + 64 3sb + 64 0 or 32

 24 - 46
bytes

Time Location Origin Last Hop Location
Version Type

Request
Scale

Con�dence (x,y,z,t) (x,y,z,t) Deviation

Figure 17: TSTP common message Header format.

create powerful and elegant abstractions.

3.2 COMMON MESSAGE FORMATS

The TSTP message header is common to all TSTP messages,
and every protocol component can access, parse, and modify any por-
tion of the message. The TSTP header is shown in Figure 17. To enable
routing and passive synchronization, the header contains information
about the node that is currently transmitting that message: its coor-
dinates and the precise transmission time (Last Hop �elds), and its
con�dence in its own estimations of location (Location Confidence)
and time (Time Request).

Besides characterizing the last node to transmit a message, the
TSTP header characterizes the message itself. The Origin �elds indi-
cate the time and place where the message was generated. The Version
�eld identi�es the TSTP version of the message, which is currently
always set to 4. This �eld is packed �rst and matches the Frame
Type �eld in the Frame Control of IEEE 802.15.4 MAC packets. A
version number above 3 renders TSTP into the reserved frame type
zone (IEEE. . . , 2011), so that TSTP packets will not be erroneously
interpreted by other coexistent IEEE 802.15.4 nodes running di�erent
protocols.

Table 2 shows the meaning of values for the Scale �eld. These
bits de�ne the size of each spatial coordinate (denoted sb) in the corre-
sponding message, as well as a multiplier to be applied. For instance,
with a Scale code 10, each x, y, and z coordinate shall have 16 bits
and represent multiples of 25cm, so a value of x = 3 would represent
75cm. Such scaling makes these �elds adaptable to di�erent applica-
tion scenarios, which may vary from, for instance, monitoring a small
room to a large forest.

The possible values for the message Type �eld are shown in Ta-
ble 3. A sink node announces interest in a physical quantity using
Interest messages. When receiving an Interest message, a sensor
node checks if it is inside the desired region and able to measure the

72

Code Unit Scale Size (bits) Maximum Value

00 cm 50 8 127.5 m
01 cm 1 16 655.3 m
10 cm 25 16 16382.5 m
11 cm 1 32 42949.6 km

Table 2: Spatial scaling codes.

Interest Message
Bits: 192 - 368 4sb + 128 32 2 6 32 32

 57 - 104
bytes

Region
Header

x,y,z,r,t0,t1
Unit Mode Precision Expiry Period

Figure 18: TSTP Interest message format.

requested quantity with the required precision. If so, the Interest is
saved and the node will automatically respond with a Response mes-
sage every Period of time until the Interest expires, gets revoked, or
the node leaves the interested area.

Code Type

00 Interest
01 Response
10 Command
11 Control

Table 3: TSTP message types.

The Interest message (Figure 18) speci�es the space-time Re-
gion in which the Interest is valid (a sphere in space and a time inter-
val), the desired SI Unit encoded according to the SmartData speci�ca-
tion (Section 2.7), the periodicity of responses (Period), and minimum
required Precision. Each measurement that is to be triggered by this
Interest will have an Expiry time associated to it, after which the sink
will consider the data invalid. This Expiry is part of the SmartData
API5, and is used in TSTP only to detect and drop expired messages
while they go through the network. The values of the Mode �eld are
shown in Table 4.

Response messages (Figure 19) carry the SI Unit, detected mea-
surement Error, the data Expiry as informed by the corresponding In-

5In SmartData, applications de�ne expiration times for each piece of SmartData.
This value is used to inform scheduling decisions.

73

Code Type Meaning

00 Single Only one response is desired at each period.
01 All Responses from all sensor nodes are desired

at each period.
10 Revoke Revoke any interests with matching parameters.
11 Unused

Table 4: TSTP Interest modes.

Response Message
Bits: 192 - 368 32 8 32 Variable 128

 65 - 119
bytesHeader Unit Error Expiry Data MAC

Figure 19: TSTP Response message format.

terest, the Data itself, and a Message Authentication Code (MAC). The
SI unit and measurement Error are informed by characteristics of the
physical sensor that measured the data point. These characteristics
are also used to match local sensors to received Interest messages'
Precision and Unit �elds. When necessary, the Security component
pads the data to a size suitable for its cryptographic engine (multiples
of 16 bytes for AES), encrypts the data, and signs it with a MAC.

Command messages (Figure 20) are treated similarly to Interest

messages, and are issued by the sink to trigger action from actuator
nodes. This message type contains the desired Region of actuation,
the SI Unit of the quantity to be acted upon, and a Value to apply
to it. When directed towards speci�c sensor nodes, commands are
encrypted and signed just as Response messages.

Control messages are used for various functions such as cryp-
tographic key establishment or reporting of node capabilities, and all
carry the common control sub-header shown in Figure 21. The possible
Subtypes are shown in Table 5. The Control sub-header has plenty of
room for introduction of new messages as TSTP evolves and incorpo-
rates new features. The �rst four control message types concern secu-
rity key establishment, and their corresponding messages are shown in

Command Message
Bits: 192 - 368 4sb + 128 32 Variable 128

 80 - 114
bytes

Region
Header

x,y,z,r,t0,t1
Unit Value MAC

Figure 20: TSTP Command message format.

74

Control Sub-Header
Bits: 192 - 368 8

 25 - 47
bytesHeader Subtype

Figure 21: TSTP Control sub-header format.

Report Message
Bits: 200 - 376 32 8 1 7

 31 - 53
bytes

Control Epoch
Sub-header

Unit Error
Request

Unused

Figure 22: TSTP Report message format.

Section 3.6.

Value Subtype Value Subtype

0 ECDH Request 4 Report
1 ECDH Response 5 Keep Alive
2 Auth Request 6 Epoch
3 Auth Granted 7 - 255 Unused

Table 5: TSTP Control subtypes.

Keep Alive control messages are �arti�cial� messages, contain-
ing only the Control Sub-header (Figure 21) with Subtype 5. Nodes
may issue Keep Alives when they need to gather data for synchroniza-
tion, but no message went through its neighborhood for some period of
time.

Report control messages are sent to the sink by sensor nodes
after they synchronize and authenticate. The node will send one such
message (exposed in Figure 22) for each transducer it has available,
informing the Unit and Error associated with that device.

Inside the TSTP network, Space-Time is de�ned in relation to
a pre-set reference (usually the sink's coordinates and clock), and the
sink can convert the internal coordinate system to absolute Space-Time
(coordinates relative to the Earth's center, and Unix time in microsec-
onds) when data are to leave the network. In some cases, sensor nodes
need to know the parameters to convert from/to the internal coordi-
nate system (e.g. a node with a GPS receiver needs to convert the
GPS global coordinates to sink-centered coordinates; a sensor node
with a display showing the date needs to convert local time to Unix
time). Sensor nodes with that need will set the Epoch Request bit on
a Report Message, which will trigger a response from the sink in the

75

Epoch Message
Bits: 200 - 376 3sb 64 96

 48 - 79
bytes

Control Destination
Sub-header x,y,z

t0 x0,y0,z0

Figure 23: TSTP Epoch message format.

form of an Epoch control message (Figure 23), containing the absolute
Space-Time coordinates of the center of the network.

3.3 POSITION ESTIMATION

The Locator component will include the node's current posi-
tion and location con�dence in every message it sends. Non-anchor
nodes (with con�dence Cn < 100) maintain a list of the 3 non-collinear
landmarks with the best observed con�dence. A landmark is com-
posed of a coordinate with an associated distance estimation and con-
�dence greater than 80 (using estimated coordinates with low con�-
dence leads to a very quick error propagation (REGHELIN; FRÖHLICH,
2006)). Whenever a message is observed in the network, the receiving
node checks if the message's con�dence value is greater than its least-
con�dent landmark, and if so replaces it, re-calculating its own position
and con�dence.

A lightweight geometry library was implemented for EPOS, which
is used by TSTP to store and parse coordinates, and also to perform 3D
trilateration. The 3D Point parameterized class, depicted in Figure 24,
takes the coordinate type as parameter, and its only data members are
the three coordinates. A Sphere contains a point and a radius. Both
classes are compiled with the packed GCC attribute to make sure that
the compiler will not add memory padding between data members.
This way, coordinates or regions present in TSTP messages (e.g. Fig-
ures 17, 18) are directly interpreted in-place as Point or Sphere, with
no memory overhead. The Coordinate template parameter is a data
type of size according to the Scale used by TSTP, as shown in Table 2.

Variations of HECOPS have been implemented and evaluated us-
ing di�erent techniques for two-dimensional spaces (REGHELIN; FRÖH-
LICH, 2006; PIRES; WANNER; FRÖHLICH, 2008; GRACIOLI et al., 2011),
which is generally not a suitable approximation for many TSTP sce-
narios of interest (e.g. multi-�oor buildings). In the context of the
present work, 3D localization functions were implemented. The Point
class provides functions for performing translations, euclidean distance

76

Distance

Sphere

contains(Point) : bool

Coordinate

Point

x : Coordinate
y : Coordinate
z : Coordinate

operator-(Point) : Distance
operator-=(Point) : Point
operator+(Point) : Point
operator+=(Point) : Point
magnitude() : Distance
trilaterate(Point[3], Distance[3]) : Point

Figure 24: 3D geometry class diagram.

r2r1

r3

p3

p2p1
p4

d

j

i

Figure 25: 3D trilateration for �nding p4's coordinates in a coordi-
nate system relative to p1 and p2, given three known points and their
distances to p4.

calculation, and trilateration, the latter being the most complex.
To �nd an unknown 3D point p4 with trilateration, three known

non-collinear coordinates p1, p2, p3 and their respective distances r1, r2, r3
to the unknown point are needed. If p1 = (0, 0, 0), p2 = (d, 0, 0), and
p3 = (i, j, 0), as illustrated in Figure 25, then the coordinates x4, y4, z4
of p4 are determined by the intersection of three circumferences, ac-
cording to the following equations:

x4 =
r23−r

2
1+d2

2d (3.1)

y4 =
r23−r

2
2+i2+j2

2j − i
jx (3.2)

z4 = ±
√
r23 − x24 − y24 (3.3)

In the case where the known points are not conveniently located
as described, the solution is to build a coordinate system where the

77

conditions are true. To achieve this, four operations must be applied
to the three known points: a translation of p1 to the origin, and three
rotations to make y2 = 0 and z2 = z3 = 0. It is always possible to make
one of the coordinates zero for the three points, because three points
de�ne a plane. The rotation angles are:

θx = arccos(y2)
|p2| , θy = arccos(x2)

|p2| , θz = arccos(y3)
|p3|

where |pn| is the magnitude of point n:

|pn| =
√
x2n + y2n + z2n (3.4)

Translation is done simply by subtracting all x coordinates by
x1, y coordinates by y1, and z coordinates by z1. Using linear alge-
bra techniques, the two rotations are arranged as a single 3x3 matrix
that performs all operations at once when multiplied to a point. The
resulting matrix is:cycz − sysxsz −szcx czsy + szsxcy

szcy + sysxcz czcx szsy − sxczcy
−sycx sx cxcy

where cn = cos(θn), and sn = sin(θn).

After applying the translation and the rotation matrix, Equa-
tions 3.1, 3.2, 3.3 can be applied to �nd the unknown coordinates in
the coordinate system based on p1, p2, p3. Afterwards, to return to the
original coordinate system, the inverse of the presented rotation matrix
must be applied to p4, and then the initial translation must be reversed
by adding the original p1 coordinates to p4.

Translations, distances, magnitudes, and operations in the trans-
formed coordinate system are reasonably simple, being adequate for
WSN devices. The sine, cosine, and arc-cosine functions can be op-
timized with lookup tables at the cost of accuracy. The matrix mul-
tiplications are the most costly operations for WSN devices. Imple-
mentation of a more e�cient algorithm for distance-based 3D localiza-
tion (DOUKHNITCH; SALAMAH; OZEN, 2008) is left as future work.

3.4 TIME SYNCHRONIZATION

The Speculative Precision Time Protocol (SPTP) explores the
protocol's cross-layer architecture to speculatively peek through the

78

timestamps and geographic information present in TSTP headers with
minimal insertion of explicit messages. A combination of low-level
timestamping provided by TSTP's MAC, careful software implementa-
tion leveraging the control granted by EPOS, and deterministic radio
hardware provides the necessary basis for high-accuracy time synchro-
nization.

3.4.1 Sources of Synchronization Imprecision

In the domain of energy-constrained IoT devices, no compensa-
tion mechanism can achieve perfect target frequencies under practical
conditions. The IEEE 802.15.4 standard, for example, has a precision
requirement for devices of ±40ppm, including temperature and aging
variations (MEHTA; PISTER, 2011). Because any two clock sources with
di�ering frequencies will always drift apart, a common measure of time
between two independent systems requires a synchronization mecha-
nism. The synchronization process itself is subject to temporal inac-
curacies and variations. In the case of wireless IoT devices, these vari-
ations arise from the message exchange process itself, which typically
includes the following steps:

1. Signal radio to enter transmission mode

2. Read the local timestamp

3. Copy message to the radio with the timestamp

4. Send Start of Frame Delimiter (SFD)

5. SFD is received

6. Receiver's current timestamp is recorded

The fundamental source of inaccuracy at the time of synchro-
nization is the variation of the time interval (i.e. jitter) from acquiring
the sender's timestamp (step 2) to acquiring the receiver's timestamp
(step 6). If this time was constant and quanti�able, even if very long,
synchronization at the time of reading the timestamp would be perfect.
This is however not the case in the majority of scenarios, since there are
sources of jitter which may come from protocol design, software/hard-
ware implementations, or physical phenomena. In NTP, for example,
the delay is widely variable due to dynamic tra�c and congestion in the
multiple hops between sender and receiver. In single hop scenarios with

79

a shared medium (such as wireless communications), the delay is vari-
able due to medium access and propagation delays. Finally, even hosts
using switched networks with stricter timing guarantees may observe
jitter due to variations in software interrupt handling times.

In IEEE 802.15.4, the quality of timestamps (steps 2 and 6) is
dictated by the standard, which imposes a minimum clock frequency
accuracy requirement. The delay dTX involved in SFD transmission
(steps 4 and 5) comes from software and hardware processing, medium
access, and signal propagation. Software processing can be measured
and made deterministic in many embedded systems. The jitter and
delay in medium access can be accounted for if the lower layers of
the protocol stack are aware of the time synchronization mechanism:
the MAC layer or the hardware itself can time-stamp messages after
medium access, very close to the exact moment when it is to be sent
through the physical medium. Apart from a deterministic time taken
to obtain timestamps right before/after an SFD is sent/received, the
elapsed time between transmission and reception of timestamps is de-
termined by delays provenient from signal propagation and processing
at the physical layer. The former is negligible in the relatively short
distances used in IEEE 802.15.4 links6; the latter is determined by the
particular hardware speci�cation, but mostly by the well-de�ned delays
present in the standard:

sr = 62.5 symbol
ms IEEE 802.15.4 Symbol Rate

tu = 12
sr

= 0.192ms IEEE 802.15.4 Turnaround Time
SPHR = 10symbol PHY header + preamble size
tPHR = 0.160ms PHY header + preamble time

and a more random component between SFD transmission and recep-
tion caused by the process of synchronization between the sender's sig-
nal modulator and the receiver's demodulator that takes place during
the processing of the PHY preamble. Because this is the only compo-
nent with inherent and non-negligible � but bounded � jitter, it deter-
mines the limit for any software time synchronization strategy. This
jitter is experimentally investigated in Section 4.2.3, and found to be
in the order of nanoseconds for the target platform.

6Radio waves on air travel close to the speed of light.

80

3.4.2 SPTP Implementation

Clock synchronization is implemented as a collaboration between
the MAC and Timekeeper components. When a message is about to be
inserted in the network, the MAC temporarily disables CPU interrupts
and performs steps 1 to 4 listed above, including the raw reading of
the device's timestamp counter in the Last Hop(t) �eld of the TSTP
header. Likewise, as soon as an SFD is detected, the MAC is responsible
to note the time of reception7 and attach it to the corresponding bu�er's
metadata. Timekeeper will take these timestamps to adjust the node's
clock according to Equations 2.3, 2.4.

Timekeeper is con�gured at compile-time with a characterization
of the timestamp transmission delay dTX , and the maximum tolerable
period P between two clock adjustments, which is derived from the
clock synchronization accuracy needed by the application (these pa-
rameters are explored in Sections 4.2.3 and 4.4.3). Normally, clock
adjustments run in speculative mode, just by the observation of net-
work tra�c. Whenever the half-life of clock synchronization is reached
(every P/2 units of time that pass without any message being observed
in the network), Timekeeper will send a Keep Alivemessage to prompt
neighbors for timestamps. If P units of time pass with no messages,
Timekeeper enters explicit mode, and will set the Time Request bit
on every message it transmits. Messages with this bit set are not used
by other nodes to synchronize, because it declares that the node send-
ing it is not synchronized. In explicit mode, the node still sends Keep
Alives every period P/2. The node goes back to speculative mode once
it successfully receives enough messages to adjust its clock.

3.5 MAC AND ROUTING

The MAC component interfaces the network with other TSTP
components while implementing a low duty cycle, receiver-based, packe-
tized-preamble-sampling scheme that supports arbitrary metrics for re-
lay selection. Figure 26 shows the activity diagram of TSTP MAC.
The Update Transmission Schedule activity maintains the transmis-
sion queue Qi (Section 2.5), checking for a pending bu�er transmis-
sion. During Contend Channel Check, the node sleeps for a time de-
�ned by the contention o�set Equation 2.7 and checks the channel.

7Some WSN devices such as EPOSMote III provide hardware support for noting
SFD timestamps, and the MAC leverages it when available.

81

Update
Transmission

Schedule

[TX pending]

Contend
Channel Check

Sleep Period

Receive
Microframe

Sleep until
Data

Receive
Data

Transmit
Microframes

Transmit
Data

[Relevant Microframe]

[Channel busy]

[Channel free]

[No Transmission pending]

[No Microframe OR Irrelevant Microframe]

Figure 26: TSTP MAC's activity diagram.

If free, the node proceeds to Transmit Microframes for a full period
S, with strictly de�ned timing explained next. It then proceeds to
Transmit Data, a simple transmission of the queued message. In Sleep
Period, nodes sleep for the prede�ned period S, and during Receive

Microframe they listen to the channel for a time of 2ts+ ti (Figure 27).
If a microframe is received, the node decides whether or not the mes-
sage is relevant. If the message is relevant, the node sleeps until the
time the message arrives (the time is derived from the Count �eld in the
microframe, the known time between microframes ti, and the known
time ts to transmit a single microframe). The Receive Data activity
simply listens until a data message arrives, with a timeout for the case
of interference. When the channel is idle, the MAC will alternate be-
tween Update Transmission Schedule, Sleep Period, and Receive

Microframe. The idle listening duty cycle thus arises from the ad-
justment of the period S spent in Sleep Period as a function of the
(bounded) time spent in Receive Microframe.

Because TSTP MAC deals with very precise and constrained
timing, its states are implemented as interrupt handlers for the Radio
and a dedicated timer. Figure 28 shows a Nondeterministic Finite
Automaton (NFA) for the MAC, referencing the software functions that
implement each activity shown in Figure 26 and the hardware events
that cause state transitions. This NFA was also used to check the
behavior of the MAC state machine during development, as explained
in Section 4.1.

TSTP microframes follow the format depicted in Figure 29. The
All Listen �eld requires all listening nodes to receive a message, even

82

MF MF

ts ts

ti

RX MF

tr

Figure 27: Microframe timing. If tr ≥ 2ts + ti, it is guaranteed that
receiving nodes will have enough listening time to detect and receive
at least one microframe.

Update
Transmission

Schedule

Sleep
Period

ε

Receive
Microframe

Sleep until
Data

Receive
Data

Contend
Channel
Check

Transmit
Microframe

Transmit
Data

ε

ε

ε

t

t ε

t

t

r

t t

r

r

t

t

Figure 28: TSTP MAC implementation's automaton. t transitions
are triggered by timer interrupts, r denotes radio interrupts, and ε
represents a transition that happens without a hardware interrupt (e.g.
a function call at the end of the previous state's function).

83

Microframe Format
Bits: 1 15 8 32 16

 9
bytes

All
Listen

Id Count Distance CRC

Figure 29: TSTP microframe format.

those that wouldn't be candidates to relay it because they are further
away from the destination. It is used for control messages and for mes-
sages whose destination is not a sink and therefore do not follow the
default routing algorithm. The Count �eld is initialized by the sending
node in accordance with S and decremented for each subsequent mi-
croframe until the transmission of the message (after the microframe
with Count = 0). This enables relay candidates to sleep until the time
when the message is sent as long as they have listened to at least one mi-
croframe. The Id �eld is initialized at the origin (i.e. at the node that
e�ectively produced the data) and accompany the message unmodi�ed
across the network until its destination. The purpose of this �eld is to
reduce replication along the route, but not much e�ort is dedicated to
making it unique since the destination has all the information it needs
to detect a duplicate in the message's header (i.e. Origin(x,y,z,t)).
It is currently implemented as a hash of the origin coordinates and
time. The Distance �eld holds the calculated distance between the
transmitting node and the message's destination, and allows listening
nodes to discard a message by listening to a single microframe when
All Listen = 0 and Distance is smaller than the listener's distance
to the sink. CRC is used to discard corrupted microframes.

TSTP MAC takes a toll on senders and on overall latency to
achieve low power consumption at receivers. The time ti between two
consecutive microframes is set to a lower bound de�ned by the underly-
ing communication technology (the IEEE 802.15.4 �turnaround time�),
and the time ts to send a single microframe is �xed and known. To
compensate for clock drifts, TSTP MAC de�nes that the idle listen-
ing duration tr which happens every period S is 2ts + ti (Figure 27).
Therefore, by setting the desired idle listening duty cycle d, the period
S can be determined as follows:

S = ts + (NMF − 1)× (ts + ti) (3.5)

where NMF is the number of microframes to be sent before each mes-

84

MF

ts

2ti + ts

MF

ts

ti ti Data

RX Data

RX DataS

≤ tr

RX MF

S

MF

ts

ti

ti

Sender

Receiver 1

S

≤ tr

RX MF

Receiver 2

Figure 30: TSTP MAC transmission example with NMF = 3. Receiver
2 might wake up late due to clock drift and miss the �rst Microframe,
but it receives the second one if tr ≥ 2ts + ti.

sage:

NMF = 1 +
2ts+ti

d + ti + ts − 1

ti + ts
(3.6)

Figure 30 shows a transmission example with NMF = 3. The
following list shows the values of these parameters for an IEEE 802.15.4
device.

sr = 62.5 symbol
ms IEEE 802.15.4 Symbol Rate

Tu = 12
sr

= 0.192ms IEEE 802.15.4 Turnaround Time
ti ≥ Tu Time between Microframes
SMF = 30symbol Microframe with PHY header size
ts =

SMF

sr
= 0.48ms Time to transmit a Microframe

tr ≥ 1.152ms Microframe listening time

3.5.1 Collisions and Hidden Nodes

Before transmitting any message, a node must sleep for a time
o�set according to a routing metric (Section 2.5.1) bounded by the
MAC period S, then check the channel, and only carry on with trans-
mission in case the channel is detected free. This contention mech-
anism is appropriate to select relay nodes among contenders and to
avoid collisions between neighboring nodes. However, it fails to solve
more complex cases of collisions involving non-neighboring nodes. The
problem is demonstrated analyzing the tra�c captured from a set of

85

0.10 0.15 0.20 0.25
Time (s)

0

1

2

3

4
No

de
 n

um
be

r

Figure 31: Single message routed from node 4 to node 0. Each node
can only reach its immediate neighbors. Red bars represent time spent
sending microframes by the node in the corresponding Y coordinate.
Black bars represent time spent sending data by the node in the corre-
sponding Y coordinate.

simple simulations.
A scenario with 5 nodes on a line topology (each node has one or

two neighbors, with the sink at one extremity) is considered. Figure 31
shows a simple example of a single message being routed from node
4 to node 0 (the sink). The bars on the graph represent TSTP MAC
microframes followed by a TSTP message. Bars are colored according
to the contents of the �rst 2 bytes of each message, which in the case
of microframes contain the message's ID. Each message has an expiry
of 3 seconds, and the MAC preamble is composed of 50 microframes.

Figure 32 illustrates a scenario where the MAC is not able to
deliver the messages in time. In this case, every node generates a
message at the same time, and nodes are con�gured to have perfectly
synchronized clocks. At the mark of 3s, the messages expire and all
nodes stop trying to transmit. This happened because nodes 2 and 0
had a contention o�set too close to each other, so that messages always
collided at node 1, making it unable to detect the acknowledgment from

86

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

1

2

3

4

No
de

 n
um

be
r

Figure 32: Network tra�c with permanent collisions. Di�erent colors
represent messages with a di�erent ID. Shorter red bars represent colli-
sions. All sensor nodes generate messages at t=0, but their contention
o�sets may di�er. At t≥0.5, nodes 1 and 2 are hidden nodes. Node
1 transmits the purple message, which is received by the sink (node
0). Then, the sink ACKs it, but node 2 is transmitting at the same
time, causing a collision at node 1. Then, node 1 retransmits it for not
receiving an ACK, and so on. This continues until the message expires,
as contention o�sets are not changed.

node 0. Similarly, node 2 is under interference from node 3 and cannot
detect that node 1 is forwarding its message.

To solve this kind of permanent collision, a random backo� is
introduced at the MAC: every time it tries to transmit a bu�er, it in-
crements a counter (stored as bu�er metadata) and adds to the bu�er's
o�set a random value with upper bound proportional to that counter.
In case the message is an ACK, it instead subtracts from the o�set.
Figure 33 shows the same example with the random backo� employed.
There are still collisions, but the backo� slowly pushes node 2 back and
lets node 0 acknowledge node 1.

This kind of collision is a classic problem in WSNs, and is known
as the hidden node problem. It happens when two nodes detect a clear

87

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

1

2

3

4

No
de

 n
um

be
r

Figure 33: Network tra�c with random backo�. After each transmis-
sion, a random component is added to the contention o�set of non-ACK
transmissions, so that hidden node situations eventually end.

88

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

1

2

3

4

No
de

 n
um

be
r

Figure 34: Collisions with sink at the middle with backo�. Nodes 1
and 3 are often occupying the channel at the same time, so that Node
2 (the sink) has a very small chance of correctly receiving a message.

channel for being out of range from each other and start a transmission.
However, those messages will collide at a third node within communi-
cation range of both transmitters. The random backo� can make the
nodes desynchronize their transmissions over time to avoid permanent
retries and collisions, but does not completely solve the problem. In
Figure 34, the same setup is considered, except that node 2 is the sink.
In this case where the sink is a hidden node, random backo� was not
enough to deliver the messages in time.

To solve this problem, every node that transmits a non-ACK
message will be prevented from transmitting again for a number of
MAC periods. This gives receivers of the transmitted message a chance
to acknowledge it and forward it out of the hidden node area (POLAS-
TRE; HILL; CULLER, 2004). To implement this, the MAC will keep a
counter of how many times any given bu�er was (re-)transmitted in the
past. Every time it transmits a bu�er that is not an explicit acknowl-
edgment, it increments the counter and will not transmit any message
for a random number of periods between 1 and the counter value. Fig-
ures 35, 36 show that random periods of silence combined with random

89

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

1

2

3

4
No

de
 n

um
be

r

Figure 35: Collisions with sink at the end with backo� and silence.
After a transmission, a node will not transmit anything for a random-
ized number of MAC periods. This gives nodes more time to ACK the
messages, and hidden node situations are solved quicker.

backo�s successfully solve the collisions in the observed cases, decreas-
ing total radio activity time and greatly improving end-to-end delay.

To further reduce the cases of interference, a multichannel tech-
nique is also introduced. All microframes are sent in a pre-determined,
�xed channel, but their corresponding data messages are sent in a
channel determined by the message's ID (which is included in the
microframe). This way, a node may wake up, receive a microframe
correctly, sleep and wake up to receive the data message (in another
channel) successfully, even if another node started transmitting its own
microframes in the meantime, while that node was sleeping (the other
node's microframes would collide with the data message if they were in
the same channel).

90

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

1

2

3

4

No
de

 n
um

be
r

Figure 36: Collisions with sink at the middle with backo� and silence.
At around t=0.7, the periods of silence from nodes 1 and 3 are long
enough that node 2 has the chance to correctly receive and acknowledge
the messages.

91

3.6 SECURITY

As explained in Section 2.6, TSTP's security mechanisms are
based on Elliptic-Curve Di�e Hellman (ECDH) for initial establish-
ment of symmetric keys exchanging two messages: ECDH Request and
ECDH Response. Afterwards, Poly1305-AES is used to combine unique
sensor IDs and synchronized time-stamps for generation of One-Time-
Passwords (OTP) used to authenticate those keys by exchanging two
more messages: Auth Request and Auth Granted. Cryptographic keys
are never used directly, but combined as OTPs which are then used as
AES symmetric keys to sign, verify, encrypt, and decrypt messages.

AES is an attractive cryptographic engine because of the rela-
tively common presence of hardware accelerators for it in WSN devices,
in part due to it being adopted by the IEEE 802.15.4 standard. AES
hardware accelerators are used by the Security component when avail-
able (such as in EPOSMote III), and a software implementation is
provided otherwise (such as in OMNeT++). AES realizes the Cipher
interface, which simply exports an encrypt and a decrypt method
that are used by TSTP. The actual AES implementation to be used
is de�ned at compile-time with static metaprogramming techniques,
incurring no runtime overhead.

To support the ECDH operations, a Bignum library was devel-
oped for EPOS (RESNER, 2014) to implement prime �nite �eld arith-
metics with large numbers. It uses the thin template technique to
provide an elegant and light interface to interact with arbitrary-sized
arrays of �digits�, each digit being a native word of the CPU. The
Bignum library uses the Barrett Reduction algorithm to implement ef-
�cient addition, subtraction, multiplication, and inversion modulo a
large prime number. An ECDH library was developed on top of this
Bignum implementation, with e�cient elliptic-curve point multiplica-
tion using jacobian and a�ne coordinates. TSTP currently works with
a key size of 128 bits.

The Poly1305 implementation uses the Bignum library for its
operations modulo 2130 − 5, and the Cipher for its interaction with
AES, being as e�cient as those implementations.

3.6.1 Key establishment and management

Although TSTP's security mechanism is currently used to es-
tablish end-to-end encryption and authentication between the sink and

92

Peer
-id: Node_ID
-auth: Node_ID
-ms: Master_Secret
-auth_time: Time
-valid: Region

Peer

List*

Figure 37: Security component's Peer data structure.

Pending_Key

List

Pending_Key
-creation: Time
-pk: Public_Key
-ms: Master_Secret
master_secret(): Master_Secret

*

Figure 38: Security component's Pending_Key data structure.

each sensor node independently, its design does not prevent sensor
nodes from acting as masters, or from establishing keys with multiple
masters. The Security component's data structures are implemented
in a way to re�ect that, naturally supporting expansion to group keys,
sensor-to-sensor keys, or multiple sinks, as well as providing a uniform
key management interface for masters and slaves.

The Security component maintains two lists of Peers, which are
called pending_peers and trusted_peers, and a list of pending_keys.
Figures 37, 38 show simpli�ed diagrams of these data structures.

At any time, a master can add Peers to the pending_peers list,
representing a slave node that will eventually try to authenticate with
this master. It initializes the data structure with the ID and Auth of
the slave, and a space-time region in which that node is allowed to
authenticate. Upon insertion of the �rst slave, a master will start a key
management thread, which will periodically examine both lists of peers
to remove expired entries and send ECDH Request messages (Figure 39)
to valid pending peers8.

ECDH Request Message
Bits: 200 - 376 3sb 384

 76 - 107
bytes

Control Destination Public
Sub-header x,y,z Key

Figure 39: TSTP ECDH Request message format.

At bootstrap time, a slave will instantiate a Peer containing its

8The study of appropriate key manager periods and key expiration times are not
in the scope of this work.

93

own ID and Auth, and a space-time region centered at the coordinates
of the master, radius 0, and time equal to the expected lifetime of the
node.

Upon reception of an ECDH public key (either a slave receiving
an ECDH Request message or a master receiving an ECDH Response �
Figure 40), a node will check if there are any pending peers, and if
so, save the public key and the current time in a Pending_Key object
and insert it in the pending_keys list. The public key is only used
to calculate the Master Secret, but the Pending_Key object saves it to
use lazy evaluation, calculating the Master Secret only the �rst time it
is actually accessed (by means of the master_secret method). This
prevents the costly ECDH point multiplication in cases where the up-
coming authentication step fails.

ECDH Response Message
Bits: 200 - 376 384

 73 - 95
bytes

Control Public
Sub-header Key

Figure 40: TSTP ECDH Response message format.

Upon reception of an OTP (either a master receiving an Auth

Request � Figure 41 � or a slave receiving an Auth Granted message �
Figure 42), the node tries each possible pending key/pending peer pair
to generate a matching OTP. Once it does, the Master Secret is copied
to the Peer, its authentication time is registered, that Peer moves to
the trusted_peers list, and the Pending_Key is removed from the
pending_keys list and destroyed.

Auth Request Message
Bits: 200 - 376 128 128

 57 - 79
bytes

Control
Sub-header

Auth OTP

Figure 41: TSTP Auth Request message format.

Auth Granted Message
Bits: 200 - 376 3sb 128

 44 - 75
bytes

Control Destination Auth
Sub-header x,y,z OK

Figure 42: TSTP Auth Granted message format.

The trusted_peers list is checked by the Security component to
�nd the necessary shared secrets to encrypt, decrypt, sign, and verify
each message.

94

3.7 SMARTDATA

The SmartData API is out of scope for the present work. Smart-
Data is seen as �application� by TSTP, and none of the evaluations in
this work consider it. From TSTP's perspective, applications can in-
teract with it using a full implementation of SmartData � such as in
the EPOS implementation, � or a minimalist compatibility layer � such
as in the OMNeT++ implementation.

95

4 TSTP EVALUATION

Parts of this chapter appeared earlier in:

• Speculative Precision Time Protocol: submicrosecond clock syn-
chronization for the IoT
(RESNER; FRÖHLICH; WANNER, 2016)

• Design and Implementation of a Cross-Layer IoT Protocol
(RESNER; ARAUJO; FRÖHLICH, 2017)

The wide range and complexity of TSTP requires a performance
evaluation using di�erent approaches and tools. This chapter tack-
les validation and performance evaluation from di�erent angles: an
implementation for the EPOSMote III platform allows validation of
the protocol in real-world deployments, as well as measurements that
are heavily in�uenced by environment or hardware conditions (such as
time synchronization); a simulator implementation allows debugging
in a controlled environment, as well as analysis of arbitrary statistics
from a wider range of deployments and parameter combinations; an
analytic model of network behavior is developed and its predictions
are compared against simulation results; code overhead is analyzed for
both the simulator and real-world implementations; trace visualization,
code pro�ling, and other tools are used to help debug and optimize im-
plementations.

4.1 TOOLS AND DEBUGGING

The distributed nature of WSNs, combined with the hardware
constraints of the devices involved, results in a development environ-
ment that can be challenging to test and debug. A series of tools were
used and developed to help this process. This section brie�y presents
these tools, as well as the steps taken to make simulations run faster.

4.1.1 MAC State Machine Veri�cation

To verify the state transitions of the MAC, the code was instru-
mented during development to indicate, by printing speci�c characters
on the screen, whenever a MAC timer or radio hardware interrupt

96

happens, and whenever a MAC state is entered (Section 3.5). These
execution traces are processed by a separate C++ program which im-
plements an NFA with the same structure as the MAC's (Figure 28)
and checks whether any state violation is found. This process is spe-
cially important for the EPOS implementation because EPOS allows
Interrupt Service Routines (ISR) to be preempted. ISR preemption be-
comes more likely to occur as the MAC deals with events that happen
close to each other in time. The check of execution traces produces
evidence that there is no unintended preemption of handlers that leads
to inconsistent state transitions.

4.1.2 Security Library Veri�cation

For verifying the big integer library used in security (Section 3.6),
an EPOS application was developed that generates random numbers
and operations, operates them, and prints the numbers, operation, and
result with Python list syntax. Then a Python program (which natu-
rally supports big integer arithmetics) parses the outputs, reproduces
the operation, and checks the results, reporting any errors at the end.
A sample EPOS output is shown below.

Bignum Utility Test
sizeof (Bignum<16>) = 16 bytes.
sizeof (Bignum<16>::Digit) = 4 bytes.
Random seed = 12345
Modulo = [4294967294, 4294967295, 4294967295, 4294967293] +1
a = [229283573, 3596950572, 2802067423, 3554416254]
b = [2941955441, 3441282840, 1051550459, 3256818826]
a + b = [3171239015, 2743266116, 3853617883, 2516267786]
a = [3490719589, 1157490780, 3144468175, 3866696494]
b = [2103497953, 1538207304, 1511588075, 2684337210]
a ∗ b = [180798668, 400923757, 2054889077, 1345744013]

The Elliptic Curve Di�e-Hellman library is tested with an appli-
cation that generates many random public-private key pairs, operates
them, and checks whether the resulting shared keys match. Poly1305-
AES signatures are tested against known vectors (BERNSTEIN, 2005), as
well as rounds of signing random messages and verifying the signature,
then verifying with wrong parameters.

97

4.1.3 Network Tra�c Visualization

Network traces are useful to verify message formats, timings,
and general network behavior. The packet capture (pcap) �le format
provides a popular and simple syntax for storing network tra�c traces,
which can be parsed by high-level visualization tools such as Wireshark.
A simple C++ pcap formatting library was written for EPOS such
that a sni�er node can capture tra�c without any interference on the
observed network. The library was also included in the OMNeT++
code and can be used in the simulations to capture all the generated
tra�c.

A Wireshark plugin was written to enable it to parse TSTP traf-
�c. The pcap header indicates that tra�c type is IEEE 802.15.4, so
that Wireshark loads the appropriate dissector. The IEEE 802.15.4
dissector was modi�ed to identify any 9-byte packet as a TSTP mi-
croframe (9 bytes is not an allowed IEEE 802.15.4 frame size), and
any packet with size greater than 9 and a reserved Frame Type as a
TSTP message. In these cases, it calls the TSTP dissector for further
processing. Figure 43 shows a sample Wireshark session.

4.1.4 Simulation Execution

Thousands of simulation experiments were performed in the con-
text of the present work, many of which took hours to complete, justify-
ing e�orts towards code optimization and e�cient usage of computing
resources. As simulations are numerous, independent, and CPU-bound,
a suite of scripts was developed to execute them in parallel, each as a
separate Linux process. The scripts deploy the simulations to a 36-
core Amazon AWS virtual machine, spawning 36 Linux processes and
reporting 100% usage on all CPUs. Simulation runs are randomly as-
signed to each CPU to avoid particularly long combinations of runs.

Parallelism is not explored within simulation runs, as it would be
a more complex task with risks of introducing errors. Instead, to opti-
mize individual runs, a sample simulation was pro�led using Valgrind's
callgrind tool, with kcachegrind for visualization. kcachegrind

showed that a signi�cant portion of time was spent in Castalia's trace
generation methods, even when traces were disabled. A pre-compiler
macro was added to allow a more aggressive compile-time removal of
these methods when they are not desired, and run times were signi�-
cantly reduced.

98

Figure 43: Analyzing a TSTP pcap trace with Wireshark.

99

4.2 EPOSMOTE III EXPERIMENTS

Two implementations of TSTP are analyzed in this chapter. At
�rst, TSTP was implemented in C++ for the EPOS Operating System
and the EPOSMote III platform, an IoT device based on Texas In-
strument's CC2538 System-on-Chip with an IEEE 802.15.4 radio and
ARM Cortex-M3 processor at 32MHz.

TSTP's component-based implementation and a programming
language compatibility allowed it to be ported from EPOS to the OM-
NeT++ simulator with the Castalia framework without many changes:
mostly rewriting EPOS' network interface mediator to handle Castalia's
Radio framework, and the TSTP API component's noti�cation method
to interact with Castalia's application layer1. As a result, the simulator
framework implements a very detailed model of a real TSTP network,
with simulated network devices running code very similar to what is
run on real EPOSMote III devices.

Castalia code was compiled on/for an Intel Core i5-2320 CPU,
with g++ version 4.8.5-2ubuntu1 14.04.1 on an x86_64 Ubuntu 14.04
Linux Operating System. EPOS code was cross-compiled on the same
host machine with g++ version 4.4.4 for the ARM Cortex-M3 proces-
sor. By the time of this writing, all the source code is freely available
at https://epos.lisha.ufsc.br.

4.2.1 Code Size

Table 6 shows the resulting compiled code size for each protocol
component. It shows EPOS' and Castalia's implementations of each
TSTP component, compared with two third-party implementations of
the AODV protocol, a simple implementation of IEEE 802.15.4 unslot-
ted CSMA/CA MAC for Castalia and EPOS, and BypassRouting, a
very simple network layer in Castalia that forwards messages directly
between the MAC and application layers. The full TSTP implementa-
tions comprising all of the components achieve a code size close to the
AODV implementations, which only provide routing.

1A few other technical changes were necessary, such as the removal of static
methods and class attributes, which in Castalia are shared across every node in the
simulated network.

https://epos.lisha.ufsc.br

100

Component Castalia code size EPOS code size
Timekeeper 1721 3728
Locator 2687 3048
Router 3134 3606
MAC 4873 7644
API 9936 7434

Security 11148 8322
Total 33499 33782

BypassRouting 1196 -
802.15.4 MAC 5534 3546

AODV 1 29567 -
AODV 2 34513 -

Table 6: Code size (bytes) for TSTP components and other protocols.

4.2.2 Bu�er Management

As explained in Section 3.1.1, TSTP uses a relatively simple
version of EPOS' zero-copy bu�er and a system heap to allocate bu�ers
e�ciently. Apart from TSTP metadata and the IEEE 802.15.4 PDU,
the bu�er uses a one-byte lock, a four-byte owner pointer, and a four-
byte size counter as control information, summing up to 9 bytes of
overhead.

The time overhead for allocation of bu�ers was measured on two
EPOSMote III devices running TSTP, one acting as a sink and the other
as a sensor node. The two nodes allocated a total of 260548 bu�ers,
taking on average 2.31µs for each allocation. For the experiments in
this section, hardware interrupts were disabled during the execution of
the code parts being assessed.

The mechanism for propagating received bu�ers throughout the
components explained in Section 3.1.3 was evaluated on the same EPOS-
Mote III devices. The time a bu�er enters and leaves each component
was recorded to �nd the propagation overhead in relation to the total
processing time. For 278800 measurements, the average time for each
bu�er to leave the MAC, be processed by the other components, and
return to the MAC (as depicted in Figure 1) was 108.57µs. From this
time, on average 12.60µs were spent between the end of a component's
update method and the start of the next, accounting for the overhead
of the noti�cation mechanism itself, which represented 11.60% of the
total bu�er processing time. Table 7 summarizes these measurements.

101

Bu�ers allocated 260548
Avg. bu�er allocation time 2.31µs
Received bu�ers processed 278800
Avg. bu�er processing time 108.57µs

Avg. notify time 12.60µs
Notify time / processing time 11.60%

Table 7: Assessment of time overhead for bu�er management.

4.2.2.1 Integrity Control

Since every component has access to the full message data and
metadata, it is not easy to guarantee that components will not change
pieces of information that other components may use in another way.
There is no intra-node integrity control in the current implementation of
the zero-copy bu�er. Besides added overhead, it is not straightforward
to enforce integrity, because one of the design goals for the current
implementation is to keep the components free to use and modify any
information, as well as make it easier to try new, previously unexpected
subcomponents. The only form of control currently implemented is
the well-de�ned order in which the components' methods for handling
bu�ers are called, as illustrated in Figure 1.

4.2.3 Time Synchronization

The following experiments investigate the limits of time syn-
chronization obtainable in the physical platform. As explained in Sec-
tion 3.4.1, the jitter in timestamp processing de�nes the limits of clock
synchronization for a given implementation, and arises from the elapsed
time in the following steps:

1. Signal radio to enter transmission mode

2. Read the local timestamp

3. Copy message to the radio with the timestamp

4. Send Start of Frame Delimiter (SFD)

5. SFD is received

6. Receiver's current timestamp is recorded

102

●

●

●

●

Node 1 Node 2

3.
05

3.
10

3.
15

3.
20

S
F

D
 d

el
ay

 (
us

)

Figure 44: Jitter in Start of Frame Delimiter transmission.

SCHMID; DUTTA; SRIVASTAVA determined the SFD jitter (steps
4 and 5) on the CC2420 platform by measuring the time between the
hardware SFD signal (exported by the platform as GPIO) at the sender
and at the receiver, and reported that 95% of measurements fell within
an interval of 160ns (SCHMID; DUTTA; SRIVASTAVA, 2010). For the
present work, this experiment was replicated on the EPOSMote III
platform. In the setup, one node transmits messages periodically and
two other nodes listen. The nodes were positioned close to each other
(less than 30cm away) with no obstacles in between. The SFD signals
(also exported by the platform as GPIO) are observed at each of the
three nodes with an oscilloscope and their time di�erences are noted.
The delays observed range from 3.038µs to 3.225µs, representing an
interval of 187ns (Figure 44). Using the average value of 3.1315µs,
the maximum unpredictable variation of the actual delay for a given
transmission is 93.5ns. This number represents the hardware-imposed
limit a synchronization protocol can consistently get at the instant of
clock o�set determination between two nodes.

Acquiring timestamps close to SFD transmission and reception
times requires precise control and predictability in the software stack.
In general-purpose systems such as Linux, the wide variability in I/O
and interrupt handling timing makes it virtually impossible to accu-
rately quantify the time between these two operations, and hence im-
plementations of protocols such as PTP require hardware timestamping
for high-precision synchronization. With hardware timestamping, the

103

network interface itself acquires a timestamp as soon as SFD or equiv-
alent frame delimiters are sent or received. In this work, by disabling
interrupts during the short period between message timestamping and
transmission and using only deterministic software instructions during
this time, the processing delay is accurately compensated. The time
from the start of step 1 (�Signal radio to enter transmission mode�) to
the end of step 4 (�Send Start of Frame Delimiter�) was measured with
an oscilloscope over several runs of the implementation in question, and
it is 352.17µs, 170ns above the IEEE 802.15.4 expected time for the
radio to get ready and send the physical layer headers (tu + tPHR),
with a detected jitter equal to the oscilloscope's own period (5ns). The
radio hardware itself records timestamps of received messages, and so
the delay between SFD reception and timestamp recording (steps 5
and 6) is considered to be zero. Therefore, the combination of low-level
timestamping provided by TSTP's MAC, careful software implementa-
tion leveraging the control granted by EPOS, and deterministic radio
hardware successfully provides the necessary basis for a high-accuracy
time synchronization protocol.

To evaluate the performance of the time synchronization algo-
rithm, four motes were set up in a star topology distributed in positions
similar to the previous experiment. Three motes are receivers and one
is a transmitter, which sends timestamps at a constant interval of 3
seconds (Figure 46), 15 seconds (Figure 47), or 30 minutes (Figure 48).
Each receiver node listens to every message and independently syn-
chronizes with the transmitter. When a message arrives at time ti,
the receiver �rst gets cN (t′i) (Section 2.4) without any o�set correction,
then calculates ĉN (ti) as an estimation with its previous calibration
variables of what the value of cN (ti) is going to be after instant o�set
determination. It then calculates its immediate o�set from the sender
(Equation 2.3), updates its clock drift estimation (Equation 2.4), cal-
culates cN (ti) taking into account the calibration just performed, and
gets the error as cN (ti) − ĉN (ti). Figure 45 compares the instant o�-
set at the moment of message reception with the previously estimated
correction values during execution of Node 1 in Figure 46. The error
is the di�erence between the two. In Figures 46, 47, 48, only the error
and instant o�set values are shown.

More than achieving a sub-microsecond instant synchronization
per-hop close to the physical limit that is comparable to high-precision
protocols such as PTP, the results show that on a network with tra�c of
one message every three seconds, SPTP keeps the network synchronized
to sub-microsecond accuracy at all times without insertion of any extra

104

−
10

0
−

50
0

50
10

0

Running time (s)

O
ffs

et
 (

us
)

0 30 60 90 120 150 180 210 240 270 300 330 360

Actual offset
Estimated correction
Error

Figure 45: Actual o�set from the master before calibration, estimated
correction value based on previous observations and its corresponding
error for Node 1 in Figure 46.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Running time (s)

O
ffs

et
 (

us
)

0 27 54 81 108 144 180 216 252 288 324 360

Node 1 offset
Node 2 offset
Node 3 offset

(a) Clock o�sets for each node in rela-
tion to the master before calibration.

−
0.

5
0.

0
0.

5
1.

0

Running time (s)

E
rr

or
 (

us
)

0 27 54 81 108 144 180 216 252 288 324 360

Node 1 estimation error
Node 2 estimation error
Node 3 estimation error

(b) Error in the clock o�set for each
node after calibration using a previous
estimation of clock drift.

Figure 46: Three EPOSMote III devices synchronizing with a fourth.
Messages with timestamp are sent by the synchronizer node every 3
seconds.

105

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Running time (s)

O
ffs

et
 (

us
)

0 2250 4500 6750 9000 11250 13500

Node 1 offset
Node 2 offset
Node 3 offset

(a) Clock o�sets for each node in rela-
tion to the master before calibration.

−
5

0
5

10
15

Running time (s)

E
rr

or
 (

us
)

0 2250 4500 6750 9000 11250 13500

Node 1 estimation error
Node 2 estimation error
Node 3 estimation error

(b) Error in the clock o�set for each
node after calibration using a previous
estimation of clock drift.

Figure 47: Three EPOSMote III devices synchronizing with a fourth.
Messages with timestamp are sent by the synchronizer node every 15
seconds.

0
50

0
10

00
15

00
20

00

Running time (min)

O
ffs

et
 (

m
s)

0 300 600 900 1500 2100 2700 3300

Node 1 offset
Node 2 offset
Node 3 offset

(a) Clock o�sets for each node in rela-
tion to the master before calibration.

−
20

0
−

10
0

0
10

0
20

0
30

0

Running time (minutes)

E
rr

or
 (

us
)

0 300 600 900 1500 2100 2700 3300

Node 1 estimation error
Node 2 estimation error
Node 3 estimation error

(b) Error in the clock o�set for each
node after calibration using a previous
estimation of clock drift.

Figure 48: Three EPOSMote III devices synchronizing with a fourth.
Messages with timestamp are sent by the synchronizer node every 30
minutes.

106

η Average number of non-sink neighbors each node has
H Average number of hops between each node and the sink
λ Data generation rate of the whole network
S MAC contention period

Table 8: Analytic model parameters.

message (while PTP, for instance, requires at least 3 explicit synchro-
nization messages). This accuracy gets worse as tra�c becomes more
sparse, reaching observed worst cases of almost 15µs with a message
period of 15 seconds, and around 300µs for 30 minutes.

4.3 ANALYTIC MODEL

The development of an analytic model to predict network be-
havior under di�erent con�gurations serves several purposes: it helps
understand the way that di�erent factors contribute to di�erent met-
rics of interest such as average latency or network lifetime; it aids the
deployment of new networks, or new sensors on a network, by quickly
predicting whether a network with given topology and average data rate
will be saturated or close to saturated; it also helps validate the sim-
ulator and real-world implementations by comparing their predicted,
simulated, or observed behaviors. When used as a network design tool,
the analytic model is not meant to be as complex and accurate as the
simulator, but much easier and faster to use, providing preliminary
insight to designers of new networks.

The whole network is modeled as an M/M/1 queue, which rep-
resents a system with a single server, where events arrive according
to a Poisson process and job service times have an exponential distri-
bution. Events represent sensor readings that trigger application data
messages, and the job service time denotes the total latency between
data creation at a sensor node, routing through the network, and ac-
knowledgment by the sink. An M/M/1 queue takes as parameters the
arrival rate λ and the mean service rate µ.

The proposed model takes 4 parameters, shown in Table 8. The
arrival rate is taken directly as a parameter, and the other three serve
to de�ne the mean service rate µ as the average rate at which TSTP can
deliver end-to-end messages, considering aspects of topology, collisions,
and MAC con�guration.

Before sending a message, TSTP MAC determines that a node

107

must pick a time interval called o�set bounded by the contention period
S, wait for that time, start clear channel assessment, and proceed to
transmit the message only if no channel activity is detected. The time
to send a one-hop message that does not cause collisions is given by
Equation 4.1, assuming that the average o�set is half the contention
period, CCA takes TCCA time, data transmission takes Td time, and
the MAC preamble takes S time.

T1 = (1.5× S) + TCCA + Td (4.1)

A contention slot is de�ned as the minimum time di�erence nec-
essary between two nodes starting CCA so that one of them will detect
the subsequent transmission by the other. In IEEE 802.15.4, it is 160µs.
Given that contention periods are composed of Cs contention slots, that
o�sets are chosen at random, and that there are n contending nodes,
the probability of any two contenders colliding is determined as the
probability of at least two nodes starting CCA at the same contention
slot, which is the complement of the probability that every node will
pick a di�erent slot, given by Equation 4.2.

Pc(n) = 1− Cs!

(Cs − n)!× Cn
s

(4.2)

Because of the MAC silence mechanism (Section 3.5.1), it is ap-
proximated that the ith consecutive collision for a given message will
cost (S+TCCA)× i of silencing time, and that the following contention
round will have half as many contending nodes. The estimated cost of
sending a one-hop message, given that N other nodes are contending,
and that i consecutive collisions already happened for this message, is
thus:

Ec(N, i) =Pc(N + 1)

× (T1 + (S + TCCA)i+ Ec(bN/2c, i+ 1))

+ (1− Pc(N + 1))× T1
(4.3)

The mean service rate is de�ned in Equation 4.4 as the aver-
age time a message takes to travel H hops, considering the costs of
collisions.

µ =
1

Ec(η, 0)×H
(4.4)

Metrics of interest are then derived from closed-formula values

108

given by the M/M/1 queue model. Average latency is the queue's
average service time. Delivery ratio is interpreted as the probability of
the service time being higher than the average data generation period,
which is given by the exponential distribution with parameter µ× (1−
λ/µ). Energy consumption is derived from the probability Pa of the
MAC being active, which is the queue's probability of having at least
one job being processed in the queue. For network lifetime estimations,
it is considered that a given node will be active with probability Pa/2,
and when active, 75% of the time it will be for receiving a message, and
the other 25% for transmitting. The model's predictions are shown in
the next section, along with simulation results.

4.3.1 Limitations

The presented model is a simplistic approximation of network
behavior in many senses: it assumes that all nodes are homogeneous,
with the same behavior and surrounding network tra�c, which is gen-
erally not the case (e.g. nodes closer to the sink tend to handle more
messages); the model of collision overhead and resolution is fairly sim-
ple; it completely ignores other relevant e�ects such as radio signal loss,
dropping of expired messages, message duplication along the route, ex-
plicit synchronization messages, etc.

The predictions made by the model are only valid when the net-
work is not saturated, since the M/M/1 queue requires that the service
rate is higher than the arrival rate.

4.4 SIMULATION EXPERIMENTS

This section presents results from simulations with TSTP's im-
plementation for the OMNeT++ simulator with the Castalia frame-
work. For the remaining of this chapter, the following simulation sce-
narios are considered: environment monitoring and o�ce. The
environment monitoring scenario models a WSN that monitors slowly
changing environmental conditions such as temperature or humidity. It
has the following characteristics:

• sparse, constant tra�c, with a data period of 60s, 300s, 600s,
900s;

• data expiries equal to period;

109

• regular placement (Figure 49) on a 500m x 500m �eld with sink
node at the center;

• clean channel: free space model, symmetric radio ranges of ≈
100m;

• static nodes;

• initial battery charge for every node: two AA batteries (18720J).

The o�ce scenario models an o�ce building with:

• heterogeneous tra�c (data period):

� 10% of nodes at 300ms, expiry = 300ms;

� 20% of nodes at 1s, expiry = 1s;

� 60% of nodes at 10s, expiry = 1s;

� 10% of nodes at 1min, expiry = 300ms;

• two di�erent placements according to real-life o�ce maps: LISHA
(14 nodes, Figure 58) and SSB (40 nodes, Figure 64)

• lossy channel;

• static nodes;

• initial battery charge:

� two AA batteries (18720J) for 1min nodes and 50% of 10s
nodes;

� in�nite battery for remaining nodes.

These characteristics are also presented in Tables 9, 11, 12, when
each scenario is analyzed. In all of the scenarios, the sink node has
in�nite energy supply, and applications start producing periodic data
after a random time o�set of at most one data period. Each simulation
runs for 2 hours (simulated time).

4.4.1 Sources of Random Variation

Each simulation experiment is run with di�erent seeds for the
pseudo-random number generators. This seed impacts aspects of the
simulation that in�uence the measured results, even between replicated
runs with otherwise identical input parameters. The main sources of
random variation in the measured output variables are:

110

• Each node generates a new data message with a �xed period d.
Before sending the �rst message, each node n waits for a random
time tn < d, and proceeds to send a message every d period.
Depending on the distribution of these random o�sets, nodes may
generate messages closer in time, which increases the momentary
workload of the network and reduces overall performance;

• The random backo�s and silence periods in the MAC (Section 3.5.1)
a�ect the overall number of message collisions;

• Physical channel e�ects on the radio signal;

• The clock frequency error for each node is initialized with a ran-
dom component of at most 40ppm.

4.4.2 MAC Con�guration

Correctly con�guring MAC and radio parameters for TSTP is
not a trivial task. By increasing radio transmission power, nodes will
spend more energy to transmit the same amount of data, but radio
range will increase and potentially less hops will be needed to reach the
�nal destination, saving energy across the network. Likewise, increasing
the length of the MAC preamble causes senders to occupy the channel
for a longer time before each data transmission, but allows receivers to
sleep for the same, longer, amount of time. There is an optimal con�g-
uration for both radio transmission power and MAC preamble length,
which is dependent on the network characteristics. The following set
of experiments analyze the impact of MAC con�gurations to identify
the optimal ones.

For each scenario, a set of simulations is run to analyze the im-
pact of MAC con�gurations and select appropriate parameters. For
each case, the radio transmission power and the number of microframes
in the MAC preamble are varied. The analyzed metrics are delivery ra-
tio, end-to-end latency, and network lifetime.

Radio transmission power is varied between 0dBm and 7dBm.
These are the values that are shown in the CC2538 datasheet (TEXAS
INSTRUMENTS, 2015) with respective power consumptions of 72mW
and 102mW. In the environment monitoring scenario that features a
clean channel, 0dBm power results in a radio range of around 60m, and
143m for 7dBm. For the o�ce and industry scenarios, radio ranges are
approximately 18m for 0dBm and 35m for 7dBm.

111

The number of microframes in the preamble de�ne the MAC pe-
riod and idle listening duty cycle, as de�ned by Equations 3.5 and 3.6.
Longer MAC preambles (with more microframes) should result in an
increase of average latency as transmissions take longer to complete,
and a decrease in idle listening energy consumption, as channel checks
occur more sparsely (Section 3.5). As transmissions take longer, how-
ever, the energy consumed by transmitters increase, so there may be a
point where further increasing the number of microframes will start to
increase the overall energy consumption. The number of microframes
observes an upper bound on the resulting MAC period S as de�ned by
Equation 4.5, where DP is the application data period, and N is the
number of nodes.

S <
DP

(N − 1)× 4
(4.5)

If every node were one hop away from the sink and transmissions
were perfectly coordinated, the MAC would take at least 2S(N − 1)
time to transmit and acknowledge every message, so a MAC period S
that makes this value larger than the data period DP would not be able
to deliver and acknowledge every message, even in a perfect scenario.
This time estimation does not include o�sets and silence periods, and
is observed in practice to be much higher. Therefore, this upper bound
is divided by 2, resulting in Equation 4.5.

In every simulation, the Expiry routing metric is applied (ex-
plained next, in Section 4.4.4). For the environment monitoring sce-
narios, the Timekeeper maximum tolerable synchronization period P
(Section 3.4.2) is equal to the data period (which triggers Keep Alive

messages every P/2 time without tra�c and Time Requests every P
time without tra�c). For the o�ce scenarios, it is set to 12s (the sum
of the data periods weighted by the proportion of nodes with each data
period).

For each scenario, �rst the number of microframes is varied be-
tween 5 to 255 (observing the upper bound given by Equation 4.5) in
steps of 5, to analyze general behavior, identifying the point where the
network starts showing signs of saturation, and a range of the num-
ber of microframes where the optimum network lifetime point is. For
each con�guration, a vertical dashed line shows the identi�ed optimum
number of microframes in terms of network lifetime that still reaches
the highest delivery ratio. Simulation results are shown alongside an-
alytical predictions (Section 4.3) from the same con�gurations. Then,
another set of simulations investigates the region around the identi�ed

112

Number of nodes 116
Field size 500m x 500m

TX power (p) 0dBm 7dBm
Radio range 60m 143m
Avg. # of hops (H) 3.957 1.939
Avg. # of neighbors (η) 5.200 19.721
TX power consumption 72mW 102mW

Data period (d) 60s 300s 600s 900s
Data rate (λ) 1.917 0.383 0.192 0.128
Data expiry 60s 300s 600s 900s
Synchronization period 60s 300s 600s 900s

Table 9: Con�gurations for environment monitoring scenario.

optimum, varying the number of microframes 1 by 1, with 20 replica-
tions for each experiment. Finally, for each scenario variation, a table
summarizes the results of the best con�guration found for number of
MAC preamble microframes and transmission power.

4.4.2.1 Environment Monitoring Scenario

The simulation and analytic model (Section 4.3) parameters for
the environment monitoring scenario mentioned in Section 4.4 are sum-
marized in Table 9. Figure 49 shows the network deployment. Fig-
ures 50, 51, 52, 53 show the simulation and analytic results for de-
livery ratio, mean latency, and estimated network lifetime (the time
that would take until the �rst node depletes its battery) for each varia-
tion on the environment monitoring scenario. The vertical dashed lines
show, for each data period, the microframe con�guration that leads
to the highest lifetime with 100% delivery ratio, as will be shown in
Figure 53.

Figure 50 shows that the MAC can handle the data tra�c for
all data periods greater than 60s. For 60s, the delivery ratio starts to
decrease when the preamble gets bigger than 75 microframes. This is
much lower than the loose limit of around 190 microframes imposed by
Equation 4.5, and this happens because that equation is highly opti-
mistic for large networks, as it does not consider collisions or even rout-
ing delays. It also shows that when using 7dBm transmission power,
the delivery ratio starts declining sooner than with 0dBm, indicating

113

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

X coordinate (m)

Y
 c

oo
rd

in
at

e
(m

)

Figure 49: Environment monitoring node map. The sink is close to the
middle, marked with an X.

that the longer radio ranges may cause considerably more collisions.
These collision e�ects are not captured by the analytic model, which
shows accurate delivery ratio predictions for 0dBm, but is very o� for
d=60s p=7dBm.

The point where the MAC starts losing messages is also identi�-
able in Figure 51. For d=60s, the simulations show an abrupt increase
in the mean latency at around 90 microframes, showing that a satura-
tion of network capacity escalates quickly, as more messages are being
transmitted at any given time and potentially causing collisions. This
e�ect is captured by the analytic model. The �gure also shows that the
messages that do get delivered in the 7dBm con�guration take less time
than the ones with 0dBm. Figure 52 shows the same data without the
60s lines. Before MAC capacity is reached, latency increases linearly
with the MAC preamble size. A preamble too short (5 microframes in
Figure 52) can also increase latency, as the MAC preamble is equivalent
to the contention time. A contention window too short will cause more
neighbor nodes to have an equal o�set and collide (Section 3.5).

Figure 53 shows the behavior of network lifetime. Although ra-
dios transmitting at 7dBm consume more energy than at 0dBm, the
7dBm con�gurations result in a higher lifetime, because the greater

114

80
85

90
95

10
0

Number of microframes

D
el

iv
er

y
ra

tio
 (

%
)

●●●●●●●●●●●●●●●
●

●

●
●

●

●

●●
●

●●

●●
●●

●

●

●●
●

●●
●

●●●

●

●

●

●

p = 0dBm d = 60s
p = 0dBm d = 300s
p = 0dBm d = 600s
p = 0dBm d = 900s
p = 7dBm d = 60s
p = 7dBm d = 300s
p = 7dBm d = 600s
p = 7dBm d = 900s

5 30 55 80 105 130 155 180 205 230 255

(a) Simulation

40
60

80
10

0
Number of microframes

D
el

iv
er

y
ra

tio
 (

%
)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●

●

p = 0dBm d = 60s
p = 0dBm d = 300s
p = 0dBm d = 600s
p = 0dBm d = 900s
p = 7dBm d = 60s
p = 7dBm d = 300s
p = 7dBm d = 600s
p = 7dBm d = 900s

5 30 55 80 105 130 155 180 205 230 255

(b) Analytic

Figure 50: Delivery ratio for environment monitoring scenario. Every
line other than d=60s is constant at 100%.

0
10

20
30

40
50

Number of microframes

M
ea

n
la

te
nc

y
(s

)

●●●●●●●●●●●●●●●

●

●

●●●
●

●●

●

●

●

●

●●

●
●

●
●

●●

●●
●

●●●
●●

●

●

●

●

p = 0dBm d = 60s
p = 0dBm d = 300s
p = 0dBm d = 600s
p = 0dBm d = 900s
p = 7dBm d = 60s
p = 7dBm d = 300s
p = 7dBm d = 600s
p = 7dBm d = 900s

5 30 55 80 105 130 155 180 205 230 255

(a) Simulation

0
50

10
0

15
0

20
0

Number of microframes

M
ea

n
la

te
nc

y
(s

)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●●●

●

●

●

●

p = 0dBm d = 60s
p = 0dBm d = 300s
p = 0dBm d = 600s
p = 0dBm d = 900s
p = 7dBm d = 60s
p = 7dBm d = 300s
p = 7dBm d = 600s
p = 7dBm d = 900s

5 30 55 80 105 130 155 180 205 230 255

(b) Analytic

Figure 51: Mean latency for environment monitoring scenario. Latency
grows linearly with the MAC period, determined by the number of
microframes, until a saturation point is reached (around 90 microframes
for d=60s).

115

0.
0

0.
5

1.
0

1.
5

Number of microframes

M
ea

n
la

te
nc

y
(s

)

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●

●●
●●●

●●
●●

●
●

●
●

●
●

●●

●

●●

●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●
●●●

●●
●

●
●●

●●●
●●

●
●

●
●

●●●
●

●●●●●●●●●●●●●●●●
●●●

●●●●●●
●

●●
●●●

●●●
●●●●●●

●
●●●

●●
●

●

●
●●

●

●

●

p = 0dBm d = 300s
p = 0dBm d = 600s
p = 0dBm d = 900s
p = 7dBm d = 300s
p = 7dBm d = 600s
p = 7dBm d = 900s

5 30 55 80 105 130 155 180 205 230 255

(a) Simulation

0.
5

1.
0

1.
5

Number of microframes

M
ea

n
la

te
nc

y
(s

)

●●●

●●●

●●●

●

●

●

p = 0dBm d = 300s
p = 0dBm d = 600s
p = 0dBm d = 900s
p = 7dBm d = 300s
p = 7dBm d = 600s
p = 7dBm d = 900s

5 30 55 80 105 130 155 180 205 230 255

(b) Analytic

Figure 52: Focus on mean latency for environment monitoring scenario
with p > 60s. It grows linearly with the MAC period, determined by
the number of microframes.

transmission power resulted in a greater radio range, meaning that po-
tentially less hops are necessary to deliver messages, and nodes spend
less time with their radios in transmission mode, saving overall energy
across the network. More microframes in the preamble means that
nodes' idle listening duty cycles are reduced, but it also means that
senders spend more energy per message sent. The Figure shows that
there is a point where the increase in transmission cost becomes higher
than the decrease in receiving costs, and this point varies according to
the application data generation period.

Having identi�ed ranges of MAC con�gurations that produce
the best results, more simulations are performed with a �ner-grained
variation of number of microframes. Figures 54, 55, 56, 57 show these
simulation results. For each microframe and data period con�guration,
20 replications are run. The shaded areas in these �gures represent
standard deviations among the means of the 20 replications. In these
�gures, the number of microframes shows a bigger impact on latency
than on lifetime, but that is because the range of microframes consid-
ered is one that contains the maximum point in the parabola-like curve
that represents lifetime, while latency is expected to grow linearly in
that region, as delivery ratio is always 100%.

As listed in Section 4.4.1, the sources of variation between simu-
lations with the same parameters that result in the standard deviations
shown in the �gures are: the initial random time o�set of at most one

116

0
50

10
0

15
0

20
0

25
0

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●
●

●
●

●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●
●

●●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●●
●

●●●

●●●
●●

●
●

●
●

●
●●●●●

●
●

●
●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●●

●
●●

●
●●

●
●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●
●●

●●

●●
●

●

●

●●
●

●●●
●

●
●

●●

●
●

●
●

●

●

●

●

●

●

p = 0dBm d = 60s
p = 0dBm d = 300s
p = 0dBm d = 600s
p = 0dBm d = 900s
p = 7dBm d = 60s
p = 7dBm d = 300s
p = 7dBm d = 600s
p = 7dBm d = 900s

5 30 55 80 105 130 155 180 205 230 255

(a) Simulation

0
50

10
0

15
0

20
0

25
0

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●

●

●

●

●

p = 0dBm d = 60s
p = 0dBm d = 300s
p = 0dBm d = 600s
p = 0dBm d = 900s
p = 7dBm d = 60s
p = 7dBm d = 300s
p = 7dBm d = 600s
p = 7dBm d = 900s

5 30 55 80 105 130 155 180 205 230 255

(b) Analytic

Figure 53: Estimated network lifetime for environment monitoring sce-
nario, for varying transmission power levels (p) and application data
period (d). Growing the number of microframes reduces reception cost,
but increases transmission cost and time. Lifetime grows proportion-
ally with the number of microframes, until a point where the network
starts to spend more energy transmitting than it saves on listening.
For each data period, this optimum point is identi�ed with a dashed
vertical line. The 7dBm 900s line in the simulation result reached the
maximum number of microframes before reaching the optimal point.

117

29
30

31
32

33

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

31 33 35 37 39 41 43 45 47 49

d = 60s

(a) Network lifetime

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

0.
24

Number of microframes

M
ea

n
la

te
nc

y
(s

)

31 33 35 37 39 41 43 45 47 49

d = 60s

(b) Mean latency

Figure 54: Estimated network lifetime and mean latency for selected
con�gurations close to the optimum point of environment monitoring
scenario, p=7dBm, d=60s. The optimum network lifetime point is
identi�ed as 43 microframes.

data period with which applications start generating periodic messages;
the random backo�s and silence periods in the MAC (Section 3.5.1);
channel e�ects on the radio signal; and the clock frequency error for
each node.

118

12
6

12
8

13
0

13
2

13
4

13
6

13
8

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

156 158 160 162 164 166 168 170 172 174

d = 300s

(a) Network lifetime

0.
34

0.
36

0.
38

0.
40

0.
42

Number of microframes

M
ea

n
la

te
nc

y
(s

)
156 158 160 162 164 166 168 170 172 174

d = 300s

(b) Mean latency

Figure 55: Estimated network lifetime and mean latency for selected
con�gurations close to the optimum point of environment monitoring
scenario, p=7dBm, d=300s. The optimum network lifetime point is
identi�ed as 168 microframes.

19
5

20
0

20
5

21
0

21
5

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

236 238 240 242 244 246 248 250 252 254

d = 600s

(a) Network lifetime

0.
50

0.
52

0.
54

0.
56

0.
58

Number of microframes

M
ea

n
la

te
nc

y
(s

)

236 238 240 242 244 246 248 250 252 254

d = 600s

(b) Mean latency

Figure 56: Estimated network lifetime and mean latency for selected
con�gurations close to the optimum point of environment monitoring
scenario, p=7dBm, d=600s. The optimum network lifetime point is
identi�ed as 253 microframes.

119

25
0

25
5

26
0

26
5

27
0

27
5

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

236 238 240 242 244 246 248 250 252 254

d = 900s

(a) Network lifetime

0.
50

0.
52

0.
54

0.
56

0.
58

Number of microframes

M
ea

n
la

te
nc

y
(s

)

236 238 240 242 244 246 248 250 252 254

d = 900s

(b) Mean latency

Figure 57: Estimated network lifetime and mean latency for selected
con�gurations close to the optimum point of environment monitoring
scenario, p=7dBm, d=900s. The optimum network lifetime point would
be beyond 255 microframes.

120

The selected best con�gurations in terms of network lifetime for
the environment monitoring scenario are summarized in Table 10.

Variable Unit
Data period s 60 300 600 900
Nodes - 116 116 116 116
TX power dBm 7 7 7 7
Microframes - 43 168 253 255
MAC period ms 29.51 116.01 174.83 176.21
Delivery ratio % 100 100 100 100
Network life days 31.6 134.48 209.88 264.5
Nominal d.c. % 4.25 1.08 0.72 0.71
E�ective d.c. % 5.54 1.36 0.89 0.83
Max latency ms 2683.76 2411.74 3015.62 2316.98
Mean latency ms 180.27 382.16 565.54 562.11

Table 10: Selected con�gurations for each environment monitoring sce-
nario.

4.4.2.2 LISHA O�ce Scenario

The two o�ce scenarios model smaller networks than in environ-
ment monitoring, but that are subject to a lossy channel, higher data
rates and stricter timing requirements. In both variations, the data
generation period is �xed across simulations, and nodes are not homo-
geneous. 60% of the sensor nodes are modeled as nodes that measure
non-critical environmental information, generating one message every
10 seconds, with a 10 second expiry. From these, half are battery-
powered and half are mains-powered. 20% of the nodes generate data
with higher granularity, every 1 second with 1 second expiry, and are
mains-powered. 10% of the nodes measure data at a high rate, every
300ms, with equal expiry, and are mains-powered. The 10% remaining
nodes represent sensors used for human interaction, sparsely generating
data (every 1 minute) with a short expiry (300ms), and are battery-
powered. To reach higher lifetimes, the battery-powered nodes do not
act as forwarders, they only transmit either data messages generated by
themselves, or responses to Keep Alives (Section 3.4.2). Table 11 sum-
marizes the con�gurations for the LISHA o�ce scenario, and Figure 58
shows the node map.

The same experiments shown in Section 4.4.2.1 are performed for

121

Number of nodes 14
Field size 7m x 5m

Data rate (λ) 8.05
Synchronization period 12s

TX power (p) 0dBm 7dBm
Radio range 18m 35m

Avg. # of hops (H) 1 1
Avg. # of neighbors (η) 12 12
TX power consumption 72mW 102mW

Node con�gurations
Nodes with this con�g. 1 1 4 4 3
Data period (d) 60s 0.3s 1s 10s 10s
Data expiry 0.3s 0.3s 1s 10s 10s
Battery-powered Yes No No No Yes
Acts as forwarder No Yes Yes Yes No

Table 11: Con�gurations for LISHA o�ce scenario.

●●●
●●●●

●

●

●

●

●

●

●

0 2 4 6

0
1

2
3

4

X coordinate (m)

Y
 c

oo
rd

in
at

e
(m

)

Figure 58: O�ce LISHA node map. Darker shades indicate higher data
periods. The sink is at the rightmost cluster of nodes, marked with an
X.

122

30
40

50
60

70
80

90
10

0

Number of microframes

D
el

iv
er

y
ra

tio
 (

%
)

●●●●●●●●
●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●
●●●

●●
●●

●●

●●●●
●

●
●

●●●●
●

●

p = 0dBm
p = 7dBm

5 30 55 80 105 130 155 180 205 230 255

(a) Simulation
20

40
60

80
10

0

Number of microframes
D

el
iv

er
y

ra
tio

 (
%

)

●●●●●●●●●●●●
●

●

●

●

●

●

●

p = 0dBm
p = 7dBm

5 30 55 80 105 130 155 180 205 230 255

(b) Analytic

Figure 59: Delivery ratio for LISHA o�ce scenario. At around 35 mi-
croframes, the MAC period gets too large to meet 100% of the expiries.

the two variations on the o�ce scenario. Figure 59 shows that network
saturation for the LISHA o�ce scenario starts occurring at around 35
microframes. Moreover, Figure 60 highlights that no con�guration is
able to deliver 100% of messages all the time. The higher data rate
makes it hard for the MAC to honor all the short expiries. However,
it is still able to achieve high delivery ratios. Selected con�gurations
(dashed vertical lines) are the ones with the highest network lifetime
that present an average delivery ratio minus three standard deviations
greater than or equal to 99.99%.

The analytic model still showed optimistic predictions for deliv-
ery ratio before network saturation, but was fairly accurate, recom-
mending a con�guration of 35 microframes over 25 recommended by
the simulation results.

Figures 61, 63b analyze the latency variation, showing that there
is not a big di�erence in mean latency between the two transmission
power con�gurations, as nodes are all at one hop from the destination.
The analytic model predicts a latency explosion as the network gets
saturated, because it considers homogeneous messages and does not
limit the total service time of any message. This subtle increase is not
observed in the simulation results, as the 300ms messages expire and
are removed, causing less congestion.

Figure 62 shows that the optimal MAC con�guration for network
life is around 50 to 80 microframes. However, these con�gurations have

123

99
.8

8
99

.9
0

99
.9

2
99

.9
4

99
.9

6
99

.9
8

10
0.

00

Number of microframes

D
el

iv
er

y
ra

tio
 (

%
)

● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

p = 0dBm
p = 7dBm

16 17 18 19 20 21 22 23 24 25 26 27 28 29

Figure 60: Delivery ratio for selected con�gurations of LISHA o�ce sce-
nario. In no con�guration the MAC is able to deliver 100% of the mes-
sages. 21 microframes with p=7dBm is the largest microframe count
where it reliably delivers more than 99.99% of messages in time.

0.
0

0.
2

0.
4

0.
6

0.
8

Number of microframes

M
ea

n
la

te
nc

y
(s

)

●●●
●●

●
●

●

●●
●

●●

●

●

●
●

●●●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●
●●

●
●

p = 0dBm
p = 7dBm

5 30 55 80 105 130 155 180 205 230 255

(a) Simulation

0
2

4
6

8
10

12
14

Number of microframes

M
ea

n
la

te
nc

y
(s

)

●●●●●●●●●●●●●●
●

●

●

●
●

p = 0dBm
p = 7dBm

5 30 55 80 105 130 155 180 205 230 255

(b) Analytic

Figure 61: Mean latency for LISHA o�ce scenario. Analytic predic-
tions work better for non-saturated networks. The steep increase in
latency is not observed in the simulations, as the analytic model does
not consider dropping expired messages.

124

20
40

60
80

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

p = 0dBm
p = 7dBm

5 30 55 80 105 130 155 180 205 230 255

(a) Simulation
10

15
20

25
30

35
40

Number of microframes
E

st
im

at
ed

 n
et

w
or

k
lif

et
im

e
(d

ay
s)

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●

●

p = 0dBm
p = 7dBm

5 30 55 80 105 130 155 180 205 230 255

(b) Analytic

Figure 62: Estimated network lifetime for LISHA o�ce scenario. The
optimum point is around 50 to 80 microframes.

a low delivery ratio (Figure 59), so Figure 63 considers 16 to 30 mi-
croframes. Although 7dBm presents a smaller lifetime when compared
to the same MAC period at 0dBm, it achieves a slightly better deliv-
ery ratio, allowing the increase of the number of microframes slightly
beyond what 0dBm supports for the same delivery ratio. The ana-
lytic model captures the lifetime behavior, but is pessimistic because it
considers that all nodes are battery powered and act as forwarders.

The selected con�guration for the LISHA o�ce scenario is sum-
marized in Table 13.

125

30
35

40
45

50
55

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

p = 0dBm
p = 7dBm

16 17 18 19 20 21 22 23 24 25 26 27 28 29

(a) Network lifetime

0.
02

5
0.

03
0

0.
03

5
0.

04
0

0.
04

5

Number of microframes

M
ea

n
la

te
nc

y
(s

)

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

p = 0dBm
p = 7dBm

16 17 18 19 20 21 22 23 24 25 26 27 28 29

(b) Mean latency

Figure 63: Estimated network lifetime and mean latency for selected
con�gurations of LISHA o�ce scenario. Before reaching the optimum
point, lifetime grows linearly.

126

Number of nodes 40
Field size 30m x 40m

Data rate (λ) 22.35
Synchronization period 12s

TX power (p) 0dBm 7dBm
Radio range 18m 35m

Avg. # of hops (H) 1.154 1
Avg. # of neighbors (η) 24.513 37.128
TX power consumption 72mW 102mW

Node con�gurations
Nodes with this con�g. 3 3 10 12 11
Data period (d) 60s 0.3s 1s 10s 10s
Data expiry 0.3s 0.3s 1s 10s 10s
Battery-powered Yes No No No Yes
Acts as forwarder No Yes Yes Yes No

Table 12: Con�gurations for SSB o�ce scenario.

4.4.2.3 SSB O�ce Scenario

The SSB o�ce network has similar parameters to the LISHA
variation, but with more nodes deployed over a larger area, and a higher
overall data rate. Its con�gurations are shown in Table 12, and the node
map is shown in Figure 64.

Figure 65 shows that TSTP is not able to achieve 100% or even
99.99% of delivery ratio in any con�guration. Therefore, the selected
con�guration is the one that achieves the highest delivery ratio, even
at the cost of lifetime (Figure 66). The analytic model did not produce
any valid result, as it �nds the network saturated with messages in
every MAC con�guration.

The selected best con�gurations for both o�ce scenarios are sum-
marized in Table 13. The con�gurations shown in Tables 10 and 13 are
used for the experiments in Sections 4.4.3 and 4.4.4.

127

●
●●●

●●●

●●●

●●

●

●

● ● ●

●●

●●

●●

●

●

●

●

●

●●●

●●●

●●●
●

●●

0 5 10 15 20 25 30

0
10

20
30

X coordinate (m)

Y
 c

oo
rd

in
at

e
(m

)

Figure 64: O�ce SSB node map. Darker shades indicate higher data
periods. The sink is marked with an X.

20
40

60
80

10
0

Number of microframes

D
el

iv
er

y
ra

tio
 (

%
)

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
● ●

●
●

● ●
●

●

p = 0dBm
p = 7dBm

5 30 55 80 105

(a) Coarse microframe steps

88
90

92
94

96
98

10
0

Number of microframes

D
el

iv
er

y
ra

tio
 (

%
)

●

●

●

●

●
●

●

●

●

●

●

p = 0dBm
p = 7dBm

6 7 8 9 10 11 12 13 14 15

(b) Granular microframe steps

Figure 65: Delivery ratio for SSB o�ce scenario. (a) At 5 microframes,
the MAC contention period is too small, leading to too many collisions
and a drop in delivery ratio. At 10 microframes, it gets the closest
to 100%, and falls from 15 and higher. So the best con�guration for
delivery ratio must be in the interval [6,14] microframes. (b) The best
delivery ratio is at p=7dBm and 6 microframes.

128

20
30

40
50

60
70

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

p = 0dBm
p = 7dBm

5 30 55 80 105

(a) Coarse microframe steps

15
20

25
30

35
40

45

Number of microframes

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)
●

●

●

●

●

●

●

●

●

●
●

p = 0dBm
p = 7dBm

6 7 8 9 10 11 12 13 14 15

(b) Granular microframe steps

Figure 66: Estimated network lifetime for SSB o�ce scenario. Higher
lifetime can be achieved, but only with a signi�cant decrease in delivery
ratio.

0.
2

0.
4

0.
6

0.
8

1.
0

Number of microframes

M
ea

n
la

te
nc

y
(s

)

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

p = 0dBm
p = 7dBm

5 30 55 80 105

(a) Coarse microframe steps

0.
04

0.
06

0.
08

0.
10

0.
12

Number of microframes

M
ea

n
la

te
nc

y
(s

)

●

●

●

●
●

●
●

●

●

●

●

p = 0dBm
p = 7dBm

6 7 8 9 10 11 12 13 14 15

(b) Granular microframe steps

Figure 67: Mean latency for SSB o�ce scenario. At 5 microframes, the
short MAC contention period leads to signi�cantly more collisions and
an increase in latency.

129

Variable Unit
Node map - LISHA SSB
Nodes - 14 40
TX power dBm 7 7
Microframes - 21 6
MAC period ms 14.28 3.90
Delivery ratio % 99.99 99.59
Network life days 40.08 15.27
Nominal d.c. % 8.78 32.09
E�ective d.c. % 10.79 27.38
Max latency ms 495.67 1268.98
Mean latency ms 33.05 24.85

Table 13: Selected con�gurations for each o�ce scenario.

130

4.4.3 Synchronization

The following set of simulations investigates the e�ectiveness of
the employment of speculative synchronization techniques such as the
Speculative Precision Time Protocol (Sections 2.4, 3.4) in TSTP. To al-
low nodes to synchronize only by overhearing passing messages, TSTP
includes in the common message header (Figure 17) of every message
synchronization information such as the precise time of message trans-
mission. This increases the size of every message, but reduces the
overall number of messages if compared to an approach that sends syn-
chronization information only in periodic messages commonly known as
beacons. The speculative approach should save energy in most cases, as
sending a new message is much more energy-consuming than including
extra bytes in a message that would already be sent, because new mes-
sages come with MAC preambles, contention, potential collisions, extra
headers, etc. However, depending on the proportion of synchronization
beacons and data messages, there may be cases where explicit synchro-
nization approaches perform better. The following set of experiments
analyzes if, and under which circunstances, is it better to pigtail tim-
ing information to every message, compared to only exchanging timing
information in periodic beacons.

The experiments that follow use the same scenario parameters
presented in Tables 9, 11, 12, with the identi�ed optimal MAC pream-
ble and radio transmission power con�gurations shown in Tables 10,
13. The analyzed input variable is the SPTP maximum tolerable syn-
chronization period P (Section 3.4.2), which was �xed in the prior
simulations. The impact of this parameter on delivery ratio, latency,
network lifetime, and average clock synchronization accuracy is eval-
uated. Each experiment runs for 2 hours of simulated time, and is
replicated 20 times. Shaded areas in the �gures represent standard
deviations among the means of the 20 replications. For the o�ce sce-
narios, the considered synchronization periods are 240s, 200s, 160s,
140s, 120s, 100s, 80s, 60s, 40s, 30s, 20s, 10s, 5s. For the environment
monitoring scenarios, the considered synchronization periods are 3600s,
2700s, 2400s, 1800s, 1200s, 900s, 600s, 480s, 300s, 240s, 180s, 120s, 60s,
30s, 15s.

TSTP performance (Speculative) is compared with a theoret-
ical and an explicit strategies. The Theoretical data are calculations
considering that timestamps are not embedded in every message, but
transmitted once per half synchronization period per node. It considers
perfect channel conditions with no collisions, representing an approx-

131

imation of what any explicit synchronization protocol with a similar
strategy could achieve2. The Explicit strategy is a variation on TSTP
that implements the theoretical approach: it does not include times-
tamps in the common message header (making it smaller), but only in
Keep Alive messages (making them potentially more frequent).

Clock synchronization accuracy is measured once per simulated
second by taking the absolute di�erence between each node's current
timestamp and the sink's.

4.4.3.1 LISHA O�ce Scenario

Figure 68 presents the impact of the synchronization period on
delivery ratio. Lower synchronization periods decrease delivery ratio, as
more Keep Alive messages are sent. The speculative approach shows
a generally higher standard deviation, since depending on the environ-
ment a node might need to send more or less explicit synchronization
messages, whereas for Explicit the number of Keep Alives only de-
pends on the synchronization period. As the period increases, the
number of explicit messages decreases in both approaches, and they
become more similar. Latency (Figure 69) shows a similar behavior,
for the same reasons.

The number of Keep Alive messages sent are shown in Fig-
ure 70. As expected, the number of explicit synchronization messages
for each strategy converges as the synchronization period increases,
and the speculative approach reaches zero as the synchronization pe-
riod gets larger than twice the maximum application data period of
60s. The explicit approach sends more synchronization messages than
the theoretical, as the latter considers a perfect network with one syn-
chronization message per node per half period, with no collisions.

Figure 71 shows the average clock error between sensor nodes
and the sink. Clock synchronization accuracy is measured once per
simulated second by taking the absolute di�erence between each node's
current timestamp and the sink's. In this case, the �Theoretical� line
shows the expected clock error to occur in the expected time elapsed
between two synchronization messages, assuming that synchronization

2It is not meant to be an absolute best case, but a comparable approach with
good performance. A protocol could achieve better performance than the Theo-
retical approach, as it considers that every node sends synchronization beacons at
every half period.

132

99
.5

99
.6

99
.7

99
.8

99
.9

10
0.

0

Synchronization period (s)

D
el

iv
er

y
ra

tio
 (

%
) ●

●

●

●

●
●

●

● ●

● ● ●
●

●

Speculative
Explicit

0 30 60 90 120 150 180 210 240

Figure 68: Delivery ratio for LISHA o�ce scenario, p=7dBm, 21 mi-
croframes, varying synchronization period. Comparison between TSTP
(Speculative), and a TSTP version that does not include timestamps
in the header and will only synchronize with explicit keep alives (Ex-
plicit). Higher synchronization periods lead to less explicit messages,
so delivery ratio grows. As the synchronization period grows, both
approaches converge, since there will be fewer keep alives.

133

0.
03

0
0.

03
5

0.
04

0
0.

04
5

0.
05

0
0.

05
5

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●●

●

●

● ●

●

●
●

●
●

● ●

●

Speculative
Explicit

0 30 60 90 120 150 180 210 240

Figure 69: Average latency for LISHA o�ce scenario, p=7dBm, 21 mi-
croframes, varying synchronization period. Comparison between TSTP
(Speculative), and a TSTP version that does not include timestamps
in the header and will only synchronize with explicit keep alives (Ex-
plicit). Higher synchronization periods leads to less explicit messages,
so mean latency decreases. As the synchronization period grows, both
variations converge, since there will be fewer keep alives.

134

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

●
●

●

●
●

●
●

● ● ●

●

Speculative
Explicit
Theoretical

0 30 60 90 120 150 180 210 240

Figure 70: Number of explicit synchronization messages for LISHA
o�ce scenario. �Theoretical� is one keep alive per node per synchro-
nization half period. �Explicit� sends more keep alives due to imperfect
channel conditions. �Speculative� sends less because it uses regular
data messages as synchronization messages most of the time. At peri-
ods greater than 140s, Speculative reaches zero explicit synchronization
messages.

135

messages arrive at every node with a period PS :

PS = min(SP /2, d) (4.6)

where SP is the synchronization period, and d is the average application
data period (12s for the o�ce scenarios). Theoretical clock drifts are
generated in the same way as Castalia computes clock frequency errors.
This bound applies only to the speculative strategy, as the explicit one
triggers synchronization messages only every SP /2 time, and the clock
error upper bound grows proportionally to the synchronization period.

The average clock error for both approaches is below the calcu-
lated upper bound, indicating that SPTP's frequency error correction
(Section 2.4) is e�ective. As the synchronization period increases, the
speculative approach is expected to achieve better clock synchroniza-
tion than the explicit strategy, because it uses timestamps from regular
data messages in addition to the ones in Keep Alive messages. The
data shows that the di�erence is not big in this scenario, however. It
also shows that the speculative clock error decreases with higher syn-
chronization periods, which can be explained by the higher delivery
ratio achieved in such cases: the network is less saturated, so nodes
can actually get timestamps without collisions more often.

The analyses so far indicate that there is not a big di�erence
in terms of latency, clock error, or delivery ratio between the explicit
and speculative approaches for the LISHA o�ce scenario. As Figure 70
shows, the speculative approach saves a considerable number of Keep
Alive messages. However, regular data messages are bigger in the
speculative approach, as they include timestamps, so an energy analysis
is necessary to determine whether the savings in number of messages
is bigger than the cost of pigtailing timestamps.

Figure 72 compares the energy consumption of both strategies
with the theoretical approach. At low synchronization periods, the
speculative approach is able to save a proportionally large number of
Keep Alive messages, and performs much better in terms of energy.
As the proportion of synchronization messages decrease in relation to
data messages, the cost of pigtailing timestamps to data messages is
proportionally bigger, and the speculative approach performs compara-
tively worse. At a synchronization period of around 90s, the theoretical
approach starts saving more energy than the speculative one. However,
the explicit strategy, which is an implementation of the theoretical ap-
proach subjected to similar network conditions, shows that the spec-
ulative strategy saves more energy for all synchronization periods up

136

0
50

10
0

15
0

20
0

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Speculative
Explicit
Theoretical

0 30 60 90 120 150 180 210 240

Figure 71: Average clock error for LISHA o�ce scenario. Clock error
should be inversely proportional to synchronization period. However,
as the synchronization period grows, delivery ratio also grows, and this
indicates that nodes are able to access more synchronization messages
more often, so clock error is actually lower at higher synchronization
periods. For periods >160s (for Speculative) and >200s (for Explicit),
delivery ratio stabilizes and clock error grows according to the sync
period.

137

−
10

00
0

0
10

00
0

20
00

0
30

00
0

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

●

●

● ● ●
●

●
●

●
●

● ● ●

●

Speculative
Explicit

0 30 60 90 120 150 180 210 240

Figure 72: Energy consumption compared to theoretical explicit ap-
proach for LISHA o�ce scenario. Theoretical energy gain is calculated
comparing the cost of including timestamps in every message to the
savings in number of explicit synchronization messages.

to 240s (four times the maximum application data period, 60s). Fig-
ure 73 shows the estimated network lifetime for both implementations,
con�rming that the speculative approach saves signi�cant amounts of
energy in every case.

4.4.3.2 SSB O�ce Scenario

The SSB o�ce scenario features more nodes and hops than the
LISHA scenario, with a high data rate that puts the network over its
limit. Figures 74 and 75 show that the speculative approach performs
slightly better than the explicit approach in terms of delivery ratio and
latency. Delivery ratio increases and average latency decreases for both
implementations as the synchronization period gets bigger.

The number of Keep Alives sent, shown in Figure 76, shows
the same behavior as in the LISHA scenario. The average clock error
(Figure 77) is slightly better for the speculative implementation, as the
denser network deployment allows nodes to receive data messages more

138

30
35

40
45

50

Synchronization period (s)

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

● ●
●

●

●

●

●

● ●

●

Speculative
Explicit

0 30 60 90 120 150 180 210 240

Figure 73: Estimated network lifetime for LISHA o�ce scenario. The
Speculative approach saves energy signi�catively.

88
90

92
94

96
98

10
0

Synchronization period (s)

D
el

iv
er

y
ra

tio
 (

%
)

●
●

●

●

●

●

●
●

●
●

●
● ●

●

Speculative
Explicit

0 30 60 90 120 150 180 210 240

Figure 74: Delivery ratio for SSB o�ce scenario, with p=7dBm and 6
microframes. Similarly to the LISHA variation, delivery ratio grows as
less synchronization messages are generated.

139

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●
●

●

●

●

●

●

●
●

● ●
● ●

●

Speculative
Explicit

0 30 60 90 120 150 180 210 240

Figure 75: Average latency for SSB o�ce scenario. Similarly to the
LISHA variation, latency decreases as less synchronization messages
are generated.

frequently.
Figure 78 shows that a theoretical implementation could reach

lower overall energy consumption starting from a synchronization pe-
riod of around 10 seconds. However, in practice, the explicit implemen-
tation still spends more energy on explicit synchronization messages
than it saves in not including timestamps in the common header. Fig-
ure 79 shows that this energy di�erence leads to a very small variation
in the estimated network lifetime, possibly because the battery-powered
nodes are not particularly bene�ted from the energy savings.

140

0
50

00
0

10
00

00
15

00
00

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

●

●

●

● ● ● ●
● ● ●

●

Speculative
Explicit
Theoretical

0 30 60 90 120 150 180 210 240

Figure 76: Number of explicit synchronization messages for SSB o�ce
scenario. �Theoretical� is one keep alive per node per half synchroniza-
tion period. �Explicit� sends more keep alives due to imperfect channel
conditions. �Speculative� sends less because it uses regular data mes-
sages as synchronization messages most of the time. At periods greater
than 140s, Speculative reaches zero explicit synchronization messages.

141

0
50

10
0

15
0

20
0

25
0

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)

●
●

●

●

● ●

●

●

●

●

●

●

●

●

Speculative
Explicit
Theoretical

0 30 60 90 120 150 180 210 240

Figure 77: Average clock error for SSB o�ce scenario. Clock error
should be inversely proportional to synchronization period. However,
as the synchronization period grows, delivery ratio also grows, and this
indicates that nodes are able to access more synchronization messages
more often, so clock error is actually lower at higher synchronization
periods.

142

−
15

00
0

−
50

00
0

50
00

10
00

0
15

00
0

20
00

0

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

●

●

●

● ●
●

● ● ● ●
● ● ●

●

Speculative
Explicit

0 30 60 90 120 150 180 210 240

Figure 78: Energy consumption compared to theoretical explicit ap-
proach for SSB o�ce scenario. Theoretical energy gain is calculated
comparing the cost of including timestamps in every message to the
savings in number of explicit synchronization messages. The theoreti-
cal approach quickly outperforms the speculative, which is still better
than �Explicit�, an implementation of the theoretical approach mea-
sured under the same conditions as �Speculative�.

143

16
18

20
22

Synchronization period (s)

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

●

●

●
●

● ● ● ●

●

Speculative
Explicit

0 30 60 90 120 150 180 210 240

Figure 79: Estimated network lifetime for SSB o�ce scenario. Both
approaches show similar results.

144

In the LISHA o�ce scenario, the speculative and explicit ap-
proaches perform very close in terms of overall clock error, latency, and
delivery ratio, but the speculative approach shows signi�cantly lower
energy consumption. In the SSB scenario where the network is satu-
rated, the speculative approach performs only slightly better, but does
so for every measured metric.

4.4.3.3 Environment Monitoring Scenario

For better visualization, the graphics that follow are divided in
two: low synchronization periods, up to 2d (where d is the application
data period), and high synchronization periods, from d up to 6d. The
dashed vertical lines mark the point in the x axis where the synchro-
nization period is equal to the data period. Data periods of 60s and
600s are considered in this section. The results for the periods of 300s
and 900s show similar behavior to the 600s ones, and can be found in
Section A.1 in the Appendix.

The environment monitoring scenario is a more regular one than
both o�ce scenarios. The network is larger, node deployment is uni-
form, and tra�c is sparser, which makes the predictions of the theo-
retical approach more accurate. Figures 80, 81 show that indeed the
number of synchronization messages sent by the explicit approach is
close to one per node per half period (the �Theoretical� line). The
speculative approach generally saves a large number of explicit mes-
sages, unless the synchronization period is much lower than the data
period, in which case there are not enough data messages to serve as
synchronization messages. Figure 81a shows that this only starts hap-
pening when the synchronization period falls below around d/20.

Latency is expected to start lower with the speculative approach,
as it is able to send less messages than the explicit one. However, the
increase in data message size caused by the inclusion of timestamps
eventually leads to a slightly higher latency, as the synchronization pe-
riod gets higher and the network produces much more data messages
than synchronization messages. Figures 82, 83 show that the synchro-
nization period needs to be around 5 times the data period for the
explicit approach to start showing slightly better latencies.

145

20 40 60 80 100 120

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

●

●

Speculative
Explicit
Theoretical

(a) Low synchronization periods

100 150 200 250 300

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

●

●

●

Speculative
Explicit
Theoretical

(b) High synchronization periods

Figure 80: Number of explicit synchronization messages for environ-
ment monitoring scenario, p=7dBm, d=60s. �Theoretical� is one keep
alive per node per half synchronization period. �Explicit� sends more
keep alives due to imperfect channel conditions. �Speculative� sends
less because it uses regular data messages as synchronization messages
most of the time.

0 200 400 600 800 1000 1200

0
20

00
0

40
00

0
60

00
0

80
00

0

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

●

●

● ●

● ●
● ●

●

Speculative
Explicit
Theoretical

(a) Low synchronization periods

500 1000 1500 2000 2500 3000 3500

0
10

00
20

00
30

00

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

●

● ●

●

●

Speculative
Explicit
Theoretical

(b) High synchronization periods

Figure 81: Number of explicit synchronization messages for environ-
ment monitoring scenario, p=7dBm, d=600s.

146

20 40 60 80 100 120

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●

●

●

●

●

Speculative
Explicit

(a) Low synchronization periods

100 150 200 250 300
0.

17
0.

18
0.

19
0.

20

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●

●

●

●

●

●

Speculative
Explicit

(b) High synchronization periods

Figure 82: Average latency for environment monitoring scenario,
d=60s. Only at synchronization periods of 300s the Explicit approach
reaches a slightly better average.

0 200 400 600 800 1000 1200

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●

●

●

●

●

● ●

● ●
●

●

●

Speculative
Explicit

(a) Low synchronization periods

500 1000 1500 2000 2500 3000 3500

0.
54

0.
56

0.
58

0.
60

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●

●

●

● ● ●

●

●

Speculative
Explicit

(b) High synchronization periods

Figure 83: Average latency for environment monitoring scenario,
d=600s. Only at synchronization periods of 3600s the Explicit ap-
proach reaches a slightly better average.

147

20 40 60 80 100 120

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)

●

● ●
●

●

Speculative
Explicit
Theoretical

(a) Low synchronization periods

100 150 200 250 300

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)

●
●

●

●

●

●

Speculative
Explicit
Theoretical

(b) High synchronization periods

Figure 84: Average clock error for environment monitoring scenario,
d=60s.

Increasing the synchronization period, however, necessarily in-
creases the overall clock error for the explicit strategy. Figures 84 and
85 show that both strategies are roughly equally e�ective at synchro-
nizing the clocks. However, with synchronization periods greater than
1500s, the explicit approach starts to wildly vary its clock synchroniza-
tion e�ectiveness, while the speculative approach maintains constant
performance as the data period remains the same.

Figures 86 and 87 further con�rm that the theoretical estima-
tions are more accurate for the environment monitoring scenarios, as
the explicit implementation shows an energy performance close to the
theoretical. The Figures also show that the overall energy consumption
for the speculative approach is lower in every measurement. Figures 88,
89 show that the expected network lifetime for the speculative approach
is indeed higher up until synchronization periods of around 5d.

148

0 200 400 600 800 1000 1200

0
10

00
20

00
30

00
40

00
50

00
60

00

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)

●● ● ● ● ●
● ●

●

●

●

●

Speculative
Explicit
Theoretical

(a) Low synchronization periods

500 1000 1500 2000 2500 3000 3500
0

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)
● ●

●

●

●
●

●

●

Speculative
Explicit
Theoretical

(b) High synchronization periods

Figure 85: Average clock error for environment monitoring scenario,
d=600s.

20 40 60 80 100 120

−
20

00
0

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

●

●

●
●

●

Speculative
Explicit

(a) Low synchronization periods

100 150 200 250 300

−
10

00
0

0
10

00
0

20
00

0
30

00
0

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

●

●

● ●
●

●

Speculative
Explicit

(b) High synchronization periods

Figure 86: Energy consumption compared to theoretical explicit ap-
proach for environment monitoring scenario, d=60s.

149

0 200 400 600 800 1000 1200

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

●

●

●
●

●
●

● ● ● ● ●

●

Speculative
Explicit

(a) Low synchronization periods

500 1000 1500 2000 2500 3000 3500

−
50

00
0

50
00

10
00

0
15

00
0

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

● ●

●

●
●

●
●

●

Speculative
Explicit

(b) High synchronization periods

Figure 87: Energy consumption compared to theoretical explicit ap-
proach for environment monitoring scenario, d=600s.

150

20 40 60 80 100 120

27
28

29
30

31
32

Synchronization period (s)

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

Speculative
Explicit

(a) Low synchronization periods

100 150 200 250 300

29
.5

30
.0

30
.5

31
.0

31
.5

32
.0

32
.5

Synchronization period (s)
E

st
im

at
ed

 n
et

w
or

k
lif

et
im

e
(d

ay
s)

●

●

●

●
●

●

Speculative
Explicit

(b) High synchronization periods

Figure 88: Estimated network lifetime for environment monitoring sce-
nario, d=60s. Only at synchronization periods of 300s the Explicit
approach reaches a slightly better average.

The analyses show that, for the environment monitoring sce-
narios, the speculative approach shows better latency and energy con-
sumption, and comparable clock error in relation to the explicit syn-
chronization approach, which performs close to a theoretical explicit
clock synchronization algorithm. When the synchronization period is
greater than �ve times the data period, the burden of including times-
tamps in each message starts to show on energy and latency. However,
the speculative approach maintains clock synchronization performance
independent of the synchronization period, and for higher data periods
the 5d point where the explicit approach becomes better comes with
the cost of a large increase in clock error across the network.

151

0 200 400 600 800 1000 1200

50
10

0
15

0
20

0

Synchronization period (s)

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

● ●

●

●

●

●

●

Speculative
Explicit

(a) Low synchronization periods

500 1000 1500 2000 2500 3000 3500

18
0

19
0

20
0

21
0

22
0

Synchronization period (s)

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

●

●

●

Speculative
Explicit

(b) High synchronization periods

Figure 89: Estimated network lifetime for environment monitoring sce-
nario, d=600s. Only at synchronization periods of 3600s the Explicit
approach reaches a slightly better average.

152

4.4.4 Routing Metrics

Equation 2.7 in Section 2.5.1 introduces the concept of the dis-
tortion coe�cient α, which is a real number in the interval [0, 1] used
to skew the distance-based contention o�set for message transmission
according to any metric of interest. In this section, two such metrics
are presented and their overall impact on network performance is eval-
uated.

4.4.4.1 Expiry Metric

The Expiry metric de�nes a distortion coe�cient in�uenced by
how much time the message has left to reach its destination. Messages
that are close to expiring shrink space, reducing the node's o�set δ(m),
and providing it a better chance to win the contention and forward that
message quickly. Equation 4.7 de�nes the distortion coe�cient for the
Expiry metric.

α =
Em − t
Em

(4.7)

where Em is the timestamp in which message m expires and t is the
current time. It is assumed that Em > t, as otherwise m is an expired
message that should be dropped. The Expiry metric has been used for
all of the simulation experiments presented so far.

4.4.4.2 E�ort Metric

The E�ort metric distorts space based on how much the node
has cooperated with the network doing message forwarding in the past.
The more messages the node has forwarded, the more space is dilated,
and the less likely that node becomes to forward again. This metric
seeks a balance on the network for neighbors on the same hop from
the destination to better alternate the e�ort of forwarding messages.
Equation 4.8 de�nes the distortion coe�cient for the e�ort metric.

α =
Fn

Txn
(4.8)

where Fn is the number of queued messages from neighbors that node
n has relayed so far, and Txn is the total number of messages that

153

the node has transmitted in the past (including its own generated mes-
sages). The e�ort metric takes information from the node's history,
rather than from the message being forwarded.

4.4.4.3 Evaluation

The goal of the following experiments is to analyze the e�ec-
tiveness of each di�erent routing metric. The metrics are compared to
three other control groups. The Distance metric takes only the dis-
tance into account, and is de�ned as Equation 2.7 with a �xed α = 1.
Likewise, the Zero metric simply sets α = 0, such that nodes always
have the lowest possible o�set, and collision control is fully managed
by the MAC's random backo� and silence mechanisms (Section 3.5.1).
Random sets every o�set δ to a random number. A combination of
the Expiry and E�ort metrics is also assessed (the two α values mul-
tiplied), and is labeled Expiry E�ort Distance. The Expiry and
E�ort metrics are explained in Sections 4.4.4.1 and 4.4.4.2, respec-
tively.

The same scenario parameters presented in Tables 9, 11, 12 are
used, with the identi�ed optimal MAC preamble and radio transmission
power con�gurations shown in Tables 10, 13. The varied input variable
is the way the α component is calculated during MAC contention.

The statistics measured are network lifetime, average latency,
transmission fairness index, and o�set standard deviation. The fairness
index indicates how balanced was the amount of messages that were
relayed by the nodes, according to Equation 4.9:

FI =
(
∑
F)2

N ×
∑

(F 2)
(4.9)

where F is the number of message relayed, and N is the number of
nodes. The highest the value of the fairness index, the more nodes al-
ternate in forwarding messages, which leads to a better distribution of
the energy consumption, avoiding a certain routing path to be overused
and prematurely deplete the energy of particular nodes. Because by
design the sink will normally spend much more energy than any other
node (it needs to acknowledge every message), its message transmis-
sion statistics are not included in the fairness index calculation. The
o�set standard deviation indicates how well the metric spreads o�sets,
potentially reducing the probability of collisions.

For the SSB o�ce scenario, Figure 90a shows that the rout-

154

 Zero

 Effort Distance

 Expiry Distance

 Random

 Distance

 Expiry Effort Distance

Estimated network lifetime (days)

0 2 4 6 8 10 12 14

(a) Network lifetime

 Zero

 Effort Distance

 Distance

 Random

 Expiry Effort Distance

 Expiry Distance

Mean latency (s)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

(b) Mean latency

Figure 90: Estimated network lifetime and mean latency for SSB o�ce
scenario under di�erent routing metrics.

ing metrics have little impact on network life. This is expected, as
battery-powered nodes do not forward messages in the o�ce scenarios.
Figures 90b and 91a suggest that the variations in latency and fairness
index are not statistically relevant, as there is a big overlap between all
standard deviation intervals. This happens because SSB is a scenario
with few hops overall, such that routing decisions have little impact.

In the larger environment monitoring scenario, messages need to
travel more hops on average, and routing decisions impact network per-
formance. Figure 92a shows that the Distance and E�ort metrics yield
the best network lifetime for a data period of 60s. The Distance metric
calculates larger o�sets in general, which means that nodes spend more
time with their radios o� before transmission. However, for larger data
periods, the con�gured MAC contention period that limits the o�sets
is increased (Table 10), and the routing metrics have more room to
vary the o�set without causing collisions. Figure 94a shows that for
d = 600s, the E�ort metric performs the best in terms of network
lifetime. It is the only metric that signi�cantly outperforms Random,
which also achieves a balancing in forwarder selection. As expected,
the Zero metric shows a comparatively bad network lifetime, as it is
more likely to cause collisions and retransmissions. The fact that both
Expiry metrics are close to the Zero metric for d=60s and close to the
Random metric in d=600s further indicates that the MAC period of
29.51ms is too short for these metrics, generating more collisions.

155

 Zero

 Expiry Effort Distance

 Distance

 Effort Distance

 Random

 Expiry Distance

Fairness Index

0.0 0.1 0.2 0.3 0.4

(a) Fainess index

 Zero

 Expiry Effort Distance

 Expiry Distance

 Distance

 Effort Distance

 Random

Offset Standard Deviation (µs)

0 20 40 60 80 100 120

(b) O�set standard deviation

Figure 91: Fairness index and o�set standard deviation for SSB o�ce
scenario under di�erent routing metrics.

 Zero

 Expiry Effort Distance

 Expiry Distance

 Random

 Effort Distance

 Distance

Estimated network lifetime (days)

0 10 20 30 40

(a) Network lifetime

 Effort Distance

 Distance

 Expiry Distance

 Expiry Effort Distance

 Random

 Zero

Mean latency (s)

0.00 0.05 0.10 0.15 0.20

(b) Mean latency

Figure 92: Estimated network lifetime and mean latency for environ-
ment monitoring scenario, d=60s, under di�erent routing metrics.

156

 Distance

 Expiry Distance

 Zero

 Expiry Effort Distance

 Effort Distance

 Random

Fairness Index

0.0 0.1 0.2 0.3 0.4 0.5 0.6

(a) Fainess index

 Zero

 Expiry Effort Distance

 Expiry Distance

 Effort Distance

 Distance

 Random

Offset Standard Deviation (µs)

0 1000 2000 3000 4000 5000 6000 7000

(b) O�set standard deviation

Figure 93: Fairness index and o�set standard deviation for environment
monitoring scenario, d=60s, under di�erent routing metrics.

 Zero

 Expiry Distance

 Expiry Effort Distance

 Distance

 Random

 Effort Distance

Estimated network lifetime (days)

0 50 100 150 200

(a) Network lifetime

 Expiry Effort Distance

 Expiry Distance

 Effort Distance

 Distance

 Zero

 Random

Mean latency (s)

0.0 0.2 0.4 0.6 0.8

(b) Mean latency

Figure 94: Estimated network lifetime and mean latency for environ-
ment monitoring scenario, d=600s, under di�erent routing metrics.

157

 Expiry Distance

 Zero

 Distance

 Expiry Effort Distance

 Random

 Effort Distance

Fairness Index

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Fainess index

 Zero

 Expiry Effort Distance

 Expiry Distance

 Effort Distance

 Distance

 Random

Offset Standard Deviation (µs)

0 10000 20000 30000 40000

(b) O�set standard deviation

Figure 95: Fairness index and o�set standard deviation for environment
monitoring scenario, d=600s, under di�erent routing metrics.

Figures 93a, 95a indicate that the E�ort metric is indeed able
to maintain a high fairness index, comparable to the Random metric.
Figure 92b shows that the Distance and E�ort metrics end up having
a lower latency when d=60s, possibly for avoiding collisions more than
the other metrics. However, for a higher data and MAC period, the
Expiry metric signi�cantly reduces the overall latency, as shown in
Figure 94b.

No strong correlations were found between the o�set standard
deviations (Figures 91b, 93b, 95b) and other statistics, which indicates
that a higher spreading of the o�set does not signi�cantly reduce the
number of collisions in the observed cases.

Results for the LISHA o�ce scenario and environment monitor-
ing with d=300s and d=900s are similar to SSB and d=600s, and can
be found in Section A.2 of the Appendix.

Overall, the Expiry metric performs better in terms of latency
and only slightly worse in terms of network lifetime than the E�ort
metric. However, for smaller MAC periods, the E�ort metric is able
to prevent more collisions and balance the tra�c better, performing
better even in terms of latency.

158

4.5 EVALUATION SUMMARY

The main results obtained from the performance evaluations are:

• The code sizes for both implementations of TSTP (simulator and
real-world), including all of its features, is close to two third-party
implementations of the AODV protocol for the same simulation
framework. AODV only implements routing.

• The bu�er handling architecture shows light time overhead. The
average time overhead for allocation of zero-copy bu�ers in EPOS-
Mote III is 2.31µs. The noti�cation mechanism used for bu�er
propagation accounts for 11.60% of the total bu�er processing
time across the components.

• The code responsible for time synchronization on EPOSMote III
is time-deterministic. The delay from sending and receiving Start-
of-Frame Delimiters (SFD) between two devices has a jitter of
93.5ns, including software and radio delays. This leads to a highly
accurate time synchronization protocol that is able to achieve sub-
microsecond instant clock synchronization, as measured on real
EPOSMote III devices.

• There is an optimal point on MAC preamble size which depends
on network topology and tra�c. By selecting the right MAC
parameters, large networks are able to achieve e�ective radio duty
cycles smaller than 1% while keeping 100% delivery ratio and
average latencies around 0.5s.

• Including timestamps in every message to enable speculative clock
synchronization is bene�cial in all the scenarios considered when
compared to explicit, beaconed clock synchronization strategies.
For small, tra�c-intensive networks, the reduction in number of
messages leads to an increase in energy e�ciency. For larger
networks with lighter tra�c, the inclusion of timestamps in data
messages slightly improves latencies and energy e�ciency, while
keeping a better lower bound on clock accuracy.

• When the network is not saturated, the simplistic analytic model
shows similar results to the detailed simulations, while being
much faster to execute. It is thus an appropriate �rst step for
analyzing the expected behavior of new network deployments.

159

4.6 DISCUSSION

The MAC currently in use by TSTP, based on RB-MAC, has
many bene�ts such as low idle listening duty cycles; resiliency to lossy
links due to multiple nodes being able to forward a given message,
further improved by the possibility of using multiple channels with
no additional overhead (Section 3.5.1); enabling reactive routing and
speculative synchronization; and allowing energy-constrained nodes to
save energy by not acting as forwarders. It also does not impose any
requirements on clock synchronization accuracy, nor requires scheduling
or structuring of the network. However, the analyses show that its
performance in terms of delivery ratio, energy, and latency, makes it
unsuitable depending on the network requirements.

For the environment monitoring scenarios, while a delivery ratio
of 100% is achievable for all considered data periods, network lifetime
is generally the most important metric of interest, and as was shown in
the �gures, there is an optimal point imposed by the MAC that is de-
pendent on the network and the tra�c. This optimum might reach 264
days of full network operation (Table 10) for very sparse tra�c, which
might be reasonable for some applications, but a lifetime of around
one month is not impressive for a network with nodes each generating
data once per minute. What's worse, the analyses show that reducing
the radio transmission power actually decreases network lifetime even
more, as messages need to travel more hops towards the destination.
The literature commonly refers to 1% as the goal for radio duty cycles,
and TSTP MAC is only able to achieve 1% at data periods greater than
300s for the studied scenarios. Nevertheless, if the granted network life-
time is enough for a given application, TSTP achieves reasonably low
and bounded latencies, 100% delivery ratio, and clock synchronizations
of around hundreds of microseconds across the entire network.

For both o�ce scenarios, the situation is worse. The presence
of battery-powered nodes, a noisy environment, higher data rates, and
message expiration times as low as 300ms make it impossible for the
MAC to reliably deliver 100% of the messages in time for the considered
deployments. It seems that this limitation can only be solved by relax-
ing application requirements: either allowing a margin of message loss,
or reducing the overall data rate. While a tolerable message loss does
lead to signi�cant gains in network lifetime, such a trade-o� between
network life and delivery ratio might not be a reasonable imposition on
the network design.

Many techniques were employed to improve the MAC's perfor-

160

mance (Section 3.5.1), such as switching channels to transmit data mes-
sages, making battery-powered nodes not act as forwarders, di�erent
bu�er selection criteria on the MAC transmission schedule, or manip-
ulating the contention o�sets using di�erent metrics. While some of
these techniques did in fact improve performance, their result is what
is shown in the analyses of this work. It seems like RB-MAC has been
tuned to its limit, and it is still not enough for some real-world appli-
cations.

The proposed analytic model (Section 4.3) reproduced the gen-
eral behavior of the MAC, but is not RB-MAC speci�c. It considers a
simple model of collision resolution and makes few assumptions about
MAC operation. Namely, it assumes a CSMA/CA model where con-
tention access periods of a given duration arrive on a �xed interval at
each node, that only one message can be sent by period (because of the
long preambles), and takes as input the average end-to-end throughput
of the MAC. Although the model is optimistic on most of its predic-
tions in relation to the observed simulation results, it is not far o�,
indicating that the speci�c design and implementation of the MAC are
not the major factors in performance, but rather the general techniques
employed.

It is an important factor that TSTP as a whole achieves perfor-
mance close to the analytic model of the MAC while delivering all of
its higher-level features that directly bene�t applications and program-
mers (Section 2.1). It was shown that the implementation techniques
used for TSTP lead to a code size comparable to an implementation
of AODV, a routing-only protocol (Section 4.2.1). The mechanisms
for bu�er management impose a low overhead in the architecture (Sec-
tion 4.2.2). The clock synchronization algorithm was shown to be e�ec-
tive, both on real hardware (Section 4.2.3) and across a large simulated
network (Section 4.4.3). The contention o�set manipulation formula
successfully improves di�erent aspects of network performance in cer-
tain cases (Section 4.4.4). Moreover, it was shown that the technique of
pigtailing timestamps to every message, allowing for speculative time
synchronization, is in most scenarios a better technique than sending
regular synchronization beacons (Section 4.4.3). Solving the perfor-
mance limitations of the lower MAC component would not a�ect these
positive results in principle.

161

4.6.1 Possibilities for MAC improvements

To make TSTP adequate to applications with stricter perfor-
mance requirements, a possible solution is a major re-design of the
MAC. This section looks at related work in MAC protocols to identify
possible strategies to improve TSTP MAC's performance. Every de-
sign is measured against the many advantages that RB-MAC provides,
some of which are pre-requisites for TSTP's speculative synchronization
strategies.

RB-MAC de�nes the cooperative, geographic forwarder selection
and passive acknowledgment mechanisms used in TSTP MAC. The au-
thors of RB-MAC have analyzed the protocol in terms of energy con-
sumption and latency, comparing it to 1-hopMAC, where senders de�ne
a speci�c receiver at each hop. They show that RB-MAC is in general
more energy e�cient and causes less latency because its anycast nature
makes it much more resilient to lossy links (AKHAVAN; WATTEYNE;

AGHVAMI, 2011). If a link fails, other neighbors can carry on the trans-
mission, incurring no data loss or retransmission costs. Furthermore,
not de�ning a receiver at the MAC level allows for dynamic routing
metrics according to particular needs of di�erent nodes.

Dividing the preamble in microframes is also a good characteris-
tic of RB-MAC, which in principle makes it much more energy-e�cient
than continuous preamble protocols. In another work (STEINER et al.,
2013), RB-MAC has been compared to B-MAC (a continuous pream-
ble MAC protocol) and shown to far outperform it for varying channel
conditions.

In ContikiMAC (DUNKELS, 2011), senders transmit the data
packet repeatedly for a full period instead of using microframes. If
the packet is a unicast, the receiver cuts the transmission by sending
back an acknowledgment as soon as it wakes up and receives the packet.
If this happens, the sender and receiver lock their sleeping phases, re-
sulting in much less repetitions of the data packet in the next unicast
transmission involving the same two nodes. Although this results in
savings in latency and transmission cost in speci�c cases, it only works
for unicast.

A technique used in many related works to improve performance
is making receivers able to signal that they are ready to receive data,
so senders can cut the rest of the preamble for the current transmission
and transmit the data immediately. However, this technique reduces
the RB-MAC forwarder redundancy and makes it harder to employ
speculative synchronization techniques, as messages can often be trans-

162

mitted through the neighborhood of a node without it ever getting a
chance to receive it.

CMAC (LIU; FAN; SINHA, 2007) employs the preamble-cutting
technique while using the same routing-metric idea as TSTP. Messages
can be sent in unicast or anycast modes. In anycast, when a receiver
closer to the destination detects a microframe, it backs o� for a period
proportional to their distance to the destination. Then, if the channel
is free, it sends back a CTS, and the sender immediately transmits the
data packet. If the receiver that replied with a CTS is in a good enough
region, the sender locks in and will start unicasting to this node in
future transmissions until one of them fails; if this happens, the sender
returns to anycast mode. CMAC equally loses some resiliency to lossy
links, and makes it very hard for nodes to passively synchronize to
others that are locked in unicast mode.

Given that TSTP is able to keep a whole network synchcronized
with measurable accuracy, a promising technique is leveraging this clock
synchronization in the MAC itself. Also, leveraging knowledge about
the network deployment may lead to performance improvements, al-
though a convenient feature of RB-MAC is operating in a completely
ad-hoc manner, and not requiring any clock synchronization.

WiseMAC (EL-HOIYDI; DECOTIGNIE, 2004) is an early MAC pro-
tocol that uses the idea of clock synchronization to send packets only
when the receiver is likely to be awake. WiseMAC imposes a strong
requirement on network topology, assuming that a central node C with-
out energy constraints can reach every node under its supervision and
learn those nodes' sleeping schedules by listening to the channel all the
time. Then, when the tra�c goes from C to one of its children c, C can
start sending the preamble only when c will be awake (compensating
for the maximum possible clock drift), thus occupying the channel for
much less time, providing better throughput and energy savings.

Glossy (FERRARI et al., 2011) is an e�cient one-to-all communi-
cation architecture for Wireless Sensor Networks that leverages clock
synchronization and network structuring with a di�erent approach. It is
a cross-layer solution comprising routing, MAC, time synchronization,
and network API. Similar to TSTP's Speculative Precision Time Pro-
tocol, Glossy exploits control over the MAC layer to synchronize clocks
over the network with low cost and high accuracy as a consequence
of well-de�ned communication timings. Glossy exploits constructive
interference3 on IEEE 802.15.4 networks to �ood packets with high en-

3The phenomenon that two packet transmissions with the same content and very
close in time will amplify one another instead of destroying.

163

ergy and time e�ciency, but achieving constructive interference brings
very strict timing requirements. The authors detail the techniques used
to reach a highly time-deterministic implementation, however the tim-
ing requirements bring an inherent probability of transmission failure,
as nodes slightly skewed in time will make interference destructive. In
Glossy, every transmission is a network-wide broadcast, enabling spec-
ulative synchronization, providing high resiliency to lossy links, and
implicitly solving routing. However, as no two broadcasts can occupy
the channel at the same time, Glossy requires a global scheduling of
transmissions in the network.

LWB (FERRARI et al., 2012) extends Glossy to the context of
data-gathering WSNs, with many nodes initiating data transmissions.
Glossy and LWB present many, but not all of TSTP's features: high
accuracy time synchronization; reactive, fully distributed, topology-
agnostic routing; and a low power MAC with high redundancy. How-
ever, multiple di�erent Glossy �oods happening at once would greatly
interfere with each other, and so LWB uses a global schedule to ensure
that no two �oods overlap in time. This global scheduling requires
knowledge about all the devices on a network, weakening the advan-
tages of ad-hoc routing.

The DMAC (LU; KRISHNAMACHARI; RAGHAVENDRA, 2004) pro-
tocol uses a staggered schedule concept, which leverages a known net-
work structure to greatly reduce latency in the uplink direction (tra�c
�owing from sensors to the sink). It o�sets the periodic channel checks
such that nodes n-hops away from the sink will wake up right after
nodes (n+1)-hops away, so nodes in the farther region will start trans-
mission and have a receiver available right away. This design drasti-
cally reduces latency all the way from sensors to the sink. Since TSTP
provides nodes with their spatial locations, a similar idea might be
employable.

As future work for MAC improvement, it seems promising to
investigate a time-synchronous MAC design enabled by TSTP's ac-
curate clock synchronization, as well as leveraging spatial knowledge
about network deployment given by TSTP coordinates. Other choices
of physical layer would also have a signi�cant impact on the perfor-
mance bottlenecks, as a major part of TSTP's MAC parameters are
speci�cally derived from characteristics of an IEEE 802.15.4 physical
layer.

164

165

5 CONCLUSION

The Trustful Space-Time Protocol project as an academic en-
deavour pushes the development of non-traditional solutions to Wire-
less Sensor Networks. It proposes a novel way of interacting with sensor
and actuator devices in terms that make sense in the real world. The
principles of time, space, and trust in�ltrate the way data is handled at
all levels, from measurement, to transport, to storage, to visualization.

This work has provided many contributions to the Trustful Space-
Time Protocol project. Although every sub-protocol that is part of
TSTP has existed in some form in the past, this is the �rst time the
protocol as a whole has been documented in detail, implemented, and
evaluated. Many di�erent, reusable tools were developed in conjunc-
tion with the protocol's implementation to aid development, debugging,
validation, and design of new network deployments.

TSTP today powers two smart rooms and a network of hydro-
logic monitoring stations that feed a sophisticated IoT architecture with
veri�ably authentic data enriched with SI semantics, as well as precise
timestamps and coordinates of creation.

The behavior of the protocol was evaluated under di�erent appli-
cation scenarios, and the best con�gurations were identi�ed. The MAC
was highlighted as a limitant aspect of performance, and an analytic
model suggests that it is not simply an implementation issue. Possible
strategies identi�ed in the literature to employ in a better MAC design
include leveraging time synchronization and knowledge about network
structure. Other choices of physical layer would also have a signi�-
cant impact on the performance bottlenecks, as a major part of the
MAC's parameters are speci�cally derived from characteristics of an
IEEE 802.15.4 physical layer. As future work, an investigation of the
mentioned MAC techniques and a study of alternative physical layers
are suggested.

As a more general contribution, it was shown that pigtailing
synchronization information to network messages and sharing it across
sub-components can lead to better performance than the exchange of
explicit synchronization messages. Moreover, a cross-layer architecture
to fully leverage information sharing does not necessarily result in a
tightly-coupled software design.

As the world becomes more connected, with ever smaller and
more pervasive computing devices, e�orts towards careful, domain-
oriented designs and implementations of novel operating systems and

166

network protocols are important to guide the Internet of Things away
from the problems and vulnerabilities identi�ed and accumulated over
decades of development in traditional computer networks, so that it
can one day drive a smarter, Trustful world.

167

BIBLIOGRAPHY

AKHAVAN, M. R.; WATTEYNE, T.; AGHVAMI, A. H. Enhancing
the performance of RPL using a Receiver-Based MAC protocol in
lossy WSNs. In: IEEE ICT. Ayia Napa, Cyprus: [s.n.], 2011. p.
191�194.

BACHIR, A. et al. Micro-Frame Preamble MAC for Multihop
Wireless Sensor Networks. In: IEEE ICC. Istanbul, Turkey: [s.n.],
2006. p. 3365�3370. ISSN 8164-9547.

BERNSTEIN, D. J. The poly1305-aes message authentication code.
In: Proceedings of Fast Software Encryption. Paris, France:
[s.n.], 2005. p. 32�49.

BOULIS, A. Castalia A simulator for Wireless Sensor
Networks and Body Area Networks. 2017. Available at:
<https://github.com/boulis/Castalia>.

CRISTIAN, F. Probabilistic clock synchronization. Distributed
Computing, Springer, v. 3, n. 3, p. 146�158, set. 1989. ISSN
0178-2770.

DIXON, C. et al. An operating system for the home. In:
Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation. Berkeley, CA, USA:
USENIX Association, 2012. (NSDI'12), p. 25�25. Available at:
<http://dl.acm.org/citation.cfm?id=2228298.2228332>.

DJENOURI, D.; BAGAA, M. Synchronization protocols and
implementation issues in wireless sensor networks: A review. IEEE
Systems Journal, Institute of Electrical and Electronics Engineers
(IEEE), v. 10, n. 2, p. 617�627, jun 2016. Available at:
<https://doi.org/10.1109\%2Fjsyst.2014.2360460>.

DOUKHNITCH, E.; SALAMAH, M.; OZEN, E. An e�cient approach
for trilateration in 3d positioning. Computer Communications,
v. 31, n. 17, p. 4124 � 4129, 2008. ISSN 0140-3664. Available at:
<http://www.sciencedirect.com/science/article/pii-
/S0140366408004751>.

DUNKELS, A. The ContikiMAC Radio Duty Cycling
Protocol. 2011.

http://dl.acm.org/citation.cfm?id=2228298.2228332
http://www.sciencedirect.com/science/article/pii/S0140366408004751
http://www.sciencedirect.com/science/article/pii/S0140366408004751

168

EIDSON, J. C. Measurement, Control, and Communication
Using IEEE 1588 (Advances in Industrial Control). Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2006. ISBN 1846282500.

EL-HOIYDI, A.; DECOTIGNIE, J. D. Wisemac: an ultra low power
mac protocol for the downlink of infrastructure wireless sensor
networks. In: Computers and Communications, 2004.
Proceedings. ISCC 2004. Ninth International Symposium on.
[S.l.: s.n.], 2004. v. 1, p. 244�251 Vol.1.

FERRARI, F. et al. E�cient network �ooding and time
synchronization with glossy. In: Proceedings of the 10th
ACM/IEEE International Conference on Information
Processing in Sensor Networks. [S.l.: s.n.], 2011. p. 73�84.

FERRARI, F. et al. The bus goes wireless: Routing-free data
collection with qos guarantees in sensor networks. In: 2012 IEEE
International Conference on Pervasive Computing and
Communications Workshops. [S.l.: s.n.], 2012. p. 26�31.

FRÖHLICH, A. A.; STEINER, R.; RUFINO, L. M. A trustful
infrastructure for the internet of things based on eposmote. In: 9th
IEEE International Conference on Dependable, Autonomic
and Secure Computing. [S.l.: s.n.], 2011. p. 63�68.

FU, B. et al. A survey of cross-layer designs in wireless networks.
Communications Surveys Tutorials, IEEE, v. 16, n. 1, p.
110�126, First 2014. ISSN 1553-877X.

GAMMA, E. et al. Design Patterns: Elements of Reusable
Object-Oriented Software. [S.l.]: Addison-Wesley, 1995.

GRACIOLI, G. et al. Avaliação de um Algoritmo de Localização
baseado em RSSI para Redes Sensores Sem Fio. Revista IEEE
América Latina, v. 9, n. 1, p. 96�101, 2011. ISSN 1548-0992.

GRANJAL, J.; MONTEIRO, E.; SILVA, J. S. Security for the
internet of things: A survey of existing protocols and open research
issues. IEEE Communications Surveys Tutorials, v. 17, n. 3, p.
1294�1312, thirdquarter 2015. ISSN 1553-877X.

GUSELLA, R.; ZATTI, S. The accuracy of the clock synchronization
achieved by tempo in berkeley unix 4.3bsd. IEEE Transactions on
Software Engineering, v. 15, n. 7, p. 847�853, Jul 1989. ISSN
0098-5589.

169

HUANG, P. et al. The evolution of mac protocols in wireless sensor
networks: A survey. IEEE Communications Surveys Tutorials,
v. 15, n. 1, p. 101�120, First 2013. ISSN 1553-877X.

HUANG, Q. et al. Fast authenticated key establishment protocols for
self-organizing sensor networks. In: 2nd ACM WSNA. New York,
NY, USA: ACM, 2003. (WSNA '03), p. 141�150. ISBN 1-58113-764-8.

HULBERT, A. et al. An experimental study of big spatial data
systems. In: IEEE International Conference on Big Data (Big
Data). [S.l.: s.n.], 2016. p. 2664�2671.

IEEE. Ieee standard for a precision clock synchronization protocol for
networked measurement and control systems. IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), p. c1�269, July 2008.

IEEE Standard for Local and metropolitan area networks�Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std
802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), p. 1�314,
Sept 2011.

INSTRUMENTATION, I.; SOCIETY", M. "1451.0 - IEEE
Standard for a Smart Transducer Interface for Sensors and
Actuators�Common Functions, Communication Protocols,
and Transducer Electronic Data Sheet (TEDS) Formats".
2007. Online. Available at:
<http://web.mit.edu/goretkin/Public/ieee1451/4338161.pdf>.

KARLOF, C.; SASTRY, N.; WAGNER, D. Tinysec: a link layer
security architecture for wireless sensor networks. In: 2nd SenSys.
New York, NY, USA: ACM, 2004. p. 162�175. ISBN 1-58113-879-2.
Available at: <http://doi.acm.org/10.1145/1031495.1031515>.

LAB, S. I. EPOS - Embedded Parallel Operating System.
2017. Available at: <https://epos.lisha.ufsc.br/>.

LEVIS, P. et al. Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor networks. In:
Proceedings of the 1st Conference on Symposium on
Networked Systems Design and Implementation - Volume 1.
Berkeley, CA, USA: USENIX Association, 2004. (NSDI'04), p. 2�2.
Available at: <http://dl.acm.org/citation.cfm?id=1251175.1251177>.

LEWIS, L. L. An introduction to frequency standards. Proceedings
of the IEEE, v. 79, n. 7, p. 927�935, Jul 1991. ISSN 0018-9219.

http://web.mit.edu/goretkin/Public/ieee1451/4338161.pdf
http://doi.acm.org/10.1145/1031495.1031515
http://dl.acm.org/citation.cfm?id=1251175.1251177

170

LISHA. Internet of Things at UFSC. 2017. Available at:
<https://iot.ufsc.br/>.

LIU, S.; FAN, K. W.; SINHA, P. Cmac: An energy e�cient mac layer
protocol using convergent packet forwarding for wireless sensor
networks. In: 2007 4th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications
and Networks. [S.l.: s.n.], 2007. p. 11�20. ISSN 2155-5486.

LONARE, S.; WAHANE, G. A survey on energy e�cient routing
protocols in wireless sensor network. In: 2013 Fourth
International Conference on Computing, Communications
and Networking Technologies (ICCCNT). IEEE, 2013. Available
at: <https://doi.org/10.1109\%2Ficccnt.2013.6726591>.

LU, G.; KRISHNAMACHARI, B.; RAGHAVENDRA, C. S. An
adaptive energy-e�cient and low-latency mac for data gathering in
wireless sensor networks. In: Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International. [S.l.: s.n.],
2004. p. 224�.

LUK, M. et al. Minisec: A secure sensor network communication
architecture. In: 6th IPSN. [S.l.: s.n.], 2007. p. 479 �488.

MARóTI, M. et al. The �ooding time synchronization protocol. In:
Proceedings of the 2Nd International Conference on
Embedded Networked Sensor Systems. New York, NY, USA:
ACM, 2004. (SenSys '04), p. 39�49. ISBN 1-58113-879-2. Available at:
<http://doi.acm.org/10.1145/1031495.1031501>.

MEHTA, A. M.; PISTER, K. S. J. Frequency o�set compensation for
crystal-free 802.15.4 communication. In: International Conference
on Advanced Technologies for Communications (ATC). [S.l.:
s.n.], 2011. p. 45�47. ISSN 2162-1020.

MENDES, L. D.; RODRIGUES, J. J. A survey on cross-layer
solutions for wireless sensor networks. Journal of Network and
Computer Applications, v. 34, n. 2, p. 523 � 534, 2011. ISSN
1084-8045. E�cient and Robust Security and Services of Wireless
Mesh Networks.

MILLS, D. Internet time synchronization: the network time protocol.
IEEE Transactions on Communications, v. 39, n. 10, p.
1482�1493, Oct 1991. ISSN 0090-6778.

http://doi.acm.org/10.1145/1031495.1031501

171

NIAN, M. G. lesta SIVA, J.; POELLABAUER, C. Radio
frequency-based indoor localization in ad-hoc networks. In: ORTIZ, J.
(Ed.). Ad Hoc Networks. InTech, 2017. cap. 6. Available at:
<https://www.intechopen.com/books/ad-hoc-networks/radio-
frequency-based-indoor-localization-in-ad-hoc-networks>.

OKAZAKI, A. M.; FRÖHLICH, A. A. ADHOP: an Energy Aware
Routing Algorithm for Mobile Wireless Sensor Networks. In: IEEE
SENSORS. Taipei, Taiwan: [s.n.], 2012. Available at:
<http://www.lisha.ufsc.br/pub/Okazaki\ Sensors\ 2012.pdf>.

OLIVEIRA, P. et al. Sincronização de Tempo a nível de SO utilizando
o protocolo IEEE1588. In: Brazilian Symposium on Computing
Systems Engineering. Natal, Brazil: [s.n.], 2012. ISBN
978-0-7695-4929-3. Available at: <http://sbesc.lisha.ufsc.br-
/sbesc2012/tiki-download\ �le.php?�leId=115>.

OPENSIM. OMNeT++ - Objective Modular Network
Testbed in C++. 2017. Available at: <https://omnetpp.org/>.

PATIL, M.; BIRADAR, R. C. A survey on routing protocols in
wireless sensor networks. In: IEEE. Networks (ICON), 2012 18th
IEEE International Conference on. [S.l.], 2012. p. 86�91.

PIRES, R. P.; WANNER, L. F.; FRÖHLICH, A. A. An E�cient
Calibration Method for RSSI-based Location Algorithms. In: 6th
International IEEE Conference on Industrial Informatics.
Daejeon, Korea: [s.n.], 2008. p. 1183�1188. ISBN 978-1-4244-2170-1.

POLASTRE, J.; HILL, J.; CULLER, D. Versatile low power media
access for wireless sensor networks. In: ACM SenSys. New York,
USA: [s.n.], 2004. p. 95�107. ISBN 1-58113-879-2.

REGHELIN, R.; FRÖHLICH, A. A. A Decentralized Location
System for Sensor Networks Using Cooperative Calibration and
Heuristics. In: 9th ACM/IEEE International Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile
Systems. Torremolinos, Malaga, Spain.: [s.n.], 2006. p. 139�146.
ISBN 1-59593-477-4.

RESNER, D. Estabelecimento de Chaves e Comunicação
Segura para a Internet das Coisas. Florianópolis: [s.n.], 2014.
67 p. B.Sc. Thesis. Available at:
<http://www.lisha.ufsc.br/pub/Resner\ BSC\ 2014.pdf>.

http://www.lisha.ufsc.br/pub/Okazaki_Sensors_2012.pdf
http://sbesc.lisha.ufsc.br/sbesc2012/tiki-download_file.php?fileId=115
http://sbesc.lisha.ufsc.br/sbesc2012/tiki-download_file.php?fileId=115
http://www.lisha.ufsc.br/pub/Resner_BSC_2014.pdf

172

RESNER, D.; ARAUJO, G. M. de; FRÖHLICH, A. A. On the
Impact of Dynamic Routing Metrics on a Geographic Protocol for
WSNs. In: Brazilian Symposium on Computing Systems
Engineering. João Pessoa, Brazil: [s.n.], 2016. Available at:
<http://www.lisha.ufsc.br/pub/Resner\ SBESC\ 2016.pdf>.

RESNER, D.; ARAUJO, G. M. de; FRÖHLICH, A. A. Design and
Implementation of a Cross-Layer IoT Protocol. Science of
Computer Programming, v. 0, n. 0, p. 0, 2017. ISSN 0000-0000.

RESNER, D.; FRÖHLICH, A. A. Design Rationale of a Cross-layer,
Trustful Space-Time Protocol for Wireless Sensor Networks. In: 20th
IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA). Luxembourg, Luxembourg:
[s.n.], 2015. p. 1�8. Available at:
<http://www.lisha.ufsc.br/pub/Resner\ ETFA\ 2015.pdf>.

RESNER, D.; FRÖHLICH, A. A. Key Establishment and Trustful
Communication for the Internet of Things. In: 4th International
Conference on Sensor Networks (SENSORNETS 2015).
Angers, France: [s.n.], 2015. p. 197�206. ISBN 978-989-758-086-4.
Available at:
<http://www.lisha.ufsc.br/pub/Resner\ SENSORNETS\ 2015.pdf>.

RESNER, D.; FRÖHLICH, A. A. TSTP MAC: A Foundation for the
Trustful Space-Time Protocol. In: 14th IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing
(EUC). Paris, France: [s.n.], 2016.

RESNER, D.; FRÖHLICH, A. A.; WANNER, L. F. Speculative
Precision Time Protocol: submicrosecond clock synchronization for
the IoT. In: 21th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). Berlin,
Germany: [s.n.], 2016.

SANTOS, T. R. dos; FRÖHLICH, A. A. A Customizable Component
for Low-Level Communication Software. In: 19th Annual
Symposium on High Performance Computing Systems and
Applications. Guelph, Canada: [s.n.], 2005. p. 58�64. ISBN
0-7695-2343-9.

SCHMID, T.; DUTTA, P.; SRIVASTAVA, M. B. High-resolution,
low-power time synchronization an oxymoron no more. In:
Proceedings of the 9th ACM/IEEE International Conference

http://www.lisha.ufsc.br/pub/Resner_SBESC_2016.pdf
http://www.lisha.ufsc.br/pub/Resner_ETFA_2015.pdf
http://www.lisha.ufsc.br/pub/Resner_SENSORNETS_2015.pdf

173

on Information Processing in Sensor Networks. New York, NY,
USA: ACM, 2010. (IPSN '10), p. 151�161. ISBN 978-1-60558-988-6.
Available at: <http://doi.acm.org/10.1145/1791212.1791231>.

STEINER, R. V. et al. Performance Evaluation of Receiver Based
MAC Using Con�gurable Framework in WSNs. In: IEEE Wireless
Communications and Networking Conference (WCNC).
Shanghai, China: [s.n.], 2013. p. 884�889. ISBN 978-1-4673-5939-9.
Available at:
<http://www.lisha.ufsc.br/pub/Steiner\ WCNC\ 2013.pdf>.

SUO, H. et al. Security in the internet of things: A review. In:
ICCSEE. [S.l.: s.n.], 2012. v. 3, p. 648�651.

TEXAS INSTRUMENTS. CC2538 Powerful Wireless
Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4,
6LoWPAN, and ZigBee Applications datasheet. [S.l.], 4 2015.
Rev. D.

ZHOU, H. et al. Frequency Accuracy and Stability
Dependencies of Crystal Oscillators. [S.l.], 11 2008.

http://doi.acm.org/10.1145/1791212.1791231
http://www.lisha.ufsc.br/pub/Steiner_WCNC_2013.pdf

174

Appendix A -- Additional simulation results

177

0 100 200 300 400 500 600

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●

●

●

●

● ●
●

●

●

●

Speculative
Explicit

(a) Low synchronization periods

500 1000 1500

0.
37

0.
38

0.
39

0.
40

0.
41

0.
42

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●

●

●

●

●

●

●

Speculative
Explicit

(b) High synchronization periods

Figure 96: Average latency for environment monitoring scenario,
d=300s.

The simulation results in this Appendix are similar to the ones
presented and discussed in Chapter 4, and are included for completion.

A.1 SYNCHRONIZATION

178

0 100 200 300 400 500 600

0
20

00
0

40
00

0
60

00
0

80
00

0

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

●

●
●

●
● ●

●

Speculative
Explicit
Theoretical

(a) Low synchronization periods

500 1000 1500
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

●

●

●

●

Speculative
Explicit
Theoretical

(b) High synchronization periods

Figure 97: Number of explicit synchronization messages for environ-
ment monitoring scenario, d=300s.

0 100 200 300 400 500 600

0
50

0
10

00
15

00
20

00
25

00
30

00

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)

● ● ● ●
● ● ●

●
●

●

Speculative
Explicit
Theoretical

(a) Low synchronization periods

500 1000 1500

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)

●
● ●

●

●

●

●

Speculative
Explicit
Theoretical

(b) High synchronization periods

Figure 98: Average clock error for environment monitoring scenario,
d=300s.

179

0 100 200 300 400 500 600

0e
+

00
1e

+
05

2e
+

05
3e

+
05

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

●

●

●

●
● ● ● ● ●

●

Speculative
Explicit

(a) Low synchronization periods

500 1000 1500

−
50

00
0

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

●

●

● ●
●

●

●

Speculative
Explicit

(b) High synchronization periods

Figure 99: Energy consumption compared to theoretical explicit ap-
proach for environment monitoring scenario, d=300s.

0 100 200 300 400 500 600

60
80

10
0

12
0

Synchronization period (s)

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

●

●

●

●

●

Speculative
Explicit

(a) Low synchronization periods

500 1000 1500

12
0

12
5

13
0

13
5

Synchronization period (s)

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●
●

●

●

Speculative
Explicit

(b) High synchronization periods

Figure 100: Estimated network lifetime for environment monitoring
scenario, d=300s.

180

0 500 1000 1500

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●

●

●

●

●
●

●
● ● ● ● ●

●

Speculative
Explicit

(a) Low synchronization periods

1000 1500 2000 2500 3000 3500
0.

54
0.

55
0.

56
0.

57
0.

58
0.

59
0.

60

Synchronization period (s)

M
ea

n
la

te
nc

y
(s

)

●

●

●
●

●

●

●

Speculative
Explicit

(b) High synchronization periods

Figure 101: Average latency for environment monitoring scenario,
d=900s.

0 500 1000 1500

0
20

00
0

40
00

0
60

00
0

80
00

0

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

●

●
●

●
●

● ● ● ●

●

Speculative
Explicit
Theoretical

(a) Low synchronization periods

1000 1500 2000 2500 3000 3500

0
50

0
10

00
15

00
20

00
25

00

Synchronization period (s)

K
ee

pa
liv

es
 s

en
t

●

●

●

● ●

●

●

Speculative
Explicit
Theoretical

(b) High synchronization periods

Figure 102: Number of explicit synchronization messages for environ-
ment monitoring scenario, d=900s.

181

0 500 1000 1500

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)

●●● ● ● ● ●
● ●

●

●

●

●

Speculative
Explicit
Theoretical

(a) Low synchronization periods

1000 1500 2000 2500 3000 3500

0
10

00
0

20
00

0
30

00
0

40
00

0

Synchronization period (s)

A
ve

ra
ge

 c
lo

ck
 e

rr
or

 (
us

)

●
●

●

●

●

●

●

Speculative
Explicit
Theoretical

(b) High synchronization periods

Figure 103: Average clock error for environment monitoring scenario,
d=900s.

0 500 1000 1500

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

●

●

●

●
● ● ● ● ● ● ● ●

●

Speculative
Explicit

(a) Low synchronization periods

1000 1500 2000 2500 3000 3500

−
50

00
0

50
00

10
00

0

Synchronization period (s)

T
he

or
et

ic
al

 e
ne

rg
y

ga
in

 (
J)

●

● ●
●

●

●

●

Speculative
Explicit

(b) High synchronization periods

Figure 104: Energy consumption compared to theoretical explicit ap-
proach for environment monitoring scenario, d=900s.

182

0 500 1000 1500

50
10

0
15

0
20

0
25

0

Synchronization period (s)

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

Speculative
Explicit

(a) Low synchronization periods

1000 1500 2000 2500 3000 3500

23
0

24
0

25
0

26
0

27
0

Synchronization period (s)

E
st

im
at

ed
 n

et
w

or
k

lif
et

im
e

(d
ay

s)

●

●

●

●

●

●

●

Speculative
Explicit

(b) High synchronization periods

Figure 105: Estimated network lifetime for environment monitoring
scenario, d=900s.

183

 Expiry Effort Distance

 Zero

 Expiry Distance

 Effort Distance

 Random

 Distance

Estimated network lifetime (days)

0 10 20 30 40

(a) Network lifetime

 Expiry Distance

 Expiry Effort Distance

 Zero

 Effort Distance

 Random

 Distance

Mean latency (s)

0.00 0.01 0.02 0.03 0.04 0.05

(b) Mean latency

Figure 106: Estimated network lifetime and mean latency for LISHA
o�ce scenario under di�erent routing metrics.

A.2 ROUTING METRICS

184

 Distance

 Effort Distance

 Random

 Zero

 Expiry Effort Distance

 Expiry Distance

Fairness Index

0.0 0.1 0.2 0.3 0.4

(a) Fainess index

 Zero

 Distance

 Expiry Effort Distance

 Expiry Distance

 Random

 Effort Distance

Offset Standard Deviation (µs)

0 1000 2000 3000 4000

(b) O�set standard deviation

Figure 107: Fairness index and o�set standard deviation for LISHA
o�ce scenario under di�erent routing metrics.

 Zero

 Expiry Effort Distance

 Expiry Distance

 Distance

 Random

 Effort Distance

Estimated network lifetime (days)

0 20 40 60 80 100 120 140

(a) Network lifetime

 Expiry Distance

 Expiry Effort Distance

 Effort Distance

 Distance

 Zero

 Random

Mean latency (s)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

(b) Mean latency

Figure 108: Estimated network lifetime and mean latency for environ-
ment monitoring scenario, d=300s, under di�erent routing metrics.

185

 Expiry Distance

 Distance

 Zero

 Random

 Expiry Effort Distance

 Effort Distance

Fairness Index

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Fainess index

 Zero

 Expiry Effort Distance

 Expiry Distance

 Effort Distance

 Distance

 Random

Offset Standard Deviation (µs)

0 5000 10000 15000 20000 25000 30000

(b) O�set standard deviation

Figure 109: Fairness index and o�set standard deviation for environ-
ment monitoring scenario, d=300s, under di�erent routing metrics.

 Zero

 Expiry Distance

 Expiry Effort Distance

 Random

 Distance

 Effort Distance

Estimated network lifetime (days)

0 50 100 150 200 250

(a) Network lifetime

 Expiry Effort Distance

 Expiry Distance

 Effort Distance

 Distance

 Zero

 Random

Mean latency (s)

0.0 0.2 0.4 0.6 0.8

(b) Mean latency

Figure 110: Estimated network lifetime and mean latency for environ-
ment monitoring scenario, d=900s, under di�erent routing metrics.

186

 Zero

 Expiry Distance

 Distance

 Random

 Effort Distance

 Expiry Effort Distance

Fairness Index

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Fainess index

 Zero

 Expiry Effort Distance

 Expiry Distance

 Effort Distance

 Distance

 Random

Offset Standard Deviation (µs)

0 10000 20000 30000 40000 50000

(b) O�set standard deviation

Figure 111: Fairness index and o�set standard deviation for environ-
ment monitoring scenario, d=900s, under di�erent routing metrics.

Appendix B -- Scienti�c Publications

189

The following articles were direct products of the work presented
in this dissertation, published in scienti�c journals or conference pro-
ceedings:

1.RESNER, D.; FROHLICH, A. A. . Key Establishment and
Trustful Communication for the Internet of Things. In:
4th International Conference on Sensor Networks (SENSORNETS),
2015, ESEO. p. 197-206.

2.RESNER, D.; FROHLICH, A. A. . Design rationale of a
cross-layer, Trustful Space-Time Protocol for Wireless
Sensor Networks. In: 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA), 2015, Luxembourg.

3.RESNER, D.; FROHLICH, A. A. . TSTP MAC: a Cross-
Layer, Geographic, Receiver-Based MAC Protocol for
WSNs. In: Brazilian Symposium on Computing Systems Engi-
neering (SBESC), 2015, Foz do Iguaçu.

4.RESNER, D.; FROHLICH, A. A. . TSTP MAC: A Founda-
tion for the Trustful Space-Time Protocol. In: 2016 IEEE
Intl Conference on Embedded and Ubiquitous Computing (EUC),
Paris. 2016, p. 40.

5.RESNER, D.; FROHLICH, A. A.; WANNER, L. F. . Spec-
ulative Precision Time Protocol: Submicrosecond clock
synchronization for the IoT. In: 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation
(ETFA), 2016, Berlin. 2016.

6.RESNER, D.; ARAUJO, G. M. ; FROHLICH, A. A. . On the
Impact of Dynamic Routing Metrics on a Geographic
Protocol for WSNs. In: 2016 VI Brazilian Symposium on
Computing Systems Engineering (SBESC), 2016, João Pessoa.
p. 109.

7.SILVA, D. S. ; RESNER, D. ; SOUZA, R. L. ; MARTINA, J. E.
. Formal Veri�cation of a Cross-Layer, Trustful Space-
Time Protocol for Wireless Sensor Networks. In: Lecture
Notes in Computer Science. 0ed.: Springer International Pub-
lishing, 2016, v. , p. 426-443.

8.SUSIN, M. M. ; WANNER, L. F. ; RESNER, D. ; FROHLICH,
A. A. . Time Synchronization under Temperature and

190

Distance Variations. In: 2017 VII Brazilian Symposium on
Computing Systems Engineering (SBESC), 2017, Curitiba. p.
167.

9.RESNER, D.; ARAUJO, G. M. ; FRÖHLICH, A. A. . Design
and Implementation of a Cross-Layer IoT Protocol. In:
Science Of Computer Programming, 2017.

	Introduction
	Background
	Previous related work by the group
	Objectives
	Methodology
	Overview

	TSTP Design
	Principles
	Application Scenario

	Architecture
	Position Estimation
	Time Synchronization
	MAC and Routing
	Spatial Distortion
	TSTP Greedy Forwarding Algorithm

	Security
	SmartData

	TSTP Implementation
	Component Model
	Zero-copy Buffers
	Metadata
	Event Propagation
	Active Components
	Bootstrapping
	Interaction with the API Component

	Common Message Formats
	Position Estimation
	Time Synchronization
	Sources of Synchronization Imprecision
	SPTP Implementation

	MAC and Routing
	Collisions and Hidden Nodes

	Security
	Key establishment and management

	SmartData

	TSTP Evaluation
	Tools and Debugging
	MAC State Machine Verification
	Security Library Verification
	Network Traffic Visualization
	Simulation Execution

	EPOSMote III Experiments
	Code Size
	Buffer Management
	Integrity Control

	Time Synchronization

	Analytic Model
	Limitations

	Simulation Experiments
	Sources of Random Variation
	MAC Configuration
	Environment Monitoring Scenario
	LISHA Office Scenario
	SSB Office Scenario

	Synchronization
	LISHA Office Scenario
	SSB Office Scenario
	Environment Monitoring Scenario

	Routing Metrics
	Expiry Metric
	Effort Metric
	Evaluation

	Evaluation Summary
	Discussion
	Possibilities for MAC improvements

	Conclusion
	 BIBLIOGRAPHY
	 Appendix A – Additional simulation results
	 Appendix B – Scientific Publications

