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Success is not final, failure is not fatal: it is the 

courage to continue that counts. 

Winston Churchill 





RESUMO 

 

Em virtude do recorrente aumento de aplicações para IoT (Internet das 

Coisas), que exige dispositivos autossuficientes, este trabalho de 

conclusão de curso propõe o projeto de um circuito integrado de baixa 

tensão que, combinado a um cristal de quartzo, forma um oscilador, o qual 

é um bloco importante em sistemas digitais e de comunicação. Esse 

circuito opera com 100mV de tensão de alimentação, compatível com o 

uso de dispositivos de colheita de energia, visto que esses dispositivos 

geram tensões de dezenas a centenas de milivolts. Por operar em baixa 

tensão, o consumo de potência do circuito diminui. Este trabalho 

apresenta a teoria, medições práticas usando componentes discretos e o 

projeto do circuito integrado, em conjunto com simulações de 

esquemático e layout, que permitem verificar o comportamento do 

circuito integrado e suas condições de operação. 

 

Palavras-chave: Oscilador a cristal. Operação em baixa tensão. 

Tecnologia CMOS.  

 

 

  





ABSTRACT 

 

Given the increase of IoT applications, which requires autonomous 

devices, this final year project proposes the design of a low-voltage 

integrated circuit that, combined with a quartz-crystal, forms an oscillator, 

an important block in digital and communication systems. The circuit 

operates with 100 mV of supply voltage, which is compatible with the use 

of energy harvesting devices, since these devices provide from tens to 

hundreds of millivolts. By operating at low-voltages, the circuit’s power 

consumption is reduced. This work presents the theory, measurements 

using discrete components and the design of the integrated circuit of a 

Pierce oscillator along with schematic and layout simulations, which 

allows to verify and predict the behavior of the integrated circuit. 

 

Keywords: Crystal oscillator. Low-voltage. CMOS technology. 
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1 INTRODUCTION  

 

“Si le Temps peut être observé, il peut aussi être fabriqué”, Musée 

du Temps, Besançon, France. If time can be observed, it can be fabricated.  

Using mechanical devices, the first watchmakers built an artificial 

clock, based on the count of small regular time intervals. From this initial 

rhythm, from this first base of time, they managed to calculate the passage 

of hours. A sound signal from a bell or a visual indication given by a 

needle allowed the passing of time to be materialized.  

In the 15th century, explorers traveled through the seas and oceans 

in search of new lands and treasures. They could determine the latitude 

by using a sextant and observing the position of the sun or the stars.  

However, they had trouble determining the longitude, because to 

do so, they required a sextant and a clock synchronized with the time from 

the port of departure, which would be of a known longitude. Then, the 

difference between the time from the clock and the midday sun allowed 

them to calculate their longitude while at sea. [1] 

Unfortunately, the clocks were not sufficiently precise to keep the 

time in accordance with the point of depart throughout their journey, 

which led to many disasters. The Englishman, John Harrison, was the first 

to propose a sufficiently precise chronometer that allowed longitude 

calculation, which was a great advance in maritime navigation [1]. 

Since then, the timekeeping industry has done nothing but evolved, 

from the use of mechanical resonators, such as the diapason, in 

conjunction with an electric system, to the use of atomic clocks in the 

Global Positioning System (GPS). Timekeeping is an important part of 

mankind and it is crucial in the current era of information, that requires 

precise timing to manage the flow of information, in a way that it is 

reliable, robust and inexpensive [1].  

Since the second half of the 20th century, the utilization of quartz 

has revolutionized the measurement of time and allowed to gain 

considerable precision. The crystal oscillator industry is based on the 

principle of piezoelectricity, a specific property of quartz and other 

mineral crystals, discovered in France by the brothers Pierre and Jacques 

Curie in 1880. Once this material is submitted to an electric current it 

begins to vibrate in a regular way. The frequency of such regular 

movement can be used as an electronic time base. This stable frequency 

enables to obtain superior precision in comparison to the mechanical 

devices used thus far. Figure 1.1 presents quartz crystal resonators used 

in the 1960’s; at that time, they were not miniaturized for everyday use. 
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Figure 1.1 – Quartz crystal resonators from 1960’s. Picture taken at the 

Musée du Temps in Besançon, France. 

 

The quartz crystal oscillators are essential elements for radio, 

radar, television, computers and smartphones. Their use in large scale was 

possible because of the advancement in transistor technology. 

In fact, the progress in the field of electronics enabled the 

miniaturization of devices while increasing their processing power [2]. It 

allowed the emergence of the Internet of Things (IoT) concept, which 

describes a structure in which all physical everyday objects are connected 

to the internet without need of human interaction [3]. To construct an IoT 

network the devices must be autonomous and durable [3], capable of 

harvesting energy from the environment to supply their needs and ensure 

operation. Hence the research on energy harvesting devices, such as RF 

sources and thermoelectric generators that provided voltage of tens of 

millivolts, and photovoltaic cells which generate voltages of hundreds of 

millivolts.  

To ensure electronics systems can operate with such low-voltage 

supplies, the research and development of low-voltage circuits are 

paramount. However, before trying to make major systems operate with 

low-voltage, the basic blocks need to operate successfully with such 

supplies first.  

The oscillator is a fundamental block in electronic circuits, 

especially when it comes to timekeeping and control of systems, which is 

why this project aims at the design of a 100 mV Pierce oscillator, a 

common crystal oscillator topology [4]. Nowadays, its use has been 

explored in IoT applications, which demand timing accuracy to start or 

synchronize Wireless Sensor Networks (WSN) [5]. 
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1.1 STATE OF THE ART 

 

It can be found, in literature, many current researches regarding 

the matter of low-power crystal oscillators. For instance, in [6], the 

authors propose a crystal oscillator circuit that operates with supply 

voltage below 1.0 V and power consumption of 5.58 nW. However, they 

used two power supplies and a large silicon area of 0.3 mm2 to implement 

the design. 

In [7], a self-charged crystal oscillator is proposed. This 

technique reduced the power consumption to 1.89 nW and employed a 

supply voltage of 150 mV. However, the 28nm technology used is too 

expensive. 

The work presented in [5] is similar to the one, proposed here. It 

implements a Pierce oscillator that operates with 300 mV of supply 

voltage. In [5] the proposed technique combined with operation in the 

sub-threshold region provided an average power consumption of 1.5 nW.  

The oscillators in [6], [7] and [5] operate with 32.768 kHz 

crystals. Table 1.1 presents the summarized comparison of these low-

power crystal oscillator designs. 

  

Table 1.1 – Comparison of low-power crystal oscillators found in 

literature 

 [6] [7] [5] 

Frequency 32 kHz 32 kHz 32 kHz 

Area (mm²) 0.3 0.03 0.0625 

Power consumption 

(nW) 

5.58 1.89 @ 0.15V 

VDD 

1.5 @ 0.3 V 

VDD 

Supply voltage VDD (V) 0.92 – 

1.8 

0.15 – 0.5 0.3 – 0.9 

Technology 180 nm 28 nm 130 nm 

 

 

1.2 OBJECTIVE 

 

The main objective of this project is to design the integrated circuit 

that drives the crystal resonator in an oscillator block. This circuit should 

allow oscillation to start and be sustained using a low-voltage supply of 

100 mV. To facilitate operation at low-voltage, the oscillator will employ 

a 32.768 kHz crystal resonator.  
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This frequency is typical of Real-Time Clocks (RTC) and 

wristwatches, because the number of oscillations is convenient for the 

associated digital electronic circuit. A digital chip divider can easily 

divide 32768 by 215, resulting in one cycle or pulse per second [1]. 

 

 

1.3 METHODOLOGY 

 

This document introduces a bit of oscillator’s theory by presenting 

two approaches used for oscillator analysis. It presents the resonator’s 

electric model and equations that describe its behavior, as well as the 

circuit analysis for the Pierce oscillator used in this project. 

The oscillator was assembled with discrete components and 

transistors from the chip 4007, to evaluate the practical impact of 

component values in the required supply voltage for oscillation to start. 

The measurements were performed with available equipment in the 

Integrated Circuits Laboratory [8], where the project development took 

place. Power supplies such as E3630A from HP and Tektronix 

oscilloscopes such as TDS3032B and MSO 5204 are a few of the 

instruments used. 

To integrate the circuit, this project was developed using the 

CMOS 180 nm technology from TSMC and the Cadence Virtuoso Design 

Environment, an EDA software from Cadence that allows a more 

thorough analysis and design of integrated circuits. It enables to create 

circuit schematics, design the layout and perform simple electric 

simulations, as well as simulations that consider the parasitic RC 

extraction post-layout, which provides more helpful and reliable results 

to evaluate the circuit performance and operation throughout the project’s 

development. 

The 32.768 kHz crystals employed are part numbers AB38T [9] 

and ABS07W [10] from Abracon.  
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2 THEORETICAL FOUNDATION 

 

2.1  THEORY OF OSCILLATORS 

 

Oscillators are electronic circuits which generate their own 

periodic signal. There are two main types of oscillators: the relaxation and 

the harmonic oscillators. 

The relaxation oscillators have their frequency defined by an RC 

product, which represents the time constant of alternately charging and 

discharging the capacitor, an energy storage element. Usually they 

produce square or triangular waveforms. 

The oscillator in this project is a harmonic oscillator. This type of 

oscillator provides a tuned frequency by the use of an LC tank. It can 

provide stable nearly sinusoidal waveforms with low phase noise. And, 

for that reason, they are widely used in RF and digital systems.  

There are two ways to perform circuit analysis of such oscillators, 

one is by using the positive feedback loop approach and the other is to 

use the negative resistance approach. Depending on the circuit topology 

one approach may be more suitable than the other. 

 

2.1.1 Positive feedback loop 

 

 
Figure 2.1 – Positive feedback loop analysis 

 

The positive feedback loop analysis consists of viewing the 

oscillator as a linear feedback system composed of two blocks: the 

amplifier and the feedback network. Suppose the amplifier has transfer 

function A(s) and the feedback network has transfer function β(s). When 

both are connected in a feedback loop, as shown in Figure 2.1, it is 

possible to derive T(s) in (2.1). [11] 
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𝑇(𝑠) =
𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
=  

𝐴(𝑠)

1 − 𝐴(𝑠)𝛽(𝑠)
 (2.1)  

 

From (2.1), by replacing 𝑠  =  𝑗𝜔, the following conditions of 

oscillation are obtained.  

|𝐴(𝑗𝜔)𝛽(𝑗𝜔)| ≥  1 (2.2)  

∠𝐴(𝑗𝜔)𝛽(𝑗𝜔) =  2𝜋𝑁 (2.3)  

Where N is an integer number. Equations (2.2) and (2.3) constitute 

the Barkhausen criterium, which states oscillation occurs, when the 

magnitude of the open loop gain A(s)β(s) is greater than or equal to 1 

(2.2) and the phase-shift must be 0° or an integer multiple of 360° (2.3). 

[11] 

 

2.1.2 Negative resistance 

 

An ideal electronic oscillator is composed of two reactive 

components: an inductor and a capacitor (Figure 2.2a). It is also known 

as LC tank, tuned circuit or resonant circuit. It’s a circuit in which energy 

is stored and it flows back and forth between capacitor and inductor in its 

own resonance frequency. In an ideal LC tank, no energy is lost. 

However, in the real world, an LC circuit is in fact a resonator 

(Figure 2.2b), which is simply the component that defines the frequency 

of an actual oscillator. A resonator cannot oscillate by its own, because 

real reactive components have resistance associated with them due to 

physical construction, which means there’s energy loss, hence, the 

oscillation will not be sustained unless energy is added to the circuit.  

The negative resistance approach views the oscillator as two one-

port components: a lossy resonator and an active circuit that cancels the 

loss [12]. It consists on cancelling the effect of the resonator’s positive 

resistance with a circuit that provides a negative resistance sufficient to 

allow oscillation to start and be sustained (Figure 2.2c). The term negative 

resistance is, in fact, a misnomer of the “negative transresistance”, 

defined by the ratio between a given voltage variation (ΔV) and the 

induced current variation (ΔI) [13], which can be positive or negative. It 

can be generated using active devices such as linear amplifiers [14]. 
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Figure 2.2 - (a) Circuit of an ideal LC oscillator; (b) Example of a 

resonator circuit; (c) Negative resistance approach proposes to use an 

active circuit to provide the negative resistance, that cancels the loss 

effects from the resonator. 

 

2.2  CRYSTAL OSCILLATOR 

 

To better understand and design crystal oscillators, one must 

understand the crystal resonator itself and its equivalent electric model, 

as presented in the following section.  

 

2.2.1 The crystal resonator 

 

Quartz crystals are composed of silicon dioxide and they can be 

cut in a certain way to provide a specific frequency. The quartz crystal 

presents several interesting properties that allow their use in the most 

diversified fields. They have low acoustic loss, good thermal and 

chemical stability, and they are piezoelectric devices. 

The piezoelectricity is the property that permits the use of crystals 

in oscillators. It can be defined as the capability to generate electrical 

voltage (or current) in response to mechanical vibrations. The 

piezoelectric effect consists of an electromechanical linear interaction 

between mechanical and coulombic forces in crystalline materials.  

The piezoelectric effect can be direct, when an electric charge is 

generated by applying a mechanical force; or indirect, when a mechanical 

tension is generated by applying an electric field. For instance, in a quartz 

crystal, if a voltage pulse is applied on its terminals, this voltage generates 

a mechanical vibration which generates an oscillating electric voltage.  

The crystal tends to vibrate at its own resonance frequency, 

determined by its physical characteristics, which makes it a good 

mechanical resonator with a high-quality factor. The quality factor (Q) 

can be evaluated as the ratio of the energy stored in the oscillating 

resonator to the energy dissipated per cycle (2.4). 



34 

 

𝑄 =  2𝜋𝑓0

Stored energy

Dissipated energy
  (2.4) 

Due to its piezoelectric characteristic, the quartz crystal 

mechanical vibrations can be represented by a series RLC circuit, in 

which the resistor Rm represents the mechanical losses, Lm represents the 

mass and Cm a spring [15]. The crystal’s equivalent electrical model 

consists on a mechanical or motional branch, i.e., the series RLC circuit, 

in parallel with a shunt capacitance C0, which represents the physical 

capacitance formed by both the parallel plate capacitance of the electrode 

metallization and the stray package capacitance [15].  

 

 
Figure 2.3 - Crystal's (a) symbol and (b) equivalent electrical model 

 

From this model, it is possible to determine the crystal’s equivalent 

impedance Zx (2.8), given by (2.7) the parallel association of the motional 

branch impedance Zm (2.5) and the shunt capacitance impedance Z0 (2.6). 

𝑍𝑚(𝑗𝜔) =
1 − 𝜔2𝐿𝑚𝐶𝑚 + 𝑗𝜔𝑅𝑚𝐶𝑚

𝑗𝜔𝐶𝑚
 (2.5) 

𝑍0(𝑗𝜔) =
1

𝑗𝜔𝐶0
 (2.6) 

𝑍𝑥(𝑗𝜔) = 𝑍𝑚(𝑗𝜔)||𝑍0(𝑗𝜔) =
𝑍𝑚(𝑗𝜔)𝑍0(𝑗𝜔)

𝑍𝑚(𝑗𝜔) + 𝑍0(𝑗𝜔)
 (2.7) 

𝑍𝑥(𝑗𝜔) =
−𝜔𝑅𝑚𝐶𝑚 + 𝑗(1 − 𝜔2𝐿𝑚𝐶𝑚)

𝜔3𝐿𝑚𝐶𝑚𝐶0 − 𝜔(𝐶0 + 𝐶𝑚) + 𝑗𝜔𝑅𝑚𝐶𝑚𝐶0
 (2.8) 
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If the resonator presented Rm = 0, then the impedance Zx would be 

zero when 1 − 𝜔2𝐿𝑚𝐶𝑚 = 0, which yields the resonant frequency fr (2.9) 

due to the series motional branch. 

Also, Zx would tend to infinity when the denominator equals zero, 

that is, when 𝜔3𝐿𝑚𝐶𝑚𝐶0 − 𝜔(𝐶0 + 𝐶𝑚) = 0, hence, 𝜔3𝐿𝑚𝐶𝑚𝐶0 =
𝜔(𝐶0 + 𝐶𝑚). This gives the anti-resonance frequency fa (2.10). [16] 

𝑓𝑟 =  
1

2π√𝐿𝑚𝐶𝑚

 (2.9) 

𝑓𝑎 = 𝑓𝑟  √1 +
𝐶𝑚

𝐶0
 (2.10) 

Since Rm ≠ 0, fr is the point of minimum impedance, whereas fa is 

the maximum impedance point. These points can be easily identified in 

the impedance magnitude and phase plots like the ones presented in 

Figures 2.4 and 2.5. The impedance magnitude of a crystal is given by 

(2.11) and the phase by (2.12). Both expressions are plotted in Figures 2.4 

and 2.5, respectively.  

|𝑍𝑥(𝑗𝜔)| = √ℜ{𝑍𝑥(𝑗𝜔)}2 + ℑ{𝑍𝑥(𝑗𝜔)}2 (2.11) 

∠𝑍𝑥(𝑗𝜔) =  tan−1
ℑ{𝑍𝑥}

ℜ{𝑍𝑥}
 

 

(2.12) 

 

In both plots, it is possible to identify both resonant and anti-

resonant frequencies. For instance, the minimum impedance occurs at the 

same frequency fr where there’s a pronounced shift in phase. As for the 

maximum impedance, it occurs at fa along with the second phase shift. 
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Figure 2.4 - Crystal's impedance magnitude determined using equations 

(2.8) and (2.11), considering the equivalent electric model from the 

ABS07W resonator. 

 
Figure 2.5 - Crystal's impedance phase determined using equations (2.8) 

and (2.12), considering the equivalent electric model of the ABS07W 

resonator. 

 

These frequencies are usually very close due to the crystal’s high-

Q given by (2.13), and, usually, when inserted in a circuit, the crystal will 

operate in a frequency between fr and fa. In this region the equivalent 
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circuit resembles an inductive impedance [17] with a quality factor given 

by: 

𝑄𝑥𝑡𝑎𝑙 =
𝜔𝐿𝑚

𝑅𝑚
 (2.13) 

In a crystal datasheet, instead of finding the values for the model’s 

motional branch components, it is customary to find the values of C0 and 

the ratio C0/Cm. These values are useful to calculate the crystal’s pulling 

when a load capacitance CL is connected to the crystal. Because the 

insertion of this capacitance changes the reactance, the frequency changes 

as well. The pulling is given by (2.14), where fL is the frequency of 

oscillation due to the added load. [18] 

𝑓𝐿 − 𝑓𝑟

𝑓𝑟
=

𝐶𝑚

2(𝐶0 + 𝐶𝐿)
 (2.14) 

Depending on how the capacitive load is connected to the 

resonator, the oscillator will operate in the series or parallel mode with a 

frequency fL given by (2.15). [13] 

𝑓𝐿 = 𝑓𝑟   (1 +
𝐶𝑚

2(𝐶0 + 𝐶𝐿)
) 

(2.15) 

 

Equation (2.15) is valid for either parallel or series load 

capacitance added to the crystal, the difference being that, when a series 

load is added, the circuit will operate at the point of minimum impedance; 

while in the case of a parallel load capacitance, the circuit will operate at 

the maximum impedance point. This is illustrated in Figures 2.6 and 2.7. 

In Figure 2.6, the arrows indicate the point of oscillation when a load is 

added. The frequency of oscillation was shifted to the same value; 

however, the impedance is minimum for a series load and maximum for 

a parallel load. 
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Figure 2.6 - Crystal's impedance magnitude considering the equivalent 

electric model from the ABS07W resonator associated with CL in series 

(dotted-blue line) and parallel (solid-green line). The impedance of the 

crystal without a capacitive load (dashed-red line) serves as reference to 

observe which frequency, fr or fa, shifts. 

 
Figure 2.7 – Crystal's impedance phase considering the ABS07W 

resonator model associated with CL in series (dotted-blue line) and 

parallel (solid-green line). The phase of the crystal without a capacitive 

load (dashed-red line) serves as reference to observe the original 

frequency at which the phase shifted. 

 Usually for crystals designed to operate in parallel mode, the 

manufacturer specifies the value of load capacitance that allows 

oscillation at the nominal frequency of datasheet. If the load capacitance 
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is greater than the specified one, the oscillation should occur at a lower 

frequency, so to move the frequency of operation to a higher frequency, 

closer to the expected one, the overall capacitance at the crystal’s ends 

must be reduced. 

 

2.2.1.1 The resonators chosen for this project 

 

To simulate the Pierce oscillator and to plot Figures 2.4-2.7, the 

crystal electrical model was used. The values used in the model were 

found in the datasheet [9] [10] and in additional documents from the 

manufacturer Abracon [19]. The crystal models are based on the AB38T 

and ABS07W crystals (Figure 2.8). Their motional values and shunt 

capacitance, as well as a few important electrical characteristics are 

shown in Table 2.1. 

 

Table 2.1 - Electrical model and electrical characteristics of quartz 

crystals AB38T and ABS07W 

 

The drive level is the only characteristic from Table 2.1 not 

mentioned thus far. Its value represents the amount of drive the crystal 

can handle without affecting its operation. Basically, it is how much 

voltage and current can be applied to the crystal terminals. If the drive 

level is exceeded the resonator might age faster, lowering its frequency 

stability, or it might even break, because of the piezoelectric characteristic 

[20]. If the voltage or current through the crystal is too high, it is the same 

as applying a very strong mechanical force, which can cause a fracture in 

the crystal resonator.  

Crystals AB38T (tuned fork) ABS07W (SMD) 

Electrical model 

Motional capacitance Cm 3.69 fF 4.68 fF 

Motional Inductance Lm 6.39 kH 5.048 kH 

Motional resistance Rm 22.9 k 38.2 k 

Shunt capacitance C0 1.82 pF 1.15 pF 

Important electrical characteristics from datasheet 

Load capacitance CL 12.5 pF 3 pF 

Typical Drive Level 1 μW 0.1 μW 

Typical Quality Factor Q 9 000 13 000 
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Figure 2.8- In comparison with a coin of R$0.05, (a) the AB38T tuned-

fork crystal; and (b) four SMD crystal of model ABS07W. 

 

2.2.2 The Pierce oscillator 

 

The Pierce oscillator is one of the most common crystal oscillator 

topologies used [13]. One of its advantages is the capability to generate 

oscillation at a specific frequency using few components.  

In [21], Vittoz analyzes the Pierce oscillator using an NMOS 

transistor as the active device (Figure 2.9). The analysis is performed for 

operation at the crystals’ fundamental frequency. 

Using the negative resistance approach, Vittoz considers the 

crystal’s motional impedance Zm and the equivalent impedance ZC, which 

encompasses all the green shaded area in Figure 2.9. The condition of 

oscillation is given by (2.16), which, as a first approximation, can be 

estimated as a negative resistance RN (2.17), meaning the negative 

resistance from ZC must compensate the crystal’s positive resistance Rm. 

𝑍𝐶 + 𝑍𝑚 = 0 (2.16) 

ℜ{𝑍𝐶} = 𝑅𝑁 = −𝑅𝑚 (2.17) 
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Figure 2.9 - Pierce oscillator with NMOS transistor as the active device 

that provides negative resistance. The negative resistance approach in this 

model includes C0, from the crystal model, in the impedance ZC. At the 

top right, the equivalent impedance association of Zm with ZC illustrates 

the principle of the negative resistance approach, presented in Figure 2.2c. 

 

Using the motional impedance expression, the negative resistance 

can be found to be (2.18), where gm is given by (2.19) because the 

transistor operates in weak inversion. In (2.20) ID is the transistor drain 

current, n is the slope factor and ϕt is the thermal voltage [22]. 

𝑅𝑁 = −
𝑔𝑚𝐶1𝐶2

(𝑔𝑚𝐶0)2 + 𝜔2(𝐶1𝐶2 + 𝐶2𝐶0 + 𝐶0𝐶1)2
 

(2.18) 

 

𝑔𝑚 =
𝐼𝐷

𝑛𝜙𝑡
 

 

(2.19) 

From a handful of calculations, Vittoz [21] determines the critical 

transconductance gmcrit that allows oscillation to occur, given by (2.20). 

However, in [16] it is said that it is common practice to design a circuit 

with gm greater than 5 times gmcrit, to ensure that oscillation will start. 

 

𝑔𝑚𝑐𝑟𝑖𝑡
= 4𝑅𝑚 (1 +

𝐶0

𝐶𝐿
)

2

(2𝜋 𝑓0)2(𝐶0 + 𝐶𝐿)2 
(2.20) 
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The analysis performed by Vittoz [21] can be extended for use with 

a CMOS inverter (Figure 2.10) as the active device, in which the 

transconductance is given by both PMOS and NMOS transistor’s 

transconductances gmP and gmN, respectively [22]. 

 

 
Figure 2.10 - CMOS inverter (a) 

symbol and (b) schematic. M1 is 

the NMOS transistor and M2 the 

PMOS transistor. 

 

 
Figure 2.11 - CMOS Pierce 

oscillator, including stray 

capacitances, represented by Cin 

and Cout. 

The Pierce using an inverter is shown in Figure 2.11, where Cin and 

Cout represent the stray, or parasitic, capacitances due to the 

interconnections between devices and the intrinsic transistors’ 

capacitances. 

To determine the values of C1 and C2 to use in accordance with the 

load capacitance specified in the crystal’s datasheet, expression (2.21) is 

used. 

𝐶𝐿 =
𝐶1𝐶2

𝐶1 + 𝐶2
+ 𝐶𝑠𝑡𝑟𝑎𝑦 (2.21) 
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3 THE PIERCE OSCILLATOR WITH DISCRETE 

COMPONENTS 

 

The Pierce oscillator was assembled with discrete components and 

transistors from the chip 4007, primarily, following the schematic 

presented in Figure 3.1a. Tests using different component values were 

performed to evaluate the practical impact of such components in the 

required supply voltage (VDD) for the start-up of oscillation.  

 

 
Figure 3.1 – Schematic of a Pierce oscillator (a) with resistor RS and (b) 

with a short circuit between crystal and the inverter output. 

 

In the theoretical analysis, the feedback resistor RF is not accounted 

for, as a mean of simplification. However, if not added in a real design, 

the circuit will not oscillate, because the feedback resistor biases the 

CMOS inverter, ensuring its operation as a linear amplifier. 

The crystal selected for the experiment is the model AB38T [9] 

from Abracon, because it was the only 32.768 kHz tuned-fork crystal with 

a datasheet available for purchase in the national market at the time. The 

tuned fork crystal is easier to place in a circuit board than a crystal with 

SMD packaging (like the ABS07W resonator). 

The first assembly consisted on following the recommendation 

[20] of inserting a resistor RS between the crystal terminal and the inverter 

output, as shown in Figure 3.1a. This resistor is supposed to prevent 

exceeding the crystal drive level mentioned in section 2.2. The component 

values used in such configuration were RS = 330kΩ and RF = 10 MΩ. The 

capacitors C1 = C2 were altered to see their effect. 

The minimum supply voltage that allowed oscillation to build up 

was 2.83 V, using C1,2 = 1 pF (Table 3.1). After oscillation has started up, 

the circuit sustained oscillation with minimum VDD of 2.4V. In Figure 3.2, 
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the waveform is diminishing, almost resembling a sinusoidal waveform 

as VDD decreases. 

 

 
Figure 3.2 - XO output waveform using the minimum supply voltage that 

sustained oscillation 

 

To reduce the supply voltage required for oscillation, the oscillator 

was assembled without RS, which was replaced by a short circuit, as 

shown in Figure 3.1b; also, RF was increased. With these changes, 

oscillation started up from 1.86 V of supply voltage, C1=C2 = 6.8 pF and 

RF = 25 MΩ. This result is shown in Figure 3.3. In addition, the minimum 

voltage to sustain oscillation was 1.25 V, very close to the threshold 

voltages of the CMOS transistors from 4007, which are around ±1.2 ~ 

1.5V. 

 
Figure 3.3 - Photo taken of the XO output waveform using the minimum 

supply voltage that allowed oscillation to start up. 
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Such measurements were performed more than once and on 

different days. Table 3.1 presents a summary of the typical results 

obtained using different combinations of components. The result shown 

in Figure 3.3 is the one that required the lowest voltage to start up 

oscillations. 

 

Table 3.1 – Summary of results obtained from changing the components 

in the Pierce circuit. O.B.U stands for the supply voltage that enabled 

Oscillation to Build Up; S.O. stands for the minimum supply voltage that 

Sustains Oscillation. 

RF 10 M (with RS) 25 M 50 M 

VDD (V) O.B.U S.O O.B.U S.O O.B.U S.O 

C1,2 

(pF) 

22 3.10 2.40 2.28 1.25 2.27 1.26 

15 2.99 2.25 2.14 1.25 2.19 1.22 

10 2.97 2.15 2.12 1.25 2.20 1.18 

6.8 2.96 2.01 2.08 1.25 2.17 1.22 

2.2 2.88 1.85 2.08 1.25 2.20 1.56 

1 2.83 1.82 2.07 1.25 2.08 1.23 

 

From this experiment, it has been shown that increasing RF to 

50M did not have much impact as reducing the load capacitance or 

increasing RF from 10 MΩ to 25 MΩ after removing RS from the circuit.  

The voltage for which oscillation builds up is different than the 

supply voltage for which oscillation is sustained, because to start-up 

oscillators the loop gain must be greater than 1, and afterwards, to sustain 

a stable oscillation the gain must be equal to 1. 

In this case, when oscillation starts, the output voltage is almost a 

square waveform, i.e., the output amplitude saturates at VDD because the 

open loop gain remains greater than 1 after oscillation started. As VDD 

decreases so does the inverter’s transconductance. The observed almost 

sinusoidal waveform in Figure 3.3 demonstrates that the gain is reaching 

unity. When oscillation fades or fails to start, it means the amplifier’s 

transconductance is not enough to compensate the resonator’s mechanical 

losses, i.e., the loop gain is lower than 1. 
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4 THE INTEGRATED CIRCUIT DESIGN 

 

To implement and simulate the Pierce oscillator, the crystal 

electrical model (presented in section 2.2) was used to create the resonator 

components for simulations.  

The CMOS inverter, (Figure 2.10) to be used as a linear amplifier 

in the Pierce oscillator, requires, first, the determination of a few of the 

technology transistors’ characteristics that are important when selecting 

and sizing the devices. 

The available PMOS and NMOS transistors are standard and 

medium-vt on the 180 nm technology from TSMC. The threshold voltage 

of both types of transistors was determined by means of the gm/ID method 

[23], and it was found that medium-vt transistors have lower threshold 

voltage (around 300 mV) than the standard ones (around 450 mV); thus, 

the medium-vt transistors are used in the inverter’s design. 

It can be seen, from Figure 4.1, that the threshold voltage decreases 

with the increase of channel’s length, but, for a preliminary analysis, the 

CMOS inverter was designed with Lp=Ln, using the minimum channel 

length (Lmin) for NMOS medium-vt transistors, which is 0.3 μm (PMOS 

medium-vt transistors have Lmin = 0.25 μm, which prevents using Lp=Ln). 

 

 
Figure 4.1 - Threshold voltage vs channel length of a medium-vt NMOS 

transistor 

 

To determine the DC bias point of the CMOS inverter with a 

supply voltage VDD of 100 mV, a DC simulation was performed to 

evaluate the transfer function Vout x Vin considering a fixed width Wn of 
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0.6 μm and a parametric variation in Wp, as shown in Figure 4.2. The gain 

is maximum at the bias point Vout = Vin = VDD/2 (red marker in Figure 

4.2), which, in this case, occurs when Wp is 0.6 μm. However, due to a 

preliminary misunderstanding, the inverter was firstly designed with Wp 

= 2Wn = 1.2μm, which shifts the mean value in oscillation to a few 

millivolts above VDD/2. In a later design, presented in section 4.2, Wp = 

Wn = 0.6 μm. 

 

  
Figure 4.2 - Transfer function of CMOS inverter to determine DC bias 

point with Wn = 0.6 μm 

 

The design is proposed for use with the ABS07W crystal, because 

this resonator specifies a smaller load capacitance than AB38T (Table 

2.1), which means it can work with lower voltages, as seen from the 

practical experiment.  

However, before beginning the design for 100 mV of supply 

voltage considering the ABS07W, a few simulations and iteration of 

values were performed to determine if the testbench for simulation was 

working properly. 
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4.1 THE 1ST DESIGN 

 

Since the resonator employed in the practical experiment was, in 

fact, the AB38T, the first simulations considered its model and the 

component values from those tests. The CMOS 180 nm technology used 

allows operation to a maximum of 1.8V. The circuit simulated is the same 

from Figure 3.1b. 

The first simulation was conducted with 1.0 V of supply voltage, 

which is 10 times greater than the proposed operation voltage for this 

project. This simulation also included load capacitors C1,2 of 22pF and RF 

of 20 M. The CMOS inverter presents Ln,p = 0.3 μm, Wn=0.6 μm and 

Wp = 1.2 μm. 

With these values, oscillation occurred for supply voltages within 

the range of 325 mV to 1.0 V. Voltages greater than 1.0V were not 

simulated because the objective is to start oscillation with much lower 

voltages.  

To reduce the supply voltage, transistors were associated in 

parallel, thus increasing the number of multipliers M (thus far, equal to 1) 

and, consequently, increasing the transistors’ strength to drive the crystal. 

Still using the AB38T model, the oscillation was possible at 100 mV with 

Mn,p = 30.  

Now, changing to the ABS07W crystal model, different 

combinations of C1,2, M and RF were simulated. A few of the tested 

combinations are presented in Table 4.1.  

 

Table 4.1 – Tested combinations for oscillation with VDD = 100 mV using 

ABS07W model 

C1,2 (pF) M RF (M) 
Peak-to-peak 

voltage (mVpp) 

Minimum to 

maximum values 

4 

8 20 71 23 to 94 mV 

10 20 79 18 to 97 mV 

12 20 82 15 to 97 mV 

20 20 82 15 to 97 mV 

12 25 89 11 to 100 mV 

 

The highest peak-to-peak amplitude of oscillation achieved, based 

on the tested combinations, was of 0.9VDD, using C1,2 = 4 pF, RF = 25M, 

M = 12 and the transistors’ dimensions Ln,p = 0.3 μm, Wn=0.6 μm and Wp 

equal to 1.2 μm. Thus, these were the values used for the upcoming 

simulations.  
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4.1.1 Simulation results using ideal capacitors and resistor 

 

The simulations performed are for transient analysis, this kind of 

simulation allows analysis of the circuit behavior in the time domain; 

therefore, it is possible to observe and measure the start-up time and 

evaluate the generated waveforms, that is, if oscillation does occur. 

The simulations were performed for different VDD to see how the 

circuit handles voltage variations at voltages below 300 mV. The tested 

supply voltages were 70 mV, 80 mV, 100 mV, 200 mV, 250 mV and 

300mV. Table 4.4 summarizes the obtained results and Figure 4.3 

accommodates the obtained output waveforms, as a general view.  

 

Table 4.2 - The designed circuit oscillation for different VDD. The X 

suggests oscillation failed to start and the tick implies oscillation was 

successful 

VDD (mV) 70 80 100 200 250 300 

Oscillation starts X ✓  ✓  ✓  ✓  X 

 

 

 
Figure 4.3 - Simulation result for different supply voltages. With this 

image is it possible to observe the cases for which oscillation starts, as 

well as estimate the time to reach steady-state. The arrows point to the 

waveforms of the respective applied supply voltage. 
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Figure 4.3 shows that oscillation successfully starts and is 

sustained for supply voltages from 80 mV to 250 mV. However, only for 

200 mV the output presents full voltage swing (ground to VDD). At 80 mV 

the minimum value is even higher than the one of 11 mV, observed for 

VDD = 100mV (Table 4.1). The difference in start-up time is, also, very 

pronounced; while at 200 mV, it takes around 250 ms to reach steady 

state, at 100mV it takes 500ms; with supply voltages of 80mV and 250 

mV, the circuit takes even longer time to stabilize oscillation, requiring 

more than 1.5 s when VDD = 80mV.  

 The start-up failed at 70 mV because the inverter wasn’t strong 

enough to drive the crystal, while, at 300 mV, oscillation did not occur 

because, by increasing the voltage supply, the loop gain decreased due to 

the increase of energy loss of the resonator, preventing a gain greater than 

1, a condition required for oscillation.  

Since the specified circuit operation is for 100 mV, further details 

(such as zooming in the waveforms) will be provided regarding 

oscillation at VDD = 100 mV, preventing a set of similar images that are 

not so relevant in the context of this work. 

 

 

4.1.2 Simulation results using resistor and capacitors from the 

0.18µm CMOS technology 

 

 
Figure 4.4 - Schematic of 1st design 

 

The 4 pF capacitors were built from medium-vt NMOS transistors, 

by connecting both drain and source to substrate (transistors M3 and M4 
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in Figure 4.4). The capacitance of 4 pF was determined for a transistor 

with Ln = Wn = 10 μm and M = 21. From the technology library, the 

resistor with the highest available resistance per square (1037 Ω/square) 

to use as the feedback resistor RF was chosen. To obtain 25 MΩ, its 

dimensions were calculated as segment width = 1 µm, segment length = 

100 µm and number of segments = 231. 

Figure 4.5 shows the resultant waveforms for both input and output 

nodes using only components from the 180 nm technology. In general, 

the amplitudes have not suffered significant changes in comparison with 

the obtained results using ideal components. The only difference is that 

the simulation took longer to be completed. 

 

 
Figure 4.5 - Simulation result @ VDD = 100 mV using components from 

180 nm technology. The inverter input is in dot-red and the inverter output 

in solid-blue. 

 

From the simulation waveforms, by using expressions inherent to 

the simulator, it was possible to determine the average consumed power, 

the frequency of oscillation and the minimum, maximum and mean output 

values of amplitude. For this design, the results are shown in Table 4.3. 
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Table 4.3 - Parameters calculated from simulation 

Frequency 32.769 kHz 

Average power consumption 829.7 pW 

Peak-to-peak amplitude 88.19 mV 

Minimum output value 11.87 mV 

Maximum output value 100.06 mV 

Mean output value 57.77 mV 

 

 Post-layout simulation results 

 

In the previous section it was seen that the circuit behaves as 

expected using components available on the chosen CMOS technology, 

therefore, once the layout was created, the parasitic RC extraction was 

performed. 

Simulating with the extracted layout showed that oscillation still 

occurred, but the trough of oscillation increased from 11 mV to about 40 

mV, as shown in Figure 4.6. On the other hand, the peak of oscillation 

decreased from 100 mV to 95 mV. 

 

 
Figure 4.6 – Post-Layout simulation result @ VDD = 100 mV using 

extracted RC parasitic layout. The inverter input is in dot-red and the 

inverter output in solid-blue. 
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One hypothesis for why this happened is that the NMOS transistor 

wasn’t strong or fast enough to let the oscillation drop to a lower value. 

Hoping to increase the NMOS strength and speed, its area was increased 

by doubling Mn; another layout was created [the one shown in Annex A] 

and the parasitic RC extracted again.  

However, increasing Mn did not have any noticeable effect in the 

trough of oscillation. Despite such loss in the peak-to-peak amplitude, this 

layout was sent to MOSIS for fabrication in the hope of performing chip 

measurements before the conclusion of this project. Unfortunately, the 

chip sent in March for fabrication did not arrive in time, thus preventing 

us to measure the oscillator. 

The parameters presented in Table 4.3 were also determined in the 

post-layout simulation and are shown, along with the layout area, in Table 

4.4. In comparison with the simulation before the RC parasitic extraction, 

the post-layout average power consumption has increased from 830 pW 

to 1.123 nW. 

 

Table 4.4 - Parameters calculated from post-layout simulation 

Frequency 32.768 kHz 

Average power consumption 1.124 nW 

Area 291.42 µm x 141.56 µm = 0.04 mm2 

Peak-to-peak amplitude 55.94 mV 

Minimum output value 39.87 mV 

Maximum output value 95.81 mV 

Mean output value 57.77 mV 

 

4.2 THE 2ND DESIGN 

 

As it was seen, after the parasitic RC extraction, the circuit still 

managed to operate with 100 mV of supply, but with only 60% of the 

expected peak-to-peak amplitude voltage at the output.   

Perhaps it was not enough to double the area of the NMOS 

transistor, because the 25 MΩ resistor used was too large in terms of area, 

hence, in the RC extraction, too many parasitic capacitances were added 

to the circuit and these capacitances ended up holding the voltage at 40 

mV. Instead of increasing even more the NMOS transistor’s strength and 

speed to pull down the voltage to zero, another design is proposed. 

In this second design, no resistors have been used. To replace the 

resistor from technology, a standard PMOS transistor in the triode region 

[22] was sized and biased to provide a resistance around 25 MΩ. 
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The standard PMOS provided more resistance per area than a 

medium-vt PMOS transistor or any (standard and medium-vt) NMOS 

transistor. In the triode region, the transistor is similar to a resistance [24]. 

The longer is the channel length, the smaller the flow of holes from source 

to drain, i.e. the resistance increases with channel length. 

To operate the PMOS transistor to operate as a resistor, the gate 

was connected to ground, the bulk connected to VDD and the source and 

drain terminals are connected to the points where the resistor was 

replaced. Note that in the Pierce oscillator shown, the transistor operates 

with a DC drain-to-source voltage equal to zero; thus, it operates in the 

triode region. In this design’s schematic (Figure 4.7), M5 is the triode 

region transistor. 

 

 
Figure 4.7 - (a) Schematic used for the proposed design at transistor level 

and (b) symbolic Pierce oscillator schematic. 

 

Figure 4.7a presents the transistor level schematic of the oscillator 

proposed for the design, related to the symbolic Pierce schematic in 

Figure 4.7b. The inverter consists of transistors M1 and M2, while 

transistors  M3 and M4 emulate load capacitors C1 and C2, respectively. 

Finally, M5 plays the role of the feedback resistor RF. 

In this second design, the inverter transistors were sized with equal 

length (Ln = Lp) and width (Wn = Wp), to operate at the DC bias point 

around VDD/2, as shown in Figure 4.1. In addition, it was verified that 

standard NMOS transistors present greater capacitance per area than 

medium-vt transistors; hence, the dimensions were recalculated, reducing 
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the number of multipliers and, consequently, the layout area. Table 4.5 

presents the transistors’ dimensions used in this design. 

 

 

Table 4.5 - Dimensions used in the transistors from Figure 4.7a 

Transistor Type W (µm) L (µm) M 

M1 Medium-vt NMOS 0.6 0.3 12 

M2 Medium-vt PMOS 0.6 0.3 12 

M3 Standard NMOS 10 10 16 

M4 Standard NMOS 10 10 16 

M5 Standard PMOS 0.4 10 1 

 

 

4.2.1 Simulation results before layout 

 

By running the transient analysis, the start-up time is around 

650ms. The resulting waveforms are presented in Figures 4.8 and 4.9. 

 
Figure 4.8 - Result from transient analysis simulation of the oscillator 

schematic. In blue, the inverter output and in black the inverter input. 

 

The use of a triode region PMOS transistor, instead of the resistor 

from technology, provided a better output voltage swing, from, 

approximately, zero to VDD. 

Taking a closer look at the generated waveforms (Figure 4.9), the 

result is a nearly sinusoidal wave, as expected. The circuit is oscillating 

at the frequency of 32.768 kHz and the average power consumption has 
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decreased, in comparison with the previous design. The results are 

presented in Table 4.6. 

 
Figure 4.9 - Zoom of the simulation result of Figure 4.8. 

 

Table 4.6 – Simulation results before layout 

Frequency 32.768 kHz 

Average power consumption 556.43 pW 

Peak-to-peak amplitude 104.74 mV 

Minimum output value -3.22 mV 

Maximum output value 101.52 mV 

Mean output value 47.28 mV 

 

 

4.2.2 Post-layout simulation results 

 

The layout of this design is presented in Annex B. It occupies a 

smaller area than the layout of the previous design (Annex A), now 

having the capacitors as the responsible for most of the occupied area 

instead of the resistor. Again, the parasitic RC extraction was performed. 

Figure 4.10 presents the simulated waveform using the extracted 

layout. It shows that oscillation occurs, and the minimum and maximum 

output values are, approximately, ground and VDD, respectively. 

The values of area, average power consumption, frequency, 

maximum, minimum and mean output values calculated in the post-layout 

simulation are shown in Table 4.7. 
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Table 4.7 – Post-layout simulation results 

Frequency 32.769 kHz 

Average power consumption 565.58 pW 

Area 100.845 µm x 44.6 µm = 0.0045 mm2 

Peak-to-peak amplitude 104.39 mV 

Minimum output value -3.17 mV 

Maximum output value 101.22 mV 

Mean output value 48.20 mV 

 

 
Figure 4.10 - Post-layout simulation result @ VDD = 100 mV using 

extracted RC parasitic layout. The inverter input is in dot-red and the 

inverter output in solid-blue. 

 

 

4.2.3 Corners and Monte Carlo simulations 

 

To verify the circuit operation in the extreme cases of process 

variation, transient simulations of corners were performed. The corners 

evaluated are TT (Typical), FF (fast-fast), SF (slow-Fast), FS (fast-Slow) 

and SS (slow-slow). Table 4.8 summarizes the results for frequency of 

oscillation. Although the maximum variation in frequency was less than 

7 Hz, oscillation failed to be sustained for the FS and SF corners.  
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Table 4.8 - Result of corners simulations 

Corner Frequency (kHz) 

TT 32.76804 

FF 32.76787 

FS 32.76138 (oscillation not sustained) 

SF 32.76778 (oscillation not sustained) 

SS 32.76775 

 

The Monte Carlo simulation was performed to verify how sensitive 

the frequency of oscillation is to process variations. The histogram, 

presented in Figure 4.11, shows that most samples developed the expected 

frequency of 32.768 kHz. The simulation used 50 samples, with σ = 

0.17402 Hz and μ = 32.768 kHz. 

 
Figure 4.11 - Histogram obtained from Monte Carlo simulation 

  

In addition to these simulations, the temperature was varied from 

-10 to 60 degrees Celsius to see how frequency shifts with the change in 

temperature. The obtained results are shown in Figure 4.12. With -10 ºC 

the circuit sustained oscillation, but with 10 mVpp, i.e., 10% of the 

expected peak-to-peak voltage. 
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Figure 4.12 - Frequency dependency on temperature obtained from 

simulation 
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5 FINAL CONSIDERATIONS 

 

Table 5.1 presents the summarized results, obtained from post-

layout simulations, for the designs described in this work, in comparison 

with the state-of-the-art designs of crystal oscillators presented in section 

1.1.  

 

Table 5.1- Comparison of results of both designs from this work with the 

state of the art 

 
This work 

[6] [7] [5] 
1st 2nd 

Frequency (kHz) 32 32 32 32 32 

Area (mm²) 0.04 0.0045 0.3 0.03 0.0625 

Power consumption (nW) 1.124 0.5656 5.58 1.89 1.5 

Supply voltage VDD (V) 0.1 0.1 
0.92–

1.8 
0.15 0.3 

Technology (nm) 180 180 180 28 130 

 

Both designs developed in this work operate with 100 mV of 

supply voltage, as it was the project’s main objective. From Table 5.1, the 

second design here developed (the one that incorporates only transistors) 

presented smaller layout area than the first one with resistor from the 

technology. This area was also smaller than the state of the art [6], [7] and 

[5], being almost 10 times smaller than the oscillator from [7] that uses a 

28 nm technology. 

The same is valid for the average power consumption, which, 

although the first design consumed almost as much as the state of the art 

designs, the second design demonstrated an improvement in power 

consumption, requiring 10 times less power than the work presented in 

[6] that also uses a 180 nm CMOS technology and 3 times less power than 

the one required in [5], that uses a 130 nm technology. 

The objective of operation at 100 mV supply voltage was achieved 

and helped reduce the average power consumption. To reduce the overall 

area was not part of the proposed objectives, but it is a welcome result, 

which leaves more room on the chip to implement more circuits. The 

circuits were tested for lower supply voltages, such as 80 mV. The first 

design managed to oscillate, despite its amplitude loss. The second design 

with Wn = Wp, however, did not manage to sustain oscillation at 80 mV, 

having its range of supply voltage of operation from 100 mV to 250 mV. 

But, with a bit more of optimization it is possible to successfully obtain 
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oscillation at lower voltages. For instance, it was tested although not 

shown, that if the ratio C2/C1 is increased, the loop gain increases and 

oscillation for 70 mV and 300 mV happened to be possible in the first 

circuit designed. 

The developed project seems promising based on the simulations’ 

results. However, it leaves plenty of room for improvement in future 

works. 

 

 

5.1 FUTURE WORK 

 

Despite promising results, it is still required to perform chip 

measurements to validate the first design. To do same with the second 

circuit, it must, first, be sent to fabrication. 

Regarding the design, other inverter topologies could be explored, 

like using the Schmitt Trigger inverter as a linear amplifier [25], aiming 

to reduce even more the supply voltage of operation. In addition, in future 

work, the oscillation start-up time should be considered, because to make 

it advantageous to use this circuit in a real system, oscillation shouldn’t 

take such a long time (half a second) to reach steady state.  

Another important aspect to consider in oscillators is the phase 

noise and jitter measurements. A low-power oscillator might have the 

phase noise deteriorated, requiring a low-power design that predicts it and 

prevents such deterioration. 

Besides maintaining a reasonable phase noise for crystal 

oscillators, it is necessary to investigate how to properly perform these 

measurements in the laboratory, since, due to the crystal high-Q, their 

bandwidth is too narrow, requiring high bandwidth resolutions to perform 

reliable measurements. Unfortunately, the available laboratory 

instruments do not present such resolution; hence, other techniques to 

perform these measurements will have to be explored. 
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ANNEX A – LAYOUT OF 1ST CIRCUIT DESIGN 

 

Below, the layout for the first circuit design is presented: arrows 

indicate the overall width and height dimensions; the colored boxes relate 

the component with its respective layout cell. To recall, M1 and M2 form 

the CMOS inverter, M3 and M4 are MOS capacitors and RF is the resistor 

from technology, which occupies most of the layout area. 

 

 
Figure A.1 - Layout of first circuit design 
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ANNEX B – LAYOUT OF 2ST CIRCUIT DESIGN 

 

Below, the layout for the second circuit design is presented: arrows 

indicate the overall width and height dimensions; the colored boxes relate 

the component with its respective layout cell. To recall, M1 and M2 form 

the CMOS inverter, M3 and M4 are MOS capacitors and M5 substitutes 

the resistor from technology, hence, this layout has smaller area. 

 

 
Figure B.1 – Layout of second circuit design 
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