

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL ÁREA DE CONCENTRAÇÃO: CONSTRUÇÃO CIVIL LINHA DE PESQUISA: MATERIAIS E PROCESSOS CONSTRUTIVOS

TESE DE DOUTORADO

DESEMPENHO DE MICROFIBRAS DE AÇO FUNCIONALIZADAS COM SILANOS EM CONCRETO DE ULTRA-ALTO DESEMPE-NHO REFORÇADO COM FIBRAS

Doutorando: Cézar Augusto Casagrande Orientador: Prof. Wellington Longuini Repette, Dr. Corientador: Prof. Sergio Henrique Pialarissi Cavalaro, Dr.

> FLORIANÓPOLIS 2017

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL ÁREA DE CONCENTRAÇÃO: CONSTRUÇÃO CIVIL LINHA DE PESQUISA: MATERIAIS E PROCESSOS CONSTRUTIVOS

CÉZAR AUGUSTO CASAGRANDE

DESEMPENHO DE MICROFIBRAS DE AÇO FUNCIONALIZADAS COM SILANOS EM CONCRETO DE ULTRA-ALTO DESEMPE-NHO REFORÇADO COM FIBRAS

Tese submetida ao Programa de Pós-graduação em Engenharia Civil da Universidade Federal de Santa Catarina para a obtenção do grau de DOUTOR em Engenharia Civil.

Orientador: Prof. Wellington Longuini Repette, Dr. Corientador: Prof. Sergio H. P. Cavalaro, Dr.

FLORIANÓPOLIS 2017 Casagrande, Cézar Augusto DESEMPENHO DE MICROFIBRAS DE AÇO FUNCIONALIZADAS COM SILANOS EM CONCRETO DE ULTRA-ALTO DESEMPENHO / Cézar Augusto Casagrande ; orientador, Wellington Longuini Repette, coorientador, Sergio Henrique Pialarissi Cavalaro, 2017. 270 p.

Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós Graduação em Engenharia Civil, Florianópolis, 2017.

Inclui referências.

1. Engenharia Civil. 2. Concreto de ultra-alto desempenho reforçado com fibras. 3. funcionalização de fibras de aço. 4. interface fibra-matriz. 5. silanos. I. Repette, Wellington Longuini. II. Cavalaro, Sergio Henrique Pialarissi. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia Civil. IV. Título.

CÉZAR AUGUSTO CASAGRANDE

DESEMPENHO DE MICROFIBRAS DE AÇO FUNCIONALIZADAS COM SILANOS EM CONCRETO DE ULTRA-ALTO DESEMPENHO REFORÇADOS COM FIBRAS

Esta Tese foi julgada adequada para obtenção do Título de DOUTOR, e aprovada em sua forma final pelo Programa de Pós-graduação em Engenharia Civil.

Florianópolis, 29 de junho de 2017.

Prof. Glicério Trichês, Dr. Coordenador do PPGEC

Banca Examinadora:

Prof. Wellington L. Repette, Dr. Orientador Universidade Federal de Santa Catarina Prof. Sergio H. P. Cavalaro, Dr. Corientador (Vídeoconferência) Universitat Politècnica de Catalunya

Prof. Antônio D. de Figueiredo, Dr. Avaliador externo (Vídeoconferência) Universidade de São Paulo Prof^a. Maryangela G. de Lima, Dr^a. Avaliadora externa (Vídeoconferência) Instituto de Tecnologia da Aeronáutica

Prof. Philippe J. P. Gleize, Dr. Avaliador Universidade de Federal de Santa Catarina Prof. Fabiano Raupp Pereira, Dr. Avaliador Universidade de Federal de Santa Catarina

Prof. Fernando Pelisser, Dr. Avaliador Universidade de Federal de Santa Catarina

Dedico este trabalho à minha mãe, Marly, que nada fez na vida além de trabalhar pela educação de seus filhos.

AGRADECIMENTOS

Ter a oportunidade de realizar um curso de doutorado é um privilégio imenso e ao concretizar esta trajetória, realmente marcante na minha vida, é imprescindível olhar para trás e avaliar quantos contribuíram para que isso fosse possível. Somente graças à ajuda direta e indireta de inúmeras pessoas e várias instituições que foi possível encerrar essa etapa. Assim, faz-se necessário agradecer nominalmente àqueles que de forma direta e intensa participaram de alguma ou em muitas etapas da elaboração desta tese.

Dessa forma, faço aqui os meus mais sinceros agradecimentos:

Ao Prof. Wellington, por ter me dado a oportunidade de realizar o doutorado e ter acreditado no meu potencial. Agradeço pela orientação excepcional, pela motivação, exemplo e educação com que sempre tratou comigo em todos esses anos. Agradeço também por ter aberto as portas do doutorado sanduíche, que antes parecia um sonho distante e só foi possível graças ao seu apoio e comprometimento.

Ao Prof. Sergio, por aceitar me orientar no período de doutorado sanduíche e por ter me recebido de portas abertas na UPC em Barcelona, cidade da qual me apaixonei e carregarei lembranças para toda a vida. Agradeço por estar sempre atendo e disposto a me ajudar, pelo imenso apoio e motivação com que conduziu todo o trabalho realizado na UPC.

À Universidade Federal de Santa Catarina (UFSC) e ao Programa de Pós-Graduação em Engenharia Civil (PPGEC) por proporcionar a estrutura e pela oportunidade de realizar o curso de doutorado. Também agradeço aos professores da banca que se disponibilizaram para avaliar esta tese.

À Universitat Politècnica de Catalunya (UPC) pela oportunidade de realizar parte do doutorado em Barcelona.

Aos professores responsáveis pelo laboratório NanoTec, que em conjunto com os vários colegas mestrandos/doutorandos (Lucas, Rafael, Vanessa, Carol, Giovana, Giovanni, Manu, José, Paula, Marcio, Francisco) contribuíram para a conclusão desta tese.

Aos coordenadores do Grupo de desenvolvimento em argamassa (GDA), por ceder o espaço de estudo e estrutura no ambiente da universidade;

Ao Laboratório Interdisciplinar para o Desenvolvimento de Nanoestruturas (LINDEN) e da sua rede de colaboração, através do Prof. Dachamir, que sempre estiveram de portas abertas para a execução de várias análises, principalmente no CERMAT, o qual possibilitou a realização a maioria dos ensaios de MEV/EDS da tese.

Aos colegas do Grupo ValoRes (Carol, Júlio, Henrique, Luiz, Geanina, Geisiele) e GTEC (Paulo, Eduardo, Fernanda, Paula) pela amizade e pelas incontáveis festinhas de aniversário;

Ao Chico e a Lai, amigos queridos, que nos esperaram ansiosos desde "sim definitivo" da bolsa sanduíche, e que nos acolheram em sua casa em Barcelona da melhor maneira possível. Compartilhamos um ano intenso e cheio de aventuras, que será lembrado com alegria para sempre e que agora continua no Brasil com ainda mais força.

Ao Ronaldo e à Rudiele, a amizade de vocês foi fundamental em todo esse tempo. A nossa amizade só cresceu ao longo do Mestrado/Doutorado e me alegro de ter compartilhado essa etapa da vida com vocês. Apesar do período de "estudante" estar acabando e em breve cada um seguir o seu rumo, estou seguro que a nossa amizade será duradoura e mesmo longe, estaremos perto.

Ao Diego, Dani e família, queridos amigos que nos acolheram e nos suportaram com paciência e com muito incentivo para o término do doutorado.

A minha mãe e meu irmão, que nas conversas sempre me perguntavam "E aí, quase acabando?" ansiosos pelo fim dessa temporada tortuosa. Agradeço por sempre me apoiarem, mesmo distantes, dando suporte para tentar chegar cada vez mais longe e não desistir quando as dificuldades chegavam.

À Lidi, minha noiva e meu porto seguro, que desde sempre esteve ao me lado e foi a minha grande incentivadora em todos os momentos. Ao final dessa tese consigo olhar para trás e enxergar, em meio aos altos e baixos vividos nesse período, que sem o seu apoio e dedicação integral nada disso seria possível. Além de minha companheira, você é uma luz que serve de inspiração e exemplo para a minha vida. Te amo, meu amor!

Às agências de fomento à pesquisa, tanto do governo federal quanto estadual (CNPq, CAPES e FAPESC), que proveram o financiamento para o desenvolvimento da tese por meio da bolsa de estudos no Brasil, bolsa sanduíche na Espanha e financiamento dos laboratórios que colaboraram com o trabalho; e sem as quais seria impossível o desenvolvimento desta tese. Gostaria de agradecer às pessoas que me auxiliaram e que fizeram a experiência em Barcelona muito especial. Assim, tomo a liberdade para escrever em *castellano* para que entendam melhor a quem se destinam as mensagens.

Agradezco al grupo de trabajo del laboratorio de Estructuras y Materiales de la UPC-Barcelona, especialmente a Tomás y los técnicos Jordi, Camilo, Sergi y Robert, que me ayudaron numerosas veces en los ensayos experimentales. Agradezco a los amigos y colegas del máster/doctorado que conocí en Barcelona: Renan, Andressa, Ricardo, Thalita, Diego, Karmele, Tina, Carlos, Edu, Mylene, Débora, Razmik, Jorge, Rubén, Tai; que además de ayuda profesional nos acogieron increíblemente bien. Agradezco, al grupo de investigación, con quienes compartí despacho y muchas horas en la universidad: Ana, Sandra, Pau, Eva, Albert, Fran y Antonio; que me recibieron muy bien, agradeciendo sobre todo por la paciencia al intentar comprender mí, muy malo, castellano.

Agradezco especialmente a María Elena, que participó intensamente en todo el trabajo desarrollado en Barcelona, sin su grande ayuda y dedicación este trabajo no sería viable. También agradezco a Edu Galeote, que me ayudó con los ensayos experimentales y resolviendo dudas, muchas de ellas resolviendolas rapidamente por Whastapp.

MUITO OBRIGADO!!!

RESUMO

A funcionalização de superfícies em geral com silanos é uma técnica extensivamente utilizada principalmente em materiais de matriz polimérica com reforço de fibras inorgânicas. Por se tratar da aplicação de uma carga química majoritariamente de silício e oxigênio, abre possibilidades para a sua aplicação em materiais cimentícios. Neste trabalho, realizou-se um extenso programa experimental com o objetivo de investigar o processo de funcionalização de fibras de aço com silanos do tipo tetraetoxissilano (TEOS) e glicidoxipropiltrimetoxissilano (GPTMS) para o reforco de concretos de ultra-alto desempenho reforcado com fibras (CUADRF). As fibras foram funcionalizadas com silanos e foram avaliadas por MEV/EDS. Os concretos com fibras funcionalizadas foram avaliados por ensaios no estado fresco de trabalhabilidade (flow table) e calorimetria isotérmica além de ensaios no estado endurecido de resistência à compressão, flexão, ensaio Barcelona, ensaio de pull-out e caracterização por MEV/EDS da interface fibra matriz. No processo de funcionalização, foi identificado como o melhor tempo de hidrólise 60 minutos, para ambos os silanos utilizados. Na funcionalização, concentrações de 1 e 10 % se mostraram excessivas sugerindo que àquelas superiores à 1 % de silano devem ser evitadas para a promoção de um filme de silano homogêneo. Nos CUADRF, verificou-se que a funcionalização das fibras impactou significativamente nas propriedades dos concretos. Verificou-se uma tendência de aumento na trabalhabilidade dos concretos quanto maior a quantidade de silano utilizado. Na calorimetria isotérmica, verificou-se, em relação ao período de indução, nas séries com fibras funcionalizadas com 10 % de silano valores até 60 % superiores em comparação às séries de referência. Na resistência à compressão não houve impacto significativo das fibras funcionalizadas nos resultados aos 28 dias de hidratação do cimento. Para as séries com fibras tratadas com 0,5 % de silano, houve aumento significativo nos resultados de resistência à flexão, na ordem dos 15 %. No ensaio Barcelona, todas as séries com fibras funcionalizadas apresentaram menores índices de resistência que a referência até os 2 mm de abertura circunferência. No ensaio de pull-out, aos 28 dias de hidratação do cimento, houve aumentos de até 30 % para as séries com TEOS e 15 % para as séries com GPTMS no pico de tensão, quando funcionalizadas com 1,0 % de silano. A análise de MEV/EDS evidenciou que a funcionalização das fibras com silanos interferiu nas propriedades da interface fibra-matriz, tanto física como quimicamente. Verificou-se que quanto maior a quantidade de TEOS na funcionalização das fibras, maior foi a relação Si/Ca na ZTI, passando de aproximadamente 0,3 na amostra de referência para 0,6, quando utilizado 1,0 % de TEOS. Ao final, evidenciou-se a potencialidade do processo de funcionalização da superfície de microfibras de aço, proposto nessa tese, no aprimoramento das propriedades de CUADRF.

Palavras-chave: Silano; Funcionalização; Microfibra de aço; TEOS; GPTMS; CUADRF.

ABSTRACT

Functionalization of surface in general with silanes is a technique extensively used mainly in polymeric matrix materials with inorganic fiber reinforcement. Because it is an application of a chemical charge mainly of silicon and oxygen, it opens possibilities for application in cementitious materials. In this work, an extensive experimental program was carried out with the objective of functionalization process of steel microfibers with investigating the tetraethoxysilane (TEOS) glycidoxypropyltrimethoxysilane silanes and (GPTMS) for the reinforcement of ultra-high performance fiber reinforced concrete (UHPFRC). The fibers were functionalized with silanes and were evaluated by MEV/EDS. Functionalized fibers were evaluated by flow table and isothermal calorimetry tests in addition to tests in the hardened state of compression strength, flexural strength, Barcelona test, pull-out test and MEV/ EDS characterization of interface fiber matrix. In the functionalization process. it was identified as the best hydrolysis time 60 minutes, for both silanes used. In the functionalization, concentrations of 1 and 10 % were excessive, suggesting that those higher than 1 % of silane should be avoided for the promotion of a homogeneous silane film. In the UHPFRC, it was found that fiber functionalization had a significant impact on concrete properties. There was a tendency of increase in the workability of the concretes the greater the amount of silane used. In the isothermal calorimetry, up to 60 % higher values were observed in the series with functionalized fibers with 10 % of silane in comparison of the reference series. In the compressive strength, there was no significant impact of functionalized fibers in the results at 28 days of cement hydration. For the series with fibers treated with 0.5 % silane, there was a significant increase in the results of flexural strength, in the order of 15 %. In the Barcelona test, all series with functionalized fibers presented lower resistance indices than the reference up to 2 mm of circumference aperture. In the pull-out test, at 28 days of cement hydration, there were increases of up to 30 % for the series with TEOS and 15 % for the series with GPTMS at the peak of tension, when functionalized with 1.0 % of silane. The SEM/ EDS analysis showed that the functionalization of the fibers with silanes interfered in the fiber-matrix interface properties, both physically and chemically. It was verified that the higher the amount of TEOS in the functionalization of the fibers, the higher the Si/ Ca ratio in the ITZ, from approximately 0.3 in the reference sample to 0.6. when 1.0 % of TEOS was used. At the end, the potentiality of the process of functionalization of the steel microfiber surface, proposed in this thesis, in the improvement of the properties of CUADRF was evidenced.

Keywords: Silane; Functionalization; Steel microfiber; TEOS; GPTMS; UHPFRC.

LISTA DE FIGURAS Fig. 1- Seções de estruturas com a mesma capacidade portante
Fig. 2 – MEV seção transversal de CUAD
Fig. 3 - Concentração de tensões em descontinuidades na tração
Fig. 4 – Representação da abertura de fissura em compósitos cimentícios50
Fig. 5 - Representação do mecanismo de transferência de tensões através de uma fissura pro- movido pelas fibras
Fig. 6 - Mecanismos de absorção de energia promovido pelas fibras
Fig. 7 - Representação do modelo Hillerbog de fissura fictícia em concretos reforçados com fibras
Fig. 8 - Modelo idealizado de propagação de fissuras em compósito fibroso52
Fig. 9 - Interface fibra-matriz
Fig. 10 - Interface fibra-matriz em CUAD
Fig. 11 - Microdureza da interface fibra-matriz
Fig. 12 - Representação esquemática das tensões distribuídas nas fibras e na matriz55
Fig. 13 - Representação esquemática da distribuição de tensões elástica e por atrito em fibras reforçando compósitos cimentícios
Fig. 14 - Representação do diagrama simplificado da força de arrancamento de fibras de aço em matriz cimentícia
Fig. 15 – Desempenho ao arrancamento de fibras com diferentes formatos
Fig. 16 - Comportamentos característicos de CRF com fibras
Fig. 17 - Diagrama de representação de tensão x deformação elástica de matriz e fibras de alto e baixo módulo de elasticidade60
Fig. 18 - Flexão de prismas de CUADRF com fibras com diferentes fatores de forma 62
Fig. 19 - Representação do comprimento cítrico de fibras para reforço de compósitos 62
Fig. 20 - Formatos comuns de fibras de aço para concretos de alto desempenho64
Fig. 21 – Comportamento de CUADRF de diferentes formatos
Fig. 22 – Fibra antes e depois do arrancamento em matriz de alto desempenho65
Fig. 23 - Reação da microssílica em CUAD
Fig. 24 - Comportamento ao arrancamento de fibras de aço em matrizes com diferentes resis- tências

Fig. 25 - Variação do comportamento ao arrancamento de fibras de aço CUADRF com rentes tamanhos de partículas	dife- 69
Fig. 26- Configuração do corpo de prova do LOP e resistência residual	71
Fig. 27- Configuração do <i>clip-gage</i> para o controle de abertura da fissura	71
Fig. 28 – Curva carga-deformação no ensaio da EN 14651	72
Fig. 29 - Ensaio Barcelona	74
Fig. 30 - Curva característica gerada no ensaio Barcelona	74
Fig. 31 - Exposição dos resultados do ensaio Barcelona	74
Fig. 32 – Exemplos do ensaio de <i>pull-out</i>	78
Fig. 33 - Caracterização da interface fibra-matriz	80
Fig. 34 – Micrografia da superfície de fibras de aço após o arrancamento	80
Fig. 35 - Representação esquemática da interação entre silanos e o C-S-H	82
Fig. 36- Superfície de fibras com e sem tratamento com silanos após o arrancamento	82
Fig. 37 – Representação genérica da estrutura química de silanos	84
Fig. 38 – Classificação geral dos silanos	84
Fig. 39 – Esquema idealizado da reação da hidrólise e condensação de silanos	85
Fig. 40- Velocidade de hidrólise-condensação de silanos	86
Fig. 41 – Esquema idealizado da hidrólise do GPTMS	88
Fig. 42 - Hidrólise do GPTMS	88
Fig. 43 - Representação idealizada da ancoragem do silano no substrato	89
Fig. 44 – Representação idealizada dos tipos de interação dos silanos com substratos	89
Fig. 45 - Representação esquemática do processo dip-coating por imersão	90
Fig. 46 – Influência do tempo de imersão de chapas metálicas em banhos de silanos	92
Fig. 47 - Efeito da concentração do banho na espessura do filme de silano	92
Fig. 48 - Influência da cura térmica na espessura do silano	93
Fig. 49- Espectro de IR do bis-trietoxissililetano em diferentes tempos de hidrólise	95
Fig. 50 - Bandas características do silano com a variação do tempo de cura térmica	96
Fig. 51 - Monitoramento da hidrólise do TEOS	96
Fig. 52- Corte transversal de amostras metálicas funcionalizada com silano	97

Fig. 53 – Seção transversal do filme de TEOS sobre uma liga de alumínio98
Fig. 54 - Micrografia de compósito polimérico reforçado com fibras funcionalizadas98
Fig. 55 – Fluxograma geral do programa experimental da tese
Fig. 56 – Difratograma do cimento CEM I SD Dragon 52,5R 103
Fig. 57 – Distribuição granulométrica dos constituintes do CUADRF 104
Fig. 58 – Espectro infravermelho do aditivo superplastificante utilizado
Fig. 59 - Equipamento para análise de FTIR 106
Fig. 60 - Equipamento para ensaio de calorimetria
Fig. 61 – Representação esquemática da determinação do período de indução 108
Fig. 62 – Ensaio três pontos de flexo-tração UNE EN 196-1 109
Fig. 63 – Corpo de prova e ensaio de LOP e resistência residual
Fig. 64 – Configuração do ensaio Barcelona111
Fig. 65 – Corpos de prova do ensaio de <i>Pull-out</i>
Fig. 66 – Configuração do ensaio pull-out113
Fig. 67 – Espectros de infravermelho dos reagentes da funcionalização 114
Fig. 68 - Bandas de interesse do TEOS e solvente etanoico
Fig. 69 - Verificação das bandas de hidrolise do TEOS nas concentrações de 1 e 10 % 117
Fig. 70 – Espectros do GPTMS x solvente metanoico
Fig. 71 - Espectro GPTMS nas concentrações de 1 e 10 % 119
Fig. 72 - Metodologia de monitoramento do tempo de hidrólise dos silanos 120
Fig. 73 - Espectros infravermelho da hidrólise do TEOS em função do tempo 121
Fig. 74 - Bandas características da hidrólise/condensação do TEOS em função do tempo 123
Fig. 75 - Espectros FTIR do GPTMS na hidrólise em função do tempo 125
Fig. 76 - Bandas características da hidrólise/condensação do GPTMS em função do tempo
Fig. 77 – Método para hidrólise do silano em soluções alcoólicas
Fig. 78 – Esquema idealizado do método utilizado para a funcionalização das fibras 131
Fig. 79 – Agitador mecânico
Fig. 80 – Variação da massa das fibras com a funcionalização

Fig. 81 – Micrografias da amostra de fibra referência134
Fig. 82 - "Ouriços" formados pelas fibras após a agitação mecânica na funcionalização135
Fig. 83 – Micrografias da amostra de fibra tratada com 1 % de TEOS136
Fig. 84 – Micrografias da amostra de fibra tratada com 10% de TEOS137
Fig. 85 – Micrografias da amostra de fibra tratada com 1% de GPTMS138
Fig. 86 – Micrografias da amostra de fibra tratada com 10% de GPTMS139
Fig. 87 – Delaminação das fibras funcionalizadas após serem atritadas140
Fig. 88 – DRX do produto da hidrólise do TEOS em comparação com a nanossílica141
Fig. 89 – Esquema representativo dos dois principais tipos de ruptura do cobrimento de silano nas fibras funcionalizadas142
Fig. 90 – Fluxograma da metodologia utilizada no estudo preliminar de CUADRF145
Fig. 91 - Fluxograma da funcionalização das fibras nesta etapa do estudo146
Fig. 92 – Resultados da massa das amostras funcionalizadas150
Fig. 93 – Trabalhabilidade das amostras de CUADRF na etapa preliminar153
Fig. 94 – Análise de MEV/EDS da série funcionalizada T_10%_N_C154
Fig. 95 – Curvas de calor de hidratação das séries referências (sem silano)155
Fig. 96 – Curvas de calor de hidratação das séries funcionalizadas com TEOS157
Fig. 97 – Período de indução séries funcionalizadas com TEOS do estudo preliminar159
Fig. 98 – Calor de hidratação dos CUADRF com fibras funcionalizadas com GPTMS160
Fig. 99 - Período de indução séries funcionalizadas com GPTMS do estudo preliminar 162
Fig. 100 – Resultados de resistência à compressão dos CUADRF na etapa preliminar164
Fig. 101 – Resultados de MOR dos CUADRF na etapa preliminar168
Fig. 102 – Precipitação de produtos hidratados na amostra da série T_10%_NC171
Fig. 103 - Fluxograma da funcionalização das fibras desta etapa definitiva176
Fig. 104 – Fluxograma geral da metodologia utilizada no estudo definitivo em CUADRF 179
Fig. 105 – Trabalhabilidade das amostras de CUADRF da etapa definitiva
Fig. 106 – Curvas de calorimetria das séries de CUADRF da etapa definitiva
Fig. 107 – Resultados de resistência à compressão dos CUADRF da etapa definitiva184
Fig. 108 – Exemplo da apresentação das curvas geradas no ensaio Barcelona

Fig. 109 – Ensaio Barcelona - Séries funcionalizadas com TEOS e GPTMS187
Fig. 110 – Resultados de tensão em 0,05 mm, tensão máxima e abertura circunferencial no Ensaio Barcelona
Fig. 111 – Ensaio Barcelona – Resultados médios de tensão em aberturas determinadas 190
Fig. 112 – Ensaio Barcelona – Variação da tenacidade em relação à série $REF_{2\% (vf)}$ 192
Fig. 113 – Exemplo da apresentação das curvas geradas ensaio de flexo-tração 193
Fig. 114 – Flexo-tração – Séries funcionalizadas com TEOS e GPTMS 194
Fig. 115 – Flexo-tração – Resultados de LOP das séries de CUADRF 195
Fig. 116 – Flexo-tração – Resultados de MOR dos CUADRF funcionalizadas 197
Fig. 117 – Flexo-tração – Resistência residual relativa à série REF_2%(vf) dos CUADRF com fibras funcionalizadas
Fig. 118 – Flexo-tração – Tenacidade relativa à série REF_2%(vf) dos CUADRF com fibras funcionalizadas
Fig. 119 – Exemplo da apresentação das curvas geradas no ensaio de <i>pull-out</i>
Fig. 120 – Curvas de <i>pull-out</i> das séries funcionalizadas com TEOS
Fig. 121 – Curvas de <i>pull-out</i> das séries funcionalizadas com GPTMS
Fig. 122 – Resultados de tensão máxima no ensaio de <i>pull-out</i>
Fig. 123 – Abertura de fissura na tensão máxima no ensaio de <i>pull-out</i>
Fig. 124 – Resultados médios de tensão residual no ensaio de pull-out
Fig. 125 – Resultados de tenacidade residual no ensaio de <i>pull-out</i>
Fig. 126 – Análise microestrutural das fibras funcionalizadas com TEOS e GPTMS 218
Fig. 127 – MEV/EDS de partículas na superfície das fibras
Fig. 128 – MEV/EDS da superfície das fibras referência e tratadas com TEOS após o arran- camento
Fig. 129 – MEV/EDS da superfície das fibras tratadas com GPTMS após o arrancamento223
Fig. 130 – MEV/EDS da seção transversal na série com fibras referências
Fig. 131 – MEV/EDS da seção transversal da série T_N_0,1%_C 226
Fig. 132 – MEV/EDS da seção transversal da série T_N_0,5%_C 227
Fig. 133 – MEV/EDS da seção transversal da série T_N_1,0%_C228
Fig. 134 – Modelo conceitual da interface fibra-matriz com fibras funcionalizadas sila- nos

Fig. 135 – Análise c	le MEV/EDS	da mancha preta	observada e	em algumas	análises	realizadas
nas superfíc	ies das fibras.		••••••		•••••	

LISTA DE TABELAS Tabela 1 - Evolução do Concreto de Alto Desempenho
Tabela 2 – Obras desenvolvidas com CUADRF
Tabela 3 – Composições comumente encontradas de CUADRF
Tabela 4 - Propriedades das fibras utilizadas em concreto 59
Tabela 5 – Pesquisas que usam fibras de aço-carbono lisas para CUADRF61
Tabela 6 - Valores de comprimento crítico calculados para resultados bibliográficos
Tabela 7 - Fator de orientação das fibras (η1)
Tabela 8 – Métodos para determinação da resistência à tração na flexão em compósitos refor- çados com fibras70
Tabela 9 - Tipologias do ensaio de pull-out
Tabela 10 - Exemplos de silanos
Tabela 11 – Tempos de hidrólise para diferentes soluções de silano
Tabela 12 – Tempo e temperatura aplicados na cura de silanos
Tabela 13 - Composição química da superfície tratada após a cura do silano93
Tabela 14 – Características dos silanos usados101
Tabela 15 – Composição do Cimento Super Dragon 52,5R 102
Tabela 16 – Referências para identificação das fases
Tabela 17 – Características da fibra de aço 105
Tabela 18 – Ligações químicas do aditivo superplastificante identificado por Infraverme- lho
Tabela 19 - Bandas características dos reagentes da funcionalização nos espectros de FTIR
Tabela 20 – Transmitância das bandas características da hidrólise do TEOS 122
Tabela 21 – Transmitância das bandas características da hidrólise do GPTMS 126
Tabela 22 - Composição volumétrica dos banhos de funcionalização das fibras132
Tabela 23 – Massa das fibras que passaram pelo processo de funcionalização 132
Tabela 24 - Composição dos banhos de funcionalização no estudo preliminar de CUA- DRF
Tabela 25 – Nomenclatura das séries de concretos da primeira etapa 148
Tabela 26 - Composição para o CUADRF 149

Tabela 27 – Resultados de calorimetria das séries Referências
Tabela 28 – Resultados de calorimetria das séries funcionalizadas com TEOS158
Tabela 29 - Resultados de calorimetria das séries funcionalizadas com GPTMS162
Tabela 30 - Resultados de resistência à compressão dos CUADRF da etapa preliminar164
Tabela 31 – Estatística da resistência à compressão das amostras funcionalizadas com TEOS e GPTMS
Tabela 32 – Resumo da análise múltipla de médias do ensaio de resistência à compres- são
Tabela 33 – Resultados MOR dos CUADRF da etapa preliminar
Tabela 34 – Estatística dos MOR das séries funcionalizadas com TEOS e GPTMS171
Tabela 35 – Resumo da análise múltipla de médias do ensaio de MOR172
Tabela 36 - Composição dos banhos de funcionalização das fibras na etapa definitiva176
Tabela 37 - Nomenclatura e configuração das séries produzidas nesta etapa
Tabela 38 - Composição dos CUADRF da etapa definitiva177
Tabela 39 – Resultados de calorimetria das séries da etapa definitiva
Tabela 40 – Resultados médios de f_c dos CUADRF da etapa definitiva
Tabela 41 – Resumo da ANOVA da resistência à compressão da etapa definitiva186
Tabela 42 – Resultados de tensão em 0,05 mm, pico de tensão e abertura circunferencial no pico de tensão no <i>Ensayo Barcelona</i>
Tabela 43 – Ensayo Barcelona - Resultados médios de resistências residuais dos CUA- DRF190
Tabela 44 - Ensayo Barcelona - Resultados médios de tenacidade dos CUADRF191
Tabela 45 – Ensaio de flexo-tração - Resultados médios de LOP dos CUADRF195
Tabela 46 - Flexo-tração - Resultados médios de MOR dos CUADRF197
Tabela 47 – Resumo da ANOVA dos resultados de MOR dos CUADRF da etapa defini- tiva
Tabela 48 - Flexo-tração - Resultados médios de resistência residual dos CUADRF 199
Tabela 49 - Flexo-tração - Resultados médios tenacidade dos CUADRF200
Tabela 50 - Resultados médios de tensão máxima dos CUADRF no ensaio de pull-out208
Tabela 51 – Resumo da ANOVA dos resultados de tensão máxima no ensaio de pull-out 209

Tabela	52 - Resultados de abertura de fissura no MOR dos CUADRF no ensaio de <i>pull-out</i>
Tabela	53 - Resultados médios de resistência residual dos CUADRF no ensaio de <i>pull-out</i>
Tabela	54 - Resumo da ANOVA da resistência em 28 dias de hidratação no ensaio pull- out
Tabela	55 - Resultados médios de tenacidade residual dos CUADRF no ensaio de pull- out
Tabela	56 - Resumo da ANOVA de tenacidade em 28 dias de hidratação no ensaio pull- out
Tabela	57 – Variação da massa das fibras pré e pós-funcionalização
Tabela	58 – Trabalhabilidade das amostras CUADRF fase preliminar
Tabela	59 – MOR do CUADRF da fase preliminar
Tabela	60 – Resultados de resistência à compressão dos CUADRF na etapa preliminar 253
Tabela	61 – Resultados de trabalhabilidade dos CUADRF na etapa definitiva
Tabela	62 - Resultados brutos de resistência à compressão dos CUADRF da etapa defini- tiva
Tabela	63 – Resultados de ANOVA para resistência à compressão das séries de CUADRF funcionalizadas com TEOS da etapa definitiva
Tabela	64 – Resultados de ANOVA para resistência à compressão das séries de CUADRF funcionalizadas com GPTMS da etapa definitiva
Tabela	65 – Resultados brutos do <i>Ensayo Barcelona</i> : Tensão em 0,05 mm, aumento de tensão em relação a tensão em 0,05 mm, pico de tensão e deformação no pico de tensão 257
Tabela	66 - Resultados de ANOVA para pico de tensão no Ensayo Barcelona
Tabela	67 - Resultados de ANOVA para LOP das séries da etapa definitiva
Tabela	68 – Resultados de ANOVA para MOR dos CUADRF no ensaio de flexo-tração na etapa definitiva
Tabela	69 – Resultados de ANOVA para tensão máxima das séries em 28 dias de hidratação no ensaio de <i>pull-out</i>
Tabela	70 – Resultados de ANOVA para resistência residual em 0,5 mm e 28 dias de hidrata- ção no ensaio de <i>pull-out</i>
Tabela	71 – Resultados de ANOVA para resistência residual em 2,5 mm e 28 dias de hidrata- ção no ensaio de <i>pull-out</i>
Tabela	72 – Resultados de ANOVA para tenacidade residual em 0,5 mm e 28 dias de hidra- tação no ensaio de <i>pull-out</i>

Tabela 73 - Resultados de ANOVA para tenacidade residual em 2,5 mm e 28	dias de hidra-
tação no ensaio de <i>pull-out</i>	
3	
Tabela 74 - Grau de hidratação do cimento e fases do cimento em CUAD	

LISTA DE ABREVIATURAS

a/c	- Relação água/cimento;	CUADRF	- Concreto de Ultra Alto Desempe- nho reforçado com fibras;
ASTM	- American Society for Testing and Materials;	CUAD	- Concreto de Ultra Alto Desempe- nho;
Α	- Alumina (Al ₂ O ₃)	DSP	- Densified with Small Particule;
С	- Óxido de cálcio (CaO)	GPa	- Giga Pascal (10 ⁹ Pascal);
		GPTMS	- 3-gicidoxipropiltrimetoxissilano
н	- Água (H ₂ O)	JSCE	- Japan Society of Civil Engineers;
S	- Sílica (SiO ₂)	LVDT	- Linear variable differential trans- former;
\overline{S}	- Enxofre	MDF	- Macro Defect Free;
\overline{SO}_3	- trióxido de enxofre	MOR	- Módulo de Ruptura;
C_2S	- Silicato dicálcico;	MPa	- Mega Pascal (10 ⁶ Pascal);
C ₃ A	- Aluminato tricálcico;	MSFRC	- Multi-Scale Fibre Reinforced Con- crete;
C ₃ S	- Silicato tricálcico;	NBR	- Norma Brasileira de Regulamenta- ção;
Ca(OH) ₂	- Hidróxido de cálcio;	RCP	- Reactive Powder Concrete;
CAD	- Concreto de Alto Desempenho;	SIFCON	- Slurry Infiltrated Fiber Concrete;
CAR	- Concreto de Alta Resistência;	TEOS	- Tetraetoxissilano
CMOD	- Crack mouth opening displace- ment (Abertura de fissura na borda inferior);	UHPFRC	- Ultra-High Performance Fiber Reinforced Concrete;
CPR	- Concreto de Pós Reativos;	ZT	- Zona de Transição;
CRC	- Compact Reinforced Composi- tes;		

C-S-H - Silicato de Cálcio Hidratado;

xxix

LISTA DE SÍMBOLOS

σ_{fu}	- Resistência à tração da fibra;	\mathcal{E}_{mu}	- Deformação última da matriz;
σ_η	- Tensão na extremidade da fissura;	f_t	- Resistência à tração;
σ_o	- Tensão de tração aplicada;	W _c	- Dimensão crítica da abertura de fissura;
З	- Deformação;	l_p	- Zona de intertravamento de agre- gados;
а	 Comprimento da fissura superficial ou metade do comprimento da fissura interna; 	l_f	 Zona de ponte de transferência de tensões promovida pelas fibras;
$ ho_e$	- Raio da curvatura na extremidade da fissura;	$w^{f}_{m \acute{a} x}$	- Região limite da fissura onde das fibras atuam;
$\sigma_{w\!(w)}$	- Tensão de fechamento da fissura fic- tícia;	Ε	- Módulo de elasticidade (GPa);
$\sigma_{(w)}$	- Pressão coesiva	E_c	- Módulo de elasticidade do com- pósito (GPa);
w	- Abertura de fissura	$f_{ m ck}$	- Resistência à compressão caracte- rística
		$f_{ct,L}^{f}$	- Limite de proporcionalidade;
F _l	- Maior carga registrada no intervalo de 0 a 0,05 mm do ensaio de LOP;	W ^m máx	 Região limite entre a zona de pro- cessos e a zona de ponte de transfe- rência das fibras;
FT	- Fator de tenacidade;	$a^{e\!f\!f}$	- Fissura efetiva;
h _{sp}	- Diferença entre a altura do corpo de prova e a altura do entalhe;	$f_{r,j}$	- Resistência residual que corres- ponde à <i>CMOD</i> _j ;
l	- Comprimento da fibra;	Fj	- Carga que corresponde à CMOD _j ;
l_c	- Comprimento crítico da fibra;	$\eta_{ heta}$	- Fator de correção de Aveston & Kelly
Ν	- Newtons	r	- Raio das fibras;
Na	- Número de fibras por unidade de área;		
ø	- Diâmetro;	S	- Fator de espaçamento das fibras;
° C	- Graus Celsius	η_1	- Fator de correção de Krenchel;
μm	- Micrometro (10 ⁻⁶ metros);	δ	- Deflexão do corpo de prova;
τ	- Resistência da Interface fibra-matriz;	V_{f}	- Volume de fibras;
cm ⁻¹	- Centímetro inverso (comprimento de onda de FT-IR);	V_{fcrit}	- Volume crítico de fibras;
d ₅₀	50% da distribuição granulométrica possui diâmetrio inferior ao valor indi- cado	nm	- Nanometro (10 ⁻⁹ metros);

SUMÁRIO

1	INTRODUÇÃO E JUSTIFICATIVA	.35
	1.1 OBJETIVO GERAL	.38
	1.2 OBJETIVOS ESPECÍFICOS	.38
	1.3 ORIGINALIDADE	.39
	1.4 DELIMITAÇÃO DO TRABALHO	39
	15 ORGANIZAÇÃO DA TESE	30
	1.5 OKOANIZAÇAO DA TESE	.59
2	REVISÃO BIBLIOGRÁFICA	.41
	2.1 CONCRETO DE ULTRA-ALTO DESEMPENHO REFORÇADO CO	ЭМ
	<i>FIBRAS</i>	.41
	2.1.1 A propagação de fissuras e o paper do felorço fibroso 2.1.2 Interface e interação fibra-matriz	.40
	2.1.3 Classificação do comportamento mecânico do concreto reforcado c	om
	fibras	.57
	2.1.4 Principais fatores que afetam o compósito reforçado com fibras	.58
	2.1.4.1 As fibras	.58
	2.1.4.1.1 Resistência à tração e módulo	.59
	2.1.4.1.2 Fator de forma	.61
	2.1.4.1.3 Deformações nas fibras	.64
	2.1.4.2 Distribuição e o volume de fibras	.65
	2.1.4.3 Características da matriz	.68
	2.1.5 Caracterização de compósitos cimentícios reforçados com fibras	.69
	2.1.5.1 Flexao em prismas	.69
	2.1.5.2 Ensaio Barcelona	.13
	2.1.5.5 Elisalo de altalicamento	.70
		.19
	2.2 FUNCIONALIZAÇÃO COM SILANOS	.83
	2.2.1 Hidrólise e condensação dos silanos	.85
	2.2.2 Adesão ao substrato	.88
	2.2.3 Formação de filmes de silano	.90
	2.2.3.1 Cura do filme de silano	.92
	2.2.4 Caracterização da funcionalização com sitanos	.94
	2.2.4.1 Microscopia Eletrônica de Varredura	.94
	2.3 SÍNTESE DA REVISÃO BIBLIOGRÁFICA	.98
3	PROCEDIMENTO EXPERIMENTAL	100
	3.1 MATERIAIS	101

	3.2 MÉT	TODOS	106
	3.2.1 Es	spectroscopia de infravermelho	106
	3.2.2 A	nálise microestrutural	106
	3.2.3 Ti	rabalhabilidade	107
	3.2.4 Ca	alorimetria isotérmica de condução	107
	3.2.5 R	esistência mecânica	108
	3.2.5.1	Flexo-tração EN 196-1	108
	3.2.3.2	Elevo tração (Limite de proporcionalidade e resistância re	109 widual)
	5.2.5.5	r lexo-tração (Emine de proporcionandade e resistencia re	109
	3.2.5.4	Ensaio Barcelona	111
	3.2.5.5	Ensaio de Pull-out	112
4	ESTUDO) DA HIDROLISE/CONDENSAÇAO DOS SILANOS	114
	4.1 INTI	RODUÇÃO	114
	4.2 PRO	CEDIMENTOS	114
	4.2.1 Ca	aracterização dos reagentes	114
	4.2.2 A	nálise da concentração dos silanos no monitoramento da hidro	ólise
			116
	4.3 RES	ULTADOS E DISCUSSÕES	120
	4.3.1 M	onitoramento da hidrólise do TEOS	120
	4.3.2 M	onitoramento da hidrólise do GPTMS	125
	4.4 CON	ICLUSÃO DO CAPÍTULO	129
5	FUNCIO	NALIZAÇÃO DAS FIBRAS DE ACO	130
	5.1 INTI	RODUCÃO	130
	5.2 DDC	CEDIMENTO DADA EUNCIONALIZAÇÃO DAS EIDDAS	120
	5.2 PKO	CEDIMENTO PARA FUNCIONALIZAÇÃO DAS FIBRAS	130
	5.3 RES	ULTADOS E DISCUSSOES	132
	5.3.1 D	elaminação do silano das fibras	140
	5.4 CON	ICLUSÃO DO CAPÍTULO	143
6	ESTUDO	PRELIMINAR EM CONCRETO DE ULTRA-ALTO D	ESEM-
P	ENHO		144
	6.1 INTI	RODUÇÃO	144
	6.2 DES	CRIÇÃO DO PROGRAMA EXPERIMENTAL	144
	6.3 RES	ULTADOS E DISCUSSÕES	149
	6.3.1 V	ariação da massa das fibras depois de funcionalizadas	149
	6.3.2 Ti	rabalhabilidade	152
	6.3.3 C	alorimetria isotérmica de condução	155

6.3	3.4 Resistência mecânica	163
(6.3.4.1 Resistência à compressão	164
(6.3.4.2 Resistência à tração na flexão	168
6.4	CONCLUSÃO DO CAPÍTULO	173
7 FS	TUDO DETALHADO EM CONCRETO DE ULTRA-AL	TO DESEM.
PENHO)	
7.1	INTRODUÇÃO	175
7.2	METODOLOGIA	175
7.3	RESULTADOS E DISCUSSÕES	
7.3	3.1 Trabalhabilidade	
7.3	3.2 Calorimetria isotérmica de conducão	
7.3	3.3 Resistência mecânica	
,	7 3 3 1 Resistência à compressão	183
	7 3 3 2 Ensaio Barcelona	186
	7333 Flexo-tração (Limite de proporcionalidade e resistê	ncia residual)
	riololo in leve da gue (Ellinite de proporcionalidade e resista	193
,	7334 Ensaio de Pull-out	201
73	3.4 Análise microestrutural	
1.5	7.3.4.1 Modelo conceitual de interface fibra-matriz	
7.4	CONCLUSÃO DO CAPÍTULO	231
8 ()	NCLUSÕES GERAIS DA TESE	234
81	RECOMENDAÇÕES PARA TRABALHOS FUTUROS	237
0.1		
9 RE	EFERÊNCIAS BIBLIOGRÁFICAS	238
10 AP	PÊNDICE 1 DADOS BRUTOS DOS RESULTADO	S DO CAPÍ-
TULO (6	
11 AP	PÊNDICE 2 DADOS BRUTOS DOS RESULTADO	S DO CAPÍ.
TULO 7	7	
12 AP	PÊNDICE 3 ESTIMATIVA DO CONSUMO DE POI	RTLANDITA
PELA N	NANOSSÍLICA E PELOS SILANOS	
12.1	CONSUMO PELA NANOSSÍLICA	
12.2	CONSUMO PELOS SILANOS	

1 INTRODUÇÃO E JUSTIFICATIVA

O concreto há tempos vem sendo estudado principalmente para o aumento da sua resistência à compressão. Dessa forma, grandes avanços foram alcançados, visto que concretos de 50 MPa hoje em dia são comuns. Com a evolução dos aditivos superplastificantes, a possibilidade de aumento da resistência se tornou possível pela obtenção de misturas com elevada homogeneidade e reduzida relação água/aglomerante, o que no concreto contribui muito para a redução dos seus defeitos intrínsecos, tais como elevada porosidade.

Para potencializar seu campo de atuação uma nova fase incorporada ao concreto se faz necessária, resultando em um compósito, de forma que o compósito mais comum é o concreto armado, cuja fase dispersa do compósito é o aço, que nesse caso são longas barras de aço com alta ductilidade. Com a mesma perspectiva, a incorporação de fibras curtas e dispersas na matriz cimentícia tem ganhado mais espaço na tecnologia de compósitos cimentícios.

A partir dos anos 1960 houve grande avanço na tecnologia do concreto e de adição de fibras aos compósitos. Em relação à matriz, houve aprimoramentos sobre o entendimento dos fenômenos de hidratação, da utilização de aditivos, de pozolanas e conceitos sobre nanotecnologia. Já as fibras obtiveram um aumento significativo em relação a novos tipos e formatos para adição em concreto. Além disso, houve aumento substancial no consumo de concreto reforçado com fibras (Tabela 1) (NAAMAN; WILLE, 2012). Com o aparecimento de novos materiais, popularizou-se a adição de fibras de vários tipos e composição, tais como: fibras de aço, de vidro, orgânicas naturais ou minerais e sintéticas (CÁNOVAS, 1997; GAVA, 2006; NAAMAN, 2000). O compósito de matriz cimentícia, nessa mesma época ganhava nova estrutura, o concreto convencional evoluiu para o chamado concreto de alto desempenho, o CAD, cujas propriedades, principalmente a trabalhabilidade, foram aprimoradas.

A maneira mais utilizada para se ganhar resistência tem sido o aumento da sua densidade, que é dependente de vários fatores, tais como as características dos constituintes do concreto. Nessa perspectiva, concretos com seus constituintes na forma de pós começaram a ser produzidos, que quando misturados se pareciam mais com argamassa do que com concreto, sendo esses concretos classificados como concretos de pós reativos (CPR). Esse novo tipo de concreto se destacou em relação aos concretos que eram chamados de alto desempenho, de modo que as pesquisas que utilizavam essa configuração de concretos de pós reativos já alcançavam resistências à compressão em torno dos 800 MPa (RI-CHARD; CHEYREZY, 1995).

Década	Matriz cimentícia	Fibra
1970	 Maior entendimento das reações de hidrata- ção; retração; fissuras; porosidade; Incremento de aditivos redutores de água; Avanços nos tratamentos de cura da pasta. 	 Fibras lisas de aço; Resistência "normal"; Fibras de vidro; Alguns tipos de fibras sintéticas
1980	 Evolução de aditivos de alto desempenho; Adição de microssílica e outras pozolanas; Aumento da fluidez; Redução da relação a/c; Consolidação da terminologia "Concreto de alta resistência": > 60 MPa. 	 Fibras de aço deformadas; Aço de "alta" resistência; Maior uso de fibras de vidro; Microfibras; Fibras de alta performance: carbono e kevlar.
1990	 Desenvolvimento de aditivos de alto desempenho: superplastificantes, agentes de viscosidade entre outros; CUAD: alta densidade, partículas finas, porosidade, baixa a/c; 	 Novos tipos de fibras: torcidas para dificultar o arranchamento; Fibras de PVA; Melhor avaliação de fibras sintéticas.
2000	 Aperfeiçoamento das propriedades dos CUADRF; Melhor compreensão da alta densidade da matriz pelos conceitos de nanotecnologia. 	 Fibras de ultra alta resistência: lisas ou deformadas com diâmetros < 0,12 mm, e resistências > 3,4 GPa. Nanotubos de carbono; Nanofibras de carbono.
2010	• Maior entendimento da matriz cimentícia à nanoescala;	 Nanofibras de carbono; Grafeno;

Tabela 1 - Evolução do Concreto de Alto Desempenho

Fonte: adaptado de (NAAMAN; WILLE, 2012).

Com o ganho de resistência em conjunto com a adição de fibras com alto módulo de elasticidade e alta resistência à tração, obteve-se uma nova classe de compósitos de matriz cimentícia, os chamados concretos de ultra-alto desempenho reforçados com fibras (CUADRF). Além da alta capacidade de suportarem esforços à compressão, ainda apresentavam características que lhes conferiam ductilidade e propriedades interessantes após a sua fissuração, como alta resistência residual. Essa nova classe de compósitos ganhou espaço, se mostrando como alternativa para aplicações do concreto convencional ou do concreto armado em aplicações de estruturas, principalmente, com elevada esbeltes, como painéis, passarelas e mobiliário urbano ou em elementos com necessidade de alta capacidade de absorção de energia, como abalos sísmicos e esforços dinâmicos. Por ser um material relativamente fluido, o CUADRF é capaz de alcançar formas mais complexas e modernas. Além disso, o reforço fibroso é capaz de substituir a utilização de armaduras passivas.

Apesar da adição de fibras melhorarem em muito as propriedades do concreto, principalmente no pós-fissuração, há consequências diretamente relacionadas à presença das fibras, como a perda de fluidez e a presença da zona de transição interfacial entre a fibra e a matriz cimentícia.

Em relação à fluidez, as fibras quando incorporadas à matriz cimentícia tendem a comportar-se como agregados lamelares, aumentando o atrito interno e diminuindo a fluidez da massa de concreto, que comumente é corrigida com aditivos superplastificantes. Em relação à zona de transição interfacial, quando
da incorporação de fibras à matriz cimentícia, há a formação de uma região entre a fibra e a matriz, caracterizada pela elevada porosidade e concentração de cristais de hidróxido de cálcio o que, de certa forma, condiciona o desempenho mecânico global do concreto reforçado com fibras (BENTUR; DIAMOND; MIN-DESS, 1985). Atualmente, a medida mais utilizada para se produzir uma zona de transição interfacial (ZT) mais compacta (menos porosa) é a adição de pozolanas de elevada reatividade, tais como a microssílica (OH; KIM; CHOI, 2007; ZANNI et al., 1996). Todavia, pesquisas realizadas com o objetivo de verificar melhora da aderência das fibras à matriz cimentícia, promovida pela incorporação de pozolanas, apontam a existência da ZT mesmo em materiais com altas concentrações de pozolanas. Ainda nesses casos, os efeitos da zona de transição continuam a afetar o desempenho global do material.

Além do emprego de pozolanas, outras medidas têm sido avaliadas na intenção de melhorar a ligação fibra-matriz, dentre as quais são comumente utilizadas a variação do tamanho, do formato e da orientação das fibras, o ataque químico das suas superfícies e a deposição metálica sobre suas superfícies. São, no entanto, processos que objetivam, principalmente, o aumento do atrito entre a matriz e a fibra (ABU-LEBDEH et al., 2011; GEORGIADI-STEFANIDI et al., 2010; LARANJEIRA et al., 2012; LEE; KANG; KIM, 2010).

A concentração de compostos característicos e de baixa resistência mecânica na zona de transição fibras-matriz faz com que estudos sobre o tema sejam investigados. A funcionalização da superfície das fibras com moléculas de agentes acopladores, técnica que hoje em dia é amplamente empregada na indústria metalúrgica, apresenta potencial para aprimorar as propriedades da zona de transição no compósito cimentício.

A aplicação de produtos químicos à base de silano, a silanização, já vem sendo estudada desde o começo do século XX (ZHU; VAN OOIJ, 2003). O principal foco dessa aplicação é a proteção de materiais metálicos sujeitos a processos de corrosão, como alternativa ao processo de cromatização ou galvanização convencional, que faz uso extenso de metais pesados.

De forma geral, os silanos são encontrados no mercado na forma de soluções não hidrolisadas de alta concentração e precisam ser hidrolisados em uma solução aquosa antes da sua aplicação (PLUEDDEMANN, 1991). As moléculas de silanos são constituídas de um átomo de silício ligado geralmente a três grupos alcóxi (O-R) e um grupo organofuncional, que, geralmente, é o responsável pela proteção em casos anticorrosivos. O processo de silanização ocorre pela hidrólise dos grupos alcóxi da molécula do silano quando em contato com a solução aquosa formando grupos silanóis (Si-OH); esses, por sua vez podem reagir com outros grupos silanóis, resultando na reação de policondensação dos silanóis constituindo uma ligação de siloxano (Si-O-Si). No caso de reações com metais, as hidroxilas da superfície metálicas condensam com os grupos silanóis do metal (Metal-OH) e resultam em ligações covalentes do tipo Si-O-Metal (ZHU, 2005; ZHU; VAN OOIJ, 2004). Partindo desse princípio, a funcionalização da superfície das fibras de aço, para adição em concreto, com agentes acopladores, tais como as moléculas de silano, apresentam possibilidades interessantes quando da sua interação com compósitos cimentícios. De modo que, um filme de silano pode servir como um agente de ligação entre a matriz e a fibra, contribuindo para o aprimoramento da interface resultante dos processos de hidratação e, dessa forma, pode colaborar para diminuir as instabilidades da região da zona de transição.

Esforços têm sido executados para que a maior interação fibra-matriz ocorra principalmente por meio de maior atrito ou pelo maior intertravamento da fibra. Já, a funcionalização da superfície das fibras com silanos oferece a oportunidade do aumento da interação fibra-matriz por meio de ligações químicas ou físico-químicas, melhorando a qualidade da zona de transição, sobretudo o aumento da energia necessária para o arrancamento das fibras; que tem efeito benéfico direto nas propriedades, principalmente no pós-fissuração do compósito.

Assim, a hipótese central desta tese de doutorado é de que a funcionalização com silanos promova, na superfície das fibras, alterações capazes de incrementar a adesão com a matriz cimentícia.

1.1 OBJETIVO GERAL

Aprimorar as propriedades da zona de transição interfacial entre a fibra e a matriz de compósitos cimentícios de ultra-alto desempenho através da funcionalização da superfície de microfibras de aço-carbono, revestidas com latão, com moléculas de silanos.

1.2 OBJETIVOS ESPECÍFICOS

- Propor um procedimento para a funcionalização da superfície de microfibras de aço-carbono (revestidas com latão) com silanos;
- Avaliar se há alterações na superfície das microfibras de aço a partir do processo de funcionalização com silanos;
- Avaliar a influência do processo de funcionalização das microfibras de aço no desempenho mecânico de concretos de ultra-alto desempenho;
- Verificar se a interface e a zona de transição são alteradas pelas microfibras funcionalizadas com silanos.

1.3 ORIGINALIDADE

Diferentemente dos tratamentos convencionais, que têm como objetivo promover maior superfície específica ou maior ancoragem por meio de interações físicas com a matriz, este estudo apresenta como proposta a funcionalização da superfície de microfibras de aço-carbono com moléculas de silanos, de modo a promover reações químicas entre a matriz e a superfície funcionalizada das fibras, visando aprimorar as propriedades da interface em compósitos cimentícios de ultra-alto desempenho reforçados com fibras.

1.4 DELIMITAÇÃO DO TRABALHO

Como será abordado no próximo capítulo, vários fatores podem afetar o desempenho do compósito reforçado com fibras. Assim, algumas variáveis foram fixadas de modo a priorizar a investigação do efeito do processo de funcionalização das fibras, tais como:

- A metodologia abordará uma única composição de concreto (matriz) para as amostras em cada etapa da tese, sem variação do volume de fibras adicionado nas amostras de fibras tratadas, para comparação (pelo fato da tese abordar a funcionalização das fibras e o seu efeito na matriz de CUADRF);
- Será utilizado um único tipo de microfibra de aço-carbono de alto desempenho. A fibra selecionada é do modelo e composição que comumente se aplica para reforço em CUADRF (ABBAS; NEHDI; SA-LEEM, 2016);
- Dentre os vários silanos disponíveis no mercado, serão utilizados dois tipos de silanos para o processo de funcionalização (por serem largamente utilizados na bibliografia como agentes acopladores de superfícies metálicas e precursores no processo sol-gel (GIZDAVIC-NIKO-LAIDIS et al., 2008; YOUNG, 2002)).

1.5 ORGANIZAÇÃO DA TESE

CAPÍTULO 2 – Revisão bibliográfica: abordará os aspectos gerais e específicos do CUADRF além de aspectos específicos da interface fibra-matriz. Também apresentará uma fundamentação teórica sobre funcionalização com silanos e a potencialidade de aplicação em matrizes cimentícias;

CAPÍTULO 3 – Procedimento experimental: apresentará a metodologia geral, os materiais utilizados e os métodos de caracterização utilizados para o desenvolvimento da tese; **CAPÍTULO 4 - Estudo do tempo de hidrólise dos silanos**: abordará a análise do monitoramento da hidrólise dos silanos, a escolha do tempo de hidrólise dos silanos e os parâmetros que devem ser utilizados nas soluções de funcionalização das fibras;

CAPÍTULO 5 – Funcionalização das fibras de aço: abordará a metodologia de funcionalização da superfície das fibras de aço e apresenta conclusões a respeito dos resultados obtidos no processo realizado que servem como base para a execução do capítulo seguinte;

CAPÍTULO 6 - Estudo preliminar em CUADRF: Com base nas conclusões do capítulo anterior, este capítulo abordará um estudo sobre as variáveis adotadas no processo de funcionalização. Onde, apresenta-se uma metodologia e os resultados obtidos a partir da escolha de parâmetros na funcionalização. A partir dos resultados e conclusões deste capítulo, determina-se um método para o estudo detalhado (Capítulo 7);

CAPÍTULO 7 - Estudo detalhado em CUADRF: A partir dos resultados da etapa anterior, é escolhida uma metodologia de funcionalização de fibras e é apresentado um estudo do efeito da incorporação das fibras funcionalizadas na matriz de concreto no estado fresco e endurecido, bem como os resultados obtidos e as conclusões desse estudo.

CAPÍTULO 8 – Conclusões gerais da tese: Sumariza as conclusões sobre todo o trabalho desenvolvido na tese e apresenta sugestões para trabalhos futuros.

2 REVISÃO BIBLIOGRÁFICA

2.1 CONCRETO DE ULTRA-ALTO DESEMPENHO REFORÇADO COM FIBRAS

Introduzido por Birchal *et al.* (1981) e Bache (1981) nos anos 80, esse tipo de concreto, hoje chamado de Concreto de Ultra-Alto Desempenho (CUAD ou *Ultra-High Performance Concrete - UHPC*) é derivado de pesquisas que objetivam aumentar, principalmente, a resistência à compressão dos Concreto de Alto Desempenho (CAD). Esse aumento nas propriedades mecânicas levaram o CAD a um nível "superior", classificado como CUAD. Essa classificação, por sua vez, é interpretada de várias formas, como apresentado a seguir.

Buitelaar (2004) classifica os concretos com resistência mecânica à compressão superior à 80 MPa como CAD e concretos com resistências superiores a 120 MPa como CUAD. Já Tang (2004), comenta que os CUAD apresentam resistências na ordem dos 200 MPa à compressão. Para o comitê ACI 239 (2012), o CUAD é definido como um material que possui no mínimo 150 MPa de resistência à compressão e propriedades paralelas como durabilidade, ductilidade e tenacidade "elevadas".

O Departamento Federal de Transportes dos EUA (*FHWA*) sugere que os concretos são diferenciados pela resistência à compressão característica (f_{ck}), sendo o concreto com resistência inferior a 50 MPa à compressão, considerado concreto convencional (CC) e com resistência superior à 140 MPa considerado CUAD, e entre os intervalos 50-140 MPa, são considerados CAD (RUSSEL, G; GRAYBEAL, 2013). Além disso, pode-se afirmar, resumidamente, que uma das grandes diferenças entre os CC e CAD é o fator controlador da trabalhabilidade, que nos convencionais é controlada pela água e nos CAD e CUAD pelos aditivos superplastificantes (AMARO; FERNANDES, 2011).

Ranade *et al.* (2014), relatam que os CAD podem ser separados em duas categorias dependendo da sua propriedade mecânica superior, havendo os de alta resistência à compressão, por exemplo: CAD, concretos de ultra-alta resistência (CUAR), concretos de pós reativos (CPR), concretos livre de macro defeitos (*MDF*, do inglês *Macro Defect Free*), e os concretos de ultra-alta resistência e ductilidade, como os: concretos de ultra-alta resistência/desempenho reforçado com fibras (CUARRF ou CUADRF).

Verifica-se que os conceitos de "alto" e "ultra-alto" são subjetivos. Basicamente, esse conceito define que o material possui propriedades superiores das apresentadas em concretos convencionais, além disso, as propriedades são elevadas de modo que o concreto não se encaixa na classe dos já intitulados de "alto desempenho", mas em uma classificação superior.

Apesar das várias interpretações, atualmente, de maneira geral, o concreto é classificado como CUAD quando a sua resistência à compressão é superior aos 150 MPa (NAAMAN; WILLE, 2012). Basicamente, a primeiras pesquisas definiram esse material em duas vertentes principais (BRANDÃO, 2005):

- a) A obtenção de uma matriz muito densa, conhecida como *Densified with Small Particule (DSP)*, que contém alto teor de aditivos superplastificantes, microssílica e agregados de alta resistência;
- b) A utilização de argamassa modificada com polímeros, conhecida como MDF, onde os poros do concreto são preenchidos pelo produto de polimerização, resultando em matrizes compactas e resistentes. Esse material é de complexa obtenção e fabricação, exigindo condições especiais resultando em custo alto para a produção, ainda, costuma apresentar deformações por fluência que podem comprometer sua estrutura.

Dessas duas vertentes principais, a que se "popularizou" foi a matriz DSP. A adição de fibras à matriz DSP resulta no concreto de ultra-alto desempenho reforçado com fibras, o atual CUADRF, do inglês Ultra-High Performance Fiber Reinforced Concrete (UHPFRC). Esse novo conceito de concreto levou a três frentes de investigações principais (NAAMAN; WILLE, 2012; ROSSI, 2000):

- a) Os *Compact Reinforced Composites* (CRC) que são CUADRF com 5 a 10% de fibras de aço-carbono de no máximo 6 mm de comprimento e 150 µm de diâmetro, produzido inicialmente na Dinamarca;
- b) Os *Reactive Powder Concrete* (RCP) que no Brasil são chamados de Concreto de Pós Reativos (CPR) e é um tipo de CUADRF com até 2,5% de fibras de aço-carbono de no máximo 13 mm de comprimento e 160 μm de diâmetro, desenvolvido inicialmente na França, e o;
- c) *Multi-Scale Fibre Reinforced Concrete* (MSFRC), que são CUADRF com fibras de aço curtas e longas em conjunto, produzido inicialmente pelo *Laboratoire Central des Ponts et Chaussées* (LCPC) na França.

O CUADRF não se trata de um novo material, mas sim de um aprimoramento do CAD com rigorosa seleção de constituintes e ausência de agregados graúdos. Considerando os termos de escala, um CPR está para um CAD em uma proporção de 1: 100. Composto por pós de cimento Portland, areia de quartzo, pó de quartzo, sílica ativa, fibras (preferencialmente de aço) micrométricas, superplastificante e água, os CUADRF podem ser confeccionados de forma semelhante aos concretos convencionais, com a diferença de utilizarem misturadores de alta eficiência para a sua mistura. Partindo desses princípios não é difícil obter resistências mecânicas superiores aos 50 MPa, mesmo não sendo esse o objetivo principal da dosagem (CAMACHO; LÓPEZ; ROS, 2012; TUTIKIAN; ISAIA; HELENE, 2011; VANDERLEI, 2004; WANG et al., 2012).

O CUAD se destaca por sua elevada resistência mecânica, por ser compacto e homogêneo. No estado fresco, apresenta consistência fluida mais próxima da argamassa do que do concreto convencional, por não ter agregado graúdo em sua composição. Suas propriedades são interessantes a ponto de colocar em cheque a preferência do aço para armaduras passivas, se mostrando como alternativa na substituição do concreto armado convencional (AZAD; HAKEEM, 2013). A sua alta resistência à tração na flexão lhe confere ainda mais interesse, além de ter módulo de elasticidade elevado e por ser autoadensável, dispensa equipamentos de vibração permitindo liberdade de definição geométrica. Sua estrutura depois de curada resulta em um concreto pouco permeável à umidade e agentes agressivos. Consequentemente, apresenta maior durabilidade devido à baixa relação água/aglomerante comumente em torno de 0,15 a 0,22 (KONO et al., 2013; RICHARD; CHEYREZY, 1995).

O custo unitário inicial do CUAD excede em muito o do concreto convencional, de acordo com Koh *et al.* (2013), 2 % de fibras pode representar 63 % do valor do material. Portanto, as aplicações devem ser concentradas em otimizar seu uso, reduzindo a espessura da estrutura, mudando as formas estruturais ou com o desenvolvimento de soluções que atendam as deficiências estruturais do concreto. O CUADRF é um produto durável, e as estruturas que a utilizam devem ter uma vida útil prolongada, requerendo menos manutenção do que as estruturas de concreto convencional (RUSSEL, G; GRAYBEAL, 2013).

Deve-se aproveitar as principais características do material, como a resistência à compressão e, ao projetar, busca-se que a estrutura trabalhe sob tensões principalmente de compressão. Esse modelo de projeto propicia a obtenção de estruturas até três vezes mais leves, comparadas com concreto convencional armado (BIZ, 2001). Na Fig. 1 é mostrado a seção de quatro tipos de materiais, Concreto de Pós Reativos (CPR), aço, concreto protendido e concreto armado, todos com a mesma capacidade portante, para comparação (TUTIKIAN; ISAIA; HELENE, 2011).

Fig. 1- Seções de estruturas com a mesma capacidade portante

Fonte: adaptado de Walvaren apud Tutikian et al. (2011)

Com a perspectiva de diminuição das dimensões dos elementos estruturais, atualmente inúmeras obras que utilizam estruturas de CUADRF podem ser listadas, tais como obras de infraestrutura, estruturas e obras arquitetônicas. Russell & Graybeal (2013) listam várias obras com a utilização de concretos de ultra-alto desempenho na América do Norte e na Europa, onde atualmente há o maior consumo desse tipo de material. Na América do Norte há um planejamento para que o desenvolvimento das novas obras de infraestrutura viária deva ser com CUAD. Já na Europa, a demanda é mais variada, sendo verificadas aplicações em recuperação, proteção de elementos estruturais e obras arquitetônicas. Na Tabela 2 é possível verificar alguns exemplos de obras emblemáticas que utilizam elementos de CUADRF.

Atualmente, a maneira mais frequente para empregar o CUADRF é por meio dos produtos comerciais patenteados que existem no mercado (Ductal[®], BSI[®], CRC[®], CEMTEC_{multiscale}[®], BCV[®]). Esses produtos se assemelham a composição inicialmente sugerida por Richard & Cheyrezy (1995), mas com variações dos constituintes que tem por finalidade uma aplicação específica, tal como: alta resistência à compressão, alta resistência à flexão e/ou alta ductilidade (CA-MACHO; LÓPEZ; ROS, 2012; WILLE; KIM; NAAMAN, 2010).

Tabela 2 - Obras desenvolvidas com CUADRF

Passarela para pedestres em Sherbrooke, Quebec, Canadá.

Passarela "Sakata-Mirai" para pedestres em Sakata, Japão.

"Passarela da Paz" para pedestres em Seonyu, na Coréia do Sul.

Cobertura da Estação de trem na cidade de Shawnessy, Calgary no Canadá

Cobertura da estação de pedágio de Millau, na França

Tabela 2 - CONTINUAÇÃO

Fonte: Vanderlei (2004); Brandão (2005); Ackler & Behloul (2004); Resplendino (2012); Mazzacane *et al.* (2013 a; 2013 b); MuCEM (2013).

Nas pesquisas de Richard & Cheyrezy (1995) e Dugat *et al.* (1996) são sugeridas composições típicas para a confecção de CUADRF em comparação a composição de um produto comercial (Ductal[®]) (Tabela 3). Por eliminar os agregados graúdos nos CUADRF, aumenta-se sua homogeneidade junto com a diminuição da relação água/aglomerante a níveis baixos, além dos problemas relacionados à zona de transição também serem reduzidos. Com a substituição do agregado graúdo ocorre a substituição do agregado miúdo pela areia micro-métrica, que reduz significativamente as microfissuras devido aos agregados não formarem um esqueleto rígido que bloquearia a retração (VANDERLEI, 2004). O CUADRF prioriza a fase pasta na matriz, podendo chegar a compor mais de 60 %(vol.) do compósito (NAAMAN; WILLE, 2012).

	Concreto de 200 MPa (fck)			
Constituinte (em massa)	Richard &	Dugat <i>et</i>	Ductal [©]	
	Cheyrezy	al.		
Cimento Portland ^a	1	1	1	
Microssílica	0,25	0,25	0,32	
Pó de quartzo	0,39	-	0,30	
Areia <600 μm	1,1	1,05	1,43	
Aditivos químicos	0,016	0,018	0,04 - 0,08	
Fibra de Aço-carbono ($l < 13 \text{ mm}; f_t > 1300 \text{ MPa}$)	0,175	0,15	0,21	
Água	0,15	0,19	0,15	

Tabela 3 - Composições comumente encontradas de CUADRF

 ^a mais comumente utilizado do tipo CP-V (equivalente ao cimento do tipo I americano); f_{ck} é a resistência à compressão característica; f_i é a resistência à tração característica; l é o comprimento da fibra. Fonte: Richard & Cheyrezy (1995); Russell & Graybeal (2013); Dugat *et al.* (1996)

Os trabalhos com CUADRF convergem para a preferência por cimentos com

baixo teor de aluminato tricálcico (C_3A) devido à alta reatividade do composto e a possibilidade de perda precoce da trabalhabilidade.

Os elementos que utilizam esse tipo de concreto são mais concentrados em produtos pré-fabricados. Desta forma, os cimentos de granulometria mais fina e maior concentração de C₃S (silicato tricálcico) são os mais recomendados, por outro lado, podem apresentar limitações devido à maior demanda de água (AÏTCIN, 2004; COLLEPARDI; COPOLLA; TROLI, 1998; COPOLLA; TROLI; CERULLI, 1996). Quando há tratamento térmico, a sugestão é utilizar cimentos livre de C₃A e ricos em C₃S, resultados de Copolla *et al.* (1996) mostraram perdas substanciais de resistência quando utilizado cimentos com altos teores de C₃A em relação aos livres desse composto.

Nas dosagens de CUADRF, é comum a adição de microssílica na proporção de 25 % em relação à massa de cimento. Isso resulta no consumo de grande parte do hidróxido de cálcio (Ca(OH)₂) da zona de transição. Além disso, devido ao seu diâmetro em torno de 10 μ m e alta superfície específica, a microssílica também atua como "lubrificante" na pasta de cimento (BIZ, 2001; RANADE et al., 2014; VANDERLEI, 2004). A recomendação é de uma relação cimento: microssílica na ordem de 1: 0,25, o que não é regra, porém essa relação corresponde a um empacotamento ótimo (RICHARD; CHEYREZY, 1995).

Para os agregados, recomenda-se a utilização de areia "silicosa" (> 95% SiO₂), e partículas inferiores à 600 μ m (RICHARD; CHEYREZY, 1995; VAN-DERLEI, 2004). Há possibilidade de utilizar areia obtida do pó de pedra, mas por resultar em formas lamelares, a demanda de água será afetada em relação ao uso de areia natural, que apresenta o formato esférico. O pó de quartzo é recomendado com tamanho de 5 a 25 μ m, favorecendo o empacotamento do concreto. Esse pó também atua como reagente pozolânico quando o concreto é submetido à tratamento térmico, consumindo parte do Ca(OH)₂, mas em um nível inferior que as pozolanas propriamente ditas (RICHARD; CHEYREZY, 1995).

A adição de nanossílica em matriz cimentícia ainda é um assunto em aberto, devido ao seu tamanho ultrafino e energias de superfície elevadas (GLEIZE, 2010). Quando da manipulação de nanopartículas, aglomerados se formam colocando em discussão se o pó adicionado realmente é nanométrico (COLLODETTI, 2013). A nanossílica dispersada apresenta grande potencial para aplicações no CUADRF, visto que sua composição é de granulometria extremamente fina e, visando o melhor empacotamento possível, a adição de nanossílica é de grande potencial para melhoria da compacidade, da diminuição dos poros e maior homogeneidade do esqueleto granulométrico. Seu modo de atuação pode ser de várias formas, um deles é no estado fresco lubrificando a pasta e completando os vazios do esqueleto granulométrico, também atua reagindo com a microestrutura do material, principalmente com o Ca(OH)₂. Além disso, é possível atuar como um ponto nucleador, desenvolvendo a microestrutura ao seu redor (RAMEZANIANPOUR et al., 2012; SCRIVENER; KIRKPA-TRICK, 2008; SHAH et al., 2012). A possibilidade da adição da nanossílica à matriz cimentícia apresenta resultados promissores não somente em relação ao estado fresco, mas também relacionados ao estado endurecido e a durabilidade do concreto (JO et al., 2007; LI, 2004; LI et al., 2004; QING et al., 2007; QUERCIA et al., 2014; SANCHEZ; SOBOLEV, 2010; SENFF et al., 2009, 2012). Em pesquisas com a adição de nano e microssílica em matriz cimentícia, verificou-se que a adição de nanossílica é mais eficiente no ganho de resistência. Um quinto (em massa) de nanossílica em relação à microssílica foi suficiente para superar as resistências das amostras com de microssílica (LI et al., 2004). Esse tipo de adição também é variado, seu custo é elevado em relação aos demais constituintes, o que exige dosagens precisas. A adição de nanossílica é geralmente em cerca de 3 % em relação à massa do cimento. Contudo, estudos relatam a adição de até 10 % em relação ao cimento em CADs (SENFF, 2009).

Como esse tipo de concreto necessita de baixa relação água/ aglomerante, a utilização de aditivos redutores de água de alta eficiência se faz necessária. São recomendados os aditivos superplastificantes chamados de terceira geração, onde suas estruturas químicas são baseadas em cadeia poliméricas de base em policarboxilatos e/ ou poliacrilatos e permitem a redução de até 40 % da água de amassamento, mantendo-se a mesma trabalhabilidade. Seu meio de atuação é semelhante aos aditivos das gerações anteriores, com a diferença de proporcionarem a repulsão eletrostática e estérica simultaneamente, o que os classifica como tensoativos. Em uma das extremidades da molécula do aditivo há cargas elétricas que se ligam à superfície da partícula do cimento e na outra extremidade há uma barreira estérica formada por cadeias poliméricas longas, cujo mecanismo resulta em uma alta eficiência de repulsão. Comparando amostras de aditivos à base de policarboxilatos, aumento da fluidez em até 100 % foram verificados em relação a aditivos chamados de segunda geração (os melaminasulfonatos) (COLLEPARDI, 1998; TUTIKIAN; DAL MOLIN, 2008). Em média, para a dosagem, o consumo é de 1,5 a 2,5 % em relação à massa do cimento, contudo há variações dependendo do tipo de constituintes que formam o esqueleto do concreto (RUSSEL, G; GRAYBEAL, 2013).

O comportamento da matriz de CUAD é elástico linear, de modo que para conferir um comportamento tenaz faz-se a adição de fibras ao compósito. Quando da adição das fibras à matriz, o comportamento elástico do compósito passa a apresentar comportamento "pseudo-dúctil". Isto é, apesar de não apresentar deformação apreciável, apresenta capacidade de absorver energia após a sua fissuração. Esse desempenho tenaz é dependente de características pontuais do compósito, tais como: as características das fibras, da matriz, da interface fibra-matriz e o volume de fibras adicionado ao compósito; que devem ser levadas em consideração se o reforço pós fissuração é o objetivo do seu projeto. Esses fatores contribuem para o material controlar a propagação das fissuras e apresentar resistências residuais, como discutido a seguir.

2.1.1 A propagação de fissuras e o papel do reforço fibroso

Assim como nos concretos convencionais, os concretos de alto desempenho estão sujeitos aos defeitos intrínsecos dos processos de hidratação da pasta cimentícia. Apesar de não possuir defeitos decorrentes da restrição da pasta, por não apresentar agregados graúdos na sua composição, a matriz de alto desempenho é composta de descontinuidades que comprometem a sua capacidade de transferência de tensões. Além das próprias microfissuras resultantes da retração da pasta cimentícia, a matriz de ultra-alto desempenho é composta por vazios ocasionados pela incorporação de ar e pela zona de transição com os microagregados e fibras (quando adicionadas) (Fig. 2) (MARKOVIC, 2006; SCHLAN-GEN; KOENDERS; VAN BREUGEL, 2007).

As descontinuidades na matriz podem apresentar geometrias variadas, porém são comuns em dois formatos principais, como as provenientes de um poro esférico ou de uma fissura de formato elíptico. No caso do formato esférico, quando submetidas à tração, as tensões nas regiões periféricas das descontinuidades atingem valores de tensão três vezes maiores que da tensão de tração aplicada. No caso das descontinuidades de formato elípticas, as tensões serão amplificadas a um fator igual a (1+ 2a/b), sendo "a" o maior e "b" o menor semieixo da elipse (Fig. 3). Numa situação real, a dimensão de "b" é praticamente nula. Nesse caso a relação "a/b" tende ao infinito e matematicamente a tensão na borda da fissura também crescerá infinitamente (FERREIRA; HANAI, 2010). A partir dos métodos propostos pela teoria da fratura (Teoria de Griffith) é possível estimar a tensão na borda de uma fissura pela (Eq. (1)) (CALLISTER, 2007).

Fonte: Scheydt & Müller (2012)

$$\sigma_{\eta} = 2 \times \sigma_0 \times \sqrt{\left(\frac{a}{\rho_e}\right)}$$

(A) Circular; (B) Elíptico;

 $σ_{\eta}$: tensão na extremidade da fissura; σ: tensão de tração.

Fonte: Ferreira & Hanai (2010)

Onde:

 $σ_η é a tensão na extremidade da fissura; <math>σ_0 é a tensão de tração aplicada;$ a é o comprimento da fissura superficial ou metade do comprimento da fissura interna; $ρ_e é o raio da curvatura na extremidade da fissura.$ Quando sujeita à compressão, a matriz é capaz de transmitir tensões através das microfissuras. Já na tração, as tensões serão induzidas às bordas das microfissuras, aumentando a sua intensidade. O resultado dessa tensão concentrada nas extremidades das microfissuras é a propagação da descontinuidade na direção transversal das tensões (FIGUEIREDO, 2011; NUNES, 2006). No estudo da propagação de fissuras em materiais cimentícios, podemos definir o fenômeno como ruptura "quase-frágil", subdividindo-se a análise em três estágios (FERREIRA; HANAI, 2010):

- 1. No primeiro, na aplicação da carga, a microfissuração é dispersa no material, e para todos os efeitos a resposta é considerada elástico-linear;
- 2. No segundo estágio, com o crescimento da carga e aumento das concentrações de tensões nas extremidades das fissuras, propagando-se a microfissuração. Assim, a resposta de deslocamento passa a desviar-se gradativamente da linearidade até que as microfissuras coalescem e caracterizam a localização da deformação. Até esse estágio a fissuração é estável, pois precisa de aumento da tensão para que continue a crescer;
- No terceiro estágio, o processo de propagação de fissuras é instável, de modo que não é necessário o aumento de tensões para que continue o processo de fissuração do elemento.

Esse comportamento não-linear dos materiais cimentícios é atribuído a fatores que interceptam a propagação da fissura de maneira linear e dão a característica "Quase-frágil" ao compósito. É sugerido que a partir da formação de uma fissura uma parcela da extensão dessa fissura é composta de uma região de processos inelásticos, onde é atribuída uma pressão de fechamento, chamada de "pressão" coesiva ($\sigma_{(w)}$), que monotonicamente decresce a partir do deslocamento da abertura de fissura (*w*). Esta região de processos inelásticos é definida como "fissura fictícia" (Fig. 4). A pressão de fechamento tem origem em diversos e complexos mecanismos de transferência de tensões, tais como o intertravamento dos grãos, o desvio da direção da propagação das fissuras, a fricção interfacial, a bifurcação da propagação de fissuras e o arrancamento de partículas entre as faces da fissura; de modo que para que uma fissura se propague é necessária à dissipação de uma parcela da energia aplicada para superar a ação da pressão de fechamento (FERREIRA; HANAI, 2010).

O RILEM – TC162 TDF (2002a) sugere um modelo de fissura fictícia apresentado inicialmente por Hillerborg *et al.* (1976) (Fig. 4), a região da fissura fictícia é subdividida em duas partes, uma de "intertravamento dos agregados" e uma "zona de processos". Esse modelo considera que a fissura fictícia é formada tão logo a tensão de tração (σ) atinja a intensidade da tensão de tração máxima do material (f_t), de modo que a tensão decresce até o zero no ponto correspondente à dimensão crítica característica da abertura de fissura (w_c).

Fig. 4 - Representação da abertura de fissura em compósitos cimentícios

Fonte: adaptado de Ferreira & Hanai (2010)

Onde:

 σ : é a tensão de tração; w_c : é a dimensão crítica característica de abertura de fissura; w: é a dimensão da abertura da fissura; $\sigma_w(w)$: é a tensão de fechamento da fissura fictícia; f_t : é a resistência à tração do compósito.

Com a evolução da fissuração, tem-se uma área de transferência de tensões cada vez menor, concentrando-se a tensão na área não fissurada. Verificase que o concreto apresenta uma resistência à tração inferior aos índices obtidos na compressão, isso devido à alta concentração de tensões nas periferias das fissuras de modo que essas apresentam alta capacidade de propagação.

As fibras apresentam um trabalho interessante quando incorporadas à matriz cimentícia, atuando como mecanismo de transferência de tensões através das fissuras do concreto e aumentando a energia associada à ruptura na tração (FI-GUEIREDO, 2011). Quando da adição das fibras de propriedades e volume adequados à matriz de concreto, o seu comportamento marcadamente frágil passa a apresentar ductilidade. Tal fato é decorrente das fibras servirem como pontes para as transferências de tensões, minimizando principalmente as tensões concentradas nas extremidades das fissuras (Fig. 5). Esse fenômeno tem impacto muito significativo para o controle da propagação das fissuras, que resulta em um concreto com comportamento global "pseudo-dúctil".

 (a) Fissura em compósito sem reforço fibroso; (b) fibras interceptando a fissura no compósito Fonte: adaptado de Figueiredo (2011) e Nunes *et al.* (1997)

A propriedade de ductilidade conferida pelas fibras ao compósito é resultante de vários fatores, tais como: de ponte de transferência de tensões diminuindo as tensões nas extremidades das fissuras; o desvio e/ou interceptação das fissuras, fazendo-as propagar-se mais lentamente ou surgir em outro ponto da matriz; descolamento das fibras da matriz, que consome uma parcela da energia aplicada. Esses fatores atuam independentemente da quantidade de fibras adicionadas, contudo com maior ou menor intensidade, o que depende da dosagem do material (Fig. 6) (BENTUR; MINDESS, 2007; ZOLLO, 1997).

Esses mecanismos de transferências de tensões e absorção de energia modificam a distribuição de tensões nas regiões das fissuras, isso inibe a propagação instável das fissuras. Essa nova distribuição de tensões leva o modelo de fratura fictícia a uma nova configuração.

Uma das configurações apresentadas é baseada no modelo apresentado por Hillerbog (1980) para compósitos reforçados com fibras (Fig. 7). Verificase neste modelo que a fissura fictícia abrange além da zona de processos e da zona de intertravamento de agregados, uma zona de ponte de transferência de tensões que é resultado da adição das fibras. Essa redistribuição da tensão aplicada leva a tensão de fechamento da fissura à um valor que decresce do índice correspondente à resistência à tração do material até um valor maior que zero, que corresponde à tensão necessária para o descolamento das fibras da matriz. Esse comportamento é verificado até a região entre o intertravamento dos agregados e a zona de transferência de tensões pelas fibras. A partir deste ponto, a tensão de fechamento permanece constante até o extremo da fissura fictícia, essa tensão corresponde à resistência ao cisalhamento promovido pela interface fibramatriz (RILEM, 2002a).

Fig. 6 - Mecanismos de absorção de energia promovido pelas fibras

- 1 Ruptura da Fibra
- Arrancamento da Fibra
- ③ Ponte de transferência de tensões
- ④ Descolamento da fibra
- 5 Fissuração na matriz

Fonte: adaptado de Zollo (1997)

w: é a abertura da fissura; $\sigma_w(w)$: é a tensão de fechamento da fissura fictícia; $f_{t comp}$: é a resistência à tração do compósito. Fonte: adaptado de RILEM – TC162 TDF (2002a)

Wecharatana & Shah (1983) também apresentam um modelo idealizado. Nessa proposta, além da zona de processos e da zona de intertravamento de agregados, há também uma zona de ponte de transferência de tensões, seguida de uma zona de tração livre, constituindo a chamada "fissura efetiva". As regiões onde a fibras são atuantes apresentam maior tensão de fechamento devido ao entrelaçamento das fibras na zona da fratura. Assim como no modelo sem fibras, a fissura se inicia quando a tensão aplicada supera o limite de resistência à tração do material. A pressão de fechamento da fissura pode ser dividida em dois estágios, o primeiro é caracterizado pela tensão promovida pela zona de processos, que decresce até zero na região em que se inicia a zona de transferência de tensão pela ponte promovida pelas fibras, nessa região a ponte de transferência de tensões atinge seu valor máximo, decrescendo até zero na região de tração livre. Nesse ponto, considera-se que as fibras não atuam mais (BENTUR; MINDESS, 2007).

A manutenção da capacidade de absorver energia após a sua fissuração confere resistência residual ao material, isso resulta no comportamento pseudodúctil mencionado anteriormente. A possibilidade de diminuição e controle da propagação de fissuras do compósito, tornam o CRF menos susceptível a agentes agressivos associados à penetração de água, o que aumenta muito o seu campo de atuação. Essas propriedades promovidas à matriz de concreto pelas fibras dependem de vários fatores, principalmente aos associados aos mecanismos de transferência de tensões entre a fibra e a matriz.

Fonte: adaptado de Wecharatana & Shah (1983)

2.1.2 Interface e interação fibra-matriz

Em concretos de ultra-alto desempenho reforçados por fibras (CUADRF), a zona de transição (ZT) entre a fibra-matriz é similar à encontrada entre a pasta e os microagregados. Isto é, a vizinhança do reforço fibroso é consideravelmente diferente da pasta que compõem o concreto. Quando da adição das fibras à matriz, forma-se de uma película de água ao redor das fibras e há uma menor concentração de partículas cimentícias em relação ao resto do concreto.

Com a evolução da hidratação, os produtos de hidratação tendem a precipitar na forma de cristais na região entre a pasta e a fibra, de modo que a microestrutura da zona de transição é constituída em sua maioria por cristais de portlandita (Ca(OH)₂), resultante das hidratação do C₃S e β -C₂S (silicato tricálcico e silicato dicálcico) (Eq. (2) e (3); Fig. 9 e Fig. 10). Esses cristais têm predominantemente geometria hexagonal plana e tendem a alinhar-se em um plano paralelo às fibras, além dos sulfoaluminatos de cálcio (em menor quantidade), como a etringita, na forma de agulhas resultante das reações da gipsita e do C₃A (Eq. (4)). Além disso, há também a presença de poros resultantes das reações de hidratação dos compostos.

Essa configuração confere a zona de transição, principalmente, pouca resistência mecânica e, por consequência, grande possibilidade de propagação de fissuras. De forma geral, a zona de transição é estruturada por uma fina camada intitulada de "filme duplo". Essa camada separa a fibra da matriz e é seguida de uma camada espessa com alta concentração de Ca(OH)₂ e de uma camada porosa que faz interface com a pasta cimentícia. Nessa interface com a pasta, a composição varia muito, sendo comumente composta de etringita, portlandita e C-S-H (silicato de cálcio hidratado) em menor concentração. Após a formação da ZT, ela ainda pode ser alterada por reações químicas, mas geralmente permanece inalterada e é dependente da disponibilidade de água no sistema. Analisando essa configuração na interface fibra-matriz, pode-se verificar dois pontos de fraqueza na ZT, a primeira é a do filme duplo e interface da fibra com a camada de Ca(OH)₂ e a segunda é a interface da camada porosa com a matriz cimentícia. Predominantemente, quando solicitadas, as fibras são arrancadas da matriz na região do filme duplo, mas como as fibras estão distribuídas aleatoriamente na matriz, as tensões também podem desviar-se da superfície da fibra concentrando-se na zona de interface da camada porosa com a pasta, gerando fissuras a cerca de 40 µm da superfície da fibra (BENTUR; DIAMOND; MINDESS, 1985; BENTUR; ALEXANDER, 2000; DIAMOND; HUANG, 2001; GENG; LEUNG, 1996; HORNE; RICHARDSON; BRYDSON, 2007; MONTEIRO; GJORV; MEHTA, 1985; PINCHIN; TABOR, 1978; ZHU; BARTOS, 2000).

$$2C_3S + 6H \to C_3S_2H_3 + 3CH \tag{2}$$

$$2\beta C_2 S + 4H \to C_3 S_2 H_3 + CH \tag{3}$$

 $C_3A + 3C\overline{S}H_2 + 26H \rightarrow C_6A\overline{S_3}H_{32}$ (Etringita) Onde: C = CaO; S = SiO₂; H = H₂O; A = Al₂O₃; \overline{S} = SO₃

No CUADRF, pela adição de grandes quantidades (cerca de 25 % em relação ao cimento) de material pozolânico, baixa relação água/ aglomerante e estrutura compacta, a zona de transição é reduzida e forma-se menos porosa. Contudo, ainda predomina na interface entre a fibra de aço e a matriz cimentícia (KANG; AHN; KIM, 2012). Mesmo com os altos teores de materiais que consomem o Ca(OH)₂, pesquisas com CUADRF têm demonstrado que apenas a adição de pozolanas pode não ser suficiente para acabar com a camada característica da interface (GARAS; KURTIS; KAHN, 2012; SU et al., 2016).

A interface fibra-matriz é dependente da composição da matriz e pode aumentar ou diminuir a sua qualidade dependendo do método de dosagem. No caso de matrizes de ultra-alto desempenho essa interface é predominantemente menor. Apesar disso, as propriedades, como a microdureza, ao redor da fibra podem variar em relação à matriz. Isto é, apesar da matriz cimentícia e a fibra serem de alta qualidade, geralmente a zona de transição é de 30 a 50 % mais fraca que a matriz, resultado da alta concentração de porosidade e produtos pouco resistentes (Fig. 11). É verificado que quanto menor a relação água/ aglomerante, maior é a dureza da interface e estima-se que a interface apresenta uma espessura em torno de 30-75 μ m, mesmo para pequenas relações água/ aglomerante (HORNE; RICHARDSON; BRYDSON, 2007; KANG et al., 2013; MARKOVIC, 2006; WEN; LI, 1997; XU; DENG; CHI, 2017).

O reforço de fibras é composto por dois mecanismos fundamentais de transferência de tensões: elástico e por atrito (BENTUR; MINDESS, 2007; GRAY, 1984). Quando do mecanismo elástico, as fibras e a matriz estão aderidas de modo que há deformações compatíveis entre ambas. Com isso, consideras e que não há deslocamentos relativos entre a fibra e a matriz. No caso de fibras

(4)

de aço, essas possuem o módulo de deformação elástica muito superior ao da matriz cimentícia, assim desenvolvem-se tensões cisalhantes na interface, que distribui a carga externa de maneira não uniforme (Fig. 12).

Fig. 11 - Microdureza da interface fibra-

Fonte: adaptado de Bentur & Mindess (2007)

Fig. 12 - Representação esquemática das tensões dis-

Enquanto as tensões cisalhantes não superam a resistência de cisalhamento na região da interface fibra-matriz, o mecanismo elástico é predominante (NUNES, 2006). O mecanismo de transferência de tensões é alterado de elástico para atrito quando a tensão de cisalhamento superar a resistência ao cisalhamento na interface, isso dará início ao descolamento da fibra. A partir do descolamento completo da fibra, o escorregamento da fibra é iniciado e posteriormente o arrancamento é verificado. Esse processo de descolamento/ arrancamento da fibra resulta em transferências de tensões por atrito, que por sua vez são uniformes ao longo da interface fibra-matriz. A transição do mecanismo de transferências de tensões é gradual e ambos podem ocorrer, isso dependendo da qualidade da interface fibra-matriz, sendo que em matrizes de alto desempenho sujeitas a tensões de tração, esse descolamento da fibra da matiz pode ocorrer antes de iniciado o processo de fissuração (BENTUR; MINDESS, 2007). O mecanismo de transferência de tensões é ilustrado na Fig. 13.

A resposta mecânica da transferência de tensões elástica e por atrito podem variar com a adição de diferentes tipos de fibras. Por outro lado, apesar de comportamentos distintos, o comportamento segue um modelo característico, deste modo é proposto um modelo simplificado para descrever o comportamento característico do arrancamento da fibra de um compósito cimentício. Na Fig. 14 é mostrado o digrama, onde a linha O-P é caracterizada pela transferência de tensões elásticas e região de interface intacta. O trecho P-R é caracterizado pelo descolamento gradual da fibra. O trecho de queda súbita R-R' é caracterizado pelo descolamento total da fibra. A partir do trecho R' a resistência para o arrancamento da fibra decresce gradualmente, indicando a predominação do mecanismo de transferência de tensões por atrito (BARTOS, 1981; BENTUR; MIN-DESS, 2007; LIN; LI, 1997).

Fig. 13 - Representação esquemática da distribuição de tensões elástica e por atrito em fibras reforçando compósitos cimentícios

σ: é a tensão de tração;
Fonte: adaptado de Bentur & Mindess (2007)

Fig. 14 - Representação do diagrama simplificado da força de arrancamento de fibras de aço em matriz cimentícia O-P...Transferência elástica P-R...Descolamento gradual R-R'...Descolamento total da fibra R'...Transferência por atrito

Fonte: adaptado de Bartos (1981)

Esse comportamento característico é também reportado por Kim et al. (2008) e Naaman (2012) (Fig. 15). A partir do estudo do arrancamento de fibras de aco, foi verificada a influência do tipo do formato da fibra na interação fibramatriz. Verificou-se que os comportamentos são semelhantes ao modelo "clássico", contudo com desempenhos variados dependentes dos formatos das fibras analisadas. Todas as fibras ensaiadas, no trecho O-A, apresentam deformação elástica semelhantes, se mostrando pouco sensíveis à fase elástica do compósito. A partir desse trecho, cada fibra apresenta um comportamento particular. A fibra lisa, quando do seu descolamento da matriz por completo, apresenta um decréscimo substancial na tensão para o arrancamento, isso é atribuído à baixa capacidade de ancoramento que resulta principalmente em mecanismos de transferência de tensões por atrito. A fibra com deformações nas extremidades claramente apresenta um trecho de aumento de tensão (trecho A-A'), que caracteriza a descolagem gradual da fibra até a tensão máxima, que indica o descolamento total e também a retificação das extremidades da fibra. A partir desse trecho, é somente o mecanismo de transferência de tensões por atrito que atua no arrancamento, semelhante à fibra lisa. A fibra do tipo torcida apresenta um trecho de descolamento muito superior às demais (trecho A-D), atribuído o trabalho gasto para retificar a fibra até o ponto em que somente as forças de atrito sejam atuantes.

a) Comportamento das fibras no ensaio de arrancamento; Δ_1 : deslocamento referente ao descolamento total da fibra lisa; Δ_2 : deslocamento referente ao descolamento total da fibra deformada; Δ_3 : deslocamento referente ao descolamento total da fibra torcida; b) e c) fibras deformadas e torcidas retificadas após o arrancamento.

Fonte: Naaman (2012); Kim et al. (2008)

2.1.3 Classificação do comportamento mecânico do concreto reforçado com fibras

O maior interesse da adição de fibras para concreto é nos benefícios promovidos quando esses elementos são sujeitos à tração, de modo que nos ensaios de caracterização desses materiais os comportamentos são classificados de forma característica. Dentro dos ensaios à tração os mais utilizados são os de tração axial e de tração na flexão, sendo as deformações resultantes da aplicação de tensões denominadas de deformação (*strain*) e deflexão (*deflection*), respectivamente. O comportamento é governado pelo volume crítico de fibras (V_{fcrit}), quando a adição das fibras é abaixo do volume crítico, ocorre necessariamente o comportamento chamado de amolecimento (*softening*), e quando a adição de fibras é superior ao volume crítico tem-se uma resposta ao endurecimento (*hardening*) (FIGUEIREDO, 2011). Esses conceitos podem ser subdivididos em duas classes de ensaios, os de flexão e de tração axial (NAAMAN; H.W, 2003; WILLE; EL-TAWIL; NAAMAN, 2014) (Fig. 16):

- a) Quando da tração na flexão, classifica-se o comportamento como *deflec-tion-hardening* aquele que apresenta a capacidade de resistência residual superior à carga no momento da ruptura da matriz, esse comportamento é acompanhado de múltiplas fissuras ao longo do elemento; ou classifica-se como *deflection-softening* aquele caracterizado pela capacidade resistente pós fissuração inferior à carga no momento da ruptura da matriz, e é acompanhado de uma fissura principal.
- b) Quando da tração axial, classifica-se o comportamento como strain-hardening que apresenta capacidade de resistência pós-fissuração superior à carga no momento da ruptura da matriz. Essa característica é acompanhada de múltiplas fissuras no elemento até a obtenção da tensão máxima;

ou classifica-se como *strain-softening*, caracterizando-se pela capacidade de resistência pós-fissuração inferior à carga no momento da ruptura da matriz, e é acompanhado da abertura de uma única fissura.

Fig. 16 - Comportamentos característicos de CRF com fibras

(a) classes de ensaios e comportamentos fundamentais; $V_{\rm f}$ = volume de fibras; $V_{\rm fcrit}$ = volume de fibras crítico

Fonte: adaptado de Naaman & Reinhardt (2003)

Fonte: adaptado de Di Prisco et al. (2013)

CRF

Após a formação da fissura localizada, inicia-se o arrancamento da fibra, chamado de deslizamento (*slip*) da fibra. Semelhante às classificações anteriores, essa característica pode ser "*hardening*" ou "*softening*", que depende da característica da resposta; é predominante o comportamento *softening*, porém no comportamento *hardening*, o aumento da resistência ao deslizamento da fibra pode ser devido a mecanismos de retificação ou mesmo a deterioração da região onde a fibra está localizada. Assim, aumenta-se o atrito e, por consequência, a energia necessária de arrancamento da fibra (BENTUR; MINDESS, 2007).

2.1.4 Principais fatores que afetam o compósito reforçado com fibras

2.1.4.1 As fibras

Uma variedade de fibras, tais como fibra de vidro, aço, carbono, vegetais, sintéticas entre outras, podem ser incorporadas no concreto (Tabela 4). Assim como em concretos convencionas, nos CUAD, as fibras atuam como controladores das fissuras, servindo como ponte de transferência de esforços. Isso permite melhorar propriedades como: resistência à flexão, rigidez, tenacidade, resistência ao impacto, fadiga e resistência ao ciclo térmico (BENTUR; MIN-DESS, 2007; FIGUEIREDO, 2011; ZOLLO, 1997).

Tabela 4 - Hophedades das horas dunizadas em concreto					
Material	E (GPa)	Densidade (g/cm ³)	Resistencia a tração (GPa)		
Carbono	230	1,9	2,6		
Aço-carbono	190-210	7,84	0,5-2,5		
Kevlar	65-133	1,45	3,6		
Vidro	70-80	2,6	2-4,0		
Fibra de madeira	71	1,5	0,9		
Matriz cimentícia	10-55,0	2,5	3,7 x 10 ⁻³		

Tabela 4 - Propriedades of	das f	fibras	utilizadas	em	concreto
----------------------------	-------	--------	------------	----	----------

Fonte: Adaptado de Figueiredo (2011); Hizen & Brameshuber (2012)

Para se obter uma real influência das fibras como reforço nas propriedades do concreto, as fibras devem apresentar características como (NAAMAN, 2000):

- a) A resistência à tração deve ser maior do que a resistência à tração da matriz de concreto, na ordem de duas a quatro vezes;
- b) A resistência de aderência da fibra com o concreto deve ser semelhante ou superior a resistência à tração da matriz de concreto;
- c) O módulo de elasticidade à tração da fibra deve ser superior ao módulo de elasticidade à tração da matriz de concreto e;
- d) O coeficiente de *Poisson* e o coeficiente de expansão térmica devem ser semelhantes ou superiores ao da matriz de concreto. O coeficiente de Poisson das fibras deve preferencialmente ser superior ao coeficiente de *Poisson* da matriz de concreto para evitar o descolamento da fibra pelas tensões de tração, contudo este efeito pode ser minimizado com a ancoragem mecânica das fibras.

Não somente as propriedades mecânicas das fibras afetam as características do compósito, mas também as características físicas da fibra, tal como a sua geometria, deformação nas extremidades, distribuição dentro da matriz e o volume adicionado à matriz. As fibras promovem real influência no comportamento do compósito, principalmente no pós-fissuração, deste modo as suas propriedades devem ser analisadas e selecionadas de maneira criteriosa.

2.1.4.1.1 Resistência à tração e módulo

Se a adição das fibras no concreto tem o objetivo o reforço pós-fissuração, com a adição de fibras de baixo módulo de elasticidade e baixa resistência mecânica, essas apresentarão uma tensão inferior à matriz de concreto quando solicitadas no momento da sua ruptura, por consequência haverá uma deformação pronunciada da fissura da matriz. Dessa forma, o alto consumo desse tipo de fibra se faz necessário. As fibras com baixo módulo possuem pouca capacidade de reforço pós-fissuração são recomendadas para controle da fissuração em pavimentos de modo a atuarem principalmente no estado fresco e nas primeiras idades, nos quais as resistências ainda não são elevadas. No caso de fibras de alto módulo de elasticidade e alta resistência mecânica, no instante da referente à ruptura da matriz, essas, apresentarão resistência superior à matriz, o que lhe atribui a capacidade de reforço pós-fissuração, mesmo em baixos consumos, caso sua resistência à tração não seja ultrapassada (FIGUEIREDO, 2011).

Uma representação da importância da resistência e do módulo das fibras é ilustrada na Fig. 17, considerando um compósito reforçado com fibras, com aderência fibra-matriz perfeita e comportamento elástico perfeito. Verifica-se que, na ruptura da matriz, a fibra de alto módulo e alta resistência apresenta a capacidade de suportar tensões superiores à tensão de ruptura da matriz. Já, a fibra de baixo módulo, apresenta resistência muito inferior à matriz na deformação de ruptura, caracterizando a baixa capacidade pós-fissuração (FIGUEI-REDO, 2011).

Quando da adição de fibras com elevado módulo de elasticidade e baixa resistência mecânica, na deformação referente à ruptura da matriz, essas fibras terão se rompido, resultando em uma baixa capacidade portante após a fissura da matriz. Considerando esse aspecto, fibras dúcteis, como as metálicas, apresentam propriedades interessantes para o reforço de compósitos cimentícios.

No caso de matrizes de CUAD, que possuem resistências mecânicas à compressão e módulos de elasticidade em torno de 150 MPa e 45 GPa, respectivamente, existe a preferência por fibras de alto módulo e alta resistência mecânica, como as fibras de aço-carbono (Tabela 5).

Tuotiu o Tosquisus que usum norus de uço eurosno nsus pura e eribra				
Autor	(<i>l</i>) mm	(<i>d</i>) mm	<i>f</i> t fibras (GPa)	fc concreto (MPa)
Richard & Cheyrezy (1995)	12	0,35	-	> 200
Dugat <i>et al.</i> (1996)	13	0,175	-	>150
Vanderlei (2004)	13	0,15	-	>150
Chan & Chu (2004)	13	0,16	2,6	-
Wille <i>et al.</i> (2010)	13	0,2		> 200
Azad & Akeem (2013)	12,7	0,15	2,5	160
Yoo <i>et al.</i> (2014)	13-30	0,2	2,5	>180
Su et al. (2016)	15	0,12	4,2	>150
Wang <i>et al.</i> (2017)	13	0,22	2,8	150

Tabela 5 – Pesquisas que usam fibras de aço-carbono lisas para CUADRF

l = comprimento da fibra; d = diâmetro da fibra; $f_t =$ resistência à tração; $f_c =$ resistência à compressão

2.1.4.1.2 Fator de forma

Em conjunto com as propriedades mecânicas das fibras para adição em concreto, o formato da fibra também possui grande influência nas propriedades pós fissuração do compósito. Basicamente, o formato da fibra é relacionado com o seu fator de forma (λ), que é definido pela razão entre o comprimento e o diâmetro da fibra.

Quanto maior o fator de forma da fibra, maior será o seu comprimento em relação ao seu diâmetro, e prevê-se que maior será seu desempenho pós fissuração (BENTUR; MINDESS, 2007). Isso é atribuído ao maior embutimento da fibra dentro da matriz, que resulta em maior atrito entre a fibra e a matriz, e consequentemente maior resistência quando as fibras são solicitadas. Porém não é possível aumentar o comprimento da fibra demasiadamente, de modo que um limite de comprimento deve ser respeitado. Sobretudo, deve-se considerar a compatibilidade dimensional entre a fibra e o agregado, sendo recomendado que as fibras sejam pelo menos duas vezes maiores que a dimensão máxima do agregado graúdo (HUANG; ZHAO, 1995). Tratando-se de uma matriz de CUADRF, essa compatibilidade é respeitada, pois não há agregado graúdo e as maiores partículas apresentam diâmetros em torno de 0,6 mm.

Yoo *et al.* (YOO; KANG; YOON, 2014) avaliaram o efeito do fator de forma de microfibras de aço no comportamento do CUADRF ensaiados à flexão (Fig. 18). Foi verificado que o esse índice influencia substancialmente as propriedades do compósito, principalmente pós fissuração. As fibras utilizadas são da mesma origem, desta forma, possuem as mesmas propriedades mecânicas. Foi utilizado dois tipos de fibras, um com 0,2 mm de diâmetro e três diferentes comprimentos, 13, 16,6 e 19,5 mm cujos fatores de forma são 65, 81,5 e 97,5, respectivamente, e o outro tipo com 0,3 mm de diâmetro e comprimento de 30 mm, resultando em um fator de forma de 100. Foi verificado que quanto maior o fator de forma, maior foi a resistência pós fissuração, porém o compósito com adição da fibra com fator de forma 100 não obteve a maior capacidade residual, o que

era esperado para esse caso. No entanto, atribui-se isso à dificuldade com a compactação das amostras, resultando em deficiências na moldagem dos corpos de prova.

Fig. 18 - Flexão de prismas de CUADRF com fibras com diferentes fatores de forma

Além dos demais fatores que afetam a qualidade do reforço das fibras na matriz de concreto, há outro parâmetro diretamente relacionado com o fator de forma da fibra, que é o comprimento crítico (l_c). Esse parâmetro é baseado no modelo da tensão entre a fibra e a matriz aumentando de maneira linear em direção ao centro da fibra. Nas extremidades das fibras a transmissão de esforços da matriz para a fibra é deficiente ou inexistente. Deste ponto, a transmissão de esforços passa a aumentar gradualmente ao longo do corpo da fibra, até atingir um valor máximo como representado pela Fig. 19 (FIGUEIREDO, 2011).

Fig. 19 - Representação do comprimento cítrico de fibras para reforço de compósitos

 σ_i : é o máximo carregamento de tração; *l* é o comprimento da fibra; *l*_c é o comprimento crítico. Fonte: adaptado de Callister (2007)

As fibras com comprimento inferior ao l_c , quando solicitadas, apresentam como comportamento característico a deformação da matriz ao redor da fibra ou a fratura da interface fibra-matriz, que é responsável pelo arrancamento da fibra. O fenômeno de arrancamento de fibras de aço é comumente encontrado em matrizes de concretos quando a fibra utilizada é de alta resistência à tração. Já as fibras de comprimento maior que o comprimento crítico são, preferencialmente, rompidas devido ao maior embutimento na matriz ou devido à tensão aplicada no arrancamento superar o limite de resistência à tração da fibra (FIGUEIREDO, 2011).

O comprimento crítico de uma fibra é função do diâmetro da fibra (d), limite de resistência à tração (σ) e da força de ligação na interface fibra-matriz (τ), conforme a Eq. (5) (CALLISTER, 2007).

$$l_c = \frac{\sigma \times d}{2 \times \tau} \tag{5}$$

Se a condição da interface melhorar muito, o comprimento da fibra pode superar o comprimento crítico e levar à ruptura da fibra. Com isso, é possível prever que em CUADRF, devido à interface fibra-matriz superior em relação aos concretos convencionais, a resistência da interface aumenta e o comprimento crítico da fibra diminui. Dessa forma, prefere-se fibras com altas resistências à tração e/ ou comprimentos inferiores das macrofibras tradicionais.

Em geral, se a adição de fibras tem como objetivo o reforço de CUADRF, a mais amplamente utilizada é a microfibra de aço, que, normalmente, apresenta características de resistências superiores aos 2000 MPa à tração, comprimento menor que 25 mm e diâmetros inferiores aos 0,5 mm. Quanto à resistência da interface da fibra-matriz (τ) os valores são variados, pois dependem de fatores tais como: tipo de fibra, inclinação da fibra, formato da fibra, além de ser dependente da qualidade da matriz. Na Tabela 6 são apresentados valores de comprimento crítico calculados analiticamente pela Eq. (5) a partir de resultados bibliográficos de resistência da interface fibra-matriz obtidos por meio do ensaio de *pull-out* de fibras lisas, sem ancoragem na extremidade.

Verifica-se, frequentemente, que para o CUADRF são utilizadas fibras que tem comprimento abaixo do comprimento crítico. Essa configuração da fibra resulta no comportamento predominante de arrancamento da fibra. Essa tipologia do compósito sugere alternativas para aumentar a qualidade e resistência da interface, que permitiria maior vinculação da fibra à matriz. No caso de a resistência da interface comprometer as fibras, a ponto de rompê-las, há a possibilidade de diminuir ainda mais o seu comprimento, permanecendo abaixo do comprimento crítico.

					0
Autor	σ _{fib} (MPa)	<i>d</i> (mm)	τ (MPa)	<i>l</i> utilizado (mm)	<i>l</i> c calculado (mm)
Chan & Chu (2004)	2600	0,16	5	13	41,6
Aiello et al. (2009)	2314	0,25	7,5	25	38,6
Lee et al. (2010)	2500	0,2	6	13	41,7
Kang et al. (2012)	2311	0,37	10	30	43,3
Kim et al. (2012)	2580	0,3	6	30	64,5
Kang <i>et al.</i> (2013)	2580	0.3	9	30	43

Tabela 6 - Valores de comprimento crítico calculados para resultados bibliográficos

 $\sigma_{\rm fib}$: resistência à tração das fibras; *d*: diâmetro das fibras; τ : resistência da interface fibra-matriz; *l*: comprimento das fibras; *lc* : comprimento crítico.

2.1.4.1.3 Deformações nas fibras

Assim como o comprimento, diâmetro, resistência das fibras, o próprio formato e a deformação nas fibras interferem nas propriedades do compósito. Dentre os formatos mais utilizados em CUADRF, se destacam as fibras de aço do tipo "lisa", deformada nas extremidades e do tipo torcidas (Fig. 20).

Fig. 20 - Formatos comuns de fibras de aço para concretos de alto desempenho

(b) deformada na extremidade Fonte: Kim *et al.* (2008); Wille *et al.* (2011)

Wille *et al.* (2011) verificaram, por ensaios de tração direta e por ensaios de tração na flexão, diferenças substanciais no comportamento de compósitos reforçados com fibras de diferentes formatos (Fig. 21). Foi verificado que as fibras lisas sem deformação apresentaram as menores resistências residuais, em comparação com as amostras de fibras deformadas, principalmente em pequenas deformações, apresentando um comportamento *strain-hardening*, acompanhado do escorregamento da fibra. Já as fibras com algum tipo de deformação apresentaram comportamento *strain-hardening* elevado.

Na flexão o comportamento foi semelhante à tração axial, porém a amostra com fibras lisas apresentou comportamento *deflection-hardening* muito mais pronunciado que na tração, mas, da mesma, forma em menor intensidade que nas amostras com fibras deformadas. Esse desempenho superior à flexão pode ser relacionado aos mecanismos relacionados à propagação da fissura, que na flexão tem a vantagem de uma parcela do elemento sofrer esforços na compressão, o qual o concreto é mais eficiente.

O desempenho residual superior das fibras deformadas, principalmente à pequenas deformações, é devido à maior ancoragem e vinculação das fibras à matriz, que necessitam ser deformadas antes da fase de escorregamento, caracterizada pela região de *strain/deflection-hardening*, na qual predomina o mecanismo de descolamento-deformação da fibra. Esse comportamento também é verificado por Abu-Lebdeh *et al.* (2011) (Fig. 22) e Kang *et al.* (2013). Além da energia gasta para a deformação da fibra, isso faz com que a região de interface seja deteriorada, de modo que é gerado atrito e intertravamento da fibra na matriz, devido a partículas desprendidas na região de interface. Isso resulta em maior energia necessária para o arrancamento da fibra. Percebe-se que para deformações mais elevadas, a capacidade das fibras deformadas se assemelha à fibra lisa sem deformações. Isso é devido à retificação que a tensão promove nas fibras, deixando a fibra parcialmente reta resultando predominantemente em transferência de tensões por atrito.

Fig. 22 – Fibra antes e depois do arrancamento em matriz de alto desempenho

(a) Antes do arrancamento

(b) Depois do arrancamento

Fonte: adaptado de Abu-Lebdeh *et al.* (2011).

T-fiber = fibra torcida; H-fiber = Fibra deformada; S-fiber = Fibra lisa; $f'_{c\ 28d}$ = resistência à compressão aos 28 dias; V_f = volume de fibras; σ_{pc} = tensão máxima no ensaio; fl = módulo de ruptura.

Fonte: adaptado de Wille et al. (2011)

2.1.4.2 Distribuição e o volume de fibras

É consenso que um dos fatores principais no desempenho do compósito é o volume das fibras adicionadas à matriz. Esse fator, em conjunto com a orientação e o número de fibras que se encontram na região da fissura, tem grande impacto na definição do comportamento do compósito (BENTUR; MINDESS, 2007; FIGUEIREDO, 2011; SEBAIBI; BENZERZOUR; ABRIAK, 2014). Vários autores reportam a relevância da direção das fibras sobre a capacidade de resistência residual (KANG; KIM, 2012; LARANJEIRA et al., 2012; LEE; KANG; KIM, 2010; ŽIRGULIS et al., 2015). Essa orientação e distribuição na região da fissura levam a duas considerações conflitantes:

- a) O aumento da resistência ao arrancamento para fibras com inclinação de até 45 °;
- b) A redução da eficiência da adição das fibras ao compósito.

A melhora no desempenho, em relação ao arrancamento, é atribuída à deformação causada na fibra pela aplicação da carga, essa inclinação proporciona uma retificação na fibra antes do arrancamento, resultando em gastos energéticos adicionais, semelhante ao caso de fibras com deformações. Já, a perda da eficiência do reforço fibroso pela inclinação das fibras, é atribuída pela possibilidade dessa fibra interceptar uma fissura. Quando da caracterização do compósito, um fator de orientação das fibras, sugerido por Krenchel (Tabela 7), é aplicado no cálculo. Se as fibras estão dispersas aleatórias em três dimensões, como é no caso do concreto, o fator utilizado para a correção é de 0,2, ou seja, considerase que apenas 20 % das fibras estejam transferindo tensões de maneira satisfatória na região da fissura.

Tabela 7 - Fator de orientação das fibras (η_1)			
Orientação das fibras	Fator de eficiência do reforço		
Alinhadas	1		
Aleatória em duas direções	3/8		
Aleatória em três direções	1/5		
Fonte: Callister (2007)			

Segundo Markovic (2006), o número de fibras que se encontram na seção fraturada, em conjunto com a orientação das fibras, também deve ser levada em consideração. Esses parâmetros são basicamente independentes um do outro. Por exemplo: se o mesmo número de fibras estiver presente na zona de fratura de duas amostras semelhantes, o comportamento só será o mesmo se ambos tiverem a mesma orientação das fibras.

Um método que favorece a orientação das fibras é a moldagem de peças com geometrias esbeltas, deste modo pode-se induzir as fibras a um alinhamento na direção principal do esforço no elemento, direcionando as fibras para uma configuração onde a dispersão não é mais predominante em três direções, mas em duas (2D), o que aumenta a possibilidade da interceptação da fissura de maneira eficaz e intensifica o efeito do reforço fibroso (FIGUEIREDO et al., 2010).

O espaçamento e a distribuição entre as fibras possuem grande impacto na propagação das fissuras. Além dos efeitos de transferência de tensões, a fibra pode atuar também como "efeito pinça", que auxilia a redução da propagação das fissuras. Romualdi & Mandel (1964) e Aveston & Kelly (1973) propuseram modelos matemáticos para o cálculo do fator de espaçamento das fibras (S) em um compósito reforçado com fibras curtas distribuídas aleatoriamente em três direções e para o cálculo do número de fibras por unidade de área do compósito (N), conforme a Eq. (6) e Eq. (7), respectivamente (BENTUR; MINDESS, 2007).

$$S = 13.8 \times d \times \eta_{\theta} \times \sqrt{\frac{1}{V_f}}$$
(6)

Onde:

S é o fator de espaçamento das fibras (ROMUALDI; MANDEL, 1964); *d* é o diâmetro das fibras;

 η_{θ} é o fator de correção devido à distribuição das fibras, quando 2D então $\eta_{\theta} = 2/\pi$, quando 3D então $\eta_{\theta} = 1/2$; V_f é o volume de fibras no compósito.

$$N_a = \eta_\theta \times \left(\frac{V_f}{\pi \times r^2}\right) \tag{7}$$

Onde:

Na é o número de fibras por unidade de área (AVESTON; KELLY, 1973);

 V_f é o volume de fibras no compósito;

 η_{θ} é o fator de correção devido à distribuição das fibras, quando 2D então $\eta_{\theta} = 2/\pi$, quando 3D então $\eta_{\theta} = 1/2$;

r é o raio das fibras.

O modelo proposto por Romualdi & Mandel é simplificado e apresenta limitações, mas assim como no modelo de Aveston & Kelly é verificado que quanto maior o volume de fibras, menor é o espaçamento entre as fibras e maior é o número de fibras por unidade de área (BENTUR; MINDESS, 2007). Levando isso em consideração, maior é a quantidade de fibras por unidade de volume do compósito e, por consequência, maior é a probabilidade de uma fibra interceptar uma fratura de maneira efetiva. Além da investigação analítica, o modelo proposto por Aveston & Kelly foi testado experimentalmente por Nunes (1998). No trabalho, segundo o autor, foi verificado uma ótima relação do modelo com os resultados experimentais, demonstrando a possibilidade da utilização do modelo no projeto de elementos estruturais reforçados com fibras.

Para a determinação do volume crítico de fibras ($V_{fcrit.}$) pode ser utilizado um modelo clássico sugerido por Aveston *et al.* (1971), considerando os fatores de orientação das fibras proposto por Krenchel, calculado através da Eq. (8).

$$V_{fcrit} = \frac{\varepsilon_{mu} \times E_c}{\sigma_{fu} \times \eta_1} \tag{8}$$

Onde:

 $V_{fcrit.}$ é o volume crítico de fibras; ϵ_{um} é a deformação última de ruptura da matriz; E_c é o módulo de elasticidade do compósito; σ_{fu} é a resistência à tração da fibra; η_1 é o fator de correção em função da orientação das fibras de Krenchel (1964).

É possível fazer uma análise dos fatores que afetam o índice do volume crítico. Se a matriz do compósito for muito resistente, levará o volume crítico a um valor superior, pois no momento da sua fissura será necessária uma quantidade maior de fibras interceptando a região fraturada para a manutenção da sua resistência residual. No caso da resistência das fibras, quando do seu aumento, o volume crítico tem seu índice diminuído o que exige menor quantidade de fibras na região da fratura que é resultado da maior capacidade de resistir às cargas solicitadas pós fissuração.

Nos CUADRF, o comportamento majoritariamente encontrado nos ensaios de caracterização é o de *strain/ deflection-hardening*. Esse comportamento é resultado da adição de um volume de fibras superior ao volume crítico, que geralmente ocorre a partir da adição de 1 % do volume de fibras (NAAMAN, 2003). Apesar do volume crítico ser em torno de 1 %, a adição de fibras em CUADRF é predominantemente maior que 2,5 %, chegando a índices como no caso do SIFCON (*Slurry Infiltrated Fiber Concrete*), de até 8 % de adição de fibras (NAAMAN; WILLE, 2012; WILLE et al., 2011).

2.1.4.3 Características da matriz

Pesquisas sobre matrizes de CUAD costumam convergir para métodos de confecção com cura térmica na faixa dos 90 °C. Na cura térmica, as reações de hidratação das pozolanas são potencializadas, como observado por Pfeifer *et al.* (PFEIFER et al., 2010) na Fig. 23. Esse aumento da taxa das reações de hidratação forma uma microestrutura densa, que leva o compósito a altos índices de resistência já nas primeiras idades, em comparação as amostras curadas em temperatura ambiente (FIDJESTIL; THORSTEINSEN; SWENNEVIG, 2012; RI-CHARD; CHEYREZY, 1995; YOO; KANG; YOON, 2014). Apesar de a cura térmica favorecer o aumento da resistência mecânica, as pesquisas em CUAD têm revelado que sem o processo de cura térmica também é possível alcançar índices de resistências semelhantes aos concretos curados em temperaturas elevadas (FIDJESTIL; THORSTEINSEN; SWENNEVIG, 2012; WILLE; EL-TAWIL; NAAMAN, 2014; WILLE; KIM; NAAMAN, 2010).

A resistência da matriz é uma propriedade relacionada diretamente ao volume crítico de fibras, ou seja, é uma das características que mais interfere no comportamento do compósito, principalmente, pós-fissuração. As transferências de tensões são dependentes da interface fibra-matriz e essa é dependente das características da matriz, ou seja, numa matriz mais resistente espera-se uma interface fibra-matriz mais densa e menos susceptível ao colapso, o que resulta numa resistência residual superior, comparado à uma matriz de menor resistência (FIGUEIREDO, 2011; WILLE, 2012; WILLE et al., 2011). Na Fig. 24 é mostrado o aumento da tensão de arrancamento de fibras com a evolução da resistência à compressão da matriz.

Fonte: adaptado de Pfeifer et al. (2010)

Basicamente, a composição do material tem relação direta na resistência mecânica. Nessa perspectiva, verifica-se que matrizes de ultra-alto desempenho compostos de pós mais grossos resultam em compósitos menos resistentes, o que impacta diretamente no seu comportamento pós fissuração. Isso pode ser atribuído ao efeito de superfície causado pelas partículas, que para uma mesma relação água/ aglomerante e um mesmo volume, as partículas mais finas apresentarão maior superfície específica e a camada de água para molhar as mesmas será menos espessa, reduzindo assim a sua zona de transição e, por consequência, melhor desempenho mecânico (ABU-LEBDEH et al., 2011; KANG et al., 2013; WILLE et al., 2011). Um exemplo desse fenômeno é mostrado na Fig. 25, onde é verificada a necessidade de maior tensão para o arrancamento da fibra para aquela matriz composta com pós mais finos, em relação àquelas compostas com pós mais grossos, mais evidente para maiores deformações.

2.1.5 Caracterização de compósitos cimentícios reforçados com fibras

2.1.5.1 Flexão em prismas

Em concretos reforçados com fibras de aço, a caracterização tem como objetivo principal a investigação do comportamento relacionado à resistência residual pós fissuração e a tenacidade do compósito. O ensaio mais recomendado para compósitos de matriz cerâmicas é o ensaio de flexão em prismas. Apesar de grande influência da geometria do corpo de prova, o ensaio de flexão é o que melhor simula uma situação real de esforço do compósito, além dos ensaios de tração axial serem mais complexos de se executar.

A medida da tenacidade pode ser definida pela energia absorvida pelo compósito quando sujeito a esforços. Essa energia abrange antes e após a fissuração do corpo de prova, e é calculada a partir da área sob a curva carga-deformação do ensaio. Já a medida da resistência residual, é definida pela carga suportada em deslocamentos pré-determinados, após a sua fissuração. Para o ensaio de flexão de prismas costuma-se utilizar um acessório chamado *yoke*. Esse acessório é fixado à meia altura da amostra, e por meio de transdutores de deslocamentos lineares (LVDT) fixados no *yoke* faz-se o controle do descolamento do corpo de prova (FIGUEIREDO, 2011). Essa tipologia de ensaio torna-se a mais confiável, pois as deformações resultantes são obtidas no terço central do corpo de prova, diminuindo as instabilidades causadas pela acomodação do corpo de prova, sobretudo pelos esforços cortantes serem iguais a zero e o momento fletor ser máximo (Tabela 8). Em conjunto com o *yoke*, recomenda-se que o equipamento para a aplicação de carga deve ser dotado de sistema fechado de controle de deslocamento do pistão (*closed-loop*), isto é, o ensaio deve ser controlado pela abertura da fissura ou deflexão do corpo de prova, ao invés do controle pela velocidade do deslocamento do pistão.

Essa tipologia de controle de abertura de fissura é sugerida devido às instabilidades que podem acontecer no momento da fissura da matriz, que em concretos com baixos volumes de fibras são mais intensas. Atualmente para esse tipo de caracterização as metodologias mais empregadas são a partir das normas JSCE-SF4 (JSCE, 1984), ASTM C1609 (ASTM, 2012), ASTM C1399 (ASTM, 2010) e a EN 14651 (AENOR, 2007), que variam entre prismas com aplicação de carga em 3 ou 4 pontos e com ou sem entalhe central.

Tipo do ensaio	Distribuição dos esforços	Configuração
	Momento fletor	
4 pontos	Esforço cortante	<u> </u>
3 pontos	Momento fletor	

Tabela 8 – Métodos para determinação da resistência à tração na flexão em compósitos reforçados com fibras

Fonte: adaptado de Malatesta et al. (2009)

A norma japonesa JSCE-SF4 sugere uma configuração de ensaio do tipo 4 pontos sem entalhe (Tabela 8). A caracterização é feita através de um índice denominado fator de tenacidade (FT), que é a razão entre a área sob a curva e o deslocamento equivalente à média do gasto energético necessário para promover a deformação na amostra, sendo esta, incluída na equação do módulo de ruptura (MOR). Este método é o mais utilizado, sendo aplicado na caracterização de

vários tipos de concretos, tais como concretos convencionais, pavimentos, revestimento de túneis e concreto projetado. Por outro lado, apesar de estar entre os ensaios da atualidade é o que apresenta a concepção mais simples, essa configuração proporciona algumas limitações relevantes, como o ponto fixo para a sua finalização, não sendo possível a adaptação para deflexões pré-determinadas, além do fator de tenacidade poder conferir o mesmo resultado para diferentes curvas carga-deslocamento (FIGUEIREDO, 2011).

A norma americana ASTM C1609 é uma pequena variação da JSCE-SF4, com corpos de prova semelhantes e aplicação da carga por 4 pontos, porém, para a sua realização é necessário o sistema closed-loop (SALVADOR, 2013).

A norma ASTM C1399 também é semelhante ao método proposto pela JSCE-SF4, com dispensa do sistema closed-loop. Por outro lado, há a necessidade da utilização de uma chapa de aço embaixo do corpo de prova, que tem como objetivo eliminar as instabilidades originadas pela fissuração da matriz e transferência das tensões de maneira abrupta para as fibras (CALDAS; FIGUEI-REDO; BITENCOURT, 2003; DIAS; FIGUEIREDO; JOHN, 2006).

A norma europeia EN 14651, que é baseada no método proposto pelo RILEM TC162-TDF (2002b), difere das normas apresentadas acima. Nessa, é prescrita a aplicação da carga por um único ponto no vão central do corpo de prova. A dimensão do corpo de prova é de 150 mm x 150 mm x 550 mm (altura x largura x comprimento) (Fig. 26), com vão entre os apoios de 500 mm, além do sistema *closed-loop* ser requerido. Uma característica deste ensaio é a adocão de um entalhe \leq 5 mm de largura e 25 \pm 1 mm de altura na face inferior do corpo de prova. Esse acaba por induzir o aparecimento da fissura no terço central, ajudando evitar a instabilidade pós-pico.

Para a aquisição de dados da abertura da fissura (CMOD) é recomendado um clip-gage fixado no entalhe (Fig. 27). Se não houver possibilidade do controle do ensaio pela abertura da fissura, é possível fazê-lo a partir da deflexão do corpo de prova, por meio de um LVDT (linear variable differential transformer) fixado no voke, e relacionar com a abertura da fissura através da Eq. (9).

Fonte: UNE-EN 14651 (2007)

Fig. 27- Configuração do clip-gage para o controle de abertura da fissura

$$\delta = 0.85 \times CMOD + 0.04 \tag{9}$$

Onde: *CMOD* é a abertura da fissura (mm); δ é a deflexão (mm).

A EN 14651 requer duas velocidades de abertura de fissura, na primeira a CMOD deve aumentar a uma taxa de 0,05 mm/ min até o deslocamento de 0,1 mm, a partir deste ponto deve-se aplicar a carga de modo que a CMOD aumente a uma taxa de 0,2 mm/ min. O ensaio deve terminar em um valor de CMOD de 4 mm.

Essa norma tem como objetivo a determinação do limite de proporcionalidade ($f_{ct}L$ ou LOP), que é caracterizado pela máxima carga suportada pelo corpo de prova no intervalo de CMOD em 0 a 0,05 mm, onde considera-se que as deformações são elásticas e a determinação das resistências residuais são nas deformações de CMOD em 0,5, 1,5, 2,5 e 3,5 mm (Fig. 28).

A determinação do limite de proporcionalidade pode ser feita a partir da análise da curva carga-deformação, calculada através da Eq. (10) e para o cálculo das resistências residuais é utilizada a mesma equação, com a diferença de utilizar os valores das tensões residuais nas deformações determinadas, conforme a Eq. (11).

$$f_{ct,}^{f}L = \frac{3F_l \times l}{2 \times b \times h_{sp}^2} \tag{10}$$

$$f_{R,j} = \frac{3F_j \times l}{2 \times b \times h_{sp}^2} \tag{11}$$

Onde:

 $f_{ct,L}$ é o limite de proporcionalidade (LOP), em N/mm²;

 $f_{r,j}$ é a resistência residual que corresponde à *CMOD*_j, onde j = 0,5, 1,5, 2,5 ou 3,5 mm $-f_{r,l}$, $f_{r,2}$, $f_{r,3}$ e $f_{r,4}$; F_l é a maior carga registrada no intervalo de 0 a 0,05 mm;

Fj é a carga que corresponde à *CMOD_j*, onde j = 0,5, 1,5, 2,5 ou 3,5 mm;

l é o vão do corpo de prova, em mm;

b é a largura do corpo de prova, em mm;

 h_{sp} é a diferença entre a altura do corpo de prova e a altura do entalhe, em mm.
Apesar do entalhe poder reduzir o valor de carga máxima, procura-se obter uma menor variabilidade do ensaio além da obtenção de valores característicos de elementos estruturais. Sobretudo, essa metodologia se destaca em relação às demais citadas por estar diretamente relacionada ao modelo de dimensionamento de estruturas (DI PRISCO; COLOMBO; DOZIO, 2013; DUPONT; VANDEWALLE, 2004; FIGUEIREDO, 2011), além disso a caracterização do concreto a partir da abertura da fissura é menos propensa a erros quando comparados a deflexão, e pode ser diretamente relacionada às propriedades fundamentais da fratura (SHAH; KUDER; MU, 2004).

Para o cálculo do dimensionamento de estruturas é assumido dois valores de resistências residuais característicos, nas deformações em 0,5 mm e em 2,50 mm. Esses deslocamentos correspondem ao estado de limite de serviço e estado limite último, respectivamente, e são os únicos valores aplicados no modelo de dimensionamento (DI PRISCO; COLOMBO; DOZIO, 2013).

2.1.5.2 Ensaio Barcelona

A maioria dos métodos atuais para a caracterização de concreto reforçado com fibras utiliza o ensaio de prismas para flexão. Esses métodos comumente apresentam altos coeficientes de variação, além de necessitarem de corpos de prova que são difíceis de manipular ou confeccionar (MOLINS; AGUADO; SA-LUDES, 2008).

Com a finalidade de disponibilizar um ensaio mais simples e adequado para a determinação da tenacidade e resistência residual em matriz cimentícia reforçada com fibras, foi apresentado, inicialmente por Aguado *et al.* (2005), um ensaio de tração indireta baseado no "*ensayo de duplo puncionamento*" (DTP – *Double Punching Test*) de Chen (1970), chamado de "*Ensayo Barcelona* (BCN)". Atualmente, o ensaio Barcelona se tornou uma norma na Europa, de-nominada de "UNE 83515 – *Determinación de la resistencia a fisurasión, tena-cidad y resistencia residual a tracción, Ensayo Barcelona*".

O ensaio consiste em submeter um corpo de prova cilíndrico à compressão uniaxial em suportes de um quarto do diâmetro do corpo de prova (Fig. 29 (a)). A carga é aplicada através dos discos de carregamento que produzem uma zona cônica de compressão. Isso resulta em esforços de tração perpendiculares à linha de compressão, que quando supera a resistência à tração do corpo de prova, rompe (Fig. 29 (b)).

A aquisição dos dados da deformação circunferencial do corpo de prova é realizada com o auxílio de uma abraçadeira ao redor da amostra e nela é acoplado um transdutor de deslocamento (Fig. 29 (c)). A prensa dispensa o sistema *closed-loop*, apenas um sistema de controle de velocidade de deslocamento do pistão é suficiente, sendo essa velocidade de 0,5 \pm 0,05 mm/ min durante todo o ensaio, que deve ser finalizado a uma deformação circunferencial de 6 mm.

Fonte: Adaptado de Malatesta et al. (2009) e Molins et al. (2008)

Os índices obtidos são denominados de resistência à tração indireta (calculada através da equação (12)), resistências residuais nas deformações circunferenciais de 2, 2,5, 4 e 6 mm (calculada através da Eq. (13)) e tenacidade, que é calculada pela integração da área sob a curva gerada no ensaio carga-deformação circunferencial, podem ser visualizados na Fig. 30 e na Fig. 31.

$$f_{ct} = \frac{4 \times P_f}{9 \times \pi \times a \times h} \tag{12}$$

$$f_{ctRx} = \frac{4 \times P_{fRx}}{9 \times \pi \times a \times h} \tag{13}$$

Onde:

 f_{ct} é a resistência à tração indireta (N/mm²); P_f é a carga máxima registrada no ensaio (N); f_{ctRx} é a resistência residual à tração indireta (N/mm²); P_{fRx} é a carga residual referente à um deslocamento Rx, onde Rx = 2, 2, 5, 4 ou 6; a é a dimensão da placa de carga (mm); h é a altura do corpo de prova (mm).

Fig. 31 - Exposição dos resultados do ensaio Barcelona

Fonte: adaptado de EN 83515 (2010)

Por se tratar de uma metodologia menos comum na caracterização dos concretos reforçados com fibras, estudos para a investigação e validação do método tem sido proposto ao longo dos últimos anos. Diversos trabalhos vêm sendo publicados com o esforço de mostrar a potencial aplicação do método principalmente em comparação e/ou substituição aos métodos tradicionais de flexão de prismas.

É possível relacionar os resultados da capacidade de absorver energia realizado pelo ensaio de flexão de vigas com o ensaio de tenacidade pelo Ensaio Barcelona, isso para deformações semelhantes. Correlações superiores a 98 % foram obtidas por Molins *et al.* (2008) para diferentes tipos e quantidades de fibras, o que sugere a possibilidade da utilização do ensaio Barcelona.

Guardia & Molins (2008) compararam os resultados obtidos pela EN 14651 e pelo Ensaio Barcelona, verificando-se que é possível correlacionar os resultados de resistências residuais obtidas pelo ensaio Barcelona às deformações dos ensaios de flexão de prismas, ressaltando principalmente a possibilidade da utilização do ensaio Barcelona para o dimensionamento de estruturas. Sobretudo, os autores sugerem que é possível avaliar a resistência à tração do concreto sem a necessidade de recorrer a ensaios complementares.

Analisado experimentalmente em testemunhos retirados da linha do metro de Barcelona, Mora (2008) verificou, para amostras com 150 mm de diâmetro, uma dispersão de 15 % para as resistências residuais e de 9 a 17 % para tenacidade no Ensaio Barcelona; mostrando-se como alternativa para os ensaios tradicionais, visto que para os ensaios "concorrentes" (flexão de prismas), a variação dos resultados é de cerca de 30 %. Uma característica interessante a respeito do Ensaio Barcelona em comparação aos demais ensaios, é o seu peso consideravelmente menor e a sua superfície de fratura consideravelmente maior. Além disso, a variabilidade dos resultados (em média 13 %) são menores em relação aos ensaios de flexão de prismas (CARMONA; AGUADO; MOLINS, 2013; CHAO et al., 2012; MALATESTA et al., 2009).

Para a medição da deformação do corpo de prova é necessário uma abraçadeira que, muitas vezes, é cara e os laboratórios de controle de qualidade não costumam possuí-las (KHABAZ, 2016). Malatesta *et al.* (2012) propuseram um modelo analítico para o controle da deformação no Ensaio Barcelona sem a necessidade da abraçadeira, mas a partir do deslocamento axial do pistão da prensa. Com um extenso programa experimental, verificou-se que é possível realizar o ensaio Barcelona obtendo as deformações do corpo de prova por meio do deslocamento do pistão e correlacionar com as deformações de abertura de fissura circunferencial obtidas com a abraçadeira. No estudo foi obtido um coeficiente de variação inferior a 15 % nos resultados quando da determinação da tenacidade de concretos com diferentes tipos e quantidades de fibras. Em média a variação do ensaio subiu de 8 % (medido pela abraçadeira) para 10 a 11 % (quando determinado pelo deslocamento axial). Além disso, os resultados apontaram que quanto maior o teor de fibras, maior foi à dispersão dos resultados. Porém, esse fenômeno foi atribuído à heterogeneidade que as fibras ocasionavam na massa de concreto, não a deficiências do método. Por outro lado, apesar da ótima correlação apresentada, limitações na metodologia foram apontadas por Pujadas *et al.* (2013), como: o modelo sugerido é empírico, deficiências encontradas com o aumento da adição de fibras e o fato de medir a tenacidade somente nos intervalos de 1 a 4 mm, sugerem a necessidade de estudos mais profundos.

Com a perspectiva de aperfeiçoar o método de medição por meio do deslocamento vertical, Pujadas *et al.* (2013) propuseram um novo modelo analítico do ensaio Barcelona. A fim de validar o novo modelo realizaram-se estudos experimentais com 5 tipos de concretos, incluindo CUADRF. Verificou-se que o modelo analítico correlaciona com sucesso os valores de deformação do corpo de prova através dos parâmetros atribuídos ao modelo. É ressaltado que, para todo o intervalo de medição requerido pela UNE 83515, o modelo estima as deformações com confiança, apresentando relações próximas a 1:1. Sobretudo, é observado que o modelo estima com clareza a região de instabilidade pós pico, que se intensifica quanto menor for a quantidade de fibras.

O erro médio do novo modelo para tenacidade foi de 6,7 % para CUA-DRF com consumo de fibras de 170 kg/m³, no intervalo de até 4 mm de deformação. Esse refinamento do método anterior, é atribuído ao novo método ser baseado nos mecanismos físicos que governam o ensaio, de modo que pode ser aplicado para todos os tipos de concreto, quaisquer que sejam as dosagens (PU-JADAS et al., 2013).

2.1.5.3 Ensaio de arrancamento

O ensaio de *pull-out*, também chamado de ensaio de arrancamento, é o ensaio mais empregado para a obtenção de informações fundamentais que cercam a região da interface fibra-matriz em compósitos. Os carregamentos distribuídos ao longo do ensaio de *pull-out* são os mesmos que ocorrem na superfície das fibras na região da fratura de concretos com fibras distribuídas aleatoriamente, por outro lado, não descrevem o comportamento do compósito. O descolamento e o processo de deslizamento-arrancamento da fibra são dependentes principalmente das interações fibra-matriz e diretamente dependentes da área em contato, isto é, do comprimento embebido, de modo que o ensaio de arrancamento, apesar de limitado, pode simular satisfatoriamente os mecanismos em torno da fibra (BANHOLZER; BRAMESHUBER; JUNG, 2006; GRAY, 1984).

Como já apresentado na seção sobre a interação fibra-matriz, os mecanismos de transferências de tensões no arrancamento atuam de forma elástica, por atrito ou simultaneamente e a partir do ensaio de *pull-out* esses mecanismos podem ser verificados por meio de variáveis como: fricção, aderência, ancoragem, ângulo e posicionamento da fibra.

Pesquisas referentes ao entendimento do comportamento de diferentes tipos de fibra nos ensaios de arrancamento permitiram extrair muitas conclusões relacionadas às características da matriz e das fibras, sobretudo dos mecanismos que os influenciam. Esses estudos foram de grande importância para o desenvolvimento de novas configurações, principalmente das fibras, que resultaram no surgimento de fibras com geometrias inovadoras (GAVA, 2006).

Inúmeros modelos criados para descrever os mecanismos do arrancamento da fibra da matriz são propostos na literatura, mas fundamentalmente são definidas as tensões necessárias para o arrancamento da fibra de dentro da matriz, onde é calculada a tensão de cisalhamento que a superfície da fibra gera na matriz a partir da aplicação da tensão de arrancamento. De modo simplificado, a tensão máxima de cisalhamento (τ) pode ser calculada através da Eq. (14).

$$\tau_{m\acute{a}x} = \frac{\sigma_{m\acute{a}x}}{\pi \times d \times L} \tag{14}$$

Onde:

 $τ_{máx}$ é a tensão máxima de aderência; $σ_{máx}$ é a máxima carga de arrancamento do ensaio; d é o diâmetro da fibra; L é o comprimento da fibra embebida na matriz.

Assim, como nos ensaios de flexão, o ensaio de *pull-out* apresenta um comportamento característico, que pode ser dividido por três fases: a primeira como região elástica, caracterizada até primeira fissura da interface fibra-matriz; a segunda como região de descolamento, a partir da fissura da matriz até o pico de tensão; e a terceira pela região de arrancamento da fibra, que é caracterizada pela região pós-pico e onde predomina o mecanismo de atrito.

Os ensaios mais frequentemente encontrados são: de arrancamento de fibra simples, que se trata da punção de uma única fibra da matriz pela sua extremidade; e um modelo que se assemelha ao ensaio de tração axial, que consiste na tração de duas partes iguais com múltiplas fibras embebidas longitudinalmente à tensão aplicada (Tabela 9). Todos os sistemas se baseiam na quantificação da tensão necessária para a retirada da fibra da matriz. Assim, o resultado do ensaio pode ser substancialmente modificado, se as características, tais como volume, tipo, comprimento embebido, orientação e formato das fibras forem alteradas (ABU-LEBDEH et al., 2011; GRAY, 1983; LEE; KANG; KIM, 2010; LI; WANG; BACKER, 1990).

rabela y - ripologias do ensalo de puit-oui			
Autor	Tipologia	Autor	Tipologia
Bentur <i>et al.</i> (1985)	a 1	Chanvillard & Aïtcin (1996)	+
Alwan et al. (1991)	U	Frantzis & Baggott (2000)	σ
Shannag <i>et al.</i> (1997)		Chan & Chu (2004)	11111
Robins et al. (2002)		Won <i>et al.</i> (2006)	
Banholzer et al. (2006)		Lee et al., (2010)	+
Zile & Zile (2013)		Won <i>et al.</i> (2013)	
Soulioti et al. (2013)			

Tabela 9 - Tipologias do ensaio de pull-out

Executado semelhante ao ensaio de *pull-out* em fibras simples, o ensaio de múltiplas fibras apenas difere no aumento do número de fibras adicionadas ao corpo de prova. Isso leva a equação (14) a uma reformulação, onde é adicionando o número de fibras no denominador do índice de tensão de cisalhamento e pode ser calculada a partir da Eq. (15) (CHAN; CHU, 2004; WON et al., 2013).

$$\tau_{m\acute{a}x} = \frac{\sigma_{m\acute{a}x}}{n \times \pi \times d \times L} \tag{15}$$

Onde:

Fonte: adaptado de Wille (2012)

 $\tau_{máx}$ é a resistência máxima de aderência; $\sigma_{máx}$ é a máxima carga de arrancamento do ensaio; *d* é o diâmetro da fibra; L é o comprimento da fibra embebida dentro da matriz; *n* é o número de fibras.

O ensaio é realizado com a medição do deslocamento da fibra por meio de LVDT's acoplados ao aparato de aplicação da carga (Fig. 32). Quanto à velocidade de aplicação de carga, foi observado por Naaman (2012) que, quanto maior a taxa de deslocamento, maior foi o pico de carga no ensaio de arrancamento, isso segundo o autor, é um fenômeno benéfico. Por outro lado, com as maiores taxas de deslocamento há maior probabilidade de fraturas das fibras.

Os resultados são apresentados na forma de gráficos carga-deslocamento e a energia mecânica de arrancamento das fibras é determinada pela área sob a curva tensão-deslocamento da fibra gerada no ensaio. Atualmente, nenhum dos testes de arrancamento de fibras é padronizado, ou seja, há vários métodos e modelos matemáticos desenvolvidos e aplicados nas bibliografias internacionais, mas de difícil comparação entre eles (BENTUR; MINDESS, 2007).

Fonte: Adaptado de Chan & Chu (2004)

A partir do método de múltiplas fibras Chan & Chu (2004) realizaram um estudo comparativo do efeito na tensão de cisalhamento da interface quando utilizado diferentes dosagens de matrizes de ultra-alto desempenho. Foi apontado um erro médio de 7,7 % para a determinação da resistência da interface e de 12 % para a determinação da energia de arrancamento das fibras. Quando do cálculo da tensão de cisalhamento da interface pelo método *pull-out* verifica-se deficiências relacionadas às características dos materiais, principalmente relacionada às fibras, de difícil inclusão nos cálculos, como por exemplo: o efeito *Poisson* da fibra; por outro lado esse ensaio pode simular de maneira eficiente às propriedades mecânicas da interface fibra-matriz (GRAY, 1983).

2.1.6 Modificação da superfície de fibras adição em matriz cimentícia

Para melhorar a interação fibra-matriz em concretos, além da adição de pozolanas, uma das alternativas para os pesquisadores é a modificação da superfície de fibras, seja por tratamento ácido ou básico, que tem como objetivo aumentar a superfície específica das fibras ou por deposição de substâncias, com o propósito de aumentar a rugosidade das fibras e melhorar o seu "ancoramento". De qualquer forma, esses tratamentos se baseiam na melhora da aderência física da fibra com a matriz.

Um tratamento da superfície de fibras de aço com deposição de fosfato de zinco na sua superfície é proposto por Sugama *et al.* (1992). Os autores verificaram que com o tratamento da superfície das fibras houve aumento da energia necessária para arrancamento da fibra da matriz cimentícia, em comparação às fibras sem tratamento. Porém, foi verificado (por MEV e EDX) que a zona de transição ainda era predominante na região de interface e por consequência condicionava o comportamento mecânico do compósito (Fig. 33). De forma semelhante, Soulioti *et al.* (2013) utilizaram fosfato de zinco (Zn₃(PO₄)₂) para a modificação da superfície de fibras de aço e verificaram melhor aderência à matriz, contudo não foi apresentada melhora da composição da ZT, ou seja, a interface característica ainda predominava. Por outro lado, houve melhor ancoramento da fibra à matriz, isso devido ao aumento da rugosidade da superfície da fibra e maior intertravamento, que resultou em maior gasto energético para o arrancamento da fibra (Fig. 34).

A modificação da superfície de fibras também é apresentada por Allison *et al.* (2012), que utilizaram fibras de aço recobertas com uma camada de esmalte cerâmico. Foi verificado, por meio de ensaios de arrancamento, que houve aumento da energia para o arrancamento da fibra, isso atribuído ao efeito causado pelo aumento da rugosidade da superfície, semelhante ao caso com $Zn_3(PO_4)_2$. Mesmo com o revestimento vítreo nas fibras, havia a presença predominante de $Ca(OH)_2$ e etringita na zona de transição interfacial, e essa apresentou-se ainda mais heterogênea que nas amostras sem o revestimento vítreo.

Fig. 33 - Caracterização da interface fibra-matriz

Fig. 34 – Micrografia da superfície de fibras de aço após o arrancamento

(a) fibra sem tratamento; (b) fibra com tratamento de fosfato de zinco.

Fonte: Soulioti et al. (2013)

Fonte: Sugama et al. (1992)

Pelos tratamentos tradicionais em conjunto com a adição de pozolanas de alta reatividade em concentrações elevadas, baixa relação água/ aglomerante e estrutura compacta, nos CUADRF a ZT é reduzida e menos porosa, contudo ainda predomina na interface fibra-matriz (KANG; AHN; KIM, 2012). A adição de altos teores de materiais que consomem o hidróxido de cálcio e melhoram a microestrutura da matriz tem demonstrado que esses métodos podem não ser suficiente para acabar com a camada de interface entre a fibra e a matriz.

Para Zhandarov & Mader (2005) as interações fibra-matriz podem ser classificadas em quatro níveis:

- a) Nível molecular, onde atuam forças de van der Waals, interações ácidobase e ligações químicas;
- b) Nível microscópico, onde são comandadas pelas transferências de carregamento, deformação e atrito;
- c) Meso-escala: onde leva em consideração a distribuição efetiva das fibras no compósito;
- d) Macro-escala: caracterizada pela a composição do material.

Considerando-se esse modelo dos níveis de interação fibra-matriz, verifica-se que as pesquisas em matrizes cimentícias com fibras têm se esforçado para atuar nos níveis micro, meso e macro-escala, onde se tem intensificado as investigações sobre o aumento da energia de arrancamento da fibra e os efeitos da distribuição/ orientação das fibras no desempenho do compósito. Nos principais eventos com o foco em CAD e CUAD, tais como organizados pelo RILEM (França) e pela Universidade de Kassel (Alemanha), os mecanismos de transferência de tensões entre a fibra-matriz e a composição da ZT são muito discutidos. Há uma discussão ampla, principalmente, sobre os fenômenos mecânicos na interface e sobre o desempenho do compósito, especialmente em relação à dosagem da matriz e manipulação das propriedades macroscópicas das fibras, como formato, resistência e/ ou volume adicionado. Por outro lado, trabalhos com o foco na melhora da interface fibra-matriz por meio de aprimoramento da superfície das fibras são discretos ou não são abordados.

O aprimoramento da qualidade da superfície da fibra poderia agir diretamente nesta característica do compósito, ou seja, na interface fibra-matriz. Possibilita-se, talvez, um incremento na interação a nível micro/nano e a nível molecular, ou seja, uma ligação mais estável que promovesse uma "melhor" adesão da fibra à pasta de ultra-alto desempenho, sobretudo pela potencial carga de $Ca(OH)_2$ que compõe a ZT. Essa característica abre precedentes para inserir materiais que atuem mais que fisicamente, se possível físico/ quimicamente e resulte numa ponte entre a fibra e a matriz menos irregular.

A funcionalização é uma técnica promissora amplamente utilizada para a modificação de superfícies metálicas com o objetivo da prevenção da corrosão. A partir dos métodos tradicionais da técnica de funcionalização de superfícies, utilizado com mais frequência na área de metalurgia, é possível funcionalizar as superfícies das fibras de aço, atribuindo características reativas, que tem grande interesse e potencial para a adição em matrizes cimentícias.

Estudos de Xu & Chung (1999, 2000) já mostraram a potencialidade de utilizar a técnica de funcionalização com moléculas de silano para aprimoramento de compósitos cimentícios, todavia esses trabalhos eram focados na dispersão de pós ultrafinos de sílica no interior da matriz. Estudo semelhante foi feito por Cao & Chung (2001) com o objetivo de melhorar a dispersão de fibras de aço inoxidável em matriz cimentícia. As fibras foram funcionalizadas imergindo-as em uma solução com uma mistura de aminossilano e epoxissilano (proporção 1:1) diluída em etilsilacetato, misturadas a 75 °C, posteriormente filtradas e curadas a 100 °C durante 12 horas. Apesar dos resultados não focarem nas propriedades mecânicas do compósito, esse trabalho, também evidencia o potencial do estudo com silanos na funcionalização da superfície de constituintes cimentícios para o aprimoramento do compósito.

Minet *et al.* (2004) apresentaram a formação de estruturas híbridas de cálcio/ organossilicatos obtidas em meio básico e temperatura ambiente a partir da reação entre sais de cálcio e trialcoxissilanos. Da mesma forma que acontece com a superfície metálica, os grupos alcóxi hidrolisados das moléculas de silano apresentavam hidroxilas ativas que apresentavam afinidade pela superfície dos silicatos. Inicialmente os silanos hidrolisados formam pontes de hidrogênio e, por conseguinte, condensam formando ligações de siloxano mais estáveis. Assim, sugeriram que, a partir desses resultados, uma nova técnica promissora para ligação de silicatos inorgânicos aparece como ferramenta para projetos de novos materiais à base de cimento Portland.

Dando sequência a essa linha de pesquisa, Minet *et al.* (2006) confirmaram que a estrutura do C-S-H da matriz cimentícia pode ser interligada a organotrialcoxissilanos por meio do tetraetoxissilano (TEOS). A técnica se mostrou promissora por apresentar reatividade entre os materiais em temperatura ambiente e ambiente alcalino, natural das reações cimentícias. Verificou-se que para pequenos grupos funcionais e hidrofílicos, tais como o etiltrietoxissilano, foi possível a integração entre as camadas principais de silicatos de cálcio (ricas em OH⁻) e junto das moléculas de água e íons Ca⁺², balanceando as cargas da camada de silicato de cálcio principal (Fig. 35). Já para grupos orgânicos grandes e hidrofóbicos, tais como o *n*-butiltrietoxissilano, verificou-se a formação de uma separação de fase, desta forma a recomendação é da utilização de silanos hidrofílicos e/ou de cadeias curtas.

Benzerzour *et al.* (2012) investigando fibras de vidro recicladas com moléculas de silanos, para a adição em matriz cimentícia, verificaram aumentos nos índices de gastos energéticos para o arrancamento das fibras da matriz cimentícia. Diferente das modificações tradicionais em fibras para aumento do atrito, o processo de funcionalização da superfície das fibras com silanos resultou na geração de produtos hidratados aderidos às fibras (Fig. 36). Assim, quando a fibra é solicitada, ao invés do descolamento/ escorregamento da matriz, as regiões que cercam as fibras necessitaram ser fraturadas e, por consequência, a superfície gerada ao redor da fibra é extremamente irregular, o que contribuiu para o intertravamento da fibra na matriz.

Fig. 36- Superfície de fibras com e sem tratamento com silanos após o arrancamento

Fonte: adaptado de Minet et al. (2006)

Tratamento superficial com silano Fonte: Benzerzour *et al.* (2012)

Nessa perspectiva, verifica-se a possibilidade de formar, por meio de um tratamento adequado com moléculas de silano, uma camada sobre a superfície de fibras de aço para a adição em CUADRF com o objetivo de reagir com a superfície da matriz, modificar a morfologia e propriedades da interface fibra-matriz. Essa superfície apresenta potencial para preencher uma heterogeneidade do compósito que não era abordada com os métodos de dosagens e adição de pozolanas tradicionais. Assim, com a utilização de camadas de silano que promovam potencial reativo, como um filme de silano (por exemplo do tipo TEOS) pode apresentar possibilidade de reação com a superfície da matriz de ultra-alto desempenho. Um filme à base de silanos pode ser formado na superfície das fibras por meio do processo *dip-coating* em soluções com silanos diluídos, essa camada por sua vez fica em contato com o Ca(OH)₂ da superfície da ZT e abre a possibilidade de melhor estruturar a região da interface.

2.2 FUNCIONALIZAÇÃO COM SILANOS

A possibilidade de modificar a superfície de materiais, aparentemente, inertes a partir de reações químicas teve grande motivação depois da metade do século XX. Com o intuito de potencializar as suas propriedades e/ou aplicações, as primeiras modificações na superfície de materiais foram iniciadas em laboratórios acadêmicos voltadas para fins catalíticos (ARAKAKI; AIROLDI, 1999).

A modificação da superfície de materiais vem sendo usada de várias formas, a indústria metalúrgica é uma grande adepta da técnica de modificação de superfícies, motivados pela prevenção da corrosão, os tratamentos de superfícies são os mais variados, tais os revestimentos com polímeros como as tintas; e com metais como a galvanização. Estimulados a modificar suas plantas de trabalho para meios menos poluentes, alternativas foram buscadas para substituir os materiais agressivos amplamente empregados na indústria. Dessa forma, pesquisas para o estudo de silanos foram iniciadas para o desenvolvimento de agentes de acoplamento que poderiam ser uma alternativa química para os processos de prevenção da corrosão tradicional (BECCARIA; CHIARUTTINI, 1999; KU-NST et al., 2014; MONTEMOR et al., 2000; TRABELSI et al., 2005; XUE; VAN OOIJ, 2013).

Plueddemann (1991) sugere que os materiais organofuncionais podem ser classificados como agentes de acoplamento, usados como promotores de adesão, bem como, podem melhoram outras propriedades dos materiais, como resistência aos ataques químicos. Os silanos são compostos híbridos orgânicos-inorgânicos usados principalmente como agentes de acoplamento por meio de interfaces orgânico-inorgânica das mais variadas aplicações, sendo comumente utilizados como "*primers*" para finalizar a superfície antes da cobertura desejada. Devido a essa propriedade bifuncional, os silanos podem ser utilizados para melhorar as propriedades de superfícies dos materiais de maneira eficiente, isto é, na

promoção de ancoragem de substâncias de interesse em substratos como metais, polímeros e cerâmicos.

Os alcoxissilanos são compostos químicos com moléculas que se baseiam no silício como elemento principal e, na maioria dos casos, apresentam dois tipos de reatividade na molécula: uma extremidade inorgânica e outra orgânica. São denominados, de forma geral, por um grupo hidrolisável do tipo alcóxi (representado por X) e um grupo funcional (amina (-NH₂), vinil (-C=C)) (representado por Y) (Fig. 37), ainda um grupo alcóxi pode ocupar o grupo Y. Além disso, também encontram-se silanos com as quatro grupos alcóxi hidrolisáveis, como o tetraetoxissilano (TEOS) e o tetrametoxissilano (TMOS) (BRINKER; SCHE-RER, 1990; ZHU; VAN OOIJ, 2003).

Polite. Drinker & Scherer (1990)

A classificação das moléculas e radicais de maior interesse comumente encontrada nos silanos podem ser definidos como três tipos principais. Os alquilssilanos que são definidos como aqueles equivalentes à um carbono ligado à quatro grupos alcóxi, quando o carbono é substituído por um silício. Os silanóis são a parte do silano que corresponde a ligação do silício principal à uma molécula de hidroxila, esses por sua vez apresentam a parte de maior reatividade da molécula de silano. Os siloxanos são correspondentes aos éteres, mas com os carbonos substituídos por silício, conforme a Fig. 38.

Os silanos são nomeados inicialmente pela sigla do grupo organofuncional, seguido do grupo intermediário ligado (quando da existência) ao silício (Si⁴⁺), seguido da sigla dos grupos alcóxi que completam a molécula, por exemplo: grupo funcional-intermediário-alcoxissilano. Uma infinidade de silanos encontram-se no mercado, os grupos funcionais são cada vez mais diversificados, e desta forma a versatilidade do uso destes materiais para os processos de produção está cada vez mais aberta. Na Tabela 10 são apresentados alguns dos tipos de silanos comumente estudados como agente de acoplamento.

Tabela 10 - Exemplos de silanos			
Nome do silano	Fórmula química	Grupo funcional	
Viniltrietoxissilano	$C_2H_3SiO_3(C_2H_5)_3$	-CH=CH ₂	
Aminoetilaminopropriltrimetoxissilano	$C_5N_2H_{13}SiO_3(CH_3)_3$	-CH ₂ -CH ₂ -CH ₂ -NH-CH ₂ -CH ₂ -NH ₂	
Propiltrimetoxissilano	C3H7SiO3(CH3)3	-CH2-CH2-CH3	
Aminopropriltrimetoxissilano	NH2C3H6SiO3(CH3)3	-CH2-CH2-CH2-NH2	
Tetraetoxissilano	SiO ₄ (C ₂ H ₅) ₄	-H ₂ C-CH ₃	
Tetrametoxissilano	SiO ₄ (CH ₃) ₄	-CH3	
\mathbf{E} , \mathbf{P} , \mathbf			

abela 10 - Exemplos de silano

Fonte: Brinker & Scherer (1990)

A possibilidade da estrutura do material atuar como duas moléculas permite o silano interagir com materiais compósitos de várias fontes. Além disso, os silanos ganham destaque quanto à sua utilização devido à alta estabilidade nas ligações de siloxano (\equiv Si-O-Si \equiv) melhorando a interface entre materiais, também previne a migração de água para a interface do compósito e reduz a viscosidade do meio permitindo a maior concentração de reforços.

Os silanos são compostos químicos que apresenta inúmeras possiblidades de sua utilização, porém para o uso de maneira adequada é necessária a compreensão dos fenômenos que cercam a sua reatividade, esses fenômenos são principalmente em relação às reações de hidrólise e condensação.

2.2.1 Hidrólise e condensação dos silanos

O silano é normalmente encontrado no estado não hidrolisado e para reagir, primeiramente, necessita ser hidrolisado para gerar grupos silanóis (\equiv Si-OH) (Fig. 39). Esses grupos silanóis serão responsáveis pela "ancoragem" do silano ao substrato e geralmente a aplicação ocorre a partir de uma solução aquosa. Os grupos silanóis gerados na hidrólise são altamente reativos, e é comum os silanóis não reagirem diretamente com o substrato, como desejado, mas reagirem entre si condensando, o que por consequência resulta em perda parcial do seu potencial reativo (OOIJ et al., 2005).

Fonte: Adaptado de Brinker & Scherer (1990)

Por serem poucos os alcoxissilanos miscíveis em água, a hidrólise das moléculas de silanos necessita da presença de solventes orgânicos para "compatibilização" e composição da solução, que normalmente é um álcool. Os fenômenos de hidrólise e condensação são considerados de alta complexidade, visto que, ambos, acontecem simultaneamente, além de possuírem taxas alteradas ao longo do processo. Alguns parâmetros interferem diretamente na velocidade de hidrólise e condensação dos silanos, como: o tipo do grupo organofuncional (aniônico ou catiônico), o pH da solução, a concentração da solução (silano: solvente aquoso), o tempo de hidrólise, o envelhecimento da solução (silano: solvente aquoso), o tempo de hidrólise, o envelhecimento da solução e a temperatura. Dentre os parâmetros citados o pH é o que mais afeta a hidrólise/ condensação dos silanos, já que ambas reações são catalisadas por bases ou ácidos, e há alterações do pH ao longo das reações (BRINKER; SCHERER, 1990; OOIJ et al., 2005; PLUEDDEMANN, 1991; SUNDARARAJAN; VAN OOIJ, 2000; ZHU; VAN OOIJ, 2004).

A maioria dos silanos apresenta alta velocidade de hidrólise e baixa velocidade de condensação em soluções homogêneas com o pH ácido ajustado na faixa de 4 (Fig. 40) (OOIJ et al., 2005). Isso quer dizer que nas soluções com elevados valores de pH, a reações de condensação são favorecidas, o que leva aos silanóis a reações de condensação prematuras entre eles mesmos e pode resultar em precipitados de silanos. Portanto, é preferível que as soluções sejam controladas de modo que priorizem a velocidade de hidrólise (ARKLES, 1997).

Fonte: Adaptado de van Ooij et al. (2005)

O ácido acético (CH₃COOH) é o ácido mais recomendado e utilizado para atingir a faixa ácida desejada. Os ácidos fortes podem provocar reações de corrosão da superfície, principalmente no caso de um substrato metálico, formando hidróxidos metálicos solúveis em água, o que pode comprometer a superfície do material e por consequência uma possível delaminação da camada de silano. Em geral, os silanos tem como recomendação a hidrólise em pH ácido, na faixa de 4 a 6, sendo poucos os silanos que tem a utilização da catálise básica. Por reagir com o ácido acético, os silanos com grupos orgânicos básicos (ex: amina) são hidrolisados em pH básico na faixa de 8 a 10 e para alcançar o pH básico, recomenda-se a utilização do hidróxido de sódio (NaOH) ou hidróxido de amônio (NH₄OH) (OOIJ et al., 2005; YUAN; VAN OOIJ WJ, 1997).

Quando a solução de silanos se torna turva, é um indicativo de produtos de condensação entre os grupos silanóis, e a mistura não deve ser utilizada por muito tempo. Os grupos silanóis gerados na hidrólise não são estáveis em soluções concentradas de silano, pois facilmente reagem entre si formando moléculas oligoméricas com baixa capacidade de reagir com a superfície do substrato de maneira satisfatória, deste modo, em uma solução a concentração de silanos mais aconselhável deve conter entre 1 a 10 % em volume de silano (ZHU, 2005). Apesar da maioria dos estudos sugerirem soluções com uma concentração de silano de até 10 %(vol.), não há uma regra quanto à concentração de silano utilizada, de modo que cada experimento utiliza uma concentração particular.

O tempo necessário para hidrólise completa dos silanos pode variar de 15 minutos até 48 horas (Tabela 11). No caso de hidrólise insuficiente, a aderência ao substrato pode ser comprometida formando um filme oleoso e sem estabilidade, se isso ocorrer pode ser devido à falta de estruturas de siloxano formadas com a superfície do substrato (OOIJ et al., 2005).

Autor	Tipo de silano	Tempo de hidrólise
Zhu et al. (2004)	Amino e sulfo silanos	24 a 48 horas
Abel et al. (2006)	GPTMS	10 min a 48 horas
Pantoja <i>et al.</i> (2009)	acrilopropilmetoxissilano	15 a 120 min
Kim et al. (2009)	GPTMS e TEOS	24 horas
Bagherzadeh et al. (2012)	GPTMS	60 min
Kunst et al. (2013)	TEOS	1 a 48 horas
Longhi et al. (2015)	TEOS	60 min

Tabela 11 – Tempos de hidrólise para diferentes soluções de silano

A hidrólise é influenciada pelo grupo funcional e pelo número de grupos hidrolisáveis que compõe a molécula, assim quanto maior o grupo alcóxi, menor a velocidade de hidrólise do silano, por exemplo: a velocidade de hidrólise do $CH_3O > C_2H_5O > C_4H_9O$, de modo que um etoxissilano é de 6 a 10 vezes mais lento que um metoxissilano (ARKLES et al., 1992).

Cunliffe *et al.* (2001) analisaram a hidrólise do 3-glicidoxipropiltrimetoxissilano (GPTMS) em soluções aquosas que utilizaram metanol como solvente e verificaram que o processo ocorre em dois passos, primeiro há a hidrólise em um dos grupos alcóxi e há formação de solvente orgânico oriundo do silano. Em seguida há a hidrólise de outro alcóxi e assim por diante, não acontecendo simultaneamente (Fig. 41). Verificou-se que o primeiro passo é mais rápido que o segundo e que os compostos parcialmente hidrolisados, são mais lentos. Com 1 $%_{(vol.)}$ de concentração de GPTMS na solução, após 35 minutos a hidrólise foi praticamente completa (Fig. 42). Esse indicativo sugere que tempos de hidrólise prolongados não são recomendados, assim evita-se as reações de condensação dos silanóis, principalmente entre as próprias moléculas de silano.

b)
$$R'-O-Si - O-H + H_2O \longrightarrow R' - O-Si - O-H + 2 CH_3OH O-CH_3$$

 $O-CH_3 = O-H + 2 CH_3OH$

Fonte: adaptado de Cunliffe et al. (2001)

2.2.2 Adesão ao substrato

A superfície da maioria dos materiais contém grupos hidroxilas (OH⁻), que são de alta reatividade. Desta forma, as reações de compostos à base de silano hidrolisados (\equiv Si-OH) apresentam grande potencial de reação com as superfícies em geral (ARAKAKI; AIROLDI, 1999).

Quando um substrato qualquer entra em contato com uma solução de silano diluída (< 10 %(vol.)), rapidamente o silano é adsorvido pela superfície da peça (Fig. 43) por meio de ligações de hidrogênio formadas entre os \equiv Si-OH e as OH⁻ da superfície do substrato; além disso, há possibilidade do silano ser adsorvido de forma inversa ao desejado, por meio da interação com o grupo funcional da molécula (PALANIVEL; ZHU; VAN OOIJ, 2003). Após a formação de ligações de hidrogênio iniciais, além das ligações que se deseja obter com a superfície do substrato, os silanóis estão sujeitos a sofrer condensação entre eles, o que pode resultar em polimerização na interface com o substrato em decorrência de ligações covalentes entre silanóis (Fig. 44 (a)).

As ligações dos silanóis com o substrato podem ser mono, bi ou tri dentadas, representada na Fig. 44 (b). Porém, a mais frequente é a monodentada. Devido à grande afinidade e a elevada reatividade dos silanóis, há uma tendência de serem formadas ligações de siloxano entre silanóis ao invés de com os grupos OH⁻ do substrato (BRINKER; SCHERER, 1990; KUJAWA et al., 2013; OOIJ et al., 2005). Considerando esse fato, as ligações podem ocorrer de maneira aleatória, tanto na superfície como na interface. Desta forma, há uma reticulação do filme de silano ao mesmo tempo em que esse filme é ancorado na superfície.

Fig. 43 - Representação idealizada da ancoragem do silano no substrato

Fonte: adaptado de Liu et al. (2013)

Fig. 44 - Representação idealizada dos tipos de interação dos silanos com substratos

De acordo com a teoria da hidrólise reversa, as ligações de siloxano entre silanos (\equiv Si-O-Si \equiv) e siloxanos entre silanos e substrato (\equiv Si-O-substrato) podem ser hidrolisadas e resultar na formação de silanóis (Eq. (16)) (PLUEDDE-MANN, 1991; XIE et al., 2010).

$$R_3 - Si - O - Si - R_3 + H_2O \leftrightarrow 2R_3Si - OH$$
Onde:
R é um radical, por exemplo: CH₃O, C₂H₃O, C₅H₁₃N₂ etc. (16)

Na hidrólise reversível, a tendência é o equilíbrio químico. Se a concentração de água aumentar, o equilíbrio mudará para remover a água do sistema, hidrolisando as ligações de siloxano e formando grupos Si-OH, de modo que as reações para o lado esquerdo e para o lado direito acontecem continuamente. Considerando-se este conceito, a aderência do silano melhoraria à medida que aumentassem as ligações de siloxano com o substrato, o que acarretaria em maior número de ligações que necessitam ser rompidas no caso do filme de silano entrar em contato com a água. Em superfícies metálicas, devido à oxidação espontânea das suas superfícies em contato com a atmosfera, é comum haver uma interface pouco aderente para os silanos. Isso é devido aos poucos grupos silanóis sujeitos as reações de condensação. Em casos como esse, o filme de óxido deve ser removido para dar lugar a hidroxilas propícias para formação da ligação de siloxano Metal–O–Si≡. A remoção pode ser feita por tratamentos mecânicos ou limpeza química com solventes, de modo a remover as contaminações presentes e a maior quantidade de grupos oxidados na superfície da amostra. Para o tratamento da superfície é recomendado um processo desengraxante com solventes (álcool, acetona) antes da lavagem em meio básico, esse sistema proporciona o aumento da concentração de hidroxilas na superfície metálica (CAPIOTTO, 2006; OOIJ et al., 2005).

2.2.3 Formação de filmes de silano

O tratamento de superfícies com silanos é um processo relativamente simples, os filmes de silanos são normalmente obtidos por meio da imersão do substrato em soluções de silanos diluídas e devidamente hidrolisadas. Para cada tipo de superfície utilizada, o silano se comportará de maneira diferente. Dessa forma, a previsão do seu comportamento é complexa e isso será dependente das técnicas escolhidas para a funcionalização (PLUEDDEMANN, 1991).

Há diversos processos para se depositar um filme de silano na superfície de materiais, como a aspersão, pintura, imersão entre outros (BAGGIO, 2011). No entanto, o mais utilizado é a imersão (adaptação do processo *dip-coating*). Nesse processo, o substrato é imergido em um sistema líquido de silanos diluídos; em seguida é retirado do líquido e o excesso é eliminado por meio da evaporação ou escoamento (Fig. 45). Essa técnica pode ser executada de forma contínua ou batelada, dependendo da geometria do material e do processo desejado.

Para um filme de silano ser considerado de boa qualidade, van Ooij (1999) atribui características como:

- a) Apresentar ancoragem sólida com o metal via ligações metal-silano (Metal-O-Si≡) formada pelas reações entre as hidroxilas da superfície do substrato com os grupos silanóis;
- b) As ligações Me-O-Si≡ devem ser estáveis. Metais como Ferro e o Alumínio mostram melhores resultados de estabilização de camadas de silano;
- c) A espessura da camada deve ser na ordem de 50-100 nm (quando se deseja a prevenção da corrosão eletroquímica em substrato metálico);
- d) Os filmes devem ser livres de porosidade. Isso só é obtido quando a superfície do substrato é livre de impurezas, sendo tratada previamente por desengraxe ou tratamento alcalino;
- e) A orientação das primeiras camadas deve ser uniforme, assim, o ideal é que os silanóis que não reagiram com a superfície do substrato formem uma rede de siloxano na interface, de forma a diminuir a difusão de moléculas de água para dentro do filme de silano;
- f) Possuir grupos funcionais que possam reagir com o meio desejado.

A formação da camada de silano é rápida e a espessura do filme de silano formado não parece mudar em função do tempo de imersão, Child & van Ooij (1999) relatam que não houve aumento progressivo da camada com o aumento do tempo de imersão do substrato na solução hidrolisada (Fig. 46). Esse estudo sugere que os tempos de imersão recomendados são de até 10 minutos. O resultado apresentado pode ser atribuído ao envelhecimento da solução, que em conjunto com a condensação dos silanóis na superfície do substrato ao longo do tempo, favorece a reação entre os grupos silanóis do próprio silano, perdendo a capacidade de condensar com as hidroxilas de maior interesse, que são as do substrato, por isso acabam eliminados na fase de escoamento.

Zhu & van Ooij (2004) verificaram uma relação direta da espessura do filme de silano formado na superfície da amostra com a concentração do banho, demonstrando que, com uma maior concentração de silano, a camada de silano depositada é mais espessa (Fig. 47). Essa relação, entretanto, é verificada para soluções com até 10 % de silanos, ou seja, para soluções concentradas a relação não é linear, de modo que favorece a condensação dos silanos, semelhante ao caso de envelhecimento da solução, porém de forma precoce.

Fig. 46 – Influência do tempo de imersão de chapas metálicas em banhos de silanos

APS = Aminopropiltrietoxisilano; BSTE: Bis-1,2-trietoxisililetano.

Fonte: Child & van Ooij (1999)

2.2.3.1 Cura do filme de silano

Quando formados os filmes de silanos, uma medida frequentemente sugerida pelos pesquisadores é a cura térmica do filme. No caso do silano, a cura tem como objetivo a eliminação da água livre e a maior reticulação do filme de silano pelo aumento das reações de condensação entre os silanóis e a formação de maior número de ligações de siloxano (FRANQUET et al., 2003; PANTOJA et al., 2013). Em paralelo, pela eliminação de parte da água da sua composição, há uma retração da camada de silano que resulta na redução da sua espessura e aparecimento de fissuras, essa redução na espessura forma um filme mais estável e menor porosidade. O tempo e a temperatura do tratamento de cura térmica variam de pesquisa para pesquisa, sendo comumente verificados tempos de cura entre 30 minutos e 48 horas e temperaturas entre 50 °C e 200 °C (Tabela 12).

Tabela 12 - Tempo e temperatura aplicados na cura de silanos

- ··· ··· · ···· · · · ···· · · · ·			
Autor	Tipo de silano	Tempo	Temperatura (°C)
Franquet et al. (2003)	BSTE	0 a 180 min	200
Deflorian et al. (2006)	GPTMS	30 a 60 min.	100 a 200
Chen et al. (2007)	Amino silano	12 horas	70
Kunst et al. (2013)	TEOS	20 min.	60
Kunst et al. (2014)	TEOS	180 min	160
Longhi et al. (2015)	TEOS	180 min	160

Na pesquisa reportada por Franquet *et al.* (2003), filmes de bis-silanos (BSTE) curados a 200 °C apresentaram espessura menor que o filme curado à temperatura ambiente (Fig. 48). Trabalho semelhante é apresentado por Zhu & van Ooij (2004), onde ambos apontam que o aumento da concentração do silano no banho tem como consequência um filme mais espesso. No entanto, o filme apresenta-se mais poroso e menos uniforme. Ainda, com a caracterização por

Fonte: Zhu & van Ooij (2004)

meio de espectroscopia de infravermelho (FT-IR), constataram que ao realizarem a cura térmica houve mudança na estrutura do filme, caracterizado pela diminuição das bandas características dos grupos silanóis e o aumento da intensidade das bandas referentes aos grupos siloxanos, evidenciando a melhor qualidade do filme.

Em pesquisas de Li *et al.* (2007), os filmes de silanos depositados sobre as superfícies metálicas passaram pelo processo de cura em diferentes temperaturas, na Tabela 13 (a) é mostrada a diferença da composição química com a variação da temperatura de cura. Com o aumento da temperatura do processo de cura das amostras, verifica-se um aumento na relação Fe/Si até os 150° C, esse comportamento é atribuído ao aumento da cinética de condensação dos grupos silanóis na camada de silano, que elimina a água do filme. Contudo, para temperaturas superiores a 150 °C, a relação não é crescente, além de apresentar fissuras causadas pela retração, sugerindo-se não realizar curas em temperaturas superiores a 150 °C.

No mesmo estudo, Li *et al.* (2007), verificaram que variando a concentração de silano no banho há também alteração da composição química final do filme de silano formado. Na Tabela 13 (b), é possível verificar que com o aumento da concentração da solução de silano há também um aumento da relação silício/ ferro na estrutura do filme. Isto é, houve uma maior concentração de silício quanto maior a concentração de silano na solução. No entanto, uma configuração de tratamento de substratos com banhos de alta concentração de silano não são frequentes devido ao alto custo do silano.

Sámion	Quantidade (%)			
Series	Fe	Si	Mn	Fe/Si
Sem tratamento	98,3	-	1,7	-
100 °C	88,37	11,63	-	7,59
150 °C	24,49	75,51	-	0,34
200 °C	69,08	30,92	-	2,23

Tabela 13 - Composição química da superfície tratada após a cura do silano

(a) Amostras curadas em diferentes temperaturas

Concentração (%)	ге	Si	Fe/Si
5	49,02	50,98	0,96
10	24,49	75,51	0,34
12,50	8,22	91,78	0,089

(b) Amostras funcionalizadas com diferentes concentrações

Fonte: Li et al. (2007)

2.2.4 Caracterização da funcionalização com silanos

2.2.4.1 Infravermelho

Para a análise de compostos orgânicos e organometálicos se utiliza a técnica de Espectroscopia na Região do Infravermelho (IR). Desde Smith (SMITH, 1983) a técnica já era utilizada para análise de compostos à base de silício, os silicones. A técnica se baseia nas propriedades de absorção de ondas eletromagnéticas de ordem moleculares na região do infravermelho.

Para a caracterização dos silanos, a identificação das ligações de grupos Si-OH e Si-O-Si é o aspecto mais importante, são as que caracterizam as mudanças de maior interesse na molécula. É possível verificar essas ligações nos silanos na faixa dos 3300 cm⁻¹, referente ao estiramento O-H, que caracteriza a ligação Si-OH; na faixa dos 2900 cm⁻¹, a absorção característica é referente ao estiramento C-H, que caracteriza a ligação CH₂–; nas faixas dos 2930 cm⁻¹ temse absorção referente à ligação –CH₃; nas faixas dos 1400 cm⁻¹ e 1194 cm⁻¹ temse a vibração referente ao grupo -Si-O-CH_x-CH_x, que caracteriza a ligação com os grupos funcionais; na faixa dos 1163 cm⁻¹ aos 1018 cm⁻¹ são referentes as vibrações Si-O-C, que caracteriza os grupos alcóxi; e na faixa dos 920 a 950 cm⁻¹ caracteriza as vibrações do grupos Si-O-H (FRANQUET; TERRYN; VE-REECKEN, 2003; KUNST et al., 2014; MASMOUDI et al., 2013; XUE; VAN OOIJ, 2013).

Os silanos apresentam alta sensibilidade à umidade. Dessa forma, a sua manipulação e deve ser criteriosa, pois, naturalmente, sofrem hidrólise de seus grupos alcóxi. Como, geralmente, os silanos são hidrolisados em soluções aquosas, a formação dos grupos silanóis e siloxanos, está em constante mudança. Para uma ótima adesão ao substrato, deseja-se um maior índice de grupos silanóis; assim, a monitoração da formação desse radical é muito importante para o sucesso da ancoragem do composto e da funcionalização.

Capiotto (2006) verificou, por meio da análise de IR, que com o passar do tempo da hidrólise houve alterações nos grupos químicos de maior interesse dos silanos, os siloxano e silanóis. O pico que caracteriza a ligação dos silanóis (\cong 920 cm⁻¹) teve aumento progressivo na sua intensidade com o passar do tempo de hidrólise, e ao mesmo tempo o pico que representa os grupos alcóxi (\cong 1166, 1106, 1066 e 950 cm⁻¹) obtiveram menor intensidade (Fig. 49). Isso configura as reações de hidrólise dos seus radicais alcóxi, que por sua vez geram silanóis no composto. Para os bis-silanos estudados foi verificado uma alta taxa de hidrólise até perto dos 40 minutos, após esse período as reações de hidrólise se mostraram mais lentas e em equivalência, as ligações referentes à formação de siloxano se mostraram mais intensas. Isso ocorre pela possível condensação dos silanóis, que pela alta taxa de formação tendem a condensarem com os silanóis vizinhos, ou seja, com eles próprios formando as ligações de siloxanos.

Fig. 49- Espectro de IR do bis-trietoxissililetano em diferentes tempos de hidrólise

Os espectros expostos foram obtidos a partir da subtração do solvente alcoólico dos espectros originais, por isso os valores negativos no eixo das ordenadas.

Fonte: Capiotto (2006)

Franquet *et al.* (2003) fizeram uma análise comparativa da mudança da estrutura química do filme de silano com o processo de cura térmica e puderam verificar, por meio da técnica de IR, que com o maior tempo de cura térmica nas amostras, as bandas características dos grupos silanóis diminuíam (Fig. 50 (a) e (b)), em contrapartida as bandas características dos grupos siloxano aumentavam (Fig. 50 (c)). Essa característica indica a maior reticulação do filme e o aumento da taxa de condensação dos silanóis com o aumento do tempo de cura. Isto é, quando realizada a cura térmica do silano, aumenta-se as reações de evaporação da água, que por sua vez resulta na retração do filme e na aproximação de grupos silanóis, que aumenta a possibilidade de condensar com outro grupo silanol vizinho.

De forma semelhante, Pantoja *et al.* (2013) monitoraram a hidrólise do Tetraetoxissilano (TEOS) em solução alcoólica (à base de etanol) e à temperatura ambiente com o objetivo de verificar a mudança da sua estrutura química. Com o passar do tempo verificou-se que a intensidade das bandas dos grupos alcóxi diminuíram, em paralelo as bandas dos grupos silanóis e siloxano aumentaram, o que caracteriza a hidrólise e condensação do silano (Fig. 51). Verificouse também maiores intensidades de absorção do espectro por parte dos grupos silanóis quanto maiores foram os tempos de hidrólise. Apesar disso, 30 minutos de hidrólise é o tempo apontado como tempo ótimo para o início da imersão de substratos na solução de TEOS. Essa conclusão se deve à necessidade de se ponderar entre as reações de hidrólise/ condensação, que acontecem simultaneamente, e após 30 minutos a banda referente aos grupos siloxanos aumentam consideravelmente, indicando o aumento da condensação dos silanóis.

Fig. 50 - Bandas características do silano

Fonte: adaptado de Pantoja et al. (2013)

(a) e (b) diminuição das bandas dos grupos silanóis; (c) aumento das bandas características dos grupos siloxanos.

Fonte: adaptado de Franquet et al. (2003)

2.2.4.2 Microscopia Eletrônica de Varredura

Frequentemente os filmes de silanos são caracterizados através da análise de microscopia eletrônica de varredura, por meio de cortes transversais em amostras funcionalizadas. Em geral, as superfícies metálicas quando funcionalizadas com silanos apresentam uma característica típica pela formação de uma interface superfície-filme. Nas pesquisas de Franquet *et al.* (2003) e Hoikkanen *et al.* (2011) verificou-se que a interface é composta de uma fina mistura de metal oxidado e de uma interface com ligações de siloxano distribuídas de maneira uniforme (Fig. 52 (a) e (b)). Ao se afastar da interface, é possível verificar uma

camada de silano homogênea, que se deve à reticulação da camada de silano, se mostrando uniforme e livre de poros; essa uniformidade é comumente alcançada pelo tratamento térmico do filme de silano.

Fig. 52- Corte transversal de amostras metálicas funcionalizada com silano

Fonte: adaptado de Franquet *et al.* (2003)

(b) Amostra de aço Fonte: adaptado de Hoikkanen *et al.* (2011)

Dalmoro *et al.* (2012) utilizaram TEOS para o revestimento de ligas de alumínio. Na Fig. 53 é mostrada a seção transversal onde se verifica que a camada não é uniforme e dependendo da região da amostra, há variação na espessura do filme. Essa característica se repete em amostras funcionalizadas com silano, principalmente pelo processo *dip-coating*, onde é comum a camada apresentar seções de diferentes espessuras. Isso já é esperado, pois na fase em se encontram dentro da solução, as moléculas de silano hidrolisam em taxas distintas, podendo apresentar tanto grupos isolados como grupos condensados de maior reticulação, o que resulta em regiões na superfície do substrato que apresentam maior ou menor afinidade entre os grupos silanóis, mesmo após a cura da peça, resultando em regiões não uniformes do ponto de vista da espessura do filme.

Em geral, os compósitos reforçados com fibras apresentam regiões de menor homogeneidade química e estabilidade mecânica na interface fibra-matriz. No estudo de Rzatki (2012), foi utilizado um compósito polimérico reforçado com fibras naturais de sílica amorfa funcionalizadas com moléculas de silanos. Na Fig. 54 verifica-se os vazios deixados pelo arrancamento das fibras. Esse comportamento pode ser atribuído a característica da fibra, que por se tratar de uma fibra curta, apresenta como comportamento característico o seu arrancamento. Apesar da funcionalização aumentar os índices de resistência à tração, ela não foi capaz de atribuir adesão suficiente, resultando no arrancamento. Segundo o autor, o deslocamento da fibra resulta em um vazio no interior da matriz, que acaba por ser um ponto de nucleação de fissuras, aumentando a possibilidade de propagação de fissuras na região.

Fig. 53 – Seção transversal do filme de TEOS sobre uma liga de alumínio

Fonte: Dalmoro et al. (2012)

Fig. 54 - Micrografia de compósito polimérico reforçado com fibras funcionalizadas

Fonte: Rzatki (2012)

2.3 SÍNTESE DA REVISÃO BIBLIOGRÁFICA

O concreto de ultra-alto desempenho reforçado por fibras (CUADRF), desde o seu "surgimento" no início dos anos 90 do século passado, vem sendo explorado com o objetivo de melhorar as suas propriedades, principalmente à compressão, seja por manipulação da matriz ou pela manipulação das fibras. Inúmeros avanços vêm sendo reportados, como melhora nas propriedades pela aplicação de cura térmica, adição de nanopartículas ou fibras de alto desempenho. Apesar desses avanços, quando solicitado mecanicamente, falha sistematicamente nas zonas de interface. Por não apresentar agregados graúdos na sua composição, a zona interfacial preferencial para propagação de fissuras é entre a fibra e a matriz.

Assim, uma abordagem que tenha como foco principal a região de interface fibra-matriz pode apresentar uma perspectiva interessante para o melhoramento desse tipo de compósito.

A funcionalização de superfícies é uma técnica amplamente utilizada e aplicada principalmente no controle/ prevenção da corrosão de metais. Apesar desse enfoque, a funcionalização é normalmente realizada a partir de compostos de silício, formando uma película amorfa à base de silicatos. Esse processo, por sua vez, muitas vezes é utilizado para a compatibilização de materiais.

Nesse sentido, a funcionalização das fibras de aço com silanos para adição em matriz cimentícia apresenta esse potencial de "compatibilização" de materiais. Uma vez que, quando funcionalizadas com silanos, as fibras podem apresentar uma maior compatibilidade entre a superfície da fibra funcionalizada e a matriz cimentícia, possibilitando talvez uma interação físico-química ao invés de apenas interação física. Impactando principalmente nas propriedades mecânicas pós fissuração.

Estudos, discutidos anteriormente, já evidenciaram a potencialidade da utilização de silanos em compósitos cimentícios. Apesar disso, o foco principal desses estudos é a sua utilização como um tipo de aditivo ou como parte dos constituintes do compósito. Já, quando a abordagem é de funcionalização de fibras, os estudos focam principalmente na compatibilização de fibras não metálicas para reforço de compósitos em geral.

Dessa forma, uma proposta que tenha como objetivo a funcionalização de fibras de aço para o reforço de compósitos cimentícios, além de ser pouco explorada, apresenta-se como uma possível alternativa para o aprimoramento de compósitos cimentícios de alto desempenho.

3 PROCEDIMENTO EXPERIMENTAL

Na Fig. 55 é apresentado o programa experimental desenvolvido na tese.

3.1 MATERIAIS

Para o processo de funcionalização, utilizou-se silanos oriundos de fornecedores estrangeiros, sendo o Tetraetoxissilano (TEOS) da marca Aldrich (EUA) e o 3-Glicidoxipropiltrimetoxissilano (GPTMS) da Gelest (EUA). As principais características dos silanos são apresentadas na Tabela 14.

Tabela 14 – Calacteristicas dos sitanos usados		
		Silanos
Nome	Tetraetoxissilano	3-Glicidoxipropiltrimetoxissilano
Sigla	TEOS	GPTMS
Fabricante	Aldrich (EUA)	Gelest (EUA)
Pureza	> 98% (massa)	> 97% (massa)
Grupo hidrolisável	Etóxi	Metóxi
Grupo funcional	-	Epóxi
Fórmula química	C8H20O4Si	C9H20O5Si
Massa molar (g/mol)	208,33	236,34
Fórmula estrutural	H ₃ C O CH ₃ O Si O CH ₃ H ₃ C CH ₃	O H ₃ CO OCH ₃

Tabela 14 - Características do	los silanos	usados
--------------------------------	-------------	--------

Para o desengraxe das microfibras de aço, utilizou-se acetona (C_3H_6O) de concentração superior a 99,7 %, fabricada por Boter (Espanha).

Para o ajuste de pH nas soluções de funcionalização, foi utilizado ácido acético glacial (CH₃COOH), de concentração superior aos 99 %, fabricado por Boter (Espanha).

Como solvente alcoólico, utilizou-se etanol (C_2H_6O) e metanol (CH_3OH), ambos de concentração superior aos 96 %, sendo ambos fabricados por Boter (Espanha).

Para o tratamento alcalino das fibras, utilizou-se hidróxido de sódio (NaOH), do tipo micropérolas, com concentração superior aos 98 %; e hidróxido de cálcio (Ca(OH)₂) na forma de pó de concentração superior os 98 %, ambos fabricados pela empresa Scharlab.

Para os concretos, utilizou-se cimento Portland Super Dragon 52,5R, fabricado pela Cementos Molins Industrial (Espanha), classificado como CEM-I pela UNE-EN 197-1 (2011) (equivalente ao CP-V ARI-RS, classificado pela NBR 5733 (1991)), com d₅₀ de 17,7 μ m. As composições química e mineralógica são mostradas na Tabela 15.

Composição química		Composição mineralógica	
Óxidos	Quantidade (%)	Composto	Quantidade (%)
Fe ₂ O ₃	3,26	C ₃ S	58,3
TiO ₂	0,22	C_2S	11,2
CaO	62,62	C ₃ A _c	4,1
K ₂ O	0,99	C ₃ A _o	0,6
P_2O_5	0,10	C4AF	13,4
SiO ₂	19,89	CaO	1,1
Al ₂ O ₃	4,74	Ca(OH) ₂	1,7
MgO	1,95	CaCO ₃	1,9
Na ₂ O	0,13	CaSO ₄ ·2H ₂ O	2,1
SO ₃	3,53	CaSO ₄ .0·5H ₂ O	4,4
PF	2,88	K2Ca(SO4)2·H2O	1,1

Tabela 15 - Composição do Cimento Super Dragon 52,5R

 $C_3A_c = estrutura cúbica C_3A_o = estrutura ortorrômbica;$

As composições mineralógica e química foram determinadas por difratometria de raios-X (Rietfield) e Fluorescência de raios-X, respectivamente. Cortesia de Salvador et al. (2016).

O difratograma do cimento foi obtido em um difratômetro Rikagu modelo miniflex-2 (laboratório NanoTec - UFSC), com radiação cobre Ka, energia de 30 kV e 15 mA a um passo de 0,05 para 2 theta/ segundo (Fig. 56); a identificação das fases mineralógicas foi realizada por meio dos padrões de estruturas cristalinas que estão listados na Tabela 16.

rabela 10 – Referencias para identificação das fases			
Nome	Fórmula química	Código ICSD ^a	Referência
Alita	Ca ₃ SiO ₅	94742	de la Torre et al. (2002)
Belita	Ca ₂ SiO ₄	79550	Tsurumi et al. (1994)
Aluminato tricálcico(cúbico)	Ca ₃ Al ₂ O ₆	1841	Mondal et al. (1975)
Aluminato tricálcico(ortorrômbico)	Ca ₃ Al ₂ O ₆	1880	Nish et al. (1975)
Ferro aluminato tetracálcico	Ca4Al2Fe2O7	9197	Colville et al. (1971)
Óxido de Cálcio	CaO	75785	Huang et al. (1994)
Portlandita	Ca(OH) ₂	15471	Petch (1961)
Calcita	CaCO ₃	79673	Wartchou (1989)
Gipsita	CaSO ₄ ·2H ₂ O	151692	de la Torre et al. (2004)
Anidrita	CaSO ₄ ·0,5H ₂ O	69060	Bezou et al. (1991)
Singenita	K2Ca(SO4)2·H2O	20006	Bokii et al. (1978)

^a Inorganic cristal scructure database – FIZ Karlsruhe – Leibniz Institute for information infrastructure

Fig. 56 - Difratograma do cimento CEM I SD Dragon 52,5R

O pó de CaCO₃ adicionado como fíler, com d_{50} de 6,67 µm e densidade de 2,7 g/cm³, é comercializado pela empresa Omya International (Espanha); com o nome de "Betoflow[®] D". As distribuições granulométricas do cimento e do Betoflow (CaCO₃) foram determinadas por granulometria a laser, no equipamento Microtrac modelo S3500, no laboratório NanoTec (UFSC).

A nanossílica utilizada é fabricada pela BASF e comercializada com o nome de MasterRoc MS 685 na forma de suspensão com 22 % de sólidos e pureza superior a 99,5 %. Possui $_{d}50$ de 99,35 nm, determinado por granulometria por espalhamento dinâmico de luz, analisado no equipamento Zetasizer Nano (Marvern) (CERMAT – UFSC).

A areia utilizada possui $_{d}50$ de 0,45 mm, densidade de 2,64 g/cm³, tamanho máximo característico e módulo de finura, caracterizado segundo a NBR NM 248 (2003), de 1,2 mm e 3,14, respectivamente. É comercializada pela Sibelco (Espanha) com o nome ZF-V3040S.

Na Fig. 57 são apresentadas as distribuições granulométricas dos pós utilizados para a produção dos concretos.

As microfibras do tipo aço-carbono revestidas com latão (Tabela 17), segundo as especificações fornecidas pela fabricante, são classificadas pela NBR 15530 (2007) como do tipo "R I" (fibra de aço reta oriunda de arame trefilado à frio). Seu nome comercial é "OL13/.16", com 13 mm de comprimento, 0,16 mm de diâmetro, cobrimento de latão na superfície e resistência à tração superior a 2000 MPa, fabricada pela BEKAERT.

Tabela 17 – Calacterísticas da líbra de aço		
Propriedades		
Material	Aço-carbono	
Resistência à tração	Superior a 2000 MPa	
Comprimento	13 mm	
Diâmetro	0,16 mm	= -
Fator de forma	81,25	2
Densidade	7,95 g/cm ³	

Tabela 17 - Características da fibra de aço

O aditivo superplastificante utilizado é à base de policarboxilato-éster, com teor de sólidos de 25 % e densidade de 1,048 g/cm³. Seu nome comercial é Masterglenium Ace 425 e é fabricado pela BASF. Na Fig. 58 é apresentado o espectro de infravermelho do aditivo e as bandas que foram identificadas são apresentadas na Tabela 18.

Fig. 58 - Espectro infravermelho do aditivo superplastificante utilizado

Tabela 18 – Ligações químicas do aditivo superplastificante identificado por Infravermelho

Número de onda (cm ⁻¹)	Ligação quí- mica	Composto químico
3357	OH-	Hidroxila da água.
≅2900-2990	CH2 / CH3	Grupo alifático que compõe do aditivo.
1754	C=O	Carbonila do éster que compõe o aditivo.
1639	OH / C=OO-	Hidroxila da água / carboxila que compõe o ácido carboxílico do aditivo.
≅1132-1100	C-O-C	Éter que compõe o aditivo.
F (I	1 D 1 (2012	2015) D : 0 C' (2012)

Fonte: Janowska-Renkas (2013, 2015) e Rojas & Cincotto (2013)

3.2 MÉTODOS

3.2.1 Espectroscopia de infravermelho

Para a análise por espectroscopia de Infravermelho, sigla em inglês "*FTIR*", foi utilizado um espectrômetro JASCO modelo FT-IR-4200, com acessório de ATR (refletância total atenuada) PRO450-S/470-H, que possui cristal de seleneto de zinco (ZnSe) (Fig. 59). São realizados 42 *scans* com 0,5 cm⁻¹ de resolução por espectro no intervalo de número de onda de 4000 a 550 cm⁻¹. Para a análise, coloca-se gotas da amostra no compartimento cobrindo todo o cristal do acessório ATR. Todos os espectros foram avaliados com os programas *Spectral analysis* da empresa JASCO e pelo *Knowitall*® da *Bio-Rad Laboratories*.

Fig. 59 - Equipamento para análise de FTIR

(a) FTIR-4200 Jasco

(b) Acessório ATR

(d) Compartimento da amostra no acessório ATR

(c) Acessório ATR no equipamento

(e) Amostra líquida cobrindo o cristal de ZnSe

3.2.2 Análise microestrutural

Houve análises realizadas no Brasil e em Barcelona. Serão descritos os dois equipamentos utilizados:

No Brasil, para as análises de microestrutura eletrônica de varredura e composição química das amostras (MEV/ EDS) foi utilizado um microscópio HITACHI TM3030 (CERMAT/ UFSC) com 15 kV e imagens de composição por elétrons retroespalhados. Para a composição química das amostras, foram realizadas análises de varredura de energia dispersiva (EDS). Para as amostras não condutoras aplicou-se cobertura ouro na sua superfície.

Em Barcelona, utilizou-se um microscópio eletrônico de varredura JEOL JSM ambiental, com imagens em 15 kV de elétrons secundários. Para a análise química, foram realizadas análises de varredura de energia dispersiva (EDS).

Nas análises realizadas nas fibras, as amostras foram apenas colocadas no porta amostra para o ensaio. Nos corpos de prova de concreto, foi realizada a extração de uma amostra de dimensões de 5 x 5 x 5 mm nos corpos de prova do ensaio de *pull-out, a*pós o ensaio, da face onde as fibras ficaram alinhadas. Realizou-se a extração com uma serra de lâmina diamantada (Isomet).

3.2.3 Trabalhabilidade

A análise da trabalhabilidade dos concretos foi realizada de acordo com a ASTM C1437 (2013). O procedimento consiste em, logo após a finalização da mistura, preencher o molde cônico (sobre a mesa) com o concreto, em seguida remover o molde cônico e realizar 25 golpes da mesa agitadora na frequência de 1 golpe por segundo.

Logo após o término do 25° golpe, realiza-se a medida do diâmetro resultante do concreto em pelo menos duas direções ortogonais. A partir dos valores verificados, calcula-se a média do espalhamento da amostra.

3.2.4 Calorimetria isotérmica de condução

Para a realização dos ensaios de calorimetria nas amostras de concreto, se utilizou um calorímetro comercial isotérmico CALMETRIX I-cal 4000 (Fig. 60 (a)). As curvas de calor foram medidas durante 48 a 72 horas a 23 °C a partir de aproximadamente 50 g de concreto (Fig. 60 (b)). Os concretos foram preparados manualmente nos recipientes exclusivos do equipamento.

O procedimento de mistura consiste em colocar os constituintes secos no recipiente e homogeneizar com uma espátula. Em seguida, os constituintes líquidos são adicionados e misturados durante 5 minutos e em seguida as fibras são adicionadas e misturadas por mais 3 minutos. Após o tempo determinado, o recipiente é tampado e homogeneizado em um agitador "*vortex*" por 2 minutos, só então as amostras são introduzidas no equipamento.

Para a análise do período de indução, assumiu-se que a hidratação do cimento começa logo após a adição de água aos materiais secos (ainda na mistura manual), se estendendo até as leituras no calorímetro. Dessa forma, o ponto final do período de indução foi a intersecção das extrapolações do trecho horizontal (pré-pico de aceleração) e da linha de regressão do período de aceleração da curva de fluxo de calor normatizado (Fig. 61) (BETIOLI et al., 2009; PILAR et al., 2016).

Fig. 61 – Representação esquemática da determinação do período de indução

A partir dos dados gerados pelo equipamento obtêm-se os índices de período de indução, fluxo de calor normatizado máximo do pico de aceleração, calor gerado até o máximo valor no pico de aceleração e calor normatizado total gerado no ensaio.

A porcentagem de hidratação do cimento foi estimada a partir da composição mineralógica do cimento, sendo considerado valor relativo do calor de hidratação com a soma dos valores em relação às fases principais do cimento (C₃S: 510 J/g; C₂S: 260 J/g; C₃A: 1100 J/g; C₄AF: 410 J/g) (BETIOLI et al., 2009; SALVADOR et al., 2016).

3.2.5 Resistência mecânica

3.2.5.1 Flexo-tração EN 196-1

O ensaio de flexo-tração foi realizado para as amostras na fase de ensaios preliminares segundo a UNE EN 196-1 (2005). Realizou-se o ensaio na prensa IBERTEST série MEH, o procedimento consiste em um ensaio de três pontos, sendo a carga aplicada a uma velocidade constante de 50 ± 10 N/s no ponto central do corpo de prova de dimensões $40 \times 40 \times 160$ mm. A distância entre os apoios do corpo de prova deve ser de 100 mm, conforme Fig. 62. O valor analisado é o maior valor de resistência no decorrer do ensaio, denominado módulo de ruptura (MOR). Para o cálculo do MOR (em MPa) é utilizado a Eq. (17), onde F_f é a carga aplicada no meio do corpo de prova (em Newtons), l é o comprimento do vão entre apoios (em mm) e b é a altura do corpo de prova (em mm).

Fig. 62 - Ensaio três pontos de flexo-tração UNE EN 196-1

$$MOR = \frac{1.5 x F_f x l}{b^3}$$
(17)

3.2.5.2 Resistência à compressão

Os ensaios de compressão foram realizados segundo a UNE EN 196-1 (2005) em uma prensa IBERTEST, modelo série MEH. Os corpos de prova utilizados para os ensaios de compressão foram extraídos a partir das metades resultantes dos ensaios de flexo-tração. O procedimento de ensaio utilizado consiste em aplicar uma carga de forma que ela aumente em 2,4 kN/ segundo de maneira constante até a ruptura da amostra. Para o cálculo da resistência à compressão, utiliza-se a Eq. (18), onde R_c é a resistência à compressão (em MPa) e F_c é a máxima carga aplicada (em Newtons).

$$R_c = \frac{F_c}{1600} \tag{18}$$

3.2.5.3 Flexo-tração (Limite de proporcionalidade e resistência residual)

Os ensaios foram realizados seguindo a metodologia proposta na norma europeia UNE-EN 14651+A1 (2007 b). Em relação à dimensão dos corpos de prova, houve uma adaptação ao recomendado pela norma de 150 x 150 x 550 mm para 40 x 40 x 160 mm. Utilizou-se uma prensa INSTRON, modelo 8803 e célula de carga de 200 kN com sistema fechado para deslocamento do pistão.

O ensaio realizado é do tipo 3 pontos, sendo aplicada a carga no vão central do corpo de prova. A amostra é apoiada em dois suportes de 30 mm de diâmetro com um vão entre apoios de 133,3 mm. A altura do entalhe realizado na face inferior das amostras foi de 6,7 mm (Fig. 63).

Fig. 63 - Corpo de prova e ensaio de LOP e resistência residual

 $h_{\rm sp}$ é altura mínima efetiva de corpo de prova, que neste caso é 33,3 mm.

(a) Corpo de prova com dimensões em mm

(b) Foto do ensaio de LOP

Como o ensaio é realizado controlando-se o deslocamento do pistão da prensa, foi necessária a determinação do valor de deflexão referente à abertura de fissura na deformação de 0,1 mm de modo a determinar o momento para o aumento da velocidade de ensaio. Para isso, aplicou-se o valor de CMOD desejado na Eq. (9), obtendo-se o valor de 0,125 mm de deflexão.

$$\delta = (0.85 \times CMOD) + 0.04 \tag{9}$$

Aplicando-se os valores conhecidos, tem-se:

$$\delta = (0.85 \times 0.1) + 0.04$$

$$\delta = 0.125 mm$$

Onde:
CMOD é a abertura da fissura (mm); δ é a deflexão (mm)

Do início do ensaio até os 0,1 mm de CMOD, utiliza-se 0,05 mm/ minuto de velocidade de abertura de fissura. A partir dessa deformação, deve-se utilizar a carga de modo que a CMOD aumente a uma taxa de 0,2 mm/ minuto. O ensaio deve terminar em um valor de CMOD de 4 mm.

Para a determinação da velocidade do deslocamento do pistão da prensa que corresponde à velocidade de abertura de fissura, derivou-se a Eq. (9), que resulta na Eq. (19).

$$\frac{d\delta}{dt} = \left(0.85 \times \frac{dCMOD}{dt}\right) + 0$$

Logo:

$$V_{\delta} = (0.85 \times V_{CMOD}) \tag{19}$$

Onde:

 V_{δ} é a velocidade de deflexão, e;

 V_{CMOD} é a velocidade de abertura de fissura.

Aplicando as velocidades de CMOD determinadas pela normativa, temse que no intervalo de 0 a 0,125 mm de deflexão, deve-se utilizar velocidade 0,0425 mm/ minuto e para deflexão superior aos 0,125 mm deve-se utilizar a velocidade de 0,17 mm/ minuto.

Conhecendo-se todos os parâmetros do ensaio, a abertura de fissura (CMOD) foi determinada pela eq. (20), onde a deflexão do corpo de prova (δ) foi registrada pelo deslocamento do pistão da prensa.

$$CMOD = \frac{(\delta - 0.04)}{0.85}$$
 (20)

Onde: *CMOD* é a abertura da fissura (mm);

 δ é a deflexão (mm).

3.2.5.4 Ensaio Barcelona

O ensaio foi realizado conforme a norma UNE 83515 (2010) na prensa IBERTEST série MEH e célula de carga de 3000 kN com controle da velocidade da carga e controle do deslocamento do pistão (Fig. 64).

(a) Execução do ensaio

(b) Corpo de prova rompido.

O ensaio consiste na aplicação de uma carga central em ambas as faces de um corpo de prova cilíndrico de altura 150 mm e diâmetro 150 mm por meio de um disco de carga com 37,5 mm de diâmetro, correspondente a um quarto do diâmetro do corpo de prova ($\emptyset/4$). A aplicação da carga é controlada pelo deslocamento do pistão da prensa a uma velocidade de 0,5 \pm 0,05 mm/ minuto. A deformação do corpo de prova é registrada por meio de uma abraçadeira que é composta por um extensômetro que faz a leitura circunferencial. A partir do ensaio Barcelona fez-se a medida da resistência à tração indireta, resistência residual à tração e tenacidade. Para o cálculo de resistência à tração e resistência residual utilizou-se as Eq. (12) e (13), respectivamente, e para o cálculo da tenacidade do compósito, fez-se a integração da área embaixo da curva carga-abertura circunferencial gerada no ensaio.

3.2.5.5 Ensaio de Pull-out

Diferente dos demais ensaios de caracterização mecânica, este ensaio foi realizado em 3, 7 e 28 dias de hidratação. As dimensões dos corpos de prova são de 40 x 40 x 80 mm. Os moldes utilizados para a produção dos corpos de prova são os mesmos utilizados para os ensaios de LOP, ou seja, de 40 x 40 x 160 mm.

Cada corpo de prova foi separado na metade por uma lâmina de polietileno com 25 fibras alinhadas, a distância entre as fibras alinhadas é de 6,7 mm (Fig. 65). Cada metade de corpo de prova ficou com 6,5 mm de fibra embebida.

Fig. 65 - Corpos de prova do ensaio de Pull-out

(a) Dimensões gerais; (b) Lâmina de polietileno com as fibras alinhadas; (c) Descrição das partes que compõem o corpo de prova; (d) Corte A-A' em (a)

Os ensaios foram executados na prensa Instron modelo 8803 com célula de carga é 5 kN e resolução de 0,001 kN. A velocidade do ensaio foi conduzida

em deslocamento constante de 0,3 mm/ minuto (administrado pelo extensômetro), de acordo com Chan & Chu (2004), e finalizado em 5,5 mm de arrancamento da fibra. A configuração do ensaio é mostrada na Fig. 66.

Para o posicionamento do corpo de prova para o ensaio, primeiramente, removia-se o prato superior da prensa e então grudava-se o corpo de prova no prato superior com um adesivo epóxi. Em seguida, posicionava-se o prato superior na prensa e colocava-se o adesivo epóxi no prato inferior da prensa. Então, manualmente abaixava-se o pistão até o contato total da superfície inferior do corpo de prova com o adesivo do prato inferior. Nenhuma carga foi aplicada no corpo de prova nesse estágio.

Para o cálculo da tensão de aderência foi utilizada a Eq. (15). Para o cálculo da energia necessária para o arrancamento das fibras fez-se a integração da área embaixo da curva carga-deformação gerada no ensaio.

$$\tau_{m\dot{a}x} = \frac{\sigma_{m\dot{a}x}}{n \times \pi \times d \times L} \tag{15}$$

Onde:

 $\begin{aligned} \tau_{máx} & \text{é a resistência máxima de aderência;} \\ \sigma_{máx} & \text{é a máxima carga de arrancamento do ensaio;} \\ d & \text{é o diâmetro da fibra;} \\ L & \text{é o comprimento da fibra embebida dentro da matriz;} \end{aligned}$

n é o número de fibras.

Uma vez que cada etapa da tese tem uma particularidade, a descrição dos preparos das amostras e número de ensaios realizados estão nos capítulos que seguem.

4 ESTUDO DA HIDRÓLISE/CONDENSAÇÃO DOS SILANOS

4.1 INTRODUÇÃO

Dentre as variáveis determinantes nos processos de hidrólise/ condensação de silanos, o tempo tem um impacto fundamental. Na bibliografia, são reportados diversos tempos de hidrólise, normalmente característicos para cada experimento realizado (resumido na Tabela 11 item 2.2.1).

Assim, com o objetivo de determinar o tempo de hidrólise/ condensação dos silanos em que há maior quantidade de silanóis, preparou-se soluções de funcionalização com TEOS e GPTMS e fez-se o monitoramento por infravermelho em função do tempo a partir da diluição dos silanos.¹

4.2 PROCEDIMENTOS

4.2.1 Caracterização dos reagentes

Na Fig. 67 (a), são apresentados os espectros do etanol, da água e do ácido acético, na Fig. 67 (b) são mostrados os espectros do TEOS, metanol e GPTMS; com as suas bandas de ligações químicas características no comprimento de onda de 4000-550 cm⁻¹. Pelo fato de haver uma mistura de reagentes na solução do silano e de muitas das bandas coincidirem nas mesmas regiões de absorção, fezse necessária a seleção das bandas características de hidrólise e condensação do silano. Para isso, na Tabela 19, são mostradas as ligações químicas características referentes aos comprimentos de onda identificados nos espectros de infravermelho para os reagentes empregados neste trabalho.

¹ Parte desse capítulo, referente ao estudo do TEOS, foi submetido à Revista Matéria (Rio de Janeiro) no artigo: CASAGRANDE, C.A; REPETTE, W.L., Monitoramento da hidrólise/condensação do tetraetoxissilano em solução com baixo teor alcoólico por análises de espectroscopia de infravermelho; 2017.

Fig. 67 - Espectros de infravermelho dos reagentes da funcionalização (CONTINUAÇÃO)

Tabela 19 -	- Bandas	características	dos reagentes	da fun	cionalização	o nos es	pectros d	e F7	ΓIF

Número de	Reagente							
onda (cm ⁻¹)	Água	Etanol	Metanol	TEOS	GPTMS	Ac. Acético		
≅3700					vSi-O(H)			
3400-3200	vO-H	vO-H	vO-H					
2978-2970		vsC-H2	vsC-H	vsC-H2	vsC-H	vsC-H		
2950-2900			vasC-H3	vasC-H3	vasC-H3	vasC-H ₃ / O-H		
1725-1700						aC=O		
≅1640	<i></i> о - Н							
1430-1380		_ð О-Н	$_{\delta}$ O-H	δasC-H	δasC-H/C-O	_ð О-Н		
≅1284					vsepóxi	$\delta as C-O$		
≃1160				vasSi-O-C,	vasSi-O-C,			
_1100				vasSi-O-Si	vasSi-O-Si			
≅1114			vC-O			vC-O		
1080-1070		vC-O		vasSi-O-C,				
1017			<i></i>	vasS1-O-S1				
≅1045		<i>v</i> C-O	v C-O		vasS1-O			
960-900				vβSi-O(H)	νβ S1-O(H)	vsC-H		
~970		0.11			vasepoxi			
≅8/9		ν О-Н			COC			
802-780				vsSi-O	vasC-O-C,	ν C-H		
~617	ОЧ		CO		vsepoxi	СЧ		
580-550	<i>ор</i> О-П		vsC-O			v C- 11		

v: vibração de alongamento; vs: vibração de alongamento simétrica; vas: vibração antissimétrica; δ: vibração de flexão; δas: vibração de flexão antissimétrica; vβ: vibração de alongamento no plano; a: vibração de deformação axial; op: vibração de deformação fora do plano.

Fonte: Al-Oweini & El-Rassy (2009); Alothman & Apblett (2009); Barberena-Fernández *et al.* (2015); Bhagat & Rao (2006); Capiotto (2006); Gizdavic-Nikolaidis *et al.* (2008); Khramov *et al.* (2003); Kim (2000); Kunst *et al.* (2014); Lazghab *et al.* (2010); Lenza & Vasconcelos (2001); Lu *et al.* (2008); Rubio *et al.* (1998); Silverstein *et al.* (1991); Téllez *et al.* (2004).

4.2.2 Análise da concentração dos silanos no monitoramento da hidrólise

Verificou-se que as bandas de transmitância no espectro da água são largas, cobrindo grande parte do espectro nos limites de comprimento de onda 4000-550 cm⁻¹. Isso dificulta a análise, devido à grande presença de água na solução de funcionalização (cerca de 50 %).

No caso dos silanos, há regiões nos espectros que podem se sobrepor, como na região de 1160 cm⁻¹, indicando a ligação de siloxanos (Si-O-Si) e alcóxi (Si-O-C), sendo essa região de complexa análise. Também há sobreposição de bandas na região de 960-900 cm⁻¹, onde a banda referente à ligação O-H do etanol (\cong 879 cm⁻¹) e da água (que vai dos 1000 aos 550 cm⁻¹) podem sobrepor a ligação referente ao silanol (Si-OH) do silano. No caso do GPTMS, há também a possibilidade de sobreposição pelo solvente alcoólico das bandas na região dos 1045 cm⁻¹, referente à ligação \equiv Si-O-H e das bandas 802-780 cm⁻¹ referente à ligação C-O-C do grupo funcional epóxi.

Assim, realizou-se uma análise comparativa dos espectros dos solventes alcoólicos acidificados (água: álcool na proporção 1: 1, em pH 5) com os espectros dos silanos no seu estado puro, para verificar se seria possível identificar os picos de maior interesse referentes a hidrólise/ condensação, que são picos nos números de onda na região de 1160, 1080-1070, 960-900 e 802-780 cm⁻¹, para o TEOS, e na região dos 3700, 1200, 1160, 1045, 960-900 cm⁻¹ para o GPTMS.

Na Fig. 68 são apresentados os espectros do TEOS e do solvente etanoico (solução 1:1 água: etanol, acidificado com ácido acético até pH 5) no limite de 4000-550 cm⁻¹ e, também, um detalhe do espectro na região de 1200-700 cm⁻¹.

Para o TEOS, as bandas na região de 1160, 1080-1070, 960-900 e 802-780 cm⁻¹ foram identificáveis quando analisadas em comparação com o solvente. Apesar da possibilidade de identificação de bandas características da hidrólise/ condensação dos silanos, realizou-se a diluição, separadamente, de 1 e 10 % em soluções alcoólicas acidificadas afim de verificar se, no caso das duas concentrações de silano, seria possível a identificação das bandas de interesse para o monitoramento da hidrólise.

Fig. 68 - Bandas de interesse do TEOS e solvente etanoico

Na Fig. 69 são apresentados espectros do TEOS concentrado e os espectros das soluções com 1 % e 10 % de silano. São mostrados os espectros nos números de onda de 4000-550 cm⁻¹ e, também, há um detalhe na região de 1200-700 cm⁻¹. No caso dos espectros com TEOS diluído, o espectro é referente ao tempo zero de hidrólise, ou seja, ensaia-se a amostra imediatamente após a diluição do TEOS na solução.

Verificou-se que dentre as duas concentrações investigadas, somente na solução com concentração de 10 % de silano foi possível identificar as ligações químicas de interesse para o monitoramento da hidrólise/ condensação. Quando 1 % de TEOS foi utilizado, as bandas de interesse não foram identificáveis. Desta forma, o monitoramento da hidrólise/ condensação do TEOS foi realizado na solução com a concentração de 10 % (vol.).

De forma semelhante, realizou-se a análise das bandas de interesse do monitoramento da hidrólise do GPTMS. Na Fig. 70 são mostrados os espectros do GPTMS e do solvente metanoico (solução 1: 1 água: metanol, acidificado com ácido acético até pH 5) no limite de 4000-550 cm⁻¹ e há, também, um deta-lhe do espectro na região de 1400-700 cm⁻¹.

Verificou-se que há possibilidade de identificação de bandas características de hidrólise/ condensação quando o GPTMS é comparado ao solvente. No silano puro, a banda característica do Si-OH na região dos 3700 cm⁻¹ é intensa, apresentando grande potencial para monitoramento. Na região dos 1270 cm⁻¹, o anel epóxi pode ser monitorado e na região dos 1190-1010 cm⁻¹ pode-se monitorar as reações de condensação do silano, configurando a ligação Si-O-Si.

Porém, no caso do GPTMS, a identificação das bandas de interesse da hidrólise/ condensação é mais difícil que no caso do TEOS, pois há sobreposição de várias bandas do silano pelos reagentes da solução alcoólica e do próprio silano. Como por exemplo, a ligação Si-OH no comprimento de onda de 900-960 cm⁻¹ é sobreposta pela absorção da ligação correspondente ao anel epóxi na região de 950-900 cm⁻¹; e na região de 3700 cm⁻¹ e 840-780 cm⁻¹ referente ao Si-OH, houve sobreposição das bandas da hidroxila da água e do metanol. Analogamente ao TEOS, realizou-se a diluição de 1 % e 10 % do GPTMS no solvente alcoólico para a verificação da possibilidade de identificação das ligações químicas de interesse na solução de hidrólise, os espectros gerados são apresentados na Fig. 71.

Pela Fig. 71 verificou-se que o solvente tem grande impacto no espectro da solução com GPTMS. Isto é, quando adicionado o silano verifica-se uma mudança discreta em relação ao espectro do solvente, principalmente para a solução menos concentrada (1 % de silano). Apesar disso, foi possível realizar de monitoramento da banda em torno dos 910 cm⁻¹, característico das ligações de \equiv Si-OH, porém somente quando utilizado 10 % de GPTMS. Nessa região também houve sobreposição da ligação característica do grupo epóxi. Assim, foi monitorada a região do 1270 cm⁻¹ para confirmar se havia mudança na sua intensidade (referente ao epóxi) e, assim, relacionar a sua variação de intensidade com a região dos 910 cm⁻¹.

Mesmo não apresentando grande variação de sua intensidade, a região dos 3700 cm⁻¹, característica da ligação Si-OH, também foi monitorada com o objetivo de ser relacionada com a região dos 910 cm⁻¹. Para fins práticos, como há sobreposição de bandas, se houver variação similar entre essas bandas, pode-se evidenciar que a variação de intensidade na região dos 910 cm⁻¹ é referente à hidrólise/ condensação.

Nos 1100-1000 cm⁻¹, a solução com 10 % de GPTMS apresentou maior intensidade. Essa região apresenta as ligações de siloxano e dos grupos alcóxi. Para verificar a variabilidade da transmitância nessa região, foram monitoradas

as bandas 1100 e 1020 cm⁻¹, de modo a identificar formação de siloxano na solução. Semelhantemente ao caso do TEOS, a maior concentração de silano no solvente alcoólico apresentou a maior possibilidade de identificação das bandas de interesse para a hidrólise/ condensação. Portanto, decidiu-se utilizar a concentração de 10 % de GPTMS diluído no solvente metanoico para o monitoramento da hidrólise/ condensação do GPTMS.

Uma vez determinada a concentração de silano para o monitoramento da hidrólise, realizou-se a análise utilizando-se metodologia adaptada dos trabalhos de Capiotto (2006) e Oliveira (2006). A análise foi executada a partir da disso-lução de 10 % de silano em solução álcool: água, na proporção de 1: 1 (pH 5), acidificada com ácido acético. Por meio da análise de infravermelho, foram realizadas extrações da solução e feitas as medições em intervalos de 10 minutos, sendo a análise finalizada em 120 minutos possibilitando a verificação dos espectros em função do tempo, conforme esquema idealizado na Fig. 72. Quando a análise foi realizada com o silano do tipo TEOS, utilizou-se o etanol para compor o solvente alcoólico e quando se utilizou-se o GPTMS, substituiu-se o etanol por metanol.

*Quando a hidrólise é com o TEOS, utiliza-se etanol. Para o GPTMS, utiliza-se metanol.

4.3 RESULTADOS E DISCUSSÕES

4.3.1 Monitoramento da hidrólise do TEOS

Na Fig. 73, são mostrados os espectros obtidos a partir da diluição de 10 % de TEOS na solução alcoólica, com intervalos entre as análises de 10 minutos,

em um limite de números de onda de 4000-550 cm⁻¹. A identificação do tempo de hidrólise (acima do espectro) é referente ao momento da extração da fração da amostra a partir do momento de diluição do silano na solução.

Verifica-se, na Fig. 73 (a), que houve a modificação dos espectros com TEOS em função do tempo, principalmente no espectro que corresponde ao tempo de 60 minutos, indicando que houve um aumento na taxa de hidrólise neste período de tempo. Para facilitar a análise, as regiões de ligações químicas de interesse dos espectros são mostradas em detalhes nas Fig. 73 (b), (c), (d) e (e), com intervalos de 20 minutos.

Fig. 73 - Espectros infravermelho da hidrólise do TEOS em função do tempo (CONTINUAÇÃO)

(a) Espectros em 4000-550 cm⁻¹; barras pretas indicando os comprimentos de onda de 1160, 1080-1070, 960-900 e 802-780 cm⁻¹; (b) Espectros em 1190-1150 cm⁻¹; (c) Espectros na região de 1120-1060 cm⁻¹; (d) Espectros na região 1000-900 cm⁻¹; (e) Espectros na região 810-750 cm⁻¹;

Na Tabela 20 e Fig. 74 são mostrados os valores de intensidade de transmitância das bandas selecionadas em função do tempo, com intervalos de 10 minutos entre cada análise.

As curvas das transmitâncias na região de 1167, 1081, 960 e 783 cm⁻¹ são referentes às ligações Si-O-Si/ Si-O-C, Si-O-Si, Si-OH e Si-O-Si, respectivamente. Como a as bandas 1167-1050 cm⁻¹, que identifica as ligações de siloxano (Si-O-Si) podem ser sobrepostas pelas ligações Si-O-C (AL-OWEINI; EL-RASSY, 2009), para a avaliação da condensação, é também avaliada a ligação na região dos 780 cm⁻¹, que também caracteriza a ligação Si-O-Si.

	Transmitância							
Tempo (min)	про 1167 ст ⁻¹ (n) Si-O-Si/Si-O-C		1081 cm ⁻¹ Si-O-Si		960 cm ⁻¹ Si-OH		783 cm ⁻¹ Si-O-Si	
	(%)	Rtva ^a	(%)	Rtva ^a	(%)	Rtva ^a	(%)	Rtva ^a
0	92,10	1,000	66,90	1,000	84,10	1,000	65,60	1,000
10	90,40	0,981	62,70	0,937	85,40	1,015	63,40	0,966
20	91,20	0,990	63,50	0,949	83,60	0,994	64,30	0,980
30	91,30	0,991	63,80	0,953	83,10	0,988	64,50	0,983
40	90,00	0,977	63,70	0,952	82,80	0,984	65,00	0,990
50	90,10	0,978	59,70	0,892	78,70	0,935	63,00	0,960
60	86,50	0,939	49,20	0,735	73,10	0,869	58,10	0,885
70	87,40	0,948	50,50	0,754	85,10	1,011	59,70	0,910
80	88,40	0,959	51,50	0,769	85,30	1,014	60,10	0,916
90	87,60	0,951	51,90	0,775	85,40	1,015	60,90	0,928
100	88,10	0,956	49,90	0,745	84,30	1,002	60,10	0,916
110	88,00	0,955	50,20	0,750	85,70	1,019	59,90	0,913
120	87,50	0,950	49,80	0,744	85,50	1,016	60,40	0,920

Tabela 20 - Transmitância das bandas características da hidrólise do TEOS

^a Valor de transmitância relativa em relação ao valor de transmitância inicial.

Assim que o TEOS é adicionado na mistura, há formação de silanóis de natureza ácida, que tendem a acelerar a reação de hidrólise e, concomitantemente, com a hidrólise, há a formação de etanol, o que favorece a solubilidade do TEOS na solução. A reação não acontece simultaneamente para os grupos alcóxi (TORRY et al., 2006), sendo hidrolisados intercaladamente um por vez, de modo que para cada mol de silanol gerado na solução, também se forma um mol de etanol (como na Eq. (21)). No período de 40 a 60 minutos, ocorre diminuição brusca nos valores de transmitância, indicando o aumento expressivo na taxa de hidrólise e o aumento da formação dos silanóis nesse período (como mostrado nas Eq. (22) e Eq. (23)). Até os 50 minutos já ocorreu a hidrólise da maior parte das moléculas dos silanos (como na Eq. (24)), evidenciada pela diminuição progressiva da transmitância até os 60 minutos.

Os silanóis formados pela hidrólise do TEOS condensam com as moléculas vizinhas para a formação de moléculas oligoméricas, resultando em liberação de água que leva à redução da solubilidade do TEOS, o que por sua vez, causa a redução da taxa de hidrólise (Eq. (25)). Depois de 60 minutos, a transmitância volta a níveis iniciais. O aumento da transmitância nessa região (960 cm⁻¹) decorre da condensação dos grupos silanóis, além do fato de que com o passar do tempo há menos silanóis, devido à condensação. O comportamento verificado da banda referente ao silanol (960 cm⁻¹) sugere que no intervalo de tempo investigado, o período com maior índice de grupos silanóis na solução foi entre 50 e 60 minutos.

$$SiO_4(C_2H_5)_4 + H_2O \rightarrow HOSiO_3(C_2H_5)_3 + C_2H_6O$$
 10-20 min (21)

$HOSiO_{3}(C_{2}H_{5})_{3} + H_{2}O \rightarrow (HO)_{2}SiO_{2}(C_{2}H_{5})_{2} + C_{2}H_{6}O$	20-40 min	(22)
$(HO)_{3}SiO_{3}(C_{2}H_{5})_{2} + H_{2}O \rightarrow (HO)_{3}SiO(C_{2}H_{5}) + C_{2}H_{6}O$	40-60 min	(23)
$SiO_4(C_2H_5)_4 + 4H_2O \rightarrow Si(OH)_4 + 4C_2H_6O$	40-60 min	(24)
$Si(OH)_4 + Si(OH)_4 \leftrightarrow Si_2O(OH)_6 + H_2O$	> 60 min	(25)

A verificação do siloxano pela banda em 1167 cm⁻¹ é menos evidente que no caso do silanol. A partir dessa banda, foi possível verificar, apesar de discreta, uma pequena variabilidade em função do tempo em que se diminuiu a transmitância da banda, caracterizando maior concentração de siloxano. Em torno de 60 minutos de hidrólise/ condensação houve a mudança mais expressiva, caracterizando o aumento da taxa de policondensação dos silanóis.

Em 1081 cm⁻¹ e 783 cm⁻¹ o comportamento é semelhante ao da banda de 1167 cm⁻¹, com discreta formação de siloxano nos períodos iniciais, logo quando o silano é diluído, permanecendo com pouca variação até em torno dos 40 minutos. A partir deste momento, as reações de policondensação aceleram devido à maior concentração de silanol na solução, resultando na diminuição expressiva nas suas transmitâncias até em torno dos 60 minutos, evidenciando que a condensação do silano é intensificada nesse intervalo de tempo.

Segundo Télles *et al.* (2004), como resultado da rápida condensação dos silanóis, formam-se, primeiramente, moléculas com ligações de siloxanos lineares entre 25 e 30 minutos desde o início da hidrólise. Depois dos 60 minutos, as reações de hidrólise são desaceleradas bruscamente. Isto se deve pela própria policondensação das moléculas do silano parcialmente hidrolisadas, dificultando o acesso das moléculas de água para a hidrólise dos grupos alcóxi restantes e pela formação de moléculas tridimensionais. Além disso, a taxa de hidrólise tende a ser cada vez menor, pelo fato dos grupos \equiv Si-OH, assim que formados, tenderem a condensar com os silanóis disponíveis. Apesar da desaceleração, verificou-se pela banda 1167 cm⁻¹, que a condensação dos silanóis continua, porém em taxas lentas, o que também foi verificado por Cunlife *et al.* (2001).

A partir da investigação realizada, verificou-se que houve três taxas de hidrólise/ condensação do TEOS. A primeira até os 40 minutos: a taxa de hidrólise/ condensação é lenta, porém já se verifica a formação de grupos Si-OH e Si-O-Si lineares a partir da hidrólise do TEOS. A segunda em torno de 50 minutos: há um aumento intenso na taxa de hidrólise dos grupos alcóxi (Si-O-C) para a formação dos grupos Si-OH. Em paralelo, a condensação do silano para a formação dos grupos Si-O-Si também é acelerada neste período, porém exibe aumento na sua intensidade com 10 minutos de atraso. A terceira a partir dos 60 minutos: onde as reações de hidrólise/ policondensação são desaceleradas e parecem não sofrer alterações significativas até o final do tempo investigado.

4.3.2 Monitoramento da hidrólise do GPTMS

A Fig. 75 (a) mostra os espectros obtidos a partir da diluição de 10 $\%_{(vol.)}$ de GPTMS na solução alcoólica, com intervalos entre as análises de 10 minutos, em 4000-550 cm⁻¹. A identificação do tempo de hidrólise (acima do espectro) é referente à coleta da amostra a partir do momento de diluição do silano na solução. São apresentados detalhes das bandas de interesse (com intervalos de 20 minutos) na Fig. 75 (b), (c), (d) e (e) referentes às ligações Si-OH, grupo epóxi, Si-O-Si/ Si-O-C e Si-OH/ epóxi, respectivamente.

Fig. 75- Espectros FTIR do GPTMS na hidrólise em função do tempo (CONTINUAÇÃO)

(a) Espectros nos limites 4000-550 cm⁻¹; barras pretas indicando os comprimentos de onda de 3700, 1270, 1100, 1020 e 920 cm⁻¹. (b) Espectros na região 3800-3640 cm⁻¹; (c) Espectros na região 1320-1220 cm⁻¹; (d) Espectros na região de 1140-990 cm⁻¹; (d) Espectros na região de 940-840 cm⁻¹

Na Tabela 21 e Fig. 76 são mostrados, quantitativamente, a variação da intensidade de transmitância das bandas selecionadas em função do tempo, com intervalos de 10 minutos entre cada análise do GPTMS.

	Transmitância (%)										
Tempo (min)	Tempo (min) 3700 cm ⁻¹ Si-OH		1270 cm ⁻¹ Epóxi		110 Si-	1100 cm ⁻¹ Si-O-Si		1020 cm ⁻¹ Si-O-Si/Si-O-C		920 cm ⁻¹ Si-OH/epóxi	
	(%)	Rtva ^a	(%)	Rtva ^a	(%)	Rtva ^a	(%)	Rtva ^a	(%)	Rtva ^a	
0	99,10	1,000	88,03	1,000	83,95	1,000	55,10	1,000	74,06	1,000	
10	99,00	0,999	88,05	1,000	83,90	0,994	55,50	1,007	73,80	0,996	
20	98,94	0,998	88,06	1,000	82,76	0,985	51,90	0,941	73,60	0,993	
30	98,50	0,993	88,10	1,000	82,50	0,982	51,85	0,941	72,00	0,972	
40	98,21	0,991	88,15	1,001	82,10	0,978	51,80	0,940	71,40	0,964	
50	98,10	0,989	88,20	1,001	81,15	0,966	51,70	0,938	71,30	0,962	
60	98,04	0,989	88,22	1,002	81,20	0,967	51,59	0,936	71,10	0,960	
70	98,30	0,991	88,30	1,003	80,50	0,958	51,80	0,940	71,50	0,965	
80	98,50	0,993	88,36	1,003	80,29	0,956	52,02	0,944	72,20	0,974	
90	98,45	0,993	88,39	1,004	80,50	0,958	54,00	0,980	72,50	0,978	
100	98,40	0,992	88,40	1,004	80,60	0,960	55,24	1,002	72,90	0,984	
110	98,35	0,992	88,45	1,004	80,50	0,958	55,50	1,007	72,90	0,984	
120	98,34	0,992	88,50	1,005	80,65	0,960	56,10	1,018	72,80	0,983	

Tabela 21 - Transmitância das bandas características da hidrólise do GPTMS

^a Valor de transmitância relativa em relação ao valor de transmitância inicial.

Fig. 76 - Bandas características da hidrólise/condensação do GPTMS em função do tempo

No GPTMS, a cinética de reação é diferente da apresentada pelo TEOS pois há três grupos alcóxi hidrolisáveis ao invés de quatro, esperando-se uma hidrólise mais rápida (ARKLES et al., 1992). O tempo em que o GPTMS apresentou maior intensidade na banda referente aos grupos silanóis na solução foi semelhante ao TEOS, em torno dos 60 minutos, diferindo apenas no período em que a reação de hidrólise é intensificada.

Para a análise da hidrólise do GPTMS relacionou-se a banda em 3700 cm⁻¹ com a banda 900 cm⁻¹, ambas referente ao silanol. Em paralelo, essa mesma banda dos 900 cm⁻¹ pode ser relacionada com a banda na região dos 1270 cm⁻¹, referente ao grupo epóxi.

Verificou-se que as bandas nas regiões de 3700 cm⁻¹ e 900 cm⁻¹ apresentaram comportamento semelhante no período analisado. Houve uma diminuição progressiva da transmitância no intervalo de tempo de 20 aos 40 minutos até o seu menor valor em 60 minutos, identificando-se a maior velocidade de hidrólise no período em torno dos 30 minutos. Já, a partir dos 60 minutos houve um aumento progressivo no valor da transmitância em ambas as regiões do espectro, devido à condensação dos silanóis e formação de siloxano (Si-O-Si), caracterizando que o período em que há maior quantidade de Si-OH é em torno dos 50 a 60 minutos.

Em relação ao anel de epóxi, na região dos 1270 cm⁻¹, verificou-se que houve um aumento progressivo da sua transmitância em todo o período analisado, podendo caracterizar a ionização do composto para a formação de grupos C-O-H, como sugerido na Eq. (26). Isso indica que é possível que o anel de epóxi apresente instabilidades no processo de hidrólise do silano, podendo ser hidrolisado em soluções ácidas e passar a apresentar capacidade de reação com a superfície de substratos e ou íons da solução (ALOTHMAN; APBLETT, 2009; CHRUŚCIEL; LEŚNIAK, 2014; INNOCENZI et al., 2011). Isso abre possiblidade também para a policondensação com as moléculas vizinhas hidrolisadas pela extremidade orgânica da molécula.

Deste modo, pode-se afirmar que a variação da banda na região dos 900 cm⁻¹ é referente a formação de grupos Si-OH, já que no mesmo período a região dos 1270 cm⁻¹ indica a diminuição dos grupos epóxi.

A formação de siloxanos (Si-O-Si) foi monitorada pelas bandas em 1100 cm⁻¹ e 1020 cm⁻¹. Na banda dos 1100 cm⁻¹ verificou-se que houve uma redução progressiva da transmitância, podendo ser atribuído à condensação dos silanóis gerados no processo de hidrólise dos grupos alcóxi do GPTMS. Para essa região do espectro, quanto maior é o tempo de reação, menor é a sua transmitância, até os 80 minutos.

A partir dos 70 minutos, verificou-se a redução na intensidade da formação de siloxanos e uma possível estabilização da reação, resultado da menor disponibilidade de silanóis ao longo do tempo, resultado da própria condensação. Em paralelo, a banda na região dos 1020 cm⁻¹, atribuída às ligações Si-O-Si e Si-O-C sobrepostas, apresenta um aumento brusco na sua transmitância logo após a sua diluição (até 10 minutos), podendo ser atribuída à hidrólise dos grupos alcóxi. Logo após isso, houve redução brusca da sua transmitância até o os 60 minutos, atribuída à condensação dos silanóis e formação de siloxano. Em contrapartida, a partir dos 60 minutos, houve um aumento expressivo na sua transmitância. Isto pode justificado pela hidrólise dos grupos alcóxi do silano, esse fenômeno resulta que a ligação Si-O-C, que possui alto impacto no espectro, seja cada vez menos perceptível na sua região de detecção. Assim, nessa região do espectro, apesar da diminuição da sua transmitância pela formação de siloxanos, a ausência de grupos alcóxi apresenta um impacto muito superior ao siloxanos, resultando no aumento da transmitância na região analisada, justificando assim o aumento da sua transmitância em paralelo com a redução da taxa de hidrólise do silano, em torno dos 80 minutos.

Com base nas análises de hidrólise/ condensação do GPTMS foi possível traçar o "perfil" da hidrólise/ condensação nas condições estudadas.

Semelhante ao caso estudado com o silano TEOS, a hidrólise do GPTMS pôde ser dividida em três etapas principais. A primeira: a partir da diluição do

silano até os 20 minutos, onde a hidrólise/ condensação já pode ser detectada, porém em baixa intensidade; a segunda: a partir dos 20 minutos, onde verificouse um aumento expressivo nas reações de hidrólise/ condensação, atingindo o ponto com maior índice de silanóis em 60 minutos e; a terceira: partir dos 60 minutos houve a redução da cinética de hidrólise/ condensação do silano.

4.4 CONCLUSÃO DO CAPÍTULO

Com o processo de monitoramento da hidrólise dos silanos a partir da metodologia proposta para este trabalho, pode-se concluir que:

Para o monitoramento da hidrólise por infravermelho dos silanos estudados, para ambos os silanos, concentrações de 1 % em volume não são recomendáveis. Isto é, não foi possível identificar as bandas características da hidrólise/ condensação nas soluções quando utilizadas com 1 %_(vol.) de silano, somente com 10 %_(vol.).

Tanto no caso do TEOS como com o GPTMS, a hidrólise dos silanos pode ser realizada em soluções alcoólicas com baixo teor de solventes orgânicos (em torno de 50 %). No processo de hidrólise, o tempo que corresponde ao maior índice de grupos silanóis, detectado por análise de infravermelho, para ambos os silanos é em torno dos 60 minutos a partir da dissolução do silano. Trabalhos anteriores, de van Ooij *et al.* (2005) e Pantoja *et al.* (PANTOJA et al., 2009), reportaram comportamento semelhante a esse na hidrólise com TEOS e trialco-xissilanos em catálise ácida, corroborando com os resultados encontrados. Além disso, esses estudos sugerem que para silanos à base de água em solução ácida, tempos de hidrólise superiores a 60 minutos não são recomendáveis, pois pode haver a precipitação de moléculas.

Com isso, para as etapas futuras dessa investigação, deve realizar a funcionalização das fibras metálicas nas soluções de silano com tempo de hidrólise de 60 minutos, para ambos os silanos.

5 FUNCIONALIZAÇÃO DAS FIBRAS DE AÇO

5.1 INTRODUÇÃO

Neste capítulo será abordado o processo de funcionalização das fibras de aço com os silanos TEOS e GPTMS. A partir das conclusões obtidas no estudo da hidrólise dos silanos, foi determinada o tempo de hidrólise e com base na metodologia utilizada em trabalhos anteriores, foi definida uma metodologia para a funcionalização das fibras.

Para a caracterização da funcionalização das fibras foram realizadas análises de variação de massa, análises de microscopia ótica, microscopia eletrônica de varredura e análise química (MEV/EDS).

5.2 PROCEDIMENTO PARA FUNCIONALIZAÇÃO DAS FIBRAS

Com base na etapa anterior de análise do tempo de hidrólise dos silanos e pelo fato de apresentarem maior índice de Si-OH em torno dos 60 minutos, além de apresentarem cinética de hidrólise/ condensação semelhantes, decidiuse como "tempo ótimo" para a imersão (funcionalização) das fibras o período de 60 minutos de hidrólise para os dois silanos estudados (TEOS e GPTMS), conforme ilustrado na Fig. 77.

Fig. 77 - Método para hidrólise do silano em soluções alcoólicas

*Quando a hidrólise foi com o TEOS, utilizou-se etanol. Para o GPTMS, utilizou-se metanol; ** TEOS ou GPTMS.

Nesse processo de funcionalização, semelhante à metodologia utilizada por Capiotto (2006) e Oliveira (2006), as fibras foram submetidas a três banhos químicos para o tratamento superficial, e ao final a um tratamento térmico para a cura do silano (Fig. 78), que serão descritos a seguir.

*em detalhes na Fig. 77.

O primeiro banho é em acetona, que tem por objetivo a remoção de resíduos da superfície da fibra. Uma solução com concentração de 25 $\%_{(vol.)}$ de acetona é preparada e adicionado 300 gramas de fibras para cada litro de solução (correspondente a 3,77 $\%_{(vol.)}$). Após a imersão das fibras na solução, o recipiente era agitado constantemente durante 2 minutos em um agitador mecânico rotativo *Heidolph (Hei-MIX Reax series)* (Fig. 79) configurado para 10 rotações por minuto (rpm). Após o tempo determinado, as fibras eram retiradas do recipiente e secas em estufa ventilada por 12 horas a 100 °C.

O segundo banho é um banho alcalino em NaOH, onde a superfície da fibra é "ativada" pela geração de hidroxilas na superfície metálica para a melhor interação na deposição do silano, por meio da condensação com os silanóis gerados na hidrólise. A solução desse banho é preparada a partir da dissolução de 2,5 %_(massa) (0,625 M) de NaOH em água destilada. Em seguida as fibras (300 g/ L) foram adicionadas na solução, permanecendo submersas e sob agitação constante durante 10 minutos. Depois de finalizado o tempo determinado, as fibras foram removidas do recipiente, lavadas com água destilada e secas em estufa ventilada a 50 °C durante 12 horas.

O terceiro banho é para a funcionalização com silanos, onde foram preparadas as soluções com silanos nas concentrações de 1 e 10 % (Fig. 77) para os dois silanos estudados (Tabela 22). O tempo de hidrólise foi estabelecido em 60 minutos. A partir dos 60 minutos da diluição do silano, 300 g/ L de fibras foram adicionados aos recipientes e agitados durante 10 minutos. Finalizado o tempo determinado, as fibras foram removidas e lavadas com água destilada, então curadas em estufa ventilada por 30 minutos a 150 °C.

Tabela 22 - Composição volumétrica dos banhos de funcionalização das fibras

Sárias			Volume (%)
Series	TEOS	GPTMS	Solução alcoólica (1:1) pH 5 ±0,2*
REF ^a	-	-	-
T_1%	1	-	99
T_10%	10	-	90
G_1%	-	1	99
G_10%	-	10	90

^a série REF não passou pelo processo de funcionalização; * Solução água: álcool (etanol ou metanol) acidificada com ácido acético.

Para verificar a deposição do filme de silano na superfície das fibras, realizou-se a contagem de fibras por grama de cada série funcionalizada. Para a contagem, pesou-se cerca de 0,5 g de fibras em uma balança analítica de precisão de 0,0001 g e assim determinou-se o número de fibras/ grama e, consequentemente, obteve-se a massa de fibra/ grama de cada série. Além disso, análises de MEV/EDS foram realizadas nas fibras.

5.3 RESULTADOS E DISCUSSÕES

Na Tabela 23 e Fig. 80 são apresentados os valores da análise da funcionalização das fibras por meio da pesagem das mesmas. A amostra referência apresentou 2,069 mg/ fibra e depois de passar pelo processo de funcionalização, no caso do TEOS resultou em 2,151 e 2,197 mg/ fibra para 1 % e 10 %, respectivamente. No caso do GPTMS a funcionalização resultou em 2,105 e 2,188 mg/ fibra para 1% e 10%, respectivamente. Isto significa que nos processos de funcionalização aplicados, quanto maior a concentração de silano, maior foi a massa de silano aderida à superfície da fibra, esse fenômeno também foi observado por Yuan & van Ooij (1997).

Tabela 23 – Massa das fibras que passaram pelo processo de funcionalizaçãoSériesmg/ fibraDesvio PadrãoREF2,0690,052

Derreb	1115/ 110/1 W	Destionation
REF	2,069	0,052
T_1%_N	2,151	0,071
T_10%_N	2,197	0,049
G_1%_N	2,105	0,085
G_10%_N	2,188	0,079

Fig. 80 - Variação da massa das fibras com a funcionalização

Nota: as barras de erro correspondem a um desvio padrão para cima e um para baixo.

Isso pode ser justificado pela maior concentração de grupos silanóis presentes nas soluções no momento da imersão das fibras. Isto é, além da maior probabilidade de interação das moléculas de silano com a superfície das fibras, há também maior possibilidade de condensação das moléculas de silano entre si, formando grandes moléculas de siloxano (ZHU; VAN OOIJ, 2004). Essas grandes moléculas, por sua vez, condensam com as hidroxilas da superfície da fibra, podendo formar uma camada mais espessa do filme híbrido (portanto, mais pesada), resultado assim na menor quantidade de fibras/ grama.

Para auxiliar na verificação da funcionalização da superfície das fibras, da Fig. 81 a Fig. 86 são mostradas as análises por MO e MEV/EDS das amostras estudadas.

Na fibra referência foi verificado que a superfície da fibra contém riscos longitudinais ao comprimento da fibra, atribuído ao processo de fabricação. Foi verificado que a superfície é lisa e sem irregularidades, em termos de morfologia. Com exceção da fibra referência, as superfícies de todas as fibras estão recobertas com o filme de silano. Além disso, quanto maior a concentração do silano nos banhos de funcionalização há maior deposição do filme de silano nas fibras, como sugerido pela diferença verificada na massa das fibras.

Nas amostras tratadas com TEOS com 1 % e 10 % (Fig. 83 e Fig. 84, respectivamente), pode-se verificar que houve a alteração das suas superfícies pela deposição do filme de silano, de maneira irregular e não contínua, apresentando diferentes aspectos em distintas áreas das fibras. As análises por MEV evidenciam essa irregularidade na deposição do filme de TEOS na superfície das fibras, onde é possível verificar aglomerados em diferentes pontos da fibra, além de um aspecto "quebradiço", atribuído à retração do filme de silano pela sua condensação e evaporação de água no processo de cura térmica do silano. Outro aspecto morfológico que pode ser analisado, são os riscos provenientes da fabricação das fibras, que se apresentam menos evidentes nas amostras funcionalizadas com TEOS que na amostra referência.

Na amostra funcionalizada com 10 % de TEOS, a cobertura do filme de silano aparentou ser mais espessa e contínua que na amostra com 1 %. Por outro lado, nas imagens de MEV não se verificou regularidade e continuidade em termos de morfologia do filme formado na superfície da fibra. Essa análise mostrou que houve uma deposição extremamente irregular e sugere que há regiões da fibra de maior afinidade para a deposição do filme de silano. Além disso, os riscos, do processo de fabricação, são mais evidentes que na fibra tratada com 1 % de TEOS, corroborando com a ideia de que em certas regiões da superfície da fibra, a interação do silano é menos eficaz, o que resulta na delaminação do filme da superfície, também verificado por Abel *et al.* (2006).

Semelhantemente ao que ocorreu nas amostras de TEOS, as fibras tratadas com GPTMS apresentam uma superfície irregular em termos de morfologia do filme. Verificou-se nas amostras com 1 % e 10 % de GPTMS que a suas superfícies foram funcionalizadas pelo tratamento com silano (Fig. 85 e Fig. 86). É verificado uma camada "quebradiça" e descontínua no caso de 1 % de concentração. No tratamento com GPTMS 10 %, verificou-se uma camada espessa e contínua depositada na superfície da fibra, também com fissuras atribuídas à retração do silano pelo processo de cura térmica.

A partir da análise química por EDS, na amostra de referência (Fig. 81 (c), (d) e (e)), foi verificado que nas regiões analisadas houve uma diferença na composição química ao longo da superfície das fibras. As fibras de aço apresentam um cobrimento de latão (liga composta de Cu e Zn), porém a concentração dos átomos dessa da liga e dos átomos da fibra apresentam uma pequena variação dos elementos químicos Ferro e Zinco, na ordem de 5 %. Essa diferença pode significar consequências no momento da imersão da fibra na solução hidrolisada para a deposição do filme de silano. A diferença do Fe e Zn na superfície da fibra pode induzir a condensação do silano de maneira heterogênea, como observado. Isto é, áreas da fibra com diferentes cinéticas de reação com o silano hidrolisado.

Fig. 81 – Micrografias da amostra de fibra referência

Flomonto	Quantidade (%)				
Elemento	(d)	(e)			
Fe	26,99	33,99			
Cu	48,80	48,27			
Zn	24,21	17,73			
(b)					

Fig. 81 – Micrografias da amostra de fibra referência (CONTINUAÇÃO)

(a) Imagem de microscopia ótica; (b) Micrografia eletrônica em 800x de magnificação; (c) MEV em 1500x da área destacada em (b); (d) e (e) Análise de EDS da área destacada em (c).

Van Ooij *et al.* (2005) reportam que o tratamento de superfícies metálicas com elementos químicos trivalentes, como o ferro e o alumínio (Fe³⁺ e Al³⁺, respectivamente), tem maior possibilidade de condensar com o silano hidrolisado formando moléculas tridimensionais ("*cross-link*"), em relação ao elementos bivalentes, como o zinco (Zn²⁺). Isso sugere que há áreas na superfície das fibras que possuem mais grupos hidroxilas (Me-OH) que outras. Portanto, há regiões da superfície das fibras que apresentam maior capacidade de condensação com os grupos silanóis, o que poderia justificar a irregularidade do filme depositado na superfície das fibras. Sobretudo, o método utilizado para a funcionalização (agitação mecânica) leva às fibras à um estado de aglomeração, semelhante a um "ouriço" (Fig. 82). Essa aglomeração pode induzir a formação de meniscos da solução entre as fibras, resultando em excesso da deposição do filme de silano, em certas regiões, depois da cura.

Pela análise por EDS na amostra de funcionalizada com 1 % de TEOS, foi verificado que a composição química da superfície da fibra é diferente em distintas áreas. Isto é, como o filme de silano cobre a fibra de maneira heterogênea, por consequência, a concentração de silício proveniente da funcionalização,

também é heterogênea. Verifica-se que, de modo geral, a fibra apresenta 0,5 % de silício na sua superfície (Fig. 83 (d)), na área analisada com menor cobrimento do filme, foi detectado 0,57 % de silício na superfície (Fig. 83 (e)) e na área Fig. 83 (f) é detectado uma concentração de silício chegando aos 1,29 %, atribuído à grande quantidade de silano depositado nessa região.

	wit-	
· · · · · · · · · · · · · · · · · · ·		Je.
()		
and and	- AL	2
	in	1
ALS ALS	ALL ALL	
いたが	T	
N	x500	200 µm

	Quantidade (%)					
Elemento	(c)	(e)	(f)			
Si	0,507	0,573	1,296			
Fe	55,267	58,080	73,697			
Cu	16,913	14,844	0,369			
Zn	5,338	4,684	1,572			
0	21,975	21,818	23,066			
(d)						

(a) Fibra funcionalizada (b) MEV com 500x de magnificação; (c) MEV com 1200x de magnificação destacada em (b); (d) Resultados da análise de EDS; (e) e (f) Áreas destacadas em (c) para análise de EDS.

Pela análise de EDS na amostra tratada com 10 % de TEOS (Fig. 84 (d), (e) e (f)) foi verificado que a composição química da superfície da fibra funcionalizada apresentou uma menor heterogeneidade em relação à fibra tratada com 1 %. Além disso, a teoria dos ouriços formados após a funcionalização é reforçada na imagem Fig. 84 (c), verificando-se uma região em que o filme depositado apresenta um ápice no relevo do filme, indicando que nessa área formou-se um menisco da solução de funcionalização e que, com a cura térmica, resultou em um aglomerado de partículas. Apesar do aspecto morfológico apresentar uma precária continuidade do filme depositado, o EDS realizado sugere o contrário, mostrando que a concentração de silício detectada é semelhante em diferentes áreas analisadas, conforme Fig. 84 (d), (e) e (f), possuindo 1,047 %, 1,328 % e 1,196 %, respectivamente.

ECAP2P0021 (b)

(c)

Flomonto	Quantidade (%)					
Elemento	(c) (e)		(f)			
Si	1,047	1,328	1,196			
Fe	57,872	74,599	52,092			
Cu	14,997	0,844	17,679			
Zn	3,644	0,107	6,664			
0	22,440	23,122	22,368			
(d)						

(a) Amostra funcionalizada (b) MEV com 500x de magnificação; (c) MEV/EDS com 1800x de magnificação destacada em (b); (d) Resultados das análises de EDS; (e) e (f) Áreas onde realizou-se EDS.

Pela análise por EDS na amostra tratada com 1 % de GPTMS (Fig. 85 (eg)) foi verificado que a composição química da superfície da fibra funcionalizada, assim como a sua morfologia, é amplamente heterogênea, bem como observado para as amostras de TEOS.

Na análise realizada na região da Fig. 85 (c) a concentração de silício detectada na superfície da fibra é em torno de 0,6%. Mas, quando a análise é realizada em pequenas áreas independentes, foi verificada uma grande variação da concentração de silício. Na região destacada pela Fig. 85 (e) verificou-se 0,234 % de silício, já na região destacada pela Fig. 85 (f) a concentração é de 6,952 % e na região Fig. 85 (g) é detectado 1,035 % de silício na superfície da amostra. Isto significa que na concentração de 1 % de GPTMS a deposição de

silano também está susceptível à formação de aglomerados na superfície da fibra. Uma hipótese levantada para justificar esse fenômeno é de que, apesar de possuir três possíveis ligações de silanol, o anel epóxi também pode apresentar reatividade na solução de hidrólise e atuar como reagente na formação do filme de silano (CHRUŚCIEL; LEŚNIAK, 2014). Esse fenômeno pode levar a uma maior condensação do filme de silano e consequentemente a uma concentração de silício nessas regiões da superfície da fibra.

Fig. 85 - Micrografias da amostra de fibra tratada com 1% de GPTMS

(b)

ECAP2P0026

(c) (a) Amostra funcionalizada (b) MEV com 500x de magnificação; (c) MEV/EDS com 1800x de magnificação destacada em (b); (d) Resultados das análises de EDS; (e), (f) e (g) Áreas onde realizou-se as análises de EDS.

As Fig. 86 (d), (e), (f) e (g) apresentam as análises de EDS da série tratada com 10 % de GPTMS. Apesar de mais homogênea, em comparação a morfologia do filme formado na superfície da amostra, em relação às séries anteriores, a composição química da superfície da fibra funcionalizada desta série apresentou grande heterogeneidade. De maneira geral, a superfície da fibra apresenta concentração de 10,9 % de silício, índice muito superior que às demais amostras estudadas. Quando analisado em áreas independentes é verificado que a heterogeneidade química se repete. Foi detectado cerca de 2,1 % se silício na área

x1.8

identificada na Fig. 86 (e), caracterizado pela área com menor cobertura do filme de silano. Na região da Fig. 86 (f), o filme possui concentração de 17,82 % de silício e na região Fig. 86 (g), apresenta 13,81 % de silício.

ECAP2P0028

Flomento	Quantidade (%)				
Liemento	(c)	(e)	(f)	(g)	
Si	10,923	2,179	17,828	13,816	
Fe	36,454	21,629	46,092	50,692	
Cu	16,684	37,314	1,462	1,872	
Zn	7,109	16,713	0,590	2,319	
0	28,829	22,165	34,028	31,301	
		(d)			

(a) Amostra funcionalizada (b) MEV com 500x de magnificação; (c) MEV/EDS com 1800x de magnificação destacada em (b); (d) Resultados das análises de EDS; (e), (f) e (g) Áreas onde realizou-se as análises de EDS.

Na bibliografia, as pesquisas que funcionalizam superfícies metálicas com silanos costumam relacionar a espessura do filme com a concentração do silano na solução de hidrólise (FRANQUET et al., 2001; OOIJ et al., 2005). Nesse estudo, esse fenômeno não aconteceu com o TEOS e essa relação foi parcialmente respeitada para o GPTMS, pois a amostra com 10 % de silano apresentou uma superfície mais homogênea e visualmente mais espessa em relação à amostra de 1 %. Por outro lado, apresentou grande heterogeneidade química nas regiões analisadas. Essa heterogeneidade física e química do filme depositado em superfícies metálicas também foi observada por Ramos (2009), onde amostras tratadas com silano TEOS e GPTMS, apresentaram regiões com concentração variando de 0,98 % a 5 % de silício, isso atribuído à condensação nas regiões preferenciais da superfície metálica. Zhu & van Ooij (2004), em amostras metálicas funcionalizadas com amino e sulfo silanos, verificaram diferentes regiões com concentração de silício variando de 0,7 % à 8 %, corroborando com os resultados encontrado nessa pesquisa.

Pelos resultados expostos, nos dois silanos estudados houve um excesso na quantidade do filme de silano na superfície das fibras. Isto é, $1 %_{(vol.)}$ de silano na solução de funcionalização favorece a policondensação dos grupos silanóis para a formação de um filme espesso e irregular. Essa teoria se confirma com o tratamento das amostras com 10 % de silano, ou seja, apesar de apresentar certa homogeneidade (para o GPTMS), verificou-se um excesso na deposição do filme sobre a superfície da fibra.

De maneira geral, quando as fibras foram tratadas com os silanos, a superfície se apresentou irregular, em termos químicos e físicos. Foi verificado que quando se utilizou 1 $\%_{(vol.)}$ de TEOS, obteve-se 0,5 % de silício na superfície da fibra e quando se utilizou-se 10 $\%_{(vol.)}$, obteve-se em torno de 1 % de silício no filme depositado na superfície das fibras. Para o tratamento com 1 $\%_{(vol.)}$ de GPTMS, em geral, houve 0,6 % de silício na superfície da fibra, quando utilizado 10 $\%_{(vol.)}$, detectou-se em torno de 10 % de silício.

5.3.1 Delaminação do silano das fibras

Uma característica presente em todas as amostras de fibras funcionalizada era o aspecto frágil e a aparente delaminação do filme de silano. Na Fig. 87 (ad) são apresentadas as imagens de uma porção de fibras de cada série funcionalizada, que foram atritadas manualmente e apresentaram delaminação do filme de silano.

Fig. 87 – Delaminação das fibras funcionalizadas após serem atritadas

(a) Série T_1%_N

(c) Série G_1%_N

(b) Série T_10%_N

(d) Série G_10%_N

Uma das hipóteses levantadas sobre a delaminação do silano da superfície da fibra, também indicado pelas análises de MEV, é que o filme de silano é frágil e pouco resistente à abrasão. Isto quer dizer que quando sujeito a esforços mecânicos, a ligação de siloxano (Me-O-Si) na interface fibra-filme é rompida, ocasionando a sua delaminação. A outra hipótese é que a funcionalização irregular do filme de silano resulta em áreas de elevada espessura do filme. Esse filme, por sua vez, quando atritado rompe nas regiões de maior espessura, resultando nesse "esfarelamento".

Essas duas hipóteses ganham força quando analisado o próprio produto da hidrólise dos silanos, que tende a ser uma película de um material vítreo, basicamente formada por sílica amorfa (BRINKER, 1988). Na Fig. 88 isso pode ser confirmado pela comparação entre os difratogramas do produto da hidrólise do TEOS com 10% (vol.) e o da nanossílica utilizada no trabalho.

A sílica amorfa apresenta uma região característica, identificado como "halo amorfo" na região de \cong 22,5 graus de 2 *theta* (HOU et al., 2015; LI, 2004; OERTEL et al., 2014a). Além disso, no estudo de Perez *et al.* (2015), partículas de nanossílica foram sintetizadas a partir do processo sol-gel com TEOS e caracterizadas por DRX, apresentando esse mesmo halo amorfo. Assim sendo, é possível verificar que o difratograma do material obtido a partir da hidrólise do TEOS é semelhante ao da nanossílica, ou seja, pode-se afirmar que o material obtido pela hidrólise do silano é composto de sílica amorfa.

Produto da hidrólise do TEOS com 10% (vol.) obtido a partir da solução de funcionalização semelhante às utilizadas para tratar as superfícies das fibras de aço. Essa solução de funcionalização curada a 50 °C por 48 horas. O sólido formado foi moído com um macerador em seguida obtido o seu difratograma.

No trabalho de Abel *et al.* (2006) foram testadas amostras de silano GPTMS, para adesão do filme de silano, em superfícies metálicas por meio de ensaios mecânicos que mediram a energia de fratura, em várias concentrações (de 0,1 % a 12 %_(vol.)). Foi verificado que as amostras de 0,5 % e 1 % de silanos apresentaram os melhores resultados. A hipótese levantada é de que altas con-

centrações (superiores à 1 %) formam grandes moléculas de siloxano (condensadas entre si) antes de reagir com a superfície do substrato, resultando em uma interface "fraca". Já quando há adequada condensação do silano com a superfície do substrato, as primeiras camadas condensadas com a superfície são monoméricas, resultando em uma melhor deposição do silano por meio de mais de um silanol por molécula condensada com a superfície do substrato.

Pode-se relacionar esse estudo com os filmes de silano obtidos a partir do processo de funcionalização proposto na tese. Isto é, uma das justificativas desse "esfarelamento" é o entrelaçamento das fibras que conduz a regiões em que as fibras ficam encostadas e nessas áreas não há adequada condensação com os silanóis da solução, já em outras áreas há a formação de acúmulos de silano. Assim, o filme formado nas áreas de acumulação é equivalente a uma concentração de silano superior ao aplicado no banho de funcionalização, prejudicando a qualidade da condensação com a superfície metálica.

Como verificado partir das análises de MEV e reforçado pela delaminação do filme de silano apresentado pelas amostras funcionalizadas, percebe-se que há dois tipos principais de ruptura do filme de silano, na interface superfície metálica-filme de silano e outra pela própria ruptura do filme de silano, como representado na Fig. 89.

Fig. 89 - Esquema representativo dos dois principais tipos de ruptura do cobrimento de si-

Assim sendo, com 1 % de silano no tratamento já se verifica que o filme de silano é frágil e quebradiço, da mesma forma com 10 % (confirmado pelas imagens de MEV). Isso indica que, para a metodologia de funcionalização proposta nesse trabalho, 1 % de silano na solução indicara estar próximo ao limite máximo da possibilidade de produzir um filme de silano de qualidade e que seja contínuo e homogêneo na superfície das fibras.

5.4 CONCLUSÃO DO CAPÍTULO

Com o processo de funcionalização de fibras de aço com silanos realizado a partir da metodologia proposta nesse trabalho, pôde-se concluir que:

De fato, com o método proposto de funcionalização, houve a deposição de filmes de silano na superfície das fibras. Isto é, o processo de funcionalização foi capaz de promover mudanças físicas e químicas nas fibras analisadas.

Diferente da literatura a respeito do tratamento de superfícies metálicas (normalmente "chapas" metálicas), os filmes de silano depositados nas superfícies das fibras tratadas em questão de homogeneidade física e química, apresentam-se irregulares e heterogêneos. O processo de funcionalização aplicado nesse trabalho, apesar de relativamente automatizado (agitador mecânico), apresenta deficiências quanto à distribuição do filme de silano na superfície das fibras.

As concentrações utilizadas para este estudo (1 % e 10 %) se mostraram excessivas em questão da morfologia do cobrimento aplicado. Isto é, pela falta de regularidade no cobrimento da superfície, as fibras acumularam uma película espessa em diversas regiões analisadas. Desta forma, a fim de diminuir essa camada, concentrações de silano inferiores à 1 %_(vol.) também devem ser consideradas para esse método de funcionalização de fibras de aço.

A irregularidade do filme depositado na superfície das fibras resultou em um material frágil e pouco estável quando sujeito a esforços mecânicos de abrasão.

6 ESTUDO PRELIMINAR EM CONCRETO DE ULTRA-ALTO DE-SEMPENHO

6.1 INTRODUÇÃO

A concentração de silano no banho de funcionalização, comumente, é utilizada na ordem de 1 a 10 % (vol.) (OOIJ et al., 2005). Porém, a partir dos resultados obtidos na funcionalização das fibras (Capítulo 5), verificou-se que com a aplicação do método de funcionalização, as fibras apresentaram um acúmulo irregular de silano na superfície. Isso indica que pode haver excesso de silano no tratamento executado. Assim, com o objetivo de investigar se esses teores eram adequados, mais uma concentração de silano foi adicionada à variável "concentração de silano", resultando no estudo das concentrações de 0,1 %, 1,0 % e 10 % (vol.) de silano.

Com objetivo da eliminação do excesso de silano da superfície das fibras, realizou-se uma "lavagem" das fibras após o processo funcionalização através de uma solução de hidróxido de cálcio (Ca(OH)₂), sendo mais um parâmetro de análise.

Logo, para avaliar o efeito do método de funcionalização nas fibras e nas propriedades do CUADR, foram realizados ensaios de caracterização nas fibras, nos concretos no estado fresco e ensaios de resistência no estado endurecido.

6.2 DESCRIÇÃO DO PROGRAMA EXPERIMENTAL

Na Fig. 90 é apresentado o diagrama do procedimento experimental adotado nesta etapa. A funcionalização das fibras de aço foi realizada com dois tipos de silanos (TEOS e GPTMS) nas diferentes concentrações de 0,1, 1 e 10 % (vol.) das soluções de funcionalização. Dentre as séries produzidas, há séries que passaram ou não pelos banhos de NaOH antes da funcionalização e Ca(OH)₂ depois da funcionalização.

Para a caracterização das fibras funcionalizadas, realizou-se a análise da massa das fibras e em alguns casos houve a análise por MEV/EDS. Na matriz de CUADRF, realizou-se ensaios de trabalhabilidade, calorimetria isotérmica de condução, além da avaliação no estado endurecido por meio de ensaios de resistência à compressão e flexo-tração.

A metodologia para a funcionalização das fibras foi realizada conforme apresentado na Fig. 91. Cada etapa do processo de funcionalização é descrita a seguir:

Fig. 91 - Fluxograma da funcionalização das fibras nesta etapa do estudo

*em detalhes na Fig. 77.

O banho em acetona tem por objetivo a remoção de resíduos da superfície da fibra. Em uma solução de 25 $\%_{(vol.)}$ de acetona foram adicionados 300 gramas de fibras para cada litro de solução (g/L). Após a imersão das fibras na solução, o recipiente é agitado por 2 minutos em um agitador (Fig. 79) configurado para 10 rpm. Após isso, as fibras foram retiradas do recipiente e secas em estufa ventilada por 12 horas a 100 °C.

O banho de NaOH tem como objetivo promover "ativar" a superfície metálica por meio da geração de hidroxilas. A solução desse banho é preparada a partir de 2,5 %_(massa) (0,625 M) de NaOH em água destilada. 300 g/ L de fibras eram adicionadas na solução, permanecendo sob agitação durante 10 minutos. Finalizado o tempo determinado, as fibras eram lavadas com água destilada e secas em estufa ventilada a 50 °C durante 12 horas.

Para avaliar se o banho de NaOH influencia no processo de funcionalização e nas propriedades do CUADRF, o tratamento de ativação das fibras foi acrescentado como variável, produzindo-se séries que passaram ou sem pelo banho de ativação.

Para o banho de funcionalização foram utilizadas três concentrações de silano, 0,1 %, 1,0 % e 10 %, para os dois silanos estudados (detalhes da hidrólise do silano na Fig. 77). As composições das soluções de silano são apresentadas na Tabela 24. No estudo da hidrólise/condensação dos silanos (Capítulo 4), o

tempo de hidrólise dos silanos foi estabelecido em 60 minutos. Assim sendo, a partir dos 60 minutos da diluição do silano, 300 g/L de fibras foram adicionados ao recipiente e agitados durante 10 minutos. Finalizado o tempo determinado, as fibras foram removidas e lavadas com água destilada, então curadas em estufa ventilada por 30 minutos a 150 °C.

Tabela 24 - Composição dos banhos de funcionalização no estudo preliminar de CUADRF

Cártas			Volume (%)
Series	TEOS	GPTMS	Solução alcoólica (1:1) pH 5 ±0,2*
T_0,1%	0,1	-	99,9
T_1,0%	1,0	-	99,0
T_10%	10,0	-	90,0
G_0,1%	-	0,1	99,9
G_1,0%	-	1,0	99,0
G_10%	-	10,0	90,0

* Solução de relação água: álcool (etanol ou metanol) acidificada com ácido acético.

O banho de Ca(OH)₂ foi realizado após a cura térmica. A solução possuía concentração de 0,1 M e o procedimento é realizado com 300 g/L de fibras para cada litro de solução, agitando-se as fibras durante 30 minutos no agitador mecânico à 10 rpm. Terminado o tempo predeterminado, as fibras eram removidas do recipiente, lavadas com água destilada e secas em estufa ventilada a 50 °C por 12 horas.

Obteve-se 28 séries para o estudo dos diferentes tratamentos. As nomenclaturas das séries são mostradas na Tabela 25. Quando há a letra "N" na nomenclatura, a série passou pelo banho de NaOH (pré-funcionalização), e quando há a letra "C", a série passou pelo banho de Ca(OH)₂ (pós-funcionalização).

Todas as séries de fibras funcionalizadas foram caracterizadas pela pesagem do número de fibras por grama e algumas séries também foram analisadas por MEV/EDS.

Tipo d	le silano	Sila	ano (%	6)	Ba	nhos	Cártas
TEOS	GPTMS	0,1	1,0	10	NaOH	Ca(OH) ₂	Series
							REF
					х		REF_N
						Х	REF_C
					х	х	REF_N_C
Х		х					T_0,1%
Х		х			х		T_0,1%_N
Х		х				Х	T_0,1%_C
Х		х			х	х	T_0,1%_N_C
Х			х				T_1%
Х			х		х		T_1%_N
Х			Х			х	T_1%_C
Х			Х		х	х	T_1%_N_C
Х				х			T_10%
Х				х	х		T_10%_N
Х				х		х	T_10%_C
Х				х	х	Х	T_10%_N_C
	Х	х					G_0,1%
	Х	х			х		G_0,1%_N
	Х	х				Х	G_0,1%_C
	Х	х			х	Х	G_0,1%_N_C
	Х		Х				G_1%
	Х		х		Х		G_1%_N
	Х		х			Х	G_1%_C
	Х		Х		Х	Х	G_1%_N_C
	Х			х			G_10%
	Х			х	х		G_10%_N
	Х			х		Х	G_10%_C
	Х			х	Х	Х	G_10%_N_C

Tabela 25 - Nomenclatura das séries de concretos da primeira etapa

Para o estudo em concreto, utilizou-se uma composição adaptada a partir do trabalho de Vanderlei (2004), a composição do traço pode ser conferida na Tabela 26.

Para o preparo e mistura dos CUADRF, as pesquisas "convergem" em primeiro homogeneizar os constituintes seco, em seguida adicionar os líquidos e por último adicionar as fibras (SHI et al., 2015). Neste trabalho, utilizou-se uma metodologia semelhante à executada por Wang *et al.* (2012) e Yu *et al.* (2014). Os constituintes secos (cimento e areia) foram colocados no misturador (modelo E93, fabricado pela Matest – Itália), misturados em velocidade baixa para a homogeneização durante 1 minuto, em seguida foi adicionado: a água, o aditivo superplastificante e a suspensão de nanossílica; esse processo dura em torno de 1 minuto. Depois dos líquidos adicionados, misturou-se por mais 4 minutos em velocidade baixa, logo em seguida aumentou-se para a velocidade alta e misturou-se por mais 5 minutos. Em seguida colocou-se o misturador em velocidade baixa e adicionou-se as fibras lentamente e seguiu-se até completar 5

minutos. Por fim, agitou-se a mistura por mais 5 minutos em velocidade alta. Depois de finalizada a mistura de CUADRF, realizou-se o ensaio de trabalhabilidade e as amostras foram moldadas.

Tubbla 20 Con	iposição para o cor	ibiti	
Constituinte	Proporção em massa	Densidade (g/cm ³)	Consumo (kg/m ³)
Cimento tipo I 52,5R	1,000	3,11	943,82
Areia fina	1,213	2,64	1145,25
Água	0,125	1,00	118,37
Superplastificante	0,070	1,05	66,45
Nanossílica	0,072	1,13	67,49
Fibras (2%vf)	0,182	7,95	171,32
Relação a/c	0,125		
a/c real ^a	0,234		
% de superplastificante total	7,041		
Superplastificante (apenas sólidos) ^b	0,0176		
% de nanossílica em massa	1,573		

Tabela 26 - Composição para o CUADRF

^a considerando os líquidos do aditivo superplastificante (75 %) e da nanossílica (78 %) como água de amassamento.

^b quantidade de aditivo compatível para a utilizada em CUADRF, como em (KANG; KIM, 2012; RUSSEL, G; GRAYBEAL, 2013; WILLE; EL-TAWIL; NAAMAN, 2014; WILLE; TUE; PARRA-MONTESINOS, 2013).

Foram moldados cinco corpos de prova prismáticos de $40 \times 40 \times 160$ mm, de acordo com a UNE EN 196-1 (2005). As amostras foram envelopadas com plástico para não perder umidade e após 24 horas foram desmoldados e guardadas em câmara úmida com umidade relativa superior a 99 % e 23 °C até o 28° dia de hidratação.

Para a caracterização no estado fresco foi realizado ensaio de trabalhabilidade de acordo com a ASTM C1437 (2013) e ensaio de calorimetria isotérmica de condução. Para a caracterização mecânica, realizou-se os ensaio de flexotração e compressão de acordo com a UNE EN 196-1 (2005).

6.3 RESULTADOS E DISCUSSÕES

6.3.1 Variação da massa das fibras depois de funcionalizadas

Uma das maneiras de caracterizar a funcionalização das fibras foi a pesagem para a avaliar se o processo aplicado acarretaria em mudanças suas massas. Na Fig. 92 é apresentado o resultado da pesagem das fibras após os tratamentos químicos e processos de funcionalização². Nessa caracterização, quanto maior a massa das fibras, maior é quantidade de silano depositado na superfície das fibras.

² Os dados brutos são apresentados no Apêndice 1.

Nas séries "REFs" não houve mudança significativa nos resultados médios das massas das fibras com os diferentes tratamentos alcalinos aplicados, isso era esperado, pois não havia deposição de silano na superfície das fibras.

Para o TEOS (Fig. 92 (a)), nas séries tratadas com 0,1 % de silano na funcionalização, também não houve variação dos valores das massas das fibras. Isso pode ser justificado pela pequena quantidade de silano na solução de funcionalização que, nesse tipo de caracterização, não apresentou diferença entre os tratamentos aplicados. Nas amostras com 1,0 % de silano na funcionalização, houve grande variabilidade nos resultados para os diferentes tipos de tratamento aplicados. A série que apresentou a menor quantidade de silano foi a que passou apenas pelo banho alcalino de Ca(OH)₂ (T 1.0% C) e a série com maior quantidade de silano foi a que não passou pelos banhos alcalinos (T_1,0%). As séries que passaram por um ou outro banho também apresentaram variação na massa das fibras, porém em menor intensidade. Esse resultado demonstra que foi possível realizar a deposição do filme de silano mesmo sem o tratamento alcalino de NaOH, entretanto essa configuração demonstrou proporcionar pouca adesão do silano com a superfície das fibras. Pois, quando a série passa pelo banho de Ca(OH)₂, como é o caso da série T 1,0% C, perde-se grande parte do silano voltando aos valores de massa similares às séries referências.

Quando verificado as séries que passaram pelos banhos de NaOH, percebe-se que houve um pequeno aumento na massa das fibras, em relação ao valor de referência, indicando a deposição de silano. Já, quando realizada a lavagem com Ca(OH)₂ uma maior quantidade de silano é detectada. Isso corrobora com a hipótese de que não realizar o tratamento com NaOH gera uma interação precária do silano com a superfície da fibra. A maior quantidade de silano na superfície da fibra pós-tratamento com Ca(OH)₂ pode ser explicado pela reação dos íons Ca^{2+} e OH⁻ com o silano da superfície da fibra, formando ligações (C-S-H), como sugere Minet *et al.* (2004, 2006).

Com o aumento da concentração de silano de 0,1 para 10 %, apenas nas séries que não passaram pelo banho de NaOH e passaram pelo banho de $Ca(OH)_2$ (-N +C) não houve aumento na deposição de silano na superfície das fibras. Houve, inclusive, uma pequena perda de massa a partir de 0,1 % de TEOS na solução de funcionalização. Isso sugere que pode haver uma saturação na deposição do silano em torno de 1 % de concentração, que também pôde-se verificar nas imagens de MEV da Seção 5.3.

Para a funcionalização com GPTMS (Fig. 92 (b), 0,1 % de silano na solução não apresentou diferença na massa das fibras, indicando uma pequena deposição de silano. Isto é, semelhantemente ao TEOS, pela pequena quantidade de silano na solução, pouca diferença pôde ser verificada com essa caracterização.

Nas amostras funcionalizadas com 1,0 % de silano já se percebe uma tendência de aumentar a massa das fibras, indicando a deposição do GPTMS na superfície das fibras. Dentre as configurações de funcionalização realizadas, a série que não passou pelos banhos alcalinos (G_1%) apresentou maior quantidade de silano. Isso demonstra que, semelhante ao tratamento com o TEOS, há possibilidade da deposição de silano na superfície das fibras mesmo sem passar pelo tratamento para ativação da superfície das fibras com NaOH. Porém, quando a série não passa pelo tratamento de NaOH e passa pelo banho de $Ca(OH)_2$ (G_1%_C), grande parte do silano que foi depositado na superfície das fibras é perdido e o valor da massa das fibras diminui. Isso atribuído à precária adesão do silano à superfície das fibras, que pelo fato das suas superfícies não terem sido "ativadas" no banho de NaOH, quando sujeitos a ataques químicos e mecânicos, tende a delaminar com facilidade.

Comparando-se as séries funcionalizadas com 1 e 10 % de silano, percebe-se uma tendência de aumento de silano na superfície das fibras quanto maior a concentração da solução. Isso sugere que para o tratamento com GPTMS, o ponto de saturação da solução (para a deposição de silano) parece ser superior a 10 %. Por outro lado, na análise de MEV discutidas Seção 5.3 mostrou que o processo de funcionalização com 1 % de GPTMS já está perto do limite máximo para a promoção de um filme de silano homogêneo, colocando um contraponto no resultado obtido pela caracterização da massa das fibras.

A partir de 1 %, apenas a série que passou pelos dois tratamentos alcalinos (G_10%_N_C) apresentou diminuição do valor de massa das fibras com o aumento da concentração do banho. Esse comportamento também foi obtido nas amostras tratadas com TEOS e pode ser uma indicação da saturação da solução em relação à obtenção de um filme homogêneo e resistente a ataques (químicos e mecânicos). Nessa configuração de funcionalização, com 1 % há a promoção

de um filme de silano de qualidade, já quando utilizado 10 % a qualidade a deposição é inferior em relação à com 1 %, resultando em delaminação e consequente perda de parte da quantidade de silano na superfície da fibra.

De maneira geral, quanto maior a quantidade de silano no banho de funcionalização, maior é a quantidade de silano depositada na superfície das fibras. Quando o tratamento é realizado com 0,1 % de silano pouco silano é aderido à superfície da fibra. Já, quando a concentração aumenta para 1 % há uma grande deposição de silano na fibra. Por outro lado, quando utilizado 10 %, a tendência de aumento não é verifica. Em alguns tipos de funcionalização realizados, as séries com 10 % de concentração apresentaram menos silanos que as amostras de 1 %, corroborando com as discussões anteriores sobre a delaminação e excesso de silano na solução de funcionalização.

6.3.2 Trabalhabilidade

Um dos pontos cruciais no CUADRF é a sua trabalhabilidade, uma vez que utiliza grandes porções de aglomerantes e pequenas quantidade de água (relação a/ag em torno de 0,2). Apesar de não apresentar normativa específica para essa propriedade, a recomendação de trabalhabilidade para esse tipo de material é de valores superiores a 200 mm no ensaio de *flow table* (NPCA, 2013).

A influência do tratamento de funcionalização com silanos na trabalhabilidade dos CUADRF foi avaliada e os resultados são apresentados na Fig. 93. Verifica-se que, de maneira geral para os dois silanos estudados, com o aumento da quantidade de silano no tratamento de funcionalização das fibras, maior é o efeito plastificante e maior é a trabalhabilidade da amostra, fenômeno também verificado por Kong *et al.* (2015) e Švegl *et al.* (2008).

Nas séries referências, houve grande diferença nos resultados com os diferentes tratamentos alcalinos aplicados. A série REF apresentou 222,5 mm de abertura, enquanto que as amostras REF_N, REF_C e REF_N_C apresentaram 229,5, 210,0 e 240 mm, respectivamente. No caso da funcionalização com TEOS (Fig. 93 (a)), quando tratadas com 0,1 % de silano, houve um aumento da trabalhabilidade para as quatro funcionalizações em relação às suas referências. Quando 1,0 % de silano é aplicado na funcionalização, apenas a série T_1,0%_N_C tem menor índice em relação à sua série com 0,1 % de silano. Quando 10 % são aplicados na funcionalização, os resultados sugerem que há uma divergência na tendência dos resultados. As séries T_10% e T_10%_C obtiveram menor trabalhabilidade em relação à sua série com 1,0 % de silano, já as séries T_10%_N e T_10%_NC obtiveram maior trabalhabilidade em relação à sua série com 1,0 % de silano, já

No caso da funcionalização com GPTMS (Fig. 93 (a)), o comportamento foi semelhante ao encontrado com TEOS. Apenas nas séries funcionalizadas que passaram pelos dois banhos alcalinos "+N +C" houve diminuição da trabalhabilidade com o aumento do silano na funcionalização, em relação à sua referência.

Por outro lado, todas as séries apresentaram maior trabalhabilidade em relação à série REF.

Fig. 93 – Trabalhabilidade das amostras de CUADRF na etapa preliminar

"+N" corresponde às séries que passaram pelo tratamento com NaOH; "+C" corresponde às séries que passaram pelo tratamento com Ca(OH)₂; O negativo "-N" e "-C" corresponde às séries que não passaram pelos tratamentos alcalinos.

Uma das hipóteses sobre a maior trabalhabilidade das amostras que passaram pelo processo de funcionalização pode ser explicada pela próxima cobertura de silano na superfície das fibras, que tende a ser menos hidrofílica que a superfície da fibra referência, consequentemente menos água de amassamento é necessária para dar mobilidade às fibras no concreto. Essa menor afinidade com a água pode ser atribuída pelas ligações de siloxano com o metal da superfície funcionalizada e do filme de silano, Si-O-Me e Si-O-Si, respectivamente. Apesar da cobertura heterogênea realizada nesse trabalho, quando funcionalizada, menor área da superfície metálica está exposta e sujeita ao molhamento pela água, assim menor é a probabilidade da interação da água com os hidróxidos metálicos da fibra (Cu(OH)₂, Zn(OH)₂ e Fe(OH)₃). Por outro lado, essa hipótese do "silano hidrofóbico" pode ser controversa, uma vez que a superfície do filme de silano é composto por silanóis de natureza hidrofílica.

Outra hipótese é que, o silano adicionado na funcionalização funcione semelhantemente a um aditivo superplastificante. Isto é, o silano da superfície funcionalizada carrega moléculas não hidrolisadas que quando adicionadas à matriz cimentícia, hidrolisam formando silanóis. Esses silanóis, por sua vez, são adsorvidos pelas partículas de cimento (com C-S-H na superfície) equilibrando as cargas elétricas da partícula cimentícia, gerando uma repulsão eletrostática, resultando na maior trabalhabilidade da mistura. Já no caso do GPTMS, haveria a adsorção da parte polar do silano pela superfície das partículas de cimento e, por consequência, a extremidade orgânica da molécula de silano gera o afastamento das partículas, ou seja, repulsão eletroestérica. Esse método de ação do silano no estado fresco de compósitos cimentícios também é sugerido por Kong *et al.* (2015), Švegl *et al.* (2008), Xu & Chung (2000) e Fan *et al.* (2012). Considerando fenômeno eletroestérico do GPTMS, esperava-se uma maior repulsão das partículas em relação ao TEOS, o que não foi verificado. O fato das séries funcionalizadas com GPTMS resultarem em índices de trabalhabilidade na ordem dos 240 mm, semelhante ao TEOS, reforça a teoria de abertura do anel epóxi para a formação de hidroxilas (discutida no item 4.3.2). Isso significa que apesar do "efeito dispersante" da funcionalização das fibras com silano, não foi verificado diferenças intensas entre os tratamentos aplicados, em questão de trabalhabilidade.

Outro efeito que também poderia ser levantado para explicar a maior trabalhabilidade das amostras funcionalizadas em relação às referências é de quando misturadas ao concreto, o próprio atrito gerado na mistura remove parte da cobertura de silano depositada pela funcionalização. Essa teoria ganha força pelo fato que o simples atrito manual das fibras (discutido anteriormente no item 5.3.1) resulta em delaminação das fibras. Na Fig. 94 é apresentando a análise de MEV/EDS da série T_10%_N_C, onde é possível verificar que parte do silano que estava aderido à fibra foi removido, resultando em diferentes composições químicas na superfície da fibra nas duas regiões analisadas. Esse silano removido da superfície da fibra é formado basicamente de sílica amorfa e pode se comportar semelhante a uma nanossílica ou microssílica, aumentando a lubrificação da pasta cimentícia.

Fig. 94 – Análise de MEV/EDS da série funcionalizada T_10%_N_C

(a) Imagem da superfície da fibra, magnificação de 700x; (b) Ampliação da área destacada em (a), magnificação de 2000x; (c) e (d) Análise de EDS da área destacada em (b);

6.3.3 Calorimetria isotérmica de condução

Uma das maneiras de identificar se a funcionalização da superfície das fibras com silano interfere nas reações de hidratação é o ensaio de calorimetria de condução. Uma vez que diferenças na cinética de hidratação, aceleração ou aumento do período de indução, bem como outras reações do cimento podem ser monitoradas.

Na Fig. 95 (a) e (b) são apresentadas as curvas fluxo de calor e calor gerado na hidratação, respectivamente, além da estimativa do grau de hidratação do cimento das amostras de CUADRF referências.

Na Fig. 95 (a), chama a atenção o fato das amostras apresentarem o pico de aceleração em torno de 25 horas (Tabela 27). Esse fenômeno é causado pelo alto índice de aditivos superplastificantes na mistura de concreto (ABBAS; NEHDI; SALEEM, 2016; HUANG et al., 2017). Além do próprio efeito dispersante do aditivo resultar no aumento do período de inducão, a "superdosagem" de aditivos superplastificantes altera as concentrações iônicas de Ca²⁺ e Si⁴⁺ nos poros do concreto, resultando em alterações na cinética de hidratação.

Fig. 95 - Curvas de calor de hidratação das séries referências (sem silano)

"N" corresponde às séries que passaram pelo tratamento com NaOH; "C" corresponde às séries que passaram pelo tratamento com Ca(OH)2.

		1400	$a_2 = mulec$	s uc calo	inneu la c	las series i	cicicitas		
	Indu	ıção		Pico de ac	eleração		Tota	ıl ^b	$\alpha_{\rm cim}$
Séries	Horas	Var ^a (%)	Qi (mW/g)	Var ^a (%)	Q (J/g)	Var ^a (%)	Q (J/g)	Var ^a (%)	(%)
REF	25,05	-	1,83	-	97,27	-	192,29	-	44,63
REF_C	28,39	13,33	1,72	-5,96	84,20	-13,43	176,50	-8,21	40,96
REF_N	24,32	-2,89	1,94	6,30	88,38	-9,13	187,82	-2,32	43,59
REF_NC	26,54	5,95	1,69	-7,60	81,15	-16,57	178,54	-7,14	41,44

Tabela 27 – Índices de calorimetria das séries referências

^a Variação percentual em relação à amostra REF; ^b Referente a 72 horas de hidratação; Qi é o valor máximo de fluxo de calor; Q é o valor do calor gerado; α_{cim} é o grau de hidratação estimado do cimento.

O principal fator associado ao início do pico de aceleração (fim do período de indução) é a precipitação da portlandita e crescimento do C-S-H (SCRI-VENER; JUILLAND; MONTEIRO, 2015), uma vez que isso desequilibra a concentração de cálcio da solução induzindo a solubilização do C₃S. Sowoidnich (2015) mostrou por meio de ensaio de solubilidade da portlandita que, quando dissolvidos, os aditivos aniônicos formam complexos com os íons Ca²⁺ da solução antes de adsorver nas partículas do cimento e C-S-H. Isso aumenta a solubilidade da portlandita de modo a compensar a carga de cálcio, atrasando a sua precipitação e o crescimento de C-S-H. Esse fenômeno é apontado como a causa do efeito retardador dos aditivos superplastificantes.

Comparando-se os tempos do período de inducão das séries referência (Tabela 27), verifica-se que houve um aumento do tempo nas séries REF_C e REF_NC e uma diminuição do tempo na série REF_N. Esse aumento do período de indução pode ser atribuído ao tratamento de hidróxido de cálcio realizado nas fibras, uma vez que pode haver deposição de Ca(OH)₂ e que quando adicionado à matriz, aumenta a concentração de Ca²⁺ na solução, diminuindo a solubilização do C₃S em relação à série REF (SOWOIDNICH, 2015). Já a diminuição do período de indução na série REF_N, pode ser atribuído ao NaOH residual do tratamento da fibra. Esse composto, quando adicionado à matriz cimentícia, incorpora íons Na⁺ que mudam a carga iônica da solução e impacta diretamente na solubilidade do C₃S e da portlandita, uma vez que menos Ca²⁺ na solução é necessário para o início da precipitação dos compostos hidratados. O estudo de Kumar et al. (2012) com ensaios experimentais e simulações computacionais evidenciou que quanto maior a concentração de NaOH na solução, menor é o ponto de supersaturação da portlandita. Essa precipitação "precoce" da portlandita é apontada como principal efeito acelerador da adição de compostos alcalinos à matriz cimentícia.

Em relação ao pico de aceleração, para fluxo de calor, na série REF_N obteve-se maior índice devido à aceleração da hidratação e às séries REF_C e REF_NC apresentaram menor valor devido ao atraso na precipitação da portlandita. Apesar disso, uma diferença inferior à 10 % foi verificada. Já quando comparados os resultados de calor liberado, verifica-se que as séries apresentaram valor inferior comparado à série REF, chegando à ordem dos 16 % de diferença, evidenciando a alteração na cinética de hidratação. Por outro lado, em 72 horas, as diferenças nos valores são inferiores à 9 %, sugerindo que as mudanças na hidratação são mais críticas nas primeiras horas.

Em relação ao grau de hidratação (Fig. 95 (b)), é verificado que cerca de 40-45 % do cimento é hidratado nas primeiras idades, semelhante ao verificado em CUAD de Huang *et al.* (2017) e Loukili *et al.* (1999).

Na Fig. 96 são apresentadas as curvas de calor de hidratação das amostras funcionalizadas com TEOS e na Tabela 28 estão os resultados de tempo de indução, fluxo de calor, calor gerado e grau de hidratação do cimento.

Fig. 96 - Curvas de calor de hidratação das séries funcionalizadas com TEOS (CONTINUAÇÃO)

(a), (c), (e) e (g) são as curvas de fluxo de calor normatizado das séries; (b), (d), (f) e (h) são as respectivas curvas de calor gerado normatizado; "N" corresponde às séries que passaram pelo tratamento com NaOH; "C" corresponde às séries que passaram pelo tratamento com Ca(OH)₂;

Tabela 28 – Resultados de o	calorimetria da	s séries funcio	nalizadas com	TEOS

	Induçã	ão		Pico de acel	eração		Total	b	$\alpha_{\rm cim}$
Séries	Horas	Var ^a (%)	Qi (mW/g)	Var ^a (%)	Q (J/g)	Var ^a (%)	Q (J/g)	Var ^a (%)	(%)
T_0,1%	26,51	5,82	2,08	13,78	89,71	-7,78	183,45	-4,60	42,58
T_1,0%	27,69	10,54	1,84	0,28	89,68	-7,81	187,35	-2,57	43,48
T_10%	24,51	-2,16	2,31	26,19	93,99	-3,37	191,01	-0,67	44,33
T_0,1%_N	23,75	-5,19	1,78	-2,93	100,57	3,39	197,28	2,59	45,78
T_1,0%_N	29,50	17,76	1,81	-1,21	96,84	-0,45	188,80	-1,81	43,82
T_10%_N	29,20	16,57	1,67	-8,95	94,80	-2,54	186,00	-3,27	43,17
T_0,1%_C	28,25	12,77	1,53	-16,64	95,36	-1,96	180,94	-5,91	41,99
T_1,0%_C	25,07	0,06	1,54	-15,88	103,07	5,95	200,49	4,26	46,53
T_10%_C	26,65	6,39	1,63	-11,03	98,61	1,38	193,70	0,73	44,95
T_0,1%_NC	27,73	10,71	1,51	-17,80	89,95	-7,53	181,58	-5,57	42,14
T_1,0%_NC	24,12	-3,73	1,92	4,94	97,03	-0,25	188,80	-1,81	45,20
T_10%_NC	27,73	10,68	1,59	-13,40	95,19	-2,15	186,00	-3,27	43,86

^a Variação percentual em relação à amostra REF; ^b Referente a 72 horas de hidratação; Qi é o valor máximo de fluxo de calor; Q é o valor do calor liberado; α_{cim} é o grau de hidratação estimado do cimento.

Um dos principais efeitos da adição de silanos às matrizes cimentícias foi a alteração do período de indução e para ilustrar com mais evidência esse parâmetro, na Fig. 97 são apresentados os valores de período de indução das séries funcionalizadas com TEOS.

Fig. 97 - Período de indução séries funcionalizadas com TEOS do estudo preliminar

A linha tracejada é referente ao índice da série REF, para comparação; "N" corresponde às séries que passaram pelo tratamento com NaOH; "C" corresponde às séries que passaram pelo tratamento com Ca(OH)₂; *0,1, 1,0 e 10 são os percentuais de silano nas soluções de funcionalização.

Nesses casos, percebe-se que não há uma tendência de comportamento da hidratação do cimento com a funcionalização da superfície das fibras com TEOS. Por um lado, pelas curvas e resultados de fluxo de calor, verifica-se que a maioria dos CUADRF funcionalizados com TEOS tiveram seus períodos de indução prolongados, em média, em 10 %. Por outro lado, para as séries T_10, T_0,1_N e T_1,0_NC houve diminuição do tempo de indução, ou seja, acelera-ção na hidratação. Essa aleatoriedade se repetiu com os resultados de fluxo de calor no pico de aceleração, onde em alguns casos aumentou na ordem de 26 % (Série T_10%) e em outros diminuiu cerca de 17 % (Série T_0,1%_NC). Apesar dessa disparidade, os valores de calor gerado no pico de aceleração e calor total do ensaio e grau de hidratação registraram menores variações, ficando na ordem dos 8 % em relação à série REF.

A diminuição do período de indução e maior valor de fluxo de calor, mais evidente na Fig. 96 (a), podem ser atribuídos à delaminação da capa de silano formada na superfície da fibra. Uma vez que esse silano delaminado está distribuído na matriz, se comportará semelhante a uma adição de nanossílica, reagindo com o hidróxido de cálcio da solução e como ponto de nucleação para a precipitação do C-S-H. Esse fenômeno tem como consequência a redução da concentração de íons Ca^{2+} nos poros da pasta cimentícia, que resulta na indução e no aumento da taxa de dissolução do C₃S (CAI et al., 2016).

Por outro lado, o efeito retardador causado pela funcionalização da superfície das fibras com TEOS, mais evidente nas séries T_1,0%_N, T_10%_N e T_0,1%_C, pode ser atribuído ao silano que ao ser delaminado contém ainda grupos não hidrolisados (Si-O-C_x). Uma vez adicionados à pasta cimentícia, essas moléculas de silano hidrolisam formando (C₂H₅)_{4-x}Si(OH)_x e podem ser adsorvidas pelas partículas de cimento e do C-S-H seja pela condensação do silanol com as hidroxilas na superfície das partículas sólidas ou pela desprotonação do silanol em soluções básicas de pH superior à 9 (OERTEL et al., 2014a), promovendo um efeito similar ao do aditivo superplastificante. Esse mecanismo de ação resulta em um efeito retardador, uma vez que há também o efeito estérico oriundo da cadeia alifática do silano (FENG et al., 2016; KONG et al., 2015; ŠVEGL et al., 2008).

Existe, ainda, a possibilidade da complexação das moléculas de silano com as moléculas do aditivo superplastificante adicionado à matriz cimentícia. Estudos demonstraram que aditivos a base de policarboxilato-éter modificados com moléculas de silano apresentam um efeito retardador maior que o superplastificante puro (HE; ZHANG; HOOTON, 2017; LU et al., 2016). Uma vez que o aditivo superplastificante (adicionado em grande quantidade) e o silano estão em solução, podem condensar os grupos carboxílicos do aditivo com a hidroxila do silano (sistema semelhante ao utilizado na síntese do aditivo modificado), formando uma molécula do aditivo modificado e resultando em maior efeito retardador na hidratação cimentícia.

Na Fig. 98 são apresentadas as curvas de calor de hidratação das amostras funcionalizadas com GPTMS e na Tabela 29 estão os resultados obtidos de tempo de indução, fluxo de calor, calor gerado e o grau de hidratação do cimento.

(a), (c), (e) e (g) são as curvas de fluxo de calor normatizado das séries; (b), (d), (f) e (h) são as respectivas curvas de calor gerado normatizado; "N" corresponde às séries que passaram pelo tratamento com NaOH; "C" corresponde às séries que passaram pelo tratamento com Ca(OH)₂;

	Induç	ão	l	Pico de acel	eração		Total	b	$\alpha_{\rm cim}$
Séries	Horas	Var ^a (%)	Qi (mW/g)	Var ^a (%)	Q (J/g)	Var ^a (%)	Q (J/g)	Var ^a (%)	(%)
G_0,1%	26,95	7,58	1,60	-12,60	86,18	-11,41	179,64	-6,58	41,69
G_1,0%	26,54	5,95	2,12	16,00	96,61	-0,68	192,60	0,16	44,70
G_10%	32,93	31,44	2,13	16,51	93,40	-3,98	185,17	-3,71	42,97
G_0,1%_N	24,52	-2,13	1,79	-2,30	93,21	-4,18	195,41	1,62	45,35
G_1,0%_N	27,25	8,78	1,56	-14,99	87,41	-10,14	181,11	-5,82	42,03
G_10%_N °	41,23	64,60	1,67	-9,05	89,31	-8,18	200,01	4,01	46,42
G_0,1%_C	25,66	2,43	1,76	-4,02	82,00	-15,70	173,45	-9,80	40,25
G_1,0%_C	28,06	12,01	1,74	-4,88	84,03	-13,61	176,01	-8,47	40,85
G_10%_C	28,03	11,91	1,88	2,43	91,70	-5,73	182,57	-5,05	42,37
G_0,1%_NC	24,84	-0,83	1,89	3,31	99,03	1,80	194,83	1,32	45,21
G_1,0%_NC	27,77	10,84	1,49	-18,90	88,23	-9,30	179,54	-6,63	41,67
G_10%_NC	32,91	31,37	2,06	12,40	98,27	1,03	191,17	-0,58	44,37

Tabela 29 - Resultados de calorimetria das séries funcionalizadas com GPTMS

^a Variação percentual em relação à amostra REF; ^b Referente a 72 h de hidratação; ^e Referente à 96 h de hidratação; Qi é o valor máximo de fluxo de calor; Q é o valor do calor liberado; α_{cim} é o grau de hidratação do cimento.

Nas séries funcionalizadas com GPTMS verifica-se que o efeito retardador é mais evidente que no TEOS. Apenas duas séries obtiveram redução do período de indução (séries G_0,1%_N e G_0,1%_NC), porém com índices inferiores a 3 % em relação à série REF. Nesse caso, pode-se considerar que não houve de fato aceleração da hidratação, apenas uma variação do ensaio devido ao fato de o efeito verificado para esse tipo de silano ser de aumento do período de indução. Para ilustrar a influência do GPTMS na hidratação do cimento, na Fig. 99 são apresentados graficamente os resultados de período de indução desses concretos.

Fig. 99 - Período de indução séries funcionalizadas com GPTMS do estudo preliminar

A linha tracejada é referente ao índice da série REF, para comparação; "N" corresponde às séries que passaram pelo tratamento com NaOH; "C" corresponde às séries que passaram pelo tratamento com Ca(OH)₂; *0,1,1,0 e 10 são os percentuais de silano nas soluções de funcionalização.

Nas séries com 10 % de GPTMS obteve-se os maiores valores de período de indução, se estendendo em até a 64,6 % superior ao valor da série REF, como no caso da série G_10%_N. Esse aumento no período de indução pode ser atribuído ao fato que quando misturado na matriz, o silano é delaminado da superfície da fibra e acaba por ser distribuído em toda pasta cimentícia. Esse silano, semelhantemente ao TEOS, pode conter moléculas não hidrolisadas que, quando misturadas na matriz cimentícia, hidrolisam e são adsorvidas pelas partículas de cimento e C-S-H (como discutido anteriormente). Porém, no GPTMS o seu efeito retardador é mais pronunciado pelo fato da sua cadeia alifática da extremidade orgânica da molécula ser maior (ver Tabela 14), consequentemente, resultando em um efeito retardador superior em relação ao TEOS. Esse efeito retardador da inclusão de GPTMS em matriz cimentícia também é verificado por Collodetti *et al.* (2014) e Feng *et al.* (2016).

Existe também o fato do grupo epóxi possuir potencial reativo (verificado por Infravermelho no item 4.3.2) complexando com os íons de cálcio da solução dos poros da matriz, retardando a precipitação da portlandita. Essa hipótese ganha força quando analisada a curva de fluxo de calor da série G_10%_C, verifica-se que nessa série houve uma pequena diferença nos índices obtidos com o ensaio de calorimetria em relação à série REF. Isso pode ser atribuído à extremidade orgânica do GPTMS ter reagido, por meio de condensação, com o Ca(OH)₂ do processo de funcionalização. Assim, não houve a complexação com os íons Ca²⁺ da solução e menor foi a sua influência no período de indução.

Outro indicativo de que houve reação do $Ca(OH)_2$ do banho de funcionalização com o filme de GPTMS é o fato da série G_10%_NC reduzir em cerca de 50 % o seu efeito retardador em relação à série G_10%_N. Isto é, a série que passou somente pelo banho de NaOH, resultou em 64,60 % de aumento no período de indução, já quando a série passa pelos dois banhos, NaOH e Ca(OH)₂ o seu efeito retardador aumentou em 31 % em relação à série REF. Chega-se a mesma verificação quando essa comparação é realizada com as séries G_10%_ e G_10%_C.

Já, com relação aos resultados de calor gerado e grau de hidratação do cimento é possível verificar que apesar dos altos índices de variação de fluxo de calor em algumas séries, de maneira geral a hidratação não foi alterada. Refletindo nos baixos valores de variação de calor total, inferiores a 10%, em relação à série REF.

6.3.4 Resistência mecânica

Em continuação às seções anteriores do capítulo, essa seção apresenta os resultados de resistência mecânica dos CUADRF. Nesse caso, os índices são de suma importância, uma vez que esses resultados são utilizados para a definição dos parâmetros utilizados na etapa seguinte da tese.

6.3.4.1 Resistência à compressão

Na Fig. 100 são apresentados os resultados de resistência à compressão das séries estudadas nessa etapa. Na Tabela 30 os resultados são sumarizados, bem como os seus dados de variação.

A linha tracejada é referente ao índice da série REF, para comparação; As barras de erro correspondem a um desvio padrão para cima e um para baixo; *0,1, 1,0 e 10 são os percentuais de silano nas soluções de funcionalização; +N corresponde às séries que passaram pelo tratamento com NaOH; +C corresponde às séries que passaram pelo tratamento com Ca(OH)₂; O negativo "-N" e "-C" corresponde às séries que não passaram pelos tratamentos alcalinos.

Séries	fc (MPa)	DP ^a	CV^{b}	Var ^c	Séries	fc (MPa)	DP ^a	CV ^b	Var ^c
REF	153.71	11.51	7.49	-				(70)	(70)
REF N	146.87	4.86	3.31	-4.46					
REFC	141,76	14,12	9,96	-7,78					
REF_NC	136,35	10,00	7,34	-11,30					
T_0,1%	148,54	8,00	5,38	-3,37	G_0,1%	150,95	7,39	4,89	-1,80
T_1,0%	138,48	11,38	8,22	-9,91	G_1,0%	139,81	8,94	6,40	-9,04
T_10%	145,69	5,56	3,82	-5,22	G_10%	135,26	6,40	7,56	-12,00
T_0,1_N	149,97	9,66	6,44	-2,43	G_0,1_N	144,08	7,42	5,15	-6,27
T_1,0_N	150,93	14,44	9,57	-1,81	G_1,0_N	152,12	5,51	3,62	-1,04
T_10_N	146,48	5,37	3,67	-4,70	G_10_N	150,42	8,86	5,89	-2,14
T_0,1_C	156,27	5,38	3,44	1,67	G_0,1_C	145,76	9,73	6,67	-5,17
T_1,0_C	155,29	5,07	3,26	1,02	G_1,0_C	152,39	9,19	6,03	-0,86
T_10_C	149,97	10,93	7,29	-2,44	G_10_C	148,07	7,61	5,14	-3,67
T_0,1_NC	151,52	7,67	5,06	-1,43	G_0,1_NC	142,20	10,29	7,24	-7,49
T_1,0_NC	142,88	8,76	6,13	-7,05	G_1,0_NC	154,99	5,52	3,56	0,83
T_10_NC	149,99	11,90	7,93	-2,42	G_10_NC	126,51	6,65	6,65	-17,69

Tabela 30 – Resultados de resistência à compressão dos CUADRF da etapa preliminar

^a é o desvio padrão; ^b é o coeficiente de variação; ^c é a variação do resultado em relação à série REF.

De maneira geral, a funcionalização da superfície das fibras de aço com os silanos TEOS e GPTMS não apresentou influência positiva em relação aos índices de resistência à compressão. Os resultados obtidos nas séries referências evidenciam que os banhos alcalinos interferem nas propriedades do concreto, além dos efeitos no estado fresco (trabalhabilidade e calorimetria), houve um impacto negativo desses banhos na resistência mecânica. Verificou-se que houve uma diminuição de até 11,3 % em relação à série REF.

Analisando-se a quantidade de silano na funcionalização, pode-se dizer que 10 %_(vol.), para ambos os silanos, foi prejudicial para a resistência à compressão, uma vez que em nenhuma série com essa quantidade de silano obtevese índice superior à REF. Esse resultado é mais evidente nas séries G_10% e G_10%_NC, que apresentaram redução de 12,0 % e 17,6 %, respectivamente.

Com relação às séries funcionalizadas com TEOS, quando as fibras não são submetidas a nenhum tratamento, como nos casos "-N -C", houve perda de resistência para todas as concentrações de silano estudadas, sendo que com 1 % foi obtido o menor índice. Isso pode ser atribuído à interação precária do silano com a superfície da fibra. Já, quando as fibras passam pelo banho de NaOH, caso "+N -C", a funcionalização resultou em efeito benéfico, gerando aumento na resistência. Porém, essa relação não aumentou de forma linear, para esse caso foi verificado o maior resultado com 1,0 % de silano, sugerindo que pode haver um ponto de saturação na concentração de silano.

Nos casos "-N +C", houve aumento dos 141,76 para aproximadamente 155 MPa quando as fibras foram funcionalizadas. Com 10 % de silano na funcionalização não houve aumento da resistência em comparação com a série tratada com 1 %, reforçando a hipótese de que há um ponto de saturação em torno de 1 % para o tratamento da superfície das fibras.

Já, no caso "+N +C", o aumento da resistência com a funcionalização é mais evidente, uma vez que a série REF_NC obteve o menor índice de resistência a compressão. Com a funcionalização, apesar de melhorar a resistência, foi proporcional a quantidade de silano, uma vez que 0,1 % de silano apresentou índices semelhantes aos de 1,0 % e 10 %.

Nas séries funcionalizadas com GPTMS, quando não houve tratamento alcalino (-N -C), quanto maior a quantidade de silano na funcionalização, menor foi o índice de resistência à compressão. Esse resultado pode ser atribuído à delaminação do silano no processo de mistura devido a interação ineficiente do silano com a superfície da fibra, como discutido anteriormente.

Quando tratados com apenas NaOH ou apenas Ca(OH)₂, casos "+N -C" e "-N +C", respectivamente, houve aumento no desempenho apenas a partir de 1,0 % de silano. Apesar do aumento de resistência pelo processo de funcionalização, não houve melhora quando 10 % de silano foi utilizado, isso atribuído à saturação do silano na funcionalização.

Já, quando tratados com os dois banhos alcalinos, casos "+N +C", os resultaram evidenciam a melhora nos índices de resistência com a funcionalização das fibras. Esse caso enfatiza a hipótese do ponto de saturação em torno dos 1 % de volume de silano, uma vez que o resultado com 10 % foi inferior ao com 1 %

De maneira geral, verifica-se que para os dois silanos estudados houve uma tendência de aumento de resistência com a funcionalização das fibras quanto utilizado até 1 % de silano na solução, e pouca ou nenhuma melhora nos índices de resistência foram verificados quando 10 % foi utilizado. Isso é atribuído a um "ponto de saturação" de silano para uma deposição satisfatória na superfície das fibras.

Apesar da verificação do impacto do tratamento de funcionalização das fibras com silanos nos índices de resistência dos concretos, as médias das séries são próximas e em vários casos os seus desvios (devido à dispersão dos dados) se sobrepõem, sugerindo que podem haver valores de médias semelhantes entre as séries. Desta forma, para evidenciar se houve diferença significativa entre as médias das séries, realizou-se análise de variância (ANOVA) e análise múltipla de médias (método de Duncan) dos resultados de resistência à compressão dessa etapa. Na Tabela 31 e Tabela 32 são apresentados os resumos das tabelas das análises para as séries funcionalizadas com TEOS e GPTMS, respectivamente.

Para as séries funcionalizadas com TEOS, devido ao valor P do teste F ser superior a 0,05, pode-se afirmar que o tipo de tratamento realizado nas fibras (com ou sem banhos alcalinos) não possui efeito significativo na resistência à compressão. Já, em relação à concentração de TEOS no banho de funcionalização, afirma-se que possui influência significativa na resistência à compressão. Quando analisada a interação dois efeitos juntos (tratamento e concentração de silano), evidencia-se que os dois efeitos juntos possuem efeito significativo nos resultados de resistência à compressão.

Efeito	GL	SQ	MQ	F	P ^a	Afeta?
Tratamento	3	719	240	2,62	0,052928	Não
Concentração de TEOS (%)	3	997	332	3,64	0,014429	Sim
Tratamento x Concentração de TEOS	9	3153	350	3,83	0,000227	Sim
Resíduo	144	13157	91			
Total	159	18025				
	0 .					
(a) Resultado da ANOVA das amostr	as funcio	onalizada	s com 'l	EOS.		
(a) Resultado da ANOVA das amostr Efeito	GL	sq	s com T	F	P ^a	Afeta ?
(a) Resultado da ANOVA das amostr Efeito Tratamento	GL 3	sq 1608	s com 1 <u>M</u> Q 536	F 6,58	P ^a 0,000335	Afeta ? Sim
(a) Resultado da ANOVA das amostr Efeito Tratamento Concentração de GPTMS (%)	GL 3 3	SQ 1608 1932	s com 1 M Q 536 644	F 6,58 7,91	P ^a 0,000335 0,000064	Afeta ? Sim Sim
(a) Resultado da ANOVA das amostr Efeito Tratamento Concentração de GPTMS (%) Tratamento x Concentração de GPTMS	GL 3 3 9	SQ 1608 1932 5626	s com 1 M Q 536 644 625	F 6,58 7,91 7,68	P a 0,000335 0,000064 0,000000036	Afeta ? Sim Sim Sim
(a) Resultado da ANOVA das amostr Efeito Tratamento Concentração de GPTMS (%) Tratamento x Concentração de GPTMS Resíduo	GL 3 3 9 144	SQ 1608 1932 5626 11726	s com 1 <u>Q</u> 536 644 625 81	F 6,58 7,91 7,68	P ^a 0,000335 0,000064 0,000000036	Afeta ? Sim Sim Sim

Tabela 31 – Análise estatística da resistência à compressão das amostras funcionalizadas com TEOS e GPTMS

(b) Resultado da ANOVA das amostras funcionalizadas com GPTMS.

^a Se o valor P é inferior a 0,05, então o efeito possui impacto significativo na resistência à compressão (com 95% de confiança).

-	Gı	upos	home	ogêne	os ^a	Cártas	(Grup	os ho	mogé	ÈI
Series	Α	В	С	D	Е	Series	Α	В	С	D	
REF_				D	Е	REF_					
T_0,1%			С	D	Е	G_0,1%				D	
T_1,0%	Α	В				G_1,0%		В	С		
T_10%		В	С	D		G_10%		В			
REF_C	Α	В	С			REF_C		В	С	D	
T_0,1%_C					Е	G_0,1%_C			С	D	
T_1,0%_C				D	E	G_1,0%_C					
T_10%_C			С	D	Е	G_10%_C			С	D	
REF_N		В	С	D	E	REF_N			С	D	
T_0,1%_N			С	D	Е	G_0,1%_N	I	В	С	D	
T_1,0%_N			С	D	E	G_1,0%_N	I				
T_10%_N		В	С	D	Е	G_10%_N				D	
REF_NC	Α					REF_NC		В			
T_0,1%_NC			С	D	Е	G_0,1%_N	IC	В	С	D	
T_1,0%_NC	Α	В	С			G_1,0%_N	IC				
T_10%_NC			С	D	Е	G_10%_N	C A				
$() \alpha'$						$() \alpha'$			с <u> </u>		

Tabela 32 - Resumo da análise múltipla de médias do ensaio de resistência à compressão

(a) Séries com TEOS.

(a) Séries com GPTMS.

^a As séries com a mesma letra de grupo homogêneo não têm diferença significativa, com 95% de confiança.

Na comparação múltipla de médias, constata-se que há cinco grupos de médias distintas entre as 16 séries analisadas (Tabela 32 (a)). Corroborando com a ANOVA, percebe-se que os diferentes tratamentos obtiveram pouco impacto nos resultados. Como por exemplo, o grupo homogêneo "C" que engloba as quatro séries funcionalizadas com 10 % de TEOS. Resultado semelhante ao grupo homogêneo "E" que engloba as quatro séries funcionalizadas com 0,1% de silano, independente do tratamento alcalino aplicado. Apesar da concentração de silano ter um fator significativo, constata-se que não há diferença significativa entre as séries funcionalizadas com 1 % e 10 %, indicando que altas concentrações de TEOS não tem efeito benéfico resistência à compressão.

Nas séries funcionalizadas com GPTMS, o tipo de tratamento alcalino, a concentração de GPMTS e a interação dos dois efeitos apresentaram diferença significativa nos resultados de resistência à compressão. Verificou-se que há seis grupos de médias distintas entre as 16 séries analisadas (Tabela 32 (b)). Semelhantemente ao TEOS, as séries tratadas com 10 % de GPTMS não apresentam diferença significativa com as séries tratadas com 1 %, apenas na comparação entre as séries G_10%_NC e G_1,0%_NC é que houve diferença. No entanto, isso é devido ao desempenho inferior da série tratada com 10 %. Ou seja, 10 % de GPTMS parece não alterar os índices de resistência à compressão em compa-ração com 1 %, e quando altera é para índices inferiores.

De maneira geral, os resultados de resistência à compressão foram pouco sensíveis à funcionalização da superfície das fibras com TEOS ou GPTMS. Na maioria dos casos, não houve diferença significativa entre as séries analisadas e, quando houve diferença, muitas vezes o desempenho foi inferior à referência. Assim, esses resultados médios "próximos" se devem ao fato do concreto, quando solicitado à compressão, ter como fator predominante no seu desempenho a própria qualidade da matriz de concreto, que nesse caso é igual em todas as séries resultando em pouca interferência pela ação da funcionalização.

Um dos possíveis efeitos da funcionalização das fibras é o seu efeito pozolânico, em conjunto com a nanossílica, por outro lado para esse efeito ser mais evidente nos resultados de compressão, o seu meio de atuação deveria ser diretamente na matriz. Ou seja, o impacto da funcionalização mostrou pouca influência nesse tipo de caracterização, uma vez que esse tratamento atua predominantemente na interface fibra-matriz e essa é mais sensível à tração.

6.3.4.2 Resistência à tração na flexão

Na Fig. 101 são apresentados os resultados das médias do módulo de ruptura (MOR). Na Tabela 33 são sumarizadas as médias dos resultados, bem como os seus dados de variação.

A linha tracejada é referente ao índice da série REF, para comparação; As barras de erro correspondem a um desvio padrão para cima e um para baixo; *0,1, 1,0 e 10 são os percentuais de silano na funcionalização; +N corresponde às séries que passaram pelo tratamento com NaOH; +C corresponde às séries que passaram pelo tratamento com Ca(OH); O negativo "-N" e "-C" corresponde às séries que não passaram pelos tratamentos alcalinos.

	Tubble	155 R	esundo	5 101011 0		r uu otup	a promi	iiiiai	
Sórios	MOR	DD a	CV ^b	Var ^c	Sórios	MOR	DD a	CV ^b	Var ^c
Series	(MPa)	ы	(%)	(%)	Series	(MPa)	Ы	(%)	(%)
REF	36,04	3,11	8,63	-					
REF_N	31,90	4,68	14,68	-11,48					
REF_C	32,94	2,33	7,08	-8,59					
REF_NC	30,09	5,23	17,38	-16,50					
T_0,1	34,63	2,66	7,69	-3,90	G_0,1	38,93	2,95	7,59	8,02
T_1,0	26,94	3,33	12,37	-25,24	G_1,0	28,97	2,85	9,82	-19,60
T_10	30,35	3,75	12,36	-15,79	G_10	28,39	2,33	8,22	-21,24
T_0,1_N	35,22	1,85	5,25	-2,27	G_0,1_N	33,05	2,24	6,79	-8,30
T_1,0_N	29,34	4,94	16,84	-18,59	G_1,0_N	33,98	5,23	15,40	-5,72
T_10_N	31,51	2,00	6,36	-12,56	G_10_N	34,69	2,64	7,62	-3,73
T_0,1_C	33,12	7,78	23,50	-8,10	G_0,1_C	37,29	9,43	25,28	3,48
T_1,0_C	36,01	5,15	14,30	-0,07	G_1,0_C	34,84	3,54	10,16	-3,33
T_10_C	35,92	5,33	14,84	-0,32	G_10_C	36,67	3,60	9,82	1,75
T_0,1_NC	36,43	6,23	17,10	1,10	G_0,1_NC	39,92	6,73	16,87	10,77
T_1,0_NC	41,45	1,62	3,91	15,01	G_1,0_NC	40,00	4,34	10,84	11,01
T_10_NC	38,26	6,16	16,11	6,17	G_10_NC	36,16	2,91	8,06	0,33

Tabela 33 - Resultados MOR dos CUADRF da etapa preliminar

^a é o desvio padrão; ^b é o coeficiente de variação; ^c é a variação em relação à série REF.

Os resultados de MOR indicam que a funcionalização possui grande influência para os ensaios de tração na flexão. Várias séries apresentaram desempenho superior à série REF, demonstrando que a funcionalização tem potencial para a aplicação em fibras utilizadas para reforço de concretos.

Não houve uma tendência de comportamento, uma vez que dependendo do tratamento alcalino aplicado, houve um comportamento particular para cada série. Apesar disso, nas séries tratadas com 10 % de silano, para ambos os silanos utilizados, não houve melhora nos resultados de MOR. Isto é, como discutido anteriormente (inclusive nas seções anteriores) 10 % de silano não apresentou vantagens que justifiquem a sua aplicação, quando comparado com as séries tratadas com 1 % de silano. A principal hipótese a respeito dessa "piora" nos resultados com 10 % de silano, se deve à possível delaminação ou fissura do filme de silano depositado na superfície da fibra. Essa perda de silano resulta em menor quantidade de silano não muito diferente das séries funcionalizadas com 1 %, refletindo nessa similaridade observada nos resultados. Outro fator é que a fibra funcionalizada, quando solicitada mecanicamente, acabe por delaminar pela fratura do filme de silano na interface superfície da fibra-filme de silano.

Com relação às séries referências, percebe-se que o resultado foi semelhante ao obtido na compressão, houve redução de resistência quando os banhos alcalinos foram aplicados.

Nas séries funcionalizadas com TEOS, o tipo de banho alcalino aplicado demonstrou ter mais efeito que a concentração de silano na funcionalização. Nas séries que não passaram pelos banhos alcalinos e que passaram por um ou outro banho, casos "-N -C", "+N -C" e "-N +C", respectivamente, obteve-se menores valores de MOR em relação à série REF, independentemente da quantidade de

silano aplicada. Já, quando tratada com os dois banhos alcalinos caso "+N +C", houve aumento no valor de MOR de 15 % na série tratada com 1 % de silano, mas com 10 % de silano o aumento foi de apenas 6 % em relação à série REF. Isso reforça a teoria de que soluções de funcionalização com concentração superior à 1 %_(vol.) podem não ser recomendáveis quando busca-se a melhora da performance mecânica do CUADRF. Uma hipótese a respeito desse aumento de desempenho é que houve reação pozolânica do filme de silano com a matriz cimentícia, reforçando a interface fibra-matriz. Quando as fibras são tratadas com Ca(OH)₂ pode haver a reação com os Si-OH da superfície tratada e quando essas fibras são adicionadas à matriz também funcionam como ponto de nucleação para a formação de C-S-H, densificando a região, refletindo na melhora do desempenho.

Nas séries funcionalizadas com GPTMS, a concentração de silano também afeta os resultados com menor intensidade que os tratamentos alcalinos. Isso foi observado com mais evidência ao comparar-se as séries que foram tratadas com NaOH, casos "+N -C". Nota-se que independente da concentração de silano, o desempenho foi semelhante, com menos de 2 MPa de diferença entre as séries. Por outro lado, quando nenhum banho alcalino é realizado, quanto maior a concentração de GPTMS na funcionalização, menor foi o resultado. Já, quando os dois banhos de silano foram aplicados, caso "+N +C", obteve-se o melhor desempenho.

Semelhantemente aos resultados obtidos com TEOS, quando os dois banhos alcalinos foram aplicados na funcionalização com GPTMS, a melhora pode ser explicada pelo fato do banho de NaOH promover uma maior interação da superfície da fibra com o filme de silano e quando o filme de silano passa pelo segundo tratamento alcalino, de Ca(OH)₂, houve possibilidade da reação pozolânica e precipitação de C-S-H na superfície dessa fibra, que quando adicionada ao concreto, promoverá pontos de nucleação para a precipitação de C-S-H. Essa teoria ganha força, uma vez que através das análises de MEV/EDS (Fig. 102) foi verificada a presença dos elementos Si e Ca na superfície funcionalizada, indicando a presença de produtos hidratados.

Fig. 102 – Precipitação de produtos hidratados na amostra da série T_10%_NC

(b) Análise de EDS de toda a área apresentada em (a)

Apesar da verificação do impacto do tratamento de funcionalização das fibras com silanos nos resultados de MOR dos concretos, as médias das séries são próximas e em vários casos os seus desvios (devido à dispersão dos resultados) de sobrepõem. Desta forma, para evidenciar se houve diferença significativa entre as médias das séries, foi realizada análise de variância (ANOVA) e análise múltipla de médias (método de Duncan) dos resultados de MOR dessa etapa. Na Tabela 34 e Tabela 35 são apresentados os resumos das tabelas das análises estatísticas para as séries funcionalizadas com TEOS e GPTMS, respectivamente.

Efeito	GL	SQ	MQ	F	P ^a	Afeta?
Tratamento	3	292,62	97,54	4,824	0,004330	Sim
Concentração de TEOS (%)	3	47,88	15,96	0,789	0,504256	Não
Tratamento x Concentração de TEOS (%)	9	684,85	76,09	3,763	0,000757	Sim
Resíduo	64	1294,04	20,22			
Total	79	2319,40				
(a) Resultado da ANOVA das séries c	om TE	OS.				

Tabela 34 – Estatística dos MOR das séries funcionalizadas com TEOS e GPTMS

Efeito	G L	SQ	MQ	F	P ^a	Afeta ?
Tratamento	3	167,21	55,74	2,852	0,044155	Sim
Concentração de GPTMS (%)	3	221,52	73,84	3,778	0,014659	Sim
Tratamento x Concentração de GPTMS	9	592,57	65,84	3,369	0,001957	Sim
(%)						
Resíduo	64	1250,82	19,54			
Total	79	2232,11				

(b) Resultado da ANOVA das séries com GPTMS.

^a Se o valor P é inferior a 0,05, então o efeito possui impacto significativo no MOR (com 95 % de confiança).

Cárriag	Grupos homogêneos ^a						Sárias		Grupos homogêneos ^a				
Series	Α	В	С	D	Е		Series		В	С	D	Е	
REF_		В	С	D	Е		REF_		В	С	D	Е	
T_0,1%		В	С	D			G_0,1%				D	Е	
T_1,0%	А						G_1,0%	А					
T_10%	А	В	С				G_10%	А					
REF_C	А	В	С	D			REF_C	А	В	С	D		
T_0,1%_C	А	В	С	D			G_0,1%_C			С	D	Е	
T_1,0%_C		В	С	D	E		G_1,0%_C	Α	В	С	D	Е	
T_10%_C		В	С	D	Е		G_10%_C		В	С	D	Е	
REF_N	А	В	С	D			REF_N	А	В	С			
T_0,1%_N		В	С	D	Е		G_0,1%_N	А	В	С	D		
T_1,0%_N	Α	В					G_1,0%_N	Α	В	С	D	Е	
T_10%_N	А	В	С				G_10%_N	А	В	С	D	Е	
REF_NC	Α	В	С				REF_NC	Α	В				
T_0,1%_NC			С	D	Е		G_0,1%_NC					Е	
T_1,0%_NC					E		G_1,0%_NC					Е	
T_10%_NC				D	Е		G_10%_NC		В	С	D	Е	
(a) Séries com TEOS (b) Séries com GPTMS													

Tabela 35 – Resumo da análise múltipla de médias do ensaio de MOR

^a As séries que compartilham a mesma letra de grupo homogêneo não possuem diferença significativa, com 95
% de confiança.

A análise de variância (Tabela 34 (a)) mostra que, para as séries funcionalizadas com TEOS, o tipo de tratamento realizado nas fibras (com ou sem banhos alcalinos) possui influência significativa no MOR. Já, em relação à concentração de silano no banho de funcionalização, pôde-se afirmar que não houve influência significativa no MOR. Quando analisada a interação dois efeitos juntos, evidencia-se que os dois efeitos juntos possuem efeito significativo no MOR.

Pela análise múltipla de médias verificou-se que as médias das amostras funcionalizadas com TEOS são bastante semelhantes, como, por exemplo, o grupo "B" da Tabela 35 (a), onde apenas três séries das 16 analisadas não foram classificadas como iguais. O grupo homogêneo que apresentou menor similaridade de médias foi o "E" que inclui as médias com maiores resultados. Apesar de maiores, estatisticamente, essas médias são iguais à média da série REF. Considerando esse resultado, pode-se dizer que a funcionalização das fibras com TEOS pouco alterou nos resultados de MOR, e quando alterou, foi para menos.

Nas séries tratadas com GPTMS, tanto os efeitos (tratamento e concentração de silano) quanto a interação dos efeitos mostraram influência significativa nos resultados de MOR. Apesar dos dois fatores influenciarem nos resultados, pela análise múltipla de médias (Tabela 35 (b)) evidenciou-se a semelhança entre os resultados médios. O grupo homogêneo que apresentou menor igualdade entre médias foi o "A", mesmo assim, agrupa 9 séries das 16 estudadas. Mesmo com influência significativa, a funcionalização com GPTMS apresenta pouco impacto nos resultados de MOR. O grupo "E" agrupa os melhores resultados, que são as séries G_0,1%_NC e G_1,0%_NC, com cerca de 10 % de aumento de resistência em relação à série REF. Porém, mesmo com resultados médios superiores nessas séries, estatisticamente, os valores são iguais à série REF.

Assim sendo, o grupo "E" tanto para TEOS, quanto para GPTMS apresenta os melhores resultados, dessa forma pode-se concluir que os outros grupos homogêneos (A, B, C e D) apresentam resultados estatisticamente iguais ou inferiores, com 95 % de confiança. Pelo fato das séries com 10 % apresentarem resultados iguais ou inferiores aos alcançados com 1 % de silano, reforça-se a discussão anterior sobre a dosagem de 10 % de silano ser excessiva e não recomendada.

6.4 CONCLUSÃO DO CAPÍTULO

No estudo realizado nesta etapa do trabalho, foi investigada a influência do tratamento das fibras de aço com TEOS e GPTMS com diferentes tipos de tratamentos alcalinos nas propriedades dos CUADRF. Baseado nos resultados expostos anteriormente, as conclusões são apresentadas abaixo:

Nas séries de fibras referências, os banhos alcalinos não alteraram a massa das fibras. Quando as fibras passaram pelo processo de funcionalização houve um aumento na sua massa devido à deposição de silano. De maneira geral, quanto maior a concentração de silano, maior a deposição de silano na superfície das fibras. Apesar da tendência de aumento, a quantidade de silano na superfície das fibras mostrou ser bastante afetada pelos tratamentos alcalinos. Dentre as configurações de funcionalização estudadas, as fibras que apresentaram maiores quantidades de silano foram as que não passaram por banhos alcalinos (casos "-N-C"), tanto para TEOS quanto para GPTMS.

Apesar de não ser o objetivo principal do processo de funcionalização da superfície das fibras, de maneira geral, quanto maior a quantidade de silano na funcionalização, maior foi a trabalhabilidade dos CUADRF.

O tratamento das fibras não mostrou grande influência na cinética de hidratação do cimento quando a concentração de silano foi de 0,1 % e 1 %, dependendo do tratamento alcalino aplicado, ora houve retraso e ora houve aceleração da hidratação, porém com variações inferiores a 15 %. Mas, quando utilizado 10 %, o principal efeito foi aumento no período de indução. Esse efeito foi mais pronunciado para o GPMTS, como nas séries de CUADRF G_10%, G_10%_N e G_10%_NC, que apresentaram aumentos de 37,44 %, 64,60 % e 31,37 %, respectivamente. Apesar de em alguns casos haver diferentes comportamentos, pode-se dizer que a funcionalização não alterou a hidratação do cimento, apenas acelera ou atrasa. Isso se confirma pelos dados de calor total gerado e grau de hidratação estimado, que mostram que houve uma variação menor que 10 % em relação à REF, para todas as séries estudas. Houve pouca influência da funcionalização da superfície das fibras na resistência à compressão das séries de CUADRF, para ambos os silanos, corroborando com os resultados obtidos por Collodetti (2013) e Švegl *et al.* (2008). Quando houve diferença nas médias entre as séries de CUADRF, a grande maioria apresentou resultados inferiores ao do concreto referência, como nas amostras tratadas com 10 % de silano. Com relação ao tipo de tratamento, houve influência das médias apenas quando o GPTMS foi utilizado. Já, em relação à concentração de silano, tratamentos com 10 % de silano não são recomendáveis, pois apresentaram resultados semelhantes ou inferiores aos CUADRF com fibras funcionalizadas com 1 %.

Os resultados mostraram que houve influência da funcionalização das fibras no MOR dos CUADRF. Isoladamente, o tipo de tratamento possui maior impacto nos resultados do que a concentração de silano. Analogamente à resistência à compressão, as séries com 10 % de silano não apresentaram melhores resultados em relação aos CUADRF com fibras funcionalizadas com 1 % de silano. Estatisticamente, as séries de CUADRF com fibras funcionalizadas com 10 % de silano são iguais ou inferiores aos CUADRF com fibras funcionalizadas com 1 % de silano na funcionalização, podendo-se evitar a concentração de 10 % de silano na funcionalização, se o objetivo é aumento das propriedades mecânicas.

7 ESTUDO DETALHADO EM CONCRETO DE ULTRA-ALTO DE-SEMPENHO

7.1 INTRODUÇÃO

Este capítulo apresenta os resultados e análises sobre o trabalho experimental que foi desenvolvido a partir dos capítulos anteriores. Para o desenvolvimento desse capítulo da tese, foram escolhidas as séries funcionalizadas que apresentaram maior potencial de promover informações sobre o impacto do tratamento das fibras com silano nas propriedades do CUADRF.

Nos capítulos anteriores, a investigação estava focada em definir parâmetros e eliminar variáveis do processo, como por exemplo: definir os parâmetros da funcionalização e verificar se os banhos alcalinos no tratamento das fibras possuem efeito nas propriedades do CUADRF. Nesta etapa, o objetivo é investigar os efeitos da funcionalização na interface fibra-matriz.

Assim, em conjunto com ensaios no estado fresco e no estado endurecido, foram realizados ensaios que caracterizam melhor o efeito do reforço fibroso no compósito, como os ensaios de limite de proporcionalidade (LOP) e ensaio Barcelona. De modo a investigar mais criteriosamente os efeitos da funcionalização com silanos na interface-fibra matriz, realizou-se também ensaios de *pull-out* e análises de MEV/EDS.

7.2 METODOLOGIA

Pelos resultados apresentados no Estudo preliminar em CUADRF (Capítulo 6), pôde-se eliminar as variáveis que não apresentaram melhora, principalmente, nas propriedades mecânicas dos CUADRF com fibras funcionalizadas. Dentre as concentrações estudadas anteriormente, a funcionalização com 10 % de silano foi eliminada do estudo. Em contrapartida, a concentração de 0,5 % de silano foi incorporada ao trabalho para investigar se havia alguma tendência nesse intervalor de concentração, de 0,1 a 1,0 %. Em relação aos banhos alcalinos, decidiu-se seguir somente com a metodologia em que havia os dois tratamentos alcalinos, as outras metodologias em que havia um ou nenhum banho alcalino ("-N -C", "+N -C" e" "-N +C") foram eliminadas do estudo.

Assim sendo, os parâmetros de funcionalização para esta etapa da análise são descritos abaixo:

- Tanto para o TEOS quanto para o GPTMS, a variável "concentração de silano" será de 0,1 %, 0,5 % e 1,0 %.
- O tipo de funcionalização escolhida é a com dois banhos alcalinos, ou seja, as fibras foram tratadas com NaOH pré-funcionalização e com Ca(OH)₂ pós-funcionalização, caso "+N +C".

Definida a metodologia utilizada para a funcionalização e a concentração dos banhos de silano, as fibras foram funcionalizadas de acordo com o procedimento executado no Estudo preliminar em CUADRF (Capítulo 6), com algumas alterações. A metodologia executada nesse capítulo é apresentada na Fig. 103. Na Tabela 36 é apresentada a composição dos banhos de funcionalização das fibras definidas para esta etapa.

Fig. 103 - Fluxograma da funcionalização das fibras desta etapa definitiva

* Secagem em estufa ventilada a 50 °C durante 12 h; ^a em detalhes na Fig. 77; A descrição detalhada de cada banho do processo de funcionalização é apresentada no item 6.2.

Tabela 36 - Composição dos banhos de funcionalização das fibras na etapa definitiva

Sárias	Volume (%)							
Series	TEOS	GPTMS	Solução alcoólica (1:1) pH 5 ±0,2					
T_0,1%	0,1	-	99,9					
T_0,5%	0,5	-	99,5					
T_1,0%	1,0	-	99,0					
G_0,1%	-	0,1	99,9					
G_0,5%	-	0,5	99,5					
G_1,0%	-	1,0	99,0					

Nesta etapa da tese foram produzidas nove séries de concretos, sendo uma série referência, além das três séries de CUADRF com fibras funcionalizadas com o silano TEOS e três séries funcionalizadas com o silano GPTMS, todas com 2,0 % de volume de fibras (Tabela 37).

Tubela 57 Tubela en altra e configuração das series produzidas nesta capa									
Tipo de silano		Silano (%)		Ba	nhos	Vol. fibras no	Nomenclatura		
TEOS	GPTMS	0,1	0,5	1,0	NaOH	Ca(OH) ₂	CUADRF (%)	das séries	
					х	Х	2,0	REF_2%(vf)	
х		х			Х	х	2,0	T_N_0,1%_C	
х			х		Х	х	2,0	T_N_0,5%_C	
х				Х	Х	х	2,0	T_N_1,0%_C	
	х	х			х	х	2,0	G_N_0,1%_C	
	х		х		Х	х	2,0	G_N_0,5%_C	
	х			Х	х	х	2,0	G_N_1,0%_C	

Tabela 37 - Nomenclatura e configuração das séries produzidas nesta etapa

O traço para a produção dos CUADRF utilizado nesta etapa teve modificações em relação ao utilizado no capítulo anterior. Houve a introdução de mais um constituinte, o carbonato de cálcio (CaCO₃ - Betoflow), adicionado como filer. A relação água/cimento também foi alterada com o objetivo de garantir que todas as séries produzidas obtivessem resistências à compressão superiores à 150 MPa. Na Tabela 38 é apresentada a composição do traço utilizado para a produção dos CUADRF.

Constituinte	Proporção em massa	Consumo (kg/m ³)	Densidade (g/cm ³)	Volume aparente (%)
Cimento I 52.5R	1,000	939,766	3,110	30,21
Areia fina	1,213	1140,332	2,640	43,19
CaCO ₃ (Betoflow)	0,110	103,385	2,700	3,82
Superplastificante	0,070	66,166	1,050	6,30
Nanossílica	0,072	67,200	1,134	5,92
Água	0,091	85,809	1,000	8,58
Fibras	0,165	155,077	7,950	2,00
Relação a/c	0,091			
a/c real ^a	0,200			
% total de superplastificante	7,04%			
%(solidos) de superplastificante b	1,76%			
Nanossílica (%)	1,573			

Tabela 38 - Composição dos CUADRF da etapa definitiva

^a Considerando os líquidos do aditivo superplastificante (75%) e da nanossílica (78%) como água de amassamento; ^b Quantidade de aditivo compatível para a utilizada em CUADRF, como em (KANG; KIM, 2012; RUSSEL, G; GRAYBEAL, 2013; WILLE; EL-TAWIL; NAAMAN, 2014; WILLE; TUE; PARRA-MONTESINOS, 2013).

Para a produção dos CUADRF, utilizou-se o mesmo procedimento executado no Estudo preliminar em CUADRF (Capítulo 6), porém desta vez utilizou-se um misturador Collomix, modelo Collomatic série XM. Primeiramente, os constituintes secos (cimento, areia e Betoflow) foram colocados no misturador e homogeneizados durante 1 minuto. Em seguida foram adicionados a água, o aditivo superplastificante e a suspensão de nanossílica; esse processo dura em torno de 1 minuto. Depois dos líquidos adicionados, misturou-se por mais 9 minutos; em seguida adicionou-se as fibras lentamente e seguiu-se até completar 10 minutos, totalizando 20 min de mistura. Logo que foi finalizada a mistura de CUADRF, realizou-se o ensaio de trabalhabilidade e os corpos de prova foram moldados.

Todas as amostras foram envelopadas com plástico para não perder a umidade e após 24 horas foram desmoldados e guardadas em câmara úmida com umidade relativa superior a 99 % em 23 °C até o dia dos ensaios.

Para a caracterização do concreto no estado fresco, realizou-se o ensaio de trabalhabilidade de acordo com a ASTM C1437 (2013) e ensaio de calorimetria isotérmica de condução.

Para o ensaio Barcelona, moldaram-se seis corpos de prova cilíndricos de 150 x 150 mm para cada série e ensaiados de acordo com UNE 83515 (2010) em 28 dias de hidratação.

Para o ensaio de LOP e resistência residual foram moldados oito corpos de prova prismáticos de 40 x 40 x 160 mm (com entalhe central) para cada série e ensaiados de acordo com a UNE-EN 14651+A1 (2007 b), como descrito no item 3.2.5.3.

Para o ensaio de *pull-out*, foram moldados 18 corpos de prova para a série REF_ $2\%_{(vf)}$ e 18 corpos de prova para cada série funcionalizada. Os ensaios foram realizados com 3, 7, 28 dias de hidratação de acordo com a metodologia descrita em 3.2.5.5.

Para o ensaio de resistência à compressão, foram utilizadas as metades dos corpos de prova do ensaio de LOP, totalizando 16 amostras para cada série nos 28 dias de hidratação. Para as idades de 3 e 7 dias, utilizou-se seis metades dos corpos de prova do ensaio de *pull-out*. Realizou-se os ensaio de compressão de acordo com a UNE EN 196-1 (2005).

Os ensaios microestruturais (MEV/EDS) para a análise da interface fibramatriz foram realizados nas amostras depois do ensaio de *pull-out* aos 28 dias.

Na Fig. 104 é apresentado o fluxograma geral de atividades para esta etapa de estudo detalhado em CUADRF.

* O processo de funcionalização é mostrado em detalhes na Fig. 103.

7.3 RESULTADOS E DISCUSSÕES

7.3.1 Trabalhabilidade

O resultado de trabalhabilidade dos concretos é apresentado na Fig. 105. Além do teor de silano na funcionalização das fibras, percebe-se a influência da configuração do traço nos resultados de trabalhabilidade, uma vez que todas as séries testadas obtiveram trabalhabilidade inferior aos 200 mm, isso devido à menor relação água/ cimento.

As amostras funcionalizadas com TEOS não apresentaram perda de trabalhabilidade em relação à série $\text{REF}_{2\%(vf)}$. Esse resultado seguiu a mesma tendência dos resultados obtidos na etapa anterior, em que até 1,0 % de silano na funcionalização não apresentou impacto na trabalhabilidade.

Quando tratadas com GPTMS, houve perda de trabalhabilidade em relação à amostra REF_2%(vf). Com 0,1 %, 0,5 % e 1,0 % de silano na funcionalização, houve uma perda de 3,66 %, 18,85 % e 13,61 %, respectivamente na trabalhabilidade das séries. Esses resultados divergem dos que normalmente apresentam-se na bibliografia quando utilizado silano, inclusive com os próprios resultados da etapa anterior. Verificou-se uma perda de trabalhabilidade, nesse caso, atribuído a adição do CaCO3 e da menor relação água/ cimento. Quando o silano é aplicado em matrizes cimentícias, há um aumento na trabalhabilidade justificado pelo efeito "superplastificante" gerado devido ao efeito estérico promovido pela parte orgânica do silano (CAO; CHUNG, 2001; KONG et al., 2015; ŠVEGL et al., 2008; XU; CHUNG, 1999). Porém a perda de trabalhabilidade, por não ser identificada, não é reportada.

Fig. 105 - Trabalhabilidade das amostras de CUADRF da etapa definitiva

A linha tracejara equivale ao valor da série REF_2% (vf); 0,1, 0,5 e 1,0 % são os percentuais de silano nas soluções de funcionalização.

Assim, nesse caso, a perda na trabalhabilidade pode ser atribuída a dois fatores: ao maior entrelaçamento das fibras funcionalizadas com GPTMS, resultando na maior restrição da matriz; e a reação de hidrólise dos grupos siloxanos presentes na superfície das fibras funcionalizadas (corroborando com a teoria da hidrólise reversa), consumindo parte da água de amassamento, contribuindo para a perda de trabalhabilidade. Por outro lado, o segundo efeito é pouco provável, uma vez que a quantidade de silano na superfície das fibras é muito pequena para promover uma redução de água de amassamento a ponto de impactar na trabalhabilidade.

7.3.2 Calorimetria isotérmica de condução

Com a alteração na composição do concreto para a etapa definitiva, mudanças na cinética de hidratação podem acontecer em função da introdução de novos constituintes. Na Fig. 106 e na Tabela 39 são apresentados os resultados de fluxo de calor, calor gerado e grau de hidratação das séries de CUADRF.

(a), (c) e (e) são as curvas de fluxo de calor normatizado das séries "REF_2%_{(vf})", "funcionalizadas com TEOS" e "funcionalizadas com GPTMS", respectivamente; (b), (d) e (f) são as curvas de calor gerado normatizado das séries "REF_2%_{(vf})", "funcionalizadas com TEOS" e "funcionalizadas com GPTMS", respectivamente; A Série "ref_prelim" em (a) é referente à curva de calor da série referência da etapa preliminar, para comparação; "N" corresponde às séries que passaram pelo tratamento com NaOH; "C" corresponde às séries que passaram pelo tratamento com Ca(OH)₂;

	140		cosultados ac	culornic	una aus s	crics du ci	upu uommu	, u	
	Indu	ução		Pico de ac	eleração	Tota	$\alpha_{\rm cim}$		
Séries	Horas	Var ^a (%)	Qi (mW/g)	Var ^a (%)	Q (J/g)	Var ^a (%)	Q (J/g)	Var ^a (%)	(%)
REF_2,0%(vf)	13,90	-	2,56	-	86,02	-	159,52	-	41,29
T_N_0,1% C	14,30	2,88	2,54	-0,60	92,03	6,99	165,47	3,73	42,83
T_N_0,5%_C	14,73	5,94	2,56	0,16	92,22	7,21	168,88	5,87	43,71
T_N_1,0%_C	14,80	6,47	2,51	-1,74	90,77	5,53	164,36	3,03	42,54
G_N_0,1%_C	14,57	4,79	2,84	10,97	83,11	-3,38	161,87	1,48	41,90
G_N_0,5%_C	15,18	9,21	2,26	-11,65	83,68	-2,72	155,28	-2,66	40,19
G N 1.0% C	16.65	19.78	2.30	-9.86	79.04	-8.10	154.62	-3.07	40.02

Tabela 39 - Resultados de calorimetria das séries da etapa definitiva

^a Variação percentual em relação a amostra REF_2,0%_(vf); ^b Referente a 48 horas de hidratação; Qi é o valor máximo de fluxo de calor; Q é o valor do calor gerado; α_{cim} é o grau de hidratação do cimento.

Apesar da menor relação água/ cimento aplicado nessas composições, pelas séries referências (Fig. 106 (a) e (b)), nota-se que houve uma aceleração da hidratação do cimento e o tempo de período de dormência ficou em torno de 14 horas, para todas as séries referências.

O principal efeito verificado é a diferença no período de indução das séries referência desta etapa com a série REF da etapa interior. As misturas possuem a mesma relação de aditivos e nanossílica, porém na mistura anterior não havia adição de Betoflow (CaCO₃), sendo esse efeito acelerador atribuído à essa adição de CaCO₃. Diversos autores também identificaram a aceleração na hidratação do C₃S pela adição de pós "silicosos" (LAND; STEPHAN, 2015; WU; SHI; KHAYAT, 2016) ou "não-silicosos" (HUANG et al., 2017; SBIA et al., 2017), sendo essa aceleração atribuída ao "efeito filer". O efeito filer é o resultado da adição de materiais que não reagem imediatamente na matriz (como o cimento), mas favorece a hidratação do cimento através de fenômenos como: a promoção de pontos de nucleação para a precipitação e crescimento do C-S-H devido à alta superfície específica desses pós (*seeding effect*); maior quantidade de água por unidade de massa de cimento, resultando em mais espaço para o crescimento de C-S-H (DESCHNER et al., 2012; OEY et al., 2013).

As séries funcionalizadas com TEOS não apresentaram mudança na cinética de hidratação em relação à série REF_2,0% (vf) (Fig. 106 (c) e (d)), semelhantemente ao encontrado na etapa anterior até 1,0 % de silano. Menos de 7 % de variação para o período de dormência e menos de 5 % de variação para o calor gerado total e grau de hidratação do cimento foi verificado. Assim, pôdese afirmar que a funcionalização com TEOS utilizada nesta etapa não afetou a cinética de hidratação do cimento. Uma hipótese é que a pequena quantidade de TEOS na funcionalização, mesmo que hidrate e reaja com a matriz cimentícia, resulta numa variação de calor tão pequena que não alterou os resultados de calorimetria.

Nas séries funcionalizadas com GPTMS, o tratamento das fibras apresentou mais impacto na cinética de hidratação que o TEOS, semelhantemente ao encontrado na etapa anterior. Com relação ao período de indução, para 0,1 % e 0,5 % de silano, houve um aumento de 4,79 % e 9,21 %, respectivamente. Já, quando 1,0 % de silano foi adicionado, houve um aumento de 19 %, resultado muito superior ao das referências, inclusive superior ao obtido na etapa anterior. O fluxo de calor das séries também foi afetado, no pico de aceleração a série tratada com 0,1 % de silano obteve aumento de 10,97 %, já as séries tratadas com 0,5 % e 1,0 % tiveram os valores reduzidos em 11,65 % e 9,86 %, respectivamente. Por outro lado, os valores de calor gerado e grau de hidratação do cimento obtiveram variações inferiores a 9 %. No caso do grau de hidratação, apesar de pequenas, essas variações podem apresentar grande impacto nas propriedades mecânicas dos concretos, uma vez que o índice de resistência para esse tipo de compósito é superior aos 150 MPa

Essa maior influência do GPTMS na cinética de hidratação do cimento é atribuída ao seu maior efeito estérico (em comparação ao TEOS), que resulta no efeito retardador similar ao de um superplastificante (COLLODETTI; GLEIZE; MONTEIRO, 2014; FENG et al., 2016). Esse fenômeno foi verificado em maior intensidade na etapa anterior, principalmente para as dosagens com 10 %, onde houve retardo na hidratação de até 64 %. Assim sendo, pode-se dizer que, de maneira geral, o tratamento de funcionalização da etapa definitiva não interferiu na cinética de hidratação dos CUADRF.

7.3.3 Resistência mecânica

7.3.3.1 Resistência à compressão

Na Fig. 107 e na Tabela 40, são apresentados os resultados de resistência à compressão dos CUADRF em 3, 7 e 28 dias de hidratação.

Nos resultados de 3 dias de hidratação com TEOS, verifica-se que houve perda de até 16,47 % nos índices de resistência quando utilizado 1,0 % de silano na funcionalização (série T_N_1,0%_C), em comparação com a série REF_2%_(vf). Já, com GPTMS, verifica-se que houve aumento da resistência dependendo do tratamento. Com 0,1 % de GPTMS, houve aumento de 1,37 % em relação à série REF_2%_(vf) na série G_N_0,1%_C. Por outro lado, quando 0,5 % ou 1,0 % de silano foram utilizados, os resultados foram reduzidos em 6,42 % e 10,50 %, respectivamente.

Fig. 107 - Resultados de resistência à compressão dos CUADRF da etapa definitiva

*0,1, 0,5 e 1,0 são os percentuais de silano nas soluções de funcionalização; As barras de erro correspondem a um desvio padrão para cima e um para baixo.

Tempo hidratação	Séries	Valor médio (MPa)	DP ^a (MPa)	CV ^b (%)	Var (%) ^c
	REF_2%(vf)	94,01	7,55	8,03	-
	T_N_0,1%_C	89,73	12,18	13,58	-4,55
SI	T_N_0,5%_C	87,33	8,29	9,49	-7,10
dia	T_N_1,0%_C	78,53	7,83	9,97	-16,47
$\tilde{\omega}$	G_N_0,1%_C	95,30	8,91	9,35	1,37
	G_N_0,5%_C	87,97	11,76	13,37	-6,42
	G_N_1,0%_C	84,13	13,75	16,34	-10,50
	REF_2%(vf)	129,95	12,80	9,85	-
	T_N_0,1%_C	108,53	8,59	7,91	-16,48
TS	T_N_0,5%_C	103,12	5,47	5,31	-20,65
dia	T_N_1,0%_C	99,41	12,21	12,28	-23,50
7	G_N_0,1%_C	109,72	6,75	6,15	-15,57
	G_N_0,5%_C	112,05	8,45	7,54	-13,77
	G_N_1,0%_C	112,88	10,97	9,72	-13,14
	REF_2%(vf)	172,40	6,69	3,88	-
	T_N_0,1%_C	163,90	5,53	3,38	-4,93
as	T_N_0,5%_C	171,98	5,46	3,18	-0,24
ib	T_N_1,0%_C	163,41	5,25	3,22	-5,21
28	G_N_0,1%_C	163,46	6,24	3,81	-5,18
	G_N_0,5%_C	174,26	4,88	2,80	1,08
	G_N_1,0%_C	163,74	5,93	3,62	-5,02

Tabela 40 – Resultados médios de f_c dos CUADRF da etapa definitiva

^a Desvio padrão; ^b Coeficiente de variação; ^c Variação em relação à série REF_2%(vf)

Os resultados de resistência à compressão das séries com 3 dias de hidratação mostram uma certa convergência com os resultados de calorimetria apresentados anteriormente. As amostras funcionalizadas com TEOS apresentaram uma curva de calor semelhante à série sem tratamento nas fibras (REF_2%_(vf)), principalmente no período de aceleração da hidratação que está relacionado à precipitação/ crescimento de C-S-H, e isso se refletiu nos índices similares de resistência à compressão. Já quando comparadas as curvas de calor dos concretos com fibras tratadas com GPTMS, verifica-se que a série $G_N_0,1\%_C$ apresentou um maior índice de fluxo de calor no pico de aceleração e as séries $G_N_0,5\%_C$ e $G_N_1,0\%_C$ apresentaram menor índice de fluxo no mesmo período. Essa mudança na cinética de hidratação do cimento refletiu nos resultados de resistência, que apresentaram a mesma tendência.

Para 7 dias de hidratação, em todas as séries produzidas obteve-se uma diminuição de 15 % a 23 % nos índices de resistência à compressão. Nas séries funcionalizadas com TEOS, a perda de resistência foi progressiva com o aumento de silano na funcionalização. Já nas séries funcionalizadas com GPTMS, a perda de resistência ficou na faixa dos 15 %.

Aos 28 dias de hidratação a resistência dos CUADRF com fibras funcionalizadas apresentam índices semelhantes ao da série REF_2%_(vf). Apenas na série G_N_0,5%_C obteve-se valor superior à referência em 1,08 %, as demais obtiveram valores inferiores. Entretanto, esses valores obtiveram uma variação inferior à 5,5 % em relação à série REF_2%_(vf).

Para clarificar o efeito da funcionalização das fibras na resistência à compressão, realizou-se a ANOVA entre as médias das séries nas diferentes idades. O resumo da ANOVA ³ é apresentado na Tabela 41.

Verifica-se que, para ambos os silanos, o impacto causado pela funcionalização na resistência à compressão é semelhante. Para 3 dias de hidratação o tratamento das fibras não apresentou impacto sobre os índices de resistência. Para os 7 dias de hidratação, a funcionalização afetou os valores de resistência, reduzindo-os e com 28 dias de hidratação o tratamento das fibras com silanos foi prejudicial quando 0,1 % e 1,0 % foram aplicados.

Esses resultados inferiores nas primeiras idades e resistências semelhantes ou superiores às referências aos 28 dias também foi observado por Kong *et al.* (2015) e Švegl *et al.* (2008). Por outro lado, Feng *et al.* (2016) observaram uma perda na resistência à compressão das argamassas com adição de 0,5 %_(massa) de GPTMS, tanto com 7 quanto com 28 dias de hidratação, de até 32 %. Porém, isso foi atribuído ao efeito incorporador de ar causado pela adição do silano. Por outro lado, utilizando a mesma composição apenas com adição de 5 %_(massa) de aditivo desincorporador de ar em relação à massa de silano, obteve-se aumento de 18,35 % e 9,85 % com 7 e 28 dias de hidratação, respectivamente.

¹⁸⁵

³ Os dados brutos são apresentados no Apêndice 2

Silano	Hidratação (dias)	Conclusão com 95 % de confiança
	3	Não há diferença significativa entre a média da série $REF_2\%_{(vf)}$ e as médias das séries funcionalizadas.
TEOS	7	Há diferença significativa entre as séries. As médias das séries funcionalizadas são iguais entre si e inferior à REF_2% $_{\rm (vf)}$
	28	Há diferença significativa entre as médias das séries. As séries REF_2% _(vf) e T_N_0,5%_C são iguais entre si; A série T_N_0,1%_C e T_N_1,0%_C são iguais entre si.
	3	Não há diferença significativa entre a média da série $REF_{2\%(vf)}$ e as médias das séries funcionalizadas.
GPTMS	7	Há diferença significativa entre as séries. As médias das séries funcionalizadas são iguais entre si e inferior à REF_2% $_{\rm (vf)}$
	28	Há diferença significativa entre as médias das séries. As séries REF_2%(vf) e G_N_0,5%_C são iguais entre si; A série G_N_0,1%_C e G_N_1,0%_C são iguais entre si.

Tabela 41 - Resumo da ANOVA da resistência à compressão da etapa definitiva

Outro fato interessante é que tanto no estudo de Švegl *et al.* (2008) como no de Feng *et al.* (2016), para resistência à compressão, as argamassas com dosagens 1,3 % e 1,0 % de silano obtiveram resultados inferiores aos de 0,6 e 0,5 %, respectivamente. Esses resultados corroboram com os resultados obtidos nessa pesquisa, uma vez que os resultados nas séries de CUADRF com a funcionalização realizada com 0,5 %, resultou em melhores índices que às séries com 1,0 % de silano.

7.3.3.2 Ensaio Barcelona

Nesta seção são apresentados os resultados médios de seis corpos de prova de cada série produzida de CUADRF e ensaiada aos 28 dias de hidratação, como ilustrado na Fig. 108.

Na Fig. 109 são apresentadas as curvas tensão x abertura circunferencial das séries funcionalizadas com TEOS, GPTMS e da série REF_2%_(vf). As curvas cheias são referentes à tensão (eixo primário) e as curvas pontilhadas são referentes à energia acumulada (eixo secundário).

Tanto no caso do TEOS como no caso da funcionalização com GPTMS, todas as séries funcionalizadas apresentaram desempenho inferior ao da série $\text{REF}_{2\%(vf)}$, tanto para tensão quanto para energia acumulada. A resposta mecânica à tração indireta seguiu uma tendência semelhante à verificada anteriormente nos ensaios de resistência à compressão, onde a séries tratada com 0,5 % de silano obteve resultados superiores às séries tratadas com 0,1 % e 1,0 %.

Fig. 109 - Ensaio Barcelona - Séries funcionalizadas com TEOS e GPTMS

(a) Curvas Tensão x abertura circunferencial e Energia x abertura circunferencial até 6 mm da séries com TEOS; (b) Detalhe em até 1 mm de abertura circunferencial destacado em (a); (c) Curvas Tensão x abertura circunferencial e Energia x abertura circunferencial até 6 mm da séries com GPTMS; (d) Detalhe em até 1 mm de abertura circunferencial destacado em (c); O trecho *strain hardening* indicado nos gráficos é referente à média da abertura circunferencial de todas as séries estudadas até o pico de tensão, que é 0,59 mm.

De maneira geral, para o TEOS, pôde-se notar que havia dois grupos de comportamento similares, um grupo formado pelas séries referência e funcionalizadas com 0,5 % e o outro grupo de desempenho inferior, formado pelas séries tratadas com 0,1 e 1,0 %. Para o GPTMS, houve menor similaridade do comportamento das séries e quando a série foi funcionalizada com 0,5 % exibiu melhor desempenho seguida da série 0,1 % e 1,0 %.

Para o TEOS, o comportamento característico dos dois grupos de séries foi mais evidente para os resultados de tenacidade ou para os índices de tensão até 1 mm de abertura circunferencial (Fig. 109 (b)). Com aberturas superiores à 1 mm, verificou-se uma convergência das curvas para um comportamento semelhante entre elas. Outro fator interessante é que para grandes aberturas (superiores a 3,5 mm) houve desempenho superior das séries T_N_0,5%_C, T_N_1,0%_C e G_N_0,5%_C em relação à REF_2%_(vf) nos índices de tensão.

Por se tratar de um CUADRF, há maior interesse em pequenas deformações (inferiores a 1 mm) que são apresentados nas Fig. 109 (b) e (d). Em deformações inferiores à 0,03 mm há um trecho elástico linear da curva devido às deformações pré-fissuração da matriz, ao redor dessa deformação os valores de abertura de fissura começam a aumentar com maior velocidade indicando a microfissuração do compósito com ambos os silanos analisados. Mesmo após a microfissuração, a linearidade da curva foi mantida indicando o comportamento de endurecimento característico do compósito e apresentou como "ponto de mudança" da curva a abertura dos 0,05 mm.

Nota-se que o período elástico-linear de todas as séries foi semelhante, de modo que os comportamentos característicos foram apenas em relação ao valor de tensão na ruptura e "ponto de mudança" das curvas, que no caso dos CUA-DFR com fibras funcionalizadas com silano, apresentaram-se em menores índices de tensão.

Uma hipótese a respeito desse desempenho mecânico inferior verificado nas séries funcionalizadas é a delaminação do filme de silano. Como discutido anteriormente, e considerando uma adesão adequada na interface fibra-matriz, pode haver a ruptura da interface superfície da fibra-filme de silano quando esse filme é solicitado mecanicamente. Essa teoria ganha força quando analisado os índices de tensão em 0,05 mm e de aumento de tensão até o pico de tensão do ensaio, apresentados na Fig. 110 e na Tabela 42.

Com exceção das séries T_N_0,1%_C e T_N_0,5%_C, todas as demais séries funcionalizadas apresentaram resultados de tensão de ruptura da matriz inferiores à REF_2%_(vf), em até 8 %, como na série funcionalizada com 1,0 % de TEOS. Por outro lado, nas séries T_N_0,5%_C, T_N_1,0%_C e G_N_0,5%_C obteve-se um ganho de resistência até o pico de tensão em relação à série REF_2%_(vf). Esse aumento na resistência, em relação à tensão de ruptura, pode ser atribuído à maior restrição ao arrancamento das fibras, uma vez que parte do silano é delaminado da superfície da fibra criando uma superfície rugosa, refletindo nesse comportamento.

Na Fig. 110 (b) são apresentados os resultados de tensão máxima e abertura circunferencial na tensão máxima. Semelhantemente ao obtido na ruptura dos CUADRF, as tensões máximas de todas as séries funcionalizadas apresentaram índices inferiores à série REF_2%_(vf). Com esses resultados fica evidente o desempenho da funcionalização com 0,5 % em relação aos demais volumes de silano analisados. Esse resultado refletiu também nos índices de aumento de resistência até o pico de tensão, em que apenas a série G_N_0,5%_C obteve aumento de tensão superior à série REF_2%_(vf). Apesar de inferiores, as médias nas séries funcionalizadas não apresentaram diferença significativa em relação à REF_2%_(vf) para o pico de tensão, com 95% de confiança. Outro fato relevante é que, independente do tratamento utilizado, os picos de tensão são registrados em uma abertura circunferencial inferior à série REF_2%_(vf). Isso mostra que a funcionalização aumentou a rigidez do compósito, principalmente para as séries tratadas com 0,5 % de silano, que apresentou o pico de tensão numa deformação 29,47 % menor que a referência.

Fig. 110 - Tensão em 0,05 mm, tensão máxima e abertura circunferencial no Ensaio Barcelona

(a) Eixo primário, resultados de tensão em 0,05 mm e no eixo secundário é o aumento da tensão no valor de pico de tensão em relação a tensão em 0,05 mm; Linha tracejada referente ao valor da série REF_2%_(vf) no eixo secundário; (b) Eixo primário, resultados de pico de tensão e no eixo secundário é a abertura circunferencial no pico de tensão; Linhas tracejadas referente ao valore da série REF_2%_(vf) em cada eixo.

Tabela 42 – Tensão em 0,05 mm	, tensão máxima e a	abertura circur	nferencial no	pico de te	n
	são no Ensaio Barc	relona			

sao no Ensaro Barcelona											
Sónios	Ter	1são en	n 0,05 mm	T	ensão	máxima	Ec n	Ec no pico de tensão			
Series	MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)	mm	DP	Var ^a (%)		
REF_2%(vf)	6,60	1,18	-	8,94	1,17	-	0,690	0,275	-		
T_N_0,1%_C	6,76	0,47	2,36	8,12	0,29	-9,11	0,578	0,113	-16,18		
T_N_0,5%_C	6,89	0,41	4,42	8,70	0,54	-2,65	0,628	0,101	-8,94		
T_N_1,0%_C	6,07	0,64	-8,05	7,97	0,71	-10,81	0,635	0,160	-7,97		
G_N_0,1%_C	6,40	0,83	-3,00	8,35	0,37	-6,56	0,552	0,141	-20,05		
G_N_0,5%_C	6,18	1,42	-6,46	8,66	0,44	-3,05	0,487	0,094	-29,47		
G_N_1,0%_C	6,35	0,34	-3,77	7,92	0,28	-11,42	0,577	0,105	-16,43		

DP é o desvio padrão; ª Variação em relação à série REF_2% (vf)

Para a verificação da resistência residual dos CUADRF, foram registrados e comparados os resultados em valores determinados de abertura circunferencial. Apesar da normativa do ensaio requerer apenas os índices em 2, 2,5 4 e 6 mm, também foram comparadas as aberturas de 0,5, 1,0 e 1,5, com o objetivo de identificar o comportamento em pequenas deformações, como apresentado na Fig. 111 e Tabela 43.

(a) e (b) Tensão x abertura circunferencial das séries funcionalizadas com TEOS; (c) e (d) Tensão x abertura circunferencial das séries funcionalizadas com GPTMS; As barras de erro correspondem a um desvio padrão para cima e um para baixo.

Tabela 45 – Elisalo Barcelolla - Resultados medios de resistencias residuais dos CUADE	Tabela 43	3 – Ensaio	Barcelona -	Resultados	médios o	de resistências	residuais	dos CUA	ADR
--	-----------	------------	-------------	------------	----------	-----------------	-----------	---------	-----

c	DEE	20/	_		TE	OS					GPTM	GPTMS			
$\epsilon_{\rm c}$	KEF_	2 70(vf)	0,1	%	0,5	%	1	0%	0	,1%	0,5	%	1,0)%	
(IIIII)	MPa	DP	MPa	DP	MPa	DP	MPa	DP	MPa	ı DP	MPa	DP	MPa	DP	
0,5	8,69	0,90	8,05	0,22	8,60	0,52	7,83	0,74	8,22	0,37	8,58	0,42	7,83	0,26	
1,0	8,66	1,21	7,67	0,45	8,28	0,69	7,51	0,61	7,65	0,55	8,06	0,60	7,50	0,32	
1,5	7,72	1,69	6,22	0,91	7,00	0,79	6,40	0,60	6,43	0,76	6,81	0,74	6,37	0,68	
2,0	6,27	1,54	4,77	0,71	5,75	0,70	5,50	0,47	5,29	0,67	5,61	0,64	5,15	0,76	
2,5	5,13	0,90	4,08	0,59	5,03	0,54	4,89	0,28	4,59	0,61	4,87	0,42	4,35	0,59	
4,0	3,58	0,56	3,00	0,61	3,68	0,25	3,48	0,43	3,20	0,51	3,68	0,37	3,18	0,54	
6,0	2,23	0,47	1,96	0,52	2,57	0,21	2,41	0,44	2,07	0,34	2,68	0,30	2,13	0,50	

 \mathcal{E}_c é a abertura circunferencial; DP é o desvio padrão em MPa.

Para pequenas deformações (Fig. 111 (a) e (c)), fica evidente o efeito do tratamento das fibras nas resistências pós-fissuração dos CUADRF. Percebe-se tanto para o TEOS quanto para o GPTMS com 0,5 %, em 0,5 mm de abertura, que os valores de resistência são semelhantes, apresentando resultados com menos de 0,5 MPa de diferença entre as séries. Nessa abertura, as séries tratadas com 0,1 e 1,0 %, apresentam resultados em torno de 10 % inferiores à referência. Já, com 1,0 e 1,5 mm de abertura, enquanto a resistência nas séries tratadas com 0,5 % obteve uma redução em torno de 8 %, as séries tratadas com 0,1 % e 1,0 %, apresentam resultados em torno de 16 % inferiores à referência. Nas aberturas superiores aos 2 mm (Fig. 111 (b) e (d)), as séries tratadas com silanos seguiram a mesma tendência de resultados inferiores na ordem dos 10 % em relação à referência. Porém, nas aberturas de 4 e 6 mm algumas séries apresentaram resultados superiores aos registrados pela série referência, como as séries T_N_0,5%_C e G_N_0,5%_C que obtiveram resultados 15 e 20 % superiores, respectivamente.

Os resultados superiores nas séries funcionalizadas, para grandes aberturas, podem ser atribuídos ao processo de funcionalização das fibras com silanos, mas também podem ser justificados pela variabilidade do ensaio, que tende a aumentar com o valor de abertura circunferencial. Essa variabilidade é mais crítica para o tipo de fibras utilizadas nessa pesquisa, principalmente para grandes aberturas onde, considerando uma situação ideal em que a interceptação da fissura pelas fibras é transversal, os índices de abertura de fissura superiores a 2 mm representam 31 % do comprimento embebido da fibra.

A absorção de energia mecânica no processo de fissuração é uma das propriedades mais representativas desses CUADRF. Assim, os resultados de tenacidade foram analisados nas aberturas determinadas anteriormente a partir da integração da área sobre a curva gerada no ensaio e são apresentados na Tabela 44 na forma de dados médios e na Fig. 112 na forma de variação em relação à série REF_2%_(vf).

	DFF	70/		TEOS					GPTN	GPTMS				
Ec	KEF_	2 /0(vf)	0,1	%	0,5	%	1,0	%	0,1	%	0,59	%	1,0	%
(mm)	E _m (J)	DP	E _m (J)	DP	E _m (J)	DP	E _m (J)	DP	E _m (J)	DP	E _m (J)	DP	E _m (J)	DP
0,5	154,8	16,1	143,7	4,8	153,6	8,07	140,8	14,5	148,3	5,6	152,1	5,5	139,8	5,1
1,0	328,6	36,1	301,4	10,8	322,4	18,86	295,9	27,9	308,1	12,6	319,5	14,6	294,3	9,6
1,5	491,2	65,2	439,6	23,3	474,8	30,56	434,3	35,0	448,5	23,7	468,7	26,1	431,7	17,1
2,0	631,7	97,9	547,2	37,2	599,9	43,35	551,8	40,2	563,5	36,8	590,7	37,4	545,9	30,4
2,5	745,1	119,1	636,1	48,9	708,3	54,96	656,8	44,6	662,9	48,9	695,6	46,4	640,8	42,2
4,0	1000,2	149,8	845,2	82,8	963,6	74,12	900,8	55,6	891,8	80,4	946,6	65,3	863,5	69,1
6,0	1226,1	173,6	1039,5	127,6	1207,9	88,48	1131,4	78,0	1095,9	111,9	1197,4	82,5	1071,2	104,9

Tabela 44 - Ensaio Barcelona - Resultados médios de tenacidade dos CUADRF

 \mathcal{E}_{c} é a abertura circunferencial; \mathcal{E}_{m} é a energia mecânica acumulada; DP é o desvio padrão.

Fig. 112 - Ensaio Barcelona - Variação da tenacidade em relação à série REF_2% (vf)

(b) Séries funcionalizadas com GPTMS

A tenacidade das séries funcionalizadas com silanos apresentaram valores inferiores aos da série REF_2% (vf) em todo o ensaio, para ambos os silanos utilizados. A menor variação de tenacidade foi obtida nas séries tratadas com 0,5% de silano.

As curvas de variação da tenacidade apresentaram uma semelhança de comportamento. Aumentam progressivamente a variação em relação à referência, principalmente dos 1,5 aos 2,5 mm de abertura circunferencial, devido aos índices superiores de resistência, impactando nos resultados de energia acumulada. A partir dos 2,5 aos 6 mm de abertura, há uma diminuição da variação, com exceção da série T_N_1,0%_C que tem aumento de variação progressivo em todo o ensaio. Essa diferença na variação diminui para as grandes deformações, pela convergência das curvas para um comportamento similar, como observado na Fig. 109. Em contraste com os valores obtidos de tensão, mesmo para as grandes deformações (superiores a 2,5 mm), a série referência obteve os melhores resultados.

Apesar de verificado uma perda da capacidade de absorção de energia pelos CUADRF funcionalizadas, nas séries tratadas com 0,5 % de silano a variação foi em torno de 6 %, para as aberturas de 2 mm, podendo-se afirmar que a funcionalização pouco influenciou nessa propriedade do compósito. Já as séries com 0,1 % e 1,0 % de silano obtiveram índices inferiores à 10 % na maioria das aberturas circunferenciais analisadas.

De maneira geral, em relação à tenacidade dos CUADRF, a funcionalização das fibras manteve uma relação com os resultados de resistência à compressão. Isto é, dependendo da quantidade utilizada de silano, não afetou as propriedades do compósito e quando interferiu, o seu efeito foi prejudicial.

7.3.3.3 Flexo-tração (Limite de proporcionalidade e resistência residual)

Nesta seção serão apresentados os resultados médios de corpos de prova de cada série produzida de CUADRF e ensaiada aos 28 dias de hidratação, como ilustrado na Fig. 113.

Fig. 113 - Exemplo da apresentação das curvas geradas ensaio de flexo-tração

Série REF_2%(vf): (a) Curva carga x Abertura de fissura dos corpos de prova até 4 mm; (b) Curva média

Na Fig. 114 são apresentadas as curvas de tensão x abertura de fissura das séries funcionalizadas com TEOS, GPTMS e da série REF_2%(vf). As curvas cheias são referentes à tensão (eixo primário) e as curvas pontilhadas são referentes à energia acumulada (eixo secundário).

Tanto no tratamento com TEOS quanto com GPTMS, a melhora mais representativa foi quando as séries foram funcionalizadas com 0,5 % de silano. Por um lado, corrobora com os resultados obtidos de tração indireta no Ensavo Barcelona, pelo fato das melhores misturas serem as tratadas com 0,5 %. Mas por outro lado, diverge pelo fato de ter-se obtido resultados superiores à série REF_2%(vf) em pequenas deformações.

No caso das séries tratadas com TEOS, em abertura de fissura superiores à 1 mm, o comportamento das séries convergiu para um mesmo ponto. Esse fato fica mais evidente nas curvas de tenacidade, que mostram uma diferença mais expressiva a partir dos 2 mm de abertura de fissura. Apesar dessa similaridade, em deformações inferiores à 1 mm, a funcionalização das fibras resultou em uma certa heterogeneidade tanto na fase elástica quanto na fase de resistência residual, como observado na Fig. 114 (b). Na fase elástica, pôde-se verificar dois grupos característicos, um formado pelas séries REF_2% (vf) e T_N_1,0%_C, e o outro formado pelas séries T_N_0,1%_C e T_N_0,5%_C. O primeiro grupo apresenta uma maior rigidez em relação ao segundo grupo. Porém, aos 0,4 mm de abertura de fissura, com exceção da série T N 0,5% C, as curvas médias praticamente se sobrepõem até o final do ensaio. No caso dessa série (T N 0,5% C), verificou-se um aumento expressivo, tanto de resistência,

quanto de valor de abertura de fissura no pico de tensão, chegando a valores de 15 % e 37 %, respectivamente, superiores à série $\text{REF}_{2\%(vf)}$.

Fig. 114 - Flexo-tração - Séries funcionalizadas com TEOS e GPTMS

(a) Curvas Tensão x abertura de fissura e Energia x abertura de fissura até 4 mm das séries com TEOS;
(b) Detalhe em até 1 mm de abertura de fissura destacado em (a); (c) Curvas Tensão x abertura circunferencial e Energia x abertura de fissura até 4 mm das séries com GPTMS; (d) Detalhe em até 1 mm de abertura de fissura destacado em (c).

Nas séries com GPTMS houve uma maior similaridade do comportamento dos concretos, como evidenciado nas curvas médias da Fig. 114 (c). Para aberturas superiores à 1 mm, verificou-se que as curvas praticamente se sobrepõem já a partir dos 1,5 mm de abertura de fissura. Esse comportamento reflete também nos índices de tenacidade, evidenciado pelas curvas de energia acumulada, praticamente, sobrepostas. Para aberturas inferiores a 1 mm Fig. 114 (c), nota-se que na fase elástica houve uma homogeneidade do comportamento das séries analisadas. Para tensão, apenas a partir dos 0,4 mm de abertura de fissura a série G_N_0,5%_C apresenta índices superiores, obtendo ganhos de até 9,4 % em relação à série $REF_{2\%(vf)}$.

Apesar de em algumas séries funcionalizadas resultarem na melhora do comportamento mecânico à flexão, houve uma grande similaridade de todas as curvas, que pode ser justificado pelo fato das séries serem fabricadas com a mesma proporção de constituintes no concreto. A funcionalização das fibras com os silanos, apesar de interferir nas propriedades do concreto, possui uma interferência em grau muito inferior que a variação do volume de fibras ou variação do tipo de fibras adicionados ao concreto, como quando normalmente se compara compósitos reforçado com fibras.

Para avaliar os efeitos da funcionalização nas propriedades dos CUA-DRF, realizou-se a comparação dos resultados em deformações específicas, como em: 0,05 mm, na deformação referente ao módulo de ruptura e nas aberturas de fissura de 0,5, 1,0, 1,5, 2,5 e 3,5 mm.

Na Fig. 115 e Tabela 48 são apresentados os resultados obtidos para o limite de proporcionalidade (LOP) definido pela norma UNE-EN 14651+A1 (2007 b) em 0,05 mm de abertura de fissura.

Fig. 115 - Flexo-tração - Resultados de LOP das séries de CUADRF

*As barras de erro correspondem a um desvio padrão para baixo e um para cima.

Tabela 45 –	 Ensaio 	de flex	o-tração -	Resultados	médios	de LOP	dos	CUADRF

Sómios			Tensão			Те	nacidade	
Series	MPa	DP	CV (%)	Var ^a (%)	J	DP	CV (%)	Var ^a (%)
REF_2%(vf)	4,14	1,47	35,43	-	0,0244	0,0090	36,68	-
T_N_0,1%_C	2,62	1,17	44,76	-36,7	0,0144	0,0062	43,16	-41,0
T_N_0,5%_C	2,98	0,45	15,09	-28,0	0,0183	0,0041	22,12	-25,0
T_N_1,0%_C	3,65	0,59	16,27	-11,8	0,0202	0,0041	20,36	-17,3
G_N_0,1%_C	4,13	1,73	41,82	-0,3	0,0220	0,0092	41,65	-10,0
G_N_0,5%_C	3,11	0,23	7,33	-25,0	0,0170	0,0015	8,91	-30,6
G_N_1,0%_C	3,14	0,36	11,62	-24,3	0,0174	0,0021	12,25	-28,6

DP é o desvio padrão; CV é o coeficiente de variação; a Variação em relação à série REF_2% (vf).

Nenhuma série funcionalizada apresentou resultados superiores à série REF_2%_(vf) para o LOP. Enquanto na série REF_2%_(vf) foi obtido 4,14 MPa, a série que mais se aproximou foi a G_N_0,1%_C, com resultado 0,3 % inferior. As demais séries apresentaram resultados de 11,8 % a 36,7 % inferiores. Os resultados de tenacidade, por ser um deslocamento extremamente pequeno, mostram uma tendência semelhante aos dados de tensão, apresentando de 10 % a 41 % de redução nos resultados. Essa variação de desempenho, mesmo à pequena deformação, pode ser atribuída ao fato de que esse tipo de compósito possui uma quantidade de fibras superior ao seu volume crítico, de modo que as fibras interferem também nas propriedades pré-pico de tensão e pré-fissuração.

Apesar da redução de desempenho para o LOP, esse índice apresentou grande dispersão dos dados, chegando a coeficientes de variação de até 44,7 % para tensão e de 43,1 % para tenacidade, indicando que as médias podem ser estatisticamente iguais. Assim, realizou-se uma ANOVA desses resultados e constatou-se que para os resultados de LOP, apenas a série $T_N_0,1\%_C$ não é igual à série REF_2%_(vf), com 95 % de confiança. Esse resultado corrobora com a tendência de resultados mecânicos anteriores, ou seja, a funcionalização tende a não influenciar nos índices de LOP, mas quando afetou, resultou em índices inferiores à referência.

Na Fig. 116 e Tabela 46 são apresentados os resultados médios obtidos no MOR dos CUADRF. Para os índices de tensão máxima, verificou-se que todas as séries apresentaram resultados superiores aos da série $REF_2\%_{(vf)}$. Na série $REF_2\%_{(vf)}$ obteve-se 22,55 MPa, enquanto que nas séries com fibras funcionalizadas com TEOS obteve-se aumentos de 2,1 %, 15,9 % e 3,2 % para as séries tratadas com 0,1 %, 0,5 % e 1,0 % de silano, respectivamente. Apesar de apresentar a mesma tendência dos concretos estudados na etapa preliminar, verifica-se que a série tratada com 1,0 % de silano teve uma redução no seu efeito em relação à série da etapa anterior, que obteve 15,01 % de aumento do MOR.

Os CUADRF com fibras funcionalizadas com GPTMS obtiveram aumentos de 1,8 %, 9,4 % e 2 % para as séries tratadas com 0,1 %, 0,5 % e 1,0 %, respectivamente. Semelhantemente às séries funcionalizadas com TEOS, essas séries funcionalizadas com GPTMS tiveram uma redução do seu impacto em relação às séries estudadas na etapa preliminar. Anteriormente obteve-se aumentos de 10,77 % e 11,01 % para os tratamentos de 0,1 % e 1,0 % em relação às séries sem tratamento.

Uma hipótese que pode explicar essa redução de eficiência do tratamento de silano é o grau de hidratação dessas séries, que está relacionado com a formação e precipitação de Ca(OH)₂ na zona de interface fibra-matriz e capacidade de formação de produtos hidratados pela interação com o filme de silano para a densificação da região. Na etapa preliminar, obteve-se 45,2 % de cimento hidratado para a série tratada com 1,0 % de TEOS, já na etapa definitiva, o grau de hidratação foi de 42,54 %. Fenômeno semelhante às séries tratadas com

GPTMS, onde na etapa preliminar as séries tratadas com 0,1 % e 1,0 % obtiveram 45,21 % e 41,57 % de cimento hidratado, respectivamente, enquanto que nessa etapa, as séries tratadas com 0,1 % e 1,0 % obtiveram 41,9 % e 40,02 % de cimento hidratado, respectivamente.

(a) Eixo primário é a tensão máxima e no eixo secundário é a abertura de fissura x tipo de série

(b) Tenacidade no MOR

*As barras de erro correspondem a um desvio padrão para baixo e um para cima

		l'ensão	no MO	R			Wp		Te	Tenacidade no MOR				
Séries	MPa	DP	CV (%)	Var ^a (%)	mm	DP	CV (%)	Var ^a (%)	E _m (J)	DP	CV (%)	Var ^a (%)		
REF_2% _(vf)	22,55	3,35	14,87	-	0,63	0,09	15,01	-	2,21	0,43	19,57	-		
T_N_0,1%_C	23,02	3,41	14,83	2,1	0,64	0,13	19,69	2,28	2,10	0,53	25,07	-5,13		
T_N_0,5%_C	26,14	2,39	9,21	15,9	0,86	0,15	17,50	37,64	3,40	0,80	23,57	53,84		
T_N_1,0%_C	23,28	2,10	9,03	3,2	0,59	0,09	15,65	-5,31	2,11	0,44	21,06	-4,65		
G_N_0,1%_C	22,96	2,35	10,22	1,8	0,55	0,13	23,47	-12,30	1,90	0,65	34,40	-14,12		
G_N_0,5%_C	24,68	3,26	13,22	9,4	0,63	0,10	15,55	0,68	2,35	0,54	23,01	6,16		
G_N_1,0%_C	23,02	4,99	21,70	2,0	0,62	0,05	8,01	-1,71	2,14	0,49	22,96	-3,36		

Tabela 46 - Flexo-tração - Resultados médios de MOR dos CUADRF

DP é o desvio padrão; CV é o coeficiente de variação; ^a Variação em relação à série REF_2%_{(vb}; w_p é a abertura de fissura no MOR; E_m é a energia mecânica acumulada.

Para abertura de fissura no pico de tensão, verifica-se que a série REF_2%_(vf) apresentou o pico de tensão em 0,63 mm. Com exceção das séries T_N_0,5%_C e G_N_0,1%_C, que tiveram resultados 37,6 % superior e 12,3 % inferior, respectivamente, as demais séries analisadas apresentaram aberturas na ordem dos 0,6 mm, ou seja, com menos de 6 % de diferença em relação à série REF_2%_(vf).

Essa diferença de resultados para abertura de fissura reflete diretamente nas propriedades do compósito de absorver energia e que, apesar do aumento da resistência das séries com fibras funcionalizadas em relação à série REF_2%_(vf), quando analisado os resultados de tenacidade, nota-se que apenas as séries

T_N_0,5%_C e G_N_0,5%_C obtive ram aumentos de tenacidade em 53,84 % e 6,16 %, respectivamente.

Esse aumento na tenacidade para série $T_N_0,5\%_C$ é resultado da maior resistência em conjunto com o aparecimento do pico de tensão em deformações maiores. Na série $G_N_0,5\%_C$, o aumento de tenacidade não foi pronunciado porque, por um lado, houve somente aumento resistência em relação a REF_2% (vf), mas, por outro lado, o pico de tensão foi registrado em menor valor de abertura de fissura. Para verificar se o impacto da funcionalização das fibras foi significativo para os índices estudados no MOR, realizou-se uma análise de variância (ANOVA) das médias dos resultados e quando da diferença entre médias, foram comparadas entre si pelo método de Duncan. As conclusões da análise são sumarizadas e apresentadas na Tabela 47.

Com base nos resultados obtidos para o MOR, pode-se dizer que a funcionalização com TEOS não influência na resistência do compósito. Por outro lado, influenciou positivamente na tenacidade dos CUADRF dependendo da dosagem no processo de funcionalização. Já com GPTMS, apesar do ganho de resistência e tenacidade em determinadas dosagens, os resultados indicam que não houve diferença em relação à REF_2%_(vf).

Silano	Propriedade	Conclusão com 95 % de confiança
	MOR	Não há diferença significativa entre a média da série REF_2%(vf) e as médias das séries funcionalizadas.
TEOS	wp	Apenas a série T_N_0,5%_C apresenta diferença signifi- cativa no valor de abertura de fissura.
	Tenacidade	Apenas a série T_N_0,5%_C apresenta diferença signifi- cativa no valor de tenacidade.
GPTMS	MOR	Não há diferença significativa entre a média da série $REF_{2\%(vf)}$ e as médias das séries funcionalizadas.
	Wp	Não há diferença significativa entre a média da série $REF_{2\%(vf)}$ e as médias das séries funcionalizadas.
	Tenacidade	Não há diferença significativa entre a média da série $REF_2\%_{(vf)}$ e as médias das séries funcionalizadas.

Tabela 47 – Resumo da ANOVA dos resultados de MOR dos CUADRF da etapa definitiva

Para a verificação da resistência residual dos CUADRF, foram registrados e comparados os resultados nas aberturas de fissura de 0,5, 1,0, 1,5, 2,5 e 3,5 mm. Pelo fato dos resultados serem semelhantes, principalmente para aberturas superiores à 1 mm (Fig. 114), para melhor visualização, os resultados são apresentados graficamente na forma de resistência residual relativa à série REF_2% (vf) (Fig. 117) e dados médios na Tabela 48.

Fig. 117 – Flexo-tração – Resistência residual relativa à série REF_2% (vf) dos CUADRF com fibras funcionalizadas

*A linha tracejada é referente ao valor de resistência da série REF_2% (vf).

	1 abela 40	T ICAO-ti aça	io - Resultados	metalos de les	sistencia residu		.1.		
DE	DEE 20/		TEOS		GPTMS				
1)	XE/F_ 2 ⁻⁷⁰ (vf)	0,1 %	0,5 %	1,0 %	0,1 %	0,5 %	1		
", <u> </u>	MPa DP	MPa DP	MPa DP	MPa DP	MPa DP	MPa DP	MP		

	$REF_2\%_{(vf)}$			IEOS						GFIMS						
W (mm)			0,1 %		0,5	0,5 %		1,0 %		0,1 %		0,5 %		1,0 %		
(IIIII)	MPa	DP	MPa	DP	MPa	DP	MPa	DP	MPa	DP	MPa	DP	MPa	DP		
0,5	20,32	3,28	22,31	3,64	22,41	1,92	22,14	1,53	22,19	2,55	23,87	2,85	22,48	4,78		
1,0	21,52	3,37	21,35	3,15	25,40	2,77	21,93	2,10	21,05	2,44	23,21	3,24	21,77	4,69		
1,5	19,64	3,23	18,43	3,09	21,69	2,53	19,54	1,91	18,51	2,26	20,29	3,09	19,35	4,04		
2,5	15,17	3,27	14,08	2,92	16,25	1,88	15,44	1,46	14,25	1,54	15,21	2,34	15,29	3,26		
3,5	11,73	3,37	10,50	2,73	12,35	1,34	12,11	1,82	10,87	1,43	11,18	1,98	11,84	2,49		
			1. C	DD /	a deserte											

w é a abertura de fissura; DP é o desvio padrão;

De maneira geral, para ambos os silanos somente quando 0,5 % de silano foi aplicado na funcionalização houve um impacto nos resultados de resistência residual dos CUADRF. Apesar disso, com TEOS, houve um aumento expressivo de tensão até 1,0 mm, enquanto que com GPTMS, o maior índice foi obtido com 0.5 mm de abertura de fissura

Na abertura de fissura de 0,05 mm, a funcionalização com TEOS não apresentou impacto significativo, as séries obtiveram resultados semelhantes à REF 2%(vf), com cerca de 3 % de aumento, dependendo da dosagem. Já, a funcionalização com GPTMS mostrou-se mais efetiva em pequenas deformações, resultando em aumentos de até 9,8 % (G N 0,5% C) em relação à REF 2% (vf).

Na abertura de fissura de 1,0 mm, nas séries T N 0,5% C e G_N_0,5%_C obteve-se resultados 18 % e 7,9 % superiores à série REF_2%(vf), respectivamente. Já, nas demais séries obteve-se variações em relação à série REF 2% (vf) na ordem dos 2 % para mais ou para menos.

Para as aberturas de fissura superiores à 1,0 mm, nota-se que os resultados convergiram para um comportamento similar, sobretudo pelo aumento do desvio padrão com o crescimento da fissura devido ao menor embutimento da fibra e menor capacidade da fibra interceptar a região da fissura.

Análoga à apresentação dos resultados de resistência residual, na Fig. 118 e Tabela 49 são apresentados os resultados de tenacidade relativa e valores médios, respectivamente, nas aberturas de fissuras pré-determinadas.

Nas séries com TEOS, houve um aumento da tenacidade com funcionalização das fibras. Nas séries com GPTMS verificou-se uma tendência similar ao detectado no TEOS, porém com menor influência nos resultados. Com relação à concentração de silanos na funcionalização, para ambos os silanos estudados, com 0,1 % houve uma tendência de diminuir os resultados em comparação com a série REF_2% (vf). Nas séries com 0,5 % de silano na funcionalização os resultados foram superiores à referência e com 1,0 % pouca ou nenhuma influência foi verificada.

Na abertura de fissura de 0,5 mm, na série REF_2%_(vf) foi obtido 1,53 J, enquanto que nas séries T_N_0,1%_C e T_N_0,5%_C obteve-se índices cerca de 10 % inferiores à série sem tratamento. Esse resultado ocorreu pelo fato que essas duas séries apresentaram uma menor rigidez até os 0,6 mm, refletindo nesses menores índices de energia acumulada. Já nas séries tratadas com GPTMS, os resultados foram semelhantes em comparação aos resultados da série REF_2%_(vf), gerando menos de 5 % de diferença para 0,5 mm de abertura de fissura.

Fig. 118 - Flexo-tração - Tenacidade relativa à série REF_2% (vf) dos CUADRF com fibras funcionali-

* A linha tracejada é referente ao valor de tenacidade da série REF_2% (vf).

	$REF_2\%_{(vf)}$			TEOS						GPTMS						
w			0,1	0,1 %		0,5 %		1,0 %		0,1 %		0,5 %		1,0 %		
(mm)	E _m (J)	DP	E _m (J)	DP	E _m (J)	DP	Em	DP	E _m (J)	DP	E _m (J)	DP	E _m (J)	DP		
0,5	1,53	0,26	1,38	0,23	1,36	0,14	1,56	0,11	1,61	0,34	1,57	0,15	1,48	0,26		
1,0	3,99	0,53	3,84	0,57	4,08	0,24	4,08	0,21	4,05	5 0,56	4,25	0,45	3,99	0,80		
1,5	6,27	0,86	6,07	0,89	6,72	0,46	6,39	0,41	6,25	5 0,80	6,66	0,78	6,27	1,28		
2,5	10,13	1,52	9,78	1,51	11,01	0,93	10,30	0,73	9,91	1,18	10,63	1,35	10,15	2,07		
3,5	13,07	2,17	12,55	2,10	14,20	1,26	13,35	0,96	12,6	9 1,42	13,54	1,79	13,14	2,67		

E_m é a energia mecânica acumulada; DP é o desvio padrão.

Na abertura de 1,0 mm, houve aumento de tenacidade mais expressivo com a série T_N_0,5%_C (cerca de 13 %). Esse resultado pode ser atribuído à maior de tensão na abertura de fissura superior à série REF_2%_(vf). Já, o resultado verificado na série G_N_0,5%_C é devido à maior tensão obtida no ensaio, pois o pico de tensão apareceu em uma abertura de fissura semelhante à REF_2%_(vf). Interessante notar que a partir de 1,0 mm de abertura de fissura, mesmo as curvas de tensão x abertura de fissura convergindo para um comportamento similar, os resultados de tenacidade para as amostras com 0,5 % de silano mostraram resultados superiores aos da REF_2%_(vf). Em 2,5 mm de abertura, valor associado ao limite último de serviço de estruturas, as séries T_N_0,5%_C e G_N_0,5%_C obtiveram 8,71 % e 4,92 %, respectivamente, de aumento em relação à série REF_2%_(vf), evidenciando que a funcionalização pode apresentar potencial para impactar positivamente nas propriedades pós-fissuração de CUADRF.

Para explicar o comportamento de cada tipo de silano analisado nesse ensaio de flexão, levantou-se uma hipótese a respeito do método de fratura da zona de transição e interface fibra funcionalizada-matriz cimentícia. Essa teoria descreve os resultados das séries tratadas com 0,5 %, pois as demais séries apresentaram um comportamento semelhante ao das séries REF_2% (vf), que pode ser descrito pelos modelos tradicionais de fratura de CRF. Trata-se de que a interação fibra funcionalizada-matriz pode sido suficientemente forte para ocasionar fraturas no interior da matriz cimentícia. Esse modelo de fratura gera uma superfície rugosa por haver matriz cimentícia aderia à superfície da fibra que dificulta o seu arrancamento do interior da matriz. Uma vez fissurada a região de interface, o que predomina é o comportamento de aumento de tensão para o arrancamento da fibra (*slip-hardening*), resultando no aumento ou menor perda de resistência pós-fissuração, como observado nas séries T_N_0,5%_C e G_N_0,5%_C.

7.3.3.4 Ensaio de Pull-out

Nesta seção são apresentados os resultados médios de seis corpos de prova de *pull-out* de cada série produzida de CUADRF e ensaiada com 3, 7 e 28 dias de hidratação, como ilustrado na Fig. 119.

Fig. 119 – Exemplo da apresentação das curvas geradas no ensaio de pull-out

Série REF_2%(vf). (a) Curva carga x Abertura de fissura dos corpos de prova; (b) Curva média.

As curvas do ensaio de pull-out das séries funcionalizadas com TEOS são apresentadas na Fig. 120. Verifica-se, de maneira geral, que o processo de funcionalização resultou em aumentou de tensão, principalmente para nas séries tratadas com 1,0 % de silano, independentemente do tempo de hidratação. Notase, pela Fig. 120 (a), que em 3 dias de hidratação houve uma similaridade das curvas, com exceção da série T_N_0,1%_C, que obteve maiores índices de tensão, principalmente para aberturas de fissuras inferiores à 1 mm. Já, nas séries tratadas com 0,1 % e 0,5 %, obteve-se menores índices de tensão ao longo de todo o ensaio. A partir de 1 mm houve uma convergência de todas as curvas para um comportamento similar. Para auxiliar a análise, na Fig. 120 (b) são expostas as curvas até 1 mm de abertura de fissura. Nota-se que na série T N 1,0% C foi obtido índices na ordem dos 4 MPa, enquanto que nas demais séries obteve-se resultados na ordem dos 3 MPa, evidenciando a influência da funcionalização nas propriedades compósito. Em paralelo, a tenacidade também evidencia esse impacto da funcionalização nas propriedades mecânicas. Como o pico de tensão da amostra funcionalizada com 1,0 % aparece em pequenas deformações, gerouse aumentos de até 30.5 % nos índices de tenacidade em 1 mm de abertura.

Em 7 dias de hidratação (Fig. 120 (c)) nota-se que também houve uma similaridade do comportamento das curvas, principalmente em grandes aberturas de fissuras. Porém, para aberturas inferiores à 1 mm (Fig. 120 (d)), nota-se que em todas as séries funcionalizadas obteve-se índices superiores à série REF_2% (vf), o que é mais evidente na série T_N_1,0%_C. Nota-se que a maior influência da funcionalização foi nos períodos iniciais da solicitação mecânica, resultando em um índice superior de tensão para o arrancamento da fibra do interior da matriz. Uma vez fraturada a região de interface, houve uma convergência para índices semelhantes de tensão e perfil da curva. As curvas de tenacidade também demonstram a potencialidade da funcionalização, já aos sete dias de hi-

dratação. Nesse caso, apesar da convergência das curvas para um comportamento semelhante, em 1 mm de abertura de fissura evidencia-se o efeito benéfico da funcionalização na tenacidade dos concretos.

Fig. 120 – Curvas de *pull-out* das séries funcionalizadas com TEOS

Curvas contínuas de tensão x abertura de fissura no eixo primário e curvas pontilhadas de Tenacidade x abertura de fissura no eixo secundário. (a) Séries ensaiadas em 3 dias de hidratação; (b) Detalhe em 1 mm de abertura de fissura destacado em (a); (c) Séries ensaiadas em 7 dias de hidratação; (d) Detalhe em 1 mm de abertura de fissura destacado em (c); (e) Séries ensaiadas em 28 dias de hidratação; (f) Detalhe em 1 mm de abertura de fissura destacado em (e).

Em 28 dias de hidratação (Fig. 120 (e)) a influência do tratamento de funcionalização foi mais evidente. Apesar da série T_N_0,1%_C de silano não apresentar melhora significativa, inclusive apresentar pior desempenho para aberturas superiores à 1 mm em relação à série referência, nas séries tratadas com 0,5 % e 1,0 % obteve-se resultados superiores em até 30,4 % e 35,6 %, respectivamente, em relação à série referência. As séries podem ser separadas em dois grupos, um formado pelas séries REF_2%_(vf) e T_N_0,1%_C e outro formado pelas séries T_N_0,5%_C e T_N_1,0%_C que quando analisado até 1 mm de abertura de fissura (Fig. 120 (f)) mostram que os dois grupos têm um comportamento heterogêneo, o que é refletido também nas curvas de tenacidade. Basicamente, com 0,1 % de silano o comportamento foi similar à série referência, enquanto que com 0,5 % e 1,0 %, obteve-se um aumento nas propriedades do compósito.

O desempenho inferior na série T_N_0,1%_C, em relação à série referência, pode ser pela qualidade e/ ou heterogeneidade do filme de silano na superfície da fibra, discutido anteriormente. Já, a melhora pronunciada do comportamento mecânico nas séries T N 0,5% C e T N 1,0% C pode ser justificada pelo efeito pozolânico da funcionalização das fibras com silano. Essa melhora é controversa, uma vez que o ensaio de flexo-tração não mostrou essa tendência tão evidente e muito menos no ensayo Barcelona, que mostrou resultados inferiores quando comparado com a série sem tratamento com silano. Essa melhora obtida nos ensaios de pull-out pode ser justificada pelo método de ensaio. Nesse ensaio de *pull-out* as fibras funcionalizadas são cuidadosamente embebidas no CUADRF, enquanto que nos demais ensaios as fibras funcionalizadas são misturadas de maneira "normal" no processo de homogeneização da mistura. Essa mistura gera abrasão das partículas do concreto com a superfície das fibras que danificam e delaminam a superfície funcionalizada, resultando nessa menor qualidade do filme de silano na superfície da fibra. Por outro lado, no ensaio de pullout, as fibras não sofrem abrasão no processo de fabricação dos corpos, favorecendo a influência da película de silano nas propriedades da interface fibra-matriz.

Análoga às séries funcionalizadas com TEOS, as curvas das séries funcionalizadas com GPTMS são apresentadas na Fig. 121. A funcionalização das fibras com GPTMS, de modo geral, apresentou melhora no desempenho mecânico em maiores tempos de hidratação. Apesar de menos pronunciada em comparação à melhora detectada com a funcionalização com TEOS, o GPTMS influenciou significativamente nos índices avaliados, principalmente para aberturas de fissura inferiores à 1 mm.

Em 3 dias de hidratação (Fig. 121 (a)), nas séries $G_N_0, 1\%_C$ e $G_N_1, 0\%_C$ obteve-se um comportamento inferior à série referência, enquanto que na $G_N_0, 5\%_C$ obteve-se um comportamento mecânico superior. Até 1 mm de abertura de fissura (Fig. 121 (b)), percebe-se que as séries funcionalizadas se mostram mais "elásticas" que a série referência, onde os índices de tensão

até 0,2 mm das séries funcionalizadas são superiores à série referência, sugerindo que mesmo em pequenas idades, a funcionalização interfere nas propriedades dos concretos. Por outro lado, as tenacidades das séries foram bastante semelhantes, onde todas as séries obtiveram resultados da ordem dos 0,25 J.

Com 7 dias de hidratação (Fig. 121 (c)) as curvas apresentaram comportamentos similares até os 5 mm de abertura de fissura, sendo que a série $G_N_{1,0\%}$ C apresenta-se superior em todo o ensaio. Entretanto, quando analisado em até 1 mm de abertura de fissura (Fig. 121 (d)) verifica-se que diferentemente das avaliações anteriores onde as séries mostravam mais elásticas, nesse caso a funcionalização resultou em pouca influência dos índices mecânicos em pequenas aberturas, onde todas as séries praticamente se sobrepõem até 0,1 mm de abertura de fissura. Isso se reforça quando avaliado os índices de tenacidade das séries funcionalizadas, que apresentam menos de 12 % de aumento em relação à série referência em 1 mm de abertura de fissura.

Com 28 dias de hidratação (Fig. 121 (e)) a série G_N_0,1%_C apresentou praticamente o mesmo comportamento que a série referência até em torno de 0,4 mm de abertura de fissura. A partir desse valor de abertura, obteve desempenho inferior em relação à série referência. A série G_N_0,5%_C apresentou maior tensão até em torno de 1,0 mm, enquanto que a série G_N_1,0%_C apresentou maior índice de tensão em todo o ensaio. Até 1,0 mm de abertura de fissura ((Fig. 121 (e)), semelhantemente à funcionalização com TEOS, pode-se dizer que há dois grupos de séries com comportamentos mecânicos similares, um grupo formado pelas séries REF_2%_(vf) e G_N_0,1%_C e outro formado pelas séries G_N_0,5%_C e G_N_1,0%_C, evidenciado também pelos índices de tenacidade.

Como verificado, a funcionalização das fibras com GPTMS também podem beneficiar as propriedades mecânicas dos CUARDF. Por outro lado, o GPTMS mostrou influenciar as propriedades mecânicas em menor intensidade que o TEOS. Isso pode ser atribuído ao TEOS possuir 4 ligações alcóxi com possibilidade de hidrólise e formação de OH⁻ enquanto que o GPTMS possui 3. Isso influencia na capacidade de interação com a matriz cimentícia. Outro fator é que a parte orgânica do GPTMS, mesmo com a hidrólise do grupo epóxi, pode influenciar negativamente nas propriedades do compósito. Ou seja, mesmo que haja condensação e *crosslink* na parte orgânica por meio da ligação da interação da hidroxila do epóxi, pode-se gerar um "ponto de fraqueza" nessa parte da molécula, refletindo no desempenho inferior, quando comparado com o TEOS.

Curvas contínuas de tensão x abertura de fissura no eixo primário e curvas pontilhadas de energia x abertura de fissura no eixo secundário. (a) Séries ensaiadas em 3 dias de hidratação; (b) Detalhe em 1 mm de abertura de fissura destacado em (a); (c) Séries ensaiadas em 7 dias de hidratação; (d) Detalhe em 1mm de abertura de fissura destacado em (c); (e) Séries ensaiadas em 28 dias de hidratação; (f) Detalhe em 1 mm de abertura de fissura destacado em (e);

O comportamento sistemático de "maior elasticidade" em pequenas deformações das séries funcionalizadas e curvas convergindo para um comportamento similar em grandes deformações pode ser atribuído à maior interação da fibra funcionalizada com a matriz cimentícia, que quando solicitada mecanicamente tende a formar uma interface mais compacta e resistente, refletindo no comportamento mais frágil. Uma vez rompida a interface fibra-matriz, a fratura pode gerar uma superfície rugosa que favorece o maior atrito interno, beneficiando o comportamento de slip-hardening. Após o pico de tensão, pode-se dizer que o que governa o fenômeno de arrancamento é o atrito, que é semelhante em todas as séries, o que explica a convergência das curvas para um comportamento em comum entre as séries avaliadas.

A partir das curvas experimentais, foram calculados os índices de tensão máxima, abertura de fissura em que aparece a tensão máxima, tensões e tenacidades nas aberturas 0,5, 1,0, 1,5 e 2,5 mm de abertura de fissura. Os índices de tensão máxima, tensão e tenacidade nas aberturas de 0.5 e 2.5 mm em 28 dias de hidratação foram avaliados por ANOVA. A escolha dessas duas aberturas se fez por tratar-se dos índices de abertura atribuídos ao estado limite de serviço e estado limite último de serviço de acordo com o fib Model Code (2010).

Na Fig. 122 e na Tabela 50 são apresentados os resultados de tensão máxima da série referência e das séries funcionalizadas. Verificou-se que, de maneira geral, o tratamento influenciou significativamente nos índices de tensão máxima. Apenas em 3 dias de hidratação foi verificado um impacto negativo da funcionalização nos resultados.

		-								I I I I I I I I I I I I I I I I I I I			
D' 4-	REF_2%(vf)			T_N_0,1%_C			T_	N_0,5%	6_C	T_	T_N_1,0%_C		
bias de hidratação	MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)	
3	3,80	1,18	-	3,14	0,80	-17,5	3,48	0,64	-8,5	4,71	0,67	23,9	
7	4,32	0,45	-	4,75	0,76	9,9	4,75	0,78	9,9	5,56	0,77	28,7	
28	5,06	0,33	-	5,44	0,74	7,5	6,60	0,89	30,4	6,86	0,24	35,6	
3 7 28	3,80 4,32 5,06	1,18 0,45 0,33		3,14 4,75 5,44	0,80 0,76 0,74	-17,5 9,9 7,5	3,48 4,75 6,60	0,64 0,78 0,89	-8,5 9,9 30,4	4,71 5,56 6,86	0,67 0,77 0,24	23,9 28,7 35,6	

Tabela 50 - Resultados médios de tensão máxima dos CUADRF no ensaio de pull-out

(a) Amostras funcionalizadas com TEOS

	G_N_0,1%_C			G_ 1	N_0,5%	6_C	G	G_N_1,0%_C		
	MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)	
3	3,6	0,54	-5,4	3,86	0,71	1,6	3,51	0,6	-7,7	
7	4,63	1,18	7,0	4,52	0,75	4,6	4,76	0,54	10,0	
28	5,11	0,58	1,1	5,78	0,77	14,2	5,88	0,59	16,3	

(b) Amostras funcionalizadas com GPTMS

DP é o desvio padrão; a Variação em relação à série REF_2% (vf).

No caso do tratamento com TEOS (Fig. 122 (a)), houve uma tendência de aumentar o valor de tensão máxima de arrancamento com o aumento da quantidade de silano no processo de funcionalização. Nos 3 dias de hidratação, as séries T_N_0,1%_C e T_N_0,5%_C obtiveram resultados 17,5 % e 8,5 %, respectivamente, inferiores à série sem tratamento, enquanto que a e T_N_1,0%_C apresentou 23,9 % de aumento em relação à série sem tratamento. Nos 7 dias de hidratação, todas as séries funcionalizadas apresentaram médias superiores à série referência. Caso semelhante também foi verificado com 28 dias de hidratação. Pôde-se notar que houve um aumento expressivo nos resultados para as séries T_N_0,5%_C e T_N_1,0%_C, com aumentos de 30,4 % e 35,6 %, respectivamente, em relação à série sem funcionalização.

Para o GPTMS (Fig. 122 (b)), aos 3 dias, as séries com fibras funcionalizadas apresentam uma pequena variação nos resultados, apesar de resultados médios inferiores, a variação em relação a série sem tratamento é em torno de 6 %, podendo-se afirmar que nessa idade a funcionalização não gerou efeito prejudicial. Já, com 7 dias de hidratação, nota-se que os resultados, independentemente da quantidade de silano utilizada, foram superiores em até 10 % em relação à série sem tratamento, como no caso da série G_N_1,0%_C. Com 28 dias, apenas as séries G_N_0,5%_C e G_N_1,0%_C apresentam maiores resultados, obtendo-se valores de 14,2 % e 16,3 % de aumento, respectivamente.

Para esclarecer se os resultados são significativamente superiores à série referência, realizou-se a ANOVA dos resultados experimentais e o resumo da análise é apresentada na Tabela 51. A funcionalização mostrou efeito benéfico nos índices de tensão máxima para o ensaio de *pull-out*. Esse resultado é interessante, uma vez que sugere que pode haver um ponto de saturação de silano no processo de funcionalização. Isto é, para o valor de tensão máxima, parece que 1,0 %_(vol.) de silano na funcionalização (para o TEOS) não apresenta um ganho significativo que justifique a sua utilização em relação aos 0,5 %_(vol.). Já,

em relação ao GPTMS, apesar do aumento dos índices de tensão máxima, as das amostras foram estatisticamente iguais.

Tabela 51 – Resumo da ANOVA dos resultados de tensão máxima no ensaio de pull-out

Silano	Conclusão com 95 % de confiança
TEOS	Há diferença significativa entre as séries. As médias das séries REF_2% (vf) e T_N_0,1%_C são iguais entre si; as médias T_N_0,5%_C e T_N_1,0%_C são iguais entre si.
GPTMS	Não há diferença significativa entre a média da série

Para complementar a análise do pico de tensão, foram avaliados os valores de abertura de fissura em que o pico de tensão é registrado, apresentado na Fig. 123 e na Tabela 52. Mesmo com os altos índices de variabilidade registrados (na ordem de 50 %), verificou-se o aparecimento do pico de tensão em menores aberturas de fissura quanto maior é o tempo de hidratação. Houve, também, uma tendência do pico de tensão ser registrado em menor abertura de fissura quanto maior a quantidade de silano no processo de funcionalização.

Dias de hidratação	Dias de hidratação
(a) Séries funcionalizadas com TEOS	(b) Séries funcionalizadas com GPTMS

*As barras de erros são referentes a um desvio padrão para cima e um para baixo.

Tabela 52	Tabela 52 – Resultados de abertura de fissura no MOR dos CUADRF no ensaio de pull-out												
Dias de $REF_2\%_{(vf)}$			T_N_0,1%	T_N_0,1%_C			T_N_1,0%_C						
hidratação	w (mm)	DP	w (mm)	DP	w (mm)	DP	w (mm)	DP					
3	0,66	0,29	0,76	0,35	0,82	0,44	0,50	0,33					
7	0,41	0,21	0,45	0,35	0,27	0,17	0,08	0,05					
28	0,35	0,18	0,24	0,21	0,19	0,08	0,18	0,12					
(a) Série refe	(a) Série referência e séries funcionalizadas com TEOS												
			G_N_0,1%	6_C	G_N_0,5	%_C	G_N_1,0%_C						
			w (mm)	DP	w (mm)	DP	w (mm)	DP					
3			<u>w (mm)</u> 0,25	DP 0,13	<i>w</i> (mm) 0,93	DP 0,55	<u>w (mm)</u> 1,03	DP 0,43					
3 7			<u>w (mm)</u> 0,25 0,57	DP 0,13 0,27	<u>w (mm)</u> 0,93 0,28	DP 0,55 0,13	<u>w (mm)</u> 1,03 0,53	DP 0,43 0,27					

(b) Amostras funcionalizadas com GPTMS; DP é o desvio padrão;

Com 3 dias de hidratação o pico de tensão foi registrado na abertura de fissura na faixa dos 0,7 mm. Já, com 7 dias de hidratação, foi na faixa do 0,4 mm, enquanto que com 28 dias de hidratação foi na faixa dos 0,2 mm. Esse resultado evidencia o enrijecimento da interface fibra-matriz ao longo do tempo. Aos 3 dias de hidratação a zona de interface é fraca, resultado na sua fratura quando o compósito é solicitado mecanicamente. Assim, o pico de tensão é gerado no deslizamento da fibra, que tem característica "slip-hardening". Já, com a evolução da hidratação, a interface fibra-matriz é densificada pelas reações de hidratação, que refletem nesse aparecimento do pico de tensão em menores aberturas de fissura. De forma semelhante, quando o silano está presente na interface (pela funcionalização), houve uma maior densificação na interface fibra-matriz devido a interação do filme de silano com a matriz cimentícia e pela superfície mais irregular da fibra funcionalizada, melhorando a microestrutura da zona de transição interfacial. Isso resultou numa interface mais compacta e resistente. Essa configuração da interface fibra-matriz levou a necessidade de uma maior carga para o arrancamento da fibra do interior da matriz, como verificado no ensaio.

Na Fig. 124 e Tabela 53 são apresentados os resultados de tensão residual nas aberturas de fissura pré-determinadas (0,5, 1,0, 1,5 e 2,5) em 3, 7 e 28 dias de hidratação. Verifica-se que, de maneira geral, independentemente do tratamento de funcionalização, os índices de tensão mostram uma similaridade desde os 0,5 mm de abertura de fissura. Como verificado anteriormente, nessa deformação a maioria das séries já estão no pós-pico de tensão e no regime de deslizamento da fibra, que é governado pelo atrito, comum entre todas as amostras. Isso resulta que quando as séries são comparadas entre aberturas de fissura, quase sempre se nota uma mesma tendência de resultados.

Fig. 124 - Resultados médios de tensão residual no ensaio de pull-out

(a), (c) e (e) são séries funcionalizadas com TEOS com 3, 7 e 28 dias de hidratação, respectivamente; (b), (d) e (f) são séries funcionalizadas com GPTMS com 3, 7 e 28 dias, respectivamente; As barras de erro correspondem a um desvio padrão pra cima e um para baixo.

Tabela 53 – Resultados médios de resistência residual dos CUADRF no ensaio de <i>puli</i>	l-out
---	-------

		REF_2%(vf)						I	_N_0,5	%_C	T	T_N_1,0%_C			
(mm)		MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)		
	3	3,34	1,16	-	2,83	0,69	-15,2	3,09	0,63	-7,5	4,33	0,69	29,5		
0,5	7	3,96	0,57	-	4,41	1,00	11,3	4,42	0,75	11,3	4,64	0,48	16,9		
	28	4,77	0,36	-	4,96	0,56	3,9	5,94	0,45	24,5	6,22	0,15	30,4		
1,0	3	3,38	1,10	-	2,81	0,83	-16,8	3,06	0,59	-9,6	3,94	0,81	16,3		
	7	3,69	0,38	-	4,13	0,69	11,8	3,78	0,73	2,2	4,09	0,47	10,8		
	28	4,62	0,31	-	4,45	0,46	-3,5	5,10	0,45	10,5	5,50	0,29	19,1		
	3	3,25	1,20	-	2,60	0,81	-20,1	2,93	0,52	-10,0	3,70	0,88	13,6		
1,5	7	3,41	0,34	-	3,88	0,61	13,9	3,56	0,74	4,3	3,86	0,42	13,2		
	28	4,36	0,42	-	4,12	0,37	-5,5	4,60	0,37	5,5	5,17	0,13	18,5		
2,5	3	2,79	1,19	-	2,27	0,71	-18,7	2,74	0,70	-1,9	3,20	0,73	14,4		
	7	3,42	0,30	-	3,51	0,75	2,8	3,23	0,68	-5,4	3,42	0,46	-0,1		
	28	4,07	0,45	-	3,62	0,30	-11,0	4,10	0,30	0,7	4,52	0,39	11,1		

(a) Série referência e séries funcionalizadas com TEOS

		G_1	N_0,1%	∕₀_C	G_	N_0,5%	_C	G_N	1,0%	_C
w (mm)		MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)	MPa	DP	Var ^a (%)
	3	3,07	0,69	-7,9	3,54	0,70	5,9	3,16	0,52	-5,3
0,5	7	4,32	1,10	8,9	4,07	0,52	2,6	4,39	0,38	10,6
	28	4,54	0,64	-4,9	5,34	0,66	12,0	5,54	0,52	16,2
	3	2,78	0,79	-17,9	3,35	0,69	-0,86	3,08	0,78	-8,81
1,0	7	4,10	0,97	10,95	3,79	0,63	2,66	4,2	0,62	13,66
	28	4,05	0,75	-12,2	4,70	0,67	1,80	5,05	0,63	9,46
	3	2,60	0,77	-19,9	3,32	0,81	2,04	2,96	0,79	-9,07
1,5	7	3,70	0,79	8,44	3,40	0,8	-0,31	3,95	0,66	15,74
	28	3,68	0,82	-15,7	4,26	0,64	-2,28	4,54	0,74	4,09
	3	2,28	0,79	-18,5	6,05	0,82	9,2	2,73	0,75	-2,25
2,5	7	2,89	0,69	-15,5	3,06	0,92	-10,5	3,72	0,64	8,67
	28	3,22	0,72	-20,9	3,63	0,89	-10,8	4,24	0,67	4,11

(b) Séries funcionalizadas com GPTMS;

DP é o desvio padrão; a Variação em relação à série REF_2% (vf).

Para o TEOS aos 3 dias de hidratação (Fig. 124 (a)), em todas as aberturas estudadas, obteve-se maiores índices de tensão residual na série T N 1,0% C, enquanto que as séries T N 0,1% C e T N 0,5% C obteve-se resultados inferiores à série sem tratamento. Isso já era esperado, uma vez que a série T N 1,0% C foi a que obteve os maiores índices de tensão máxima. Já, com 7 dias de hidratação (Fig. 124 (c)) em todas as séries funcionalizadas obteve-se desempenho superior à referência. Aos 28 dias de hidratação (Fig. 124 (e)) e em 0,5 mm de abertura, tem-se resultados semelhantes para as séries referência e T_N_0,1%_C, enquanto que as séries T_N_0,5%_C e T_N_1,0%_C obtiveram índices 24,5 % e 30,4 %, respectivamente, superiores à série sem funcionalização. Já, em maiores valores de aberturas de fissura, se nota que a diminuição de resistência é mais intensa nas séries com os maiores resultados, de modo que na série T_N_1,0%_C passou-se de 6,22 MPa em 0,5 mm para 4,52 MPa nos 2,5 mm de abertura de fissura (cerca de 27 % de diminuição), enquanto que na série referência passou-se de 4,77 MPa para 4,07 MPa (cerca de 14 % de diminuição). Atribui-se isso ao caminho que a fibra percorreu para ser arrancada da matriz, que em aberturas de fissura superiores a 1,0 mm está deteriorado e se assemelha cada vez mais com a série referência.

Para o GPTMS em 3 dias de hidratação (Fig. 124 (b)), nas aberturas determinadas apenas a série $G_N_0,5\%_C$ apresentou maiores resistências, na ordem de 5 %. Por outro lado, a dispersão dos resultados nesse período de hidratação foi da ordem dos 20 %, indicando que os 5 % de aumento pode ser devido à variabilidade do ensaio. Com 7 dias de hidratação (Fig. 124 (d)), percebeu-se que as séries funcionalizadas apresentaram resultados residuais superiores à série referência até os 1,5 mm de abertura de fissura. Já em 2,5 mm, apenas a série $G_N_1,0\%_C$ obteve maiores resistências. Em 28 dias de hidratação (Fig. 124 (e)), apenas na série $G_N_1,0\%_C$ obteve-se resistência residual superior à serie referência nas aberturas analisadas. Semelhantemente ao TEOS, após o pico de tensão, houve maior queda de tensão para as séries que mais resistentes, como no caso da série $G_N_{1,0\%}C$, que passou de 5,54 MPa em 0,5 mm para 4,24 MPa em 2,5 mm de abertura de fissura (cerca de 24 % de perda de resistência).

Para evidenciar se havia efetivamente benefício nos índices de resistência residual pelo processo de funcionalização, os resultados foram avaliados por ANOVA fator simples nas aberturas de fissura de 0,5 mm e 2,5 mm com 28 dias de hidratação, o resumo da análise é apresentado na Tabela 54.

Para 0,5 mm de abertura de fissura o processo de funcionalização das fibras com TEOS apresenta um aumento efetivo de tensão residual, enquanto que com GPTMS, apesar do aumento de tensão para as dosagens com 0,5 % e 1,0 %, não afetou de maneira significativa nos resultados.

Na abertura de fissura de 2,5 mm, nas séries com fibras funcionalizadas com TEOS obteve-se índices significativamente iguais ou inferiores à série referência, enquanto que o tratamento com GPTMS não afetou significativamente os resultados nessa abertura de fissura.

Silano	w (mm)	Conclusão com 95 % de confiança
S	0,5	Há diferença significativa entre as séries. As médias das séries $REF_{2\%(vf)}$ e $T_N_{0,1\%}C$ são iguais entre si; as médias das séries $T_N_{0,5\%}C$ e $T_N_{1,0\%}C$ são iguais entre si.
TEC	2,5	Há diferença significativa entre as séries. As médias das séries REF_2%(vf), T_N_0,5%_C e T_N_1,0%_C são iguais entre si; A média da série T_N_0,1%_C é igual a média T_N_0,5%_C, mas diferente das demais.
GPTMS	0,5	Há diferença significativa entre as séries. As médias das séries $\text{REF}_{2\%(vf)}$ e $G_N_0,1\%_C$ são iguais entre si; as médias das séries $\text{REF}_{2\%(vf)}$, $G_N_0,5\%_C$ e $G_N_1,0\%_C$ são iguais entre si, porém são diferentes da média da série $T_N_0,1\%_C$.
	2,5	Não há diferença significativa entre a média da série $REF_{2\%(vf)}$ e as médias das séries funcionalizadas.

Tabela 54 – Resumo da ANOVA da resistência em 28 dias de hidratação no ensaio *pull-out*

Os índices de tenacidade nas aberturas de fissura pré-determinadas também foram avaliadas e são apresentadas na Fig. 125 e Tabela 55.Os resultados mostram que, de maneira geral, os índices de tenacidade das séries funcionalizadas foram superiores à série referência, principalmente para os maiores tempos de hidratação do cimento. Esse aumento nos índices de tenacidade das séries funcionalizadas em relação à série sem tratamento pode ser relacionado ao pico de tensão aparecer em menores valores de abertura de fissura e, como verificado na Fig. 121, depois do pico de tensão as curvas apresentam uma tendência de perda de desempenho similar entre elas.

Para o TEOS em 3 dias de hidratação (Fig. 125 (a)), apenas na série T N 1,0% C obteve-se resultados superiores à série sem tratamento nas aberturas estudadas. Tanto em 0,5 mm quanto em 2,5 mm de abertura de fissura, foi obtido 42,9 % e 21,6 % de melhora nos resultados, respectivamente. Para pequenas idades a funcionalização parece não ter benefício, inclusive, em algumas séries diminuiu os índices mecânicos. Com 7 dias de hidratação (Fig. 125 (c)), todas as séries funcionalizadas com TEOS foram superiores à série sem tratamento, seguindo a mesma tendência verificada para os índices de tensão residual. Com 28 dias (Fig. 125 (e)), apenas a série T N 0.1% C obteve valores inferiores nas aberturas estudadas, porém apenas para 2,5 mm de abertura de fissura. Nesse tempo de hidratação verificou-se que a série T N 0,1% C se assemelha à série sem tratamento, enquanto que as séries T_N_0,5%_C e T_N_1,0%_C apresentam resultados similares entre si. Isso reforça a teoria levantada anteriormente na análise de tensão residual, onde foi discutido a respeito de haver um ponto de saturação na quantidade de TEOS na funcionalização das fibras.

(a), (c) e (e) são as séries com fibras funcionalizadas com TEOS com 3, 7 e 28 dias de hidratação, respectivamente; (b), (d) e (f) são as séries com fibras funcionalizadas com GPTMS com 3, 7 e 28 dias de hidratação, respectivamente; As barras de erro correspondem a um desvio padrão pra cima e um para baixo.

		REF_2% _(vf)			T_N_0,1%_C			 T_N	N_0,5%	_C	T	T_N_1,0%_C		
(mm)		J	DP	Var ^a (%)	J	DP	Var ^a (%)	J	DP	Var ^a (%)	J	DP	Var ^a (%)	
	3	0,12	0,03	-	0,09	0,03	-18,0	0,11	0,03	-2,6	0,16	0,02	42,9	
0,5	7	0,15	0,02	-	0,17	0,03	9,2	0,17	0,03	10,9	0,19	0,02	26,2	
	28	0,18	0,02	-	0,20	0,02	7,3	0,25	0,02	34,1	0,25	0,01	36,2	
	3	0,26	0,08	-	0,21	0,06	-17,1	0,24	0,05	-6,2	0,33	0,05	30,5	
1,0	7	0,30	0,03	-	0,34	0,06	11,5	0,33	0,06	10,1	0,37	0,04	21,9	
	28	0,38	0,03	-	0,39	0,04	3,1	0,47	0,04	24,9	0,49	0,01	30,2	
	3	0,39	0,13	-	0,33	0,09	-16,4	0,37	0,07	-6,3	0,49	0,08	25,7	
1,5	7	0,45	0,05	-	0,51	0,09	12,1	0,48	0,09	6,7	0,54	0,06	18,5	
	28	0,56	0,03	-	0,56	0,06	0,4	0,67	0,05	19,3	0,71	0,01	26,4	
2,5	3	0,64	0,22	-	0,52	0,15	-17,5	0,60	0,11	-5,8	0,77	0,14	21,6	
	7	0,72	0,07	-	0,81	0,14	11,6	0,75	0,15	3,9	0,83	0,09	14,8	
	28	0,91	0,05	-	0,88	0,08	-2,8	1,02	0,07	13,1	1,10	0,03	21,7	

Tabela 55 - Resultados médios de tenacidade residual dos CUADRF no ensaio de pull-out

(a) Série referência e séries funcionalizadas com TEOS

			G_N_(0,1%_	_C	 G_N	N_0,5%	_C	G_N	N_1,0%	_C
(mm)			J	DP	Var ^a (%)	J	DP	Var ^a (%)	J	DP	Var ^a (%)
	3	0,	13	0,02	9,4	0,13	0,03	13,1	0,12	0,02	1,8
0,5	7	0,	16	0,05	5,4	0,16	0,02	6,9	0,17	0,02	9,4
	28	0,	19	0,02	0,6	0,21	0,03	16,2	0,22	0,02	20,3
	3	0,	24	0,05	-5,2	0,27	0,05	6,4	0,25	0,04	-3,9
1,0	7	0,	33	0,09	9,5	0,32	0,05	6,5	0,34	0,04	12,1
	28	0,	36	0,05	-4,2	0,42	0,06	11,1	0,44	0,05	16,4
	3	0,	35	0,08	-9,9	0,41	0,09	5,2	0,37	0,07	-5,2
1,5	7	0,	49	0,13	9,2	0,47	0,08	4,7	0,51	0,07	12,6
	28	0,	52	0,08	-7,4	0,60	0,08	7,4	0,63	0,07	13,2
2,5	3	0,	55	0,13	-13,9	0,67	0,16	5,1	0,60	0,13	-5,6
	7	0,	76	0,19	5,1	0,74	0,15	1,6	0,82	0,11	13,3
	28	0,	80	0,14	-11,5	0,92	0,15	1,7	0,99	0,13	9,8

(b) Séries funcionalizadas com GPTMS; DP é o desvio padrão;

J é a tenacidade em Joules; a Variação em relação à série $REF_{2\%(vf)}$.

Para o GPTMS, de maneira geral, mesmo com melhora nos resultados de tenacidade, esse aumento foi pontual, principalmente para 0,5 mm de abertura de fissura e 28 dias de hidratação. Aos 3 dias de hidratação (Fig. 125 (b)), o melhor desempenho foi verificado na série $G_N_{0,5\%}$ C em 0,5 mm de abertura de fissura, gerando um aumento de 13,1 % em relação à série referência. Aos 7 dias de hidratação (Fig. 125 (e)), a série $G_N_{1,0\%}$ C obteve os melhores resultados, gerando aumentos de até 13,3 % em 2,5 mm de abertura de fissura, devido ao pico de tensão dessa série aparecer muito mais cedo que a série referência. Aos 28 dias (Fig. 125 (f)) e em 0,5 mm de abertura de fissura, todas as séries apresentam maiores índices de tenacidade em relação à série referência, sendo que na série $G_N_{1,0\%}$ C obteve-se melhora de 20,3 %. Nas maiores aberturas analisadas, apenas a série $G_N_{1,0\%}$ C apresentou maiores resultados em relação à série referência.

Para evidenciar se houve efetivamente benefício da funcionalização na tenacidade residual, os resultados foram avaliados por ANOVA fator simples nas aberturas de fissura de 0,5 mm e 2,5 mm aos 28 dias de hidratação, o resumo da análise é apresentado na Tabela 56.

Silano	w (mm)	Conclusão com 95 % de confiança
SC	0,5	Há diferença significativa entre as séries. As médias das séries $REF_2\%_{(vf)}$ e $T_N_0,1\%_C$ são iguais entre si; as médias das séries $T_N_0,5\%_C$ e $T_N_1,0\%_C$ são iguais entre si.
TEC	2,5	Há diferença significativa entre as séries. As médias das séries REF_2% _(vf) e T_N_0,1%_C são iguais entre si; as médias das séries T_N_0,5%_C e T_N_1,0%_C são diferentes entre si e entre as demais.
GPTMS	0,5	Há diferença significativa entre as séries. As médias das séries REF_2% _(vf) , G_N_0,1%_C e G_N_0,5%_C são iguais entre si; A média da série G_N_1,0%_C é igual a média G_N_0,5%_C, mas diferente das demais.
	2,5	Não há diferença significativa entre a média da série REF $2\%_{(yf)}$ e as médias das séries funcionalizadas.

Tabela 56 - Resumo da ANOVA de tenacidade em 28 dias de hidratação no ensaio pull-out

Em 0,5 mm de abertura de fissura, o processo de funcionalização das fibras com TEOS e GPTMS apresenta um aumento efetivo de tenacidade para as dosagens de 0,5 % e 1,0 % de silano. Em 2,5 mm de abertura de fissura, as séries com fibras funcionalizadas com TEOS obtiveram resultados superiores à série sem tratamento, nas dosagens de 0,5 % e 1,0 % de silano, enquanto que o tratamento com GPTMS não afetou significativamente os resultados.

Assim como nas análises anteriores, os resultados de tenacidade no ensaio de *pull-out* mostram, por um lado, que a funcionalização da superfície das fibras
com silanos tem potencial no aprimoramento das propriedades dos CUADRF, por outro lado evidencia que teores acima de 1,0 % de silano no processo de funcionalização, apesar de também melhorarem os índices analisados, podem não ser interessantes em comparação com os teores de 0,5 % de silano.

Apesar de verificado que a funcionalização resultou em variações nas propriedades do compósito, as variações utilizadas se mostraram pequenas e muitas vezes não mostraram diferenças significativas em relação à série que não passou pelo tratamento de funcionalização. O consumo de portlandita pela nanossílica e pelos silanos hidrolisados é pequena a ponto de ser negligenciada ⁴. Assim, os efeitos mecânicos evidenciados nessa campanha experimental a partir da aplicação do silano foram resultados da ação pontual do tratamento superficial das fibras na interface fibra-matriz, seja pela interação direta com a matriz cimentícia ou por efeito indireto, como por exemplo, aumentando a possibilidade de nucleação do C-S-H na zona de transição interfacial.

7.3.4 Análise microestrutural

Nesta seção serão apresentados os resultados da análise microestrutural obtidos por MEV/EDS da funcionalização da superfície das fibras, bem como uma análise da interface fibra-matriz a partir de amostras de fibras arrancadas no ensaio de *pull-out*. Como a análise microestrutural da série referência foi apresentada no Capítulo 5 (Fig. 81), neste capítulo não será apresentada essa análise.

Na Fig. 126 é apresentada a análise microestrutural das superfícies das fibras funcionalizadas para o estudo detalhado dos CUADRF. A primeira característica notada nas imagens foram os "riscos" longitudinais oriundos do processo de fabricação das fibras, que nas fibras funcionalizas foi menos notório que na amostra sem tratamento superficial, evidenciando a deposição de silano na superfície das fibras. Em paralelo, verificou-se que o processo de funcionalização resultou em uma distribuição bastante heterogênea na superfície da fibra, onde observa-se áreas com precipitados, possivelmente de C-S-H, e áreas com certa regularidade na sua morfologia, essa característica foi mais evidente para as amostras com maior concentração de silano. Apesar dessa irregularidade, notou-se que o banho de Ca(OH)₂, realizado posteriormente à funcionalização, retirou e diminuiu a quantidade excessiva de silano em comparação com as amostras observadas anteriormente quando não utilizado esse segundo banho alcalino (Funcionalização das fibras - Capítulo 5).

A respeito da homogeneidade da superfície das fibras funcionalizadas, quanto maior a quantidade de silano, maior foi a heterogeneidade da sua superfície, uma vez que os grupos Si-OH tendem a condensar entre si e formar seções de diferentes espessuras e composições químicas, além de serem afetados pela diferença de composição da superfície metálica, como discutido no Capítulo 5.

⁴ O cálculo estequiométrico da estimativa do consumo da portlandita é apresentado no Apêndice 3

					. ,			
	Quantidade (%)							
Elemento	TEOS			GPTMS				
	a'	c'	e'	b'	d'	f'		
Si	0,36	0,95	1,15	0,47	0,74	2,41		
Ca	2,69	11,09	6,67	1,72	10,01	5,27		
Fe	43,22	29,61	45,97	40,71	38,68	39,10		
Cu	47,71	44,30	37,83	48,74	39,17	44,24		
Zn	6,00	14,03	8,36	8,32	11,39	9,06		
			(g)					

Imagens de MEV das fibras funcionalizadas em 1500x de magnificação; (a), (c) e (e) são as séries tratadas com 0,1%, 0,5% e 1,0% de TEOS, respectivamente; (b), (d) e (f) são as fibras tratadas com 0,1%, 0,5% e 1,0% de GPTMS, respectivamente; (g) Resultados do EDS das áreas destacadas nas figuras; as setas indicam pontos de aglomeração/precipitação de produtos hidratados.

Pela análise de EDS foi detectado cálcio na superfície das amostras, mostrando que além de promover uma "lavagem de regularização", o banho com $Ca(OH)_2$ promoveu a reação do filme de silano com os íons de cálcio (Ca²⁺) da solução, resultando na precipitação de C-S-H aderido à superfície das fibras, como sugerido na Eq.(27).

 $MeOSi(OH)_3 + Ca(OH)_2 \leftrightarrow MeO_2SiCa(OH)_3 + H_2O$ (27) Onde: $Me \acute{e}$ o metal do substrato metálico.

Outro fato interessante é que quanto maior a quantidade de silano no banho de funcionalização, maior foi a quantidade de Si⁴⁺ detectada na superfície do filme. Porém, a quantidade de cálcio não aumentou de maneira sistemática. A maior quantidade de cálcio foi identificada no tratamento com 0,5 % de silano, para ambos os silanos estudados. Isso reforça a teoria que soluções de silano concentradas favoreceram a policondensação dos Si-OH entre si, perdendo parte do potencial de condensação com Ca²⁺ da solução, o que justificaria a menor concentração de Ca²⁺ da amostra com 1,0 % de silano em relação à 0,5 %.

Para evidenciar que as partículas que estavam aderidas à superfície das fibras funcionalizadas eram de fato precipitados de C-S-H, realizou-se a análise de EDS em pontos de aglomeração de partículas nas amostras tratadas com 0,5% de silano, como mostrado na Fig. 127. Nota-se que a concentração de cálcio e silício é superior à análise realizada nas áreas destacadas anteriormente, evidenciando que além da reação com o filme de silano houve a precipitação de partículas de C-S-H provenientes, possivelmente, da reação do silano com o cálcio da solução alcalina.

Fig. 127 - MEV/EDS de partículas na superfície das fibras

Quantidade (%) Elemento b' a' 19,68 15,98 Si Ca 59,60 53,66 Fe 17.30 9.85 Cu 7,98 9,88 2,88 Zn 3,11

Imagens de MEV das fibras funcionalizadas em 10000x de magnificação. (a) Série tratada com 0,5% de TEOS; (b) Série tratada com 0,5% de GPTMS; (c) Análise de EDS nos pontos indicados nas figuras.

⁽c)

Na Fig. 128 são mostradas as análises de MEV/EDS das fibras funcionalizadas com TEOS após o arrancamento no ensaio de *pull-out*. Na amostra referência (Fig. 128 (a)), verificou-se que as partículas de C-S-H estavam distribuídas de forma relativamente uniforme ao longo da superfície da fibra, que pode ser relacionado com o menor desempenho mecânico no ensaio de *pull-out* em relação às amostras funcionalizadas, principalmente para aberturas de fissura inferiores à 0,1 mm..

Fig. 128 - MEV/EDS da superfície das fibras referência e tratadas com TEOS após o arrancamento

Fig. 128 – MEV/EDS da superfície das fibras referência e tratadas com TEOS após o arrancamento (CONTINUAÇÃO)

Análise de MEV/EDS da fibra sem tratamento e das fibras funcionalizadas com TEOS. Imagens com 500x de magnificação e o retângulo destacado ampliado em 1500x. A análise de EDS corresponde a área destacada; (a) Amostra referência, (c) Amostra funcionalizada com 0,1 %, (e) Amostra funcionalizada com 0,5 % e (g) amostra funcionalizada com 1,0 %; (b), (d), (f) e (h) correspondem à análise de EDS da área destacadas nos retângulos. * = concentração atômica inferior a 0,01 %

Outra característica são os riscos superficiais na superfície da fibra, bastante evidentes, que são atribuídos ao atrito gerado entre a matriz de CUAD com a superfície da fibra. Pelo EDS (Fig. 128 (b)), nota-se que os índices de ferro aumentaram, enquanto que os índices de cobre e zinco diminuíram, sugerindo que pôde haver a delaminação do cobrimento de latão da superfície da fibra, fenômeno já verificado por Wille & Naaman (2010)

Nas amostras que passaram pela funcionalização também se verificou C-S-H aderido às suas superfícies. Comparando-se os resultados de silício e cálcio antes e depois do arrancamento das fibras, para o silício, o valor mais alto detectado foi na ordem 1 % antes do arrancamento, enquanto que depois do arrancamento, detectou-se até 23 %. No caso do cálcio, houve concentrações inferiores à 11 % antes do arrancamento, enquanto que após o arrancamento detectou-se concentrações de até 19 %. Atribuiu-se esse aumento na concentração silíciocálcio à adesão da matriz cimentícia à superfície da fibra, uma vez que essa quantidade de silício só pode ser proveniente da matriz de concreto.

Na amostra funcionalizada com 0,1 % de TEOS (Fig. 128 (c)), verificouse uma superfície "comparável" com a superfície antes do arrancamento, isso é, com regularidade distribuição de precipitados na sua superfície. Embora havendo regularidade de C-S-H aderido à superfície da fibra, com o processo de arrancamento várias áreas da superfície estão expostas demonstrando que a fratura na interface fibra-matriz acontece de maneira irregular, dependendo da qualidade da funcionalização. Essa configuração se assemelha à superfície da amostra sem tratamento, podendo ser relacionada ao menor desempenho mecânico verificado no ensaio de *pull-out*. Na amostra funcionalizada com 0,5 % de TEOS (Fig. 128 (e), verificouse uma superfície extremamente irregular, com áreas de grandes quantidades de C-S-H aderido, como também áreas com pequenas quantidades, sugerindo que houve pontos da superfície da fibra com melhor qualidade na interação fibramatriz que outras. Houve áreas da superfície da fibra que ficaram exposta e com os riscos devido ao atrito do arrancamento bem evidentes, indicando que o mecanismo de falha da interface ocorreu preferencialmente na interface fibra-filme ao invés da fibra-matriz. Isso denota que o filme de silano interagiu com a superfície da matriz cimentícia resultando em uma interface fibra-matriz mais resistente. Pode-se relacionar esse fenômeno com o resultado encontrado no ensaio de *pull-out*, onde essa série ($T_N_0,5\%_C$) obteve melhores resultados em comparação com a série referência e tratada com 0,1 % de TEOS.

Na amostra funcionalizada com 1,0 % de TEOS (Fig. 128 (g)) verificouse que a superfície era mais irregular em comparação com as anteriores. Isso, semelhantemente à amostra funcionalizada com 0,5 % de TEOS, indica que houve uma boa interação do filme de silano com a superfície da matriz de concreto, principalmente pelo fato de parte da matriz cimentícia ter sido fraturada no seu interior ao invés de delaminar o filme de silano. Essa característica pode justificar e estar relacionada com o seu melhor comportamento mecânico verificado no ensaio de *pull-out*. Isto é, a interface fibra-matriz mais resistente necessitou de uma maior carga para promover a sua fratura e posterior arrancamento. Como a interação fibra-matriz estava aprimorada, nesse caso, o ponto de fraqueza resultou ser dentro da matriz, gerando esses pedaços aderidos na superfície da fibra. Depois da fratura, essa superfície irregular promoveu mais atrito no processo de arrancamento, resultando no maior desempenho em relação às séries funcionalizadas com 0,1 % e 0,5 %.

Análogo à análise da superfície das fibras funcionalizadas com TEOS, na Fig. 129 é apresentada a análise de MEV/EDS das fibras funcionalizadas com GPTMS após o seu arrancamento da matriz.

Nas fibras funcionalizadas com GPTMS também foi verificado C-S-H aderido à superfície das fibras. Porém, as diferentes concentrações de silano na funcionalização resultaram numa superfície relativamente similar entre as amostras. Nas três concentrações estudadas, verificou-se que haviam áreas com C-S-H aderido e outras áreas com a superfície das fibras expostas. Outro fator semelhante entre as amostras foi a análise de EDS das áreas destacadas, que apresentam teores de silício e cálcio na ordem dos 10 % e 20 %.

Apesar dessa similaridade entre a superfície das fibras após o arrancamento, verificou-se que a amostra funcionalizada com 0,1 % (Fig. 129 (a)) apresentou uma menor área da superfície da fibra exposta. Isso sugere que a falha, no momento da solicitação mecânica aconteceu na interface entre o filme de silano e a matriz cimentícia, indicando uma pouca eficiência do tratamento de funcionalização na promoção de uma melhor interação fibra-matriz. Nas amostras funcionalizadas com 0,5 % e 1,0 % (Fig. 129 (c) e (e)), verificou-se que além da distribuição uniforme de C-S-H na superfície das fibras, os riscos oriundos da fabricação do silano também são percebidos em várias áreas da fibra, indicando que a falha se deu na interface fibra-filme de silano, sugerindo uma melhor adesão fibra-matriz e que quando funcionalizado com 0,1 %.

Fig. 129 - MEV/EDS da superfície das fibras tratadas com GPTMS após o arrancamento

Elemento	Quantidade (%)			
Si	9,66			
Ca	18,33			
Fe	59,11			
Cu	6,67			
Zn	4,6			
Al	*			
K	1,57			

(a)

(b)

(c)

(d)

A CONTRACTOR		Elemento	Quantidade (%)
		Si	9,57
		Ca	20,29
A BARRAD - CARA STA	AL INSTANT SALAR	Fe	54,27
2 hours and the second	AND TO A CARLENS	Cu	7,48
	A CALL AND A	Zn	3,91
	and the second second second second	Al	1,38
1 Linning 1	and the second	Κ	3,05
A D9.5 x500 - 200 µm	A D9.3 x1.5k 50 μm		
(e)		(f)

Análise de MEV/EDS da fibra sem tratamento e das fibras funcionalizadas com GPTMS. Imagens com 500x de magnificação e o retângulo destacado ampliado em 1500x. A análise de EDS corresponde a área destacada; (a) Amostra funcionalizada com 0,1%, (c) Amostra funcionalizada com 0,5% e (e) Amostra funcionalizada com 1,0%; (b), (d), (f) correspondem à análise de EDS da área destacadas nos retângulos; * = concentração atômica inferior à 0,01%; Manchas pretas na amostra (a) identificadas como resíduo e/ ou contaminação na superfície da fibra, provavelmente pela fita de carbono

utilizada para fixação da amostra na hora da manipulação. Análise de EDS no ponto evidencia a presença majoritária de carbono (disponível no anexo 2).

A configuração da superfície das fibras após o arrancamento pode ser relacionado com o comportamento mecânico verificado no ensaio de *pull-out*. A fibra funcionalizada com 0,1 % de GPTMS, apresentou um pequeno aumento de desempenho em aberturas de fissura inferiores a 1 mm, podendo ser justificado pela melhor interação promovida pelo tratamento de silano, em relação à amostra sem tratamento. Já, nas amostras tratadas com 0,5 % e 1,0 % de GPTMS obtiveram melhores índices de tensão para pequenos valores de abertura de fissura, que pode ser relacionado à melhor interação promovida pelo tratamento de silano. Por outro lado, uma vez fraturada a interface fibra-matriz, o fenômeno que governa o arrancamento é similar à fibra sem tratamento, o que resulta em maiores índices de perda de tensão, pois a qualidade da superfície também é similar à amostra sem tratamento, justificando o seu desempenho similar ou inferior à fibra referência.

Para investigar mais profundamente os efeitos da funcionalização da superfície das fibras com silano, amostras dos CUADRF foram cortadas para analisar a zona de transição interfacial ao redor da fibra. Foram realizadas análises de MEV/EDS pontuais e escaneamento linear ao longo da zona de transição para tentar identificar o perfil da região de interface em função da distância da fibra. Essa análise foi realizada na série referência e nas funcionalizadas com TEOS e são apresentadas da Fig. 130 a

Fig. 133.

A relação Si/Ca pode ser usada indiretamente para avaliar a composição da matriz cimentícia. Relações inferiores à 0,3 são características de sistemas com alta concentração de portlandita, enquanto que relações superiores à 0,3 indicam sistemas ricos em C-S-H (SALVADOR et al., 2016). Além disso, estudos evidenciam que sistemas formados principalmente por C-S-H, são formados por relações Si/Ca superiores a 0,66 (NONAT, 2004).

Nota-se que, de maneira geral, a interface é densa e homogênea e apresenta pouca porosidade. Na amostra referência (Fig. 130), a relação Si/Ca é na ordem de 0,2 ao redor da fibra e pela linha de EDS percebe-se que relações superiores a 0,3 devem ser prováveis somente para distâncias superiores a 4 μ m. Além disso, a análise pontual de EDS sugere que houve precipitação de portlandita na região de interface.

Fig. 130 - MEV/EDS da seção transversal na série com fibras referências

(a) Imagem em 500x de magnificação e detalhe ampliado em 10000x;
(b) Resultado da análise de EDS nos pontos indicados em (a);
(c) Resultado do escaneamento linear por EDS indicado pela linha azul em (a).

Em comparação com a amostra sem tratamento, a amostra funcionalizada com 0,1 % de TEOS (Fig. 131) mostrou um aumento na relação Si/Ca nos pontos analisados ao redor da fibra, onde detectou-se índices superiores à 0,3. Um aumento mais acentuado na contagem de Si é observado a partir da superfície das fibras. A relação Si/Ca atinge 0,3 a uma distância de aproximadamente 2 μ m da superfície da fibra (quase a metade do observado para a série sem tratamento). Isto sugere uma maior concentração de C-S-H próximo da superfície da fibra.

Fig. 131 – MEV/EDS da seção transversal da série T_N_0,1%_C

(a) Imagem em 500x de magnificação e detalhe ampliado em 10000x; (b) Resultado da análise de EDS nos pontos indicados em (a); (c) Resultado do escaneamento linear por EDS indicado pela linha azul em (a).

Resultados análogos foram encontrados na análise da série funcionalizada com 0,5 % (Fig. 132) e com 1,0 % (

Fig. 133) de TEOS. No entanto, nestes últimos casos, a relação Si/Ca de 0,3 foi atingida a uma distância ainda menor do que 1 μ m da superfície da fibra. Consequentemente, espera-se uma concentração de C-S-H mais elevada próxima da fibra em comparação com a série sem tratamento e a série funcionalizada com 0,1 % de TEOS.

Fig. 132 – MEV/EDS da seção transversal da série T_N_0,5%_C

(a) Imagem em 500x de magnificação e detalhe ampliado em 10000x; (b) Resultado da análise de EDS nos pontos indicados em (a); (c) Resultado do escaneamento linear por EDS indicado pela linha azul em (a).

Curiosamente, um primeiro pico na contagem de Si é observado em todas as amostras funcionalizadas, o que não é encontrado na série sem tratamento. Este pico aproximou-se da superfície da fibra à medida que o teor de TEOS aumentou no tratamento, mostrando razões Si/Ca próximas de 1,0. Portanto, as séries com 0,1 %, 0,5 % e 1,0 % de TEOS mostram o pico respectivamente a 3,5 μ m, 2,0 μ m e 1,0 μ m à parte da superfície da fibra. Novamente isto sugere um maior nível de densificação da zona de transição da interface devido ao tratamento proposto neste estudo, confirmando assim a interação química positiva causada pelo filme de silano com a pasta de cimento.

Fig. 133 – MEV/EDS da seção transversal da série T_N_1,0%_C

(a) Imagem em 500x de magnificação e detalhe ampliado em 10000x; (b) Resultado da análise de EDS nos pontos indicados em (a); (c) Resultado do escaneamento linear por EDS indicado pela linha azul em (a).

7.3.4.1 Modelo conceitual de interface fibra-matriz

Baseado nos resultados obtidos pelas análises microestruturais e no ensaio de *pull-out*, foi proposto um modelo conceitual da interface fibra matriz para explicar, de maneira geral, o efeito da funcionalização com silanos na interface de compósitos de matriz cimentícia. A Fig. 134 representa a evolução da hidratação da pasta de cimento e a sua interação com a fibra previamente funcionalizada com TEOS.

Quando as fibras funcionalizadas entram em contato com a matriz cimentícia, a solução alcalina dos poros da matriz, rica em íons Ca²⁺, Si⁴⁺ e OH⁻, pode reagir com o silano da superfície da fibra e formar, primeiramente, uma "camada difusa" (Fig. 134 (a)). Ao longo do tempo, devido ao pH naturalmente alcalino da pasta cimentícia solubiliza o silano resultando em íons Si⁴⁺ e OH⁻ que podem reagir com o cálcio dos poros da matriz, resultando na precipitação de C-S-H, observada anteriormente. Esse processo consome parte do filme de silano, aumentando a espessura da camada difusa (Fig. 134 (b)). A precipitação de C-S-H reduz a disponibilidade de íons Ca^{2+} na solução dos poros ao redor da fibra e quando a relação Si/Ca chega ao redor dos 0,6, a concentração de cálcio na solução dos poros se torna insuficiente para reagir com o filme de silano.

As diferenças na característica dessas camadas podem determinar como a falha pode ocorrer durante o processo de *pull-out*, como sugerido na (Fig. 134 (c)). No caso de uma funcionalização de qualidade não satisfatória, a formação deficiente de ligações "Me-O-Si" é gerada e pode resultar na falha na interface superfície da fibra-filme de silano, ou mesmo na camada de silano. Essa configuração, quando as fibras são arrancadas da matriz, resulta numa superfície similar à fibra sem tratamento.

No caso da funcionalização ser realizada com uma pequena quantidade de silano, uma porção limitada de Si⁴⁺ estará disponível para densificar a camada difusa. Consequentemente, uma camada difusa mais fraca será formada, aumentando a possibilidade de fratura nessa região da interface fibra-matriz. Nessa configuração, um pequeno aumento no desempenho mecânico é esperado. Depois do arrancamento da fibra, a superfície da fibra deve apresentar áreas cobertas com filme de silano e áreas delaminadas. Essa configuração possivelmente foi o mecanismo de fratura observado nas séries funcionalizadas com 0,1 % de silano.

No caso de uma funcionalização adequada ser realizada com um teor de silano suficiente, é formada uma camada difusa de boa qualidade. É provável que a falha ocorra na matriz de cimento, levando a maiores superfícies de fissura, portanto, maiores cargas de arrancamento. A morfologia das fibras após a retirada deve ser caracterizada pela presença de pedaços de matriz em torno da superfície. Este foi possivelmente o modo de falha observado no programa experimental com a série funcionalizada com 0,5 % de TEOS e, mais evidentemente, em série funcionalizada com 1,0 % de TEOS.

Fig. 134 – Modelo conceitual da interface fibra-matriz de fibras funcionalizadas silanos Interface fibra-matriz

(a) Modelo conceitual da interface da interface fibra-matriz com fibras funcionalizadas com silanos; (b) Interação da camada de silano com a matriz cimentícia com a evolução da hidratação do cimento; (c) Prováveis métodos de fraturas da interface. Adaptado de Materne *et al.* (MATERNE; BUYL; WITUCKI, 2010)

7.4 CONCLUSÃO DO CAPÍTULO

No estudo realizado nessa etapa do trabalho, foi investigada a influência do tratamento das fibras de aço com TEOS e GPTMS com 0,1 %, 0,5 % e 1,0 % de silano em diferentes tempos de hidratação e propriedades dos CUADRF. Baseado nos resultados obtidos chegou-se às seguintes conclusões:

A trabalhabilidade dos CUADRF com fibras funcionalizadas com TEOS não foi alterada, em comparação com a série sem funcionalização. Já, no caso dos CUADRF que tiveram as fibras funcionalizadas com GPTMS, foi verificado uma diminuição de trabalhabilidade em torno de 15 % em relação à série sem tratamento.

A cinética de hidratação dos CUADRF não foi alterada pela funcionalização das fibras. Nas séries de CUADRF com fibras funcionalizadas, variações de no máximo 10 % no período de aceleração da hidratação foram verificados, enquanto que para calor gerado e grau de hidratação as variações nos índices obtidos foram em torno dos 4 %.

A funcionalização das fibras mostrou impactar significativamente na resistência à compressão dos CUADRF. Com 3 e 7 dias de hidratação essa influência negativa bastante evidente, obtendo-se resultados até 18 % inferiores em relação à série de CUADRF referência. Por outro lado, aos 28 dias de hidratação a funcionalização 0,5 % de silano não influenciou a resistência à compressão dos CUADRF estudados. Entretanto, as demais séries, com 0,1 % e 1,0 %, obtiveram resultados inferiores ao CUADRF referência.

No ensaio Barcelona, de modo geral, o desempenho dos CUADRF com fibras funcionalizadas apresentou menores resultados em relação ao CUADRF referência. Para os resultados de resistência em 0,05 mm de abertura circunferencial, verificou-se que o tratamento realizado com TEOS possui pouca ou nenhuma influência, enquanto a funcionalização com GPTMS apresentou um impacto negativos nesse índice, em torno de 5 %. Para os índices de resistência máxima, obteve-se índices em torno de 10 % inferiores quando utilizado 0,1 % e 1,0 % de silano. Porém, quando funcionalizados 0,5 % de silano, a perda de tensão em relação ao CUADRF referência foi em torno de 3 %.

A funcionalização provocou um enrijecimento do compósito, resultando no aparecimento do pico de tensão em aberturas de fissura inferiores nos CUA-DRF com fibras funcionalizadas em relação ao CUADRF referência. Em geral, os resultados de máxima resistência mecânica apareceram em aberturas circunferenciais de 7 % a 29 % inferiores à série de CUADRF referência. Os índices de tensão residual seguiram a mesma tendência dos dados de pico de tensão, com menores perda de desempenho nas séries com fibras funcionalizadas com 0,5 % de silano. Esses resultados foram observados para aberturas circunferenciais inferiores à 2 mm. Por outro lado, em aberturas circunferenciais maiores que 2 mm, houve CUADRF com fibras funcionalizadas que obtiveram maiores índices de resistência em relação à série referência. Apesar de importante, essa "qualidade" é menos interessante em CUADRF, uma vez que esse tipo de compósito apresenta várias microfissuras em lugar de uma fissura concentrada.

Em geral, a funcionalização mostrou pouca influência nos índices de resistência à flexão e, quando influenciou, essa influência foi negativa. Para o LOP, verificou-se que a funcionalização das fibras com TEOS ou GPTMS reduziu em torno de 25 % os resultados dos CUADRF em comparação com a série referência. Por outro lado, os resultados de MOR das séries de CUADRF com fibras funcionalizadas foram superiores à série referência, em todas as dosagens, chegando a aumentos de cerca de 15 %, como para a série T_N_0,5%_C.

A funcionalização com 0,1 % e 1,0 % de silano resultou em índices iguais ou inferiores à série sem tratamento, enquanto que quando utilizado 0,5 % de silano, houve um aumento em torno de 10 % para as aberturas de fissura até 1,5mm, para ambos os silanos utilizados. Os índices de tenacidade residual refletem a tendência verificada nos índices de tensão, mostrando que a funcionalização só foi efetiva nas as séries funcionalizadas com 0,5 % de silano.

De maneira geral, para o ensaio de *pull-out*, a funcionalização das fibras mostrou impactar significativamente nos resultados. Verificou-se que quanto maior a quantidade de silano, maiores foram os resultados de resistência obtidos nos CUADRF, principalmente em 28 dias de hidratação.

No caso da funcionalização com TEOS, independentemente do tempo de hidratação, a série de CUADRF funcionalizada com 1,0 % de silano apresentou os melhores índices em relação às demais. No caso do tratamento com GPTMS, a concentração de silano na funcionalização apresentou um impacto menos evidente nos resultados de resistência dos CUADRF, mesmo assim, impactou significativamente os índices de abertura de fissura, evidenciando a potencialidade do uso de silanos para o aprimoramento das propriedades de CUADRF.

Análoga ao ensaio Barcelona, no ensaio de pull-out a tensão máxima apareceu em aberturas de fissura cada vez menores, quanto maior a quantidade de silano e tempo de hidratação do cimento. Por outro lado, a variabilidade dessa medida foi grande, em torno de 60 %, comprometendo a possibilidade conclusões precisas sobre esses resultados. As tensões residuais mostraram não serem alteradas em 3 dias de hidratação. Porém, aos 7 e 28 dias, as séries de CUADRF com fibras funcionalizadas com 1,0 % de silano apresentam índices de até 30 % superiores à série de CUADRF referência para 0,5 mm de abertura de fissura. Os maiores índices de tensão, atrelados ao aparecimento do pico de tensão em aberturas de fissuras inferiores verificados nas amostras funcionalizadas, refletiram nos melhores índices de tenacidade, principalmente para as séries de CUA-DRF com fibras funcionalizadas com TEOS. Os índices de tenacidade das séries de CUADRF com fibras funcionalizadas também apresentam aumentos significativos, evidenciando o potencial da utilização de silanos no tratamento de superfícies de aço para o aprimoramento da interface fibra-matriz de compósitos cimentícios.

Avaliações da morfologia e composição da fibra revelaram que a melhora no desempenho mecânico gerado pelo tratamento, principalmente no ensaio de *pull-out*, decorre de duas causas principais: uma física e uma química. De acordo com o primeiro deles (causa física), o tratamento aumentou a rugosidade da superfície da fibra aumentando a área total de contato e a força de arrancamento. Observou-se uma heterogeneidade em termos de espessura e área coberta pelo filme de silano na superfície das fibras tratada, principalmente para as maiores concentrações de silano. Atribuiu-se essa heterogeneidade à alta concentração de silano que tendem a condensar e formar moléculas de siloxano (\equiv Si-O-Si \equiv) maiores. Além disso, as heterogeneidades na composição da superfície da fibra favoreceram a condensação de silano diferentes velocidades e, consequentemente, diferentes espessuras na superfície da fibra.

Nos tratamentos os maiores teores de TEOS e GPTMS, formou-se depósitos de silano sobre a superfície da fibra, esses depósitos funcionaram semelhantemente à uma ancoragem mecânica que gera forças inclinadas e aumenta a superfície que tem de ser danificada e mobilizada durante a retirada. Os resultados, também, indicam uma possível interação química (segundo causa principal) entre a camada de silano e a matriz de cimento, que resultou na melhora do desempenho mecânico observado no *pull-out*.

A matriz rica em íons (Ca²⁺, Si⁴⁺ e OH⁻) pôde reagir com o filme de silano rico em Si⁴⁺ e OH⁻, que favoreceu a precipitação de C-S-H na zona de transição interfacial. As análises de EDS mostram que as fibras tratadas mostram razões Si/Ca várias vezes mais altas do que nas fibras não tratadas, sugerindo a presença adicional de C-S-H que justifica uma zona de transição interfacial mais resistente.

Em relação ao modo de fratura, pôde-se notar que as fibras não tratadas falharam na interface fibra-matriz. As fibras funcionalizadas com 0,1 % não apresentaram silano suficiente para formar uma camada difusa forte em torno das fibras. Consequentemente, a falha ocorreu na zona difusa de modo que uma camada de silano restante é observada em torno da fibra após o teste de *pull-out*. Em contraste, as fibras funcionalizadas com 0,5 % e 1,0 % de silano apresenta-ram uma zona difusa com alta concentração de C-S-H e depósitos de silano que desviaram a ocorrência da falha para o interior da matriz de cimento. A inspeção das fibras após a retirada mostrou a presença de pedaços rachados da matriz em torno da fibra, confirmando a zona de transição da interface mais forte e a necessidade de mobilizar uma superfície maior durante a falha. Esta é a causa do incremento na carga de arrancamento e na energia observada.

8 CONCLUSÕES GERAIS DA TESE

Nesse trabalho, verificou-se a possibilidade de aprimoramento das propriedades da interface fibra matriz de compósitos de ultra-alto desempenho reforçados com microfibras metálicas funcionalizadas com silanos do tipo TEOS e GPTMS, evidenciado principalmente pelas análises mecânicas de *pull-out* e microestruturais da interface fibra-matriz. Para tanto, investigaram-se diferentes parâmetros determinantes, tanto no processo de funcionalização pelo processo sol-gel, quanto nos métodos de caracterização adotados. Assim, a partir dessa investigação, neste item, são apresentadas as conclusões gerais da tese.

O emprego da técnica de infravermelho mostrou-se satisfatória para o monitoramento da hidrólise/condensação dos silanos avaliados. Soluções com 1 $\%_{(vol.)}$ de TEOS ou GPTMS mostraram-se não adequadas para o monitoramento da hidrólise/condensação em soluções aquosas por não ter sido possível a identificação das bandas características da hidrólise/condensação desses silanos. Dessa forma, recomenda-se que esse tipo de estudo seja feito em soluções alcoólicas de concentração na ordem dos 10 $\%_{(vol.)}$ de silano. A hidrólise dos silanos em soluções com 50 $\%_{(vol.)}$ de álcool e em temperatura ambiente foi rápida e alcança a maior quantidade de grupos silanóis em torno dos 60 minutos, para ambos os silanos estudados, o que está de acordo com a bibliografia.

As superfícies das fibras de aço funcionalizadas com 1 % e 10 %_(vol.) de TEOS ou GPTMS apresentaram um filme de silano espesso e irregular na superfície das fibras. Quanto maior a quantidade de silano na funcionalização, maior a deposição de silano na superfície das fibras. A composição dos filmes na superfície das fibras é similar à composição e estrutura de uma sílica amorfa, caracterizando-se como uma cobertura superficial com potencial pozolânico. Os filmes de silanos apresentaram um aspecto frágil e quebradiço, delaminando quando atritados, indicando que concentrações de silano na ordem de 1 % na funcionalização já estão no limite máximo de concentração para uma distribuição regular de silano na superfície das fibras.

De modo geral, quanto maior a quantidade de silano na funcionalização, maior foi a quantidade de silano na superfície das fibras e, a realização de banhos alcalinos, antes e depois do banho de funcionalização, mostrou-se uma variável importante dentro do processo de funcionalização. Pois, quando os dois banhos alcalinos foram aplicados, obteve-se uma deposição de silanos mais fina e uniforme em comparação às demais. Assim, esse processo de funcionalização (com os dois banhos alcalinos) mostrou-se como uma metodologia adequada para o objetivo proposto.

Apesar de não ser o foco principal da utilização dos silanos na funcionalização, verificou-se que, de maneira geral, quanto maior a quantidade de silano na funcionalização, maiores foram os valores de trabalhabilidades dos concretos produzidos com as fibras funcionalizadas. A cinética de hidratação do cimento não foi afetada quando da incorporação das fibras funcionalizadas com TEOS ou GPTMS nos CUADRF. Em geral, os concretos apresentaram período de indução de 25 horas na fase preliminar da tese e, nos concretos com adição de fibras funcionalizadas, verificou-se apenas variação no período de indução quando 10 % de silano foi utilizado, obtendo-se aumentos de até 64 % em relação à série de concreto com fibras referência. Nas demais séries de concretos, nas duas fases da pesquisa, pouca ou nenhuma influência foi verificada na cinética de hidratação do cimento.

A resistência à compressão do compósito foi pouco afetada pelo processo de funcionalização das fibras. A resistência média à compressão dos CUADRF ficou em torno de 155 MPa e a configuração de funcionalização com os maiores índices de resistência foi obtida quando os dois banhos alcalinos (NaOH e Ca(OH)₂) foram aplicados.

No ensaio de flexo-tração, o emprego da funcionalização mostrou ser mais influente que na compressão, obtendo-se resultados estatisticamente superiores em relação à série de concreto com adição de fibras sem tratamento, isso quando utilizados os dois banhos alcalinos no processo de funcionalização. Apesar não ter sido identificado diferença significativa entre várias séries de CUA-DRF, houve uma tendência de aumento da resistência para os concretos com fibras tratadas com ambos os silanos, de até 15 % em relação à série referência, como na série de CUADRF e fibra funcionalizada com 1 % de TEOS e com os dois banhos alcalinos (T_1,0_NC). Com 10 % de silano na funcionalização (para ambos os silanos estudados) não se obteve aumento nas propriedades dos compósitos em relação aos CUADRF com fibras funcionalizadas com 1 % de silano. Assim, não se recomenda a utilização de 10 % de silano na funcionalização, uma vez que não justifica a sua utilização.

No ensaio Barcelona, em todas as séries de CUADRF com fibras funcionalizadas obteve-se índices mecânicos inferiores à série referência, principalmente para as aberturas circunferenciais inferiores a 1,5 mm. Um fato interessante é que a funcionalização das fibras, de modo geral, resultou no enrijecimento do compósito, levando ao registro da tensão máxima em menores valores de abertura circunferencial. Essas conclusões sugerem que esse ensaio pode não ser adequado para a caracterização dos efeitos da funcionalização nesse tipo de compósito, uma vez que os efeitos da funcionalização são melhores verificados em pequenas aberturas de fissuras, além de esse ensaio apresentar uma transferência brusca de tensão no momento da criação da fissura no corpo de prova, deteriorando a interface fibra-matriz e dificultado a caracterização da mesma.

O ensaio de flexo-tração e limite de proporcionalidade (LOP) mostrou pouca sensibilidade para a análise do efeito da utilização de fibra funcionalizada nas propriedades dos CUADRF. No índice de tensão máxima e tenacidade, a funcionalização das fibras com 0,5 % de TEOS resultou em cerca de 15 % de aumento, em relação ao concreto com fibras referências. Nos índices de resistência residual, verificou-se aumento de valores de tensão para os concretos com

fibras funcionalizadas com 0,5 % e 1,0 % de silano, e de perda de resistência quando as fibras foram tratadas com 0,1 % de silano, tanto para as séries de concretos com fibras funcionalizadas com TEOS como com GPTMS. Apesar de variações nos índices de resistências obtidos no ensaio, esse ensaio é bastante dependente das propriedades da matriz e possui um erro intrínseco alto, o que refletiu nos resultados predominantemente similares entre as séries. Embora pouco sensível, esse ensaio se mostrou mais adequado em comparação ao ensaio Barcelona, uma vez que a transferência de tensão é gradual e a interface fibra matriz é mais preservada. Apesar disso, a indução da fissura no meio do corpo de prova descaracteriza o comportamento real desse tipo de compósito, que tem como característica o comportamento de *strain-hardening* com a abertura de várias microfissuras. Como o processo de funcionalização apresentou maior benefício em pequenas deformações, a metodologia de caracterização adotada desfavoreceu a obtenção de resultados que evidenciassem os reais impactos da funcionalização das fibras.

No ensaio de *pull-out*, verificou-se que, aos 28 dias de hidratação do cimento, as séries de CUADRF com fibras funcionalizadas com 1,0 % de silano obtiveram os melhores índices em relação às demais, principalmente para aberturas de fissura inferiores à 1,5 mm. Nos índices analisados pontualmente, notase que quanto maior a quantidade de silano na funcionalização das fibras, maior foram os índices de tensão máxima nos concretos, além da tensão máxima ser registrada em menores aberturas de fissura, para ambos os silanos utilizados.

Nos índices de resistência residual ao arrancamento, notou-se a mesma tendência verificada para o índice de tensão máxima, justificando-se porque, uma vez fraturada a matriz, a curva de arrancamento apresenta pouca variação até o fim do ensaio. Assim, de modo geral, as séries de concretos com funcionalizadas apresentam índices de tensão residual superior à série de concreto sem tratamento, principalmente em pequenos valores de abertura de fissura (< 1mm).

Pela análise microestrutural das fibras, verificou-se que o tratamento com Ca(OH)₂ após a funcionalização das fibras foi efetivo conduzindo à formação de precitados de C-S-H na superfície das fibras funcionalizadas (até 1 % de silano). Notou-se que o provável aumento de desempenho das séries funcionalizadas no ensaio de *pull-out* se deve à maior deposição de produtos hidratados na superfície das fibras, em comparação à fibra sem tratamento, resultando numa maior superfície específica, que promove uma melhor interação interface fibra-matriz, atribuída principalmente a uma maior relação Si/Ca na região interfacial promovida pela carga química do filme de silano. A partir dessa análise, propôs-se um modelo conceitual da interface fibra-matriz quando fibras funcionalizadas com silano são adicionadas a matrizes cimentícia.

Por fim, essa pesquisa evidencia o potencial da funcionalização de fibras de aço com silanos para a otimização das propriedades da interface fibra-matriz em CUADRF. Com até 1 $\%_{(vol.)}$ de silano na funcionalização, não houve alterações nas cinéticas de hidratação do cimento ou perdas substanciais nos índices

de resistência; ao contrário, quando as fibras foram funcionalizadas com TEOS, as propriedades dos concretos foram potencializadas, evidenciado, principalmente, pelo ensaio de *pull-out* e pela caracterização da interface fibra-matriz.

8.1 RECOMENDAÇÕES PARA TRABALHOS FUTUROS

O tema proposto nessa tese possui uma grande quantidade de variáveis independentes que podem ser avaliadas separadamente com o objetivo de clarificar o impacto de cada uma dessas quando as fibras funcionalizadas são adicionadas na matriz cimentícia. Assim, como recomendação para futuras investigações no tema, sugere-se:

- Investigar a funcionalização de fibras de aço sem o cobrimento de latão, cobrimento esse que é comumente encontrado nas microfibras para reforço de CUADRF;
- Avaliar o processo de funcionalização utilizado nesse trabalho em outros tipos de fibras de aço, como as fibras "grandes" (normalmente utilizada para reforço de concreto convencional), nas propriedades de concretos convencionais;
- Avaliar o efeito da mudança de parâmetros da funcionalização, como a variação do tipo de silano, concentração de silano, de quantidade de álcool no processo; na qualidade do filme de silano formado na superfície das fibras;
- Se realizada a caracterização do compósito por análise de flexo-tração, evitar a realização do entalhe central e ensaio de três pontos, recomendando-se o ensaio de 4 pontos. Pois favorece o aparecimento de várias microfissuras no lugar de uma fissura localizada;
- Investigar se a funcionalização de fibras de aço com silano possui impacto na durabilidade de compósitos cimentícios.

9 REFERÊNCIAS BIBLIOGRÁFICAS

ABBAS, S.; NEHDI, M. L.; SALEEM, M. A. Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges. International Journal of Concrete Structures and Materials, v. 10, n. 3, p. 271–295, 2016.

ABEL, M.-L. et al. Understanding the relationship between silane application conditions, bond durability and locus of failure. **International Journal of Adhesion and Adhesives**, v. 26, n. 1–2, p. 2–15, fev. 2006.

ABNT. NBR 5733 - Cimento Portland de alta resistência inicial. Rio de Janeiro: [s.n.]. Disponível em: https://www.abntcatalogo.com.br/norma.aspx?ID=5966>.

ABNT. Associação Brasileira de Normas Técnicas - NBR NM 248 Agregados - Determinação da composição granulométrica. Rio de Janeiro: [s.n.].

ABNT. Associação Brasileira de Normas Técnicas - NBR 15530 – Fibras de aço para concreto – Especificações. Rio de Janeiro: [s.n.].

ABU-LEBDEH, T. et al. Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. **Construction and Building Materials**, v. 25, n. 1, p. 39–46, jan. 2011.

ACI. American Concrete Institute - ACI-239 Committee - Ultra-High Performance Concrete -USA. [s.l: s.n.].

ACKER, P.; BEHLOUL, M. **Ductal® technology: a large spectrum of properties, a wide range of applications**. (M. Schmidt, E. Fehling, C. Geisenhanslüke, Eds.)Proceedings of the International Symposium on Ultra High Performance Concrete (UHPC). **Anais**...Kassel: University of Kassel, 2004

AENOR. UNE-EN 196-1. Métodos de ensayo de cementos - Parte 1: Determinación de resistencias mecánicas. p. 35, 2005.

AENOR. Asociación Española de Normalización y Certificación - UNE-EN 14651+A1. Método de enayo para hormigón con fibras metálicas. Determinación de la resistencia a la tracción por flexión (límite de proporcionalidad (LOP), resistencia residual)MadridAENOR, , 2007.

AENOR. Asociación Española de Normalización y Certificación - UNE-EN 83515 - Hormigones con fibras. Determinación de la resistencia a fisuración, tenacidad y resistencia residual a tracción. Ensaio Barcelona.AENOR, , 2010. Disponível em: http://www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&co-digo=N0045786&PDF=Si#.WKHnJTvhD4Y>

AENOR. Asociación Española de Normalización y Certificación - UNE-EN 197-1 - Cemento - Parte1: Composición, especificaciones y criterios de conformidad de los cementos comunes, 2011. Disponível em: <http://www.aenor.es/aenor/normas/fichanorma.asp?tipo=N&codigo=N0048623#.VyEWb1bhDDd>

AGUADO, A.; MARI, A.; MOLINS, C. **Estudio de viabilidad del ensayo Barcelona**. III Congreso de ACHE de Puentes y Estructuras - anais - Vol. 1. Gestión de Estructuras. **Anais**...Zaragoza 14-17 noviembre: 2005

AIELLO, M. A. et al. Use of steel fibres recovered from waste tyres as reinforcement in concrete: pull-out behaviour, compressive and flexural strength. **Waste management (New York, N.Y.)**, v. 29, n. 6, p. 1960–70, jun. 2009.

AÏTCIN, P. C. High-Performance Concrete. Second edi ed. London and New York: E & FN SPON, 2004.

AL-OWEINI, R.; EL-RASSY, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R"Si(OR')3 precursors. **Journal of Molecular Structure**, v. 919, n. 1–3, p. 140–145, fev. 2009.

ALLISON, P. G. et al. Nanomechanical and chemical characterization of the interface between concrete, glassceramic bonding enamel and reinforcing steel. **Construction and Building Materials**, v. 37, p. 638–644, dez. 2012.

ALOTHMAN, Z. A.; APBLETT, A. W. Preparation of mesoporous silica with grafted chelating agents for uptake of metal ions. **Chemical Engineering Journal**, v. 155, n. 3, p. 916–924, dez. 2009.

ALWAN, J. M.; NAAMAN, A. E.; HANSEN, W. Pull-out work of steel fibers from cementitious composites: Analytical investigation. Cement and Concrete Composites, v. 13, n. 4, p. 247–255, jan. 1991.

AMARO, D.; FERNANDES, F. A aplicação estrutural de betões de elevado desempenho (HPC e UHPC) - [Dissertação de Mestrado]. [s.l.] Faculdade de Ciência e Tecnologia Nova de Lisboa, 2011.

ARAKAKI, L. N. H.; AIROLDI, C. O relevante papel do agente sililante na modificação de superfícies de polímeros. **Química Nova**, v. 22, n. 2, p. 246–253, abr. 1999.

ARKLES, B. et al. Factors contributing to the stability of alkoxysilanes in aqueous solution. Journal of Adhesion Science and Technology, v. 6, n. 1, p. 193–206, jan. 1992.

ARKLES, B. Silicon Esters. Encyclopedia of Chemical Technology, v. 22, n. Fourth Edition, p. 69-81, 1997.

ASTM. ____ ASTM C1399/C1399M - Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete, 2010.

ASTM. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C1609/C1609M - Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), 2012.

ASTM. C1437 - Standard test method for flow of hydraulic cement mortarASTM International. [s.l: s.n.].

AVESTON, J.; COOPER, G. A.; KELLY, A. Single and multiple fracture. Conference on the properties of fiber composites. Anais...London: 1971

AVESTON, J.; KELLY, A. Theory of multiple fracture of fibrous composites. Journal of Materials Science, v. 8, n. 3, p. 352–362, mar. 1973.

AZAD, A. K.; HAKEEM, I. Y. Flexural behavior of hybrid concrete beams reinforced with ultra-high performance concrete bars. **Construction and Building Materials**, v. 49, p. 128–133, dez. 2013.

BACHE, H. . Densified cement ultrafine particle-based materials. 2nd International Conference on superplasticizers in Concrete. Anais...Otawa: 1981

BAGGIO, T. F. Filmes híblidos obtidos a partir de precursores alcóxidos para proteção contra corrosão em aço estrutural - [Dissertação de Mestrado] - in portuguese. [s.l.] Universidade Federal do Rio Grande do Sul, 2011.

BAGHERZADEH, M. R.; DANESHVAR, A.; SHARIATPANAHI, H. Novel water-based nanosiloxane epoxy coating for corrosion protection of carbon steel. **Surface and Coatings Technology**, v. 206, n. 8–9, p. 2057–2063, jan. 2012.

BANHOLZER, B.; BRAMESHUBER, W.; JUNG, W. Analytical evaluation of pull-out tests—The inverse problem. Cement and Concrete Composites, v. 28, n. 6, p. 564–571, jul. 2006.

BARBERENA-FERNÁNDEZ, A. M.; CARMONA-QUIROGA, P. M.; BLANCO-VARELA, M. T. Interaction of TEOS with cementitious materials: Chemical and physical effects. **Cement and Concrete Composites**, v. 55, p. 145–152, jan. 2015.

BARTOS, P. Bond in fibre reinforced cements and concretes REVIEW. The International Journal of Cement Composites, v. 3, n. 3, p. 20p., 1981.

BECCARIA, A. M.; CHIARUTTINI, L. The inhibitive action of metacryloxypropylmethoxysilane (MAOS) on aluminium corrosion in NaCl solutions. **Corrosion Science**, v. 41, n. 5, p. 885–899, maio 1999.

BENTUR, A.; DIAMOND, S.; MINDESS, S. The microstructure of the steel fibre-cement interface. Journal of Materials Science, v. 20, n. 10, p. 3610–3620, 1985.

BENTUR, A.; MINDESS, S. Fibre Reinfoced Cementitious Composites. second ed. London and New York: Taylor & Francis, 2007.

BENTUR, A.; MINDESS, S.; DIAMOND, S. Pull-out processes in steel fibre reinforced cement. International Journal of Cement Composites and Lightweight Concrete, v. 7, n. 1, p. 29–37, fev. 1985.

BENTUR, P. A.; ALEXANDER, M. G. A review of the work of the RILEM TC 159-ETC: Engineering of the interfacial transition zone in cementitious composites. **Materials and Structures**, v. 33, n. March, p. 82–87, 2000.

BENTZ, D. P.; HAECKER, C. J. Argument for using coarse cements in high-performance concretes. Cement and Concrete Research, v. 29, n. 4, p. 615–618, 1999.

BENZERZOUR, M. et al. Waste fibre-cement matrix bond characteristics improved by using silane-treated fibres. Construction and Building Materials, v. 37, p. 1–6, dez. 2012.

BETIOLI, A. M. et al. Effect of HMEC on the consolidation of cement pastes: Isothermal calorimetry versus oscillatory rheometry. **Cement and Concrete Research**, v. 39, n. 5, p. 440–445, 2009.

BEZOU, C. et al. Structures cristallines de CaSO4*0.5(H2O) et CaSO4*0.6(H2O). **Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie 2 (1984-1993)**, n. 312, p. 43–48, 1991.

BHAGAT, S. D.; RAO, A. V. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process. **Applied Surface Science**, v. 252, n. 12, p. 4289–4297, 2006.

BIRCHALL, J. D.; HOWARD, A. J.; KENDALL, K. Flexural strength and porosity of cements. **Nature**, v. 289, n. 5796, p. 388–390, 29 jan. 1981.

BIZ, C. E. Concreto de pos reativos - [Dissertação de Mestrado]. [s.l.] Universidade Estadual de Campinas, 2001.

BOKII, G. .; PAL'CHIK, N. .; ANTIPIN, M. Y. More precise determination of syngenite crystal structure. Trudy Instituta Geologii I Geofiziki, Akademiya Nauk SSSR, Sibirskoe Otdelenie, n. 385, p. 3–7, 1978.

BRANDÃO, J. H. Análise experimental e numérica de concreto de Ultra-Alto Desempenho reforçaco com fibras - [Tese de Doutorado]. [s.l.] Universidade Federal do Rio de Raneiro - COPPE, 2005.

BRINKER, C. J. Hydrolysis and condensation of silicates: Effects on structure. Journal of Non-Crystalline Solids, v. 100, n. 1–3, p. 31–50, mar. 1988.

BRINKER, C. J.; SCHERER, G. W. Sol-Gel Science: The physics and chemistry of sol-gel processing. San Diego: Academic Press. Inc., 1990.

BUITELAAR, P. Heavy Reiforced Ultra High Performance Concrete. (M. Schmidt, E. Fehling, C. Geisenhanslüke, Eds.)Proceedings of the International Symposium on Ultra High Performance Concrete (UHPC). Anais...Kassel, Germany: University of Kassel, 2004

CAI, Y. et al. The use of tetraethyl orthosilicate silane (TEOS) for surface-treatment of hardened cement-based materials: A comparison study with normal treatment agents. **Construction and Building Materials**, v. 117, p. 144–151, 2016.

CALDAS, A.; FIGUEIREDO, A. D.; BITENCOURT, T. N. **Propriedades do concreto reforçado com fibras de aço (CRFA): comparação entre métodos de medida**. V Simpósio EPUSP sobre Estruturas de Concreto -Anais. **Anais**...2003

CALLISTER, W. D. Ciência e Engenharia de Materiais - Uma introdução. 7ª Edição ed. [s.l.] Jhon Willey & Sons LTD., 2007.

CAMACHO, E.; LÓPEZ, J. Á.; ROS, P. S. **Definition of three levels of performance for UHPFRC-VHPFRC** with available materials. (M. Schimidt et al., Eds.)Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. **Anais**...Kassel: Kassel University Press, 2012

CÁNOVAS, M. F. **Panorama actual de los hormigone reforzados com fibra de acero**. CONPAT 97 – IV Congresso Iberoamericano de Patologia das Constru-ções e VI Congresso de Controle de Qualidade. **Anais**...Porto Alegre: 1997

CAO, J.; CHUNG, D. D. L. Improving the dispersion of steel fibers in cement mortar by the addition of silane. **Cement and Concrete Research**, v. 31, n. 2, p. 309–311, fev. 2001.

CAPIOTTO, N. Uso de silano BSTE como protetivo contra a corrosão de laminados de aço carbono -[Master dissertation] - in portuguese. [s.l.] Universidade de São Paulo, 2006.

CARMONA, S.; AGUADO, A.; MOLINS, C. Characterization of the properties of steel fiber reinforced concrete by means of the generalized Barcelona test. **Construction and Building Materials**, v. 48, p. 592–600, nov. 2013.

CARMONA MALATESTA, S.; AGUADO DE CEA, A.; MOLINS BORRELL, C. Generalization of the Barcelona test for the toughness control of FRC. Materials and Structures, v. 45, n. 7, p. 1053–1069, 3 jan. 2012.

CHAN, Y.-W.; CHU, S.-H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. **Cement and Concrete Research**, v. 34, n. 7, p. 1167–1172, jul. 2004.

CHANVILLARD, G.; AÏTCINT, P. C. Pull-Out Behavior of Corrugated Steel Fibers Qualitative and Statistical Analysis. Advanced Cement Based Materials, v. 4, n. 1, p. 28–41, jul. 1996.

CHAO, S. et al. Use of Double Punch Test to Evaluate the Mechanical Performance of Fiber Reinforced. (G. J. Parra-Montesinos, R. H.W, A. E. Naaman, Eds.)High Performance Fiber Reinforced Cement Composites (HPFRCC 6). Anais...RILEM Publications SARL, 2012

CHEN, F. W. Double Punch Test for Tensile Strength of Concrete. ACI Materials Journal, v. 67, p. 993–995,

1970.

CHEN, H.; WANG, J.; HUO, Q. Self-assembled monolayer of 3-aminopropyltrimethoxysilane for improved adhesion between aluminum alloy substrate and polyurethane coating. **Thin Solid Films**, v. 515, n. 18, p. 7181–7189, jun. 2007.

CHEYREZY, M.; MARET, V.; FROUIN, L. Microstructural analysis of RPC (Reactive Powder Concrete). Cement and Concrete Research, v. 25, n. 7, p. 1491–1500, out. 1995.

CHILD, T.; VAN OOIJ, W. J. Application of silane technology to prevent corrosion of metals improve paint adhesion. **Transactions of Institute of Metal Finishing**, v. 77, n. 2, p. 42–53, 1999.

CHRUŚCIEL, J. J.; LEŚNIAK, E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. **Progress in Polymer Science**, v. 41, p. 67–121, ago. 2014.

COLLEPARDI, M. Admixtures used to enhance placing characteristics of concrete. Cement and Concrete Composites, v. 20, n. 2–3, p. 103–112, jan. 1998.

COLLEPARDI, S.; COPOLLA, L.; TROLI, R. Mechanisms of actions of different superplasticizers for highperformance concrete. CANMET/ACI SP186, 186. High Performance Concrete. Anais...1998

COLLODETTI, G. Desenvolvimento de híbrido Sílica/silano para uso como aditivo em materiais cimentícios - [Doctoral Thesis]. [s.l.] Universidade Federal de Santa Catarina, 2013.

COLLODETTI, G.; GLEIZE, P. J. P.; MONTEIRO, P. J. M. Exploring the potential of siloxane surface modified nano-SiO2 to improve the Portland cement pastes hydration properties. **Construction and Building Materials**, v. 54, p. 99–105, mar. 2014.

COLVILLE, A. A.; GELLER, S. The crystal structure of brownmillerite, Ca2FeAlO5. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, v. 27, n. 12, p. 2311–2315, 15 dez. 1971.

COPOLLA, L.; TROLI, R.; CERULLI, T. The influence of materials on the performance of reactive powder concrete. International Congress on High-performance Concrete, Performance and Quality of Concrete Structures. Anais...Florianópolis: 1996

CUNLIFFE, A. V. et al. Optimum preparation of silanes for steel pre-treatment. International Journal of Adhesion and Adhesives, v. 21, n. 4, p. 287–296, jan. 2001.

DALMORO, V. et al. Phosphonic acid/silica-based films: A potential treatment for corrosion protection. Corrosion Science, v. 60, p. 173–180, jul. 2012.

DE LA TORRE, Á. G. et al. The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses. **Cement and Concrete Research**, v. 32, n. 9, p. 1347–1356, set. 2002.

DE LA TORRE, Á. G. et al. Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses. **Powder Diffraction**, v. 19, n. 3, p. 240–246, 6 set. 2004.

DEFLORIAN, F.; ROSSI, S.; FEDRIZZI, L. Silane pre-treatments on copper and aluminium. **Electrochimica** Acta, v. 51, n. 27, p. 6097–6103, ago. 2006.

DESCHNER, F. et al. Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, v. 42, n. 10, p. 1389–1400, 2012.

DIAMOND, S.; HUANG, J. The ITZ in concrete - a different view based on image analysis and SEM observations. Cement and Concrete Composites, v. 23, p. 179–188, 2001.

DI PRISCO, M.; COLOMBO, M.; DOZIO, D. Fibre-reinforced concrete in fib Model Code 2010: principles, models and test validation. **Structural Concrete**, v. 14, n. 4, p. 342–361, 2 dez. 2013.

DIAS, C. M. R.; FIGUEIREDO, A. D.; JOHN, V. M. Avaliação comparativa do comportamento pós-fissuração de concretos com fibras de aço e com fibras de polipropileno e alto módulo de elasticidade. 48° Congresso Brasileiro do Concreto. Anais...Instituto Brasileiro do Concreto - IBRACON, 2006Disponível em: http://www.lojaibracon.org.br/detalhes/1431

DUGAT, J.; ROUX, N.; BERNIER, G. Mechanical properties of reactive powder concretes. Materials and Structures, v. 29, n. 4, p. 233–240, maio 1996.

DUPONT, D.; VANDEWALLE, L. Comparison between the round plate test and the RILEM 3-point Bending Test. 6th RILEM Symposium on Fibre-Reinfoced Concretes (FRC) - BEFIB - 2004. Anais...Varenna: RILEM Publications SARL, 2004 FAN, W. et al. A new class of organosilane-modified polycarboxylate superplasticizers with low sulfate sensitivity. **Cement and Concrete Research**, v. 42, n. 1, p. 166–172, jan. 2012.

FEDÉRATION INTERNATIONALE DU BÉTON. International Federation for Structural Concrete (fib) Model Code 2010 - First complete draft - Volume 1 - Bulletin 55: march. Lausanne - Switzerland: [s.n.].

FENG, H. et al. Effects of silanes and silane derivatives on cement hydration and mechanical properties of mortars. **Construction and Building Materials**, v. 129, p. 48–60, 2016.

FERREIRA, L. E. T.; HANAI, J. B. Mecânica da Fratura. In: ISAIA, G. C. (Ed.). . Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais. Segunda Ed ed. São Paulo: Instituto Brasileiro do Concreto - IBRACON, 2010. p. 241–280.

FIDJESTIL, P.; THORSTEINSEN, R. T.; SWENNEVIG, P. Making UHPC with local materials – The way forward. (M. Schimidt et al., Eds.)Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Anais...Kassel: Kassel University Press, 2012

FIGUEIREDO, A. D. et al. **Análise de viabilidade do uso de fibras metálicas em tubos de concreto. Parte 1: campanha experimental**. 52º Congresso Brasileiro do Concreto - Novas tecnologias do concreto para o crescimento sustentável. **Anais**...Fortaleza: Instituto Brasileiro do Concreto - IBRACON, 2010

FIGUEIREDO, A. D. Concreto reforçado com fibras - [Tese de Livre Docência]. [s.l.] Universidade de São Paulo, 2011.

FRANQUET, A. et al. Determination of the thickness of thin silane films on aluminium surfaces by means of spectroscopic ellipsometry. **Thin Solid Films**, v. 384, n. 1, p. 37–45, mar. 2001.

FRANQUET, A. et al. Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium. **Electrochimica Acta**, v. 48, n. 9, p. 1245–1255, abr. 2003.

FRANQUET, A.; TERRYN, H.; VEREECKEN, J. IRSE study on effect of thermal curing on the chemistry and thickness of organosilane films coated on aluminium. **Applied Surface Science**, v. 211, n. 1–4, p. 259–269, abr. 2003.

FRANTZIS, P.; BAGGOTT, R. Bond between reinforcing steel fibres and magnesium phosphate/calcium aluminate binders. Cement and Concrete Composites, v. 22, n. 3, p. 187–192, jun. 2000.

GARAS, V. Y.; KURTIS, K. E.; KAHN, L. F. Creep of UHPC in tension and compression: Effect of thermal treatment. **Cement and Concrete Composites**, v. 34, n. 4, p. 493–502, abr. 2012.

GAVA, G. Análise teórica-experimental do comportamento à flexão de vigas de concreto reforçado com fibras de aço - [Tese de Doutorado]. [s.l.] Universidade Federal de Santa Catarina, 2006.

GENG, Y.; LEUNG, C. K. Y. A microstructural study of fibre / mortar interfaces during fibre debonding and pull-out. Journal of Materials Science, v. 31, p. 1285–1294, 1996.

GEORGIADI-STEFANIDI, K. et al. Numerical modelling of the pull-out of hooked steel fibres from highstrength cementitious matrix, supplemented by experimental results. **Construction and Building Materials**, v. 24, n. 12, p. 2489–2506, dez. 2010.

GIZDAVIC-NIKOLAIDIS, M. R. et al. Structure and properties of GPTMS/DETA and GPTMS/EDA hybrid polymers. **Current Applied Physics**, v. 8, n. 3–4, p. 300–303, maio 2008.

GLEIZE, P. J. P. Nanotecnologia e Materiais de Construção Civil. In: ISAIA, G. C. (Ed.). . Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais. 2ª Edição ed. São Paulo: Ibracon, 2010. p. 1711–1746.

GRAY, R. J. Experimental techniques for measuring fibre/matrix interfacial bond shear strength. International Journal of Adhesion and Adhesives, v. 3, n. 4, p. 197–202, out. 1983.

GRAY, R. J. Analysis of the effect of embedded fibre length on fibre debonding and pull-out from an elastic matrix. Journal of Materials Science, v. 19, n. 5, p. 861–870, maio 1984.

HABEL, K. et al. Development of the mechanical properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC). Cement and Concrete Research, v. 36, n. 7, p. 1362–1370, jul. 2006.

HE, Y.; ZHANG, X.; HOOTON, R. D. Effects of organosilane-modified polycarboxylate superplasticizer on the fluidity and hydration properties of cement paste. **Construction and Building Materials**, v. 132, p. 112–123, 2017.

HILLERBORG, A. Analysis of fracture by means of the fictitious crack model, particularly for fibre reinforced concrete. **The International Journal of Cement Composites**, v. 4, n. 2, p. 177–184, 1980.

HILLERBORG, A.; MODÉER, M.; E, P. P. Analysis of crack formation and crack growth in concrete by means of fractre mechanics and finite elements. **Cement and Concrete Research**, v. 6, n. 6, p. 773–782, 1976.

HINZEN, M.; BRAMESHUBER, W. Load-Bearing behavior of textile reinforced concrete with short fibres. (J. A. O. Barros, Ed.)8th RILEM International Symposium on Fiber Reinforced Concrete: challenges and opportunities (BEFIB 2012). Anais...RILEM Publications SARL, 2012

HOIKKANEN, M. et al. Effect of silane treatment parameters on the silane layer formation and bonding to thermoplastic urethane. **Progress in Organic Coatings**, v. 72, n. 4, p. 716–723, dez. 2011.

HORNE, A. T.; RICHARDSON, I. G.; BRYDSON, R. M. D. Quantitative analysis of the microstructure of interfaces in steel reinforced concrete. Cement and Concrete Research, v. 37, n. 12, p. 1613–1623, dez. 2007.

HOU, P. et al. Effects of the pozzolanic reactivity of nanoSiO2 on cement-based materials. Cement and Concrete Composites, v. 55, p. 250–258, jan. 2015.

HUANG, C.; ZHAO, G. Properties of steel fibre reinforced concrete containing larger coarse aggregate. Cement and Concrete Composites, v. 17, n. 3, p. 199–206, jan. 1995.

HUANG, Q. et al. Neutron powder diffraction study of the crystal structure of HgBa2Ca4Cu5O12+ δ at room temperature and at 10 K. **Physica C: Superconductivity**, v. 227, n. 1–2, p. 1–9, 1994.

HUANG, W. et al. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cement and Concrete Composites, v. 77, p. 86–101, mar. 2017.

INNOCENZI, P. et al. Crystallization in hybrid organic–inorganic materials through self-organization from 3glycidoxypropyltrimethoxysilane. Journal of the Ceramic Society of Japan, v. 119, n. 1390, p. 387–392, 1 jun. 2011.

J, G. Caracterització del Comportament a Tracció del Formigó D'Alta Traballabilitat Reforçat amb Fibres D'Acer Mitjançant L'Assaig Barcelona - [Tesis]. Barcelona: Dept. d'Enginyeria de la construcció - UPC, 2008.

JANOWSKA-RENKAS, E. The effect of superplasticizers' chemical structure on their efficiency in cement pastes. **Construction and Building Materials**, v. 38, p. 1204–1210, 2013.

JANOWSKA-RENKAS, E. The Influence of the Chemical Structure of Polycarboxylic Superplasticizers on their Effectiveness in Cement Pastes. **Procedia Engineering**, v. 108, p. 575–583, 2015.

JO, B.-W. et al. Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, v. 21, n. 6, p. 1351–1355, jun. 2007.

JSCE. THE JAPAN SOCIETY OF CIVIL ENGINEERS - JSCE-SF4 - Method of tests for flexural strength and flexural toughness of steel fiber reinforced concrete. Concrete library of JSCE. n.3, 1984.

KANG, S.-T.; KIM, J.-K. Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution. **Construction and Building Materials**, v. 28, n. 1, p. 57–65, mar. 2012.

KANG, S. H. et al. Effect of sand grain size and sand-to-cement ratio on the interfacial bond strength of steel fibers embedded in mortars. **Construction and Building Materials**, v. 47, p. 1421–1430, out. 2013.

KANG, S. H.; AHN, T.-H.; KIM, D. J. Effect of grain size on the mechanical properties and crack formation of HPFRCC containing deformed steel fibers. **Cement and Concrete Research**, v. 42, n. 5, p. 710–720, maio 2012.

KHABAZ, A. Performance evaluation of corrugated steel fiber in cementitious matrix. **Construction and Building Materials**, v. 128, n. 2, p. 373–383, abr. 2016.

KHRAMOV, A. . et al. Nanostructured sol-gel derived conversion coatings based on epoxy- and amino-silanes. **Progress in Organic Coatings**, v. 47, n. 3–4, p. 207–213, set. 2003.

KIM, D. J.; EL-TAWIL, S.; NAAMAN, A. E. Rate-dependent tensile behavior of high performance fiber reinforced cementitious composites. **Materials and Structures**, v. 42, n. 3, p. 399–414, 21 maio 2008.

KIM, D. J.; NAAMAN, A. E.; EL-TAWIL, S. Comparative flexural behavior of four fiber reinforced cementitious composites. Cement and Concrete Composites, v. 30, n. 10, p. 917–928, nov. 2008.

KIM, E. K. et al. Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. Journal of Cultural Heritage, v. 10, n. 2, p. 214–221, abr. 2009.

KIM, J. J. et al. Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant. **Nuclear Engineering and Design**, v. 252, p. 1–10, nov. 2012.

KIM, M. T. Deposition kinetics of silicon dioxide from tetraethylorthosilicate by PECVD. Thin Solid Films, v. 360, n. 1–2, p. 60–68, fev. 2000.

KOH, K. et al. Effects of the composing materials on the rheological and mechanical properties of ultrahigh performance concrete (UHPC). (F. Toutlemonde, J. Resplendino, Eds.)RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete UHPFRC 2013. Anais...Marseille, France: RILEM Publications SARL, 2013

KONG, X.-M. et al. The influence of silanes on hydration and strength development of cementitious systems. **Cement and Concrete Research**, v. 67, p. 168–178, jan. 2015.

KONO, K. et al. **Durability study of the first PC bridge constructed with ultra high strength fiber reinforced concrete in japan**. RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete UHPFRC 2013. **Anais**...Marseille, France: RILEM Publications SARL, 2013Disponível em: http://www.rilem.org/gene/main.php?base=500218&id_publication=422&id_papier=8865>. Acesso em: 11 ago. 2014

KORPA, A.; KOWALD, T.; TRETTIN, R. Phase development in normal and ultra high performance cementitious systems by quantitative X-ray analysis and thermoanalytical methods. **Cement and Concrete Research**, v. 39, n. 2, p. 69–76, 2009.

KUJAWA, J. et al. Efficiency of grafting of Al2O3, TiO2 and ZrO2 powders by perfluoroalkylsilanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 420, p. 64–73, mar. 2013.

KUMAR, A. et al. The influence of sodium and potassium hydroxide on alite hydration: Experiments and simulations. Cement and Concrete Research, v. 42, n. 11, p. 1513–1523, 2012.

KUNST, S. R. et al. Influencia del tiempo de hidrólisis en la obtención de película híbrida con adición de iones cerio para la protección de aceros galvanizados. p. 124–135, 2013.

KUNST, S. R. et al. Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition. **Applied Surface Science**, v. 298, p. 1–11, abr. 2014.

LAND, G.; STEPHAN, D. Controlling cement hydration with nanoparticles. Cement and Concrete Composites, v. 57, p. 64–67, mar. 2015.

LARANJEIRA, F. et al. Framework to predict the orientation of fibers in FRC: A novel philosophy. Cement and Concrete Research, v. 42, n. 6, p. 752–768, jun. 2012.

LAZGHAB, M.; SALEH, K.; GUIGON, P. Functionalisation of porous silica powders in a fluidised-bed reactor with glycidoxypropyltrientoxysilane (GPTMS) and aminopropyltrientoxysilane (APTES). Chemical Engineering Research and Design, v. 88, n. 5–6, p. 686–692, maio 2010.

LEE, Y.; KANG, S.-T.; KIM, J.-K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. **Construction and Building Materials**, v. 24, n. 10, p. 2030–2041, out. 2010.

LENZA, R. F. S.; VASCONCELOS, W. L. Structural evolution of silica sols modified with formamide. Materials Research, v. 4, n. 3, p. 175–179, 2001.

LI, G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, v. 34, n. 6, p. 1043–1049, jun. 2004.

LI, G. et al. Fabrication and adhesive properties of thin organosilane films coated on low carbon steel substrates. **Surface and Coatings Technology**, v. 201, n. 24, p. 9571–9578, out. 2007.

LI, H. et al. Microstructure of cement mortar with nano-particles. Composites Part B: Engineering, v. 35, n. 2, p. 185–189, mar. 2004.

LI, V. C.; WANG, Y.; BACKER, S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. **Composites**, v. 21, n. 2, p. 132–140, mar. 1990.

LIM, D.-H.; WON, J.-P.; PARK, C.-G. Bond behaviour and flexural performance of structural synthetic fibrereinforced concrete. **Magazine of Concrete Research**, v. 58, n. 6, p. 401–410, 8 jan. 2006.

LIN, Z.; LI, V. C. Crack briding in fiber reinforced cementitious composites with slip-hardening interfaces. Journal of Mechanics Physics Solids, v. 45, n. 5, p. 763–787, 1997.

LIU, X. Q. et al. Corrosion protection of electroplated nickel using silane coupling agent. **Corrosion Engineering, Science and Technology**, v. 48, n. 5, p. 354–358, ago. 2013.

LONGHI, M. et al. Effect of Tetraethoxy-silane (TEOS) Amounts on the Corrosion Prevention Properties of

Siloxane-PMMA Hybrid Coatings on Galvanized Steel Substrates. Materials Research, v. 18, n. 6, p. 1140–1155, dez. 2015.

LOUKILI, A.; KHELIDJ, A.; RICHARD, P. Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete. **Cement and Concrete Research**, v. 29, n. 4, p. 577–584, 1999.

LU, J.; ASKELAND, P.; DRZAL, L. T. Surface modification of microfibrillated cellulose for epoxy composite applications. **Polymer**, v. 49, n. 5, p. 1285–1296, mar. 2008.

LU, Z. et al. Interaction of silylated superplasticizers with cementitious materials. Journal of Applied Polymer Science, v. 133, n. 43, p. 1–11, 2016.

MADANI, H.; BAGHERI, A.; PARHIZKAR, T. The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. **Cement and Concrete Research**, v. 42, n. 12, p. 1563–1570, 2012.

MALATESTA, S. C. et al. Control de la tenacidad de los hormigones reforzados con fibras usando el ensayo de doble punzonamiento (ensayo barcelona) Quality control of fiber reinforced concretes by mean of double punshing test (barcelona test). **Revista Ingeniería de Construcción**, v. 24, n. 2, p. 119–140, 2009.

MARKOVIC, I. High-Performance Hybrid-Fibre Concrete - Development and Utilisation - [PhD Thesis]. Delft: Delft University, 2006.

MASMOUDI, M. et al. Hydrolysis process of γ -APS and characterization of silane film formed on copper in different conditions. **Applied Surface Science**, v. 286, p. 71–77, dez. 2013.

MATERNE, T.; BUYL, F.; WITUCKI, G. L. Organosilane Technology in Coating Applications: Review and Perspectives. **Dow Corning**, p. 1–16, 2010.

MAZZACANE, P. et al. **MUCEM : The builder's perspective**. RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete UHPFRC 2013. **Anais**...Marseille: RILEM Publications SARL, 2013

MAZZACANE, P.; RICCIOTTI, R.; LAMOUREUX, G. **Roofing of the stade Jean Bouin in UHPFRC**. RI-LEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete UHPFRC 2013. **Anais**...Marseille: RILEM Publications SARL, 2013

MEHTA, P. K.; MONTEIRO, P. J. M. Hydraulic Cements. In: Concrete - Microstructure, Properties and Materials. 3rd. ed. [s.l.] the McGraw-Hill Companies, Inc., 2006. p. 203–251.

MINET, J. et al. New Layered Calcium Organosilicate Hybrids with Covalently Linked Organic Functionalities. Chemistry of Materials, v. 16, n. 20, p. 3955–3962, out. 2004.

MINET, J. et al. Organic calcium silicate hydrate hybrids: a new approach to cement based nanocomposites. Journal of Materials Chemistry, v. 16, n. 14, p. 1379, 2006.

MOLINS, C.; AGUADO, A.; SALUDES, S. Double Punch Test to control the energy dissipation in tension of FRC (Barcelona test). **Materials and Structures**, v. 42, n. 4, p. 415–425, 24 maio 2008.

MONDAL, P.; JEFFERY, J. W. The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, v. 31, n. 3, p. 689–697, 15 mar. 1975.

MONTEIRO, P. J. M.; GJORV, O. E.; MEHTA, P. K. Microstructure of the steel-cement paste interface in presence of chloride. Cement and Concrete Research, v. 15, n. c, p. 781–784, 1985.

MONTEMOR, M. F. et al. The corrosion performance of organosilane based pre-treatments for coatings on galvanised steel. **Progress in Organic Coatings**, v. 38, n. 1, p. 17–26, fev. 2000.

MORA, F. Distribución y Orientación de Fibras en Dovelas aplicando el Ensayo Barcelona - [Tesis Doctoral]. [s.l.] Universitat Politècnica de Catalunya, 2008.

MUCEM. MuCEM.

NAAMAN, A. E. Fiber reinforcements for concrete: looking back, looking ahead. (P. Rossi, G. Chanvillard, Eds.)Fifth RILEM Symposium on Fibre-Reinforced Concretes (FRC) - BEFIB' 2000. Anais...Lyon, Germany: 2000

NAAMAN, A. E. Engineered Steel Fibers with Optimal Properties for Reinforcement of Cement Composites. Journal of Advanced Concrete Technology, v. 1, n. 3, p. 241–252, 2003.

NAAMAN, A. E. Fiber to matrix bond mechanisms in FRC composite. (J. A. O. Barros, Ed.)8th RILEM International Symposium on Fibre Reinforced Concrete: challenges and opportunities (BEFIB 2012). Anais...RILEM Publications SARL, 2012

NAAMAN, A. E.; H.W, R. High Performance Fiber Reinforced Cement Composites HPFRCC-4 : International RILEM Workshop. Materials and Structures, v. 36, n. December, p. 710–712, 2003.

NAAMAN, A. E.; WILLE, K. The path to Ultra-High Performance Fiber Reinforced Concrete (UHP-FRC): Five decades of progress. (M. Schimidt et al., Eds.)Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Anais...Kassel University Press, 2012

NISHI, F.; TAKÉUCHI, Y. The A16O18 rings of tetrahedra in the structure of Ca8.5NaAl6O18. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, v. 31, n. 4, p. 1169–1173, 15 abr. 1975.

NONAT, A. The structure and stoichiometry of C-S-H. Cement and Concrete Research, v. 34, n. 9, p. 1521–1528, set. 2004.

NPCA. Ultra high performance concrete (UHPC) - Guide to manufacturing architectural precast UHPC elements - NPCA WHITE PAPER. Carmel: [s.n.]. Disponível em: cast.org>.

NUNES, N, L.; TANESI, J.; FIGUEIREDO, A. D. Aplicação do concreto reforçado com fibras de aço na recuperação de estruturas e pavimentos. Concresso Ibero-Americano de patologia das construções. COM PAT 97-4. Anais...Porto Alegre: 1997

NUNES, N. L. Estudo da influência da geometria da fibra de aço na tenacidade à flexão de compósitos de mariz de concreto - [Dissertação de Mestrado]. [s.l.] Universidade de São Paulo, 1998.

NUNES, N. L. Contribuição para a aplicação do concreto reforçado com fibras de aço em elementos de superfície restringidos - [Tese de Doutorado]. [s.l.] Universidade de São Paulo, 2006.

OERTEL, T. et al. Amorphous silica in ultra-high performance concrete: First hour of hydration. Cement and Concrete Research, v. 58, p. 131–142, abr. 2014a.

OERTEL, T. et al. Influence of amorphous silica on the hydration in ultra-high performance concrete. **Cement and Concrete Research**, v. 58, p. 121–130, abr. 2014b.

OEY, T. et al. The filler effect: The influence of filler content and surface area on cementitious reaction rates. Journal of the American Ceramic Society, v. 96, n. 6, p. 1978–1990, 2013.

OH, B. H.; KIM, J. C.; CHOI, Y. C. Fracture behavior of concrete members reinforced with structural synthetic fibers. **Engineering Fracture Mechanics**, v. 74, n. 1–2, p. 243–257, jan. 2007.

OLIVEIRA, M. F. Estudo da influência de organo-silanos na resistência à corrosão de aço-carbono por meio de técnicas eletroquímicas. [s.l.] Universidade de São Paulo, 2006.

OOIJ, W. J. VAN et al. Corrosion Protection Properties of Organofunctional Silanes — An Overview. Tsinghua Science and Technology, v. 10, n. 6, p. 639–664, 2005.

PALANIVEL, V.; ZHU, D.; VAN OOIJ, W. J. Nanoparticle-filled silane films as chromate replacements for aluminum alloys. **Progress in Organic Coatings**, v. 47, n. 3–4, p. 384–392, set. 2003.

PANTOJA, M. et al. Analysis of hydrolysis process of γ -methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on 6063 aluminum alloy. **Applied Surface Science**, v. 255, n. 12, p. 6386– 6390, abr. 2009.

PANTOJA, M. et al. Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion. **Applied Surface Science**, v. 280, p. 850–857, set. 2013.

PEREZ, G. et al. Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete. **Materials Chemistry and Physics**, v. 165, p. 39–48, 2015.

PETCH, H. E. The hydrogen positions in portlandite, Ca(OH)2, as indicated by the electron distribution. Acta Crystallographica, v. 14, n. 9, p. 950–957, 10 set. 1961.

PFEIFER, C. et al. **Investigations of the pozzolanic reaction of silica fume in ultra high performance concrete (UHPC)**. (W. Brameshuber, Ed.)International RILEM Conference on Material Science. **Anais**...Aachen: RILEM Publications SARL, 2010

PILAR, R. et al. Avaliação de pastas de cimento Portland contendo cinza pesada moída. **Matéria (Rio de Janeiro)**, v. 21, n. 1, p. 92–104, mar. 2016. PINCHIN, D. J.; TABOR, D. Interfacial phenomena in steel fibre reinforced cement I: Structure and strength of interfacial region. **Cement and Concrete Research**, v. 8, n. 1, p. 15–24, jan. 1978.

PLUEDDEMANN, E. P. Silane Coupling Agents. Second ed. Boston, MA: Springer US, 1991.

PUJADAS, P. et al. NEW ANALYTICAL MODEL TO GENERALIZE THE BARCELONA TEST USING AXIAL DISPLACEMENT. Journal of Civil Engineering and Management, v. 19, n. 2, p. 259–271, abr. 2013.

QING, Y. et al. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. **Construction and Building Materials**, v. 21, n. 3, p. 539–545, mar. 2007.

QUERCIA, G. et al. SCC modification by use of amorphous nano-silica. Cement and Concrete Composites, v. 45, p. 69–81, jan. 2014.

RAMEZANIANPOUR, A. et al. Mechanical properties and durability of self-consolidating mortars contain-ing Nano-SiO2. (M. Schimidt et al., Eds.)Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Anais...Kassel: Kassel University Press, 2012

RAMOS, J. T. Obtenção e caracterização de revestimentos protetores a base de silanos e sua ação combinada com tintas na proteção ao aço-carbono - [Dissertação de Mestrado]. [s.l.] Universidade Federal do Rio Grande do Sul - UFRGS, 2009.

RANADE, R. et al. Composite Properties of High-Strength , High-Ductility Concrete. ACI Materials Journal, v. 110, n. 4, p. 11, 2014.

RESPRENDINO, J. State of the art of desing and construction of UHPFRC structures in France. (M. Schimidt et al., Eds.)Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Anais...Kassel: Kassel University Press, 2012

RICHARD, P.; CHEYREZY, M. Composition of Reactive Powder Concretes. Cement and Concrete Research, v. 25, n. 7, p. 1501–1511, 1995.

RILEM. TC 162-TDF: Test and desing methods for steel fibre reinforced concrete - Design of steel fibre reinforced concrete using the (sigma-epslon method: principles and applications. **Materials and Structures**, v. 35, n. June, p. 262–278, 2002a.

RILEM. TC 162-TDF: Test and desing methods for steel fibre reinforced concrete - BENDING TEST - FINAL RECOMENDATION. Materials and Structures, v. 35, n. November, p. 579–582, 2002b.

ROBINS, P.; AUSTIN, S.; JONES, P. Pull-out behaviour of hooked steel fibres. Materials and Structures, v. 35, n. 7, p. 434–442, ago. 2002.

ROJAS, C. M.; CINCOTTO, M. A. Influência da estrutura molecular dos policarboxilatos na hidratação do cimento Portland. **Ambiente Construído**, v. 13, n. 3, p. 267–283, set. 2013.

ROMUALDI, J. .; MANDEL, J. . Tensile Strength of concrete Affected by UnigormlyDistributed and Closely Spaced Short Lengths of wire Reinforcement. **ACI Journal Proceedings**, v. 61, n. 6, p. 657–672, 1964.

ROSSI, P. Ultra-high performance fibre reinforced concretes UHPFRC an overview. (P. Rossi, G. Chanvillard, Eds.)Fifth RILEM Symposium on Fibre-Reinforced Concretes (FRC) - BEFIB' 2000. Anais...Lyon: RILEM Publications SARL, 2000

RUBIO, F.; RUBIO, J.; OTEO, J. L. A FT-IR Study of the Hydrolysis of Tetraethylorthosilicate (TEOS). Spectroscopy Letters, v. 31, n. 1, p. 199–219, jan. 1998.

RUSSEL, G, H.; GRAYBEAL, B. A. Ultra-High Performance Concrete : A State-of-the-Art Report for the Bridge Community. McLean: [s.n.].

RZATKI, F. D. Modificação de superfície de fibra natural inorgânica para utilização como reforço em poli(tereftalato de butileno) - [Dissertação de Mestrado]. [s.l.] Universidade Federal de Santa Catarina, 2012.

SALVADOR, R. P. Análise comparativa de métodos de ensaio para caracterização do comportamento mecânico de concreto reforçado com fibras - [Dissertação de Mestrado]. [s.l.] Universidade de São Paulo, 2013.

SALVADOR, R. P. et al. Early age hydration of cement pastes with different types of accelerators for sprayed concrete. **Construction and Building Materials**, v. 111, p. 1–29, 2016.

SANCHEZ, F.; SOBOLEV, K. Nanotechnology in concrete – A review. Construction and Building Materials, v. 24, n. 11, p. 2060–2071, nov. 2010.

SBIA, L. A. et al. Production methods for reliable construction of ultra-high-performance concrete (UHPC) structures. **Materials and Structures**, v. 50, n. 1, p. 7, 2017.

SCHEYDT, C. J.; MÜLLER, H. S. Microstructure of ultra high performance concrete (UHPC) and its impact on durability. (M. Schimidt et al., Eds.)Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Anais...Kassel: Kassel University Press, 2012

SCHLANGEN, E.; KOENDERS, E. A. B.; VAN BREUGEL, K. Influence of internal dilation on the fracture behaviour of multi-phase materials. **Engineering Fracture Mechanics**, v. 74, n. 1–2, p. 18–33, jan. 2007.

SCRIVENER, K. L.; JUILLAND, P.; MONTEIRO, P. J. M. Advances in understanding hydration of Portland cement. Cement and Concrete Research, v. 78, p. 38–56, jun. 2015.

SCRIVENER, K. L.; KIRKPATRICK, R. J. Innovation in use and research on cementitious material. Cement and Concrete Research, v. 38, n. 2, p. 128–136, fev. 2008.

SEBAIBI, N.; BENZERZOUR, M.; ABRIAK, N. E. Influence of the distribution and orientation of fibres in a reinforced concrete with waste fibres and powders. **Construction and Building Materials**, v. 65, p. 254–263, ago. 2014.

SENFF, L. Efeito da adição de micro e nanossílica no comportamento reológico e propriedades no estado endurecido de argamassas e pastas de cimento [Tese de doutorado]. [s.l.] Universidade Federal de Santa Catarina - UFSC, 2009.

SENFF, L. et al. Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. **Construction and Building Materials**, v. 23, n. 7, p. 2487–2491, jul. 2009.

SENFF, L. et al. Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. **Materials Science and Engineering: A**, v. 532, p. 354–361, jan. 2012.

SHAH, S. P. et al. **Application of nanoparticles**. (M. Schimidt et al., Eds.)Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. **Anais**...Kassel: Kassel University Press, 2012

SHAH, S. P.; KUDER, K. G.; MU, B. Fiber-Reinfoced cement-based composites: A forty year odyssey. 6th RILEM Symposium on Fibre-Reinfoced Concretes (FRC) - BEFIB - 2004. Anais...Varenna: RILEM Publications SARL, 2004

SHANNAG, M. J.; BRINCKER, R.; HANSEN, W. Pullout behavior of steel fibers from cement-based composites. Cement and Concrete Research, v. 27, n. 6, p. 925–936, jun. 1997.

SHI, C. et al. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, v. 101, p. 741–751, dez. 2015.

SILVERSTEIN, R. .; BLASSLER, G. C.; TERENCE, C. M. Spectrometric identification of organic compounds. fifth edit ed. [s.l.] John Wiley & sons, INC., 1991.

SMITH, A. L. Analysis of Silicones. New York: [s.n.].

SOULIOTI, D. V. et al. The effect of fibre chemical treatment on the steel fibre/cementitious matrix interface. **Construction and Building Materials**, v. 40, p. 77–83, mar. 2013.

SOWOIDNICH, T. A study of retarding effects on cement and tricalcium silicate hydration induced by superplasticizers. [s.l.] Bauhaus-Universität Weimar, 2015.

SU, Y. et al. Influences of nano-particles on dynamic strength of ultra-high performance concrete. **Composites Part B: Engineering**, v. 91, p. 595–609, 2016.

SUGAMA, T. et al. Interface between zinc phosphate-deposited steel fibres and cement paste. Journal of Materials Science, v. 27, n. 11, p. 2863–2872, 1992.

SUNDARARAJAN, G. P.; VAN OOIJ, W. J. Silane based pretreatments for automotive steels. Surface Engineering, v. 16, n. 4, p. 315–320, ago. 2000.

ŠVEGL, F. et al. The influence of aminosilanes on macroscopic properties of cement paste. Cement and Concrete Research, v. 38, n. 7, p. 945–954, jul. 2008.

TANG, M. **High performance Concrete – Past, Present and Future**. (M. Schmidt, E. Fehling, C. Geisenhanslüke, Eds.)Proceedings of the International Symposium on Ultra High Performance Concrete (UHPC). **Anais**...Kassel, Germany: University of Kassel, 2004 TAYLOR, H. F. . Hydration of the calcium silicate phases. In: THOMAS TELFORD EDITION (Ed.). . Cement Chemistry. 2nd. ed. London: Thomas Telford Publishing, Thomas Telford Services Ltd, 1997. p. 113–156.

TÉLLEZ, L. et al. Seguimiento por espectroscopia infrarroja (FT-IR) de la copolimerización de TEOS (tetraetilortosilicato) y PDMS (polidimetilsiloxano) en presencia de tbt (tetrabutiltitanio). **Boletin de la Sociedad Espanola de Ceramica y Vidrio**, v. 43, n. 5, p. 883–890, 2004.

TORRY, S. A. et al. Kinetic analysis of organosilane hydrolysis and condensation. International Journal of Adhesion and Adhesives, v. 26, n. 1–2, p. 40–49, fev. 2006.

TRABELSI, W. et al. An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes. **Surface and Coatings Technology**, v. 192, n. 2–3, p. 284–290, mar. 2005.

TSURUMI, T.; HIRANO, Y.; KATO, H.; KAMIYA, T.; DAIMON, M. Crystal structure and hydration of belite. Ceramic Transactions, v. 13, n. 40, p. 19–25, 1994.

TUTIKIAN, B. F.; DAL MOLIN, D. C. C. Concreto Auto-Adensável. 1ª Edição ed. São Paulo: Editora Pini LTDA., 2008.

TUTIKIAN, B. F.; ISAIA, G. C.; HELENE, P. Concreto de Alto e Ultra-Alto Desempenho. In: ISAIA, G. (Ed.). . Concreto: Ciência e Tecnologia. 1ª ed. São Paulo: Ibracon, 2011. p. 1283–1326.

VAN OOIJ, W. J. Improved Service Life of Coated Metals by Engineering the Polymer—Metal Interface. In: BAUER, D. R.; MARTIN, J. W. (Eds.). . American Chemical Society. ACS Symposium Series. [s.l.] American Chemical Society, 1999. v. 722p. 354–377.

VAN TUAN, N. et al. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash. Cement and Concrete Research, v. 41, n. 11, p. 1104–1111, 2011.

VANDERLEI, R. Análise experimental do concreto de pós reativos: dosagem e proprieda-des mecânicas -[Tese de Doutorado]. [s.l.] Universidade de São Paulo, 2004.

WANG, C. et al. Preparation of Ultra-High Performance Concrete with common technology and materials. Cement and Concrete Composites, v. 34, n. 4, p. 538–544, abr. 2012.

WANG, Y. et al. Durability of reactive powder concrete under chloride-salt freeze-thaw cycling. Materials and Structures, v. 50, n. 1, p. 18, 2017.

WARTCHOW, R. Datensammlung nach der "learnt profile"-methode(LP) für calcit und vergleich mit der "background peak background"-methode (BPB). Z. Kristallogr, n. 186, p. 300–302, 1989.

WECHARATANA, M.; SHAH, S. P. A model for predicting fracture resistance of fibre reinforced concrete. Cement and Concrete Research, v. 13, p. 819–829, 1983.

WEN, Y.; LI, V. C. Effects of transition zone densification on fiber/cement paste bond strength improvement. Advanced Cement Based Materials, v. 7355, n. 96, p. 8–17, 1997.

WILLE, K. et al. Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. **Materials and Structures**, v. 45, n. 3, p. 309–324, 25 ago. 2011.

WILLE, K. Concrete strength dependent pull-out behavior of deformed steel fibers. (J. A. O. Barros, Ed.)8th RILEM International Symposium on Fiber Reinforced Concrete: challenges and opportunities (BEFIB 2012). Anais...RILEM Publications SARL, 2012

WILLE, K.; EL-TAWIL, S.; NAAMAN, A. E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. **Cement and Concrete Composites**, v. 48, p. 53–66, abr. 2014.

WILLE, K.; KIM, D. J.; NAAMAN, A. E. Strain-hardening UHP-FRC with low fiber contents. Materials and Structures, v. 44, n. 3, p. 583–598, 4 ago. 2010.

WILLE, K.; NAAMAN, A. Bond stress-slip behavior of steel fibers embedded in Ultra high performance concrete. ECF18, Dresden 2010. Anais...2010Disponível em: ">http://www.gruppofrattura.it/ocs/in-dex.php/esis/ECF18/paper/view/6376/0>

WILLE, K.; TUE, N. V.; PARRA-MONTESINOS, G. J. Fiber distribution and orientation in UHP-FRC beams and their effect on backward analysis. **Materials and Structures**, v. 47, n. 11, p. 1825–1838, 23 ago. 2013.

WON, J.-P. et al. Bonding properties of amorphous micro-steel fibre-reinforced cementitious composites. Composite Structures, v. 102, p. 101–109, ago. 2013. WU, Z.; SHI, C.; KHAYAT, K. H. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). **Cement and Concrete Composites**, v. 71, p. 97–109, ago. 2016.

XIE, Y. et al. Silane coupling agents used for natural fiber/polymer composites: A review. **Composites Part A:** Applied Science and Manufacturing, v. 41, n. 7, p. 806–819, jul. 2010.

XU, L.; DENG, F.; CHI, Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste. **Construction and Building Materials**, v. 145, p. 619–638, 2017.

XU, Y.; CHUNG, D. D. . Improving the workability and strength of silica fume concrete by using silane-treated silica fume. **Cement and Concrete Research**, v. 29, n. 3, p. 451–453, mar. 1999.

XU, Y.; CHUNG, D. D. . Improving silica fume cement by using silane. Cement and Concrete Research, v. 30, n. 8, p. 1305–1311, ago. 2000.

XUE, D.; VAN OOIJ, W. J. Corrosion performance improvement of hot-dipped galvanized (HDG) steels by electro-deposition of epoxy-resin-ester modified bis-[tri-ethoxy-silyl] ethane (BTSE) coatings. **Progress in Or-ganic Coatings**, v. 76, n. 7–8, p. 1095–1102, jul. 2013.

YOO, D.-Y.; KANG, S.-T.; YOON, Y.-S. Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. **Construction and Building Materials**, v. 64, p. 67–81, ago. 2014.

YOUNG, S. K. Overview of Sol-Gel Science and Technology. [s.l: s.n.].

YU, R.; SPIESZ, P.; BROUWERS, H. J. H. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Research, v. 56, p. 29–39, fev. 2014.

YUAN, W.; VAN OOIJ WJ. Characterization of Organofunctional Silane Films on Zinc Substrates. Journal of colloid and interface science, v. 185, n. 1, p. 197–209, 1 jan. 1997.

ZANNI, H. et al. Investigation of hydration and pozolanic reaction in reactive powder concrete (RPC) using 29SI NMR. Cement and Concrete Research, v. 26, n. 1, p. 93–100, 1996.

ZHANDAROV, S. Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters. **Composites Science and Technology**, v. 65, n. 1, p. 149–160, jan. 2005.

ZHU, D. Corrosion Protection of Metals by Silane Surface Treatment - [PhD Thesis]. [s.l.] University of Cincinnati, 2005.

ZHU, D.; OOIJ, W. J. VA. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine. **Electrochimica Acta**, v. 49, n. 7, p. 1113–1125, mar. 2004.

ZHU, D.; VAN OOIJ, W. J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution. **Corrosion Science**, v. 45, n. 10, p. 2177–2197, out. 2003.

ZHU, D.; VAN OOIJ, W. J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane. **Progress in Organic Coatings**, v. 49, n. 1, p. 42–53, jan. 2004.

ZHU, W.; BARTOS, P. J. Application of depth-sensing microindentation testing to study of interfacial transition zone in reinforced concrete. **Cement and Concrete Research**, v. 30, n. 8, p. 1299–1304, ago. 2000.

ZĪLE, E.; ZĪLE, O. Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers. **Cement and Concrete Research**, v. 44, p. 18–24, fev. 2013.

ŽIRGULIS, G. et al. Importance of quantification of steel fibre orientation for residual flexural tensile strength in FRC. **Materials and Structures**, p. 3861–3877, 2015.

ZOLLO, R. F. Fiber-reinforced concrete: an overview after 30 years of development. Cement and Concrete Composites, v. 19, n. 2, p. 107–122, jan. 1997.

10 APÊNDICE 1 --- DADOS BRUTOS DOS RESULTADOS DO CAPÍ-TULO 6

Tabela 57 – Variação da massa das fibras pré e pós-funcionalização								
Sárias	Massa na ba-	0 @1	Fibras/grama			mg/fibra		
Series	lança (g)	II IIDras	fibras/grama	Média	SD	mg/fibra	Média	SD
	0,5523	261	472,6			2,116		
REF	0,5014	249	496,6	483,42	12,19	2,014	2,069	0,052
	0,5945	286	481,1			2,079		
	0,5204	240	461,2			2,168		
REF_A_N	0,5048	237	469,5	468,9	7,40	2,130	2,133	0,034
	0,5799	276	475,9			2,101		
	0,5021	245	488,0			2,049		
REF_A_C	0,5489	262	477,3	481,4	5,75	2,095	2,078	0,025
	0,5033	241	478,8			2,088		
	0,5034	239	474,8			2,106		
REF_A_N_C	0,5178	249	480,9	482,7	9,02	2,080	2,072	0,039
	0,5685	280	492,5			2,030		
	0,5031	239	475,1			2,105		
T_0,1	0,5188	253	487,7	477,0	9,79	2,051	2,097	0,043
	0,5252	246	468,4			2,135		
	0,5095	243	476,9			2,097		
T_0,1%_N	0,5247	254	484,1	476,9	7,16	2,066	2,097	0,032
	0,5109	240	469,8			2,129		
	0,5257	248	471,8			2,120		
T_0,1%_C	0,5443	253	464,8	462,2	11,10	2,151	2,164	0,052
	0,5333	240	450,0			2,222		
	0,5035	225	446,9			2,238		
T_0,1_N_C	0,5111	248	485,2	466,1	19,18	2,061	2,148	0,088
	0,5661	264	466,3			2,144		
	1,011	315	311,6			3,210		
T_1	1,1586	385	332,3	326,4	12,89	3,009	3,067	0,124
	1,0441	350	335,2			2,983		
	1,0037	475	473,2			2,113		
T_1%_N	1,1586	550	474,7	465,3	15,11	2,107	2,151	0,071
	1,0495	470	447,8			2,233		
	0,5507	261	473,9			2,110		
T_1%_C	0,5042	250	495,8	484,8	10,95	2,017	2,063	0,047
	0,5179	251	484,6			2,063		
	0,5979	254	424,8			2,354		
T_1_N_C	0,5165	233	451,1	439,9	13,56	2,217	2,275	0,071
	0,5048	224	443,7			2,254		
	1,0088	407	403,4			2,479		
T_10	1,0145	391	385,4	388,6	13,50	2,595	2,575	0,088
	1,0344	390	377,0			2,652		
	0,5031	224	445,2			2,246		
T_10%_N	0,5048	235	465,5	455,2	10,15	2,148	2,197	0,049
	0,5034	229	454,9			2,198		
	0,5009	241	481,1			2,078		
T_10%_C	0,5047	240	475,5	485,1	12,00	2,103	2,062	0,050
	0,5155	257	498,5			2,006		
	0,5259	246	467,8			2,138		
T_10_N_C	0,5055	235	464,9	459,3	12,31	2,151	2,178	0,059
	0,5369	239	445,1			2,246		
G 0.1	0,5021	233	464,1	150.0	10.00	2,155	2 002	0.0.00
G_0,1	0,5047	248	491,4	478,0	13,68	2,035	2,093	0,060
	0,5035	241	4/8,6			2,089		
C 0.10/ N	0,5069	252	497,1	401.0	12.10	2,012	0.076	0.056
G_0,1%_N	0,5063	240	4/4,0	481,9	13,18	2,110	2,076	0,056
0.0.10/ 0	0,5162	245	4/4,6	402.0	15.00	2,107	0.075	0.064
G_0,1%_C	0,5122	255	497,9	482,2	15,02	2,009	2,075	0,064

A Tabela 57 apresenta os resultados da variação da massa das fibras.

252			Apêndice .	1				
	0,5236 0,5449 0,5579	245 262 251	467,9 480,8 449,9			2,137 2,080 2,223		
G_0,1_N_C	0,5048 0,5033	245 240	485,3 476,9	470,7	18,50	2,060 2,097	2,127	0,085
G_1	0,5012 0,5044 0,5196	171 179 195	341,2 354,9 375,3	357,1	17,16	2,931 2,818 2,665	2,804	0,134
G_1%_N	0,5266 0,5544 0,5044	239 269 246	453,9 485,2 487,7	475,6	18,87	2,203 2,061 2,050	2,105	0,085
G_1%_C	0,5021 0,5495 0,5011	220 254 229	438,2 462,2 457,0	452,5	12,66	2,282 2,163 2,188	2,211	0,063
G_1_N_C	0,5413 0,5033 0,5455	234 223 251	432,3 443,1 460,1	445,2	14,04	2,313 2,257 2,173	2,248	0,070
G_10	0,538 0,5077 0,5622	169 171 170	314,1 336,8 302,4	317,8	17,50	3,183 2,969 3,307	3,153	0,171
G_10%_N	0,5465 0,5632 0,5411	244 253 258	446,5 449,2 476,8	457,5	16,78	2,240 2,226 2,097	2,188	0,079
G_10%_C	0,5273 0,5333 0,5115	225 219 209	426,7 410,7 408,6	415,3	9,91	2,344 2,435 2,447	2,409	0,057
G_10_N_C	0,5531 0,5102 0,5729	245 250 261	443,0 490,0 455,6	462,8	24,35	2,258 2,041 2,195	2,164	0,112

A Tabela 58 apresenta os resultados de trabalhabilidade das fibras após a funcionalização

Tabela 58 - Trabalhabilidade das amostras CUADRF fase preliminar

Sí-t	Media	Mádia		
Series	Horizontal	Vertical	Meula	
REF	220,0	225,0	222,5	
REF_AN	235,0	224,0	229,5	
REF_AC	210,0	210,0	210,0	
REF_ANC	240,0	240,0	240,0	
T_0,1%	250,0	220,0	235,0	
T_0,1%_N	245,0	235,0	240,0	
T_0,1%_C	235,0	225,0	230,0	
T_0,1%_N_C	231,0	259,0	245,0	
T_1,0%	260,0	250,0	255,0	
T_1,0%_N	250,0	235,0	242,5	
T_1,0%_C	236,0	240,0	238,0	
T_1,0%_N_C	245,0	235,0	240,0	
T_10%	250,0	245,0	247,5	
T_10%_N	252,0	247,0	249,5	
T_10%_C	236,0	214,0	225,0	
T_10%_N_C	273,0	264,0	268,5	
G_0,1%	243,0	233,0	238,0	
G_0,1%_N	247,0	235,0	241,0	
G_0,1%_C	234,0	233,0	233,5	
G_0,1%_N_C	239,0	243,0	241,0	
G_1,0%	267,0	245,0	256,0	
G_1,0%_N	235,0	230,0	232,5	
G_1,0%_C	236,0	237,0	236,5	
G_1,0%_N_C	240,0	234,0	237,0	
G_10%	258,0	249,0	253,5	
	A 1.	1		
-----	---------	---		
A	nondico	1		
. 1	penuice	1		

G_10%_N	247,0	239,0	243,0
G_10%_C	245,0	239,0	242,0
G_10%_N_C	245,0	227,0	236,0

A Tabela 59 apresenta os resultados de módulo de ruptura das séries de CUADRF da etapa preliminar.

Tabela 59 - MOR do CUADRF da fase preliminar

C /	Μ	ódulo d	e ruptu	ra (MP	a)	Mádia
Series	#1	#2	#3	#4	#5	Meula
REF	39,33	36,19	34,75	31,50	38,41	36,04
REF_N	30,78	24,67	32,11	35,25	36,69	31,90
REF_C	31,86	34,29	36,11	30,03	32,42	32,94
REF_NC	28,98	36,93	32,27	22,57	29,70	30,09
T_0,1	37,88	36,05	32,99	35,20	31,05	34,63
T_1,0	28,08	27,58	29,67	28,24	21,15	26,94
T_10	26,46	26,94	35,01	30,17	33,14	30,35
T_0,1_N	34,08	36,55	34,07	33,59	37,80	35,22
T_1,0_N	27,25	24,46	37,31	27,18	30,49	29,34
T_10_N	32,91	32,66	31,94	32,04	28,01	31,51
T_0,1_C	33,03	39,30	26,46	24,48	42,33	33,12
T_1,0_C	30,65	40,74	33,67	32,74	42,25	36,01
T_10_C	28,25	42,60	37,98	33,72	37,05	35,92
T_0,1_NC	47,49	32,56	33,92	33,43	34,77	36,43
T_1,0_NC	43,28	42,33	39,01	40,85	41,78	41,45
T_10_NC	43,72	45,61	33,87	31,46	36,64	38,26
G_0,1	42,05	41,15	39,11	34,60	37,74	38,93
G_1,0	28,84	31,45	24,16	30,23	30,20	28,97
G_10	26,92	31,13	28,82	25,24	29,81	28,39
G_0,1_N	32,11	30,40	35,92	32,03	34,77	33,05
G_1,0_N	35,66	35,86	24,74	35,89	37,74	33,98
G_10_N	38,22	36,68	32,09	32,73	33,75	34,69
G_0,1_C	48,86	33,87	37,61	23,73	42,37	37,29
G_1,0_C	35,60	40,43	30,96	33,28	33,91	34,84
G_10_C	40,35	37,16	30,68	38,14	37,01	36,67
G_0,1_NC	37,11	44,55	49,32	34,78	33,82	39,92
G_1,0_NC	36,06	45,05	37,23	44,39	37,31	40,00
G 10 NC	32.19	35.69	35.69	38.97	39.06	36.32

^a T e G são referentes aos silanos TEOS e GPTMS, respectivamente. * 0,1, 1,0 e 10 são as quantidades percentuais de silano nas soluções de funcionalização; "N" significa que as fibras passaram pelo banho de NaOH antes da funcionalização com silano; "C" significa que as fibras passaram pelo banho de Ca(OH)₂ depois da funcionalização com silano;

A Tabela 60 apresenta os resultados de resistência à compressão das séries de CUADRF da etapa preliminar.

Tabela 60 – Resultados de resistência à compressão dos CUADRF na etapa preliminar

	Resistência à compressão (MPa)										_
Série	#	1	#	2	#	3	#	4	#	5	Média
	а	b	а	b	а	b	а	b	а	b	-
REF	168,26	146,12	135,42	136,44	154,01	158,21	154,48	153,93	163,04	167,24	153,71
REF_N	148,39	142,61	151,84	150,44	153,96	148,28	147,45	140,77	146,06	138,84	146,87
REF_C	132,46	144,60	131,02	131,49	152,61	148,79	116,56	140,44	156,56	163,08	141,76
REF_NC	131,20	140,89	136,81	143,48	139,41	126,91	116,25	141,59	152,71	134,23	136,35
T_0,1	140,56	161,94	152,23	147,26	150,54	152,62	149,38	131,63	147,67	151,54	148,54
T_1,0	137,88	158,02	118,88	125,60	132,18	143,16	147,77	147,09	135,09	139,18	138,48

254

T_10	146,94	142,22	142,33	142,75	141,96	146,29	143,87	151,41	158,63	140,48	145,69
T_0,1_C	150,51	154,23	160,84	158,66	155,49	157,49	144,34	160,52	160,99	159,66	156,27
T_1,0_C	161,59	153,65	163,13	153,70	159,34	156,79	151,60	149,78	155,88	147,41	155,29
T_10_C	154,28	159,83	151,59	148,38	161,53	147,83	131,98	130,54	153,74	159,95	149,97
T_0,1_N	155,93	163,68	145,08	153,67	133,97	155,75	148,93	157,98	149,74	135,00	149,97
T_1,0_N	138,31	142,24	155,62	140,70	161,48	170,96	152,77	161,41	162,38	123,39	150,93
T_10_N	152,80	150,34	145,86	149,60	140,99	137,38	154,29	142,05	145,49	146,03	146,48
T_0,1_NC	155,46	155,28	158,74	137,34	143,73	150,34	160,49	143,81	158,18	151,83	151,52
T_1,0_NC	141,97	155,77	133,46	137,74	133,98	145,40	139,60	154,16	152,97	133,76	142,88
T_10_NC	146,26	131,88	165,01	158,37	154,15	149,69	159,53	149,61	157,26	128,18	149,99
G_0,1	152,89	154,59	149,33	147,76	160,11	151,62	148,91	132,93	154,45	156,92	150,95
G_1,0	151,36	139,33	127,58	133,55	126,46	138,93	137,24	148,12	145,03	150,56	139,81
G_10	146,16	137,84	151,27	130,57	145,96	135,91	131,73	118,31	127,75	127,12	135,26
G_0,1_C	155,69	160,56	125,15	147,92	144,74	145,61	138,47	141,44	146,78	151,26	145,76
G_1,0_C	144,56	138,78	156,36	162,18	138,93	149,83	156,86	161,83	162,67	151,91	152,39
G_10_C	141,73	146,43	160,69	150,69	143,36	152,38	140,37	148,48	137,99	158,61	148,07
G_0,1_N	132,06	156,13	145,11	135,19	150,69	144,18	145,11	151,39	141,30	139,64	144,08
G_1,0_N	151,58	156,73	155,62	158,81	156,33	139,98	149,99	149,53	154,28	148,38	152,12
G_10_N	147,66	158,68	162,66	158,71	140,35	143,93	141,88	139,00	153,44	157,88	150,42
G_0,1_NC	151,18	134,30	147,96	134,80	124,85	158,25	151,90	133,93	142,99	141,81	142,20
G_1,0_NC	157,59	143,88	159,74	150,99	160,01	154,01	153,99	163,42	153,71	152,53	154,99
G 10 NC	128.63	122.89	127.05	134.75	106.13	131.92	135.21	130.68	123.31	124.58	126.51

^a T e G são referentes aos silanos TEOS e GPTMS, respectivamente. * 0,1, 1,0 e 10 são as quantidades percentuais de silano nas soluções de funcionalização; "N" significa que as fibras passaram pelo banho de NaOH antes da funcionalização com silano; "C" significa que as fibras passaram pelo banho de Ca(OH)₂ depois da funcionalização com silano;

11 APÊNDICE 2 --- DADOS BRUTOS DOS RESULTADOS DO CAPÍ-TULO 7

A Tabela 61 apresenta os resultados de trabalhabilidade dos CUADRF da etapa definitiva.

Tabel	Tabela 61 – Resultados de trabalhabilidade dos CUADRF na etapa definitiva								
Séries		Medi	da	Mádia	(%) em relação à				
		Horizontal	Vertical	Wieula	REF_2,0% (vf)				
REF	2,0% (vf)	192	190	191	-				
	0,1%	170	215	193	0,79				
TEOS	0,5%	190	200	195	2,09				
	1,0%	190	190	190	-0,52				
	0,1%	178	190	184	-3,66				
GPTMS	0,5%	160	150	155	-18,85				
	1,0%	180	150	165	-13,61				

A Tabela 62 apresenta os resultados de resistência à compressão dos CUADRF da etapa definitiva.

Tabela 62 -	 Resultados 	brutos de	resistência à	compressão	dos CUADRF	da etapa d	definitiva
				1		1	

	DEE 20/			TEOS		GPTMS			
	#	KLT_2 /0(vf)	0,1%	0,5%	1,0%	0,1%	0,5%	1,0%	
	1	110,06	107,20	97,99	68,04	90,88	97,39	60,52	
	2	88,19	99,45	83,40	72,43	84,50	90,52	93,84	
SE	3	93,46	91,93	98,94	78,68	112,32	89,39	71,12	
diŝ	4	90,39	89,46	81,60	82,26	89,04	104,68	86,30	
e	5	87,94	80,80	76,78	76,94	96,56	73,40	95,73	
	6	94,01	69,58	85,28	92,83	98,50	72,45	97,29	
	Média	94,01	89,73	87,33	78,53	95,30	87,97	84,13	
	1	117,81	101,64	96,41	102,83	117,30	95,94	107,39	
	2	126,26	96,23	112,06	112,27	117,83	108,56	91,28	
S	3	141,05	117,64	104,31	110,96	111,85	113,06	117,93	
di£	4	118,79	120,75	96,44	75,41	108,91	113,38	122,33	
5	5	152,87	105,33	103,44	98,09	100,76	122,24	123,16	
	6	122,94	109,59	106,06	96,92	101,66	119,14	115,19	
	Média	129,95	108,53	103,12	99,41	109,72	112,05	112,88	
	1	184,14	169,11	167,96	165,39	164,28	166,86	158,28	
	2	172,71	164,06	165,01	166,91	163,24	185,56	152,30	
	3	154,85	161,70	182,57	166,01	162,46	180,59	165,86	
	4	165,12	173,41	173,09	159,54	161,53	168,34	165,53	
	5	179,70	166,96	171,81	170,73	166,42	176,56	167,35	
	6	170,52	164,49	173,93	163,71	168,70	175,46	157,97	
	7	164,74	166,61	168,86	153,20	164,43	175,07	165,28	
as	8	179,61	159,14	178,54	162,38	147,15	166,96	164,86	
ib	9	177,60	164,19	171,33	165,98	168,34	172,39	150,02	
58	10	173,48	161,58	173,50	154,92	163,31	171,00	172,80	
	11	170,83	165,71	183,68	162,24	174,40	172,37	163,64	
	12	173,55	151,07	167,53	163,06	156,74	174,11	165,65	
	13	174,33	168,30	167,20	166,46	167,34	177,96	168,89	
	14	175,31	154,13	165,21	172,76	169,89	170,89	165,94	
	15	170,10	162,03	168,31	155,49	161,70	175,46	165,84	
	16	171,74	169,91	173,16	165,71	155,38	178,57	169,59	
	Média	172,40	163,90	171,98	163,41	163,46	174,26	163,74	

A Tabela 63 e Tabela 64 apresentam os resultados da ANOVA *one-way* e a comparação múltipla de médias (método de Duncan) dos dados de resistência à compressão dos CUADRF da etapa definitiva.

Tabela 63 - Resultados de ANOVA para resistência à compressão das séries de CUADF	۲F
funcionalizadas com TEOS da etapa definitiva	

Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de TEOS	3	766,9	255,6	2,540	0,085387	Não
Resíduo	20	2012,5	100,6			
Total	23	2770 /				
	2.5	2//9,4	~			
(a) Serie funcionalizadas com TEOS e	em 3 dia	is de hidrata	içao			
Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de TEOS	3	3356,3	1118,8	8,951	0,000581	Sim*
Resíduo	20	2499,7	125,0			
Total	23	5856,0				
(b) Série funcionalizadas com TEOS	em 7 dia	is de hidrata	ıção			
*consultar os resultados da comparaçã	ão múlti	pla de médi	as em (d)			
		-				
Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de TEOS	3	1169	390	11,00	0,000007	Sim*
Resíduo	60	2126	35			
Total	63	3295				

(c) Série funcionalizadas com TEOS em 28 dias de hidratação

*consultar os resultados da comparação múltipla de médias em (e)

Rámiag	Grupos homogêneos ^a			Sárias	Grupos homogêneos ^a		
Series	Ā	В		Series	Ā	В	
REF_2% _(vf)	А			REF_2% _(vf)	А		
T_N_0,1%_C		В		T_N_0,1%_C		В	
T_N_0,5%_C		В		T_N_0,5%_C	А		
T_N_1,0%_C		В		T_N_1,0%_C		В	
(d) Análise múlt	ipla de méd	ias das séries	-	(e) Análise múlt	ipla de méd	ias das séries	
funcionalizadas c	om TEOS er	n 7 dias de hi-		funcionalizadas c	om TEOS en	n 28 dias de hi-	
dratação.				dratação.			

^a As séries que compartilham a mesma letra de grupo homogêneo não possuem diferença significativa, com 95% de confiança.

Tabela 64 – Resultados de ANOVA para resistência à compressão das séries de CUADRF funcionalizadas com GPTMS da etapa definitiva

Tunetonum	Tantionanizadas toin of 1115 da taipa atministra										
Efeito	GL	SQ	MQ	F	Р	Afeta?					
(%) de GPTMS	3	479,1	159,7	1,091	0,377051	Não					
Resíduo	19	2781,8	146,4								
Total	22	3260,9									
(a) Série funcionalizadas com GPTM	IS em 3	dias de hidra	atação								
Efeito	GL	SQ	MQ	F	Р	Afeta?					
(%) de GPTMS	3	1567,1	522,4	4,226	0,018986	Sim*					
Resíduo	19	2348,8	123,6								

Total	22	3915,9							
(b) Série funcionalizadas com GPTMS em 7 dias de hidratação									
*consultar os resultados da comparação múltipla de médias em (d)									
		20				1.0.1.0			
Efeito	GL	SQ	MQ	F	Р	Afeta?			
Efeito (%) de GPTMS	GL 3	SQ 1543	MQ 514	F 13,52	P 0,000001	Afeta? Sim*			

3825

63

Total

(c) Série funcionalizadas com GPTMS em 28 dias de hidratação *consultar os resultados da comparação múltipla de médias em (e)

Sárias	Grupos ho	Grupos homogêneos ^a	
Series	Ā	В	
REF_2%(vf)	А		
G_N_0,1%_C		В	
G_N_0,5%_C		В	
G_N_1,0%_C		В	
(d) Análise múlt	ipla de médi	ias das séries	
funcionalizadas c	om GPTMS	em 7 dias de	
hidratação.			

^a As séries que compartilham a mesma letra de grupo homogêneo não possuem diferença significativa, com 95% de confiança.

A Tabela 65 apresenta os resultados obtidos no ensaio Barcelona.

Tabela 65 – Resultados brutos do ensaio Barcelona: Tensão em 0,05 mm, aumento de tensão em relação a tensão em 0,05 mm, pico de tensão e deformação no pico de tensão

Sárias		(Corpo d	le prov	a		Média	DV	CV	var ^a
Series	#1	#2	#3	#4	#5	#6	(MPa)	(MPa)	(%)	(%)
REF_2%(vf)	4,66	6,46	8,33	5,94	7,68	6,55	6,60	1,18	17,92	-
T_N_0,1%_C	7,33	6,91	6,46	6,06	6,47	7,33	6,76	0,47	6,95	2,36
T_N_0,5%_C	7,37	6,81	6,32	7,49	6,63	6,74	6,89	0,41	5,93	4,42
T_N_1,0%_C	6,45	6,83	5,40	5,93	6,69	5,14	6,07	0,64	10,50	-8,05
G_N_0,1%_C	4,67	6,43	6,93	7,10	7,00	6,30	6,40	0,83	12,93	-3,00
G_N_0,5%_C	6,23	6,50	6,83	7,30	7,10	3,10	6,18	1,42	23,02	-6,46
G_N_1,0%_C	6,45	5,92	6,56	5,87	6,54	6,78	6,35	0,34	5,33	-3,77

(a) Tensão de fissuração

Sários	Aumento de tensão do pico de tensão em
Series	relação a tensão em 0,05 mm (%)
REF_2% _(vf)	35,34
T_N_0,1%_C	20,18
T_N_0,5%_C	26,19
T_N_1,0%_C	31,28
G_N_0,1%_C	30,38
G_N_0,5%_C	40,27
G_N_1,0%_C	24,58

(b) Aumento de tensão no pico de tensão do ensaio

Séries Corpo de prova						Média	DV	CV	var ^a	
Series	#1	#2	#3	#4	#5	#6	(mm)	(mm)	(%)	(%)
REF_2% _(vf)	0,70	0,37	1,25	0,65	0,50	0,67	0,69	0,28	39,87	-
T_N_0,1%_C	0,65	0,47	0,52	0,43	0,75	0,65	0,58	0,11	19,57	-16,18
T_N_0,5%_C	0,50	0,53	0,79	0,72	0,62	0,61	0,63	0,10	16,06	-8,94

	A 1		2
A	nena	100	1
	pcna	ucc	~

T_N_1,0%_C	0,37	0,53	0,83	0,68	0,81	0,59	0,64	0,16	25,23	-7,97	
G_N_0,1%_C	0,70	0,64	0,39	0,55	0,34	0,69	0,55	0,14	25,62	-20,05	
G_N_0,5%_C	0,50	0,49	0,29	0,58	0,56	0,50	0,49	0,09	19,34	-29,47	
G_N_1,0%_C	0,37	0,65	0,65	0,60	0,67	0,52	0,58	0,10	18,18	-16,43	
	•	1 4	~								7

(c) Deformação no pico de tensão

Sários	_	Corpo de prova						DV	CV	var ^a
Series	#1	#2	#3	#4	#5	#6	(MPa)	(MPa)	(%)	(%)
REF_2% _(vf)	9,27	11,14	9,66	9,50	9,18	11,23	10,00	0,86	8,56	-
T_N_0,1%_C	8,21	8,05	7,98	7,67	8,62	8,21	8,12	0,29	3,53	-18,74
T_N_0,5%_C	8,17	9,45	8,49	9,44	8,49	8,16	8,70	0,54	6,25	-12,97
T_N_1,0%_C	8,34	8,83	7,38	7,41	8,79	7,07	7,97	0,71	8,91	-20,26
G_N_0,1%_C	9,13	8,03	8,04	8,42	8,26	8,22	8,35	0,37	4,49	-16,47
G_N_0,5%_C	8,84	7,74	8,78	9,01	8,58	9,05	8,66	0,44	5,12	-13,33
G_N_1,0%_C	8,33	7,90	7,80	7,51	7,75	8,21	7,92	0,28	3,53	-20,81

(d) Resultados de pico de tensão do ensaio.

^a Variação em relação à série REF_2%(vf).

Na Tabela 66 são apresentados os resultados da ANOVA fator simples para os valores de pico de tensão do ensaio Barcelona.

Tabela 66 – Resultados de ANOVA para pico de tensão no ensaio Barcelona									
Efeito	GL	SQ	MQ	F	Р	Afeta?			
(%) de TEOS	3	3,809	1,270	1,889	0,164011	Não			
Resíduo	20	13,445	0,672						
Total	23	17,254							
(a) Comparação das séries funciona	lizadas coi	m TEOS e s	érie REF_	2% _(vf) .					
Efeito	GL	SQ	MQ	F	Р	Afeta?			
(%) de TEOS	3	3,461	1,154	2,168	0,123631	Não			
Resíduo	20	10,645	0,532						

(b) Comparação das séries funcionalizadas com GPTMS e série REF_2% (vf).

23

Na Tabela 67 são apresentados os resultados da ANOVA fator simples e comparação múltipla de médias (método de Duncan) para os valores LOP do ensaio de flexo-tração.

• . •

14,106

Tabela 67 – Resultados de ANOVA para LOP das series da etapa definitiva									
Efeito	GL	SQ	MQ	F	Р	Afeta?			
(%) de TEOS	3	10,4543	3,4848	3,0798	0,044234	Sim*			
Resíduo	27	30,5502	1,1315						
Total	30	41,0045							
(a) Série funcionalizadas com TE	OS; *cons	sultar os resu	ltados da co	omparação 1	núltipla de mé	lias em (c)			
Efeito	GL	SQ	MQ	F	Р	Afeta?			
(%) de TEOS	3	7,9726	2,6575	1,7747	0,175748	Não			
Resíduo	27	40,4316	1,4975						
Total	30	48,4042							

(b) Série funcionalizadas com GPTMS.

Total

Séries	Grupos homogêneos ^a				
Series	Α	В			
REF_2% _(vf)	А				
T_N_0,1%_C		В			
T_N_0,5%_C	А	В			
T_N_1,0%_C	А	В			
-) A (1:		1 frien from			

(c) Análise múltipla de médias das séries funcionalizadas com TEOS

Na Tabela 68 são apresentados os resultados da ANOVA fator simples para os resultados de MOR do ensaio de flexo-tração.

Tabela 68 – Resultados da ANOVA fator simples para MOR dos CUADRF no ensaio de flexo-tração na etapa definitiva

Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de TEOS	3	54,88	18,29	1,955	0,144609	Não
Resíduo	27	252,65	9,36			
Total	30	307,53				
(a) MOR das Séries funciona	alizadas com TE	OS;				
Efeito	GL	SO	МО	F	Р	Afeta?
(%) de GPTMS	3	20,63	6,88	0,455	0,715634	Não
Resíduo	27	407,63	15,10			
Total	30	428,26				
(b) MOR das séries funciona	lizadas com GP	TMS.				
T A 1/		20	140			
Efeito	GL	SQ	MQ	F	P	Afeta?
(%) de TEOS	3	0,35741	0,11914	7,3238	0,000959	Sim*
Resíduo	27	0,43921	0,01627			
T- 4-1	20	0.70((2)				
	30	0,79002	1, 1	1	~ (1,1,1	1 /
(c) W_p das series funcionaliza	adas com TEOS	; *consultar	os resultad	os da comp	araçao multipla	a de me-
dias em (d).						
		Grund	s homogên	eos a		
	Séries	A	ioniogen	R		
	REF 2% wt	A		<u> </u>		
	T N 0.1% (C A				
	T N 0,5% (2]	В		
	T N 1.0% (C A				
	(d) Análise múl	tipla de mé	dias para w.	das sé-		
	ries funcionaliz	adas com T	EOS			
Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de GPTMS	3	0,03410	0,01137	1,056	0,384140	Não
Resíduo	27	0,29066	0,01077			
Total	30	0,32475				
(e) w _p das séries funcionaliza	adas com GPTM	IS.				
Ffoito	CI	50	MO	Г	D	A foto?
E LEUN	GL	50	NU	г	r	Aleta

3

9,5855

(%) de TEOS

8,4042

3,1952

0,000417

Sim*

260		Apêndice	2			
Resíduo	27	10,2650	0,3802			
T 1	20	10.0505				
Total	30	19,8505				
(f) Energia no MOR das séries funci	ionalizada	is com TEC	OS. *consul	ltar os resul	tados da comp	aração
múltipla de médias em (h)						
-						
Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de GPTMS	3	0,8441	0,2814	0,8440	0,481829	Não
Resíduo	27	9,0016	0,3334			

(g) Energia no MOR das séries funcionalizadas com GPTMS.

30

Sámios	Grupos homogêneos a			
Series	Α	В		
REF_2% _(vf)	А			
T_N_0,1%_C	А			
T_N_0,5%_C		В		
T_N_1,0%_C	А			
(h) Análise múltipl	a de médias p	ara Energia no		

9,8457

MOR das séries funcionalizadas com TEOS

Na Tabela 69 são apresentados os resultados da ANOVA fator simples para os resultados de tensão máxima do ensaio de pull-out.

Tabela 69 - Resultados de ANOVA para tensão máxima das séries em 28 dias de hidratação no ensaio de *pull-out*

		nouro ae p				
Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de TEOS	3	12,2894	4,0965	14,470	0,000062	Sim*
Resíduo	17	4,8128	0,2831			
Total	20	17,1022				
(a) Séries funcionalizadas com TEOS	*consi	ultar os resu	ltados da c	omparação	múltipla de mo	édias em
(c)						
Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de GPTMS	3	2,9813	0,9938	2,828	0,069608	Não
Resíduo	17	5,9740	0,3514			

(g) Séries funcionalizadas com GPTMS.

Total

Series A B REF_2% (vf) A A T_N_0,1%_C A A	s ^a
REF_2% _(vf) A T_N_0,1%_C A	
T_N_0,1%_C A	
T_N_0,5%_C B	
T_N_1,0%_C B	

8,9553

20

(c) Análise múltipla de médias para tensão máxima das séries funcionalizadas com TEOS

Na Tabela 70 são apresentados os resultados da ANOVA fator simples para os resultados de resistência residual em 0,5 mm e 28 dias de hidratação do ensaio de pull-out.

Total

tação no ensaio de <i>pull-out</i>								
Efeito	GL	SQ	MQ	F	Р	Afeta?		
(%) de TEOS	3	7,5865	2,5288	15,848	0,000036	Sim*		
Resíduo	17	2,7126	0,1596					
Total	20	10,2991						
(a) Séries funcionalizadas com TEOS	; *cons	ultar os resu	ltados da co	omparação	múltipla de mo	édias em		
(c)								
Efeito	GI	SQ	MQ	F	Р	Afeta?		
(%) de GPTMS	3	3,4807	1,1602	3,748	0,031108	Sim*		

Tabela 70 – Resultados de ANOVA para resistência residual em 0,5 mm e 28 dias de hidratação no ensaio de *pull-out*

Total208,7433(g) Séries funcionalizadas com GPTMS. *consultar os resultados da comparação múltipla de médias em

5.2626

0.3096

17

Grupos homogêneos ^a Grupos homogêneos a Séries Séries A В A B В REF 2%(vf) REF 2%(vf) А A В T_N_0,1%_C A G_N_0,1%_C T_N_0,5%_C в G_N_0,5%_C Α T_N_1,0%_C в G_N_1,0%_C А (d) Análise múltipla de médias das séries (c) Análise múltipla de médias das séries

funcionalizadas com TEOS na abertura de 0,5 mm em 28 dias de hidratação (d) Análise múltipla de médias das séries funcionalizadas com GPTMS na abertura de 0,5 mm em 28 dias de hidratação

^a As séries que compartilham a mesma letra de grupo homogêneo não possuem diferença significativa, com 95% de confiança.

Na Tabela 71 são apresentados os resultados da ANOVA fator simples para os resultados de resistência residual em 2,5 mm e 28 dias de hidratação do ensaio de *pull-out*.

Tabela 71 – Resultados de ANOVA para resistência residual em 2,5 mm e 28 dias de hidratação no ensaio de pull-out Efeito GL SQ MQ F Р Afeta? (%) de TEOS 3 2.2994 0.7665 5.619 0,007285 Sim* Resíduo 17 2,3188 0,1364

 Total
 20
 4,6182

 (a) Séries funcionalizadas com TEOS; *consultar os resultados da comparação múltipla de médias em

Resíduo

(d)

Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de GPTMS	3	3,5506	1,1835	2,4389	0,099861	Não
Resíduo	17	8,2496	0,4853			
Total	20	11,8002				

(g) Séries funcionalizadas com GPTMS.

Sárias	Grupos homogêneos ^a				
Series	Α	В			
REF_2% _(vf)	А				

⁽c)

T_N_0,1%_C		В
T_N_0,5%_C	А	В
T_N_1,0%_C	А	

(c) Análise múltipla de médias das séries funcionalizadas com TEOS na abertura de 2,5 mm em 28 dias de hidratação

Na Tabela 72 são apresentados os resultados da ANOVA fator simples para os resultados de tenacidade residual em 0,5 mm e 28 dias de hidratação do ensaio de *pull-out*.

Tabela 72 – Resultados de ANOVA para tenacidade residual em 0,5 mm e 28 dias de hidratação no ensaio de *pull-out*

Efeito	GL	SQ	MQ	F	Р	Afeta?	
(%) de TEOS	3	0,018317	0,006106	15,545	0,000040	Sim*	
Resíduo	17	0,006678	0,000393				
Total	20	0,024995					
(a) Séries funcionalizadas com TEO	OS; *co	nsultar os res	ultados da co	mparação	múltipla de me	édias em	
(c)							
Ffoito	CI	50	MO	F	P	A foto?	
(%) do CPTMS	2	0.006038	0.002012	2 216	0.045022	Sim*	
(%) de OPTINIS	3	0,000038	0,002015	5,510	0,043022	SIII	
Resíduo	17	0,010317	0,000607				
Total	20	0,016356					
(a) Sárias funcionalizadas com CDTMS *consultar os resultadas da comparação múltimla da mádias am							

(g) Séries funcionalizadas com GPTMS. *consultar os resultados da comparação múltipla de médias em (d)

Sárias	Grupos ho	omogêneos ^a	Sárias	Grupos ho	omogêneos ^a
Series	Α	В	Series	Α	В
REF_2% _(vf)	А		REF_2% _(vf)	А	
T_N_0,1%_C	А		G_N_0,1%_C	А	
T_N_0,5%_C		В	G_N_0,5%_C	А	В
T_N_1,0%_C		В	G_N_1,0%_C		В
(c) Análise múlt	tipla de méd	lias das séries	(d) Análise múlt	ipla de méd	ias das séries
funcionalizadas	com TEOS 1	na abertura de	funcionalizadas c	om GPTMS	na abertura de
0,5 mm em 28 di	as de hidrata	cão	0,5 mm em 28 di	as de hidrata	cão

^a As séries que compartilham a mesma letra de grupo homogêneo não possuem diferença significativa, com 95% de confiança.

Na Tabela 73 são apresentados os resultados da ANOVA fator simples para os resultados de tenacidade residual em 2,5 mm e 28 dias de hidratação do ensaio de *pull-out*.

Tabela 73 – Resultados de ANOVA para	tenacidade residual em 2,5 mm e 28 dias de hidra-
. ~	· 1 // /

tação no ensaio de <i>pull-out</i>							
Efeito	GL	SQ	MQ	F	Р	Afeta?	
(%) de TEOS	3	0,17721	0,05907	15,877	0,000035	Sim*	
Resíduo	17	0,06325	0,00372				
Total	20	0,24046					
(a) Séries funcionalizadas com TEOS; *consultar os resultados da comparação múltipla de médias em							
(c)					-		

	A 1		2
A	nend	100	2
	<i>p c</i>		_

Efeito	GL	SQ	MQ	F	Р	Afeta?
(%) de GPTMS	3	0,10309	0,03436	2,226	0,122318	Não
Resíduo	17	0,26247	0,01544			
Total	20	0,36556				
(g) Séries funcionalizadas com GPTM	1S.					

Sárias	Grupos homogêneos ^a						
Series	Α	В	С				
REF_2%(vf)	А						
T_N_0,1%_C	А						
T_N_0,5%_C		В					
T_N_1,0%_C			С				

(c) Análise múltipla de médias das séries funcionalizadas com TEOS na abertura de 2,5 mm em 28 dias de hidratação

Na Fig. 135 é apresentada a análise de MEV/EDS de um "ponto escuro" verificado em algumas superfícies quando realizado a caracterização microestrutural das fibras. O EDS evidencia a quantidade majoritária de carbono, indicando a contaminação da amostra nesse ponto devido, provavelmente à manipulação da amostra.

Fig. 135 – Análise de MEV/EDS da mancha preta observada em algumas análises realizadas nas superfícies das fibras

(a)

(d) (a) e (b) Imagem de MEV de uma área com um ponto escuro e (c) e (d), são as análises de EDS nos pontos escuros.

6.00

7.8

keV

Coord

475

1.00

2.01

3.0

4.00

12 APÊNDICE 3 --- ESTIMATIVA DO CONSUMO DE PORTLAN-DITA PELA NANOSSÍLICA E PELOS SILANOS

12.1 CONSUMO PELA NANOSSÍLICA

O grau de hidratação do cimento para matrizes com relação a/c inferiores à 0,3, típicas de CUAD, pode ser considerado na ordem de 46 %, e para as fases C_3S (silicato tricálcico) e C_2S (silicato dicálcico) na ordem de 71 % e 19 %, respectivamente (Tabela 74). Valor seme-lhante ao estimado no item 6.3.3.

Autor	a/a a	Grau	Grau de hidratação (%)				
Autor	a/C	C ₃ S	C_2S	Cimento			
Cheyrezy et al. (1995)	0,12			40-60			
H.H Taylor (1997)	0,3	70	30				
Loukili et al. (1999)	0,2			57,5			
Bentz & Haecker (1999)	0,246			50-55			
Habel et al. (2006)	0,18			31			
Korpa et al. (2009)	0,3	60	15				
Pfeifer et al. (2010)	0,199	84	13				
Van Tuan et al. (2011)	0,18			30-40			
Madani et al. (2012)	0,27			45			
Yu & Browers (2014)	0,23			52,4			
Huang et al. (2017)	0,16			39			
Média	0,216	71	19	46,5			

Tabela 74 - Grau de hidratação do cimento e fases do cimento em CUAD

^a Relação água/cimento

Conhecendo a composição mineralógica e considerando esse grau de hidratação, pode-se estimar a quantidade de portlandita formada na hidratação da matriz em estudo. Para evidenciar que todo o material pozolânico adicionado às matrizes terão potencial pozolânico, realizou-se o cálculo da estimativa de compostos gerados na hidratação do cimento nos concretos produzidos. Para a geração de 360,394 g de C-S-H, equivalente à 1 Molar, a partir da hidratação dos silicatos C₃S do cimento, são necessários 456,62 g de fase anidra; e para a geração de 342,39 g de C-S-H a partir do C₂S, é necessário 344,72 g de fase anidra (MEHTA; MONTEIRO, 2006; OERTEL et al., 2014b), conforme a estequiometria das Eq. (28) e (29).

Reação	$2C_3S$	+	7H	\leftrightarrow	$C_3S_2H_4$	+	3CH	(28)
g	456,628		126		360,394		222,234	
Μ	2		7		1		3	
Reação	$2C_2S$	+	4H	\leftrightarrow	$C_3S_2H_3$	+	СН	(29)
g	344,472		72		342,394		74,078	
M	2		4		1		1	
Onde:								
C = CaO; S	$S = SiO_2; H =$	H_2O						

Na dosagem adotada no estudo definitivo apresentada no Capítulo 7, para a produção de 1 litro de CUADRF é necessário adicionar à mistura 939,77 g de cimento. Se considerarmos o grau de hidratação com base na média apresentada pela Tabela 74, a quantidade de cimento que hidratará é de 436,99 g.

No cimento utilizado, a quantidade presente das fases C₃S e C₂S é de 58,3 e 11,2 %, respectivamente. Essa fração de fases resulta no total de 254,77 g e 48,94 g de C₃S e C₂S, respectivamente, de fases de silicatos com potencial de hidratação.

Essas fases, por sua vez, não reagem de maneira uniforme na matriz cimentícia. Desta forma, considerando a média do grau de hidratação em matriz com a/c inferiores à 0,3 (71% e 19% para o C₃S e C₂S, respectivamente) apresentado na Tabela 74, chega-se em uma massa de fases de silicatos que realmente hidratam de 180,88 g para o C₃S e de 9,29 g para o C₂S, conforme Eq. (30) e (31). O total de portlandita gerada considerando esses parâmetros é de 90,033 g, equivalente à 1,215 M.

Reação	$2C_3S$	+	7H	\leftrightarrow	$C_3S_2H_4$	+	3 <i>CH</i>	(30)
g	180,88		49,912		142,763		88,033	
Μ	0,792		2,773		0,396		1,188	
Reação	$2C_2S$	+	4H	\leftrightarrow	$C_3S_2H_3$	+	СН	(31)
g	9,299		1,944		9,243		2	
M	0,054		0,108		0,027		0,027	

Para a geração de C-S-H a partir da reação pozolânica em matrizes cimentícias, há a necessidade de um silicato capaz de reagir com a portlandita disponível no sistema (MEHTA; MONTEIRO, 2006). Neste caso, o silicato utilizado é a nanossílica (SiO₂) e para gerar 1 mol (360,39 g) de C-S-H a partir de reação pozolânica é necessário 120,16 g de SiO₂, conforme Eq. (32).

Reação	2 <i>S</i>	+	3CH	+	Н	\leftrightarrow	$C_3S_2H_4$	(32)
g	120,16		222,234		18		360,394	
Μ	2		3		1		1	

Na mistura apresentada no Capítulo 7, para a produção de 1 litro de CUADRF, a quantidade de nanossílica adicionada à mistura é de 14,78 g (sem considerar o líquido da suspensão). Para o consumo de toda nanossílica adicionada ao concreto por reação pozolânica, é necessário somente 27,343 g de portlandita, conforme Eq. (33), muito inferior à produção de portlandita estimada de 90,033 g. Dessa forma, há potencial da quantidade de nanossílica adicionada à mistura gerar 44,341 g de C-S-H, considerando que a nanossílica seja 100% reagida. Nesse cenário, toda a nanossílica que compõe o concreto formará C-S-H e ainda restará ainda 62,69 g de portlandita na matriz cimentícia.

Reação	2 <i>S</i>	+	3CH	+	Н	\leftrightarrow	$C_3S_2H_4$	(33)
g	14,784		27,342		2,214		44,341	
M	0,246		0,369		0,123		0,123	

12.2 CONSUMO PELOS SILANOS

Semelhante à nanossílica, os silanos tem um papel de agentes pozolânicos na matriz estudada. Como estimado na seção anterior, a quantidade de portlandita gerada a partir da hidratação do cimento é superior a quantidade disponível de nanossílica, ou seja, é capaz de reagir toda a nanossílica adicionada ao concreto. Para estimar o consumo de portlandita a partir dos silanos utilizados no trabalho, é apresentado o cálculo a partir da portlandita que sobrou da reação com a nanossílica, isto é, considerou-se os 62,69 g de portlandita restantes. Isso pelo fato da nanossílica e os silanos reagirem simultaneamente com a portlandita. Além disso, no caso dos silanos, considera-se que 100 % dos materiais hidrolisam para formar material pozolânico aderido às fibras.

No caso do TEOS, para a geração 96,08 g (equivalente à 1 M) de silano com todos os seus grupos alcóxi hidrolisados, são necessários 208,33 g de silano, conforme Eq. (34). No

Reação	$C_8 H_{20} O_4 Si$	+	$4H_{2}O$	\leftrightarrow	$Si(OH)_4$	+	$4C_{4}H_{6}O$	(34)
g	208,33		72,04		96,08		184	
Μ	1		4		1		4	
Reação	$C_9 H_{20} O_5 Si$	+	$3H_{2}O$	\leftrightarrow	$C_6 H_{14} O_5 Si$	+	3 <i>CH</i> ₄ <i>O</i>	(35)
g	236,34		54,03		194,08		96,12	
M	1		3		1		3	

caso do GPTMS, para a geração de 194,08 g (equivalente à 1 M) de silano com todos os seus grupos alcóxi hidrolisados, são necessários 236,34 g de silano, conforme Eq. (35).

Considerando a mistura de concreto apresentada no Capítulo 7, para produzir 1 litro de CUADRF funcionalizadas são necessários 155,08 g de fibras na composição da mistura. Para produzir essa quantidade de fibras funcionalizadas, é necessário preparar 0,517 L de solução para funcionalização, já que o tratamento é realizado com 300 g de fibras por litro de solução de funcionalização.

Para o silano do tipo TEOS, nas soluções de funcionalização com 0,1, 0,5, 1 e 10% de concentração de silano (em volume), há uma massa de silano de 0,0004727, 0,002363, 0,004727 e 0,04727 g, respectivamente. Essa massa de silano tem capacidade de gerar uma quantidade de silano hidrolisado de 0,000218, 0,00109, 0,00218 e 0,0218 g nas soluções de 0,1, 0,5, 1 e 10% de concentração de silano, respectivamente, conforme Eq. (36).

(%)	Reação	$C_8 H_{20} O_4 Si$	+	$4H_{2}O$	\leftrightarrow	$Si(OH)_4$	+	$4C_{4}H_{6}O$	(36)
0,1	g	0,0004727		0,00016		0,000218		0,00041	
0,5	g	0,002363		0,00081		0,00109		0,00208	
1	g	0,004727		0,00163		0,00218		0,00417	
10	g	0,04727		0,01634		0,0218		0,04175	

No caso do silano tipo GPTMS, nas soluções de funcionalização com 0,1, 0,5, 1 e 10% de concentração de silano (em volume), há uma massa de silano de 0,00053, 0,00268, 0,00536, 0,0536 g, respectivamente. Essa massa de silano é capaz de gerar uma quantidade de silano hidrolisado de 0,00044, 0,0022, 0,0044 e 0,044 g nas soluções de 0,1, 0,5, 1 e 10% de concentração de silano, respectivamente, conforme Eq. (37).

(%)	Reação	$C_9 H_{20} O_5 Si$	+	$3H_2O$	\leftrightarrow	$C_6 H_{14} O_5 Si$	+	$3CH_4O$	(37)
0,1	g	0,00053		0,000122		0,00044		0,00021	
0,5	g	0,00268		0,00061		0,0022		0,00109	
1	g	0,00536		0,00122		0,0044		0,00218	
10	g	0,0536		0,01226		0,04406		0,0218	

Verifica-se que a quantidade de silano hidrolisado em todas as configurações de soluções de funcionalização é pequeno, em todos os casos, inferior aos 0,1 g de produto. Neste caso, pode-se afirmar que todo o silano hidrolisado produzido nos banhos de funcionalização tem potencial de reagir com os 62,69 g de portlandita, resultante da hidratação do cimento.