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RESUMO

A comunidade de Computação de Alto Desempenho investiga soluções
eficientes e escaláveis, visando suprir as demandas computacionais de
aplicações larga-escala. Para tanto, particularidades da aplicação e pla-
taforma alvos são exploradas, de forma que técnicas espećıficas possam
ser aplicadas. Nesse contexto, a irregularidade da aplicação é uma
importante caracteŕıstica que deve ser considerada, por exemplo, no
escalonamento de iterações de laços. Nesse cenário, estratégias cientes
da carga de trabalho destacam-se como a abordagem mais promissora,
no entanto elas apresentam algumas fraquezas que devem ser supe-
radas. Primeiro, elas baseiam-se em técnicas de profiling e regressão
estat́ıstica, sendo portanto inerentemente projetadas para cargas de
trabalho com padrão bem definido. Segundo, essas estratégias falham
em aplicar seu conhecimento para escalonar os chunks de iterações do
laço paralelo alvo. Terceiro, estratégias existentes não foram avalia-
das de maneira compreensiva quanto a variações na carga de trabalho.
Finalmente, apesar de existirem diversas estratégias cientes da carga
de trabalho, nenhuma delas está integrada a uma biblioteca de pro-
gramação paralela, tornando assim ainda mais desafiador que aplicações
beneficiem-se das mesmas. Com o objetivo de endereçar esses proble-
mas, nesse trabalho propõe-se uma nova estratégia de escalonamento de
laços ciente da carga de trabalho batizada de BinLPT. Para possibilitar
desempenho e flexibilidade superiores, essa estratégia é baseada em al-
gumas caracteŕısticas como estimativas da carga de trabalho fornecidas
pelo usuário e o uso de uma heuŕıstica de escalonamento adaptativa ba-
seada na regra LPT. Além disso, o BinLPT foi integrado no OpenMP
e disponibilizado publicamente para download. Essa nova estratégia foi
concebida com base em dois pontos, ambos desenvolvidos durante a
elaboração dessa dissertação: uma metodologia de projeto para novas
estratégias de escalonamento de laços baseado em simulação; e uma es-
tratégia prova de conceito, nomeada SRR. Uma avaliação compreensiva
do BinLPT foi efetuada, utilizando simulações, benchmarks sintéticos e
kernels de aplicações, com diversas cargas de trabalho. Os experimen-
tos foram executadas em uma plataforma NUMA e os resultados com os
kernels de aplicações relevaram que BinLPT conduz a um desempenho
de até 64.92% superior que estratégias do OpenMP consideradas.

Palavras-chave: Computação de Alto Desempenho. Aplicações Irre-
gulares. Estratégias de Escalonamento de Laços.





ABSTRACT

The High Performance Computing community seeks for efficient and
scalable solutions to meet the ever-increasing performance demands in
large-scale applications. To achieve this goal, intricacies of the tar-
get application and platform are often exploited, so that specific tech-
niques can be applied. In this context, the irregularity of the appli-
cation is an important characteristic that should be considered. For
instance, when scheduling loop iterations of a shared-memory-based
applications, workload-aware scheduling strategies stands out as the
most promising approach. Unfortunately, existing strategies that are
based on this finding present several drawbacks that should be over-
come. First, these strategies rely on profiling and statistical regression
techniques, and thus are inherently designed to well-behaved workloads.
Second, workload-aware strategies fail to apply their knowledge about
the underlying workload of the target irregular loop when scheduling
chunks of iterations. Third, existing strategies were not so far compre-
hensively evaluated in what concerns variations in the workload. Fi-
nally, despite the existence of several workload-aware strategies, none
of them is integrated in a publicly available library for parallel program-
ming, hence making it harder for applications to effectively get benefit
from them. To address these challenges, in this work we propose a
novel workload-aware loop scheduling strategy called BinLPT. To en-
able superior performance and flexibility, our strategy is based on some
features as user-supplied estimation about the workload of the target
irregular loop and the use of an adaptive scheduling heuristic based on
the Longest Processing Time (LPT) rule. We integrated BinLPT into
OpenMP, and we made our implementation publicly available. To con-
ceive BinLPT, we relied on two cornerstones, both devised during the
preparation of this master thesis: a simulation-guided design method-
ology and on a proof-of-concept workload-aware loop scheduler, named
Smart Round-Robin (SRR). We carried out a throughout assessment
of BinLPT using simulations, synthetic kernels and application kernels.
We ran experiments on a large-scale NUMA machine and we studied
the different workloads. In the application kernels, our experimental re-
sults uncovered up to 64.91% of performance improvement when using
BinLPT, in contrast to OpenMP strategies.

Keywords: High Performance Computing. Irregular Applications.
Loop Scheduling Strategies.
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1 INTRODUCTION

The High Performance Computing (HPC) community constantly
works on the design of efficient and scalable alternatives, ranging from
hardware architecture (DINECHIN et al., 2013) to runtime support (BRO-

QUEDIS et al., 2010), to meet the ever-increasing cutting-edge perfor-
mance demands in large-scale engineering and scientific applications.
Indeed, these solutions are often tailored to address the particular intri-
cacies of an application and its underlying platform, so that specialized
techniques can be employed (FRANCESQUINI et al., 2015).

In this context, the irregularity of an application is an impor-
tant feature that affects its performance, and hence it is often used to
classify parallel applications into two groups: regular applications and
irregular applications (GAUTIER; ROCH; VILLARD, 1995). In the first
group, the amount of computation that is required to solve a given
problem depends only on the size of the input data. An implementa-
tion of the Naive Matrix Multiplication Algorithm for dense matrices
is a typical example of a highly regular application. In this particu-
lar application, the number of floating point operations is constantly
proportional to the matrix size, regardless the actual numbers involved
in the computation. On the other hand, in irregular applications, the
contents of the input data also impact the execution time significantly.
For instance, in N-Body Simulations, the number of particle interac-
tions to be computed depends on both the number of particles in the
physical system and the spatial distribution of those particles.

Although subtle, the difference between these two groups directly
impacts the design of efficient parallel solutions. Indeed, regular appli-
cations are especially preferred because their workload can be trivially
broken up into homogeneous tasks, by simply dividing the total work-
load by the number of working threads of the application. With such
strategy, each thread is assigned to an even amount of load, and thus
optimal performance is achieved. Unfortunately, in irregular applica-
tions, this strategy may potentially lead to a set of tasks which are
heterogeneous in terms of load, thus causing load imbalance among
the threads. Consequently, the overall execution time is bounded by
the performance of the most overloaded thread, which in turn creates
scalability problems.
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1.1 MOTIVATION

Evenly distributing the workload among the threads of an irregu-
lar application is an NP-Hard minimization problem known as the Mul-
tiprocessor Scheduling Problem (GRAHAM, 1969; GAREY; JOHNSON,
1979). This problem presents a significant challenge to both academic
and industry communities, and it is a recurring subject of research in
HPC. For instance, in shared-memory-based parallel applications, this
problem emerges when scheduling iterations of irregular parallel loops
with no dependency (FANG et al., 1990; POLYCHRONOPOULOS; KUCK,
1987; HUMMEL; SCHONBERG; FLYNN, 1992). In this scenario, the prob-
lem is referred as the Loop Scheduling Problem, and it can be reduced
to the assignment of independent loop iterations such that (a) their
load is evenly distributed, and thus execution time reduced; and (b)
the scheduling overhead is minimized.

Several loop scheduling strategies have been proposed to address
the previous problem (KRUSKAL; WEISS, 1985; FANG et al., 1990; POLY-

CHRONOPOULOS; KUCK, 1987; HUMMEL; SCHONBERG; FLYNN, 1992;
TZEN; NI, 1993; MARKATOS; Le Blanc, 1994; HURSON et al., 1997), and
they mainly rely on two techniques. In the first one, called on-demand
scheduling, iterations are scheduled to threads on-the-fly at runtime,
so that both load imbalance and runtime variations may be dynami-
cally handled. In the second technique, called chunk-size tuning, itera-
tions are scheduled in optimally sized batches (i.e. chunks) so that (i)
scheduling overheads are mitigated, (ii) load imbalance is further amor-
tized and (iii) iteration affinity is exploited. When coupled together,
on-demand scheduling and chunk-size tuning may indeed deliver rea-
sonable performance to a wide range of scenarios. Nevertheless, these
techniques do not consider any knowledge about the underlying work-
load of the target parallel loop, and thus scheduling strategies built
upon them naturally turn out to be suboptimal (BALASUBRAMANIAM

et al., 2012; PENNA et al., 2016).
To address this limitation, workload-aware strategies were in-

troduced (BANICESCU; Flynn Hummel, 1995; BULL, 1998; BANICESCU;

VELUSAMY, 2001; KEJARIWAL; NICOLAU; POLYCHRONOPOULOS, 2006;
WANG et al., 2012). These strategies rely on some workload knowledge
to adaptively fine-tune chunk sizes, and thus further amortize load im-
balance and deliver superior performance.
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1.2 LIMITATIONS OF EXISTING STRATEGIES

Although workload-aware strategies present better performance
gains than workload-unaware strategies (or blind strategies), they still
face some drawbacks that should be tackled. First, these strategies rely
on profiling and statistical regression techniques, and thus are inher-
ently designed to well-behaved workloads. Therefore, to tackle irreg-
ular loops in which the workload varies drastically, some alternative
for estimating the workload on-the-fly is necessary. Furthermore, it is
worth noting that the loop scheduling strategy itself and the workload-
estimation technique should be loosely coupled. This way, HPC engi-
neers may plug into their solutions the workload-estimator that best fits
their needs. Unfortunately, however, existing knowledge-based strate-
gies do not provide this flexibility.

Second, workload-aware loop scheduling strategies fail to apply
their knowledge about the underlying workload of the target irregular
loop when scheduling chunks of iterations. Pragmatically, workload-
aware strategies rely on the on-demand scheduling technique, and thus
inherently achieve suboptimal performance when the workload estima-
tion is accurate (GRAHAM, 1969). Furthermore, on-demand scheduling
is known to lead to scalability problems (BULL, 1998), and thus should
be wisely avoided when designing applications for exascale platforms.

Third, existing workload-aware loop scheduling strategies were
not so far comprehensively evaluated in what concerns variations in
the workload. This lack in performance analysis is due to the poor
availability of an evaluation methodology and benchmark programs to
target this particular scenario. Moreover, this limited assessment un-
dertakes a throughout understanding of the lower and upper bound
potentials of workload-aware scheduling strategies.

Finally, despite the existence of several workload-aware strate-
gies, none of them is integrated in a publicly available Application
Programming Interface (API), library or framework for parallel pro-
gramming, such as OpenMP, TBB or Cilk. Indeed, the integration of
these strategies with an irregular application is not trivial (BANICESCU;

Flynn Hummel, 1995; BANICESCU, 2003), thereby restricting their use to
an even smaller subset of irregular applications.
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1.3 GOALS & CONTRIBUTIONS

Targeting the problems stated previously, the main goal of this
work is to propose a novel workload-aware loop scheduling strategy
for irregular parallel loops with no dependency. This new strategy
overcomes the aforementioned weaknesses in workload prediction and
chunk-scheduling that limit the performance of existing strategies. More-
over, we aim at delivering a publicly available implementation of the
proposed loop scheduling strategy in a widely-used API for parallel
programming. Therefore, this work delivers the following main contri-
butions to the state-of-the-art:

• A novel workload-aware loop scheduling strategy entitled BinLPT.
To enable superior performance and flexibility, our strategy is
based on three features. First, it relies on some user-supplied es-
timation about the workload of the target irregular loop. Such
estimation may be retrieved either from the problem structure
or through online/offline profiling, thus enabling maximum flex-
ibility. Second, BinLPT uses a greedy bin packing heuristic to
adaptively partition the iteration space into several chunks. The
maximum number of chunks that may be produced is a param-
eter of our strategy, and it may be fine-tuned to better meet
the characteristics of the irregular parallel loop. Third, BinLPT
schedules chunks to threads using a hybrid scheme based on the
LPT rule and on-demand scheduling (GRAHAM, 1969), thereby
ensuring that load imbalance and runtime variations are opti-
mally handled. Existing strategies pragmatically rely only on the
latter rule.

• An integration of BinLPT into the OpenMP runtime system of
GCC. OpenMP is a parallel programming API for shared-memory
architectures that is widely-used by the academic and industry
communities in HPC (DAGUM; MENON, 1998). Our implementa-
tion is open-source and publicly available for download, thereby
enabling any parallel application that relies on this programming
abstraction to seamlessly use our strategy.

Furthermore, to deliver a comprehensive performance evalua-
tion of BinLPT, we carried out a throughout assessment using simu-
lations, synthetic kernels and application kernels. We ran experiments
on a large-scale Non-Uniform Memory Access (NUMA) machine and
we studied the performance of BinLPT under a variety of irregular
workloads.
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To conceive BinLPT, we relied on two research works, both de-
vised during the preparation of this master thesis: a design method-
ology for workload-aware loop scheduling strategies based on simula-
tion (PENNA et al., 2016); and (ii) a proof-of-concept draft workload-
aware loop scheduler named SRR (PENNA et al., 2017).

1.4 WORK ORGANIZATION

The remainder of this work is organized as follows. In Chapter 2,
we present and discuss the underlying concepts on which this work re-
lies. In Chapter 3, we present the related work on loop scheduling
strategies, highlighting those works on workload-aware approaches. In
Chapter 4, we detail the workload-aware loop scheduling strategy pro-
posed in this work. In Chapter 5, we present our evaluation methodol-
ogy. In Chapter 6, we discuss experimental results. In Chapter 7, we
draw the conclusions of our work, and in Chapter 8 we discuss some
valuable future works derived from ours.
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2 BACKGROUND

In this chapter we discuss the background on which this work re-
lies. First, we present a formal definition of the Loop Scheduling Prob-
lem. Then, we discuss the known bounds on multiprocessor scheduling.
Next, we introduce the existing classical loop scheduling strategies. Fi-
nally, we give a background on loop scheduling support in OpenMP.

2.1 THE LOOP SCHEDULING PROBLEM

The Loop Scheduling Problem is an instance of the NP-Hard
minimization problem for multiprocessor scheduling (GRAHAM, 1969;
GAREY; JOHNSON, 1979) and can be stated as follows.

Definition. Let x̂ = (i1, i2, . . . , im) be a sequence of m independent
loop iterations, and wk ∈ N+ be the load of iteration ik. If ĉk is an
arbitrary subsequence in x̂ (i.e. chunk of iterations), its load can be
expressed as :

ω(ĉk) =
∑
ij∈ĉk

wj

Thus, given two arbitrary and non-overlapping chunks in x̂, say
ĉa and ĉb, the load imbalance between them is:

ψ(ĉa, ĉb) = | ω(ĉa)− ω(ĉb) |

Moreover, given a set of non-overlapping chunks Ca in x̂, the
load imbalance of Ca in respect to x̂ is (Equation 2.1):

ϕ(Ca, x̂) = |
∑

ĉi∈Ca

ω(ĉi)−
ω(x̂)

m
| (2.1)

Therefore, the Loop Scheduling Problem comes down to parti-
tioning x̂ into n non-overlapping chunks and assigning disjoint sets of
these n chunks to the p threads; such that the following are minimized:

i. the number of n chunks that are used to partition the loop iter-
ation space x̂;

ii. and the load imbalance of the most overloaded thread ϕ(Cmax, x̂)
(Equation 2.1). �
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The previous formulation depicts the relation of the four core
variables of the Loop Scheduling Problem: (i) the loop iteration space x̂;
(ii) the load of iterations wk; (iii) the number of chunks n in which x̂ will
be partitioned; and (iv) the number of threads p that will process the n
chunks in parallel. However, additional variables should be considered
when the problem is analyzed in a real-world context. Therefore, in the
paragraphs that follow, we discuss some of the most significant ones.

Scheduling Overhead This is an important concern for strategies
that assign chunks of iterations to idle threads on-the-fly. If con-
tention in synchronization structures is costly and the on-demand
scheduling strategy is frequently invoked, the irregular parallel
loop may face severe scalability issues when the number of chunks
grows asymptotically (FANG et al., 1990).

Memory Affinity It is related to the temporal and spatial data local-
ities that exist across the iteration space. When memory affinity 1

is exploited, the memory hierarchy is efficiently used, thereby re-
ducing contention in buses and other interconnection structures
and thus increasing performance. This variable greatly impacts
the performance of memory-intensive irregular loops (MARKATOS;

Le Blanc, 1994). Memory affinity is likely to be exploited when us-
ing large chunks.

Platform Heterogeneity It is related to the processing heterogene-
ity of the underlying platform. In Assymmetric Multiprocessing
(AMP) machines, the processing capacity and features of each
processing unit may greatly differ from one another, and thus
impact the overall chunk scheduling performance (CHEN et al.,
2012). Fortunately, however, such architectural characteristics
can be queried at runtime and thus may be handled in a per-
platform fashion.

Platform Availability It is related to the presence of external load
running concurrently on the platform, such as jobs of other users.
Unlike architecture heterogeneity, platform availability is unpre-
dictable, which in turn makes it harder to deal with (BANICESCU,
2003).

1Data and temporal locality
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2.2 KNOWN BOUNDS ON LOOP SCHEDULING

The Loop Scheduling Problem is an instance of the Multiproces-
sor Scheduling Problem, which in turn is a classical problem in Com-
puter Science and has been extensively studied so far. Based on this
observation, in this section, we carry out a discussion on the known
bounds for the multiprocessor scheduling aiming at uncovering the
bounds on loop scheduling as well. The following analysis considers
the core variables that were introduced in the previous section, and it
assumes that threads have equal processing capacities.

The lower bound solution for the Multiprocessor Scheduling Prob-
lem is to assign to each thread a workload that equals the overall work-
load divided by the number of threads. Let X = {u1, u2, . . . , un} be a
set of n independent tasks, wk ∈ N+ be the load of iteration uk, and p
the number of threads, the optimum amount of workload W ∗ to assign
to each thread is (Equation 2.2):

W ∗ =

∑n
k=1 wk

p
(2.2)

This solution may not be achievable in several instances of the
Multiprocessor Scheduling Problem, because there may not even ex-
ist a task scheduling that would lead to such an optimum workload
distribution. Nevertheless, it can be used as a baseline for evaluating
scheduling strategies. In the Loop Scheduling Problem, for instance,
an analogous optimum strategy would be able to evenly distribute the
underlying workload of a target parallel loop.

On the other hand, an upper bound solution for the Multipro-
cess Scheduling Problem can be obtained by the following greedy algo-
rithm (GRAHAM, 1969): consider tasks in arbitrary order, and assign
them on-demand to idle threads. This strategy is known as the List
Scheduling (LS) strategy and leads to a 2-approximation solution.

Proof. Let W ∗ be the optimum workload, let Wi be the overall work-
load assigned to the most overloaded thread i, and let j be the last
iteration assigned to this thread. Note that, before j was assigned to
i, thread i had the smallest load. Therefore, we have:

Wi = (Wi − wj)︸ ︷︷ ︸
≤W∗

+ wj︸︷︷︸
≤W∗

≤ 2W ∗

�
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Indeed, a tight bound solution for the Multiprocessing Schedul-
ing Problem was introduced by Graham (1969) and it is known as the
LPT strategy. This strategy leads to a 4/3-approximation of the op-
timum solution and works similarly to LS, but it considers tasks in
decreasing order of load instead of in arbitrary order. We refer the
reader to Graham (1969) for the proof of this notable outcome.

Reasoning on these two latter bounds, the following conclu-
sion may be derived for the Loop Scheduling Problem. Strategies
that perform fine-grain on-demand scheduling are bounded to a 2-
approximation solution. However, if the underlying workload of the
target parallel loop is sorted in a quasi-decreasing fashion, then a 4/3-
approximation solution will follow.

The previously conclusion holds when the scheduling overhead
incurred by fine-grain scheduling is negligible. Unfortunately, this is
not true in practice, and thus fine-grain on-demand loop schedulers
may present worse performance that theoretically they would output.
Nevertheless, Kruskal and Weiss (1985) and Hummel, Schonberg and
Flynn (1992) showed that if the number of iterations in the parallel loop
is asymptotically large, medium-grain on-demand scheduling yields 2-
approximation solutions. In their original works, they consider a batch
of loop iterations to be a set of iterations that are assigned in a single
round. If for each batch that is scheduled there is more than a half
of iterations left to be scheduled in subsequent batches, there exists a
high probability that all threads will end up receiving an even portion
of the overall workload, regardless the Probability Density Function
(PDF) associated to the load of iterations. Moreover, this probability
increases as the ratio between number of loop iteration and the number
of threads increases. Figure 1 illustrates this outcome, which we refer
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Figure 1: Load imbalance amortization principle.



33

in this work as the “Load Imbalance Amortization Principle”. In this
example, half of the remaining iterations are assigned to threads at
each scheduling round.

2.3 CLASSICAL LOOP SCHEDULING STRATEGIES

Loop scheduling strategies boil down to one of the following
two approaches: static, in which loop iterations are assigned to the
threads of the parallel application at compile-time; and runtime, in
which scheduling decisions are made at runtime (KEJARIWAL; NICOLAU;

POLYCHRONOPOULOS, 2006). Static scheduling strategies introduce no
runtime overhead, but (i) they are only possible on parallel loops which
can have their bounds somehow determined at compile time, and (ii)
they are suitable only for parallel loops which feature a compile-time
predictable workload. In contrast, runtime strategies are employed
to address parallel loops that either do not meet the aforementioned
compile-time requirement, or perform computation on a workload that
is known only at runtime. In this work, we address the problem of
scheduling irregular parallel loops in which the workload is known only
at runtime. In the following paragraphs we discuss the most important
runtime scheduling strategies that have been widely-used so far, due to
their applicability and performance on a great number of applications.
Figure 2 illustrates the scheduling of each of these strategies when two
threads are used, named A and B. In this figure, each cell represents
an iteration of the parallel loop. Grey cells were scheduled to thread A
and white cells to thread B

Pure Static Scheduling (PSS) It statically partitions a parallel loop
into even-sized chunks of iterations, and then it assigns these
chunks to threads, one at a time, statically and in a round-robin-
fashion (Figure 2a). This strategy leads to minimum runtime
overhead and thereby enables optimal performance for regular
loops. However, in irregular loops, it may lead to poor load bal-
ancing and performance.

Pure Dynamic Scheduling (PDS) It assigns iterations to threads
in unit-sized chunks and on-demand. Whenever a thread becomes
idle, an iteration is assigned to it (Figure 2b). This strategy relies
on the LS Rule (recall Section 2.2), and thus achieves good load
balancing but at the price of a possibly overwhelming runtime
overhead.
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Figure 2: Classical loop schedulers in action: (a) Pure Static Schedul-
ing (PSS) with chunk size 4; (b) Pure Dynamic Scheduling (PDS);
(c) Chunk Self-Scheduling (CSS) with chunk size 2; (d) Guided Self-
Scheduling (GSS); and (e) Factoring Self-Scheduling (FSS).

Chunk Self-Scheduling (CSS) It works like PDS, but instead of as-
signing iterations one by one, it assigns iterations in equally-sized
chunks (Figure 2c) (FANG et al., 1990). Small chunk sizes deliver
good load balancing, but they likely introduce prohibitive runtime
overheads. In contrast, large chunk sizes avoid this problem, but
may increase load imbalance. When the chunk size is fine-tuned,
near-optimal load balancing is achieved (GRAHAM, 1969; FANG et

al., 1990; BALASUBRAMANIAM et al., 2012), and when it equals to
one, this scheduling strategy degenerates to PDS.

Guided Self-Scheduling (GSS) It also assigns chunks of loop itera-
tions to threads on demand, but it dynamically changes their size
at runtime according to the Load Imbalance Amortization Prin-
ciple (POLYCHRONOPOULOS; KUCK, 1987). More precisely, the
size of the next chunk is given by the number of remaining itera-
tions divided by the number of threads (Figure 2d). The idea of
having a decreasing chunk size is to offer a compromise between
achieving good load balancing while reducing runtime overhead.
Nevertheless, GSS may not deliver good performance when first
iterations of a parallel loop are much more time-consuming than
the iterations that follow.

Factoring Self-Scheduling (FSS) It works similarly to GSS, but it
differs in the way that chunk sizes are determined (HUMMEL;

SCHONBERG; FLYNN, 1992). To address the scenarios in which
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GSS does not perform so well, FSS computes the next chunk
size by dividing a subset of the remaining loop iterations (usually
half) evenly among the threads (Figure 2e). FSS introduces no
significant runtime overhead compared to GSS, and it may deliver
better performance.

2.4 LOOP SCHEDULING IN OPENMP

OpenMP is an industry and academia standard API for par-
allel programming on shared-memory architectures (DAGUM; MENON,
1998). It is available for the C and Fortran languages, and allows one to
exploit data and task parallelisms without introducing heavy changes
to a target source code. To achieve so, OpenMP relies on (i) the Fork-
Join parallel programming model, to easily manage thread creation and
termination; and (ii) compiling directives, to reduce the efforts of an
engineer of designing parallel code.

The Fork-Join model works as follows. When the application
starts, a single thread, called the master thread, is launched, and exe-
cuted sequentially until it reaches a parallel region. At this point, the
master thread spawns a set of worker threads to concurrently execute
the next instructions. Finally, in the end of the parallel region, all
worker threads synchronize their activities and terminate. The master
thread then progresses to the next sequential section and executes it
until another parallel section is found, and the whole process starts
over.

Parallel regions are created in OpenMP with the omp parallel

directive. This directive instructs the compiler to link routines for
starting and terminating working threads, and thereby effectively con-
sists in an implementation of the Fork-Join model. Other directives
are also available in OpenMP to enable programmers to fine-tune their
solutions. For instance, the task directive allows threads to execute
different instructions as independent tasks whereas the for directive
instructs the compiler to parallelize the computation of a loop.

Snippet 2.1 presents a fragment of C code with OpenMP direc-
tives. In this example, we perform an adjoint convolution operation,
which finds application in signal and image processing. This algorithm
takes as input two arrays b and c, and it computes the pointwise multi-
plication of the two arrays. The pragma omp parallel for directive
instructs the compiler that the iterations of the following for loop
should be executed in parallel; and the schedule clause changes the
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Snippet 2.1: Adjoint convolution in OpenMP.

1 double *adjconv(double *b, double *c)
{

3 double *a = calloc(N*N, sizeof(double );

5 #pragma omp parallel for schedule(static)
for (int i = 0; i < N*N; i++)

7 {
for (int j = i; j < N*N; j++)

9 a[i] += F*b[j]*c[i - j];
}

11
return (a);

13 }

way in which loop iterations are scheduled (line 5). OpenMP offers
built-in support for PSS, FSS and CSS. The OpenMP community prag-
matically refers to them as Static, Guided and Dynamic, respectively.
Therefore, we will refer to these strategies using the latter notation,
unless otherwise stated.
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3 RELATED WORK

In Section 2.3 we have presented the classical loop scheduling
strategies and highlighted their main strengths. These solutions mostly
rely on the on-demand scheduling and chunk-size tuning techniques to
deliver a good performance to a broad class of applications. However,
classical strategies show up to be suboptimal in irregular applications,
thus motivating research efforts on this subject. Modern strategies aim
at overcoming this barrier by exploiting data locality, features from the
underlying platform and characteristics of the workload. In the para-
graphs that follow, we briefly introduce the locality- and architectural-
aware approaches. Then, we discuss in more detail different workload-
aware loop scheduling strategies which are more related to our proposal.

Locality-aware loop scheduling strategies were first introduced
by Markatos and Le Blanc (1994) to address memory-intensive appli-
cations. These strategies focus on making efficient use of the memory
system hierarchy and the data locality principle, so that memory ac-
cess contention is reduced and thus performance is improved (KEJARI-

WAL et al., 2009). In this approach, a common solution is to couple
a deterministic loop iteration assignment policy with a work-stealing
technique, thus enabling data locality to be exploited while load bal-
ancing is delivered (DURAND et al., 2013). Additionally, locality-aware
scheduling strategies are often combined with thread-mapping heuris-
tics to reduce even further contention in memory accesses (DING et al.,
2013). Indeed, substantial performance gains can be observed when
locality-aware strategies are correctly employed. However, when comes
to achieving load balancing in compute-intensive irregular applications,
alternative strategies are necessary, such as those based on platform in-
tricacies or characteristics of the workload.

Architectural-aware scheduling strategies rely on features such
as platform heterogeneity, availability and topology to deliver superior
performance (WU et al., 2009). In this approach, a common heuristic is
to apply some weighted static scheduling to initially distribute chunks
of iterations to processors with different capacities, and then dynam-
ically assign theses chunks to the threads running on each of these
processors (YANG; CHENG; LI, 2005; WU et al., 2012). This idea yields
to remarkable performance gains over classical loop scheduling strate-
gies. Nevertheless, even better performance may be delivered when the
workload of the application is also considered (BULL, 1998).
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3.1 WORKLOAD-AWARE STRATEGIES

Workload-aware loop scheduling strategies consider some infor-
mation about the workload to deliver cutting-edge performance and
scalability to compute-intensive irregular applications. In this section
we present some research efforts on this class of scheduling strategies.

Adaptive Weighted Factoring (AWF) Targeting time-step appli-
cations with irregular behaviors, Banicescu (2003) proposed AWF.
In this strategy, the chunk size of a parallel loop is dynamically
adapted after each step in the application. The newly computed
chunk size is based on the performance of the threads during the
previous step and on their accumulative performance during all
the previous steps. To evaluate the performance of AWF, two
in-house applications were studied: (i) Laplace’s Equation Solver
on an unstructured grid using Jacobi’s Method; and (ii) N-Body
Simulations using the Barnes-Hut algorithm. The PSS and FSS
strategies were considered as baselines. Experiments were car-
ried out on a loaded homogeneous cluster, and the results un-
veiled that AWF may achieve up to 46% and 33.9% better per-
formance than the baseline strategies in the unstructured grid
and N-Body applications, respectively. Due to the notable per-
formance of AWF, extensions have been proposed to enable its
use on non-iterative applications as well (CARIÑO; BANICESCU,
2008). Nevertheless, the enhanced version of this strategy pre-
sented a performance that is comparable to the one achieved by
FSS.

History-Aware Self-Scheduling (HSS) To address a broader class
of applications, Kejariwal, Nicolau and Polychronopoulos (2006)
proposed HSS. Unlike AWF, HSS relies on statistical information
collected offline via profiling to carry out a smarter scheduling.
Based on this extra knowledge, at every scheduling round, HSS
computes the amount of workload to be assigned to a thread,
considering both the workload of previously executed iterations
and their corresponding actual workloads. To assess the perfor-
mance of HSS, kernels from the Standard Performance Evaluation
Corporation (SPEC) Benchmarks were studied, and the FSS and
AWF strategies were considered as baselines. Experiments were
carried out on an in-house simulator, and the results unveiled
that HSS may outperform baseline strategies from 5% to 18%.
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Knowledge-Based Adaptive Self-Scheduling (KASS) Based on
a similar offline profiling-guided approach to HSS, Wang et al.
(2012) introduced KASS. This strategy works in two phases: a
static partitioning phase, and a dynamic scheduling phase. In the
first phase, a knowledge-based approach is used to partition itera-
tions of the parallel loop into local work queues of threads, which
makes the total workload to be equally distributed to the threads,
approximately. In the second phase, based on the self-scheduling
rule, every local work queue is partitioned into chunks with de-
creasing sizes. Each thread gets a chunk from its local queue to
execute, and when it finishes the execution of all the chunks in
its local queue, it steals chunks from other threads. To evaluate
the performance of KASS, two scenarios were studied: (i) outer-
most loops with kernels extracted from the SPEC Benchmarks;
and (ii) inner loops with the Over-Relaxation, Jacobi Iteration
and Transitive Closure in-house kernels. The classical GSS, FSS,
Trapezoid Self-Scheduling (TSS), Affinity Self-Scheduling (AFS)
strategies were considered as baselines. Experiments were car-
ried out on a Symmetric Multiprocessing (SMP) machine, and
the results unveiled that for outermost parallel loops, KASS is
from 4.8% up to 16.9% faster than the classical strategies. On
the other hand, for the inner loop scenario, KASS achieves up to
21% better performance than AFS.

3.2 SUMMARY OF RELATED WORK

Locality-aware loop scheduling strategies may deliver good load
balancing to memory-intensive applications. However, when comes
to irregular applications with compute-intensive needs, cutting-edge
performance may be achieved with architectural- and workload-aware
strategies. The former class of scheduling strategies rely on features
such as platform heterogeneity, availability and topology, and may yield
to remarkable performance gains on heterogeneous platforms. Never-
theless, even better performance may be delivered when the workload
of the application is considered as well.

Workload-aware loop scheduling strategies rely on this observa-
tion and indeed unveil superior performance. However, current schedul-
ing strategies that are based on this approach still present some weak-
nesses that should be addressed. These drawbacks are summarized in
Table 1 and further discussed next.
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Table 1: Existing workload-aware strategies versus BinLPT.

Strategy Workload Estimation Sched. Technique Availability

AWF online, regression amortization none
HSS offline, regression amortization none
KASS offline, regression amortization none

BinLPT user-supplied, flexible
adaptive chunk-size

libGOMP
LPT rule

Workload Estimation Existing workload-aware strategies rely on pro-
filing and statistical regression techniques. However, regression
techniques are inherently designed to well-behaved workloads and
profiling may be either time-consuming (offline) or impose a sub-
stantial overhead on execution time (online). Furthermore, cur-
rent workload-aware loop schedulers are tightly coupled to their
estimation techniques, and thus the HPC engineer is not free to
employ the one that yields to the best workload estimation for the
target parallel loop. For instance, AWF is restricted to time-step
applications; and HSS and KASS are limited to irregular loops
that feature well-behaved workloads.

Highly-Irregular Loops Current workload-aware loop schedulers rely
on the Load Imbalance Amortization Principle (recall Chapter 2),
i.e. they assume that the ratio between number of chunks of loop
iterations and the number of working threads is high enough, so
that there are enough chunks to even out the load imbalance in
the irregular application. However, these strategies may achieve
suboptimal performance on applications whose workload is not
in accordance with this assumption (PENNA et al., 2016). Fur-
thermore, even though existing workload-aware strategies do rely
on workload estimations to partition the loop iteration space in
several chunks, they actually lack in using this knowledge when
scheduling chunks of iterations.

Integration and Availability Although several workload-aware stra-
tegies do exist, their source-code is not available for download nor
they are shipped with some widely-adopted API, library or frame-
work for parallel programming. Indeed, the integration of these
strategies with irregular applications is not trivial (BANICESCU,
2003), thereby further restricting their use in practice.
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Evaluation Related work on workload-aware loop scheduling strate-
gies report no comprehensive evaluation in what concerns vari-
ations in the underlying workload of the target parallel loop.
Unfortunately, this lack in performance analysis may yield to
misleading conclusions about the actual performance of existing
workload-aware loop schedulers.

To address the above weaknesses of existing related strategies, in
this work, we present a new workload-aware loop scheduling strategy,
which we named BinLPT. This strategy, relies on some user-supplied
estimation about the underlying workload of the target irregular loop to
achieve load balancing. Such estimation may be retrieved either from
the problem structure or through online/offline profiling, thereby en-
abling maximum flexibility to the HPC engineer. Furthermore, BinLPT
does not rely on the Load Imbalance Amortization Principle; it uses
an adaptive chunking scheme; and it schedules chunks using a hybrid
scheme based on the LPT rule and on-demand scheduling. Conse-
quently, BinLPT is capable of achieving load balancing even in highly-
irregular parallel loops. We integrated our workload-loop scheduling
strategy into the OpenMP’s runtime library of GNU Compiler Col-
lection (GCC), a widely-used parallel programming API for shared-
memory architectures. Our implementation is open-source and publicly
available for download, thereby enabling any parallel application that
relies on this programming abstraction to benefit from it.

In addition to our new workload-aware loop scheduling strategy,
we deliver a comprehensive performance evaluation of BinLPT and the
selected baseline strategies. We assessed different irregular workloads
using several benchmarking techniques (simulation, synthetic kernel
benchmarking and application kernel benchmarking), thereby deliver-
ing a detailed performance understanding of the studied scheduling
strategies.
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4 THE BINLPT LOOP SCHEDULER

In this chapter, we present our novel workload-aware loop schedul-
ing strategy. First, we introduce the preliminary research on which we
relied to devise BinLPT. Then we discuss the internals of BinLPT.
Next, we detail our strategy algorithmically. Then we discuss about
workload estimation. Finally, we briefly present the integration of
our strategy into GCC’s OpenMP runtime system, which is called lib-
GOMP.

4.1 PRELIMINARY RESEARCH

To conceive BinLPT, we relied on two preliminary researches,
both devised during the preparation of this master thesis: a design
methodology for workload-aware loop scheduling strategies based on
simulation (PENNA et al., 2016); and (ii) a proof-of-concept draft work-
load-aware loop scheduler named SRR (PENNA et al., 2017). In the next
paragraphs, we briefly introduce each of them in turn.

The design methodology ships two tools, a Genetic Algorithm
(GA) and a simulator. The former consists in a heuristic search which
is guided by the Load Imbalance Equation (Chapter 2) and that enables
the exploration of the solution space of the Loop Scheduling Problem.
We relied on this tool to aid us on the design of SRR, the basis loop
scheduler on which we built BinLPT. On the other hand, the latter tool
is an event-driven, fast, and highly-accurate simulator for simulating
the execution of parallel loops. This simulator enables the rapidly
evaluation of scheduling strategies and we iteratively employed it in our
research, first when designing SRR, and later when conceiving BinLPT.
We present the internals of this simulator in Chapter 5, and also we
report the performance results obtained with it in Chapter 6.

SRR relies on user supplied information about the underlying
workload of the target parallel loop. Based on this information, the
scheduling algorithm first sorts iterations according to their load, and
then it assigns pairs of iterations to threads in a static way, following a
round-robin scheme. Each pair is formed up with the iterations not yet
assigned to threads that have the highest and lowest loads, so that in
the end each thread is assigned to a workload that is near to the total
average workload, if the workload follows a quasi-uniform distribution.
For a detailed description of SRR, please refer to (PENNA et al., 2017).
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4.2 OVERVIEW OF BINLPT

BinLPT operates in two phases to deliver load balance to irreg-
ular parallel loops, namely chunk partitioning and chunk scheduling.
The heuristics used in each phase are depicted in Figure 3, and they
are indeed the key features that enable the superior performance of
BinLPT.

In the chunk partitioning phase, the primary goal is to split the
iteration space into chunks so as to amortize load imbalance while min-
imizing the number of chunks that are produced. In this way, runtime
scheduling overheads can be reduced and iteration affinity may be ex-
ploited efficiently. Indeed, this sub-problem could be optimally solved
in pseudo-polynomial time using a dynamic programming algorithm for
the Linear Partition Problem (SKIENA, 2008). Nevertheless, since loop
ranges may grow asymptotically, the overhead incurred by this algo-
rithm makes its use prohibitive. Therefore, to come up with a chunk
partitioning having the previously stated features, BinLPT relies on a
workload-aware adaptive technique that takes as input a user-supplied
threshold k, for the maximum number of chunks to generate, and works
as follows. First it computes the average load ωavg for a chunk based
on the workload information and k. Figure 3a outlines the overview
functioning of BinLPT. In this example, two threads are considered to
compute a parallel loop which overall load is 125; k is set to 4 and the
average workload is ωavg = 31.25. Next, BinLPT uses a greedy bin
packing heuristic that bundles into a single chunk the maximum num-
ber of iterations whose overall load does not exceed ωavg (Figure 3b).

In the chunk scheduling phase, the goal is to come up with a
chunk/thread assignment that minimizes load imbalance. Therefore,
BinLPT relies on a hybrid scheduling scheme that works as follows.
First, chunks are sorted in descending order according to their loads
(Figure 3c). Then they are statically scheduled to threads using the
LPT rule, which assigns the heaviest chunks to the least overloaded
threads, and the whole process is repeated over and over again, until
all chunks are assigned (Figure 3d). Next, threads are unblocked and
start computing. Then, whenever a thread finishes computing all its
chunks, a chunk that has not yet been processed is assigned to this
thread, on-demand. Figure 3e shows the final thread/chunk assignment
after applying on-demand scheduling.

The combination of static and on-demand scheduling techniques
is able to handle the load imbalance created by both predictable and
unpredictable phenomena. Static scheduling based on LPT ensures a
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Figure 3: Example of loop scheduling using BinLPT: (a) target parallel
loop; (b) chunk partitioning; (c) chunk sorting; (d) static scheduling
based on LPT rule; and (e) on-demand scheduling.

4/3-approximation scheduling solution to the load imbalance incurred
by the workload. On the other hand, on-demand scheduling ensures
that unpredictable phenomena, such as communication latencies, ex-
ternal load interference, and poor workload estimation, are optimally
tackled in a 2-approximative fashion (GRAHAM, 1969). At this point, it
is worth noting that existing workload-aware loop scheduling strategies
only rely on the latter technique (i.e. on-demand scheduling), even
though they are aware of some information regarding the underlying
workload for applying the former (i.e. LPT rule). Therefore, existing
workload-aware loop scheduling strategies are inherently suboptimal,
because they left the available information unexploited.

4.3 THE BINLPT ALGORITHM

The BinLPT loop scheduling strategy is outlined in Algorithm 1.
It takes as input three parameters: an array that gives a load estimation
of each iteration in the target parallel loop (A), the maximum number
of chunks to generate (k) and the number of working threads (n). Then
it returns a multiset (P ) that states the thread/chunk assignment. In
the pictured notation, Tj denotes the load of thread j; PTj

the set of
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chunks assigned to thread j; and C ← C∪{ĉj} the inclusion of iteration
Ai in the chunk ĉj .

The algorithm starts by computing chunks according to the greedy
bin packing heuristic detailed in the previous section (line 2). Then
it sorts the produced chunks according to their loads (line 3). Next,
chunks are statically scheduled following the LPT rule (lines 4 to 8).
Later, during the execution, whenever a thread becomes idle, a new
chunk that has not yet been processes is assigned on-demand to this
thread, thereby accounting for unpredictable runtime phenomena.

With a smart implementation, this algorithm leads to low de-
mands for both space and time. For the chunk computation, the work-
load estimation array (A) is traversed, thereby yielding a linear time
cost (O(n)). For the chunk sorting, the time cost would grow log-
arithmically with the number of chunks if we were to use a sorting
method such as Quick Sort (O(n/k log(n/k)). Instead, sorting may
be performed linearly with Counting Sort (O(n/k)) (CORMEN et al.,
2001), if the workload estimates are within a known range. Finally, for
the chunk scheduling, the time cost grows linearly with the number of
chunks (O(n/k)). Therefore, the overall time cost for BinLPT is linear
O(n). The space complexity is bounded by the number of iterations to
schedule and this is likewise linear (O(n)).

4.4 INTEGRATION WITH LIBGOMP

We implemented BinLPT in libGOMP, which is the OpenMP
runtime system that comes with GCC. We made the enhanced version
of this runtime system publicly available1 under the GPL v3 License.
This makes possible for any parallel application that is built on top of
OpenMP to seamlessly use our scheduling strategy.

We introduced three changes to the mainstream libGOMP project.
First, we hacked the gomp loop runtime start() and gomp loop init()

functions. The former invokes the runtime scheduler selected by the
user, and we thus added the BinLPT strategy as a new possible option
there. The latter function initializes the loop scheduler, and we inserted
into it the BinLPT code corresponding to the chunk partitioning phase
and the static chunk scheduling based on the LPT rule (Algorithm
1). Second, we added the gomp iter binlpt next() function to the
library. This function lookups the iteration/thread map output by the
BinLPT strategy and effectively assigns iterations to the corresponding

1www.github.com/lapesd/libgomp



47

Algorithm 1 BinLPT loop scheduling strategy.
1: function BinLPT(A, k, n)

2: C ← Compute-Chunks(A, k)
3: Sort(C, descending order)

4: for i from 0 to n do

5: Ti ← 0
6: PTi

← ∅

7: for i from 0 to | C | do
8: Tj ← min T

9: PTj
← PTj

∪ {Ĉi}
10: Tj ← Tj + ω(Ĉi)

11: return P

12: function Compute-Chunks(A, k)

13: j ← 0
14: C ← empty multiset
15: ĉ0 ← empty sequence

16: ωavg ←

∑
ij∈A

wj

k

17: for i from 0 to | A | do

18: if ω(ĉj) > ωavg then

19: C ← C ∪ {ĉj}
20: j ← j + 1

21: ĉj ← (ĉj , Ai)

22: return C

threads. In addition, it also performs the on-demand chunk schedul-
ing for those threads that have finished processing the chunks initially
assigned to them. Finally, we provided a new runtime function named
omp set workload(), which sets the workload information for the next
loop. The BinLPT strategy relies on this information to run.

To invoke BinLPT, the programmer selects the runtime sched-
uler in the OpenMP schedule clause and set the OpenMP environ-
ment variable OMP SCHEDULE to binlpt,k, where the last parameter
controls the maximum number of chunks to be generated by BinLPT.
Furthermore, the application should call the omp set workload() run-
time function to inform the BinLPT scheduler about the load estima-
tion of iterations in the next parallel loop.

Snippet 4.1 illustrates how BinLPT could be used in an adjoint
convolution operation presented in Chapter 2. Note that in this kernel,
we can estimate the load of each outter loop iteration based on how
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many operations each of them will perform in the inner loop. There-
fore, we fill up the w array accordingly to that information (lines 6
to 7), and next we pass this array to the BinLPT scheduler using
omp loop set workload() (line 9). Then, we invoke BinLPT by se-
lecting the runtime scheduler (line 11).

Snippet 4.1: Adjoint convolution in OpenMP.

1 double *adjconv(double *b, double *c)
{

3 double *a = calloc(N*N, sizeof(double ));
double *w = calloc(N*N, sizeof(double ));

5
for (int i = 0; i < N*N; i++)

7 w[i] = N*N - i;

9 omp_set_workload(w, N*N);

11 #pragma omp parallel for schedule(runtime)
for (int i = 0; i < N*N; i++)

13 {
for (int j = i; j < N*N; j++)

15 a[i] += F*b[j]*c[i - j];
}

17
return (a);

19 }

4.5 WORKLOAD ESTIMATION

Unlike other workload-aware loop scheduling strategies, BinLPT
does not rely on a particular workload estimation technique. This al-
lows the programmer to pick up one that best meets the requirements of
the target parallel loop. Nevertheless, since the optimality of BinLPT
relies on a static scheduling scheme, which is in turn highly-sensible to
the workload estimation, we discuss next some alternatives for actually
performing workload estimation along with their pros and cons.

The most straightforward approach is to instrument the target
parallel loop and profile it, either offline or online. This solution is
likely to lead to an accurate estimation whenever the workload does not
larger varies from one execution to another (BULL, 1998). However, it is
important to note that profiling may and time-consuming (BANICESCU;

VELUSAMY, 2001). The second approach is to use compile-time analysis
to estimate the load of each iteration. Indeed, this alternative may give
a high-quality approximation for numeric parallel loops (THOMAN et

al., 2012), but it fails when the irregularity arises from the input data
itself. Finally, for some parallel loops, the load of each iteration may



49

be estimated from the problem structure itself, as a function of the
input workload. Indeed, this approach may yield to the most accurate
estimation, though its usability is application-dependent.
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5 EVALUATION METHODOLOGY

In this chapter we present the evaluation methodology that we
adopted in this work. First, we present the simulator and experimental
kernels that we used to evaluate our strategy. Next, we introduce the
performance metrics that we considered in our analysis. Finally, we
detail our experimental design.

5.1 SIMSCHED: A LOOP SCHEDULER SIMULATOR

Simulation is an useful technique for (i) isolating the core vari-
ables of a given problem, (ii) precisely control and monitor the exper-
imental environment, and (iii) evaluate and prototype solutions with
minimum efforts. Unfortunately, at the time when this work was being
carried out, no simulator for studying the Loop Scheduling Problem
was publicly available. Therefore, we designed and implemented our
own loop scheduler simulator (PENNA et al., 2016). We codenamed our
tool SimSched, and we made it publicly available1 under the GPL v3
License, so that other researchers could use it to design and evaluate
new loop scheduling strategies.

Figure 4 presents an architectural overview of SimSched. Our
tool carries out an event-driven simulation of a parallel loop execution
based on three modules. The Synthetic Workload Generator module
takes as input parameters (i) the number of loop iterations, (ii) the
PDF associated to them, (ii) the load of iterations and (iv) the loop it-
eration shuffling seed; and it outputs a series of iterations with the given
properties. Figure 5 illustrates how this happens. First, the frequency
of loop iterations is generated according to a PDF (Figure 5a). Then
each class of loop iterations is assigned to a different load (Figure 5b).

Synthetic Workload Generator Thread Manager Loop Scheduler

Number of

Threads

Loop Scheduling

strategy
Load of

Iterations

Number of 

Iterations
PDF

Iteration

Shuffling Seed

Figure 4: Architectural overview of the SimSched.

1Available at: https://www.github.com/cart-pucminas/scheduler
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Figure 5: Breakdown of synthetic workload generation.

Finally, the Iteration Shuffling Seed models how loop iterations are ac-
tually disposed in a for loop (Figure 5c). The Thread Manager module
manages simulation threads. It takes as input parameter the number of
threads to be created, and it schedules them in a round-robin fashion
according to the selected scheduling strategy. This module uses two
structures to manage threads: (i) a priority queue of running threads,
which is ordered by their remaining workload to process; and (ii) a
list of threads ready for execution. Finally, the Loop Scheduler module
assigns iterations of the simulated parallel loop to simulation threads,
according to the selected scheduling policy. The Loop Scheduler Mod-
ule exports an interface that allows the simulation of both static and
on-demand scheduling strategies.

SimSched can be easily extended to support new features. Nev-
ertheless, its current version the following features are shipped:

• The Synthetic Workload Generator generates arbitrarly large work-
loads, following five different PDFs: Beta, Gamma, Exponential,
Gaussian and Uniform. Loop iteration shuffling may be controlled
by suplling a seed parameter.

• The Thread Manager outputs a detailed trace file, containing in-
formation about (i) the total load assigned to each thread; (b) the
total number of chunks scheduled; and (c) performance metrics
of the simulation (see Section 5.4).

• The Loop Scheduler Module implements the PSS, PDS, CSS, GSS,
HSS and BinLPT strategies.
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5.2 SCHEDBENCH: A SYNTHETIC KERNEL

While simulations in SimSched enable an upper-bound assess-
ment of loop scheduling strategies, benchmarking with synthetic ker-
nels would allow such analysis to be carried out in a real experimenting
environment. Unfortunately, however, once again no such a tool was
publicly available for use, thus forcing us to implement our own loop
scheduler synthetic kernel benchmark. Likewise SimSched, we made
this synthetic kernel publicly available2 under the GPL v3 License,
thus encouraging others to use it on future research.

Our synthetic kernel benchmark, entitled SchedBench, was im-
plemented in OpenMP and it consists in an extension of the kernel
proposed by Bull (1998). SchedBench (Algorithm 2) performs em-
barrassingly parallel computations on a private variable and thereby
benchmarks the load balancing performance of a loop scheduler. This
synthetic kernel takes six input parameters:

i. n: the number of loop iterations;

ii. w : the load associated to each iteration;

iii. s: the scheduling strategy to use;

iv. k : the number of threads;

v. l : the load of one operation in the synthetic kernel; and

vi. f : the computing complexity of the synthetic kernel.

First, the benchmark sets the loop scheduling strategy and num-
ber of working threads to use to s and n, respectively. Next it performs
dummy computations in a parallel loop whose size equals n. Note that
the number of operations that the synthetic kernel actually executes
is proportional to w, l and f. The first parameter models the comput-
ing load associated to an iteration. The second parameter adjusts this
load, so as it is costly enough to be benchmarked. On the other hand,
the third parameter models the computing complexity of the kernel.
That is, linear (O(n)), logarithmic (O(log n)) or quadratic (O(n2)).
The more complex the kernel is, the stronger is the imbalance in the
underlying workload of the parallel loop. This latter feature is indeed
the extension that we added to the kernel proposed by Bull (1998), and
thereby enables an even more comprehensive performance assessment
of different loop schedulers.

2Available at: https://www.github.com/lapesd/libgomp-benchmarks
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Algorithm 2 Synthetic benchmark.
1: function Synthetic-Benchmark(n, w, s, k, l, f )

2: set scheduler to s
3: set number of threads to k

4: parallel for i from 0 to n do
5: Synthetic-Kernel(wi, l, f )

6: function Synthetic-Kernel(w, l, f )

7: a ← 0

8: switch f do
9: case linear

10: m ← w
11: case logarithmic
12: m ← w · log2(w)

13: case quadratic
14: m ← w · w

15: for i from 0 to m do
16: for j from 0 to l do
17: a ← a + 1

18: return a

5.3 APPLICATION KERNELS

Although synthetic kernel benchmarking enables an upper bound
performance analysis of loop scheduling strategies, this technique in-
herently lacks on delivering a realistic throughout assessment. For in-
stance, data access patterns and instruction execution flows are too
artificial. Furthermore, branch prediction, floating point and vector-
ing units, as well as instruction pipelining and thread synchroniza-
tion mechanisms are not exercised. Therefore, as an attempt to fill
this gap, we selected three application kernels to study. These ker-
nels present great importance to the scientific community, span over
different Dwarfs (ASANOVIĆ et al., 2006) and feature an irregular com-
putation. In the next sections, we present each of these kernels.

5.3.1 MST

MST is a Graph Traversal application kernel that clusters a set
of data points using the minimum spanning tree algorithm. Cluster
strategies based on minimum spanning trees find applications in dif-
ferent fields, such as Cluster Analysis, Circuit Designing and Network-
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ing (GRYGORASH; ZHOU; JORGENSEN, 2006). The MST kernel works
as follows. First, the Euclidean space is partitioned into several regions
(Figure 6a). Then, Prim’s Algorithm (PRIM, 1957) is executed on each
of them (Figure 6b). In this computation, data is interpreted as a full
graph, where data points are the nodes and point-to-point distances
the edges. Thus, the resulting minimum spanning tree on each region
locally clusters data according to the minimum Euclidean distance. Fi-
nally, minimum spanning trees are recursively merged, according to the
minimum Euclidean distance, so data the final data cluster is produced
(Figure 6c).

In this kernel, note that the cost for computing each local mini-
mum spanning tree varies accordingly to the number of points that lie
within each region. We relied on this observation to feed the workload-
aware loop schedulers that we considered in our experiments.

5.3.2 LavaMD

LavaMD is an application kernel from Computational Fluid Dy-
namics (CFD) that performs N-Body Simulations. N-Body Simulations
find applications in several scientific and engineering domains (SPRINGEL

et al., 2005), and are frequently studied within the context of loop
scheduling (BANICESCU; Flynn Hummel, 1995; BANICESCU, 2003; WANG

et al., 2012). LavaMD was extracted from the Rodinia Benchmarks
Suite (CHE et al., 2009), and it carries out a high-resolution simulation
of the pressure-induced solidification of molten tantalum and quenched
uranium atoms in a finitely-sized three-dimensional domain.

The LavaMD kernel works as follows. The 3D domain (Fig-
ure 7a) is decomposed into several equally-dimensioned n3 boxes (Fig-
ure 7b. In this decomposition, any box has 26 adjacent boxes, except
for boxes that lie within the boundaries of the domain, which in turn

(a) Initial data. (b) Partitioned data. (c) Clustered Data.

Figure 6: Computation performed by the MST kernel.
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have fewer neighbours. At each computing step, particles interact only
with other particles that lie within a user-specified cutoff radius, since
ones at larger distances exert negligible forces (Figure 7c). Therefore,
the box dimensions are chosen such that the cutoff radius of any par-
ticular box does not span beyond the boundaries of an adjacent box.

Note that the actual number of interactions to compute for a
given particle α is proportional to the number of particles in the same
box of α plus the total number of particles among all the boxes that sur-
round α’s box. We used this knowledge to estimate the computing load
of each box when using workload-aware strategies in our experiments.

5.3.3 SMM

SMM is an application kernel from Sparse Linear Algebra that
performs a multiplication between a sparse matrix and a dense vec-
tor. Besides finding applications in several scientific and engineering
domains (BULUÇ et al., 2009), sparse matrix-vector multiplication is a
frequently studied application kernel within the context of loop schedul-
ing (WU et al., 2009, 2012). We extracted the SMM kernel from the
Conjugate Gradient application from the NAS Parallel Benchmarks
(NPB) (BAILEY et al., 1991).

In the SMM kernel, the sparse matrix is stored in compressed row
format so that memory can be saved and data affinity exploited. The
matrix is tiled in several blocks in a row-fashion, and next these blocks
are processed in parallel. The actual number of floating point opera-
tions required to process each block varies accordingly to the number
of non-zero elements in each block. Dense blocks, i.e. blocks with a
lot of non-zero elements, are more costly to process than sparse blocks,
blocks with a lot of zero elements. We relied on this observation to feed
workload-aware loop scheduling strategies in our experiments.

(a) Physical domain. (b) Box decomposition. (c) Particle interactions.

Figure 7: Computation performed by the LavaMD kernel.
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5.4 PERFORMANCE METRICS

To assess the performance of BinLPT we considered several per-
formance metrics that are used in related work. Let n be the number of
threads that execute a parallel loop, ti the execution time of thread i,
and W the total amount of work. Then, the following metrics may be
computed (LUKE; BANICESCU; LI, 1998; CARIÑO; BANICESCU, 2008).

Parallel Time is the overall execution time of the parallel loop. Ide-
ally, increasing the number of threads should exponentially de-
crease this metric.

τ = max{ti}

Cost is the aggregate time spent to execute the parallel loop, and thus
quantifies the waste of processor time. In an optimal scenario,
increasing the number of working threads that execute the parallel
loop should increase this metric by a constant factor.

γ = τ · n

Performance is the ratio of the total amount of work to the paral-
lel time. Ideally, performance should scale up linearly with the
number of threads.

ρ =
W

τ

Effectiveness is is the ratio of performance to cost, and thus it quan-
tifies the throughput in contrast with resource waste. Ideally,
when increasing the number of threads, effectiveness should scale
up linearly.

Γ =
ρ

γ
=

W

n · τ2
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Coefficient of Variance (CoV) is the ratio between the standard
deviation and the mean execution time of the threads. Near-zero
CoV suggests that there is no load imbalance, whereas a CoV
near one indicates the opposite.

λ =
σ{ti}
µ{ti}

5.5 EXPERIMENTAL DESIGN

To evaluate the performance of BinLPT, we employed the simu-
lator, as well as the synthetic and application kernels presented previ-
ously in this chapter. Overall we performed three sets of experiments,
namely Simulation, Synthetic Kernel Benchmarking and Application
Kernel Benchmarking ; and Table 2 summarizes the parameters we con-
sidered in each of them.

The Workload PDFs are frequently studied in the context of the
Loop Scheduling Problem (KRUSKAL; WEISS, 1985; BANICESCU; Flynn

Hummel, 1995; BULL, 1998; BANICESCU; VELUSAMY, 2001; SRIVASTAVA

et al., 2013). They were generated with the tool proposed in (PENNA

et al., 2016) with a 16-point sampling precision, and with the follow-
ing parameters: (i) Exponential γ = 0.2; (ii) Gaussian µ = 2.5 and
σ = 1.0; and (iii) Uniform α = 0.0 and β = 1.0. The level of these
parametes were chosen so that they would be consistent to the re-
lated work. The range of Workload Shuffling Seed in the Simulation
was intentionally calculated to be big enough to yield to confidence
intervals of 95%. The Loop Scheduling Seed for the Synthetic Kernel
Benchmarking and Application Kernel Benchmarking were randomly
chosen within this range. Loop Sizes and Problem Sizes were chosen
so as to reflect the full processing capacity of the experimental plat-
form (detailed later in this section). Baseline strategies were selected
to be consistent with related works (BANICESCU, 2003; KEJARIWAL;

NICOLAU; POLYCHRONOPOULOS, 2006). Guided and Dynamic loop
schedulers are shipped with libGOMP by default, and thus we relied
on this functionality. However, the HSS scheduler is not shipped with
libGOMP neither is publicly available. Therefore, we implemented and
integrated this strategy in libGOMP using the algorithmic description
presented by Kejariwal, Nicolau and Polychronopoulos (2006). Chunk
sizes were selected based on earlier experiments that revealed them to
be the optimal values. In the next paragraphs, we describe each set of
experiments in further details.
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Table 2: Parameters for experiments.

Parameters Levels for Simulations

Workload PDF Exponential, Gaussian, and Uniform

Workload Shuffling Seed {1...384}
Loop Size {384, 768, 1152, .., 3072 }
Chunk Sizes Guided {1}, Dynamic {1}, HSS {1},

BinLPT {384, 768, 1536}
Number of Threads 192

Parameters Levels for Synthetic Kernel Benchmarks

Workload PDF Exponential, Gaussian and Uniform

Workload Shuffling Seed 308

Loop Size {384, 768, 1152, .., 3072 }
Kernel Load 225 integer additions

Chunk Sizes Guided {1, 2, 4}, Dynamic {1, 2, 4}, HSS {1, 2, 4},
BinLPT {384, 768, 1536}

Number of Threads 192

Kernel Complexities Linear, Logarithmic and Quadratic

Parameters Levels for Application Kernel Benchmarks

Workload PDF Exponential, Gaussian and Uniform

Workload Shuffling Seed 308

LavaMD (Grid Size) 11× 11× 11

SMM (Matrix Size) (192 · 211)× (192 · 211)

MST (Number of Points) 222 R2

Chunk Sizes Guided {2, 3, 4}, Dynamic {2, 3, 4}, HSS {2, 3, 4},
BinLPT {384, 576, 768 }

Number of Threads {24, 48, 96, 120, 144, 168, 192}

Simulation: We used SimSched to carry out a state-space exploration
of the Loop Scheduling Problem, and thus assess the performance
of BinLPT in a great number of scenarios. We set the number of
threads to 192 to reflect the full computational power of the ex-
perimental platform; and we adopted a full factorial experimental
design, thereby resulting in 9216 scenarios for each strategy.

Synthetic Kernel Benchmarking: We used SchedBench to bench-
mark the overall performance of BinLPT in a real experimental
environment, when varying the Workload PDFs and Loop Sizes.
We additionally studied the impact of different Kernel Complex-
ities in the performance of BinLPT. The levels for the latter pa-
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rameter were chosen to match the complexity of widely studied
algorithms. In this experiment, we also set the number of threads
to 192 and adopted a full factorial experimental design, thereby
resulting in 72 different scenarios for each strategy.

Application Kernel Benchmarking: We considered the three ap-
plication kernels, for say LavaMD, MST and SMM, to evaluate
the performance of BinLPT within real-world contexts. For this
experiment, we adopted a fractioned experimental design, where
we varied the number of threads from 24 to 192, with a constant
step of 24. Overall, we studied 21 different scenarios for each
scheduling strategy.

In the Synthetic Kernel Benchmarking and Application kernel
Benchmarking, we carried out five replications of each possible configu-
ration to account for the inherent variance of the measures in the exper-
imental environment. For each replicate, the actual order in which in-
dividual runs were executed was randomly determined. This approach
ensures that experimental results and errors are Independent and Iden-
tically Distributed (IID) random variables. In our experiments, the
maximum relative standard deviation error (σ/µ) observed was below
to 1.0%.

All experiments were carried out on a SGI Altix UV 2000 ma-
chine, which features 24 cache coherent NUMA nodes interconnected
through SGI’s proprietary NUMAlink6 (bidirectional). Each node has
an Intel Xeon E5 Sandy-Bridge processor and 32 GB of DDR3 mem-
ory. Overall, this platform features 192 physical cores and 768 GB
of memory. In our experiments, Simultaneous Multithreading (SMT)
was disabled and we used a first-touch memory allocation strategy cou-
pled with a compact thread affinity policy to mitigate runtime NUMA
effects.
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6 EXPERIMENTAL RESULTS

In this section we present and discuss the experimental results
of our research. We will carry out this analysis in top-down fashion,
first unveiling simulation results obtained with SimSched; then uncov-
ering synthetic kernel benchmarking results in SchedBench; and finally
detailing the experimental results observed for application kernels.

6.1 SIMULATION

We relied on simulations to assess the upper bound performance
of BinLPT. In the sections that follow, we carry out an analysis on the
Workload PDF and Loop Size parameters, and their impact on loop
scheduling performance.

6.1.1 Workload PDF Breakdown

Figure 8 presents the load assigned to the slowest thread per
PDF in the simulations when fixing the Loop Size in 768 iterations, and
varying the Workload Shuffling Seed. Later in this section we present
an analysis that considers variations in the Loop Size. In these plots,
the median is evidenced, and the whiskers extend from each end of the
box for a range equal to 1.5× the interquartile range. Furthermore, it
is worth noting that y-axis starts at 0.5%. The rationale for this comes
from the fact that in these experiments, the load assigned to the most
overloaded thread should be at least 100/192 ≈ 0.52% (i.e. optimal
solution for 192 threads).
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Figure 8: Assigned load per PDF in simulation.
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Overall, the simulation results uncovered that BinLPT better
balances the underlying workload of the target parallel loop, regardless
the PDF type. When compared to the baseline strategies, our strat-
egy may deliver from 1.14× (Gaussian PDF) to 1.27× (Exponential
PDF) superior workload balancing. Furthermore, the results point out
that there is no statistically significant difference between the base-
line strategies themselves, in means of the of load that is assigned to
the most overloaded thread. Finally, when observing the interquartile
ranges, we noted that BinLPT presented the shortest one. This re-
mark thus suggests that BinLPT is less sensitive to the way in which
the underlying workload of the target parallel loop is shuffled.

6.1.2 Loop Size Scaling

Figure 9 depicts the load assigned to the most overloaded thread
per Workload PDF in the simulations, when varying both the Loop Size
and Workload Shuffling Seed. In these plots we only present results
for the BinLPT and Dynamic strategies, once the Guided and HSS
loop schedulers showed up statistically similar results to the Dynamic
strategy. Furthermore, the lines in the plots picture the mean values of
each strategy, with 95% of confidence. Finally, it is once again worth
pointing out that y-axis starts at 0.5%, since the optimal solution for
192 threads surely is never below this value.

An overview analysis when scaling up the Loop Size unveiled
that BinLPT yields to better load balancing than the other strategies.
Significant performance gains were observed for Loop Sizes up to 1152
iterations, especially when considering Exponential workloads. Beyond
1152 iterations, the load balancing delivered by Dynamic showed up
to be as good as our strategy, ranging from 10% worse to 3% better.
The rationale for this behavior relies on the Load Imbalance Amorti-
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zation Principle, which is indeed depicted in these plots. The more
iterations there are in the parallel loop, the easier is to balance the
underlying workload, and the smaller is the load imbalance in respect
to the overall amount of workload. Therefore, unlike Dynamic and
the other scheduling strategies, BinLPT may balance the underlying
workload of a parallel loop even when the number of iterations is not
sufficiently large to observe the Loop Amortization Principle. Based
on this observation, simulation results thus suggest that BinLPT po-
tentially outperforms existing strategies when the number of iterations
of the target parallel loop is up to 8× the number of working threads.

6.2 SYNTHETIC KERNEL BENCHMARKING

We employed the synthetic kernel benchmarking technique to
uncover the potentials of BinLPT in real environments. In the next
sections, we analyze the overhead scaling, as well as the impact of
the Loop Size and Kernel Complexity on the performance of our loop
scheduling strategy.

6.2.1 Overhead Scaling

The scheduling overhead of on-demand loop scheduling strate-
gies depends on the number of chunks produced by a given strat-
egy (CARIÑO; BANICESCU, 2008). The more chunks, the longer is the
time wasted on synchronization structures and the poorer the iteration
affinity is exploited. Therefore, the fewer chunks that are produced,
the smaller the runtime overhead and thus the more scalable a given
loop scheduler.

In this context, recall that the number of chunks that are pro-
duced by BinLPT and the considered baseline strategies may be some-
how controlled. In the Guided and Dynamic strategies, the number of
chunks that are generated depends on the size |x̂| of the iteration space
(i.e. Loop Size). In the former strategy, the number of chunks grows
proportionally to O(log |x̂|), whereas in the latter strategy it grows with
O(|x̂|). In both strategies, the granularity of the chunk sizes may be fur-
ther fine-tuned according to a parameter b. For instance, Dynamic,1
will cause Dynamic to split the iteration space in unit-sized chunks
(b = 1). On the other hand, Guided,2 instructs Guided to generate
chunks which are not smaller than 2 (b = 2). In the HSS and BinLPT
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Figure 10: Number of chunks produced by scheduling strategies.

strategies, the chunk size dynamically adapts to the characteristics of
the underlying workload, thus yielding to a floating number of chunks.
Nevertheless, the granularity of the smallest chunk in HSS may be ad-
justed by a parameter; and the actual number of chunks produced by
BinLPT may be fine-tuned by its k parameter. For instance, HSS,2 will
cause HSS to generate chunks that are not smaller than 2 iterations,
likewise in Guided; and BinLPT,288 instructs BinLPT to produce at
most k = 288 chunks, pragmatically.

Figure 10 presents the number of chunks generated by each strat-
egy for an Exponential-generated workload, when varying the size of
the iteration space at a constant increase (384 iterations). We observed
similar behaviors for the other workloads (i.e. Gamma- and Gaussian-
based), and thus we omitted them. Overall, the results show that the
number of chunks produced by BinLPT are far fewer than the ones
produced by Guided, Dynamic and HSS loop schedulers. The number
of chunks generated by Guided and HSS grows logarithmically, and for
Dynamic it grows linearly; whereas for BinLPT it grows approximately
with (k · log |x̂|)/|x̂|. In the performance analysis that follows, we unveil
that small values used for k are enough for BinLPT to deliver superior
performance than baseline strategies.

6.2.2 Kernel Complexity Breakdown

Figure 11 depicts the Performance (ρ) results per Kernel Com-
plexity, when varying the loop scheduler strategy and their param-
eters and fixing the Loop Size in 1536 iterations, for an Exponential-
generated underlying workload. In these plots, the median is evidenced,
and the whiskers extend from each end of the box for a range equal to
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1.5× the interquartile range.
An overview analysis uncovers two remarkable conclusions about

BinLPT. First, our strategy leads to superior Performance (ρ) than
the baseline strategies. Second, BinLPT delivers constant and more
accurate Performance (ρ) when the kernel complexity increases. In
contrast, baseline strategies are significantly impacted by the kernel
complexity, thus suggesting that they suboptimally handle irregularity
on the underlying workload of parallel loops. Indeed, BinLPT achieves
optimal load balancing thanks to the LPT rule that is employed when
scheduling chunks. The greatest Performance (ρ) gap was observed for
a Quadratic kernel. In this scenario, BinLPT performed 1.77×, 1.27×
and 1.22× better than Guided, Dynamic and HSS in mean values,
respectively. We observed similar results for Gaussian- and Uniform-
generated workloads and thus we omitted their respective plots.

6.2.3 Loop Size Scaling

Figure 12 presents Performance (ρ) results per Workload PDF,
when fixing the Kernel Complexity in Quadratic and varying the iter-
ation space (i.e. Loop Size). In these plots, synchronization overheads
observed at run-time were filtered out; and each point pictures the best
chunk size configuration for each strategy.

Overall, the results unveiled that BinLPT turns out to be the
best loop scheduling strategy. The highest Performance (ρ) observed
for BinLPT was for the scenario with 1536 iterations Exponential-
generated workload, where it delivered at least 21.25% superior Per-
formance (ρ) than the best configuration among all baseline strategies,
for say Dynamic,1). On the other hand, the worst Performance (ρ) ob-
served for BinLPT was for the scenario with 2304 loop iterations and
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Figure 12: Synthetic benchmarking results for workload scaling.

Uniform-generated workload, where BinLPT presented 4.76% of per-
formance gain than the best baseline strategies (Dynamic,1). Further-
more, these synthetic kernel benchmarking results further strengthen
the findings that we uncovered with simulations in SimSched: (i) BinLPT
delivers better performance to Exponential-generated workloads; and
(ii) when the Loop Size increases, the Load Imbalance Amortization
Principle is stronger, thus loop scheduling strategies should present
similar performances asymptotically.

Nevertheless, at this point the following discussion is important.
Although BinLPT did not perform significantly better, it turns out
that, for this scenario, the weight of chunks generated by BinLPT was
not fine-grained enough to amortize load imbalance. More precisely,
BinLPT generated 1024 chunks, while Dynamic generated 2.25× more
chunks. Putting it differently, a fair comparison between BinLPT and
the other strategies should also account for the equivalence between the
number of chunks generated by them and the number of chunks pro-
duced by our strategy. Recall that BinLPT,k splits the iteration space
in at most k variable-size chunks, whereas Dynamic,1 produces unit-
sized chunks (b = 1). Therefore, for instance, a fair comparison would
be in the scenario with 2304 iterations, between BinLPT,2304 (at most
2304 chunks) against Dynamic,1 (2304 chunks). When accounting for
such observation, BinLPT may deliver up to 1.44× better Performance
(ρ) than the best baseline strategy.

As a final remark, a note on the Performance (ρ) results observed
for HSS is essential. Even though this workload-aware loop scheduler
presented similar performance to the best baseline strategy (i.e. Dy-
namic), we recall that in order to drawn these plots we filtered out
synchronization overheads observed at run-time. Overheads observed
for Guided, Dynamic and BinLPT were far inferior than the execution
time of the benchmark itself (i.e. less than 1%), thus not compromising
conclusions from the previous performance analysis. However, for the
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HSS scheduler we observed that synchronization overheads dominated
execution time of experiments, thus yielding to effective Performance
(ρ) results that were at least 2× worse than the other strategies. The
rationale for this behavior relies on the implementation of the loop
scheduling strategies. Both Dynamic and Guided are shipped by de-
fault with libGOMP and rely on platform-dependent features and op-
timizations (i.e. atomic machine instructions) to mitigate synchroniza-
tion overheads; and BinLPT is a lock-free loop scheduler. In contrast,
HSS inherently relies on costly locking structures (i.e. spin-locks) thus
causing significant contention. For this reason, for the remainder of
this work, we will omit results for HSS, and carry out our analysis with
Guided and Dynamic as baseline strategies.

6.3 APPLICATION KERNEL BENCHMARKING

To analyze the performance of BinLPT in real-world scenarios,
we employed the application kernel benchmarking technique. In the
next sections, we discuss performance results that we observed in the
three kernels that we studied: SMM, MST and LavaMD. We present
a detailed analysis for the Exponential generated workload, because
experimental results unveiled that BinLPT surpasses baseline strategies
in this workload. Results for the Gaussian- and Uniform-generated
workloads, are pictured in the appendices of this work.

6.3.1 SMM Kernel

Figure 13 presents experimental results for SMM kernel bench-
marking. In these plots, we depict Performance (ρ), Cost (γ), Effec-
tiveness (Γ) and CoV (λ) values for a Exponential-generated work-
load, when varying the number of working threads. These results pic-
ture the following scheduling configurations: Guided,4, Dynamic,4 and
BinLPT,768.

Recall that the SMM performs a sparse matrix by vector multi-
plication. This kernel presents a O(mn) complexity and features signifi-
cant affinity across the iteration space. Overall, BinLPT delivers better
scalability to this kernel than baseline strategies, but performance dif-
ferences were not highly expressive due to the low complexity of the
kernel itself and the fine-grain scheduling employed in BinLPT. A more
detailed analysis uncovered that the three loop scheduling strategies
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Figure 13: Results for SMM kernel, Exponential workload.

present similar performance when up to 120 working threads are used.
However, beyond this point, BinLPT stood out as the best strategy.
The greatest performance difference was observed when the full process-
ing capacity of the platform was used, with BinLPT delivering 15.78%
better Performance (ρ) than baseline strategies (Figure 13a). Strong
scaling capabilities of our strategy are further highlighted in the Cost
(γ) and Effectiveness (Γ) results, with BinLPT delivering near-linear
scalability in contrast to Guided and Dynamic (Figure 13b and Fig-
ure 13c). When analyzing CoV (λ) results, we observed that BinLPT
clearly yields to slower variance values (Figure 13d). This observa-
tion further strengthens our hypothesis that BinLPT better balances
the underlying workload of the target parallel loop among the working
threads.

6.3.2 MST Kernel

Figure 14 presents experimental results for MST kernel bench-
marking. In these plots, we present Performance (ρ), Cost (γ), Effec-
tiveness (Γ) and CoV (λ) values for a Exponential-generated workload,
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Figure 14: Results for MST kernel, Exponential workload.

when varying the number of working threads. These results concern
to the following scheduling configurations: Guided,2, Dynamic,2 and
BinLPT,576.

Recall that the MST clusters data using Prim’s Minimum Span-
ning Tree algorithm. This kernel features a O(v2) complexity and an
unpredictable memory access pattern, thereby introducing execution ir-
regularities at run-time and favoring on-demand scheduling strategies
(i.e. Guided and Dynamic). Overall, results unveiled that BinLPT de-
livers better performance and scalability than baseline strategies. Per-
formance (ρ) values showed that when BinLPT faces a strong scaling
scenario, it delivers quasi-linear scalability, and a maximum perfor-
mance gain of 37.5% and 25.0% in contrast to Guided and Dynamic
loop scheduling strategies, respectively. This behavior is also depicted
in the Cost (γ) results (Figure 14b) and further evidenced in the Ef-
fectiveness (Γ) results (Figure 14c). Besides, it is worth noting that
BinLPT presented a drop on Effectiveness (Γ) when using 96 and 120
threads due to a smooth increase on Cost (γ). The rationale for this
behavior comes from the chunking heuristic of BinLPT itself. In these
scenarios, the last chunks presented higher loads than the average, thus
slightly increasing load imbalance and causing a negative impact on
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Figure 15: Results for LavaMD kernel benchmarking.

performance.
On the other hand, when analyzing CoV (λ) results, we have no-

ticed that BinLPT presented a linear-growth behavior, likewise Guided
and Dynamic. This outcome thus suggests that there is still room for
improvement concerning load balancing of parallel loops featuring ex-
ecution irregularities at run-time (i.e. irregular memory accesses).

6.3.3 LavaMD Kernel

Figure 15 presents experimental results for LavaMD kernel bench-
marking. In these plots, we depict Performance (ρ), Cost (γ), Effec-
tiveness (Γ) and CoV (λ) values for a Exponential-generated workload,
when varying the number of working threads. These results concern
to the following scheduling configurations: Guided,2, Dynamic,2 and
BinLPT,768.

Recall that LavaMD performs n-body simulations on a 3D do-
main. This kernel presents O(n3) complexity and features unbalanced
CPU intensive computations. When analyzing the results, we observed
that BinLPT delivers quasi-linear strong scaling Performance (ρ) scala-
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bility and (Figure 15a) near constant Cost (γ) scalability (Figure 15d),
in contrast to Guided and Dynamic that presented suboptimal behav-
iors, i.e. logarithmic Performance (ρ) and linear Cost (γ) scalability.
This finding is further evidenced in the Effectiveness (Γ) plot (Fig-
ure 15c). When analyzinging this metric, we noted that BinLPT sur-
passes Guided and Dynamic and delivered up to 2.85× higher Effec-
tiveness (Γ). Finally, when analyzing CoV (λ) results (Figure 15d),
we found out that BinLPT led to lower execution time variance than
Guided and Dynamic, thus showing that our strategy delivers better
load balancing. Nevertheless, it is worth noting that BinLPT presented
a stepped behavior, with steps occurring whenever the number of work-
ing threads perfectly divides the maximum processing capacity of the
platform (i.e. 192 cores). This finding thus evidences the scenarios in
which our strategy best uses the underlying platform (i.e. 72, and 168
working threads) and that BinLPT may be improved to overcome this
strong scaling anomaly on CoV (λ).

6.4 SUMMARY OF RESULTS

In the previous sections, we presented a detailed analysis of the
experimental results. In the paragraphs that follow, we present a sum-
mary of these results, highlighting our most outstanding conclusions.

Simulation: The workload analysis unveiled that BinLPT better bal-
ances the underlying workload of the target parallel loop, regard-
less the type of the workload. The highest gains over the baseline
strategies were observed for Exponential-generated workloads,
due to its inherently high irregular pattern. In this scenario,
BinLPT delivered up to 1.27× superior load balancing, on aver-
age. Furthermore, BinLPT showed up to be the least sensitive
strategy in what concerns the way in which the underlying work-
load of the target parallel loop is shuffled. On the other hand, the
loop size scaling assessment uncovered that BinLPT achieves sig-
nificant performance gains when the number of iterations of the
target parallel loop is up to 8× the number of working threads.

Synthetic Kernel Benchmarking: The overhead scaling analysis
pointed out that the number of chunks produced by BinLPT are
far fewer than the ones produced by Guided, Dynamic and HSS
loop schedulers. This observation suggests that BinLPT better
exploits the iteration affinity while balancing the workload, in



72

contrast to baseline strategies. The kernel complexity bench-
mark uncovered that BinLPT performance gains over baseline
strategies are strengthen by more complex kernels. The great-
est Performance (ρ) gap was observed for a Quadratic kernel,
when BinLPT performed up to 1.22× better than the best base-
line strategy (HSS). Finally, the loop size scaling assessment val-
idated our findings in the simulator: BinLPT surpasses baseline
strategies when the Load Imbalance Amortization Principle is
not strongly present. The highest Performance (ρ) observed for
BinLPT was for the scenario with 1536 iterations Exponential-
generated workload, where it delivered at least 21.25% superior
Performance (ρ) than the best baseline strategy (Dynamic).

Application Kernel Benchmarking Strong scaling analysis uncov-
ered that BinLPT surpasses in performance baseline strategies
in all three kernels that were studied. Significant Performance
(ρ) gains were observed for Exponential-generated workloads and
when the full processing capacity of the experimental platform
was used. In the SMM, MST and LavaMD kernels we observed
up to 15.78%, 25.0% and 64.91% of performance improvement,
respectively, in contrast to the best baseline strategy in each sce-
nario.
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7 CONCLUSIONS

To deliver high performance to large-scale engineering and sci-
entific applications, particular intricacies of both the application itself
and the underlying platform should be considered, so that tailored tech-
niques can be employed. In this context, execution irregularity is an
important feature that should be taken into account when scheduling
tasks in a parallel application. While in regular applications, a static
naive strategy that assigns an even number of tasks to the working
threads may lead to an optimal solution, in highly irregular applica-
tions smarter heuristics are required to enable high performance. In-
deed, task scheduling in multiprocessors plays an important role in
HPC, and thus it is a recurring subject of research. For instance, this
problem emerges when scheduling independent iterations of irregular
parallel loops in shared-memory-based applications. In this context,
the problem is referred to as the Loop Scheduling Problem, and it is
reduced to the assignment of independent loop iterations such that (a)
their load is evenly distributed, and thus execution time reduced; and
(b) the scheduling overhead is minimized.

Several loop scheduling strategies have been proposed to ad-
dress the aforementioned problem, and they mainly rely on on-demand
scheduling and chunk-size tuning. When coupled together these tech-
niques may deliver reasonable performance to a wide range of scenarios:
the former dynamically handles load imbalance and runtime variations,
whereas the latter mitigates scheduling overheads and enables iteration
affinity exploitation. However, on-demand scheduling and chunk-size
tuning do not consider any knowledge about the underlying workload
of the target parallel loop, and thus scheduling strategies built upon
them naturally turn out to be suboptimal. To address this limita-
tion, workload-aware strategies were introduced. These strategies rely
on some workload knowledge to adaptively fine-tune chunk sizes, and
thus further amortize load imbalance and deliver superior performance.
Nevertheless, existing workload-aware loop scheduling strategies lack
on several points that still should be addressed, such as workload-
estimation, chunk scheduling, and integration with applications.

To overcome the aforementioned weaknesses, in this work we pro-
posed a novel workload-aware loop scheduling strategy called BinLPT.
Our strategy is based on three features for delivering superior perfor-
mance. First, it relies on some user-supplied estimation of the workload
of the target irregular loop. Such estimation may be derived either from
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the problem structure or through online/offline profiling, thus enabling
maximum flexibility. Second, BinLPT uses a greedy bin packing heuris-
tic to adaptively partition the iteration space in several chunks. The
maximum number of chunks that may be produced is a parameter of
our strategy, and it may be fine-tuned to better meet the characteristics
of the irregular parallel loop. Third, it schedules chunks of iterations
using a hybrid scheme based on the LPT rule and on-demand schedul-
ing, thereby ensuring that load imbalance and runtime variations are
optimally handled. Furthermore, to enable parallel applications to use
our strategy, we integrated BinLPT into OpenMP and we made our im-
plementation open-source and publicly available for download. In this
way, parallel applications that rely on this programming abstraction
may seamlessly benefit from BinLPT.

To evaluate the performance of BinLPT and deliver a through
performance assessment to the scientific community, we embraced three
techniques: (i) simulation; (ii) synthetic kernel benchmarking; and (iii)
application kernel benchmarking. We employed simulations to assess
the upper bound performances of our loop scheduling strategy under
a great variety of workloads. Since there was no such a tool available
for studying the Loop Scheduling Problem, we designed and imple-
mented our own simulator. We codenamed it SchedBench and made
it publicly available (PENNA et al., 2016). We used the synthetic ker-
nel benchmarking to uncover the potentials of BinLPT in a realistic
environment. We implemented an OpenMP version of the synthetic
kernel proposed by (BULL, 1998) and assessed different algorithmic
configurations of the target parallel loop. Finally, we considered ap-
plication kernel benchmarking to analyze the effective performance of
our strategy in practice. In this third assessment, we selected three
different application kernels to study. These kernels present great im-
portance to the scientific community, span over different domains and
feature an irregular computation: Sparse Matrix by Vector Multiplica-
tion (SMM); Minimum Spanning Tree Clustering (MST); and N-Body
Simulations (LavaMD). To deliver a rich comparative analysis, we con-
sidered as baseline in our experiments two classic loop scheduling strate-
gies, namely GSS (OpenMP’s Guided) and CSS (OpenMP’s Dynamic),
and one state-of-the-art workload-aware strategy, for say HSS.

Our experimental results consistently unveiled that BinLPT de-
livers superior performance than the baseline strategies, wether the
assessment was made via simulation, synthetic kernel benchmarking
or application kernel benchmarking. In the simulations, we observed
that BinLPT better balances the underlying workload of the target
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parallel loop, regardless the characteristics of the workload. BinLPT
achieved the best performance on Exponential-generated workloads,
delivering 1.27× superior load balancing than baseline strategies. In
the synthetic kernel benchmarking, we observed that the potentials of
BinLPT are further strengthen when the algorithmic complexity of the
target parallel loop increases. Furthermore, BinLPT presented supe-
rior performance when scaling the size of the underlying workload, and
it also stood out as the loop scheduling strategy with smaller schedul-
ing overheads. Finally, application kernel benchmarking experiments
uncovered that BinLPT features superior stronger scaling capabilities
than baseline strategies for Exponential-generated workloads. In the
SMM, MST and LavaMD kernels we noted up to 15.78%, 25.0% and
64.91% of performance improvement, respectively, in contrast to the
best baseline strategy in each scenario.
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8 FUTURE WORKS

In the paragraphs that follow, we highlight and briefly discuss
related future works.

In what concerns SimSched, the simulator that we proposed to
rapidly prototype and evaluate loop scheduling strategies, at least two
works are possible. First, SimSched may be improved so that other
variables such as processor availability, synchronization overhead and
iteration affinity may be modeled. In this way, the accuracy of the
simulator can be further increased. Second, our tool may be enhanced
to support the simulation of NUMA machines heterogeneous platforms,
such as those that feature hybrid CPU+GPU programming.

Regarding BinLPT, at several future investigations are possible.
First, recall that the current implementation of our strategy relies on a
chunking heuristic for bundling iterations. This heuristic favors perfor-
mance over optimality, and it yields to low run-time overheads. On the
other hand, a dynamic programming algorithm solves the same sub-
problem optimally, but it is more computing expensive. Therefore, a
smarter chunking strategy would automatically select which solution to
use, the current iteration bundling heuristic or the dynamic program-
ming algorithm, based on the characteristics of the target parallel loop
and the underlying workload. In a similar direction of adding auto-
tuning support to BinLPT, a second future work would be to devise an
heuristic for automatically selecting the maximum number of chunks
to be produced by of our strategy (i.e. k parameter). Additionally,
BinLPT should be improved to exploit iteration affinity, to deliver bet-
ter performance to memory-intensive applications. Finally, BinLPT
may be ported to other runtime environments such as TBB and Cilk;
and APIs like OpenACC and OpenCL.

Lastly, with respect to performance evaluation of BinLPT, fur-
ther investigations are valuable. Indeed, an ultimate performance anal-
ysis of our strategy would be to evaluate its integration within a real
engineering application, such as one from Oil and Weather Forecast In-
dustries. Nevertheless, an alternative is to monitor these applications,
and execution trace files to feed our three-step evaluation methodology.
In this way, experimental results would further uncover the performance
potentials of BinLPT. Besides, yet another relevant work is to further
expand the employed evaluation methodology to study other applica-
tion kernels and explore other variations in the underlying workload of
the target parallel loop.
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CARIÑO, R.; BANICESCU, I. Dynamic load balancing with adaptive
factoring methods in scientific applications. Journal of
Supercomputing (Supercomputing), Springer US, v. 44, n. 1, p.
41–63, 2008. ISSN 09208542.

CHE, S. et al. Rodinia: A benchmark suite for heterogeneous
computing. In: International Symposium on Workload
Characterization (IISWC). [S.l.]: IEEE, 2009. p. 44–54. ISBN
9781424451562.

CHEN, Q. et al. WATS: Workload-Aware Task Scheduling in
Asymmetric Multi-Core Architectures. In: International Parallel
and Distributed Processing Symposium (IPDPS). [S.l.]: IEEE
Computer Society Press, 2012. p. 249–260. ISBN 9780769546759.

CORMEN, T. H. et al. Introduction to algorithms. MIT Press,
2001. 1180 p. ISBN 0070131511. Available from Internet::
<http://dl.acm.org/citation.cfm?id=580470>.

DAGUM, L.; MENON, R. OpenMP: an industry standard API for
shared-memory programming. IEEE Computational Science and
Engineering, v. 5, n. 1, p. 46–55, 1998.

DINECHIN, B. de et al. A Clustered Manycore Processor
Architecture for Embedded and Accelerated Applications. In:
International Conference on High Performance Extreme
Computing (HPEC). Waltham, USA: IEEE Computer Society
Press, 2013. p. 1–6. ISBN 978-1-4799-1365-7.

DING, W. et al. Locality-Aware Mapping and Scheduling for
Multicores. In: International Symposium on Code Generation
and Optimization (CGO). Shenzhen, China: IEEE Computer
Society Press, 2013. p. 1–12. ISBN 9781467355254.

DURAND, M. et al. An efficient OpenMP Loop Scheduler for
Irregular Applications on Large-Scale NUMA Machines. In:



81

International Workshop on OpenMP (IWOPM). Canberra,
Australia: Springer Berlin Heidelberg, 2013, (Lecture Notes in
Computer Science, v. 8122). p. 141–155. ISBN 9783642406973.

FANG, Z. et al. Dynamic Processor Self-Scheduling for General
Parallel Nested Loops. In: IEEE Transactions on Computers
(TC). [S.l.: s.n.], 1990. v. 39, n. 7, p. 919–929. ISBN 0271006080.
ISSN 00189340.

FRANCESQUINI, E. et al. On the energy efficiency and performance
of irregular application executions on multicore, NUMA and
manycore platforms. Journal of Parallel and Distributed
Computing (JPDC), v. 76, p. 32–48, feb 2015. ISSN 07437315.

GAREY, M.; JOHNSON, D. Computers and Intractability: a
Guide to the theory of NP-Completeness. New York, NY, USA:
W. H. Freeman and Company, 1979. 338 p. ISBN 0716710447.

GAUTIER, T.; ROCH, J. L.; VILLARD, G. Regular versus Irregular
Problems and Algorithms. In: International Workshop on
Parallel Algorithms for Irregularly Structured Problems
(IRREGULAR). Lyon, France: Springer Berlin Heidelberg, 1995,
(Lecture Notes in Computer Science, v. 980). p. 1–25. ISBN
978-3-540-44915-7.

GRAHAM, R. Bounds on Multiprocessing Timing Anomalies. SIAM
Journal on Applied Mathematics (SIPA), SIAM Press, v. 17,
n. 2, p. 416–429, 1969. ISSN 0036-1399.

GRYGORASH, O.; ZHOU, Y.; JORGENSEN, Z. Minimum Spanning
Tree Based Clustering Algorithms. In: 2006 18th IEEE
International Conference on Tools with Artificial Intelligence
(ICTAI’06). IEEE, 2006. p. 73–81. ISBN 0-7695-2728-0. ISSN
1082-3409. Available from Internet::
<http://ieeexplore.ieee.org/document/4031882/>.

HUMMEL, S.; SCHONBERG, E.; FLYNN, L. Factoring: a method
for scheduling parallel loops. Communications of the ACM, ACM
Press, v. 35, n. 8, p. 90–101, 1992. ISSN 0001-0782.

HURSON, A. et al. Parallelization of DOALL and DOACROSS Loops
- A Survey. Advances in Computers, Elsevier, v. 45, p. 53–103,
1997.



82

KEJARIWAL, A.; NICOLAU, A.; POLYCHRONOPOULOS, C.
History-Aware Self-Scheduling. In: International Conference on
Parallel Processing (ICPP). Columbus, USA: IEEE Computer
Society Press, 2006. p. 185–192. ISBN 0769526365.

KEJARIWAL, A. et al. Efficient Scheduling of Nested Parallel Loops
on Multi-Core Systems. In: International Conference on Parallel
Processing (ICPP). Ohio, USA: IEEE Computer Society Press,
2009. p. 74–83. ISBN 9780769538020. ISSN 01903918.

KRUSKAL, C.; WEISS, A. Allocating Independent Subtasks on
Parallel Processors (TSE). IEEE Transactions on Software
Engineering (TSE), IEEE Computer Society Press, SE-11, n. 10, p.
1001–1016, 1985. ISSN 0098-5589.

LUKE, E. A.; BANICESCU, I.; LI, J. The optimal effectiveness
metric for parallel application analysis. Information Processing
Letters, v. 66, n. 5, p. 223–229, 1998. ISSN 00200190.

MARKATOS, E.; Le Blanc, T. Using Processor Affinity in Loop
Scheduling on Shared-Memory Multiprocessors. IEEE Transactions
on Parallel and Distributed Systems (TPDS), IEEE Computer
Society Press, v. 5, n. 4, p. 379–400, 1994.

PENNA, P. H. et al. Design Methodology for Workload-Aware Loop
Scheduling Strategies Based on Genetic Algorithm and Simulation.
Concurrency and Computation: Practice and Experience
(CCPE), 2016. ISSN 15320626.

PENNA, P. H. et al. Assessing the performance of the SRR loop
scheduler. In: International Conference on Computational
Science (ICCS). Zurich, Switzerland: [s.n.], 2017.

POLYCHRONOPOULOS, C.; KUCK, D. Guided Self-Scheduling: A
Practical Scheduling Scheme for Parallel Supercomputers. IEEE
Transactions on Computers (TC), IEEE Computer Society
Press, C-36, n. 12, p. 1425–1439, 1987. ISSN 0018-9340.

PRIM, R. C. Shortest Connection Networks And Some
Generalizations. Bell System Technical Journal, v. 36, n. 6, p.
1389–1401, nov 1957. Available from Internet::
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6773228>.

SKIENA, S. S. The Algorithm Design Manual. 2nd. ed. [S.l.]:
Springer, 2008. 730 p. ISSN 09574174. ISBN 9781848000698.



83

SPRINGEL, V. et al. Simulations of the formation, evolution and
clustering of galaxies and quasars. Nature, v. 435, n. 7042, p.
629–636, jun 2005. ISSN 0028-0836.

SRIVASTAVA, S. et al. Predicting the Flexibility of Dynamic Loop
Scheduling Using an Artificial Neural Network. In: International
Symposium on Parallel and Distributed Computing
(ISPDC). Bucharest, Romania: IEEE Computer Society Press, 2013.
p. 3–10. ISSN 2379-5352.

THOMAN, P. et al. Automatic OpenMP loop scheduling: A
combined compiler and runtime approach. In: International
Workshop on OpenMP (IWOPM). Rome, Italy: Springer Berlin
Heidelberg, 2012, (Lecture Notes in Computer Science, v. 7312). p.
88–101. ISBN 9783642309601.

TZEN, T.; NI, L. Trapezoid Self-Scheduling: A Practical Scheduling
Scheme for Parallel Compilers. IEEE Transactions on Parallel
and Distributed Systems (TPDS), v. 4, n. 1, p. 87–98, 1993.
ISSN 10459219.

WANG, Y. et al. Knowledge-Based Adaptive Self-Scheduling. In:
International Conference on Network and Parallel
Computing (NPC). Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, (Lecture Notes in Computer Science, 60973010). p. 22–32. ISBN
978-3-642-35606-3.

WU, C.-C. et al. Using Hybrid MPI and OpenMP Programming to
Optimize Communications in Parallel Loop Self-Scheduling Schemes
for Multicore PC Clusters. Journal of Supercomputing
(Supercomputing), Springer US, v. 60, n. 1, p. 31–61, 2009. ISSN
0920-8542.

WU, C.-C. et al. Designing Parallel Loop Self-Scheduling Schemes
Using the Hybrid MPI and OpenMP Programming Model for
Multi-Core Grid Systems. Journal of Supercomputing
(Supercomputing), Springer US, v. 59, n. 1, p. 42–60, 2012.

YANG, C.-T.; CHENG, K.-W.; LI, K.-C. An Enhanced Parallel Loop
Self-Scheduling Scheme for Cluster Environments. Journal of
Supercomputing (Supercomputing), v. 34, n. 3, p. 315–335, 2005.



84



APPENDIX A -- SMM Kernel Results
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Figure 16: Results for SMM kernel, Gaussian workload.
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Figure 17: Results for SMM kernel, Uniform workload.
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Figure 18: Results for MST kernel, Gaussian workload.
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Figure 19: Results for MST kernel, Uniform workload.
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Figure 20: Results for LavaMD kernel, Exponential workload.
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Figure 21: Results for LavaMD kernel, Uniform workload.
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D.1 INTRODUÇÃO

A comunidade de Computação de Alto Desempenho trabalha
constantemente no projeto de soluções eficientes e escaláveis, visando
suprir as demandas crescentes de aplicações cient́ıficas e industriais.
Para tanto, essas soluções frequentemente endereçam caracteŕısticas
espećıficas da aplicações e da plataforma alvo, assim possibilitando que
técnicas espećıficas possam ser aplicadas (FRANCESQUINI et al., 2015).

Nesse contexto, a irregularidade é uma caracteŕıstica relevante
que afeta o desempenho de uma aplicação e, por isso, pode ser utilizada
para classificar aplicações paralelas em dois grupos: aplicações regulares
e aplicações irregulares (GAUTIER; ROCH; VILLARD, 1995). No primeiro
grupo, a quantidade de computação necessária para solucionar um pro-
blema depende somente do tamanho dos dados de entrada. Por exem-
plo, no caso de um algoritmo de Multiplicação de Matrizes, o número
de operações de ponto flutuante é proporcional ao tamanho das matri-
zes envolvidas na computação. Por outro lado, em aplicações irregula-
res, o tempo de execução também é significativamente impactado pelo
conteúdo dos dados. Por exemplo, em simulações N-Body, o número
interações entre part́ıculas a serem computadas depende do número
de part́ıculas no sistema e também na distribuições das part́ıculas no
espaço.

Apesar de sutil, a diferença existente entre esses dois grupos im-
pactam no projeto de soluções paralelas eficientes. Em aplicações regu-
lares, a carga de trabalho pode ser trivialmente equi-particionada entre
as threads de uma aplicação, simplesmente dividindo-se a carga total
de trabalho pelo número de threads. Infelizmente, em aplicações irre-
gulares, essa estratégia potencialmente conduz a um particionamento
heterogêneo em termos de carga, assim causando desbalanceamento na
execução da aplicações. Consequentemente, o tempo total da aplicação
fica dominado pela thread mais sobrecarregada, implicando em proble-
mas de escalabilidade.

D.1.1 Motivação

Distribuir igualmente a carga de trabalho entre as threads de
uma aplicação, consiste em um problema de minimização NP-Dif́ıcil
conhecido como o Problema de Escalonamento em Multiprocessado-
res (GRAHAM, 1969; GAREY; JOHNSON, 1979). Esse problema apresenta-
se como um desafio para as comunidades acadêmica e industrial e



100

é um assunto recorrente na Computação de Alto Desempenho. Por
exemplo, em aplicações paralelas de memória compartilhada, esse pro-
blema emerge no escalonamento de iterações de laços paralelos (FANG et

al., 1990; POLYCHRONOPOULOS; KUCK, 1987; HUMMEL; SCHONBERG;

FLYNN, 1992). Nesse cenário, o problema é referenciado como o Pro-
blema de Escalonamento de Laços e pode ser reduzido à atribuição de
iterações independentes de um laço de forma que: (a) a carga de traba-
lho seja igualmente distribúıda entre as threads que executarão o laço
alvo; e (b) a sobrecarga de escalonamento é minimizada.

Dentre as diversas estratégias de escalonamento de laços foram
propostas para endereçar o Problema de Escalonamento de Laços (KRUS-

KAL; WEISS, 1985; FANG et al., 1990; POLYCHRONOPOULOS; KUCK,
1987; HUMMEL; SCHONBERG; FLYNN, 1992; TZEN; NI, 1993; MARKA-

TOS; Le Blanc, 1994; HURSON et al., 1997), podem-se destacar duas
técnicas fundamentais. Na primeira, denominada escalonamento sob-
demanda, iterações são escalonadas em tempo de execução, de forma
que o desbalanceamento de carga e variações no ambiente de execução
sejam gerenciadas. Na segunda técnica, denominada refinamento da
granularidade de escalonamento, iterações são escalonadas em pacotes,
denominados chunks, de forma que: (i) sobrecargas de escalonamento
são minimizadas; (ii) o desbalanceamento de carga é amortizado; e (iii)
afinidade entre as iterações é explorada. Quando utilizadas em con-
junto, escalonamento sob-demanda e refinamento da granularidade de
escalonamento podem conduzir a um desempenho razoável para uma
larga gama de cenários. No entanto, essas técnicas não consideram
a informação da carga de trabalho do laço paralelo alvo e por isso
estratégias que se baseiam nelas revelam-se sub-ótimas (BALASUBRA-

MANIAM et al., 2012; PENNA et al., 2016).
Estratégias de escalonamento de laços cientes da carga de traba-

lho (ou workload-aware) foram introduzidas visando essa limitação (BA-

NICESCU; Flynn Hummel, 1995; BULL, 1998; BANICESCU; VELUSAMY,
2001; KEJARIWAL; NICOLAU; POLYCHRONOPOULOS, 2006; WANG et al.,
2012). Tais estratégias baseiam-se em alguma informação da carga de
trabalho para adaptativamente ajustar a granularidade de escalona-
mento e assim amortizar ainda mais a irregularidade presente na carga
de trabalho, conduzindo a um melhor desempenho.
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D.1.2 Problemas

Apesar de estratégias de escalonamento de laços workload-aware
proporcionarem melhores ganhos de desempenho que as demais es-
tratégias, elas ainda enfrentam desafios que devem ser superados. Pri-
meiro, essas estratégias baseiam-se em técnicas de regressão estat́ıstica
e por isso são inerentemente projetadas para cargas de trabalho bem-
comportadas. Além disso, é interessante observar que a estratégia de
escalonamento e a técnica para estimar-se a carga de trabalho devem
ser fracamente acopladas. Dessa forma, engenheiros podem adotar em
suas soluções a técnica de estimativa mais adequada. Infelizmente, es-
tratégias de escalonamento de laço cientes da carga de trabalho não
oferecem essa flexibilidade.

Em segundo lugar, estratégias workload-aware falham em apli-
car seu conhecimento sobre a carga do laço paralelo alvo ao escalonar
chunks de iterações. Pragmaticamente, essas estratégias recaem so-
bre a técnica de escalonamento sob-demanda e assim, naturalmente,
alcançam desempenho sub-ótimo. Além disso, a técnica de escalona-
mento sob-demanda conduz a problemas de escalabilidade, devendo
portanto ser evitada.

Em terceiro lugar, estratégias workload-aware não foram avalia-
das de maneira compreensiva até o momento, em especial no que diz
respeito a variações na carga de trabalho. Essa lacuna de análise de
desempenho deve-se a uma pobre disponibilidade de metodologias de
avaliação e benchmarks que focam especificamente nesse cenário. Além
disso, essa análise limitada compromete conclusões acerca dos reais po-
tenciais de estratégias de escalonamento de laços workload-aware.

Finalmente, apesar da existência de diversas estratégias de es-
calonamento workload-aware, nenhuma delas encontra-se integrada em
uma API, biblioteca ou framework de programação paralela publica-
mente dispońıvel, como o OpenMP, Intel TBB ou Cilk. De fato, a
integração dessas estratégias em aplicações irregulares não é trivial (BA-

NICESCU; Flynn Hummel, 1995; BANICESCU, 2003), limitando ainda mais
a sua aplicabilidade.

D.1.3 Objetivos e Contribuições

Tendo em vista os problemas enumerados anteriormente, o ob-
jetivo desse trabalho consiste em propor uma nova estratégia de es-
calonamento de laços workload-aware. Essa nova estratégia supera as
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fraquezas mencionadas no que diz respeito à predição da carga de tra-
balho e escalonamento de chunks. Além disso, esse trabalho expõe uma
implementação da estratégia proposta. Em resumo, o presente trabalho
entrega as seguintes contribuições ao estado da arte:

•Uma nova estratégia de escalonamento de laços intitulada BinLPT.
Para oferecer desempenho e flexibilidade superiores, essa estratégia
baseia-se em três caracteŕısticas. Primeiro, ela utiliza estimativas
da carga de trabalho fornecidas pelo programador, que pode ser
obtida a partir da estrutura do problema ou por profiling onli-
ne/offline, permitindo máxima flexibilidade. Segundo, o BinLPT
utiliza uma heuŕıstica gulosa para particionar adaptativamente as
iterações do laço paralelo em diversos chunks. O número máximo
de chunks produzidos é um parâmetro da estratégia proposta
e pode ser ajustado para melhor adaptação das caracteŕısticas
do laço paralelo. Terceiro, o BinLPT escalona chunks à threads
usando um esquema h́ıbrido baseado na regra LPT e na técnica de
escalonamento sob-demanda (GRAHAM, 1969), assim permitindo
que variações no ambiente de runtime e irregularidades presentes
na carga de trabalho sejam gerenciadas de forma ótima.

•Uma integração do BinLPT no OpenMP. O OpenMP é uma API
de programação paralela para arquiteturas de memória comparti-
lhada, que é utilizada amplamente pela academia e indústria (DA-

GUM; MENON, 1998). Essa implementação possui seu código aberto
e está publicamente dispońıvel para download, assim possibili-
tando que qualquer aplicação paralela que baseada nessa abs-
tração transparentemente beneficie-se do BinLPT.

Além disso, visando entregar uma análise detalhada do BinLPT,
uma avaliação extensiva baseada em simulação, kernels sintéticos e
kernels de aplicações é apresentada. Os experimentos foram executa-
dos em uma máquina NUMA de larga escala (192 núcleos f́ısicos) e o
BinLPT foi estudado frente a diferentes cargas irregulares sintéticas.
As estratégias static e dynamic, ambas dispońıveis no OpenMP por
padrão, foram utilizadas como base nesse trabalho.

O BinLPT foi projetado com base em duas pesquisas prévias,
ambas desenvolvidas durante a preparação dessa dissertação: (i) uma
metodologia de projeto para estratégias de escalonamento de laços ci-
ente da carga de trabalho (PENNA et al., 2016); e (ii) uma estratégia
preliminar denominada SRR (PENNA et al., 2017).
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D.1.4 Estrutura do Trabalho

O restante desse resumo está organizado da seguinte forma. Na
Seção D.2 a estratégia de escalonamento de laços proposta nesse traba-
lho é apresentada e detalhada. Na Seção D.3 uma śıntese dos resultados
experimentais e suas conclusões são expostas.

D.2 O ALGORITMO BINLPT

Nessa sessão, a estratégia de escalonamento de laços BinLPT
será apresentada. Primeiro, as pesquisas prévias que possibilitaram o
projeto dessa nova estratégia são introduzidos. Em seguida, os deta-
lhes do BinLPT são discutidos. Por fim, a integração do BinLPT no
ambiente OpenMP é apresentada.

D.2.1 Pesquisa Preliminar

O algoritmo BinLPT foi projetado com base em duas pesquisas
prévias, ambas desenvolvidas durante a presente dissertação: (i) uma
metodologia de projeto para escalonadores de laços (PENNA et al., 2016);
e (ii) uma estratégia preliminar denominada SRR (PENNA et al., 2017).
Nos parágrafos seguintes cada uma das duas pesquisas é sumarizada.

A metodologia de projeto propõe duas ferramentas, um algo-
ritmo genético e um simulador. O primeiro consiste em uma heuŕıstica
de busca, que é guiada pela Equação de Desbalanceamento de Carga (ver
Caṕıtulo 2), e possibilita a exploração do conjunto de estados de espaço
do Problema de Escalonamento de Laços. Essa ferramenta foi empre-
gada no projeto do algoritmo SRR, o escalonador de laços utilizado
como base para criação do BinLPT. Por outro lado, a segunda ferra-
menta possibilita rápida avaliação de estratégias de escalonamento e
foi empregada de maneira iterativa tanto no projeto do SRR quanto do
BinLPT.

A estratégia SRR faz uso de estimativas da carga de trabalho
fornecidas pelo usuário para realizar um escalonamento esperto das
iterações de um laço paralelo alvo. Para tanto, primeiro as iterações
do laço são ordenadas em forma crescente de acordo com sua carga e
em seguida, são atribúıdas em pares às threads em um esquema round-
robin. Cada par é formado pelas iterações mais leve e mais pesada
ainda não atribúıdas, de forma que no final cada thread seja atribúıda
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uma carga de trabalho próximo à média. Uma descrição detalhada do
SRR é apresentada em (PENNA et al., 2017).

D.2.2 Visão Geral do Algoritmo

O BinLPT opera em duas fases intituladas particionamento de
chunks e escalonamento de chunks. As heuŕısticas empregadas em cada
uma das fases são, de fato, as responsáveis por proporcionar ao BinLPT
desempenho superior ao das estratégias relacionadas.

Na fase de particionamento de chunks, o objetivo é dividir o
espaço de iterações em diversos chunks de forma que o desbalancea-
mento de carga seja minimizado ao máximo, com o menor número de
chunks. Dessa forma, sobrecargas em tempo de execução podem ser
reduzidas e a afinidade entre as iterações explorada de forma eficiente.
De fato, esse particionamento pode ser resolvido em tempo pseudo-
polinomial, utilizando-se um algoritmo de programação dinâmica para
o Problema de Partição Linear (SKIENA, 2008). No entanto, uma vez
que o número de iterações de um laço pode crescer assintoticamente,
a sobrecarga desse algoritmo torna o seu uso proibitivo. Então, para
contornar essa situação, o BinLPT emprega uma heuŕıstica adaptativa
baseada na carga de trabalho. Essa heuŕıstica recebe como parâmetro
um valor limite k e opera da seguinte forma. Primeiro, a carga média
para um chunk (ωavg) é computada, baseada nas estimativas da carga
de trabalho e em k. Em seguida, uma heuŕıstica gulosa empacota em
chunks a máxima sequência de iterações cuja soma não excede ωavg.

Na fase de escalonamento de chunks, o objetivo é produzir uma
atribuição de chunks às threads de forma a reduzir o desbalanceamento
remanescente. Para tanto, o BinLPT utiliza um esquema de escalo-
namento h́ıbrido que funciona da seguinte forma. Primeiro, chunks
são ordenados de forma decrescente de acordo com a sua carga. Em
seguida, eles são estaticamente escalonados às threads utilizando a re-
gra LPT, que atribui iterativamente o chunk mais pesado ainda não
escalonado, à thread menos sobrecarregada. Na sequência, as threads
são desbloqueadas e começam sua computação. A qualquer momento
que uma thread termina de executar todos os chunks que haviam sido
atribúıdos a ela, um novo chunk é atribúıdo a essa thread sob-demanda.

Esse esquema de escalonamento h́ıbrido possibilita que o des-
balanceamento na execução tanto de fenômenos previśıveis quanto não
previśıveis, sejam gerenciados de forma ótima. O escalonamento estático
baseado na regra LPT garante uma solução 4/3-aproximada para o des-
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balanceamento proveniente da irregularidade da carga de trabalho. Por
outro lado, o escalonamento sob-demanda entrega uma solução que é
2-aproximada para o desbalanceamento oriundo de fontes aleatórias,
como latências de comunicação, influência de carga de trabalho ex-
terna e estimativas não precisas sobre a carga de trabalho (GRAHAM,
1969). Nesse momento, é importante ressaltar que estratégias de esca-
lonamento de laço workload-aware baseiam-se apenas na última técnica
(i.e. escalonamento sob-demanda), apesar delas também considerarem
uma informação da carga de trabalho e, assim, poderem aplicar a pri-
meira heuŕıstica igualmente (i.e. regra LPT). Portanto, estratégias de
escalonamento de laços existentes são inerentemente sub-ótimas.

D.2.3 Detalhes do Algoritmo

O algoritmo BinLPT (Algoritmo 3) recebe como entrada três
parâmetros: um arranjo com as estimativas de cada iteração do laço
paralelo alvo (A), o máximo número de chunks a serem gerados pela
estratégia (k) e o número de threads (n). Como sáıda, o algoritmo
retorna um conjunto de conjuntos (P ) que enumera quais chunks foram
atribúıdas a quais threads na fase de escalonamento estático.

O algoritmo inicia particionando os chunks, segundo a heuŕıstica
gulosa apresentada na seção anterior (linha 2). Em seguida, ele ordena
os chunks produzidos de acordo com sua carga de trabalho (linha 3).
Depois, os chunks são estaticamente escalonados às threads segundo a
regra LPT (linhas 4 a 8). Mais adiante, quando uma thread termina de
executar todos os chunks que foram atribúıdos a ela estaticamente, um
novo chunk é atribúıdo a essa thread sob-demanda, permitindo assim
que fenômenos não previśıveis possam ser gerenciados de forma ótima.

O algoritmo BinLPT possui requisitos baixos de espaço e tempo.
Para o particionamento de chunks o arranjo com estimativas da carga
de trabalho (A) precisa ser percorrido, o que exige um custo linear
(O(n)). Para a ordenação de chunks, um tempo linear é necessário,
uma vez que o algoritmo Count-Sort pode ser aplicado (CORMEN et

al., 2001). Portanto, a complexidade de tempo do algoritmo BinLPT
é O(n). Por outro lado, a complexidade de espaço está limitada ao
número de iterações a serem escalonadas, sendo portanto igualmente
linear.
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Algorithm 3 Estratégia de escalonamento BinLPT.
1: function BinLPT(A, k, n)

2: C ← Compute-Chunks(A, k)
3: Sort(C, descending order)

4: for i from 0 to n do

5: Ti ← 0

6: for i from 0 to | C | do
7: Tj ← min T
8: PTj

← PTj
∪ {ĉi} Tj ← Tj + ω(ĉi)

9: return P

10: function Compute-Chunks(A, k)

11: j ← 0
12: C ← empty multiset
13: ĉ0 ← empty sequence

14: ωavg ←

∑
ij∈A

wj

k

15: for i from 0 to | A | do

16: if ω(ĉj) > ωavg then

17: C ← C ∪ {ĉj} j ← j + 1

18: ĉj ← (ĉj , Ai)

19: return C

D.2.4 Integração com a libGOMP

O BinLPT foi implementado na libGOMP, o ambiente de run-
time OpenMP do GCC. Essa implementação está dispońıvel publica-
mente sob a licença GPL v31, assim permitindo que qualquer aplicação
paralela escrita em OpenMP potencialmente beneficie-se do BinLPT.

Três alterações foram introduzidas na biblioteca libGOMP ori-
ginal. Primeiro, as funções gomp loop runtime start() e gomp loop

init() foram modificadas para reconhecerem o BinLPT como uma
nova estratégia de escalonamento e invocar as rotinas do escalona-
dor BinLPT propriamente ditas. Segundo, a função gomp iter binlpt

next() foi adicionada à biblioteca , que efetivamente efetua o escalona-
mento dos chunks. Por fim, uma função denominada omp set workload()

foi inclúıda, para possibilitar que o programador informe a estimativa
do laço paralelo que será executado.

Para invocar a estratégia BinLPT, o programador deve especi-

1www.github.com/lapesd/libgomp
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ficar o escalonamento runtime na cláusula schedule no OpenMP e
definir a variável de ambiente OMP SCHEDULE para binlpt,k, onde o
último parâmetro controla o máximo número de chunks a serem ge-
rados pelo BinLPT. Além disso, a aplicação deve invocar a função
omp set workload() para informar à estratégia BinLPT a estimativa
de carga das iterações do laço paralelo que será executado.

D.3 RESULTADOS

Nos experimentos de simulação, uma análise da variação da carga
de trabalho revelou que o BinLPT consegue alcançar um melhor ba-
lanceamento do que as estratégias contrastadas, independentemente do
tipo de carga de trabalho. Os maiores ganhos observados foram para
cargas de trabalho gerados a partir da função Exponencial, onde o
BinLPT alcançou um desempenho em até 1.27× superior, em média.
Além disso, a estratégia proposta nesse trabalho mostrou ser menos
senśıvel ao modo como a carga de trabalho está distribúıda no laço.
Por outro lado, uma análise da escalabilidade do tamanho do laço mos-
trou que ganhos significativos são alcançados com o BinLPT quando o
tamanho do laço paralelo for até 8× o número de threads.

Nos experimentos usando o benchmark sintético, uma análise da
sobrecarga de escalonamento apontou que o número de chunks produzi-
dos pelo BinLPT são substancialmente inferiores aos que os produzidos
pelas estratégias consideradas como baseline. Essa observação sugere
que o BinLPT é capaz de melhor explorar a afinidade entre as iterações,
ao mesmo tempo em que efetua um balanceamento de carga mais efci-
ente. Além disso, uma análise da complexidade de kernel revelou que
os potenciais para o superior desempenho do BinLPT são reforçados à
medida que a complexidade do kernel da aplicação aumenta. O maior
desempenho alcançado em relação às estratégias consideradas como
base foi 1.22×. Por fim, um estudo de escalabilidade do tamanho
do laço validou as demais conclusões obtidas a partir de resultados de
simulação.

Nos experimentos usando kernels de aplicações, a análise de forte
escalabilidade mostrou que o BinLPT supera as estratégias considera-
das como base. Ganhos significativos foram observados para cargas de
trabalho geradas a partir de uma distribuição Exponencial e quando a
capacidade total da plataforma experimental era utilizada. Nos kernels
SMM, MST e LavaMD, uma melhoria de até 15.78%, 25.0% e 64.91%
em relação às estratégias base foram observadas, respectivamente.


