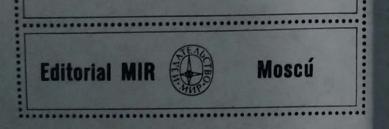
Lecciones populares de matemáticas

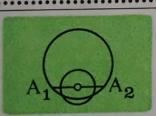
En 1976 Editorial MIR les ofreca: "División del segmento en la razón dado" de N. Beskin "Designaldades" de P. Korovkin "Números complejas de A. Markushévich "Funciones maravilloses" de A. Markushévich "Método de Montecarlo de I. Sóbol "Algebra extraordinaria" de L. Yaglom



Lecciones populares de matemáticas

INDUCCIÓN En la geometría

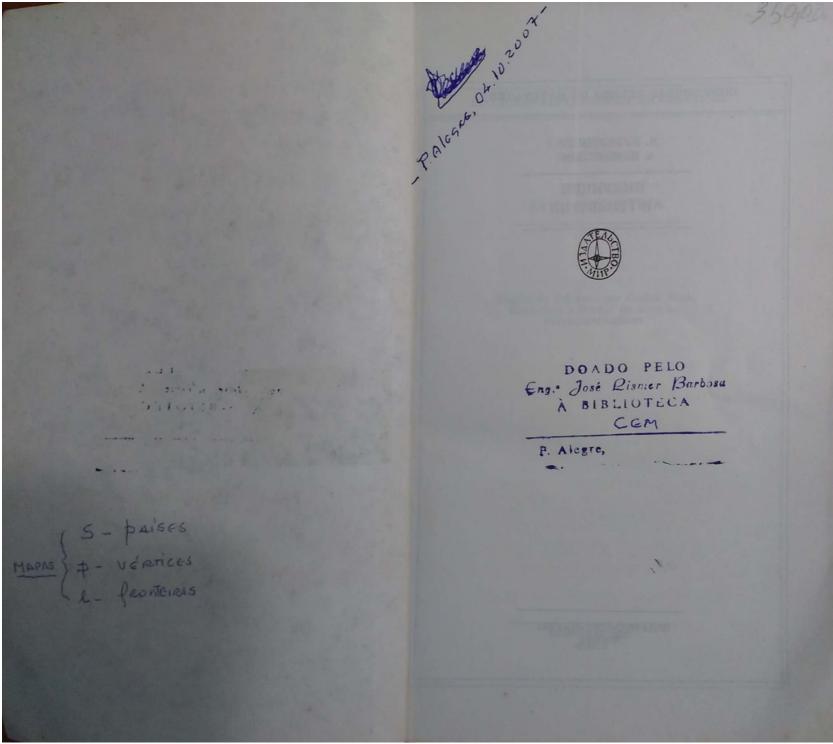
L. I. Goloviná I. M. Yaglóm



Editorial MIR

Moscú

s+p=l+2



популярные лекции по математике

л. И. ГОЛОВИНА и И. М. ЯГЛОМ

ИНДУКЦИЯ В ГЕОМЕТРИИ

ИЗДАТЕЛЬСТВО «НАУКА» МОСКВА

LECCIONES POPULARES DE MATEMÁTICAS

L. I. GOLOVINÁ, I. M. YAGLÓM

INDUCCIÓN EN LA GEOMETRÍA

Traducido del ruso por Carlos Vega, Candidato a Doctor en ciencias físico-matemáticas

> EDITORIAL MIR MOSCÚ

INDICE

Prefacio	7
Introducción: dEn qué consiste el método de inducción matemática? (ejemplos 1-4, problemas 1-2)	9
§ 1. Cálculo por inducción (ejemplos 5—9, problemas 3—5)	14
§ 2. Demostración por inducción (ejemplos 10-20, problemas 6-15)	23
§ 3. Construcción por inducción (ejemplos 21-24, problemas 16-18)	59
§ 4. Determinación por inducción de lugares geométricos	
(ejemplos 25-26, problemas 19-25) § 5. Definición por inducción	70
(ejemplos $27-28$, problemas $26-35$)	78
§ 6. Inducción según el número de dimensiones (ejemplos 29—38, problemas 36—43)	95
1 Cálculo por inducción según el número de dimensiones	00
(ejemplo 29, problema 36) 2. Demostración por inducción según el número de dimensiones	100
(ejemplos $30 - 36$, problemas $37 - 42$)	103
3. Determinación de lugares geométricos por inducción según el número de dimensionación de lugares de dimensiones de lugares de la construcción de lugares de lugares de la construcción de lugares de la construcción de lugares de lugares de lugares de la construcción de lugares de lugares de la construcción de la construcción de la construcción de lugares de la construcción de l	
de dimensiones (ejemplo 37) 4. Definición por inducción según el número de dimensiones	121
(ejemplo 38, problema 43)	125

1 PRESO EN LA URSS. 1976

На испанском языке

© Traducción al español. Editorial MIR. 1976

PREFACIO

Este libro, orientado hacia los alumnos de los grados superiores, los profesores de Matemática y los estudiantes de las facultades de Física y Matemática de los Institutos pedagógicos, tiene puntos de contacto con el libro «Método de inducción matemática» de I. S. Sominski (Editorial MIR, 1975) y puede ser considerado como su continuación; será de interés especial para los que conocen ya el libro de I. S. Sominski.

Contiene 38 ejemplos seguidos de solución detallada y 43 problemas acompañados de breves indicaciones. Está dedicado a diversas aplicaciones del método de inducción matemática para la solución de problemas geométricos. A nuestro parecer, lo más importante en él son los distintos aspectos del método de inducción matemática; algunos (no todos, por supuesto) ejemplos y problemas pueden también representar interés por sí mismos.

El libro se basa en dos conferencias que I. M. Yaglóm dictó para un grupo de escolares, miembros del círculo matemático anexo a la Universidad Lomonósov de Moscú.

> L. I. Goloviná I. M. Yaglóm

STATES.

INTRODUCCIÓN: ¿EN QUÉ CONSISTE EL MÉTODO DE INDUCCIÓN MATEMÁTICA?

Se denomina *inducción* todo razonamiento que comprende el paso de proposiciones particulares a genarales con la particularidad de que la validez de las últimas se deduce de la validez de las primeras. *El método de inducción matemática* es un método especial de demostración matemática que permite, a base de observaciones particulares, juzgar de las regularidades generales correspondientes. Para elucidar su idea conviene recurrir a ejemplos. Por eso, comenzaremos considerando el ejemplo siguiente.

Ejemplo 1. Determínese la suma de los n primeros números impares

$$1 + 3 + 5 + \ldots + (2n - 1).$$

SOLUCIÓN. Representando esta suma por S(n), tomemos n = 1, 2, 3, 4 y 5; tendremos:

S(1) = 1, S(2) = 1 + 3 = 4, S(3) = 1 + 3 + 5 = 9, S(4) = 1 + 3 + 5 + 7 = 16 yS(5) = 1 + 3 + 5 + 7 + 9 = 25.

Como vemos, para n = 1, 2, 3, 4 y 5 la suma de n números impares sucesivos es igual a n^2 . dPodemos sacar de aquí inmediatamente la conclusión de que esto tiene lugar para todo n? No, pues semejante conclusión «por analogía» puede resultar a veces errónea. Veamos algunos ejemplos. Consideremos los números de tipo $2^{2^n} + 1$. Para n = 0, 1, 2, 3 y 4 los números $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} +$ + 1 = 17, $2^{2^3} + 1 = 257$ y $2^{2^4} + 1 = 65$ 537 son primos. P. Fermat, ilustre matemático francés del siglo XVII, aceptaba que todos los números de ese tipo son |primos. Sin embargo, L. Euler, eminente sabio y académico de San Petersburgo, encontró, en el siglo XVIII que

 $2^{2^5} + 1 = 4\,294\,967\,297 = 641 \cdot 6\,700\,417$

es un número compuesto.

He aquí otro ejemplo del mismo género. G. W. Leibniz, famoso matemático alemán del siglo XVII y uno de los fundadores de las «Matemáticas superiores», demostró que, cualquiera que sea el entero positivo n, el número $n^3 - n$ es divisible por 3, el número $n^5 - n$ es divisible por 5 y el número $n^7 - n$ es divisible por 7¹). De aquí supuso que para todo k impar y cualquier natural n el número $n^k - n$ es divisible por k; pero pronto observó que $2^9 - 2 = 510$ no es divisible por 9.

Un error del mismo carácter cometió D. A. Grave, conocido matemático soviético, al suponer que para todo primo p el número $2^{p-1} - 1$ no es divisible por p^2 . El cálculo directo confirmaba esta hipótesis para todos los números p menores que mil. Sin embargo, pronto se comprobó que 21092 - 1 es divisible por 10932 (1093 es un número primo): o sea, la hipótesis de Grave resultó errónea.

Veamos otro ejemplo muy instructivo. Sustituyendo n en la expresión $991n^2 + 1$ por los números enteros sucesivos 1, 2, 3, ..., jamás obtendremos el cuadrado de un número por muchos días o incluso años que dediquemos a ello. Sin embargo, sería erróneo deducir de aquí que ningún número de este tipo es un cuadrado pues, en realidad, entre los números de tipo $991n^2 + 1$ también hay cuadrados; pero es muy grande el valor mínimo de n para el cual es un cuadrado el número 991 $n^2 + 1$. He aquí este número

$n = 12\ 055\ 735\ 790\ 331\ 359\ 447\ 442\ 538\ 767.$

Todos estos ejemplos deben prevenir al lector contra deducciones por analogía no argumentadas.

Volvamos ahora al problema sobre la suma de los n primeros números impares. Está claro de lo anterior que por muchos que sean los primeros valores de n para los cuales havamos comprobado la fórmula

$$S(n) = n^2, \tag{1}$$

no podemos darla por demostrada pues siempre quedará el temor de que deje de ser válida en alguno de los casos no analizados. Para convencerse de que la fórmula (1) es válida para todos los n, es preciso demostrar que, por mucho que avancemos en la serie numérica natural, jamás podremos pasar de valores de n que aún verifican la fórmula (1) a valores de n que ya no la verifican.

Supongamos, pues, que nuestra fórmula es válida para un número n y tratemos de demostrar que también será válida para el número siguiente n + 1.

Es decir, aceptamos que

$$S(n) = 1 + 3 + 5 + \ldots + (2n - 1) = n^{2};$$

calculemos

 $S(n + 1) = 1 + 3 + 5 + \ldots + (2n - 1) + (2n + 1).$

Según nuestra hipótesis, la suma de los n primeros términos del segundo miembro de la última igualdad es n^2 , y, por consiguiente,

$$S(n + 1) = n^{2} + (2n + 1) = (n + 1)^{2}$$
.

O sea, suponiendo que la fórmula $S(n) = n^2$ es válida para cierto número natural n, hemos logrado demostrar su validez para el número siguiente inmediato n + 1. Pero hemos visto que esta fórmula es válida para n = 1, 2, 3, 4y 5. Luego, también será válida para el número n = 6que sigue a 5, así como para los números n = 7, n = 8. n = 9, etc. Nuestra fórmula puede considerarse ahora demostrada cualquiera que sea el número de sumandos. Este método de demostración se denomina método de inducción matemática.

Es decir, la demostración por el método de inducción matemática consta de dos partes:

1°. Se comprueba que la proposición enunciada es válida para el menor de los valores de n para los cuales ella tiene sentido¹).

1) Por supuesto, este valor de n no es' necesariamente la unidad; así, toda proposición relativa a las propiedades generales de los polígonos de n lados tiene sentido sólo para $n \ge 3$.

¹⁾ Véase, por ejemplo, el libro de Il. O. III клярский Н. Н. Ченцов в И. М. Яглом. Избранные задачи и теоремы эле-ментарной математики, ч. І. М., Гостехиздат, 1954 (D. O. Shkliar-skt, N. N. Chentzov, I. M. Yaglóm, Problemas y teoremas escogidos de matemática elemental, parte I, problemas 27 a), b) y c).

2°. Se demuestra que si la proposición es válida para un número natural n, también es válida para el número siguiente inmediato, o sea, para n + 1.

Inmediato, o sea, para n +1 *n* Como hemos visto en una serie de ejemplos, la segunda parte de la demostración es esencial. Evidentemente, la primera parte del razonamiento no lo es menos: la demostración de la segunda parte (o sea, de que la validez de la proposición para un número n implica su validez para el número n + 1) no significa nada por sí sola pues puede ocurrir que dicha proposición no se verifica para ningún valor entero de n. Por ejemplo, aceptando que un número entero n es igual al que le sigue, es decir, aceptando que n = n + 1, tendremos, agregando la unidad a ambos miembros de esta igualdad, n + 1 = n + 2; o sea, también el número n + 1 es igual al que le sigue. Naturalmente, de ello no se desprende en absoluto que la proposición enunciada es válida para todos los n: no se verifica para ningún número entero.

La aplicación del método de inducción matemática no siempre se atiene de manera estricta a este esquema. A veces, por ejemplo, resulta necesario suponer que la proposición considerada es válida, digamos, para dos números sucesivos n-1 y n y demostrar que también es válida entonces para el número n + 1; en este caso, la primera parte del razonamiento consistirá en comprobar que la proposición es válida para los dos valores primeros de n, por ejemplo, para n = 1 y n = 2 (véanse los ejemplos 17, 18 y 19). Sucede también que en la segunda parte se demuestra la validez de la proposición para un valor de n suponiéndose su validez para todos los números naturales k menores que n (véanse los ejemplos 7, 8, 9 y 16).

Veamos algunos ejemplos más en los que se aplica el método de inducción matemática. Las fórmulas obtenidas serán empleadas más adelante.

Ejemplo 2. Demuéstrese que la suma de los *n* primeros números naturales —representémosla por $S_1(n)$ — es igual a $\frac{n(n+1)}{2}$, es decir,

$$S_1(n) = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
. (2)

2°. Supongamos que

$$S_1(n) = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}.$$

Entonces

$$S_{1}(n+1) = 1 + 2 + 3 + \dots + n + (n+1) =$$

= $\frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2} = \frac{(n+1)[(n+1)+1]}{2}$

y con ello queda demostrada completamente la proposición. Ejemplo 3. Demuéstrese que la suma $S_2(n)$ de los

cuadrados de los *n* primeros números naturales es igual a $\frac{n(n+1)(2n+1)}{6}$:

$$S_2(n) = 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$
 (3)

Solución. 1°. $S_2\left(1\right)=1^2{=}\,\frac{1\,(1{+}1\,(2{\cdot}1{+}1)}{6}$. 2°. Supongamos que

$$S_2(n) = \frac{n(n+1)(2n+1)}{6}$$
.

Entonces

$$S_2(n+1) = 1^2 + 2^2 + 3^2 + \ldots + n^2 + (n+1)^2 =$$

= $\frac{n(n+1)(2n+1)}{6} + (n+1)^2$

y definitivamente

$$S_2(n+1) = \frac{(n+1)[(n+1)+1][2(n+1)+1]}{6}$$

Problema 1. Demuéstrese que la suma $S_3(n)$ de los cubos de los *n* primeros números naturales es $\frac{n^2(n+1)^2}{4}$

$$S_3(n) = 1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2 (n+1)^2}{4}$$
. (4)

Ejemplo 4. Demuéstrese que

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + (n-1) n = \frac{(n-1) n (n+1)}{3}.$$
 (5)

solución. 1°. $1 \cdot 2 = \frac{1 \cdot 2 \cdot 3}{3}$.

2°. Si
1·2+2·3+3·4+...+(n-1)
$$n = \frac{(n-1)n(n+1)}{3}$$

tenemos

1.

$$2+2\cdot 3+3\cdot 4+\ldots+(n-1)n+n(n+1)=$$

= $\frac{(n-1)n(n+1)}{3}+n(n+1)=\frac{n(n+1)(n+2)}{3}$.

Problema 2. Dedúzcase la fórmula (5) de las fórmulas (2)

y (6):
SUGERENCIA. Demuéstrese previamente que

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + (n-1) n =$$

 $= (1^2 + 2^2 + 3^2 + \ldots + n^2) -$
 $- (1 + 2 + 3 + \ldots + n).$

El método de inducción matemática, relacionado por su esencia con el concepto de número, encuentra su mayor aplicación en la Aritmética, el Algebra y la Teoría de los números. Muchos ejemplos interesantes de este género están recogidos en el libro ya mencionado de I. S. Sominski. Pero el concepto de número entero es fundamental en toda la Matemática y no sólo en la Teoría de los números que estudia especialmente sus propiedades. Por eso, el método de inducción matemática se aplica en diferentes ramas de la Matemática. En particular, resaltan por su belleza las aplicaciones de este método en la Geometría a las que está dedicado nuestro libro.

Dividiremos nuestra exposición en varias secciones según el tipo de los problemas geométricos.

§ 1. CÁLCULO POR INDUCCIÓN

En la Geometría, el método de inducción matemática encuentra su aplicación más natural (próxima a la aplicación de este método en la Teoría de los números y en el Algebra) en la solución de problemas geométricos relacionados con el cálculo. Veamos algunos ejemplos.

Ejemplo 5. Calcúlese el lado a_{2^n} de un 2^n -gono regular inscrito en una circunferencia de radio R.

SOLUCIÓN. 1°. Si n = 2, el 2ⁿ-gono regular es un cuadrado y para su lado tenemos $a_4 = R \sqrt{2}$. Ahora bien, empleando la fórmula de duplicación

$$a_{2^{n+1}} = \sqrt{2R^2 - 2R} \sqrt{R^2 - \frac{a_{2^n}^2}{4}},$$

encontramos $a_8 = R \sqrt{2 - \sqrt{2}}$ en el caso de un octágono regular, $a_{16} = R \sqrt{2 - \sqrt{2 + \sqrt{2}}}$ en el caso de un 16-gono

regular y $a_{32} = R \sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{2}}}}$ en el caso de un 32-gono regular. Por eso, podemos suponer que para $n \ge 2$ el lado de un 2^n -gono regular inscrito es

$$a_{2^n} = R \sqrt{2 - \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}.$$
 (6)

2°. Supongamos que el lado de un 2^n -gono regular inscrito se determina mediante la fórmula (6). Entonces, de acuerdo con la fórmula de duplicación, tenemos

$$a_{2^{n+1}} = \sqrt{2R^2 - 2R} \sqrt{\frac{2 - \sqrt{2 + \dots + \sqrt{2}}}{R^2 - R^2}} = R \sqrt{2 - \sqrt{2 + \sqrt{2} + \dots + \sqrt{2}}}_{n-1 \text{ doses}} =$$

de donde resulta que la fórmula (6) es válida para todos los n.

De la fórmula (6) se deduce que la <u>longitud</u> $C = 2\pi R$ de una circunferencia de radio R es igual al limite de la expresión $2^{n}R \sqrt{2-\sqrt{2}+\ldots+\sqrt{2}}$ cuando *n* crece infinitamente y que, por n-2 doses consiguiente,

$$t = \lim_{n \to \infty} 2^{n-1} \sqrt{2 - \sqrt{2 + \dots + \sqrt{2}}} =$$

$$= \lim_{n \to \infty} 2^n \sqrt{2 - \sqrt{2 + \dots + \sqrt{2}}}.$$

$$= \lim_{n \to \infty} 2^n \sqrt{2 - \sqrt{2 + \dots + \sqrt{2}}}.$$

$$= \lim_{n \to \infty} 2^n \sqrt{2 - \sqrt{2 + \dots + \sqrt{2}}}.$$

Problema 3. (Fórmula de Vieta⁴). Empleando la fórmula (6), demuéstrese que π es igual al límite de la expresión

$$\sqrt{\frac{1}{2}\sqrt{\frac{1}{2}\left(1+\sqrt{\frac{1}{2}}\right)}}\sqrt{\frac{1}{2}\left(1+\sqrt{\frac{1}{2}}\left(1+\sqrt{\frac{1}{2}}\right)\right)}\cdots$$

cuando el número de factores (de raíces cuadradas) del denominador crece infinitamente. La regla que permite escribir los factores queda determinada por los tres primeros factores escritos explícitamente.

SUGERENCIA. Sea S_{2^n} el área de un 2^n -gono regular inscrito en una circunferencia de radio R y sea h_{2^n} su apotema. De la fórmula (6) se deduce entonces que

$$h_{2n} = \sqrt{R^2 - \frac{a_{2n}^2}{4}} = \frac{R}{2} \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}_{n-1 \text{ doses}}$$

y que

$$S_{2^{n}} = \frac{1}{2} (2^{n}a_{2^{n}}) h_{2^{n}} =$$

$$= 2^{n-2}R^{2} \sqrt{2 - \sqrt{2 + \sqrt{2} + \dots + \sqrt{2}}} = 2^{n-2}Ra_{2^{n-1}}$$

$$= 2^{n-2}R^{2} \sqrt{2 - \sqrt{2 + \sqrt{2} + \dots + \sqrt{2}}} = 2^{n-2}Ra_{2^{n-1}}$$

(aquí se acepta que $n \ge 3$). Por eso, tenemos

$$\frac{S_{2^n}}{S_{2^{n+1}}} = \frac{\frac{2^{n-1}a_{2^n}h_{2^n}}{2^{n-1}Ra_{2^n}} = \frac{h_{2^n}}{R} = \cos\frac{180^{\circ}}{2^n},$$

¹) F. Vieta (1540-1603), famoso matemático francés, uno de los primeros en introducir los símbolos en el Algebra. de donde resulta que

$$\frac{S_4}{S_{2^n}} = \frac{S_4}{S_8} \cdot \frac{S_8}{S_{16}} \cdots \frac{S_{2^{n-1}}}{S_{2^n}} = \cos \frac{180^\circ}{4} \cos \frac{180^\circ}{8} \cdots \cos \frac{180^\circ}{2^{n-1}}.$$

Puesto que $S_4 = 2R^2$ y $\lim_{n \to \infty} S_{2^n} = \pi R^2$, resulta que $\frac{2}{\pi}$ es igual al límite de la expresión

$$\cos 45^\circ \cos \frac{45^\circ}{2} \cos \frac{45^\circ}{4} \dots$$

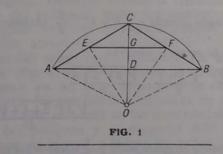
Resta recurrir a la fórmula

$$\cos\frac{\alpha}{2} = \sqrt{\frac{1+\cos\alpha}{2}}$$

Ejemplo 6. Dado un 2^n -gono regular de perímetro P, indíquese la regla que permite calcular el radio r_n de la circunferencia inscrita en él y el radio R_n de la circunferencia circunscrita a él.

SOLUCIÓN. 1°. Tenemos $r_2 = \frac{P}{8}$ y $R_2 = \frac{P\sqrt{2}}{8}$.

2°. Calculemos, a partir de los radios r_n y R_n de las circunferencias correspondientes a un 2^n -gono regular, de



perímetro P, los radios r_{n+1} y R_{n+1} de las circunferencias correspondientes a un 2^{n+1} -gono regular del mismo perímetro. Sean (fig. 1) AB el lado de un 2^{n} -gono regular de perímetro P, O su centro, C el punto medio del arco ABy D el punto medio de la cuerda AB; además, sea EF la línea que une los puntos de los lados AC y BC del triángulo

2-01271

ABC y sea G el punto medio de EF. Puesto que

$$\angle EOF = \angle EOC + \angle FOC = \frac{1}{2} \angle AOC + \frac{1}{2} \angle BOC = \frac{1}{2} \angle AOB,$$

resulta que EF es el lado de un 2^{n+1} -gono regular inscrito en la circunferencia de radio OE y que el perímetro de este

2n+1-gono es igual a

$$2^{n+1}EF = 2^{n+1} \frac{AB}{2} = 2^n AB,$$

o sea, también es igual a *P*. Por lo tanto, $r_{n+1} = OG$ y $R_{n+1} = OE$. Además, está claro que OC - OG = OG - OD, es decir, $R_n - r_{n+1} = r_{n+1} - r_n$, de donde $r_{n+1} = \frac{R_n + r_n}{2}$. Por último, del triángulo rectángulo OEC encontramos $OE^2 = OC \cdot OG$, es decir, $R_{n+1}^2 = R_n \cdot r_{n+1}$ y $R_{n+1} = \sqrt{R_n \cdot r_{n+1}}$ O sea, tenemos definitivamente

$$r_{n+1} = \frac{R_n + r_n}{2} \quad \text{y} \quad R_{n+1} = \sqrt{R_n \cdot r_{n+1}}$$

Consideremos la sucesión r_2 , R_2 , r_3 , R_3 , ..., r_n , R_n , ... Sus términos tienden hacia el radio de la circunferencia de longitud P_i , o sea, tienden hacia $\frac{P}{2\pi}$. En particular, si P = 2, tenemos $r_2 = \frac{1}{4}$ y $R_2 = \frac{\sqrt{2}}{4}$. Tomando además $r_1 = 0$ y $R_1 = \frac{1}{2}$, obtenemos el teorema siguiente:

Consideremos la sucesión numérica

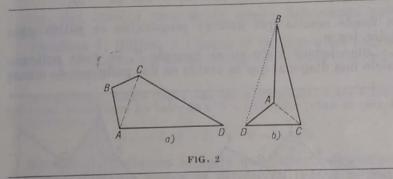
$$0, \frac{1}{2}, \frac{1}{4}, \frac{\sqrt{2}}{4}, \frac{\sqrt{2}+1}{8}, \frac{\sqrt{2}\sqrt{2}+4}{8}, \frac{\sqrt{2}\sqrt{2}+4}{8}, \frac{\sqrt{2}\sqrt{2}+4}{16}, \dots,$$

tal que sus dos primeros términos son 0 y $\frac{1}{2}$ mientras que cada uno de los términos restantes es igual alternadamente a la media aritmética o a la media geométrica de los dos términos precedentes; los términos de esta sucesión tienden hacia -.

Ejemplo 7. Hállese la suma de los ángulos interiores de un n-gono (ino necesariamente convexo!).

SOLUCIÓN. 1°. La suma de los ángulos interiores de un triángulo es igual a 180°. La suma de los ángulos interiores de un cuadrilátero es igual a 360°, pues todo cuadrilátero puede ser dividido en dos triángulos (fig. 2).

2°. Supongamos demostrado que la suma de los ángulos interiores de cualquier k-gono, donde k < n, es igual a 180° (k-2) y consideremos un *n*-gono cualquiera $A_1A_2...A_n$.



Demostremos, en primer lugar, que en todo polígono existe una diagonal¹) que lo divide en dos polígonos de menor número de lados (para un polígono convexo esta afirmación es evidente). Sean A, B y C tres vértices sucesivos del polígono. Desde el vértice B tracemos, hasta cortar el contorno del polígono, todas las semirrectas posibles de modo que quede cubierto el ángulo interior ABC del polígono. Pueden presentarse dos casos:

1) Todas las semirrectas terminan en un mismo lado del polígono (fig. 3, a). En este caso la diagonal AC divide nuestro n-gono en un (n-1)-gono y en un triángulo.

2) No todas las semirrectas terminan en un mismo lado (fig. 3, b). En este caso una de las semirrectas pasará por un vértice M del polígono y la diagonal BM lo dividirá en dos polígonos de menor número de lados.

Volviendo ahora a la demostración de nuestra proposición principal, tracemos en el *n*-gono A_1A_2 ... A_n la diagonal A_1A_k que lo divide en el k-gono $A_1A_2 \ldots A_k$

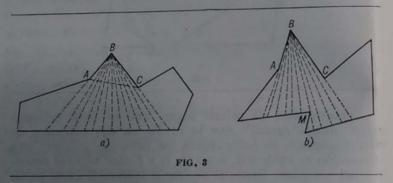
¹⁾ Nótese que la diagonal de un polígono no convexo puede atravesarlo y puede estar fuera de él (como la diagonal BD de la fig. 2, b).

y en el (n - k + 2)-gono $A_1A_kA_{k+1} \ldots A_n$. Según la hipótesis, las sumas de los ángulos interiores del k-gono y del₄ (n - k + 2)-gono son iguales a 180° (k - 2) y $180^{\circ} [(n - k + 2) - 2] = 180^{\circ}$ (n - k), respectivamente; por eso, la suma de los ángulos del n-gono $A_1A_2 \ldots A_n$ será igual a

 $180^{\circ} (k-2) + 180^{\circ} (n-k) = 180^{\circ} (n-2),$

de donde resulta que nuestra proposición es válida para todos los n.

Como hemos visto en el ejemplo 7, en todo polígono existe una diagonal que lo divide en dos polígonos de menor



número de lados. A su vez, cada uno de estos polígonos distinto de un triángulo puede ser dividido en dos polígonos de menor número de lados, etc. Por consiguiente, todo polígono puede ser dividido en triángulos mediante diagonales que no se cruzan.

Ejemplo 8. dEn cuántos triángulos puede ser dividido un n-gono (ino necesariamente convexo!) mediante diagonales que no se cruzan?

SOLUCIÓN. 1°. En el caso de un triángulo este número es igual a uno (ya que en el triángulo no se pueden trazar diagonales); en el caso de un cuadrilátero este número es, evidentemente, igual a dos (véase la fig. 2, a y b).

2°. Demos por sabido que todo k-gono, donde k < n, puede ser dividido mediante diagonales que no se cruzan en k-2 triángulos (independientemente del modo de dividir). Consideremos una de las divisiones del *n*-gono (k-2) + [(n-k+2) - 2] = n - 2

y con ello nuestra proposición queda demostrada para todos los n.

Problema 4. Hállese el número N de diagonales necesarias para dividir un *n*-gono en triángulos si estas diagonales no se cruzan.

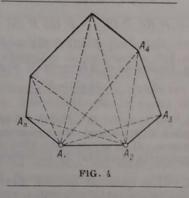
SUGERENCIA. Como quiera que las N diagonales y los n lados del n-gono constituyen los lados de n - 2 triángulos (véase el ejemplo 8), resulta que

2N + n = 3 (n - 2) y N = n - 3.

Ejemplo 9. Indíquese la regla que permite determinar el número P(n) de modos de dividir un *n*-gono convexo en triángulos mediante diagonales que no se cruzan.

SOLUCIÓN. 1°. En el caso de un triángulo este número es igual, obviamente, a uno: P(3) = 1.

2°. Aceptando que conocemos los números P(k) para todos los k < n, determinemos el valor de P(n). Considere-



mos para ello el *n*-gono convexo $A_1A_2 \ldots A_n$ (fig. 4). Cualquiera que sea el modo de dividirlo en triángulos, el lado A_1A_2 será lado de uno de los triángulos y el tercer vértice de este triángulo puede coincidir con cada uno de los puntos A_3, A_4, \ldots, A_n . Si este vértice coincide con A_3 , el número de modos de dividir el *n*-gono es igual al número de modos de dividir en triángulos el (n - 1)-gono $A_1A_3A_4 \ldots$ $\ldots A_n$, o sea, es igual a P(n - 1). Si este vértice coincide con A_4 , el número de modos es igual al número de modos de dividir el (n - 2)-gono $A_1A_4A_5 \ldots A_n$, o sea, es igual a P(n - 2) = P(n - 2) P(3). Si este vértice coincide con A_5 , el número de modos es igual a P(n - 3) P(4) ya que podemos combinar cualquier división del (n - 3)-gono $A_1A_5 \ldots A_n$ con cada una de las divisiones del cuadrilátero $A_2A_3A_4A_5$, etc. Por consiguiente, obtenemos la relación

$$P(n) = P(n-1) + P(n-2) P(3) + + P(n-3) P(4) + \dots + P(3) P(n-2) + + P(n-1). (7)$$

Valiéndonos de esta fórmula, encontramos sucesivamente P(4) = P(3) + P(3) = 2, P(5) = P(4) + P(3)P(3) + P(4) = 5, P(6) = P(5) + P(4)P(3) + P(3)P(4) + P(5) = 14, P(7) = P(6) + P(5)P(3) + P(4)P(4) + P(3)P(5) + + P(6) = 42,P(8) = P(7) + P(6)P(3) + P(5)P(4) + P(4)P(5) +

+ P (3) P (6) + P (7) = 132, etc.

OBSERVACIÓN. Basándose en la fórmula (7), se puede demostrar que

$$P(n) = \frac{2(2n-5)!}{(n-1)!(n-3)!}$$

рага todo n [véase, por ejemplo, la solución del problema 51, b en el libro de А. М.Яглом и И. М. Яглом, Неэлементарные задачи в элементарном изложении, М., Гостехиздат, 1954 (А. М. Yaglóm е I. M. Yaglom, Exposición elemental de problemas no elementales)].

Problema 5. dEn cuántas partes dividen un *n*-gon⁰ convexo todas sus diagonales si no hay tres que se crucen en un mismo punto?

SUGERENCIA. La diagonal A_1A_n divide (n + 1)-gono convex⁰ $A_1A_2 \ldots A_nA_{n+1}$ en el *n*-gono $A_1A_2 \ldots A_n$ y en el triángulo $A_1A_nA_{n+1}$. Aceptando que conocemos el número F(n) de partes en que resulta dividido por sus diagonales el *n*-gono $A_1A_2 \ldots A_n$, calculemos cuántas partes se añaden al agregar el vértice A_{n+1} (este número supera en una unidad el número de partes en que resultan divididas las diagonales que salen del vértice A_{n+1} por todas las diagona les restantes). Así encontramos la relación

$$F(n + 1) = F(n) + (n - 1) + 1(n - 2) + 2(n - 3) - \cdots + (n - 3) 2 + (n - 2) 1$$

que, mediante las fórmulas (2) y (5) de la Introducción (pag. 12-13), puede ser representada en la forma

$$F(n+1) = F(n) + (n-1) + \frac{n(n-1)(n-2)}{6} =$$

= $F(n) + \frac{n^3}{6} - \frac{n^2}{2} + \frac{4n}{3} - 1$

Sumando los valores F(n), F(n-1), ..., F(4) y empleando las fórmulas (2), (3) y (4) de la Introducción, obtenemos

$$F(n) = \frac{(n-1)(n-2)(n^2 - 3n + 12)}{24}.$$

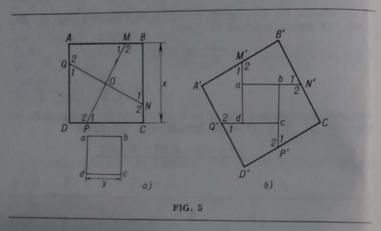
§ 2. DEMOSTRACIÓN POR INDUCCIÓN

Algunas proposiciones del parágrafo anterior representan, de hecho, ejemplos de aplicación del método de inducción matemática a la demostración de teoremas geométricos. Así, la proposición del ejemplo 7 puede ser enunciada en la forma siguiente: demostrar que la suma de los ángulos de un *n*-gono es igual a 180° (n-2). En el ejemplo 8 hemos demostrado que un *n*-gono resulta dividido en n-2 triángulos por sus diagonales que no se cruzan. En este parágrafo continuaremos el estudio de ejemplos de este género.

Ejemplo 10. Demuéstrese que es posible dividir *n* cuadrados dados en trozos que permitan formar un cuadrado nuevo.

SOLUCION. 1°. Si n = 1, nuestra proposición no requiere demostración. Demostremos que es válida para n = 2. Sean $x \in y$ los lados de los cuadrados dados ABCD y abcd, respectivamente; sea $x \ge y$. Tomemos en los lados del

cuadrado ABCD de dimensión x (fig. 5, a) los segmentos $AM = BN = CP = DQ = \frac{x+y}{2}$ cortándolo después según las rectas MP y NQ que, como es fácil ver, se cortan en el centro O del cuadrado formando ángulo recto y lo dividen en cuatro trozos iguales. Agreguemos estos trozos al segundo



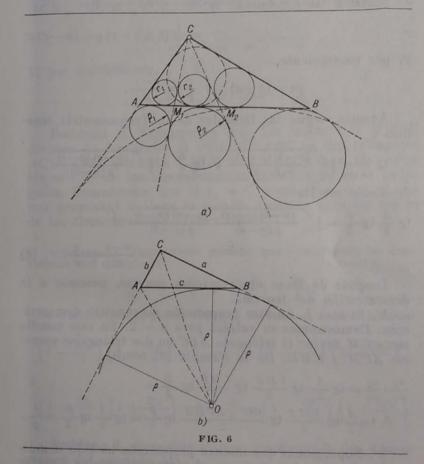
cuadrado como se indica en la fig. 5, b. La figura obtenida también será un cuadrado ya que los ángulos en los puntos $M', N', P' \neq Q'$ serán llanos; los ángulos $A', B', C' \neq D'$ serán rectos y A'B' = B'C' = C'D' = D'A'.

2°. Aceptando que nuestra proposición ha sido demostrada ya para el caso de n cuadrados, consideremos los n + 1cuadrados $C_1, C_2, \ldots, C_n, C_{n+1}$. Tomemos dos cualesquiera de estos cuadrados, digamos,

 C_n y C_{n+1} . Según hemos demostrado en 1°, es posible, cortando uno de estos cuadrados y agregando los trozos obtenidos al segundo, formar un cuadrado nuevo C'. Ahora bien, según nuestra hipótesis, los cuadrados $C_1, C_2, \ldots, C_{n-1}, C'$ se pueden descomponer en trozos que permitan formar un cuadrado nuevo que es lo que queríamos demostrar.

Ejemplo 11. En el triángulo ABC se han trazado por el vértice C n - 1 rectas $CM_1, CM_2, \ldots, CM_{n-1}$ que lo dividen en *n* triángulos menores ACM_1, M_1CM_2, \ldots ..., $M_{n-1}CB$. Sean r_1, r_2, \ldots, r_n los radios de las circunferencias inscritas en estos triángulos; sean $\rho_1, \rho_2, \ldots, \rho_n$

los radios de las circunferencias exinscritas en estos triángulos (todas ellas resultan inscritas en el ángulo C del triángulo correspondiente; véase la fig. 6, a); sean, final-



mente, r y o los radios de las circunferencias inscrita y exinscrita en el propio triángulo ABC. Demuéstrese que

$$\frac{r_1}{\rho_1}\cdot\frac{r_2}{\rho_2}\cdot\cdot\cdot\frac{r_n}{\rho_n}=\frac{r}{\rho}.$$

SOLUCIÓN. Sea S el área del triángulo ABC y sea p su semiperímetro; como se sabe, S = pr. Por otra parte, si O es el centro de la circunferencia exinscrita en este triángulo

(fig. 6, b), as there

$$S = S_{\Delta OAC} + S_{\Delta OCB} - S_{\Delta OAB} = \frac{1}{2} b\rho + \frac{1}{2} a\rho - \frac{1}{2} c\rho =$$

 $= \frac{1}{2} (b + a - c) \rho = (p - c) \rho;$

y, por consiguiente,

$$pr = (p-c)\rho$$
 y $\frac{r}{\rho} = \frac{p-c}{p}$.

Además, según las fórmulas de la Trigonometría, tenemos

$$\operatorname{tg}\frac{A}{2} = \sqrt{\frac{(p-b)(p-c)}{p(p-a)}} \quad \text{y} \quad \operatorname{tg}\frac{B}{2} = \sqrt{\frac{(p-a)(p-c)}{p(p-b)}}$$

de donde resulta

$$tg \frac{A}{2} tg \frac{B}{2} = \sqrt{\frac{(p-b)(p-c)}{p(p-a)}} \frac{(p-a)(p-c)}{p(p-b)} = \frac{p-c}{p} = \frac{r}{\rho}.$$
 (8)

Después de estas observaciones previas, pasemos a la demostración del teorema.

1°. Si n = 1, nuestra proposición no requiere demostración. Demostremos su validez para n = 2. En este caso la recta *CM* divide el triángulo *ABC* en dos triángulos menores *ACM* y *CMB*. De la fórmula (8) resulta

$$\frac{r_1}{\rho_1} \cdot \frac{r_2}{\rho_2} = \operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{CMA}{2} \operatorname{tg} \frac{CMB}{2} \operatorname{tg} \frac{B}{2} = \\ = \operatorname{tg} \frac{A}{2} \operatorname{tg} \frac{CMA}{2} \operatorname{tg} \frac{180^\circ - 4CMA}{2} \operatorname{tg} \frac{B}{2} = \operatorname{tg} \frac{A}{2} \operatorname{tg} \frac{B}{2} = \frac{r}{\rho}.$$

2°. Supongamos que nuestra proposición ha sido demostrada ya para el caso de n - 1 rectas y tomemos n rectas CM_1, CM_2, \ldots, CM_n que dividen el triángulo ABC en n + 1 triángulos menores $ACM_1, M_1CM_2, \ldots, M_nCB$. Consideremos dos cualesquiera de ellos, digamos ACM_1 , y CM_1M_2 . Como hemos visto en 1°.

$$\frac{r_1}{\rho_1} \cdot \frac{r_2}{\rho_2} = \frac{r_{12}}{\rho_{12}}$$

donde r_{12} y ρ_{12} son, respectivamente, los radios de las circunferencias inscrita y exinscrita en el triángulo ACM_2 . Pero en virtud de nuestra hipótesis, para los *n* triángulos ACM_2 , M_2CM_3 , ..., M_nCB se cumple la igualdad

$$\frac{r_{12}}{\rho_{12}} \cdot \frac{r_3}{\rho_3} \cdot \cdot \cdot \frac{r_n}{\rho_n} \cdot \frac{r_{n+1}}{\rho_{n+1}} = \frac{r}{\rho}$$

y, por consiguiente,

$$\frac{r_1}{\rho_1} \cdot \frac{r_2}{\rho_2} \dots \frac{r_n}{\rho_n} \cdot \frac{r_{n+1}}{\rho_{n+1}} = \frac{r}{\rho}.$$

Problema 6. Supongamos que las rectas CM y CM'dividen de dos modos el triángulo ABC en dos triángulos ACM, CMB y ACM', CM'B; sean r_1 , r_2 y r'_1 , r'_2 los radios respectivos de las circunferencias inscritas en estos triángulos. Demuéstrese que si $r_1 = r'_1$, también $r_2 = r'_2$ y que una propiedad análoga se cumple también para los radios de las circunferencias exinscritas.

SUGERENCIA. Demuéstrese primero que (conservando las denotaciones del ejemplo 11)

$$\frac{r}{\rho} = 1 - \frac{2r}{h} \, \mathrm{y} \, \frac{\rho}{r} = 1 + \frac{2\rho}{h} \, .$$

(h es la altura trazada por el vértice C), de donde se deducen las igualdades

$$\left(1 - \frac{2r_1}{h}\right) \left(1 - \frac{2r_2}{h}\right) = 1 - \frac{2r}{h} = \left(1 - \frac{2r'_1}{h}\right) \left(1 - \frac{2r'_2}{h}\right)$$

$$\left(1+\frac{2\rho_1}{h}\right)\left(1+\frac{2\rho_2}{h}\right)=1+\frac{2\rho}{h}=\left(1+\frac{2\rho_1'}{h}\right)\left(1+\frac{2\rho_2'}{h}\right).$$

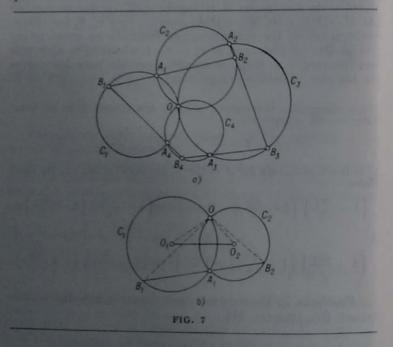
Problema 7. Demuéstrese que (conservando las denotaciones del ejemplo 11)

$$\frac{r_1 + \rho_1}{R_1} + \frac{r_2 + \rho_2}{R_2} + \dots + \frac{r_n + \rho_n}{R_n} = \frac{r + \rho}{R}$$

donde R_1, R_2, \ldots, R_n y R son los radios respectivos de las circunferencias circunscritas a los triángulos ACM_1 , M_1CM_2, \ldots, M_nCB y ABC. SUGERENCIA. Como se sabe $S = pr = (p - c) \rho = \frac{abc}{4R}$ y, por eso, aplicando el teorema del coseno, obtenemos

$$\frac{r+\rho}{2R} = \frac{\frac{S}{p} + \frac{S}{p-c}}{\frac{abc}{2S}} = \frac{(a+b)\left[c^2 - (a-b)\right]^2}{2abc} = \frac{b^2 + c^2 - a^2}{2bc} + \frac{a^2 + c^2 - b^2}{2ac} = \cos CAB + \cos CBA,$$

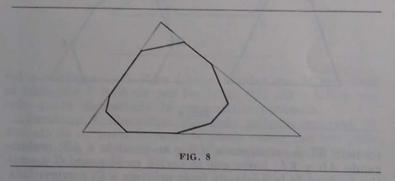
Problema 8. Sean $C_1, C_2, \ldots, C_n n$ circunferencias que pasan por el punto O y sean A_1, A_2, \ldots, A_n los otros puntos de intersección de las circunferencias C_1 y C_2 , C_2



y C_3, \ldots, C_n y C_1 , respectivamente (fig. 7, a). Sea B_1 un punto cualquiera de la circunferencia C_1 distinto de Oy de A_1 . Tracemos la secante B_1A_1 que corta la circunferencia C_2 en el punto B_2 , después la secante B_2A_2 que corta la circunferencia C_3 en el punto B_3 , etc. (si, digamos, el punto B_2 coincide con A_2 , en lugar de la secante trazaremos por el punto A_2 la tangente a la circunferencia C_2). Demuéstrese que el punto B_{n+1} que se obtiene finalmente en la circunferencia C_1 coincide con B_1 .

SUGERENCIA. Demuéstrese primero el lema siguiente: sean O_4 y O_2 los centros de dos circunferencias C_1 y C_2 que se cortan en el punto O y sea B_1B_2 la secante que pasa por el otro punto A_1 de intersección de estas circunferencias (véase la fig. 7, b); entonces, desde el punto O los segmentos B_1B_2 y O_1O_2 se ven bajo un mismo ángulo. Demuéstrese después el teorema propuesto para el caso de tres circunferencias. Por último, aceptando su validez para el caso de n - 1 circunferencias, considérense n circunferencias C_1, C_2, \ldots, C_n , trácese la secante que pasa por el punto B_{n-1} y por el punto de intersección de las circunferencias $C_1, C_2, \ldots, C_{n-1}$.

Ejemplo 12. Demuéstrese que todo polígono convexo distinto de un paralelogramo puede ser colocado en un

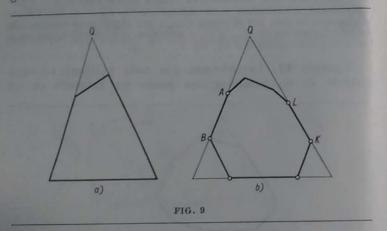


triángulo cuyos lados contienen tres lados del polígono inicial (fig. 8).

SOLUCIÓN. Demostremos previamente que todo polígono convexo M puede ser colocado en un triángulo o en un paralelogramo (que, posiblemente, coincide con M) cuyos lados comprenden tres o cuatro, respectivamente, lados del polígono M.

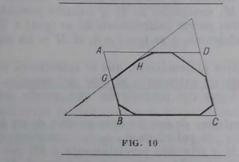
1°. Para n = 3 nuestra afirmación no requiere demostración; para n = 4 es también evidente ya que si M es distinto de un paralelogramo (o sea, no puede ser colocado en un paralelogramo que coincida con M), entonces tiene dos lados no contiguos y no paralelos; prolongando estos lados hasta que se corten en el punto Q y omitiendo el lado de Mmás próximo a Q y que no pasa por Q, obtenemos un triángulo que satisface nuestras condiciones (fig. 9, a).

2°. Supongamos que la afirmación del teorema ha sido demostrada ya para todos los polígonos convexos que tienen menos de n lados y consideremos un polígono convexo Mde n lados (donde $n \ge 5$). Puesto que sólo un lado del n-gono convexo M puede ser paralelo a un lado fijo ABdel mismo y puesto que el número total de lados del polígono no contiguos a AB es $n - 3 \ge 2$, resulta que M tiene



un lado KL no contiguo a AB y no paralelo a AB; prolongando AB y KL, hasta que se corten en el punto Q y omitiendo después la quebrada (más próxima a Q) comprendida en el ángulo construido de esta forma y compuesta por lados de M, obtenemos un polígono M_1 que contiene M, que tiene $n_1 < n$ lados y tal que todos los lados del mismo comprenden lados de M (fig. 9, b). Según la hipótesis inductiva, M_1 se puede colocar en un triángulo o paralelogramo que satisface las condiciones del problema, que contiene M

De este modo, podemos dar por demostrada la afirmación que más arriba aparece en letra redonda; resta mostrar que si M no es un paralelogramo y puede ser colocado en un paralelogramo P cuyos lados contienen lados de M, entonces también se puede colocar M en un triángulo cuyos lados contienen lados de M. He aquí la demostración. Puesto que M no es un paralelogramo, existe un vértice A del paralelogramo $P \equiv ABCD$ que no es vértice de M; sea Gel vértice de M (más próximo a A) que pertenece al lado ABdel paralelogramo P y sea GH el lado de M que arranca de G y que no pertenece al lado AB del paralelogramo (fig. 10) Puesto que el polígono M es convexo, es evidente que pertenece integramente a aquel semiplano determinado por la recta GH en el que se encuentran los vértices B, C y D



del paralelogramo P. Pero de aquí resulta que M pertenece al triángulo T formado por los lados BC, CD y GH y con esto queda demostrada la proposición necesaria.

Problema 9. Demostrar que todo polígono convexo Mdistinto de un paralelogramo se puede cubrir con tres polígonos m_1 , m_2 y m_3 menores que M, semejantes de M y situados paralelamente¹) a M.

SUGERENCIA. Sea $M \equiv A_1A_2A_3$, ... A_n un polígono convexo distinto de un paralelogramo y sea $T \equiv ABC$ un triángulo que lo contiene, con la particularidad de que sus lados AB, BC y CA contienen, respectivamente, los lados A_1A_2 , A_kA_{k+1} y A_1A_{1+1} del polígono (véase el ejemplo 12). Tomemos dentro de M un punto arbitrario O y unámoslo mediante segmentos con unos puntos U, V y W de los lados A_1A_2 , A_kA_{k+1} y A_1A_{1+1} del polígono M. Los segmentos OU, OV y OW dividen M en tres partes M_1 , M_2 y M_3 . Entonces se pueden escoger unos coeficientes k_1 , k_2 y k_3 (µmenores que 1!) tales que los polígonos m_1 , m_2 y m_3 (que se obtienen de M por homotecias de centros A, B y Cy de razones k_1 , k_2 y k_3 , respectivamente) cubren las partes M_1 , M_2 y M_3 del polígono M.

¹) En otras palabras, homotéticos de M (con la razón de homotecia k < 1). 32

Como es evidente que un paralelogramo P no se puede cubrir con menos de cuatro paralelogramos menores que P, semejantes de P y situados paralelamente a P (porque cualquiera de estos paralelogramos menores que P puede cubrir sólo un vértice de P), de la afirmación del problema 9 resulta el teorema siguiente demostrado en 1955 (en una forma algo distinta) por F. Levi¹), destacado matemático alemán, y más tarde demostrado de nuevo varias veces por otros matemáticos

El número mínimo de polígonos convexos menores que el polígono dado M, semejantes de M y situados paralelamente a M que permiten cubrir íntegramente M es igual a 3, si M no es un paralelogramo, y es igual a 4, si M es un paralelogramo.

F. Levi y otros matemáticos, que se interesaron por este teorema, <u>intentaron extenderlo al caso del espacio</u>, o sea, demostrar la siguiente proposición que parece bastante verosímil:

El número mínimo de «copias disminuidas» de un poliedro convexo M (o sea, de poliedros μ_1, μ_2, \ldots menores que M, semejantes de M y situados paralelamente a M) que permiten cubrir íntegramente M, oscila según la forma de M entre 4 (es igual a 4, por ejemplo, para el tetraedro) y 8 (es igual a 8, por ejemplo, para el cubo); este número es igual a 8 sólo si M es un paralelepípedo y es menor que 8 en los demás casos.

Este teorema no parece ser muy complejo; empero, nadie ha logrado demostrarlo por ahora aunque muchos geómetras destacados de distintos países lo han intentado²).

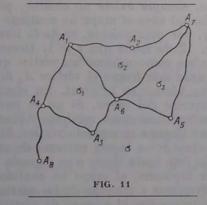
Existe una multitud de diversos teoremas geométricos que se pueden demostrar por el método de inducción matemática. No obstante, nos limitamos aquí a un grupo de problemas exclusivamente; el interés de éstos reside en que,

¹) F. Levi y otros matemáticos demostraron el teorema considerado para *figuras convexas* arbitrarias (véase acerca de éstas el libro И. М. Яглом и В. Г. Болтянский «Выпуклые фагуры», Гостехнадат. 1951: I. М. Yaglom y V. G. Boltianski «Figuras convexas» y no para polígonos convexos; pero, de la validez del teorema para polígonos convexos se deduce ya que se cumple también para todaz las figuras convexas.

²) En relación con este abanico de problemas véase, por ejemplo, el libro *B. Г. Болтянский* и *И. Ц. Гохберг,* Задачи и теоремы комбинаторной геометрии, Наука, 1965. (V. G. Boltianski е *I. Tz. Gojberg*, Problemas y teoremas de la geometría combinatoria). igual que el problema 9 considerado más arriba, conducen a un problema, de enunciado muy sencillo pero no resuelto hasta el presente por nadie, que matemáticos de diferentes países vienen atacando hace ya más de cien años, el así llamado <u>problema de los cuatro colores</u>. Pero previamente deberemos estudiar algunas propiedades (geométricas) de los mapas geográficos.

PROBLEMAS DE LOS MAPAS GEOGRÁFICOS

Consideremos en el plano una red formada por líneas que unen algunos de los puntos A_1, A_2, \ldots, A_p y que no tienen otros puntos comunes; aceptaremos, además, que esta red «consta de un trozo único», o sea, que, arrancando de cualquiera de los puntos A_1, A_2, \ldots, A_p , podemos



llegar a cualquier otro desplazándonos solamente según las líneas que componen la red (se dice que la red es conexa). Toda red de este tipo será llamada mapa; los puntos dados son sus vértices; los trozos de curvas que unen dos vértices sucesivos son las fronteras del mapa y las porciones en que las fronteras dividen el plano (incluida la región infinita exterior) son los países del mapa. Por ejemplo, en la fig. 11, 34

los puntos A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 y A_8 son los vértices del mapa, las curvas A_1A_2 , A_2A_7 , A_1A_6 , A_6A_7 , A_4A_1 , A_4A_3 , A_3A_6 , A_6A_5 , A_5A_7 y A_4A_8 son fronteras y las regiones σ_1 , σ_2 , σ_3 así como la región infinita exterior σ son sus países. Ejemplo 13. (*Teorema de Euler.*) Dado un mapa cual-

Ejemplo 13. (*leorema de Euter.*) Dano un procesa quiera consideremos el número s de sus países, el número lde sus fronteras y el número p de sus vértices. Entonces

$$s+p=l+2.$$

DEMOSTRACIÓN. Apliquemos la inducción según el número l de fronteras del mapa.

1°. Sea l = 0; entonces s = 1 y p = 1 de modo que

s+p=l+2.

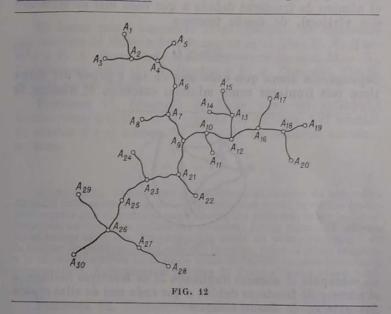
2°. Supongamos que el teorema es válido para cualquier mapa de *n* fronteras y consideremos un mapa de l = n + 1fronteras, *s* países y *p* vértices. Se pueden presentar dos casos.

a) Para todo par de vértices del mapa existe un camino único, formado por fronteras, que los une (debido a que el mapa es conexo, siempre existe un camino, por lo menos, de este tipo). En tal caso el mapa no contiene ningún contorno cerrado y, por consiguiente, es de la forma representada en la fig. 12 de modo que s = 1. Demostremos que en este mapa existe como mínimo un vértice que pertenece a una frontera nada más (como el vértice A_1 de la fig. 12); diremos que este vértice es terminal. En efecto, tomemos un vértice cualquiera del mapa. Si no es terminal, es el extremo de dos fronteras como mínimo. Avancemos según una de ellas hasta llegar a su segundo vértice. Si este vértice tampoco es terminal, es a la vez extremo de otra frontera. Avancemos según ésta hasta llegar a su segundo vértice, etc. Puesto que, por hipótesis, el mapa no contiene contornos cerrados, no volveremos a ninguno de los vértices ya considerados y como quiera que el número de vértices del mapa es finito, deberemos llegar, al fin y al cabo, a un vértice terminal. Excluyendo este vértice y la única frontera que le corresponde, obtendremos un mapa nuevo en el que

l' = l - 1 = n, s' = s = 1 y p' = p - 1y que, por supuesto, continuará siendo conexo. Según la hipótesis inductiva. de donde resulta que

s + p = l + 2.

b) Existen dos vértices con dos caminos como mínimo que los unen (fig. 11). En este caso el mapa contiene un



contorno cerrado que pasa por estos vértices. Eliminando una de las fronteras de este contorno (y conservando sus vértices), obtendremos un mapa en el que

$$l' = l - 1 = n, p' = p y s' = s - 1.$$

Según la hipótesis inductiva,

$$s'+p'=l'+2,$$

de donde resulta que también

$$s+p=l+2.$$

Ejemplo 14. Demuéstrese que si en todo vértice del mapa convergen tres fronteras como mínimo (o sea, si el mapa no contiene puntos como A_2 , A_3 , A_5 y A_8 ni fronteras

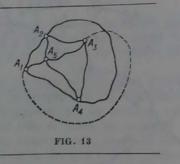
$$s' + p' = l' + 2$$

como A_4A_8 de la fig. 11), existe un país con cinco fronteras

todo lo más. solución. Puesto que en cada uno de los p vértices del mapa convergen tres fronteras como mínimo, el número 3pno sobrepasa el número duplicado 2l de fronteras (doblamos el número de fronteras debido a que cada una de ellas une dos vértices), de donde tenemos

$$p \leq \frac{2}{3} l.$$
 (9)

Supongamos ahora que cada uno de los s países del mapa tiene seis fronteras como mínimo; entonces, el número 6s



no sobrepasa el número duplicado 2*l* de fronteras (doblamos el número de fronteras debido a que cada una de ellas separa dos países), de donde tenemos

$$s \leqslant \frac{1}{3}l. \tag{10}$$

De las desigualdades (9) y (10) resulta

$$s + p \leq \frac{1}{3} l + \frac{2}{3} l = l$$

en contradicción con el teorema de Euler. Por consiguiente, es falsa nuestra hipótesis de que todo país tiene seis fronteras como mínimo.

Problema 10. En el plano se han tomado cinco puntos. Demuéstrese que no se pueden unir dos a dos por medio de líneas que no se crucen (fig. 13). SUGERENCIA. Supongamos que podemos unir todos estos puntos cumpliendo las condiciones del problema; obtendremos un mapa que tiene 5 vértices, $\frac{5\cdot 4}{2} = 10$ fronteras y, por consiguiente, 7 países (por el teorema de Euler). Pero tal mapa es imposible como se deduce de razonamientos análogos a los que hemos empleado para obtener la desigualdad (10).

El lector puede encontrar otros ejemplos de aplicación del teorema de Euler sobre los mapas en el libro E. E. Дынкин и B. A. Успенский, Математические беседы, M. - Л., Гостехиздат, 1952 (<u>E. B. Dynkin y V. A. Uspenski</u>, Conferencias matemáticas).

Problema 11. (<u>Teorema de Euler sobre los poliedros.</u>) Demuéstrese que si p es el número de vértices, l el número de aristas y s el número de caras de un poliedro convexo, se tiene

$$s + p = l + 2$$

SUGERENCIA. Coloquemos el poliedro en el interior de una esfera de radio suficientemente grande y proyectemos desde su centro (podemos aceptar que el centro se halla dentro del poliedro) sobre la superficie esférica todos los puntos del poliedro. En la superficie esférica obtendremos un mapa. Proyectémoslo desde un punto cualquiera de la misma, no perteneciente a ninguna frontera, sobre el plano tangente a la superficie esférica en el punto diametralmente opuesto (proyección estereográfica). Apliquemos el teorema de Euler al mapa plano resultante.

Problema 12. Demuéstrese que en todo poliedro existe una cara de tres, cuatro o cinco aristas.

SUGERENCIA. Véase el ejemplo 14.

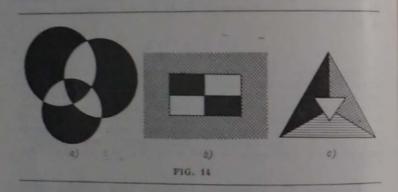
Problema 13. Demuéstrese que no existen poliedros de siete aristas.

SUGERENCIA. Aplíquese el teorema de Euler.

El lector puede encontrar otros ejemplos de aplicación del teorema de Euler sobre los poliedros. por ejemplo, en el libro de Д. О. Шклярский, Н. Н. Ченцов и И. М. Яглом, Избранные задачи и теоремы элементарной математики, ч. III, М., Гостехиздат, 1954 (<u>D. O. Shkliarski, N. N. Chentzov e I. M. Yaglóm</u>, Problemas y teoremas escogidos de matemática elemental, parte III).

PROBLEMAS DE LA COLORACIÓN DE MAPAS

Consideremos un mapa en el plano. Diremos que está bien coloreado si para cada país se emplea un tinte determinado con la particularidad de que cualesquiera dos países fronterizos están pintados de color distinto. Como ejemplo de coloración buena puede servir cualquier mapa geográfico. Cualquier mapa puede ser bien coloreado si se emplea una pintura distinta para cada país, pero este procedimiento

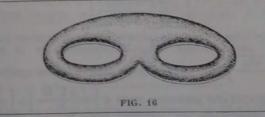


no es económico. Es natural preguntarse: ¿cuál es el número mínimo de tintes necesarios para la coloración buena de un mapa? Está claro, por ejemplo, que para la coloración buena del mapa de la fig. 14, a bastan dos tintes; el mapa de la fig. 14, b ya requiere para ello tres colores, mientras que el mapa representado en la fig. 14, c puede ser bien coloreado sólo si se emplean cuatro pinturas. Hasta hoy día no se conoce ningún mapa que no pueda ser bien coloreado con cuatro tintes. <u>A. F. Möbius, conocido matemático</u> hace más de cien años. Desde entonces, muchos científicos (o sea, demostrar que cuatro pinturas bastan para la coloración buena de cualquier mapa o, al contrario, dar un ejemplo de un mapa que no puede ser bien coloreado con cuatro pinturas) pero sin éxito alguno. Se ha podido demostrar solamente que *cinco* tintas son suficientes para colorear bien cualquier mapa (véase el ejemplo 18). Es fácil encontrar las condiciones que debe cumplir un mapa para que alcancen dos (ejemplo 16) o tres (ejemplo 17) colores. Daremos, además, una condición necesaria y suficiente para que un mapa pueda ser bien coloreado con cuatro tintas (ejemplo 19); por supuesto, se desconoce si esta condición se cumple para cualquier mapa así como si existen mapas en los que esta condición no se cumple.

Es curioso que para ciertas superficies, de estructura más compleja que la del plano, el problema de la coloración

de mapas admite solución plena. Por ejemplo, se ha demostrado que para la coloración buena de cualquier mapa en la superficie del «anillo salvavidas», llamado toro (fig. 15), bastan siete colores y que existen mapas para los cuales no alcanzan seis colores¹).

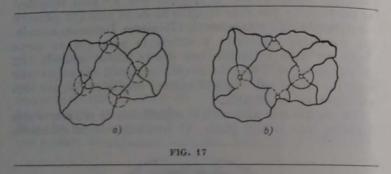
¹) Hace poco relativamente <u>el geómetra alemán</u> <u>G. Ringel</u> (véase G. Ringel, Färbungsprobleme auf Flächen und Graphen, Berlin, Deutscher Verlag der Wissenschaften, 1959) ha obtenido



unos resultados próximos a la solución definitiva del problema de la coloración de mapas formados en cualquier superficie distinta del

38

En lo sucesivo aceptaremos que los mapas no contienen fronteras a ambos lados de las cuales figura un mismo país (como la frontera A_4A_8 de la fig. 11) ya que de lo contrario



carece de sentido el planteamiento mismo de la coloración buena. Aceptaremos también que los mapas no contienen vértices en los que convergen dos fronteras nada más (como el vértice A_2 de la fig. 11) pues estos vértices huelgan. En otras palabras, sólo consideraremos mapas en cuyos vértices convergen tres fronteras como mínimo y que, por consiguiente, satisfacen la condición del ejemplo 14 cuyo resultado será empleado más de una vez. Por último, conviene aceptar que el mapa contiene sólo una región infinita, o sea, que en el mapa no existen fronteras que «se pierden

plano (o de la esfera). Según los resultados de Ringel, el número minimo de pinturas necesarias para la coloración buena de cualquier mapa en una superficie semejante a una «esfera con p agujeros que la atraviesan», es, por lo visto, igual a

$$\left[\frac{7+\sqrt{1+48p}}{2}\right],$$

donde los corchetes representan la parte entera del número (o, en todo caso, sólo puede diferir insignificantemente de la magnitud $\left[\frac{7+\sqrt{1+48p}}{2}\right]$ así, para el toro (que tiene un agujero que lo atraviesa; fig. 15) este número es igual a $\left[\frac{7+\sqrt{49}}{2}\right] = \left[\frac{14}{2}\right] = 7$ y para el dollos de dos agujeros (fig. 16) este número es: $\left[\frac{7+\sqrt{1+48\cdot 2}}{2}\right] = \left[\frac{7+\sqrt{97}}{2}\right] = \left[\frac{16,8\dots}{2}\right] = 8.$ en el infinito»; se puede demostrar que la renuncia a esta última condición no afecta los resultados posteriores.

Diremos que un mapa es normal si en cada uno de sus vértices convergen tres fronteras exactamente. Sea S un mapa cualquiera (fig. 17, a). Formando círculos pequeños alrededor de los vértices en los que convergen más de tres fronteras y agregando cada círculo a uno de los países que rodean el vértice correspondiente, obtendremos un mapa normal S' del mismo número de países (fig. 14, b); además, toda coloración buena del mapa S' permite obtener fácilmente una coloración buena del mapa S empleando la misma cantidad de pinturas y viceversa. Por eso, con frecuencia limitaremos al estudio del problema de la coloración buena al caso de mapas normales.

• Veamos ahora qué estructura tienen los mapas normales elementales¹). Sean p el número de vértices, l el número de fronteras y s el número de países de un mapa normal; entonces, 2l = 3p (véase la pág. 35), de donde resulta que $p = \frac{2}{3}l$. Además, debido al teorema de Euler, se tiene s + p = l + 2, de modo que

$$s = (l-p) + 2 = \frac{l}{3} + 2$$

y, por consiguiente, $s \ge 2$. Pero si s = 2, tenemos l = 0y es evidente que tal mapa no existe. Si s = 3, tenemos l = 3 y p = 2; este mapa normal elemental puede verse en la fig. 18, a. Si s = 4, tenemos l = 6 y p = 4. Demostremos que en este caso el mapa es de la forma representada en la fig. 19, b o c. En efecto, sea k_2 el número de biángulos del mapa, sea k_3 el número de sus triángulos y sea k_4 el número de cuadriláteros (puesto que p = 4, no puede haber países que tengan más de cuatro vértices). Entonces

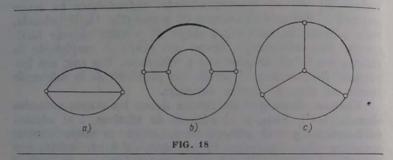
$$k_2 + k_3 + k_4 = s = 4$$

$$2k_2 + 3k_3 + 4k_4 = 2l = 12$$

¹) Aquí y en lo que sigue no haremos diferencia entre mapas de «idéntica estructura» (como los representados en las figs. 14, c y 27, a) cuyos países y fronteras pueden ser numerados de modo que en ambos mapas los países del mismo número estén separados por fronteras cuyos números también son iguales. 42

(recuérdese lo dicho en la pág. 35); de la última igualdad se deduce que k_3 es par. Puesto que la suma $k_2 + k_3 + k_4$ es igual a 4, tiene, salvo el orden de los sumandos, la forma 2+2+0, 2+1+1, 3+1+0 ó 4+0+0. Consideremos cada caso por separado.

Supongamos que dos de los valores de k son iguales a 2 y el tercero es igual a cero. Si $k_2 = 2$, $k_3 = 2$ y $k_4 = 0$,



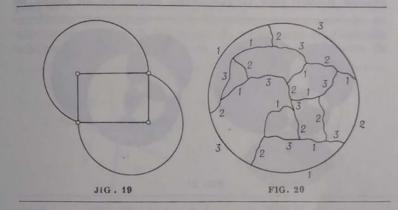
tenemos $2k_2 + 3k_3 + 4k_4 = 10 < 12$. Si $k_2 = 2$, $k_3 = 0$ y $k_4 = 2$, tenemos $2k_2 + 3k_3 + 4k_4 = 2l = 12$; a este caso corresponde el mapa de la fig. 18, b. Si $k_2 = 0$, $k_3 = 2$ y $k_4 = 2$, tenemos $2k_2 + 2k_3 + 4k_4 = 14 > 12.$

Supongamos que uno de los valores de k es igual a 2 mientras que los otros dos son iguales a uno. En este caso sólo para $k_2 = 1$, $k_3 = 2$ y $k_4 = 1$ tendremos que $2k_2 + 3k_3 +$ $+ 4k_4 = 12$; tal mapa existe pero no es normal (fig. 19). Si uno de los valores de k es 3 y otro es uno, debe ser $k_3 = 0$ ya que k_3 es par; en este caso $2k_2 + 4k_4 \neq 12$.

Supongamos, por último, que uno de los valores de k es igual a 4 mientras que los demás son iguales a cero. En este caso sólo para $k_2 = k_4 = 0$ y $k_3 = 4$ la suma $2k_2 + 3k_3 +$ $+ 4k_4$ será igual a 2l = 12; el mapa correspondiente tiene la forma representada en la fig. 19, c.

A veces, a parte de los países, colorearemos también las *fronteras* del mapa indicando estos colores mediante las cifras 1, 2, 3, ... Si al proceder de este modo ocurre que todas las fronteras convergentes en un mismo vértice llevan números distintos, diremos que dicha numeración de las fronteras del mapa es *buena* (véase, por ejemplo, la fig. 20). Nótese que también está ligado al problema sobre la coloración buena de los países de un mapa el problema sobre la numeración de los vértices del mapa en la que los vértices «vecinos» (o sea, los vértices unidos por una frontera) obtienen números distintos; véase a este respecto, por ejemplo, el libro de E. B. Dynkin y V. A. Uspenski indicado en la pág. 37 en el que el lector podrá encontrar también otras

43



demostraciones de muchos teoremas que se dan a continuacion.

Ejemplo 15. En el plano se tienen n circunferencias. Demuéstrese que dos colores bastan para colorear el mapa que forman cualquiera que sea la posición de las mismas.

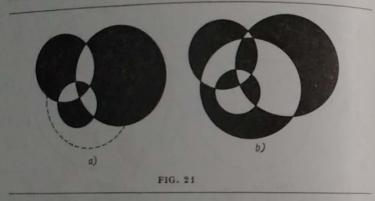
SOLUCIÓN. 1°. Si n = 1, la proposición se hace evidente.

2°. Supongamos que nuestra proposición es válida para cualquier mapa formado por n circunferencias y consideremos el caso de n + 1 circunferencias. Eliminando una de ellas, obtendremos una mapa que, en virtud de la hipótesis hecha, admite la coloración buena con dos tintas, blanca y negra, por ejemplo (fig. 21, a). Restituyendo dicha circunferencia y cambiando los colores (el negro por el blanco y viceversa) a un lado de la misma (por ejemplo, en su interior), obtendremos, como se comprueba fácilmente, un mapa bien coloreado con dos pinturas (fig. 21, b).

Problema 14. En el plano se tienen n circunferencias con una cuerda en cada una. Demuéstrese que bastan tres pinturas para colorear bien el mapa que forman (fig. 22).

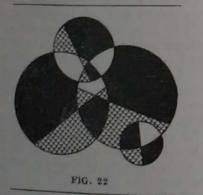
SUGERENCIA. Consideremos un mapa formado por n circunferencias con sus cuerdas bien coloreado con tres pinturas α , β y γ . Tracemos la circunferencia (n + 1)-ésima, consideremos los países que aparecen en su interior y cambiemos sus colores según el esquema $\alpha \rightarrow \beta$, $\beta \rightarrow \gamma$, $\gamma \rightarrow \alpha$ a un lado de la cuerda correspondiente y según el esquema $\alpha \rightarrow \gamma$, $\beta \rightarrow \alpha$, $\gamma \rightarrow \beta$ al otro lado de la cuerda.

Ejemplo 16. (Teorema de los dos colores.) Para que dos colores basten para la coloración buena de un mapa es



necesario y suficiente que en todo vértice converja un número par de fronteras.

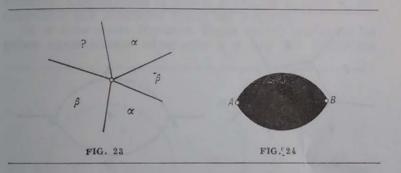
solución. La necesidad de esta condición es evidente ya que dos pinturas no alcanzan para colorear bien ni siquiera



los países que rodean cualquier vértice en el que converge un número impar de fronteras (fig. 23).

Para demostrar la suficiencia apliquemos la inducción según el número de fronteras. 1°. Si el mapa tiene dos fronteras, la proposición se hace evidente (fig. 24).

2°. Supongamos que el teorema es válido para todo mapa tal que en cada uno de sus vértices converge un número par de fronteras sin que el número total de las fronteras pase de n. Consideremos un mapa S que verifica esta misma condición pero tiene n + 1 fronteras. Arrancando de un vértice cualquiera A del mapa S, avancemos en dirección arbitraria según las fronteras. Puesto que el número de



vértices es finito, volveremos, al fin y al cabo, a uno de los vértices ya considerados (el mapa no contiene vértices terminales por cuanto no existen fronteras que no separan países) de modo que habrá un contorno cerrado que no se cruza formado por fronteras del mapa. Eliminándolo, obtendremos un mapa S' de menor número de fronteras que también tendrá un número par de fronteras en cada uno de sus vértices (ya que en todo vértice del mapa S hemos eliminado un número par —igual a 0 o a 2— de fronteras). En virtud de la hipótesis inductiva, dos pinturas alcanzan para la coloración buena del mapa S'.

Restituyendo el contorno eliminado y cambiando todos los colores a un lado del mismo (por ejemplo, en su interior), obtendremos una coloración buena del mapa S.

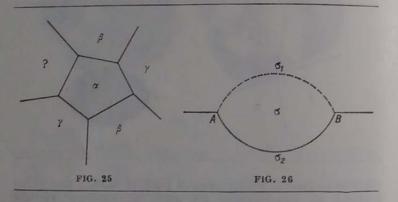
Ejemplo 17. (*Teorema de los tres colores*). Para que tres colores alcancen la coloración buena de un mapa normal es necesario y suficiente que cada uno de sus países tenga un número par de fronteras.

DEMOSTRACIÓN. La necesidad de esta condición es evidente ya que, habiendo un país σ de un número impar de fronteras,

tres pinturas no alcanzarán ni siquiera para colorear bien σ y los países fronterizos (fig. 25).

Para demostrar la suficiencia apliquemos la inducción según el número n de países.

1°. Para un mapa normal de tres países (véase la fig. 18, a) nuestra proposición se hace evidente. Es obvio que también alcanzan tres pinturas en el caso de un mapa normal de cuatro países como el representado en la fig. 18, b (bastará dar el mismo color al país «interior» y a la región exterior).

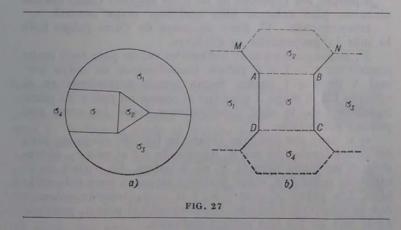


Por último, un mapa normal como el de la fig. 18, c no cumple la condición de que sea par el número de fronteras de cada país. Es decir, tres pinturas bastan para colorear bien cualquier mapa normal de 3 ó 4 países, cada uno con un número par de fronteras.

2°. Supongamos que el teorema es válido para cualquier mapa normal formado por n - 1 o n países, cada uno con un número par de fronteras. Consideremos un mapa normal Sformado por n + 1 países que verifican esta misma condición. Como se deduce del ejemplo 14, en el mapa S habrá un país σ con cinco fronteras todo lo más. En nuestro caso σ puede tener dos o cuatro fronteras. Analicemos estas posibilidades.

A. σ tiene dos fronteras. Sean A y B los vértices de este país y sean σ_1 y σ_2 los países fronterizos (fig. 26). Eliminando la frontera entre los países σ y σ_1 , obtendremos un mapa S' que continuará siendo normal ya que los puntos A y B dejarán de ser vértices (pues hemos convenido en eliminar los vértices que huelgan) mientras que en los demás vértices subsistirá el número de fronteras convergentes a ellos. Cada uno de los países del mapa S' también tendrá un número par de fronteras ya que este número disiminuirá en 2 para los países $\sigma_1 y \sigma_2 y$ subsistirá para todos los países restantes. Pero el mapa S' comprende *n* países de modo que, en virtud de la hipótesis inductiva, tres pinturas α , $\beta y \gamma$ bastarán para colorearlo bien. Supongamos que los países $\sigma'_1 = \sigma_1 + \sigma y \sigma'_2 = \sigma_2$ llevan los colores $\alpha y \beta$, respectivamente. Restituyendo el país σy dándole el color γ , obtendremos una coloración buena del mapa S.

B. σ tiene cuatro fronteras. Puede ocurrir que entre los países opuestamente adyacentes a σ hay dos fronterizos



o, incluso, coincidentes (fig. 27, *a* ó 18, *b*); pero en este caso los otros dos países adyacentes a σ no pueden tener frontera común ni coincidir. Sean σ_2 y σ_4 estos países (fig. 27, *b*). Agreguemos los países σ_2 y σ_4 al país σ , eliminando las fronteras *AB* y *CD*. Es obvio que el mapa obtenido *S'* también será normal. Además cada uno de sus países tendrá un número par de fronteras. En efecto, si los países σ_1 , σ_2 , σ_3 y σ_4 tenían, respectivamente, $2k_1$, $2k_2$, $2k_3$ y $2k_4$ fronteras, el país $\sigma' = \sigma + \sigma_2 + \sigma_4$ tendrá $2k_2 + 2k_4 - 4$ fronteras, el país $\sigma'_1 = \sigma_1$ tendrá $2k_1 - 2$ fronteras y el país $\sigma'_3 = \sigma_3$ tendrá $2k_3 - 2$ fronteras mientras que todos los países restantes conservarán su número de fronteras. (Si $\sigma_1 \neq \sigma_2$ son un mismo país, éste tendrá en el mapa S' cuatro fronteras menos que en el mapa S.) Pero el mapa S' tiene n - 1 países de modo que, en virtud de la hipótesis inductiva, tres pinturas α , $\beta \neq \gamma$ bastarán para colorearlo bien. Demostremos que los países $\sigma'_1 \neq \sigma'_2$ tendrán el mismo color (esto es evidente si $\sigma'_1 \neq \sigma'_2$ coinciden). En efecto, supongamos que el país σ' tiene el color $\alpha \neq$ que el país σ'_1 tiene el color β ; como quiera que σ' toca a lo largo de MN un número impar $2k_2 - 3$ de países cuyos colores deben, obviamente, alternarse de este modo: $\gamma, \delta, \gamma, \beta, \ldots, \gamma$, resulta que el país σ'_2 debe llevar el color β . Restituyendo el país $\sigma \neq$ dándole el color γ , obten-

dremos una coloración buena del mapa S. **Ejemplo 18.** (*Teorema de los cinco colores.*) Cinco colores alcanzan para colorear bien cualquier mapa normal.

DEMOSTRACIÓN. 1°. Para un mapa de cinco países todo lo más la proposición es evidente.

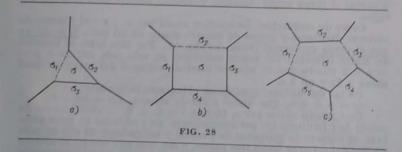
2°. Supongamos que el teorema es válido para todo mapa normal de n-1 o n países. Consideremos un mapa normal S de n+1 países. Según hemos demostrado en el ejemplo 14, el mapa S contiene al menos un país σ de cinco fronteras todo lo más. Consideremos todos los casos que pueden presentarse.

a) σ tiene dos fronteras (véase la fig. 26). Sean σ_1 y σ_2 los países fronterizos con σ . Agregando a σ el país σ_1 , obtendremos un mapa normal S' de *n* países. En virtud de la hipótesis inductiva, cinco pinturas alcanzan para colorearlo bien. Los países $\sigma'_1 = \sigma + \sigma_1$ y $\sigma'_2 = \sigma_2$ tendrán entonces dos de estos cinco colores. Restituyendo el país σ , podemos darle uno de los tres colores restantes.

b) σ tiene tres fronteras (fig. 28, a). Agreguemos σ_1 a σ . Coloreando primero el mapa obtenido S' con cinco pinturas, podremos después dar a σ uno de los dos colores que no se han empleado para la coloración de los países $\sigma'_1 = \sigma + \sigma_1$, $\sigma'_1 = \sigma_2$ y $\sigma'_1 = \sigma_3$.

c) σ tiene cuatro fronteras (fig. 28, b). Habrá dos países adyacentes a σ que no coinciden (véase el ejemplo 17). Agregando a σ uno de ellos, digamos σ_2 , obtendremos un mapa S' de *n* países que, en virtud de la hipótesis inductiva, admite una coloración buena de cinco pinturas. Los países $\sigma'_1 = \sigma_1, \sigma'_2 = \sigma_2 + \sigma, \sigma'_3 = \sigma_3$ y $\sigma'_4 = \sigma_4$ tendrán entonces cuatro de los cinco colores posibles (o menos si σ'_1 y σ'_3 coinciden o tienen el mismo color). Restituyendo el país σ , podremos darle el quinto color.

d) σ tiene cinco fronteras (fig. 28, c). Igual que en el ejemplo 17, habrá dos países adyacentes a σ que no son fronterizos ni coinciden; sean σ_1 y σ_3 estos países. Agregándolos a σ , obtendremos un mapa normal S' de n-1países. En virtud de la hipótesis inductiva, cinco pinturas



bastarán para la coloración buena del mapa S'. Los países $\sigma'_1 = \sigma_1 + \sigma + \sigma'_3$, $\sigma'_2 = \sigma_2$, $\sigma'_4 = \sigma_4$ y $\sigma'_5 = \sigma_5$ tendrán entonces cuatro de estos cinco colores. Restituyendo el país σ , podremos darle el quinto color.

Problema 15. En un planeta esférico hay varios estados; una parte de ellos ocupan una región (conexa) del planeta, mientras que los demás constan de dos partes que no tienen frontera común. Demuéstrese que el mapa del planeta (representado en un plano o en un globo que reproduce la forma del planeta) puede ser bien coloreado con 12 pinturas de modo que cada estado (independientemente de constar de una o de dos partes) quede cubierto por una pintura y que no haya dos estados con frontera común pintados del mismo color; sin embargo, 11 pinturas pueden no alcanzar para colorear de esta forma el mapa.

SUGERENCIA. Mostremos, ante todo, que 12 pinturas alcanzan, en efecto, para colorear cualquier mapa de la estructura descrita cumpliendo todas las condiciones del problema. Por supuesto, esta afirmación es válida para cualquier mapa que no comprenda más de 12 estados (en este caso, cada estado puede ser pintado de un color); supongamos ahora que la afirmación ha sido demostrada ya para todos los mapas que no contienen más de n estados (donde $n \ge 12$) y demostremos que en tal caso también será válida para cualquier mapa que antes, podemos limitar-4-01271

nos sólo al caso de mapas normales; además, podemos aceptar que cada país consta de dos trozos ya que si un país o consta de un trozo único. podemos con «generosidad» agregar a o un territorio pequeño tomado en una vecindad de un vértice del mapa en el que se tocan tres países distintos de o. Finalmente, podemos excluir también el caso de países canulares ya que si σ_1 es un país de este tipo y σ' y σ'' son dos países limítrofes de σ_1 por dentro y por fuera, respectivamente, podemos agregar a σ' una franja «transversal» estrecha limítrofe con el (nuevo) país σ_1 y con los países σ' (antiguo) y σ' ; si logramos colorear bien con 12 pinturas el mapa nuevo, también podremos hacerlo para el mapa an-

Como de costumbre, designemos ahora por p, l y s el número de tiguo. vértices, fronteras y países de nuestro mapa; en tal caso, 2l = 3p ya que el mapa es normal (véase la pág. 41). Por otro lado, el teorema de Euler (ejemplo 13) puede escribirse en este caso así: 2s + p == 1 + 2 puesto que el número total de regiones del mapa es igual

ahora a 2s y no a s. De las dos últimas igualdades obtenemos fácilmente

4s = p + 4 o, que viene a ser lo mismo, 12s = 3p + 12.

Designando ahora por s_i (donde i = 4, 5, 6, ...) el número de países de 1 fronteras (y, por consiguiente, de 1 vértices; en otras pala-bras, el número de polígonos de 1 lados) y valiéndonos de que en cada vértice del mapa se tocan tres países, o sea, que este vértice se obtiene spegandos tres vértices de países del mapa, escribiremos la igualado

 $12(s_4 + s_5 + s_6 + \ldots) = (4s_4 + 5s_5 + 6s_6 + \ldots) + 12$ 120 = 3p + 12 asi:

lo que se transforma en

 $8s_4 + 7s_5 + 6s_6 + \ldots + 2s_{10} + s_{11} = s_{13} + 2s_{14} + 3s_{15} + \ldots + 12.$

Pero el segundo miembro de la última igualdad es positivo; luego, también es positivo su primer miembro, o sea, al menos uno de los números s₄, s₅, s₆, ..., s₁₁ es porifico. De esta forma obtenemos que el mapa contiene un país con el número de fronteras <11; agregando dos partes de este país a países limítrofes, obtenemos un mapa de n países que, en virtud de la hipótesis inductiva, puede ser coloreado, de donde se deduce inmediatamente la posibilidad de la coloración requerida del mapa inicial de n + 1 países.

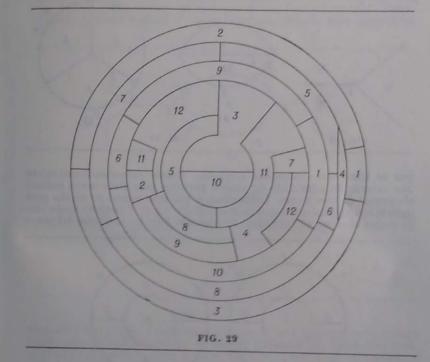
Para probar que 11 pinturas no alcanzan en todos los casos, basta demostrar que es factible un sistema que cumple las condiciones del problema y que consta de 12 países cada par de los cuales tiene frontera común (véase la fig. 29).

ElEmpio 19. (Tevrema de Volinski¹).) Cuatro pinturas alcanzanputa la colocación buena de un mapa normal si, y sólo si, sus fronteras pueden ser bien numeradas empleándose tres cifras.

manción. A. Si cuatro pinturas alcanzan para la coloración ivena de un mapa normal, sus fronteras pueden ser bien numeradas empleándine tres cifras.

1) V. V. Vollnski (1923-1943), matemático sovié tina, caido en el frente de la Gran Guerra Patria.

Sea S un mapa normal bien coloreado con las cuatro pinturas α . β. γ y δ. Empleemos la cifra 1 para las fronteras entre países de color α y β o de color y y δ, la cifra 2 para las fronteras entre países de color αyyo de color βy δy la cifra 3 para las fronteras entre países de color α y δ o de color β y γ . Esta numeración de las fronteras será buena: en efecto, si en un vértice A convergen dos fronteras de una misma cifra (digamos, de cifra 1 como en la fig. 30), los países σ_2 y σ_3 , separados de g1 por fronteras de un mismo número, deben tener también



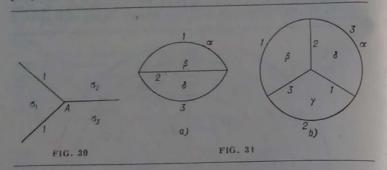
el mismo color (por ejemplo, si σ_1 tiene en nuestro caso el color α , los países σ_2 y σ_3 tendrán el color β); pero esto no puede ocurrir ya que σ2 y σ2 son países fronterizos.

B. Si las fronteras de un mapa normal pueden ser bien numeradas. empleándose tres cifras, cuatro pinturas alcanzan para la coloración buena de sus países. Para demostrar esta proposición aplicaremos la inducción según el número a de países.

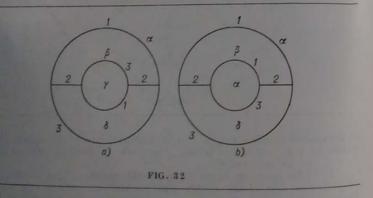
1º. En el caso de un mapa normal de tres países (fig. 18, a) existe un modo único (salvo el orden de las cifras) de numerar sus fronteras mediante las cifras 1, 2 y 3. Coloreemos este mapa como se indica en la fig. 31, a de modo que la frontera entre los países de color a y 8 lleve el número 1, la frontera entre los países de color \$ y 8 tenga en número 2 y la frontera entre los países de color a y d el número 3

40

Supongamos que se tiene una coloración buena de cuatro pinturas α , β , γ y δ de un mapa S y una numeración buena de sus fronteras tal que las fronteras entre los colores α y β y entre los colores γ y δ llevan el número 1, las fronteras entre los colores α y γ y entre los colores β y δ llevan el número 2 y las fronteras entre los colores α y δ y entre los colores β y γ llevan el número 3; en este caso diremos

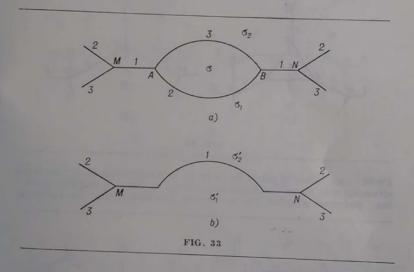


que se tiene una coloración *admisible*. Hemos demostrado que existe una coloración admisible de cuatro pinturas para todo mapa normal elemental de tres países. Demostremos que esto mismo es válido para todo mapa normal de cuatro países (fig. 18, b y c). Existe un modo único (salvo el orden de las cifras) de numerar bien las fronteras del mapa



representado en la fig. 18, c mediante las cifras 1, 2 y 3 (fig. 31, b). La coloración de este mapa indicada en la fig. 31, b será admisible. El mapa representado en la fig. 18, b admite para sus fronteras dos numeraciones, distintas por su esencia (fig. 32, a y b). Las coloraciones de estos mapas indicadas en la fig. 32, a y b también serán admisibles. 2º. Supongamos que todo mapa normal de n - 1 o n países cuyas fronteras están bien numeradas mediante tres cifras puede ser coloreado admisiblemente con cuatro pinturas. Consideremos un mapa normal S de $n \neq 1$ países cuyas fronteras también están bien numeradas mediante tres cifras. Según hemos visto en el ejemplo 14, en el mapa S existe un país σ de cinco fronteras todo lo más. Consideremos los distintos casos que pueden presentarse.

a) σ tiene dos fronteras. En la fig. 33, a representamos la única (salvo el orden de las cifras) numeración posible de las fronteras en una vecindad de σ . Agreguemos σ_1 al país σ asignando el número 1 a la nueva frontera MN que separa los países $\sigma'_1 = \sigma_1 + \sigma$ y $\sigma'_2 = \sigma_2$ (fig. 33, b) y conservando los números de las demás fronteras. Obtendremos un mapa normal S' cuyas fronteras estarán bien numeradas

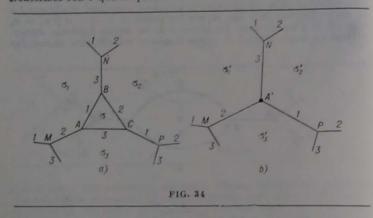


mediante tres cifras. Puesto que el mapa S' está formado por *n* paísesexiste una coloración buena de cuatro pinturas del mismo; ademássi el color del país σ'_1 es α , el color del país σ'_2 será β . Restituyendo el país σ y dándole el color γ , obtendremos una coloración admisible del mapa S de cuatro pinturas.

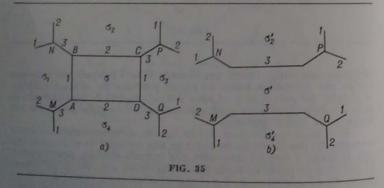
b) σ tiene tres fronteras. En la fig. 34, a representamos la única numeración posible de las fronteras en una vecindad de σ . Suponiendo que el mapa S está trazado sobre una película elástica, contraigamos el país σ a un punto de modo que las fronteras AB, BC y AC desaparezcan y los vértices A, B y C se confundan en un punto: A = B == C = A' (fig. 34, b). Conservando tanto la numeración de las fronteras MA', NA' y PA' (que provienen de MA, NB y PC) como la bien numeradas. Puesto que el mapa S' comprende n países, existe una coloración buena de cuatro pinturas del mismo; además, si el color del país σ'_1 es α , el color del país σ'_2 será δ y el color del país σ'_3 será γ . Restituyendo el país σ y dándole el color β , obtendremos una coloración admisible del mapa S.

c) σ tiene cuatro fronteras. En este caso existen dos numeraciones posibles, distintas por su esencia, de las fronteras en una vecindad de σ (fig. 35, a y fig. 36, a).

Consideremos el primer caso (fig. 35. a). Existirán dos países fronterizos con o que no poseen frontera común (véase el ejemplo 17).

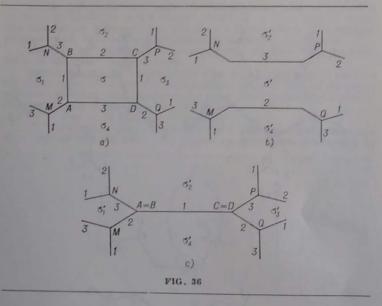


Puesto que, desde el punto de vista de la numeración de fronteras, la situación es la misma para ambos pares σ_1 , σ_3 y σ_2 , σ_4 de países opuestos, podemos aceptar que no tienen frontera común los países σ_1



y σ_s . Agreguemos a σ ambos países σ_1 y σ_3 asignando el número 3 a las fronteras nuevas NP y MQ (fig. 35, b). Obtendremos un mapa normal S' de fronteras bien numeradas. Puesto que el mapa S' comprende n-1 países, existe una coloración buena de cuatro pinturas del mismo; además, si el color del país $\sigma' = \sigma_1 + \sigma_3 + \sigma$ es α , el color de los países $\sigma'_2 = \sigma_2$ y $\sigma'_4 = \sigma_4$ será δ . Restituyendo el país σ , le daremos el color β .

En el segundo caso (fig. 36, a) podemos razonar de un modo análogo si es que los países sin frontera común son σ_1 y σ_3 ; pero, conservando el número 3 de la nueva frontera NP, deberemos asignar a la nueva frontera MQ el número 2 (fig. 36, b); el color del país $\sigma'_4 = \sigma_4$

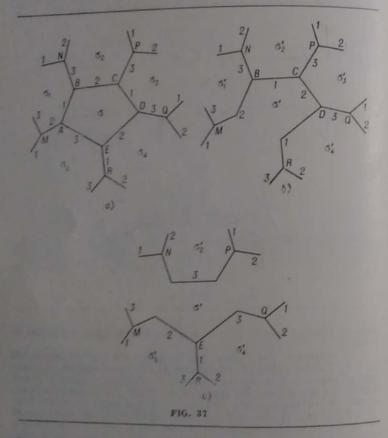


será γ ; restituyendo el país σ , también en este caso le daremos el color β .

Supongamos, por último, que los países sin frontera común son σ_2 y σ_4 . Contraigamos el cuadrilátero ABCD en un segmento de modo que el punto A coincida con el punto B, el punto C coincida con el punto D y el segmento BC se confunda con AD. Conservando la numeración de las fronteras MA, NB, PC y QD, asignemos a la nueva frontera BC = AD el número 1 (fig. 36, c). Obtendremos un mapa normal S' de fronteras bien numeradas. Puesto que el mapa S' comprende n países, existe una coloración buena de cuatro pinturas del mismo; además, si el color del país σ_1' es σ . los colores de los países σ_2' , σ_3' y σ_4' serán δ , α , y γ , respectivamente. Restituyendo el país σ , le daremos

d) σ tiene cinco fronteras. En este caso existe un modo único (salvo el orden de las cifras 1, 2 y 3) de numerar las fronteras en una vecindad del país σ (fig. 37, *a*).

Consideremos primero el caso en que el país σ_5 no coincide ni tiene frontera común con ninguno de los países σ_2 y σ_3 . Agregando σ_5 al país σ , asignemos los números 2 y 1 a las nuevas fronteras MB y RD y cambiemos por 1 y 2 los números de las fronteras BC y CD, respectivamente. Obtendremos un mapa normal S' (fig. 37, b) de fronteras bien numeradas. Puesto que el mapa S' comprende n países, existe una coloración buena de cuatro pinturas del mismo; además, si el color del país $\sigma' = \sigma + \sigma_5$ es α , el color de los países σ'_2 y σ'_4 será



 β mientras que el color de los países σ'_1 y σ'_3 será γ . Restituyendo el país σ , le daremos el color δ .

Si el país σ_5 es fronterizo o coincide con σ_2 , los países σ_1 y σ_3 no coinciden ai son fronterizos; si el país σ_5 es fronterizo o coincide con desde el punto de vista de numeración, la situación es la misma en ciden ai son fronterizos. Agregando ambos países σ_1 y σ_3 no coinciden ai son fronterizos. Agregando ambos países a σ_1 asignemos a las nuevas fronteras NP, ME y EQ los números 3, 2 y 3, respectivamente. Obtendremos un mapa normal S' (fig. 37, c) de fronteras bien numeradas. Puesto que el mapa S' comprende n - 1 países, existe una coloración buena de cuatro pinturas del mismo; además, si el color del país $\sigma' = \sigma + \sigma_1 + \sigma_3$ es α , el color de los países $\sigma'_2 = \sigma_2$ y $\sigma'_4 =$ $= \sigma_4 \operatorname{sera} \delta$ mientras que el color del país $\sigma'_5 = \sigma_5 \operatorname{sera} \gamma$. Restituyendo el país σ , le daremos el color β .

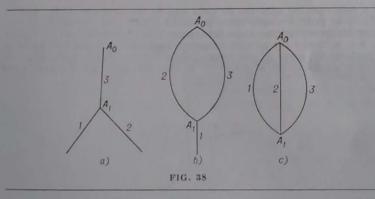
Puesto que se desconoce si existe una coloración buena de cuatro pinturas de cualquier mapa normal, también se desconoce si existe una numeración buena de tres cifras para las fronteras de cualquier mapa normal. Sólo puede demostrarse la siguiente proposición.

, EJEMPLO 20. Cuatro cifras alcanzan para numerar bien las fronteras de cualquier mapa normal.

DEMOSTRACIÓN. Demostraremos esta proposición para el caso de cualquier mapa (no necesariamente conexo; véase la pág. 33) en cuyos vértices convergen tres fronteras *a lo sumo*. Aplicaremos para ello la inducción según el número *n* de vértices del mapa.

1°. Si n = 2, la proposición se hace evidente.

 2° . Supongamos que la proposición es válida para cualquier mapa de n vértices en cada uno de los cuales convergen tres fronteras a lo

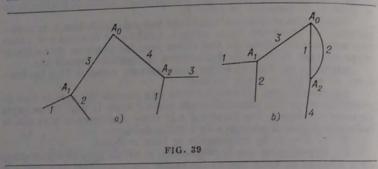


sumo. Consideremos un mapa S de n + 1 vértices que cumple la misma condición. Eliminando uno de ellos, digamos A_0 , y las fronteras que le corresponden, obtendremos un mapa S' de n vértices en cada uno de los cuales convergen tres fronteras a lo sumo. En virtud de la hipótesis inductiva, cuatro cifras 1, 2, 3 y 4 alcanzan para la numeración buena de las fronteras del mapa S'. Restituyamos el vértice A_0 y sus fronteras. Se pueden presentar tres casos.

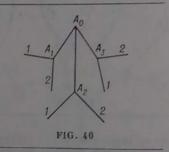
a) El vértice A_0 está unido (mediante una, dos o tres fronteras) a un vértice A_1 nada más del mapa S' (fig. 38, a, b y c). En este caso es fácil pasar de la numeración de las fronteras del mapa S' a una numeración buena de las fronteras del mapa S.

b) El vértice A_0 está unido a dos vértices A_1 y A_2 del mapa S' con la particularidad de que puede haber dos fronteras que lo unen con uno de estos vértices (fig. 39, a y b). Es fácil ver que en cualquiera de los casos se puede pasar de la numeración de las fronteras del mapa S' a una numeración buena de las fronteras del mapa S.

S' a una numeración bacad en la tres vértices A_1 , A_2 y A_3 del mapa c) El vértice A_0 está unido a tres vértices A_1 , A_2 y A_3 del mapa S' (fig. 40). La situación más desfavorable se dará si por cada uno de los vértices A_1 , A_2 y A_3 del mapa S' pasan dos fronteras exactamente.



En este caso los números de cada una de las fronteras A_0A_1 , A_0A_2 y A_0A_3 se podrán elegir entre pares de cifras; será imposible escoger tres números distintos entre estos pares sólo si estos últimos coinciden, o sea, si tienen los mismos números, digamos 1 y 2, los tres pares de fronteras del mapa S' que pasan por los vértices A_1 , A_2 y A_3 . Consideremos entonces en el mapa S' el contorno de longitud máxima que



arranca del vértice A_1 y está formado por fronteras de números 1 y ³ alternadamente (este contorno puede comprender una frontera nada más y también puede terminarse en uno de los vértices A_2 ó A_3). Dicho contorno no podrá cruzarse ya que, por hipótesis, las fronteras del mapa S' están bien numeradas. Intercambiemos los números de las fronteras que lo componen sustituyendo la unidad por el tres y viceseguirá siendo buena, pero en esta nueva numeración no podrán tener por los vértices A_1 , A_2 y A_3 ; en tal caso, será fácil pasar de la numeración buena de las fronteras del mapa S' a una numeración buena de las fronteras del mapa S.

§ 3. CONSTRUCCIÓN POB INDUCCIÓN

El método de inducción matemática puede aplicarse a la solución de problemas de construcción sólo si en las condiciones del problema figura un número entero positivo n(como, por ejemplo, en los problemas de construcción de n-gonos).' Veremos a continuación varios ejemplos de este género. Con la particularidad de que, a lo largo de este parágrafo, consideraremos también polígonos entrecruzados (fig. 41); en otras palabras, por <u>polígono</u> se entiende en la mayoría de los problemas *cualquier* quebrada cerrada $A_1A_2 \ldots A_n$.

Ejemplo 21. En el plano se toman 2n + 1 puntos. Constrúyase un (2n + 1)-gono tal que estos puntos sean los puntos medios de sus lados.

SOLUCIÓN. 1°. Si n = 1, el problema consiste en construir un triángulo a partir de los puntos medios de sus lados y se resuelve fácilmente (basta trazar por cada uno de los tres puntos dados la paralela a la recta que une los otros dos puntos).

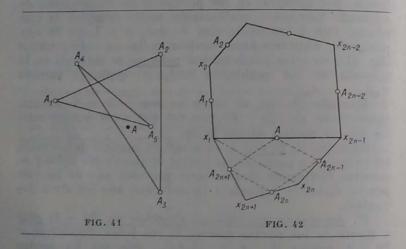
2°. Aceptando que sabemos construir un (2n - 1)-gono a partir de los puntos medios de sus lados, consideremos 2n + 1 puntos $A_1, A_2, \ldots, A_{2n+1}$ que son los puntos medios de los lados del (2n + 1)-gono buscado $x_1x_2 \ldots$ $\ldots x_{2n+1}$.

Tomemos el cuadrilátero $x_1x_{2n-1}x_{2n}x_{2n+1}$ (fig. 42). Los puntos A_{2n-1} , A_{2n} y A_{2n+1} son puntos medios de sus tres lados $x_{2n-1}x_{2n}$, $x_{2n}x_{2n+1}$ y $x_{2n+1}x_1$. Sea A el punto medio del cuatro lado x_1x_{2n-1} . El cuadrilátero $A_{2n-1}A_{2n}A_{2n+1}A$ es un paralelogramo (para demostrarlo basta trazar la recta x_1x_{2n} y considerar los triángulos $x_1x_{2n+1}x_{2n}$ y $x_1x_{2n-1}x_{2n}$; los segmentos $A_{2n}A_{2n+1}$ y $A_{2n-1}A$ bisecan los lados de estos triángulos); puesto que conocemos los puntos A_{2n-1} , A_{2n} y A_{2n+1} , es fácil construir el cuarto vértice A del paralelogramo. Los puntos A_1 , A_2 , \ldots , A_{2n-2} , A son los puntos medios de los lados del (2n - 1)-gono $x_1x_2 \ldots x_{2n-1}$ que sabemos construir en virtud de la hipótesis hecha. Por eso,

"POLIGONDS DEN LADOS.

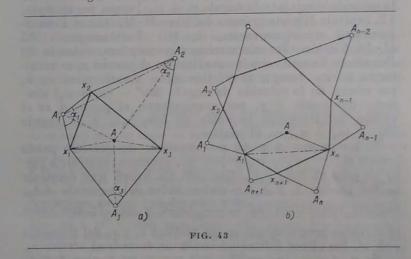
resta construir los segmentos x_1x_{2n+1} y $x_{2n-1}x_{2n}$ (a partir de los puntos x_1 y x_{2n-1} que ya conocemos) de modo que los puntos A_{2n+1} y A_{2n-1} (también conocidos) sean sus puntos medios.

En el caso de un polígono que no se entrecruza está claro cuáles son los puntos interiores y cuáles son los puntos exteriores (respecto a este polígono). En el caso general dichos conceptos carecen de sentido; por ejemplo, no podemos precisar si el punto A de la fig. 41 está dentro o fuera del polígono. Por eso, introduciremos la definición siguiente.



Sea $A_1A_2 \ldots A_n$ un polígono cualquiera. Determinemos para este polígono una determinada dirección del recorido de sus vértices (por ejemplo, en el orden A_1, A_2, \ldots, A_n). Supongamos que a partir de uno de sus lados, digamos A_1A_2 , se ha construido un triángulo A_1BA_2 . Si la dirección del recorrido de los vértices del triángulo que determina el orden A_1, A_2, B es opuesta a la dirección del recorrido de los vértices del polígono (o sea, en caso de que una siga la marcha de las agujas del reloj y la otra vaya en contra), diremos que el triángulo está dirigido hacia el lado exterior respecto al polígono; en cambío, si las direcciones de los recorridos de los vértices del triángulo y del polígono coinciden, diremos que el triángulo está dirigido hacia el lado neces interior respecto al polígono. **Ejemplo 22.** En el plano se toman *n* puntos. Constrúyase un *n*-gono tal que sus lados sean bases de los triángulos isósceles cuyos vértices son los *n* puntos considerados y cuyos ángulos en dichos vértices son $\alpha_1, \alpha_2, \ldots, \alpha_n^{-1}$.

SOLUCIÓN. Aceptaremos que algunos de los ángulos $\alpha_1, \alpha_2, \ldots, \alpha_n$ pueden incluso pasar de 180°, pero tomando el acuerdo de que el triángulo isósceles correspondiente estará dirigido hacia el lado exterior respecto al polígono



si $\alpha < 180^{\circ}$ y hacia el lado interior si $\alpha > 180^{\circ}$ (en este último caso el ángulo en el vértice será igual a $360^{\circ} - \alpha$).

1°. Sea n = 3. Supongamos que el problema ha sido resuelto de modo que x_1 , x_2 y x_3 son los vértices del triángulo pedido, o sea, sus lados son bases de los triángulos isósceles cuyos vértices están en los puntos considerados A_1 , A_2 y A_3 y cuyos ángulos en dichos vértices son α_1 , α_2 y α_3 (fig. 43, a). Por efecto de la rotación del plano de ángulo α_1 alrededor del punto A_1 (aceptamos que todas las rotaciones se realizan en contra del movimiento de las agujas de un reloj) el vértice x_1 se transforma en x_2 ; por efecto de la rotación de ángulo α_2 alrededor del punto A_2 , el vértice x_2 se

¹) El ejemplo anterior resulta un caso particular del ejemplo 22 si se toma $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 180^{\circ}$.

transforma en x_3 . Ambas rotaciones realizadas sucesi vamente equivalen a una sola rotación de ángulo $\alpha_1 + \alpha_2$ alrededor de un punto A que puede ser construido (a partir de los puntos A_1 y A_2 y de los ángulos α_1 y α_2) del modo siguiente: puntos A_1 y A_2 y de los ángulos α_1 y α_2) del modo siguiente: sobre el segmento A_1A_2 construimos en los puntos A_1 y A_2 los ángulos $\frac{\alpha_1}{2}$ y $\frac{\alpha_2}{2}$; el punto A en el que se cortan los otros dos lados de estos ángulos será precisamente el centro de la rotación resultante de ángulo $\alpha_1 + \alpha_2$. [véase, por ejemplo, la rotación resultante de ángulo $\alpha_1 + \alpha_2$. [véase, por ejemplo, $\S 2$, capítulo I, parte primera del libro H. M. Яслом, Геомет-§ 2, capítulo I, parte primera del libro H. М. Яслом, Геометpurecкие преобразования. I, М., Гостехиздат, 1955 pureckue преобразования. I, М., Гостехиздат, 1955 por efecto de esta rotación resultante, el vértice x_1 se transforma en x_3 . Luego, el vértice x_3 se transformará en x_1 por efecto de la rotación de ángulo $360^\circ - (\alpha_1 + \alpha_2)$ alrededor del punto A y, por consiguiente, el punto A es el vértice del triángulo isósceles de base x_1x_3 y de ángulo $360^\circ - (\alpha_1 + \alpha_2)$ en el vértice.

Si los puntos A y A_3 no coinciden (lo que sólo puede ocurrir si $\alpha_1 + \alpha_2 + \alpha_3 \neq 360^{\circ} \cdot k$), podemos construir a partir de ellos el lado x_1x_3 . Con este fin habrá que construir en los puntos A y A_3 , a ambos lados del segmento AA_3 , ángulos respectivos de $\frac{360^{\circ} - (\alpha_1 + \alpha_2)}{2}$ y de $\frac{\alpha_3}{2}$; sus lados se cortarán precisamente en los vértices x_1 y x_3 del triángulo pedido. No ofrece dificultad construir después el vértice x_2 . Si $\alpha_1 + \alpha_2 + \alpha_3 = 360^{\circ} \cdot k$ (o sea, si los puntos A y A_3 coinciden), el problema no admite solución única.

2°. Supongamos que sabemos construir un *n*-gono a partir de los vértices de los triángulos isósceles que descansan en sus lados y que tienen determinados ángulos en los vértices. Se pide construir un (n + 1)-gono a partir de los vértices $A_1, A_2, \ldots, A_n, A_{n+1}$ de los triángulos isósceles que descansan en sus lados y que tienen ángulos respectivos $\alpha_1, \alpha_2, \ldots, \alpha_n, \alpha_{n+1}$ en los vértices.

Sea $x_1x_2 \ldots x_nx_{n+1}$ el (n + 1)-gono pedido (fig. 43, b). Consideremos el triángulo $x_1x_nx_{n+1}$. A partir de los vértices A_n y A_{n+1} de los triángulos isósceles $x_nA_nx_{n+1}$ y $x_{n+1}A_{n+1}x_1$ que descansan en los lados x_nx_{n+1} y $x_{n+1}x_1$, podemos encontrar, razonando igual que en 1°, el vértice A del triángulo isósceles x_1Ax_n que descansa en la diagonal x_1x_n y que tiene el ángulo en el vértice igual a $360^\circ - (\alpha_n + \alpha_{n+1})$. Con ello nuestro problema quedará reducido al problema sobre la construcción del *n*-gono $x_1x_2 \ldots x_n$ a partir de los vértices $A_1, A_2, \ldots, A_{n-1}, A$ de los triángulos isósceles que descansan en sus lados y a partir de los ángulos $\alpha_1, \alpha_2, \ldots$ $\ldots, \alpha_{n-1}, 360^\circ - (\alpha_n + \alpha_{n+1})$ en dichos vértices. En virtud de la hipótesis inductiva, el *n*-gono $x_1x_2 \ldots x_n$ puede ser construido; realizado esto, será fácil construir después el (n + 1)-gono $x_1x_2 \ldots x_nx_{n+1}$.

el (n + 1)-gono $x_1x_2 \ldots x_nx_{n+1}$. Si $\alpha_1 + \alpha_2 + \ldots + \alpha_n = 360^\circ \cdot k$, el problema no admite solución única o no la tiene (¿por qué?).

Problema 16. En el plano se toman n puntos. Constrúyase el n-gono tal que estos puntos sean vértices de los triángulos que descansan en sus lados y que tienen determinados ángulos en dichos vértices y determinada relación entre sus laterales.

SUGERENCIA. El problema puede ser resuelto aplicando razonamientos análogos a los empleados en el anterior (que es un caso particular suyo) sólo en lugar de la rotación de ángulo α_1 alrededor del punto A_1 habrá que considerar ahora la transformación de semejanza que es resultado de la rotación de ángulo α_1 alrededor del punto A_1 y de la homotecia de mismo centro A_1 y de razón igual a la que existe entre los lados del triángulo correspondiente (procediendo del mismo modo en los demás puntos dados). La realización sucesiva de dos transformaciones de este tipo equivale a una tercera transformación del mismo género (véase, por ejemplo, § 2, capítulo I, parte segunda del libro de I. M. Yaglóm mencionado más arriba). Por consiguiente, podremos encontrar, a partir de los vértices A_1 y A_2 de los triángulos $x_1x_2A_1$ y $x_2x_3A_2$, el vértice A del triángulo x_1x_3A que descansa en el segmento x_1x_3 y que tiene un ángulo determinado en su vértice y una razón determinada entre sus laterales (empleamos las denotaciones del ejemplo anterior).

Èl lado x_1x_3 del triángulo $x_1x_2x_3$ se puede construir a partir de los puntos A y A_3 del modo siguiente. La realización sucesiva de dos determinadas transformaciones de semejanza de centros A y A_3 transforma x_1 en sí mismo (primero x_1 se transforma en x_3 y después x_3 se transforma en x_1) y equivale a una sola transformación de semejanza de centro en un punto B que puede ser construido. Puesto que el punto B se transforma en sí mismo, coincide con el punto buscado x_1 .

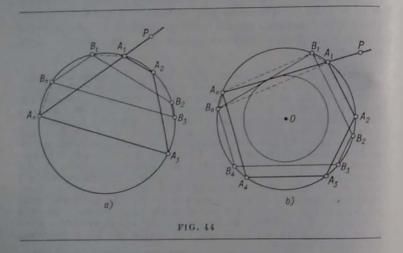
Si la suma de los ángulos en los vértices es múltiple de 360° y el producto de las razones de los lados es igual a uno, el problema no admite solución única o no la tiene.

Ejemplo 23. En el plano se toman una circunferencia y n puntos. Constrúyase el n-gono inscrito en la circunferencia cuyos lados pasan por estos puntos.

SOLUCIÓN. El problema es difícil; para resolverlo hay que aplicar el método de inducción matemática procediendo de

un modo absolutamente inesperado. Resulta que no podemos emplear la inducción según el número n de los lados del polígono. En lugar de ello nos vemos obligados a considerar un problema más general sobre la construcción del n-gono tal que k lados sucesivos del mismo pasan por k puntos dados mientras que los otros n - k lados son paralelos a rectas dadas (este problema coincide con el nuestro si k = n) realizando la inducción según el número k.

1°. Si k = 1 se trata del problema siguiente: construir el *n*-gono inscrito en la circunferencia de modo que su lado



 A_1A_n pase por un punto determinado P y los demás n-1lados A_1A_2 , A_2A_3 , ..., $A_{n-1}A_n$ sean paralelos a las rectas respectivas $l_1, l_2, \ldots, l_{n-1}$.

Supongamos que hemos resuelto el problema construyendo el polígono pedido (fig. 44, a y b). Tomemos en la circunferencia un punto cualquiera B_1 y construyamos el polígono inscrito $B_1B_2 \ldots B_n$ cuyos lados $B_1B_2, B_2B_3, \ldots, B_{n-1}B_n$ sean paralelos a las rectas $l_1, l_2, \ldots, l_{n-1}$, respectivamente. Entonces, serán iguales los arcos $A_1B_1, A_2B_2, \ldots, A_nB_n$ y, además, los arcos A_1B_1 y A_2B_2, A_2B_2 y A_3B_3 , etc. tendrán direcciones opuestas en la circunferencia. Por consiguiente, si n es par, los arcos A_1B_1 y A_nB_n tendrán direcciones opuestas de modo que el cuadrilátero $A_1B_1B_nA_n$ será trapecio isósceles de bases A_1A_n y B_1B_n (fig. 44, a), de donde resulta que el lado A_1A_n del polígono pedido es paralelo al lado B_1B_n del *n*-gono $B_1B_2 \ldots B_n$; es decir, en este caso debemos trazar por el punto *P* la paralela a B_1B_n ; realizado esto, será fácil determinar los restantes vértices del *n*-gono $A_1A_2 \ldots A_n$ (realícese el análisis).

Si *n* es impar, los arcos A_1B_1 y A_nB_n tienen la misma dirección de modo que el cuadrilátero $A_1B_1A_nB_n$ será un trapecio isósceles de bases A_1B_n y B_1A_n (fig. 44, *b*); puesto que sus diagonales A_1A_n y B_1B_n son iguales, en este caso deberemos trazar por el punto *P* una recta de modo que la circunferencia corte en ella la cuerda A_1A_n igual a la cuerda dada B_1B_n , o sea, trazar la tangente a la circunferencia que tiene el mismo centro que la inicial y que es tangente a B_1B_n (janálisis!).

2°. Supongamos que sabemos construir el *n*-gono inscrito en la circunferencia de modo que k lados sucesivos del mismo pasen por k puntos determinados mientras que los demás n - k lados sean paralelos a determinadas rectas. Se pide construir un *n*-gono inscrito en la circunferencia de modo que k + 1 lados sucesivos A_1A_2 , A_2A_3 , ... \ldots , $A_{k+1}A_{k+2}$ del mismo pasen por k + 1 puntos determinados $P_1, P_2, \ldots, P_{k+1}$ mientras que los demas n - k - -1 lados sean paralelos a determinadas rectas.

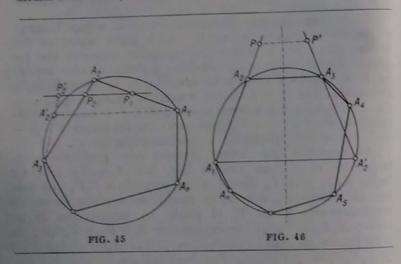
Supongamos que hemos resuelto este problema construyendo el *n*-gono pedido (fig. 45). Consideremos sus lados A_1A_2 y A_2A_3 . Sea $A_1A'_2$ la paralela a P_1P_2 que pasa por el vértice A_1 , sea A'_2 su punto de intersección con la circunferencia y sea P'_2 el punto de intersección de las rectas A'_2A_3 y P_1P_2 . Los triángulos $P_1A_2P_2$ y $P'_2P_2A_3$ son semejantes ya que $\angle A_2P_1P_2 = \angle A_2A_1A'_2 = \angle A_2A_3P'_2$ y $\angle A_2P_2P_1 = \angle P'_2P_2A_3$. Por consiguiente,

$$\frac{P_{1}P_{2}}{A_{3}P_{2}} = \frac{A_{2}P_{2}}{P_{2}P_{2}}, \text{ de donde resulta } P_{2}'P_{2} = \frac{A_{3}P_{2} \cdot A_{2}P_{2}}{P_{1}P_{2}}$$

El producto $A_3P_2 \cdot A_2P_2$ está determinado ya que depende sólo de la circunferencia y del punto P_2 (y no depende de cómo se escojan los puntos A_2 y A_3); por eso, podemos encontrar la magnitud del segmento P'_2P_2 y construir el punto P'_2 . Es decir, conocemos ahora que los k lados sucesivos $A'_2A_3, A_3A_4, \ldots, A_{k+1}A_{k+2}$ del n-gono $A_1A'_2A_3 \ldots A_n$ deben pasar por los k puntos determinados $P'_2, P_3, \ldots, P_{k+1}$ 5-01271 mientras que los otros n - k·lados $A_{k+2}A_{k+3} \ldots A_n A_1$, $A_1A_2^*$ deben ser paralelos, a determinadas rectas. En virtud de la hipótesis inductiva, podemos construir el *n*-gono $A_1A_2^*A_3 \ldots A_n$; realizado esto, podremos construir fácilmente el *n*-gono pedido $A_1A_2 \ldots A_n$.

Problema 17. Constrúyase el *n*-gono inscrito en la circunferencia dada de modo que k lados del mismo (ino necesariamente sucesivos!) pasen por k puntos determinados mientras que los demás n - k lados sean paralelos a determinadas rectas.

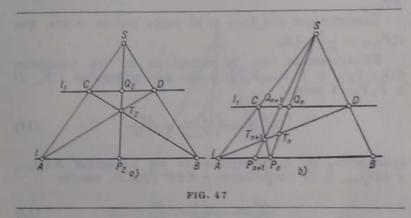
SUGERENCIA. Supongamos que el lado A_1A_2 del polígono pedido pasa por el punto P y que su lado A_2A_3 es paralelo a la recta l (fig. 46). Sea P' el punto simétrico de P respecto al diámetro perpendicular a la recta I y sea A'_2 el punto de intersección de la circunferen-



cia y de la recta $P'A_3$. Entonces, el lado A_1A_2' del *n*-gono $A_1A_2'A_3 \ldots A_n$ será paralelo a la recta dada *l* y el lado A_2A_3 pasará por el punto conocido P'. Repitiendo esta construcción el número debido de veces, nuestro problema quedará reducido a la construcción del *n*-gono tal que *k* lados succesivos del mismo pasan por determinados puntos mientras que los demás n - k lados son paralelos a determinadas rectas.

Ejemplo 24. Sean $l \neq l_1$ dos rectas paralelas. Divídase el segmento AB de la recta l en n partes iguales empleando solamente la regla.

SOLUCIÓN. 1°. Sea n = 2. Tomemos en el plano un punto S que no pertenece a las rectas $l y l_1$ uniéndolo después con los puntos A y B (fig. 47, a). Sean C y D los puntos en que las rectas AS y BS cortan la recta l_1 ; sea T_2 el punto de intersección de las rectas AD y BC y sea P_2 el punto de



intersección de las rectas ST_2 y *l*. Demostremos que P_2 es el punto pedido, o sea, que $AP_2 = \frac{4}{2}AB$.

Sea Q_2 el punto de intersección de las rectas ST_2 y l_1 . Es fácil ver que

$$\Delta T_2 P_2 B \propto \Delta T_2 Q_2 C, \ \Delta ABT_2 \propto \Delta DCT_2, \\ \Delta SAP_2 \propto \Delta SCQ_2 \quad \text{y} \quad \Delta SAB \propto \Delta SCD.$$

de donde se tiene

$$\frac{P_2B}{Q_2C} = \frac{T_2B}{T_2C} = \frac{AB}{CD} \quad \text{y} \quad \frac{P_2A}{Q_2C} = \frac{SA}{SC} = \frac{AB}{CD}.$$

Por consiguiente

$$\frac{P_2B}{Q_2C} = \frac{P_2A}{Q_2C} \,,$$

de modo que $P_2A = P_2B$ y $AP_2 = \frac{1}{2}AB$.

2°. Supongamos que sabemos construir, empleando solamente la regla, en el segmento AB el punto P_n tal que $AP_n = \frac{1}{n}AB$. Tomemos un punto cualquiera S que no pertenezca a las rectas $l y l_1$. Sean $T_n y Q_n$ los puntos en que las rectas AD y l_1 , respectivamente, cortan la recta SP_n (fig. 47, b). AD y l_1 , respect that y el punto T_{n+1} de intersección de las Uniendo el punto 5 y contente mos por Q_{n+1} y P_{n+1} los puntos rectas AD y CP_n , representemos por Q_{n+1} y P_{n+1} los puntos en los que las rectas l_1 y l, respectivamente, cortan la recta

Demostremos que P_{n+1} es el punto pedido, o sea, que ST n+1.

$$AP_{n+1} = \frac{1}{n+1}AD.$$

Efectivamente, de la semejanza de los triángulos $CQ_{n+1}T_{n+1}$ y $P_nP_{n+1}T_{n+1}$ y de los triángulos $CT_{n+}D$ y $P_nT_{n+1}A$ resulta

$$\frac{P_{n+1}P_n}{CQ_{n+1}} = \frac{P_n T_{n+1}}{CT_{n+1}} = \frac{AP_n}{CD} ; \qquad (11)$$

igualmente, de la semejanza de los triángulos SAP_{n+1} y SCQ_{n+1} y de los triángulos SAB y SCD, resulta

$$\frac{AP_{n+1}}{CQ_{n+1}} = \frac{SA}{SC} = \frac{AB}{CD} \,. \tag{12}$$

De las igualdades (11) y (12) se deduce que

$$\frac{P_{n+1}P_n}{AP_{n+1}} = \frac{AP_n}{AB};$$

pero como $P_{n+1}P_n = AP_n - AP_{n+1}$ y $AP_n = \frac{1}{n}AB$, tenemos

$$\frac{\frac{1}{n}AB - AP_{n+1}}{AP_{n+1}} = \frac{\frac{1}{n}AB}{AB}, \quad \frac{1}{n}AB - AP_{n+1} = \frac{1}{n}AP_{n+1}$$

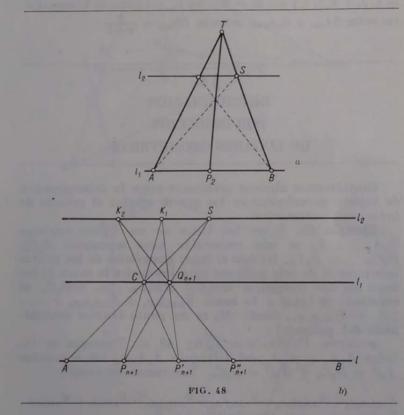
y definitivamente

$$AP_{n+1} = \frac{1}{n+1} AB.$$

Para determinar los demás puntos P'_{n+1} , P''_{n+1} , ..., bastará construir, aplicando el mismo procedimiento, los segmentos

$$P_{n+1}P'_{n+1} = \frac{1}{n}P_{n+1}B, \quad P'_{n+1}P''_{n+1} = \frac{1}{n-1}P'_{n+1}B, \text{ etc.}$$

Observación. Para construir los puntos P'_{n+1} , P''_{n+1} , ... también se puede proceder del modo siguiente. Valiéndonos del punto P2, podemos trazar por el punto S una recta l_2 paralela a la recta l (véase la fig. 48, a, donde T es un punto arbitrario de BS). Sea K_1 el punto de intersección de la recta $P_{n+1}C$ y de la recta l_2 y sea P'_{n+1} el punto de



intersección de las rectas K_1Q_{n+1} y l (fig. 48, b). Entonces, es fácil comprobar que $P_{n+1}P'_{n+1} = AP_{n+1} = \frac{1}{n+1}AB$. Los restantes puntos P''_{n+1} , P''_{n+1} , ... se construyen de un modo análogo.

Problema 18. Constrúyase el segmento de longitud $\frac{a}{n}$ empleando solamente la regla y el compás abierto de forma que la distancia entre sus puntas sea a.

SUGERENCIA. Tomemos en la circunferencia de radio a los puntos A_1 , A_2 , A_3 , A_4 , A_5 y A_6 , vértices de un hexágono regular. Supongamos que conocemos ya el punto B_n del radio OA_n tal que $OB_n =$ $= \frac{1}{n}OA_n = \frac{a}{n}$ (aceptando que $A_{6m+k} = A_k$ para todo m y para k == 1, 2, 3, 4, 5, 6 y que $B_1 = A_1$); sea B_{n+1} el punto de intersección las rectas OA_{n+1} y B_nA_{n+2} ; entonces, $OB_{n+1} = \frac{a}{n+1}$.

§ 4. DETERMINACIÓN POR INDUCCIÓN DE LUGARES GEOMÉTRICOS

Consideremos algunos problemas sobre la determinación de lugares geométricos en los que se emplea el método de inducción matemática.

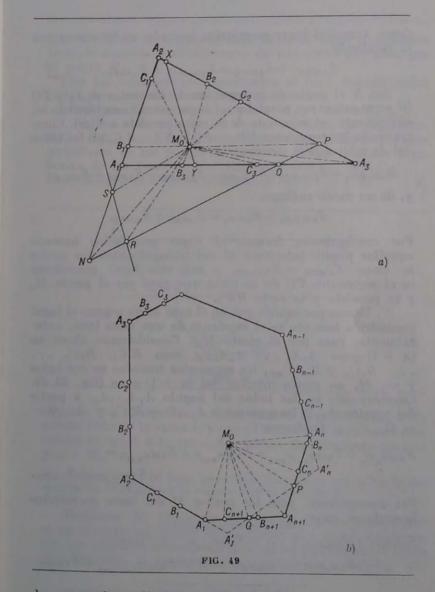
Ejemplo 25. Sobre los lados de un *n*-gono convexo $A_1A_2 \ldots A_n$ se han construido unos segmentos B_1C_1 , B_2C_2, \ldots, B_nC_n . Hállese el lugar geométrico de los puntos interiores *M* de este polígono para los cuales la suma de las áreas de los triángulos MB_1C_1 , MB_2C_2 , ..., MB_nC_n es constante (e igual a la suma $S_{\Delta M_0B_1C_1} + S_{\Delta M_0B_2C_2} + \ldots + S_{\Delta M_0B_nC_n}$, donde M_0 es un punto interior determinado del polígono).

SOLUCION. 1°. Sea n = 3 (fig. 49, a). Tomemos en los lados A_3A_2 y A_3A_1 del triángulo $A_1A_2A_3$ los segmentos $A_3P = B_2C_2$ y $A_3Q = B_3C_3$. Tendremos entonces¹)

 $S_{\Delta M_0 B_2 C_2} + S_{\Delta M_0 B_2 C_3} = S_{\Delta M_0 P A_3} + S_{\Delta M_0 Q A_3} = S_{\Delta P Q A_3} + S_{\Delta M_0 P Q}$

 $S_{\Delta M_0 B_1 C_1} + S_{\Delta M_0 B_2 C_2} + S_{\Delta M_0 B_3 C_3} = \\ = S_{\Delta PQA_3} + (S_{\Delta M_0 B_1 C_1} + S_{\Delta M_0 PQ});$

¹) Aceptando que el punto M_0 se encuentra dentro casos.



de un modo análogo, encontramos

 $S_{\Delta MB_1C_1} + S_{\Delta MB_2C_2} + S_{\Delta MB_3C_3} = S_{\Delta PQA_3} + (S_{\Delta MB_1C_1} + S_{\Delta MPQ}).$

Como vemos el lugar geométrico buscado se determina por la condición

 $S_{\Delta MB_1C_1} + S_{\Delta MPQ} = S_{\Delta M_0B_1C_1} + S_{\Delta M_0PQ}.$

Sea N el punto de intersección de las rectas A_1A_2 y PQ(si estas rectas son paralelas, el lugar geométrico buscado es, obviamente, el segmento de la recta paralela a ellas). Construyendo los segmentos NR = PQ y $NS = B_1C_1$ en los lados del ángulo A_2NP , tendremos

$$S_{\Delta M_0 B_1 C_1} + S_{\Delta M_0 PQ} = S_{\Delta M_0 NS} + S_{\Delta M_0 NR} = S_{\Delta NRS} + S_{\Delta M_0 RS}$$

y, de un modo análogo,

 $S_{\Delta MB_1C_1} + S_{\Delta MPQ} = S_{\Delta NRS} + S_{\Delta MRS}.$

Por consiguiente, forman el lugar geométrico buscado aquellos puntos interiores M del triángulo para los cuales se tiene $S_{\Delta MRS} = S_{\Delta M_0 RS}$, o sea, este lugar geométrico es el segmento XY de la recta que pasa por el punto M_0 y es paralela a la recta RS^1).

2°. Demos por sabido que en el caso de un *n*-gono el lugar geométrico buscado es el segmento de una recta (que, naturalmente, pasa por el punto M_0). Consideremos ahora un (n + 1)-gono $A_1A_2 \ldots A_nA_{n+1}$; sean B_1C_1 , B_2C_2 , ... \ldots , B_nC_n y $B_{n+1}C_{n+1}$ los segmentos tomados en sus lados y sea M_0 un punto interior del (n + 1)-gono (fig. 49, b). Construyendo en los lados del ángulo $A_1A_{n+1}A_n$, a partir del vértice A_{n+1} , los segmentos $A_{n+1}P = B_nC_n$ y $A_{n+1}Q =$ $= B_{n+1}C_{n+1}$, tendremos

$$S_{\Delta MB_n}c_n + S_{\Delta MB_{n+1}}c_{n+1} = S_{\Delta MA_{n+1}P} + S_{\Delta MA_{n+1}Q} = S_{\Delta A_{n+1}PQ} + S_{\Delta MPQ}.$$

Por consiguiente, para los puntos M del lugar geométrico buscado se tiene

$$S_{\Delta MB_1c_1} + S_{\Delta MB_2c_2} + \dots + S_{\Delta MB_{n-1}c_{n-1}} + S_{\Delta MPQ} =$$

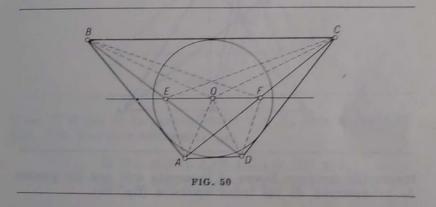
= $S_{\Delta M_0B_1c_1} + S_{\Delta M_0B_2c_2} + \dots + S_{\Delta M_0B_{n-1}c_{n-1}} + S_{\Delta M_0PQ}.$

¹⁾ Podríamos haber comenzado la inducción por el lados.

En virtud de la hipótesis inductiva, el lugar geométrico buscado representa el segmento de una recta que pasa por el punto M_0 .

De los razonamientos realizados es fácil deducir cómo puede ser construido este lugar geométrico.

Problema 19. Se toman un punto M_0 y *n* rectas l_1, l_2, \ldots , l_n en cada una de las cuales se tiene un segmento: $B_1C_1, B_2C_2, \ldots, B_nC_n$, respectivamente. Hállese el lugar geométrico de los puntos *M* para los cuales la suma algebraica de las áreas de los triángulos MB_1C_1, MB_2C_2, \ldots \ldots, MB_nC_n (el área del triángulo $MB_1C_1, i = 1, 2, \ldots, n$,



se toma con el signo «+» si los puntos M y M_0 están a un mismo lado de la recta l_i y con el signo «--» en el caso contrario) es igual a la suma del mismo tipo formada para el punto M_0 .

SUGERENCIA. El lugar geométrico buscado es una recta; la demostración es análoga a la realizada en el ejemplo 25.

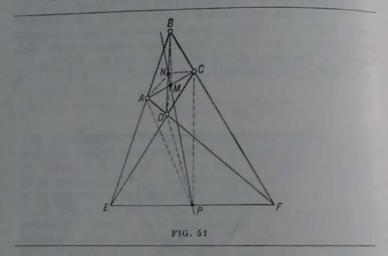
Problema 20. (<u>Teorema de Newton</u>.) Demuéstrese que si un cuadrilátero puede ser circunscrito a una circunferencia, los puntos medios de sus diagonales y el centro de dicha circunferencia se encuentran en una misma recta (fig. 50).

SUGERENCIA. Tenemos (véase la fig. 50)

$$S_{\Delta BCE} + S_{\Delta ADE} = S_{\Delta BCF} + S_{\Delta ADF} = S_{\Delta BCO} + S_{\Delta ADO} = \frac{1}{2} S,$$

donde S es el área del cuadrilátero. De aquí, en virtud del resultado del ejemplo 25 (o del problema 19), se deduce que los puntos E, F_{ℓ}^{s} y O están en una misma recta.

Problema 21. (Teorema de Gauss.) Demuéstrese que la recta que une los puntos medios de las diagonales de un



trapezoide convexo biseca el segmento que une los puntos de intersección de los lados opuestos (fig. 51).

SUGERENCIA. Tenemos (véase la fig. 51, donde P es el punto medio del segmento EF)

$$S_{\Delta ABM} + S_{\Delta CDM} = S_{\Delta ABN} + S_{\Delta CDN} = S_{\Delta ABP} - S_{\Delta CDP} = \frac{1}{2}S,$$

donde S es el área del cuadrilátero. De aquí se deduce, en virtud del resultado del problema 19, que los puntos M, N y P están en una misma recta.

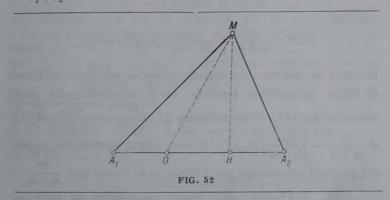
Ejemplo 26. Se tienen *n* puntos $A_1, A_2, \ldots, A_n y n$ números a_1, a_2, \ldots, a_n (positivos o negativos). Hállese el lugar geométrico de los puntos *M* para los cuales la suma

$$a_1 \cdot MA_1^2 + a_2 \cdot MA_2^2 + \ldots + a_n \cdot MA_n^2$$

es constante.

SOLUCION. 1°. Sea n = 2. Supongamos primero, para concretar, que ambos números a_1 y a_2 son positivos.

Tomemos en el segmento A_1A_2 el punto O que lo divide en razón $a_2: a_1$ de modo que $OA_1 = \frac{a_2}{a_1+a_2}A_1A_2$ y $OA_2 =$ $= \frac{a_1}{a_1+a_2}A_1A_2$. Sea M un punto cualquiera del plano



y sea H el pie de la perpendicular a A_1A_2 bajada desde M (fig. 52). Tenemos entonces

$$MA_1^2 = MO^2 + A_1O^2 \pm 2A_1O \cdot HO$$
 y
 $MA_2^2 = MO^2 + A_2O^2 \mp 2A_2O \cdot HO$.

Multiplicando la primera de estas igualdades por A_2O y la segunda por A_1O y sumándolas miembro por miembro, obtenemos

$$MA_{1}^{2} \cdot A_{2}O + MA_{2}^{2}A_{1}O =$$

= $MO^{2}(A_{2}O + A_{1}O) + A_{1}O^{2} \cdot A_{2}O + A_{2}O^{2} \cdot A_{1}O =$
= $MO^{2} \cdot A_{4}A_{2} + A_{4}O \cdot A_{2}O \cdot A_{4}A_{2}.$

Introduciendo aquí en lugar de A_1O y A_2O sus expresiones, encontramos

$$MA_{1}^{2} \frac{a_{1} \cdot A_{1}A_{2}}{a_{1} + a_{2}} + MA_{2}^{2} \frac{a_{2} \cdot A_{1}A_{2}}{a_{1} + a_{2}} =$$

= $MO^{2} \cdot A_{1}A_{2} + \frac{a_{1}}{a_{1} + a_{2}} \frac{a_{2}}{a_{1} + a_{2}} A_{1}A_{2}^{3},$

$$a_1 \cdot MA_1^2 + a_2 \cdot MA_2^2 = (a_1 + a_2) MO^2 + \frac{a_1 \cdot a_2}{a_1 + a_2} A_1 A_2^2$$

Por consiguiente, si

$$a_1 \cdot MA_1^2 + a_2 \cdot MA_2^2 = R^2,$$

tenemos

$$MO^{2} = \frac{R^{2}}{a_{1} + a_{2}} - \frac{a_{1} \cdot a_{2}}{(a_{1} + a_{2})^{2}} A_{1}A_{2}^{2} = \text{const.}$$

De aquí se deduce que siendo $\frac{R^2}{a_1+a_2} - \frac{a_1 \cdot a_2}{(a_1+a_2)^2} A_1 A_2^2 > 0$ el lugar geométrico buscado es la circunferencia cuyo centro está en O y cuyo radio es $\sqrt{\frac{R^2}{a_1+a_2} - \frac{a_1 \cdot a_2}{(a_1+a_2)^2} A_1 A_2^2};$ si $\frac{R^2}{a_1+a_2} - \frac{a_1 \cdot a_2}{(a_1+a_2)^2} A_1 A_2^2 = 0$, este lugar geométrico consta del punto O solamente; por último, si se tienen que $\frac{R^2}{a_1+a_2} - \frac{a_1 \cdot a_2}{(a_1+a_2)^2} A_1 A_2^2 = 0$, este lugar geométrico no contiene ningún muto.

El caso en que a_1 y a_2 son ambos negativos se reduce evidentemente al anterior. Si se tiene $a_1 > 0$, $a_2 < 0$ y $a_1 + a_2 \neq 0$ (por ejemplo, $a_1 + a_2 > 0$), el punto O debe tomarse a la derecha del punto A2 en la prolongación del segmento A_1A_2 de modo que $A_2O = \left|\frac{a_1}{a_1 + a_2}\right|$ y $A_1O =$ $=\left|\frac{a_2}{a_1+a_2}\right|$; todos los razonamientos posteriores conservan su vigor. Por último, si $a_1 + a_2 = 0$, tenemos $a_1 = -a_2$ y nuestro problema se reduce al siguiente: hallar el lugar geométrico de los puntos M tales que es constante la diferencia de cuadrados de sus distancias a dos puntos fijos $A_1 \neq A_2$. Sea H el pie de la perpendicular a la recta A_1A_2 bajada desde el punto M (fig. 52); entonces tenemos $MA_1^2 =$ $= MH^2 + A_1H^2$ y $MA_2^2 = MH_2^2 + A_2H^2$ y, por consiguiente, $MA_1^2 - MA_2^2 = A_1H^2 - A_2H^2$. Si $MA_1^2 - MA_2^2 = A_1H^2 - A_2H^2$. $= R^2$, se tiene $A_1H - A_2H = \frac{R^2}{A_1A_2}$ y esto determina completamente el punto H; de aquí se deduce que el lugar geométrico buscado será en este caso la recta perpendicular $\approx A_1A_2$ que pasa por el punto H.

2°. Supongamos ya demostrado que en el caso de npuntos el lugar geométrico correspondiente es una circunferencia si $a_1 + a_2 + \ldots + a_n \neq 0$ y una recta si $a_1 + a_2 + \ldots + a_n = 0$. Consideremos ahora n + 1 puntos $A_1, A_2, ; \ldots, A_{n+1}$ y n + 1 números $a_1, a_2, \ldots, a_{n+1}$. Supongamos que $a_n + a_{n+1} \neq 0$ (si $a_n + a_{n+1} = 0$, podemos sustituir este par de números por los números a_{n-1} y a_{n+1} o por los números a_{n-1} y a_n ; si se tiene simultáneamente $a_n + a_{n+1} = 0$, $a_{n-1} + a_{n+1} = 0$ y $a_{n-1} + a_n = 0$, será $a_{n-1} = a_n = a_{n+1} = 0$ y podremos emplear directamente la hipótesis inductiva ya que en este caso se trataría de n - 2 puntos $A_1, A_2, \ldots, A_{n-2}$ y de n - 2 números $a_1, a_2, \ldots, a_{n-2}$).

Podemos demostrar, razonando igual que en 1°, que en el segmento A_nA_{n+1} existe un punto O tal que

$$a_n \cdot MA_n^2 + a_{n+1} \cdot MA_{n+1}^2 =$$

= $(a_n + a_{n+1}) MO^2 + \frac{a_n \cdot a_{n+1}}{a_n + a_{n+1}} A_n A_{n+1}^2$

cualquiera que sea el punto M del plano.

Esto permite reducir nuestro problema a la determinación del lugar geométrico de los puntos M para los cuales es constante la suma

$$a_1 \cdot MA_1^2 + a_2 \cdot MA_2^2 + \ldots + a_{n-1} \cdot MA_{n-1}^2 + (a_n + a_{n+1}) MO^2.$$

En virtud de la hipótesis inductiva, este lugar geométrico es una circunferencia si $a_1 + a_2 + \ldots + a_n + a_{n+1} \neq 0$ y una recta si $a_1 + a_2 + \ldots + a_n + a_{n+1} = 0$.

Problema 22. Hállese el lugar geométrico de los puntos para los cuales es constante la suma de cuadrados de sus distancias a n puntos fijos.

SUGERENCIA. Basta tomar en el problema 26 $a_1 = a_2 = \ldots$ $\ldots = a_n = 1$.

Problema 23. Hállese el punto para el cual es mínima la suma de cuadrados de sus distancias a n puntos fijos.

SUGERENCIA. Es el centro de la circunferencia que representa el lugar geométrico del problema 22.

Problema 24. Hállese el lugar geométrico de los puntos cuya razón de distancias a dos puntos fijos es constante.

76

SUGERENCIA. Si M es un punto del lugar geométrico buscado, te-

nemos $\frac{AM}{BM} = c$ y, por consiguiente $AM^2 - c^2 \cdot BM^2 = 0$; por eso, este problema se reduce al ejemplo 26.

Problema 25. Sea $A_1A_2 \ldots A_n$ un *n*-gono. Hállese el lugar geométrico de los puntos M tales que tenga área fija S el polígono cuyos vértices son las proyecciones del punto M sobre los lados del polígono inicial.

SUGERENCIA. Se puede demostrar que el área del triángulo cuyos sugerencia. de provecciones del punto M sobre los lados del triángulo $A_1 A_2 A_3$ es igual a $\frac{1}{4} \left[1 - \frac{d^2}{R^2} \right] S_{\Delta A_1 A_2 A_3}$, donde R es el radio de la circunferencia Σ circunscrita al triángulo $A_1A_2A_3$ y d es la distancia entre el punto M y el centro de la circunferencia Σ . De aquí se deduce que para n = 3 el lugar geométrico buscado es una circunferencia del mismo centro que Σ (o un par de circunferencias de este tipo). Después, aplicando la inducción según el número de lados del polígono, se demuestra que cualquiera que sea n el lugar geométrico buscado es una circunferencia (o un par de circunferencias concéntricas). [Véase la solución del problema 90 en el libro de Д. О. Шклярский, Н. Н. Ченцов и И. М. Яглом, Избранные задачи и теоремы элементарной математики, ч. 2, М., Гостехиздат, 1952 (D.O. Shkliarskt, N. N. Chentzov e I. M. Yaglam, Problemas y teoremas escogidos de matemática elemental, parte 2)].

§ 5. DEFINICIÓN POR INDUCCIÓN

Interesantes ejemplos de aplicación del método de inducción matemática en la Geometría encontramos en problemas relativos a conceptos cuya definición misma se basa en el "paso de n a n + 1"; a ellos consagramos este parágrafo.

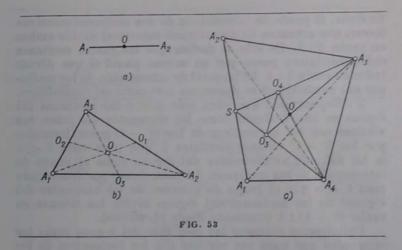
Ejemplo 27. Definición de medianas y baricentro de un n-gono.

1º. Llamaremos baricentro de un segmento su punto medio (fig. 53, a).

Las medianas de un triángulo $A_1A_2A_3$ pueden definirse entonces como los segmentos que unen los vértices del

triángulo y los baricentros de los lados opuestos (fig. 53, b). Es sabido que las medianas del triángulo se cortan en un mismo punto que las divide en razón 2 : 1 contando desde el vértice. Diremos que el punto en el que se cortan las tres medianas del triángulo es su baricentro.

Definamos ahora las medianas de un cuadrilátero A1A2A3A4 como los segmentos que unen sus vértices A1, A2, A3 y A4 y los baricentros O_1 , \hat{O}_2 , O_3 y O_4 de los triángulos que forman



los tres vértices restantes (fig. 53, c). Demostremos que las medianas del cuadrilátero se cortan en un mismo punto que las divide en razón 3:1 contando desde el vértice. Efectivamente, sea S el baricentro (punto medio) del segmento A_1A_2 y sean O_4 y O_3 los baricentros respectivos de los triángulos A1A2A3 y A1A2A4; sea, además, O el punto de intersección de las medianas A_3O_3 y A_4O_4 del cuadrilátero. Puesto que SA3 y SA4 son medianas de los triángulos $A_1A_2A_3$ y $A_1A_2A_4$, tenemos

$$\frac{SA_3}{SO_4} = \frac{3}{1}$$
 y $\frac{SA_4}{SO_3} = \frac{3}{1}$

y, por consiguiente,

$$\frac{SA_3}{SO_4} = \frac{SA_4}{SO_3}$$

De aquí se deduce] que $O_3O_4 \parallel A_3A_4$ y que $\frac{A_3A_4}{O_3O_4} = \frac{SA_3}{SO_4} = \frac{3}{1}$. Además, como los triángulos OO_3O_4 y OA_3A_4 son semejantes, tenemos

$$\frac{OA_4}{OO_4} = \frac{OA_3}{OO_3} = \frac{A_3A_4}{O_3O_4} = \frac{3}{1}.$$

Es decir, el punto de intersección de dos medianas sucesivas (o sea, que arrancan de dos vértices sucesivos) divide ambas en razón 3 : 1. De ello se deduce que las cuatro medianas del cuadrilátero pasan por un mismo punto O que divide todas en razón 3 : 1. El punto O de intersección de las medianas del cuadrilátero se denomina baricentro del cuadrilátero. 2. Supongamos que para todo k < n las medianas del k-gono se han definido como los segmentos que unen sus vértices con los baricentros de los (k - 1)-gonos formados por los k - 1 vértices restantes y que para todo k < nse ha definido el baricentro del k-gono como el punto de intersección de sus medianas. Además, demos por demostrado para k < n que el punto de intersección (el baricentro del k-gono) de las medianas del k-gono divide las mismas en razón (k - 1): 1 (contando desde el vértice).

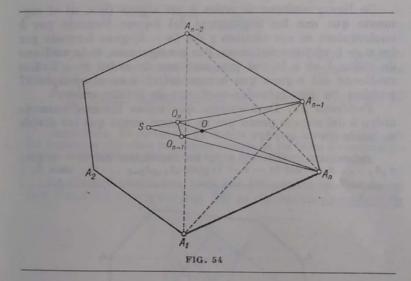
Definiremos entonces las medianas del *n*-gono como los segmentos que unen sus vértices con los baricentros de los (n-1)-gonos formados por los n-1 vértices restantes. Demostremos que todas las medianas del *n*-gono $A_1A_2 \ldots A_n$ pasan por un mismo punto que las divide en razón (n-1):1(contando desde el vértice). Efectivamente, sea S el baricentro del (n-2)-gono $A_1A_2 \ldots A_{n-2}$; en este caso las rectas $SA_{n-1} ext{ y } SA_n$ serán medianas de los (n-1)-gonos $A_1A_2 \ldots$ los baricentros de estos (n-1)-gonos, tenemos, en virtud de la hipótesis inductiva.

$$\frac{SA_{n-1}}{SO_n} = \frac{SA_n}{SO_{n-1}} = \frac{n-1}{1}$$

Por consiguiente, $O_{n-1}O_n \parallel A_nA_{n-1} \neq \frac{A_{n-1}A_n}{O_{n-1}O_n} = \frac{n-1}{1}$. Sea 0el punto de intersección de las medianas $O_{n-1}A_{n-1} \neq O_nA_n$ del n-gono $A_1A_2 \ldots A_n$. De la semejanza de los triángulos $OO_{n-1}O_n$ y $OA_{n-1}A_n$ resulta

$$\frac{OA_{n-1}}{OO_{n-1}} = \frac{OA_n}{OO_n} = \frac{A_{n-1}A_n}{O_{n-1}O_n} = \frac{n-1}{1}.$$

Por consiguiente, el punto de intersección de dos medianas sucesivas del *n*-gono divide ambas en razón (n - 1): 1.



De ello se deduce precisamente que todas las medianas del *n*-gono pasan por un mismo punto (que las divide en razón (n-1): 1).

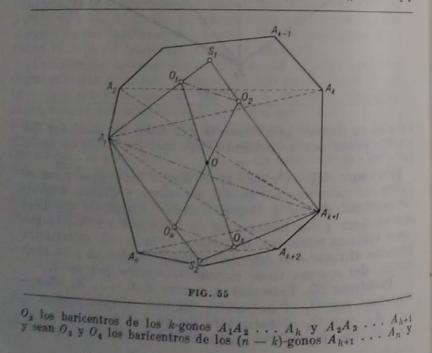
Podemos definir ahora el baricentro del n-gono como el punto de intersección de sus medianas y definir después las medianas del (n + 1)-gono como los segmentos que unen sus vértices y los baricentros de los n-gonos formados por los n vértices restantes. El método de inducción matemática permite afirmar que esta definición de medianas y de baricentro del n-gono tiene sentido cualquiera que sea n.

Problema 26. Tomemos un *n*-gono $A_1A_2 ldots A_n$. Representemos por O_1 el baricentro del (n-1)-gono $A_2A_3 ldots A_2$. $\dots A_n$, por O_2 el baricentro del (n-1)-gono $A_1A_3 ldots A_n$, etc. y por O_n el baricentro del (n-1)-gono $A_1A_2 ldots$ $\dots A_n$, etc. y por O_n el baricentro del (n-1)-gono $A_1A_2 ldots$ $\dots A_{n-1}$ etc. y por O_n el baricentro del (n-1)-gono $A_1A_2 ldots$... A_{n-1} . Demuéstrese que los *n*-gonos $O_1O_2 \cdots O_n$ y $A_1A_2 \cdots A_n$ son semejantes. SUGERENCIA. Según hemos visto en el ejemplo 27, se tiene $O_1O_2 \parallel A_1A_2$ y $\frac{O_1O_2}{A_1A_2} = \frac{1}{n-1}$. Mediante razonamientos análogos se demuestra que $O_2O_3 \parallel A_2A_3$ y $\frac{O_2O_3}{A_2A_3} = \frac{1}{n-1}$, etc.

Se llama mediana de orden k del n-gono (k < n) el segmento que une los baricentros del k-gono formado por k cualesquiera de sus vértices y del (n - k)-gono formado por los n - k vértices restantes. Por consiguiente, toda mediana de orden k es a la vez una mediana de orden n - k. Las medianas del n-gono que hemos definido en el ejemplo 27 podrían ser denominadas medianas de primer orden.

Problema 27. Demuéstrese que todas las medianas de orden k del *n*-gono pasan por un mismo punto que las divide en razón (n - k) : k.

SUGERENCIA. Sean S_1 y S_2 los baricentros del (k - 1)-gono $A_1A_2 \dots A_k$ y del (n - k - 1)-gono $A_{h+2}A_{h+3} \dots A_n$, sean O_1 y



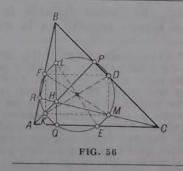
$$\frac{OO_1}{OO_3} = \frac{OO_2}{OO_4} = \frac{O_1O_2}{O_3O_4} = \frac{\frac{1}{k}A_1A_{k+1}}{\frac{1}{n-k}A_1A_{k+1}} = \frac{n-k}{k}$$

Se puede demostrar que para todo k el punto de intersección de las medianas de orden k de un n-gono coincide con el baricentro del mismo.

Problema 28. Enúnciese la proposición del problema 27 para el caso n = 4 y k = 2.

RESPUESTA. Se cortan en un mismo punto y bisecan uno al otro los segmentos que unen los puntos medios de los lados opuestos y los puntos medios de las diagonales de un cuadrilátero cualquiera.

La circunferencia que pasa por los puntos medios de los tres lados del triángulo (fig. 56) se denomina *circunferencia*



de Euler. Tiene varias propiedades interesantes (por ejemplo, la circunferencia de Euler del triángulo ABC, a parte de los puntos medios D, E y F de sus lados, pasa también por los pies P, Q y R de las alturas AP, BQ y CR, así como por los puntos K, L y M que bisecan los segmentos AH, BH y CH de las alturas comprendidos entre los vértices y el punto H de intersección de las alturas¹); por eso, la circunferencia de Euler suele también llamarse *circunferencia* de nueve puntos del triángulo). Puesto que la circunferencia de Euler del triángulo ABC resulta circunscrita al triángulo DEF que es semejante a ABC siendo $\frac{1}{2}$ la razón de seme-

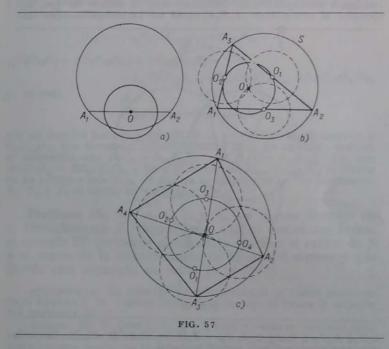
janza, el radio de la circunferencia de Euler es $\frac{R_i}{2}$, donde Res el radio de la circunferencia circunscrita al triángulo inicial *ABC*. Ahora veremos que el concepto de la circunferencia de Euler es extensivo a cualquier polígono inscrito en una circunferencia.

Problema 29. 1°. Se denomina <u>circunferencia de Euler</u> de la cuerda A_1A_2 , tomada en una circunferencia S de radio R, la circunferencia de radio $\frac{R}{t^2}$ cuyo centro es el punto medio de la cuerda A_1A_2 (fig. 57, a). Las tres circunferencias de Euler de los lados del triángulo $A_1A_2A_3$ inscrito en la circunferencia S se cortan en un mismo punto O, centro de la circunferencia de radio $\frac{R}{2}$ que pasa por los centros de las tres circunferencias de Euler; esta última circunferencia se denomina <u>circunferencia de Euler del triángulo $A_1A_2A_3$ </u> (fig. 57, b).

2°. Supongamos que hemos definido la circunferencia de Euler para un n-gono inscrito en la circunferencia S

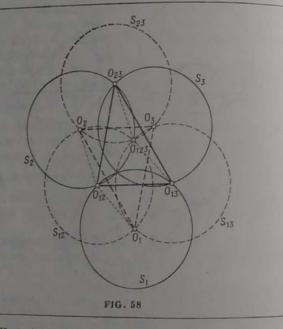
¹) El cuadrilátero KFDM (fig. 56) es un rectángulo (en efecto, tenemos $FK \parallel BH \parallel DM$ ya que FK y DM pasan por los puntos medios de los lados de los triángulos ABH y CBH de base común BH; tenemos igualmente $FD \parallel AC \parallel KM$ ya que FD y KMy AHC de base común AC; por último, tenemos $BH \perp AC$; por consiguiente, los segmentos FM y DK son iguales y los puntos medios de ambos coinciden. Razonamientos análogos permiten ver que el de EL coincide con el punto medio común de FM y KD. De aquí se pasa también por K, L y M (el centro de esta circunferencia de Euler con el punto medio común de DK, EL y FM y su diámetro es igual

Además, puesto que K y D según hemos demostrado son puntos diametralmente opuestos de la circunferencia de Euler, resulta que to P; de la misma forma se demuestra que también pasa por el puntos Q y R. y que hemos demostrado que su radio es $\frac{R}{2}$ (R es el radio de la circunferencia S). Consideremos ahora un (n + 1)-gono $A_1A_2A_3 \ldots A_{n+1}$ inscrito en la circunferencia S. En este caso las n + 1 circunferencias de Euler de los n-gonos $A_2A_3 \ldots A_{n+1}$, $A_1A_3 \ldots A_{n+1}$, \ldots , $A_1A_2 \ldots A_n$ se



cortan en un mismo punto, centro de la circunferencia de radio $\frac{R}{2}$ que pasa por los centros de las n + 1 circunferencias de Euler; esta última circunferencia se denomina <u>circun-</u> <u>ferencia de Euler del (n + 1)-gono $A_1A_2 \ldots A_{n+1}$ (véase</u> la fig. 57, c donde está representada la circunferencia de Euler de un cuadrilátero).

SUGERENCIA. Sea $A_1A_2A_3A_4$ un cuadrilátero cualquiera inscrito en la circunferencia S. Puesto que la circunferencia de Euler del triángulo $A_1A_2A_3$, por ejemplo, pasa por los puntos medios de los tres segmentos H_4A_1 , H_4A_2 y H_4A_3 , donde H_4 es el punto de intersección de las alturas de $A_1A_2A_3$ (véase lo dicho anteriormente), resulta que esta circunferencia se obtiene de la circunferencia S por medio de una homotecia de centro H_4 y de razón $\frac{1}{2}$; por eso, el punto medio del segmento H_4A_4 pertenece a dicha circunferencia. Resta fijarse ahora en que los puntos medios de los segmentos H_1A_1 , H_2A_2 , H_3A_3 y H_4A_4 (donde H_1 , H_2 y H_3 son los puntos de intersección de las alturas de los triángulos correspondientes) coinciden; esto se deduce de que, por ejemplo, el cuadrilátero $A_1H_2H_1A_2$ es un paralelogramo (ya que



 $A_1H_2 \parallel A_2H_1 \perp A_3A_4$ y $A_1H_2 = A_2H_1 = al$ doble de la distancia entre el centro de S y el segmento A_3A_4).

Supongamos ahora que ha sido demostrada ya la existencia de la circunferencia de Euler para cualquier k-gono cuyo número de lados k no pasa de $n \ge 4$. Consideremos un (n + 1)-gono $A_1A_2 \ldots A_nA_{n+1}$ inscrito en la circunferencia S. Se pide demostrar que las circunferencia $A_1A_2A_4 \ldots A_{n+1}, \ldots, A_1A_2 \ldots A_n$ se cortan en un mismo punto; quiera de estas circunferencias, por ejemplo, $S_1, S_2 y S_3^{-1}$. Sean S_{12} .

¹⁾ Ya que si cualesquiera tres de las $n \ge 5$ circuncircunferencias dos a dos) se cortan en un mismo punto, todas las no es cierto). 87

 S_{13} y S_{23} las circunferencias de Euler de los (n-1)-gonos $A_3A_4 \ldots A_{n+1}$, $A_2A_4A_5 \ldots A_{n+1}$ y $A_1A_4A_5 \ldots A_{n+1}$ y sean O_{12} , O_{13} y O_{23} sus centros; sean, además, O_1 , O_2 y O_3 los centros de las circunferencias S_1 , S_2 y S_3 y sea, por último, O_{123} el centro de la circunferencia de Euler S_{123} del (n-2)-gono $A_4A_5 \ldots A_{n+1}$. Obtenemos así la fig. 58 que permite deducir fácilmente la igualdad de los triángulos $O_1O_2O_3$ y $O_{13}O_{12}$. (Para demostrar la igualdad de los lados O_1O_2 y $O_{23}O_{13}$ de estos triángulos basta considerar los triángulos $O_1O_2O_{12}$ que son iguales pues

$$\begin{array}{c} O_{12}O_1 = O_{12}O_2 = O_{123}O_{23} = O_{123}O_{13} = \frac{R}{2},\\ \angle O_1O_{12}O_2 = \angle O_1O_{12}O_{123} + \angle O_{123}O_{12}O_2 = \\ = 2\angle O_{13}O_{12}O_{123} + 2\angle O_{123}O_{12}O_{23} = 2\angle O_{13}O_{12}O_{23} \end{array}$$

y, además,

$$\angle O_{23}O_{123}O_{13} = 2 \angle O_{13}O_{12}O_{23}$$

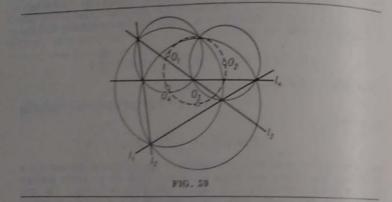
por ser ángulos inscrito y central de la circunferencia circunscrita a $O_{12}O_{13}O_{23}$ que descansan sobre un mismo arco; de un modo análogo se demuestra que $O_1O_3 = O_{23}O_{12}$ y que $O_2O_3 = O_{13}O_{12}$). Ya que $\Delta O_1O_2O_3 = \Delta O_{23}O_{13}O_{12}$ y las circunferencias S_{23} , S_{13} y S_{12} se cortan en un mismo punto O_{123} , de ello ya se deduce que las circunferencias S_1 , S_2 y S_3 se cortan en un punto.

Problema 30. Sea $A_1A_2 \ldots A_n$ un *n*-gono inscrito en la circunferencia *S*. Demuéstrese que su baricentro (véase el ejemplo 27) pertenece al segmento que une el centro de *S* y el centro de la circunferencia de Euler del *n*-gono y que divide este segmento en razón (n-2): 2.

SUGERENCIA. La solución de este problema se puede encontrar en el libro de I. M. Yaglóm indicado en la pág. 62 (véase la solución del problema 52, c).

Ejemplo 28. 1º. Sean l_4 , l_2 , l_3 y l_4 cuatro rectas en posición general, o sea, situadas de modo que no hay dos paralelas ni tres que pasen por un mismo punto; sea O_1 el centro de la circunferencia circunscrita al triángulo que forman las rectas l_2 , l_3 , l_4 ; sea O_2 el centro de la circunferencia circunscrita al triángulo que forman las rectas l_1 , l_3 y l_4 . etc. Entonces los cuatro puntos O_1 , O_2 , O_3 y O_4 están sobre una misma circunferencia que se denomina circunferencia de centros de las cuatro rectas l_1 , l_2 , l_3 y l_4 (fig. 59).

2º. Supongamos que se ha definido ya la circunferencia de centros de las *n* rectas. Consideremos n + 1 rectas $l_1, l_2, l_3, \ldots, l_{n+1}$ en posición general. Sea O_1 el centro de la circunferencia de centros de las *n* rectas $l_2, l_3, \ldots, l_{n+1}$; sea O_2 el centro de la circunferencia de centros de las *n* rectas $l_1, l_3, \ldots, l_{n+1}$, etc. Entonces los n + 1 puntos $O_1, O_2, O_3, \ldots, O_{n+1}$ están sobre una misma circunferencia que se denomina circunferencia de centros de las n+1 rectas l_1, l_2, l_3, \ldots \ldots, l_{n+1} . DEMOSTRACION. 1º. Sean l_1 , l_2 , l_3 y l_4 cuatro rectas en posición general (fig. 60); sea A_{12} el punto de intersección de las rectas l_3 y l_4 , sea A_{13} el punto de intersección de las rectas l_2 y l_4 , etc.; sea O_1 el centro de la circunferencia C_1 circunscrita al triángulo que forman las rectas l_3 , l_4 y l_4 , etc. Demostremos, ante todo, que las circunferencias



 C_3 , C_4 , C_4 y C_4 se cortan en un mismo punto M. En efecto, si M es el punto de intersección de C_1 y C_4 distinto de A_{12} , tenemos

$$\angle A_{12}M_{12}A_{12} = \angle A_{13}A_{14}A_{12} = \angle \text{entre } l_2 \text{ y } l_3,$$

 $\angle A_{12}M_{22}A_{23} = \angle A_{12}A_{24}A_{25} = \angle \text{entre } l_3 \text{ y } l_4.$

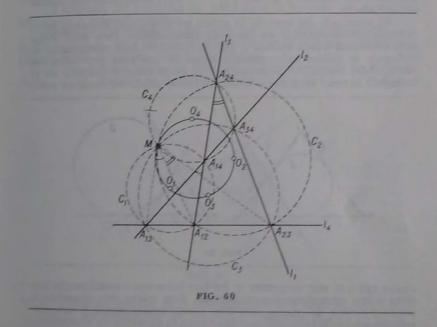
De squi resulta que $\angle A_{13}MA_{23} = \angle$ entre l_2 y $l_1 = \angle A_{13}A_{34}A_{33}$, \cong decir, que la circunferencia C_3 pasa por M; de la misma forma se demusetra que también C_4 pasa por M.

Ahora estamos en condiciones de demostrar que los puntos O_1 , O_2 , O_3 y O_4 están sobre una misma circunferencia. Consideremos las tres circunferencias C_1 , C_2 y C_3 que pasan por el mismo punto M; C_1 y C_3 se cortan además en el punto A_{13} mientras que C_2 y C_3 , en el punto A_{23} mientras que C_3 y C_3 , en el punto

$$\angle o_1 o_2 o_2 = \angle A_{13} M A_{23} = \angle A_{13} A_{24} A_{23} = \angle entre \ l_2 \ y \ l_1.$$

Análogamente se demuestra que $\angle O_1 O_4 O_2 = \angle$ entre l_2 y $l_1 = \angle O_1 O_2 O_2$, de donde se desprende nuestra proposición.

2³. Supengamos que nuestras proposiciones han sido demostradas ya para el caso de a rectas; podemos dar por demostrado también que el arco de la circunferencia de centros de las n rectas l_1, l_2, \ldots, l_n comprendido entre los centros $O_1 y O_2$ de las circunferencias de centros de las n-1 rectas $l_2, l_3, \ldots, l_n y$ de las n-1 rectas $l_1, l_2, \ldots, l_{n+1}$ es igual al ángulo duplicado entre las rectas $l_1 y l_2$ (véase el final de 1°). Consideremos ahora n+1 rectas $l_1, l_2, \ldots, l_{n+1}$ en posición general. Sea O_1 el centro de la circunferencia C_1 de centros de las n rectas $l_2, l_3, \ldots, l_{n+1}$, etc. y sea O_{12} el centro de la circunferencia C_{12} de



centros de las n - 1 rectas $l_3, l_4, \ldots, l_{n+1}$, etc. Demostremos que las circunferencias $C_1, C_2, \ldots, C_{n+1}$ se cortan en un mismo punto M. En efecto, sea M el punto de intersección de las circunferencias C_1 y C_2 distinto de O_{12} . Tenemos entonces¹)

$$\angle O_{13}MO_{12} = \frac{1}{2} \bigcup O_{13}O_{12} = \angle \text{entre } l_2 \text{ y } l_3,$$
$$\angle O_{12}MO_{23} = \frac{1}{2} \bigcup O_{12}O_{23} = \angle \text{entre } l_3 \text{ y } l_1.$$

De aquí resulta que $\angle O_{13}MO_{23} = \angle$ entre l_2 y $l_1 = \angle O_{13}O_{24}O_{23}$, es decir, que la circunferencia C_3 pasa por M. Análogamente se demuestra que todas las circunferencias restantes C_4 , C_5 , ..., C_{n+1} también pasan por M.

1) Véase la llamada anterior.

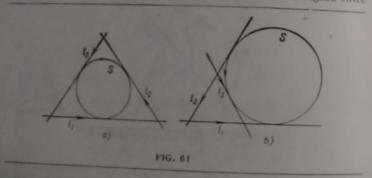
¹) Más eractamente: estos ángulos coinciden o suno dependen del dibujo hay que recurrir al concepto de ángulos orien-M. Adamap. Or ejemplo, las soluciones de los problemas del libro (J. Hadamard, Geometria elemental, parte 1) escritas por D. I. Pere

Consideremos ahora tres circunferencias C_1 , C_2 y C_3 que pasan por el mismo punto M; C_1 y C_2 se cortan además en el punto O_{12} mientras que C_2 y C_3 , en el punto O_{22} . Tenemos¹)

 $LO_1O_2O_2 = LO_{13}MO_{23} = LO_{13}O_{43}O_{23} = L \text{ entre } l_2 \text{ y } l_1$

Analogamente se domuestra que $\angle O_1 O_2 = \angle$ entre $l_2 \ge l_1$ cualquieantrogamente se ato O_1 (i = 4, 5, ..., n + 1), de donde se deduce que todos los puntos $O_1, O_2, O_3, O_4, \ldots, O_{n+1}$ están sobre una misma circunferencia.

El enunciado del ejemplo 28 puede ser modificado tomando en él circunferencias inscritas en lugar de circunscritas. Pero aquí surge ma dificultad nueva debida a que la circunferencia circunscrita al triingule se define univocamente (como la que"pasa" por todos los virtices"del triángulo) mientras que la circunferencia inscrita en el triingulo (o sea, tangente a todos sus lados) puede ser escogida entre



cuatro (ya que son tangentes a los tres lados una circunferencia inscrita y tres circunferencias exinscritas). Para salvar esta situación se puede proceder del modo siguiente. Consideremos rectas y circunferencias orientadas indicando con una flecha la dirección de movimiento en cada línea; diremos entonces que una recta y una circunferencia orientadas son tangentes sólo si coinciden sus direcciones en el punto de tangencia. En este caso siempre existirá una circunferencia orientada única tangente a las tres rectas orientadas l_1 , l_3 y l_3 que no pasan por un mismo punto (fig. 61, a, b), la circunferencia orientada inscrita

en el triángulo que forman l_1 , l_2 y l_3 . Problema 31, 1º, Sean l_1 , l_2 , l_3 y l_4 cuatro rectas orientadas en posición general, o sea, situadas de modo que dos cualesquiera se cor posición general, o sea, situadas de modo que dos cualesquiera se cor tan y no hay tres que pasen por un mismo punto; sean O_1 , O_2 , O_3 y O_4 los centros de las circunferencias orientadas inscritas en los triángu-los que forman, respectivamente, las rectas l_2 , l_3 y l_4 , las rectas l_1 , l_3 misma circunferencia que se denomina circunferencia de centros de las cuatro rectas orientadas l_1 , l_2 , l_3 y l_4 (fig. 22) cuatro rectas orientadas l₁, l₂, l₃ y l₄ (fig. 62).

1) Véase la llamada anterior.

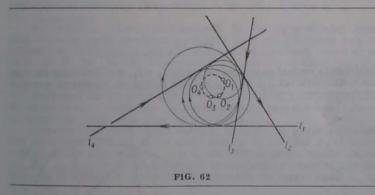
2º, Supongamos que se ha definido va la circunferencia de centros de n rectas orientadas. Consideremos n + 1 rectas orientadas $l_1, l_2, \ldots, l_n, l_{n+1}$ en posición general. Sean $O_1, O_2, \ldots, O_n, O_{n+1}$ los centros de las circunferencias de centros de las n+1 colecciones, con n rectas orientadas en cada una, que pueden formarse de nues-

tras n+1 rectas. En tal caso los n+1 puntos $O_1, O_2, \ldots, O_n, O_{n+1}$ están sobre una misma circunferencia, la circunferencia de centros de las $n \perp 1$ rectas orientadas.

La solución del problema 31, próxima a la solución del ejemplo 28. gueda a cargo del lector.

Problema 32. Definición del ortocentro de un polígono inscrito en la circunferencia. 1º. Como es sabido, se denomina ortocentro del triángulo el punto de intersección de sus alturas.

2º. Supongamos que se ha definido ya el ortocentro de un n-gono $A_1A_2 \ldots A_n$ inscrito en la circunferencia S. Sea $A_1A_2 \ldots A_nA_{n+1}$



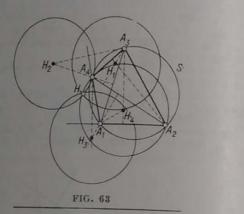
un (n + 1)-gono inscrito en la circunferencia S y sean H_1, H_2, \ldots ..., H_{n+1} los ortocentros de los n+4 polígonos $A_2A_3 \ldots A_{n+1}$, $A_1A_3A_4 \ldots A_{n+1}, \ldots, A_1A_2 \ldots A_n$. Entonces las circunferencias iguales a S pero con centros en $H_1, H_2, \ldots, H_{n+1}$ se cortan en un mismo punto H que se denomina ortocentro del (n + 1)-gono $A_1A_2 \ldots A_{n+1}$ (en la fig. 63 hemos representado el ortocentro del cuadrilátero $A_1A_2A_3A_4$).

Dejando la solución del problema 32 a cargo del lector, señalemos que los ortocentros de los polígonos inscritos en la circunferencia poseen una serie de propiedades análogas a las que existen para los otrocentros de los triángulos; no podemos detenernos aquí en la exposición de estas propiedades que se demuestran aplicando necesariamente el método de inducción matemática (ya que el ortocentro del polígono ha sido definido por inducción).

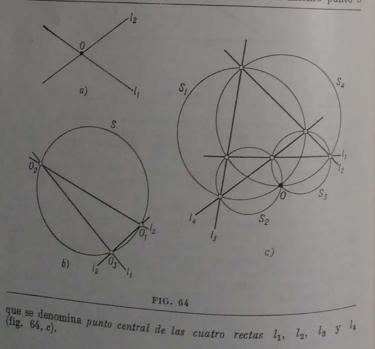
Problema 33. 1º. Se denomina punto central de dos rectas (secantes) el punto de intersección de las mismas (fig. 64, a).

Se denomina circunferencia central de tres rectas en posición general (véase el ejemplo 28) la que pasa por los puntos centrales de cada par de estas rectas (fig. 64, b).

Consideremos cuatro rectas l_1 , l_2 , l_3 y l_4 en posición general. Sea Consideremos charte lectar la tres rectas l_2 , l_3 y l_4 , sea S_2 la circunferencia central de las tres rectas l_2 , l_3 y l_4 , sea S_2 la circunferencia central de las tres rectas la circunferencia central de la circunferencia ce



cunferencia central de las tres rectas l_1 , \bar{l}_3 y \bar{l}_4 , etc. Entonces las cuatro circunferencias S_1 , S_2 , S_3 y S_4 se cortan en un mismo punto 0



2º. Supongamos que se han definido ya la circunferencia central de 2n - 1 rectas y el punto central de 2n rectas. Consideremos 2n + 1rectas $l_1, l_2, \ldots, l_{2n}, l_{2n+1}$ en posición general. Sea A_1 el punto central de las 2n rectas $l_2, l_3, \ldots, l_{2n}, l_{2n+1}$; sea A_2 el punto central de las 2n rectas l1, l3, ..., l2n, l2n+1, etc. y sea, por último, A2n+1 el punto central de las 2n rectas l_1, l_2, \ldots, l_{2n} . Entonces los puntos $A_1, A_2, \ldots, A_{2n+1}$ están sobre una misma circunferencia que se denomina circunferencia central de las 2n + 1 rectas l_1, l_2, \ldots · · · , lan, lan+1.

Consideremos finalmente 2n + 2 rectas $l_1, l_2, \ldots, l_{2n+1}, l_{2n+2}$ en posición general. Sea S_1 la circunferencia central de las 2n + 1rectas $l_2, l_3, \ldots, l_{2n+1}, l_{2n+2}$; sea S_2 la circunferencia central de las 2n + 1 rectas $l_1, l_3, \ldots, l_{2n+1}, l_{2n+2}$; etc. y sea, por último, S_{2n+2} la circunferencia central de las 2n + 1 rectas $l_1, l_2, \ldots, l_{2n+1}$. Entonces las circunferencias $S_1, S_2, \ldots, S_{2n+1}, S_{2n+2}$ se cortan en un mismo punto que se denomina *punto central de las* 2n + 2 rectas l_1, l_2, \ldots $\dots, l_{2n+1}, l_{2n+2}$

Las demostraciones de las proposiciones aquí SUGERENCIA. enunciadas se puede encontrar en el libro de D. O. Shkliarski y otros indicado en la página 78 (véase la solución del problema 125) y en el libro de И. М. Яглом, Геометрические преобразования, 11, М., Гостехиздат, 1956 (I. M. Yaglóm, Transformaciones geométricas, volumen 11 (véase la solución del problema 218, a).

Problema 34. 1º. Sean l_1 , l_2 y l_3 tres rectas en posición general. El centro de la circunferencia circunscrita al triángulo que éstas forman se denomina punto central de las tres rectas.

Consideremos ahora cuatro rectas l_1 , l_2 , l_3 y l_4 en posición general. Sea A_1 el punto central de las tres rectas l_2 , l_3 y l_4 , sea A_2 el punto central de las tres rectas l_1 , l_3 y l_4 , etc. Entonces los cuatro puntos A_1 , A_2 , A_3 y A_4 están en una misma circunferencia (véase el ejemplo 28), que se denomina circunferencia central de las cuatro rectas l_1 , l_2 , 13 y 14.

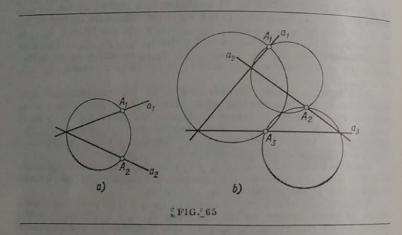
2°. Supongamos que se han definido ya el punto central de 2n - 1rectas y la circunferencia central de 2n rectas. Consideremos 2n + 1rectas $l_1, l_2, \ldots, l_{2n}, l_{2n+1}$ en posición general. Sea S_1 la circunferencia central de las 2n rectas $l_2, l_3, \ldots, l_{2n}, l_{2n+1}$; sea S_2 la circunferencia central de las 2n rectas $l_1, l_3, \ldots, l_{2n}, l_{2n+1}$; etc. y sea, por ultimo, S_{2n+1} la circunferencia central de las 2n rectas l_1, l_2, \ldots, l_{2n} . Entonces las circunferencias $S_1, S_2, \ldots, S_{2n+1}$ se cortan en un mismo punto que se denomina punto central de las 2n + 1 rectas l_1, l_2, \ldots · · ·, l2n, l2n+1.

Consideremos finalmente 2n + 2 rectas $l_1, l_2, \ldots, l_{2n+2}$ en posición general. Sea A_1 el punto central de las 2n + 1 rectas $l_2, l_3, \ldots, l_{2n+2}$; sea A_2 el punto central de las 2n+1 rectas $l_1, l_3, \ldots, l_{2n+2}$, etc. y sea, por último, A_{2n+2} el punto central de las 2n + 1 rectas $l_1, l_2, \ldots, l_{2n+1}$. Entonces los puntos A_1, A_2, \ldots · · ·, A 2n+1 están en una misma circunferencia que se denomina circunferencia central de las 2n + 2 rectas $l_1, l_2, \ldots, l_{2n+2}$.

SUGERENCIA. Las demostraciones de las proposiciones aquí enunciadas son completamente análogas a las demostraciones de las proposiciones que constituyen el contenido del problema 33.

Se denomina elemento lineal el par formado por un punto A y una dirección en él determinada por la recta a que pasa por A. El elemento lineal se representa por (A, a). Diremos que n elementos lineales $(A_1, a_1), (A_2, a_2), \ldots, (A_n, a_n)$ son conciclicos si las rectas $a_1, a_2, \ldots, (A_1, a_1), (A_2, a_2), \ldots, (A_n, a_n)$ son conciclicos el ejemplo 28) y $\log_n n$ \dots, a_n son rectas en posición general (véase el ejemplo 28) y $\log_n n$ puntos A_1, A_2, \ldots, A_n están en una misma circunferencia. Problema 35. 10. Se denomina circunferencia directriz de dos ele-

Problema 55. 1°. Se deformation difference a differenc



por los puntos A_1 y A_2 y por el punto de intersección de a_1 y a_1 (fig. 65, a). Las circunferencias directrices de tres pares de elementos lineales (A_1, a_1) y (A_2, a_2) , (A_1, a_1) y (A_3, a_3) , (A_2, a_2) y (A_3, a_3) (tales que todos los puntos A_1 , A_2 y A_3 son distintos y las rectas a_1, a_2 y a_3 son rectas en posición general) se cortan en un mismo punto que se denomina punto director de los tres elementos lineales (A_1, a_1) , (A_2, a_2) y (A_3, a_3) (fig. 65, b).

2°. Supongamos que hemos definido ya la circunferencia directriz de 2n-2 elementos lineales concíclicos y el punto director de 2n-1elementos lineales concíclicos. Consideremos 2n elementos lineales concíclicos. Entonces los 2n puntos directores de todas las colecciones formadas por 2n-1 de estos elementos están en una misma circunferencia denominada circunferencia directriz de los 2n elementos lineales concíclicos. Además, si consideramos 2n + 1 elementos lineales determinan 2n + 1 circunferencias directrices que se cortan en un mismo punto llamado punto director de los 2n + 1 elementos lineales concíclicos.

SUGERENCIA. Las demostraciones de las proposiciones que constituyen el contenido de este problema se puede encontrar en la pág. 93 del libro de I. M. Yaglóm (véase la solución del problema

§ 6. INDUCCIÓN SEGÚN EL NÚMERO DE DIMENSIONES

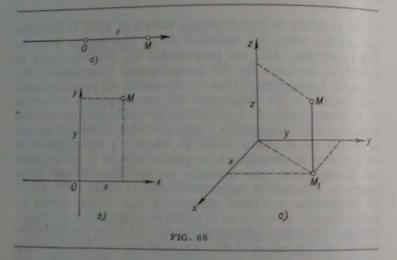
Al estudiar la Estereometría salta a la vista la analogía que existe entre los teoremas de la Planimetría y de la Estereometría. Así, las propiedades del paralelepípedo se asemejan mucho a las del paralelogramo (compárense, por ejemplo, los teoremas: «Las caras opuestas del paralelepípedo son iguales y las diagonales del parelelepípedo se cortan en el punto medio de todas ellas», «y Los lados opuestos del paralelogramo son iguales y las diagonales del paralelogramo se cortan en el punto medio de ambas») y las propiedades de la esfera se asemejan a las propiedades de la circunferencia (compárense, por ejemplo, los teoremas: «Todo plano tangente a la esfera es perpendicular al radio en el punto de tangencia» y «Toda tangente a una circunferencia es perpendicular al radio en el punto de tangencia»). Al mismo tiempo existe una diferencia substancial entre las propiedades de las figuras en el plano y en el espacio. La diferencia principal consiste en que las figuras en el plano tienen dos dimensiones («longitud» y «anchura») mientras que los cuerpos en el espacio tienen tres dimensiones («longitud», «anchura» y «altura»). A tenor con ello la posición de un punto en el plano se determina plenamente mediante dos coordenadas (fig. 66, b) x e y mientras que para determinar la posición de un punto en el espacio se precisan tres coordenadas x, y y z (fig. 66, c). Por esta razón el espacio corriente se denomina con frecuencia espacio tridimensional («espacio de tres dimensiones») y del plano se suele decir que representa el espacio bidimensional («espacio de dos dimensiones»).

Esta terminología puede hacerse extensiva al caso de la recta. La posición de un punto en la recta se determina plenamente mediante una coordenada única x (fig. 65, a); esto se debe a que todas las figuras (segmentos) en la recta tienen una dimensión nada más («longitud»). Por eso, se dice que

95

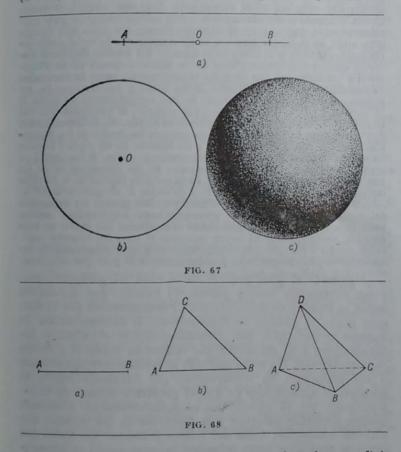
la recta es un espacio unidimensional; esto permite considerar que el número de dimensiones del espacio puede ser uno, dos o tres.

dos o tres. Como regla general, los teoremas de la Estereometría son más complejos que las proposiciones correspondientes de la Planimetría; a su vez, las propiedades de las figuras planas son mucho más complejas que las propiedades de las



figuras (segmentos) en la recta. Por otra parte, la demostración de los teoremas «tridimensionales» (o sea, de la Estereometría) se basan de modo substancial en las correspondientes proposiciones «bidimensionales» (o sea, de la Planimetría); por ejemplo, la demostración de que las diagonales del paralelepípedo se cortan en el punto medio de las mismas se basa en la propiedad correspondiente de las diagonales del paralelogramo. A su vez, sucede que la demostración de teoremas «bidimensionales» se basa en los análogos cunidimensionales». Esta circunstancia hace posible la aplicación, en determinados problemas geométricos, de la inducción según el número de dimensiones que consiste en el paso sucesivo del espacio unidimensional al espacio bidimensional y, después, al tridimensional; el parágrafo presente comprende precisamente ejemplos de este tipo. Con frecuencia la inducción según el número de dimensiones se emplea a la par con la inducción corriente y a veces puede ser incluso sustituida por ésta.

Al analizar los problemas y los ejemplos de este parágrafo debe tenerse en cuenta que la circunferencia plana (o sea, el lugar geométrico de los puntos equidistantes



de un punto fijo O, fig. 67, b) corresponde a la superficie esférica (fig. 67, a) en el espacio y a dos puntos equidistantes del punto O (fig. 67, a) en la recta; el círculo plano corresponde a la esfera en el espacio y al segmento en la recta; por último, el triángulo plano ABC (fig. 68, b) corresponde

7-01271

al tetraedro (o sea, a una pirámide triangular de vértices $A, B, C \neq D$, fig. 68, c) en el espacio y al segmento AB que tiene dos «vértices» $A \neq B$ (fig. 68, a) en la recta.

Cabe subrayar que no hay respuesta univoca, como regla general, a la pregunta de que proposición de la Estereometría corresponde a un determinado teorema de la Planimetría. Conviene aceptar, a veces, que el triángulo plano corresponde a este mismo triángulo pero considerado en el espacio y no al tetraedro (figura que tiene una dimensión más); de la misma forma se puede aceptar que la recta plana corresponde a la recta o al plano en el espacio. Así pueden obtenerse distintos canalogos estereométricos» de un mismo teorema de la Planimetria. Consideremos, por ejemplo, el teorema: ela suma de cuadrados de las distancias entre un punto M del plano y los vértices de un n-gono regular de centro O inscrito en una circunferencia de radio R es igual a n $(R^2 + 0M^2)$; (véase, por ejemplo, el problema 234 del libro de D.O. Shkliarski y otros indicado en la pág. 10) le corresponden dos teoremas en la Estereometría: da suma de cuadrados de las distancias entre un punto M del espacio y los vértices de un n-gono regular de centro O inscrito en una circunferencia de radio R es igual a $n(R^2 + OM^2)$ y da suma de cuadrados de las distancias entre un punto M del espacio y los vértices de un poliedro regular de n vértices inscrito en una esfera de centro O y de radio R es igual a $n(R^2 +$ + OMTh; ambos teoremas son válidos y ambos pueden ser deducidos del teorema chidimensional» correspondiente empleándose ambas veces la inducción según el número de dimensiones. Sin entrar en más detalles, recomendamos al lector comparar el paso del teorema «unidimensional» a los teoremas «bidimensional» y «tridimensional» en los ejemplos 30 y 39, por un lado, y en los ejemplos 37 y 38, por otro lado.

Siguiendo el plan general de la obra, el parágrafo presente comprende cuatro partes: 1) cálculo por inducción según el número de dimensiones; 2) demostración por inducción según el número de dimensiones; 3) determinación de lugares geométricos por inducción según el número de dimensiones y 4) definición por inducción según el número de dimensiones. No se ha incluido la sección correspondiente a los problemas de construcción por inducción según el número de dimensiones ya que el problema mismo de construcciones en el espacio no es suficientemente concreto: admite distintos enfoques y la discusión de los mismos nos alejaría mucho del tema del folleto presente. En todos los casos se considera como principal la proposición «tridimensional» (de la Estereometría) aun cuando el mayor interés representa, como regla, el resultado correspondiente al caso abidimensional» (plano); siendo así, el paso del caso bidimensional al tridimensional sólo se aboceta y no se expone detalladamente.

Un papel considerable desempeña en la Matemática y la Física modernas el concepto del espacio n-dimensional en el que la posición de un punto se determina por n números x_1, x_2, \ldots, x_n denominados coordenadas de este punto; aquí n es un número entero positivo cualquiera mayor, es posible, que tres (así, se habla, por ejemplo, del espacio de esjeras de cuatro dimensiones, donde las coordenadas x, y, z y r de una esfera son las tres coordenadas de su centro v el radio de la esfera; en la Física desempeña un papel considerable el espacio de sucesos de cuatro dimensiones, donde las coordenadas x, y, z y t de un suceso son las coordenadas corrientes del punto donde ocurre el suceso y el momento del suceso, así como el espacio de fases de un punto móvil sobre un plano en el que las coordenadas son los números x, y, x e y, donde x e y son las coordenadas de la posición del punto, mientras que x e y son los componentes de su velocidad, etc.). Si aceptamos que la distancia entre los puntos A y B de coordenadas (x_1, x_2, \ldots, x_n) y (y_1, y_2, \ldots, y_n) del espacio *n*-dimensional es igual a

$$V(\overline{(x_1-y_1)^2+(x_2-y_2)^2+\ldots+(x_n-y_n)^2})$$

el espacio se denomina euclídeo; en este espacio se puede definir el cubo n-dimensional y el símplice n-dimensional (análogo del triángulo y del tetraedro), la esfera y la bola, etc.¹). Con frecuencia las propiedades de las figuras en el espacio n-dimensional se demuestran por inducción según el número de dimensiones del espacio; hablando con rigor, sólo al demostrar teoremas «n-dimensionales», donde n es cualquiera, podemos con pleno fundamento hablar del método de inducción ya que sólo en este caso se realiza plenamente el «segundo paso» de la descripción de este método que afirma la posibilidad de pasar de un valor arbitrario n = kal valor siguiente n = k + 1 (véase la pág. 11). El método de inducción matemática permite traspasar al espacio n-dimensional, donde n es cualquiera, todos los resultados

¹) Véase, por ejemplo, *Б. А. Розенфельд* и *Н. М. Яглом*, Многомерные пространства, Энциклопедия элементарной математики, кн. V (геометрия), Наука, 1966, стр. 349 — 392. (*B. A. Rosenfeld* e *I. M. Yaglom*, Espacios multidimensionales. en la Enciclopedia de matemática elemental, libro V (geometría), págs. de 349 a 392).

de este parágrafo. Pero, como el concepto de espacios multide este paragralo. returno di margenes de preparación matemá-dimensionales rebasa los márgenes de preparación matemádimensionales repaisa tiene el lector del presente folleto, tica que, suponemos, sucesivo sólo a los casos n = 1, 263nos limitaremos en lo sucesivo sólo a los casos n = 1, 263nos initiatemes en la recta, del plano y del espacio c_0 . rriente).

1. CÁLCULO POR INDUCCIÓN SEGÚN EL NÚMERO DE DIMENSIONES

Ejemplo 29. dEn cuántas partes dividen el espacio n planos si tres cualesquiera se cortan y no hay cuatro que tengan un punto común (diremos que estos planos son «planos en posición general»)?

Consideremos sucesivamente tres problemas.

A. dEn cuántas partes dividen la recta n puntos?

SOLUCIÓN. Representemos este número por $F_1(n)$; es obvio que $F_1(n) = n + 1$.

B. dEn cuántas partes dividen el plano n rectas si dos cualesquiera se cortan y no hay tres que tengan un punto común (n rectas en «posición general»)?

SOLUCION. 1°. Una recta divide el plano en dos partes. 2°. Supongamos conocido el número $F_2(n)$ de partes en las que dividen el plano n rectas en posición general y consideremos n + 1 rectas en posición general. Las n primeras de estas de estas rectas dividen el plano en $F_2(n)$ partes; la recla (n + 1) ésime d (n + 1)-ésima l se corta, por hipótesis, con las restantes n rectas ou na l se corta, por hipótesis, con las restantes *n* rectas en *n* puntos distintos; dichos puntos dividen la recta *l* en $F_{n}(n)$ en $F_1(n) = n + 1$ partes (véase A). Por consiguiente, la recta l tiona partes ya recta l tiene puntos comunes con n + 1 de las partes ya obtenidas o scontro comunes con n + 1 de las partes ya obtenidas, o sea, a las $F_2(n)$ partes se agregan $F_1(n) = n + 1$ +1 partes nuevas de modo que

$$F_{2}(n+1) = F_{2}(n) + F_{1}(n) = F_{2}(n) + (n+1).$$
 ⁽¹³⁾

Tomando para n en la igualdad (13) los valores n - 1. $n-2, \ldots, 2, 1,$ obtenemos

 $F_{2}(n) = F_{2}(n-1) + n$ $F_2(n-1) = F_2(n-2) + (n-1),$ $F_{2}(3) = F_{2}(2) + 3,$ $F_{\circ}(2) = F_{\circ}(1) + 2.$

Sumemos estas igualdades; puesto que F_2 (1) = 2, tendremos

$$F_2(n) = F_2(1) + [n + (n - 1) + \ldots + 2] =$$

= 1 + [n + (n - 1) + \dots + 2 + 1],

v definitivamente

$$F_2(n) = 1 + \frac{n(n+1)}{2} = \frac{n^2 + n + 2}{2}$$

(véase la fórmula (2) de la Introducción, pág. 12).

C. El problema inicial.

solucion. 1°. Un plano divide el espacio en dos partes. 2°. Supongamos conocido el número $F_3(n)$ de partes en las que dividen el espacio n planos en posición general y consideremos n + 1 planos en posición general. Los n primeros de estos planos dividen el espacio en F3 (n) partes; el plano (n + 1)-ésimo π se corta con esos n planos según n recta en posición general que lo dividen, por consiguiente, en $F_2(n) = \frac{n^2 + n + 2}{2}$ partes (véase B). Es decir, obtenemos la relación

$$F_{3}(n+1) = F_{3}(n) + F_{2}(n) = F_{3}(n) + \frac{n^{2}+n+2}{2}.$$
 (14)

Introduciendo $n - 1, n - 2, \ldots, 2, 1$ en lugar de n en la igualdad (14), obtenemos

$$F_{3}(n) = F_{3}(n-1) + \frac{(n-1)^{2} + (n-1) + 2}{2},$$

$$F_{3}(n-1) = F_{3}(n-2) + \frac{(n-2)^{2} + (n-2) + 2}{2},$$

$$F_{3}(3) = F_{3}(2) + \frac{2^{2} + 2 + 2}{2},$$

$$F_{3}(2) = F_{3}(1) + \frac{4^{2} + 1 + 2}{2}.$$

Sumando estas igualdades, obtenemos

$$F_{\mathfrak{s}}(n) = F_{\mathfrak{s}}(1) + \frac{1}{2} [(n-1)^{2} + (n-2)^{2} + \dots + 1^{2}] + \frac{1}{2} [(n-1) + (n-2) + \dots + 1] + \frac{1}{2} \underbrace{[2+2+\dots+2]}_{n-1 \text{ doses}}$$

y definitivamente, recordando las fórmulas (2) y (3) de la Introducción y que $F_3(1) = 2$, encontramos

$$F_{3}(n) = 2 + \frac{n(n-1)(2n-1)}{12} + \frac{(n-1)n}{4} + (n-1) = \frac{(n+1)(n^{2}-n+6)}{6}$$

Problema 36. dEn cuántas partes dividen el espacio n esferas si dos cualesquiera se cortan?

SUGERENCIA. Consideremos sucesivamente los problemas siguientes.

A. ¿En cuántas partes dividen la recta n «circunferencias unidimensionaless, o sea, n pares de puntos (véase la introducción a este parágrafo, pág. 97-98)?

RESPUESTA, 2n puntos dividen la recta en 2n + 1 partes.

A'. Determinese el número $\Phi_1(n)$ de partes en las que dividen la circunferencia n pares de puntos situados en la misma,

HESPUESTA. $\Phi_1(n) = 2n$.

B. Determinese el número $\Phi_2(n)$ de partes en las que dividen el plano n circunferencias que se cortan dos a dos.

SOLUCIÓN. Puesto que n circunferencias cortan la $(n \pm 1)^{-681}$ ma en n pares de puntos y, por consiguiente, la dividen en $\Phi_1(n) =$ = 2n partes (véase A'), resulta que entre las $\Phi_g(n)$ partes, en las que dividen el plano las *n* circunferencias, hay $\Phi_1(n) = 2n$ partes que tiones que tiones de las que tiones que tienen puntos comunes con la (n + 1)-ésima circunferencia. De aqui obtenemos la igualdad

$$\Phi_{g}(n + 1) = \Phi_{g}(n) + \Phi_{1}(n) = \Phi_{g}(n) + 2$$

Basándones en esta igualdad y en que $\Phi_2(1) = 2$, encontramos

$$\Phi_{g}(n) = n^{g} - n + 2$$

B'. LEn cuántas partes dividen la esfera n circunferencias que se hallan sobre ésta y que se cortan dos a dos? MESPUERTA. En $\Phi_3(n) = n^2 - n + 2$ partes.

C, El problema inicial,

SOLUCIÓN. n esferas cortan la (n + 1)-ésima según n circunle rencias y, t por consiguiente, dividen su superficie en $\Phi_3(n) = n^3 - n + 2$ partes (view Dividen su superficie en $\Phi_3(n) = n^3$ -n + 2 partes (véase B'); por eso, sí n esferas que se cortan dos a dos dividen el espacio en Φ_3 (n) partes, resulta que n + 1 esferas dividen el espacio en

$$\Phi_{2}(n+1) = \Phi_{3}(n) + \Phi_{2}(n) = \Phi_{3}(n) + (n^{2} - n + 2)$$

partes. Puesto que $\Phi_a(1) = 2$, podemos encontrar de aquí que

$$\Phi_3(n) = \frac{n(n^2 - 3n + 8)}{3}$$

2. DEMOSTRACIÓN POR INDUCCIÓN SEGÚN EL NÚMERO DE DIMENSIONES

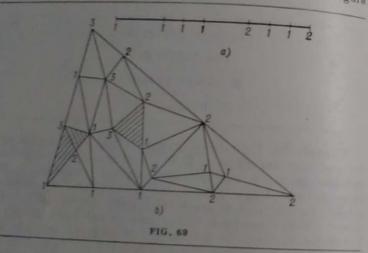
Ejemplo 30. Un tetraedro cuyos vértices están numerados mediante las cifras 1, 2, 3 y 4 se divide en tetraedros menores de modo que dos cualesquiera tetraedros de la partición no tienen puntos comunes, tienen un vértice común, tienen una arista común (pero no una parte de arista) o tienen una cara común (pero no una parte de cara). Todos los vértices de los tetraedros menores también se numeran con las mismas cifras 1, 2, 3 y 4 con la particularidad de que para aquellos vértices que se encuentran sobre las caras del tetraedro mayor se emplean las tres cifras con las que están numerados los vértices de las caras correspondientes; de la misma forma, para los vértices que pertenecen a las aristas del tetraedro mayor se emplean las dos cifras con las que están numerados los extremos de las aristas correspondientes. Demuéstrese que habrá al menos un tetraedro pequeño cuyos vértices están numerados con cifras distintas.

Consideremos sucesivamente los problemas siguientes.

A. Un segmento cuyos extremos están indicados por las cifras 1 y 2 se divide en segmentos menores disjuntos y todos los puntos de la partición se numeran mediante las cifras 1 y 2 (fig. 69, a). Demuéstrese que habré al menos un segmento de la partición cuyos extremos están numerados con cifras distintas.

SOLUCIÓN. Demostremos que es impar el número de segmentos indicados por 1 2; de ello se deducirá que existe un

segmento de este tipo como mínimo (ya que cero es un número par). Sea A la cantidad de extremos de los segmentos de la partición que llevan la cifra 1. Este número es impar va que cada vez que la cifra 1 aparezca dentro del segmento grande (sea k el número de estos casos) será extremo de dos segmentos de la partición y únicamente la cifra 1 que figura



en uno de los extremos del segmento grande corresponderá a un segmento de la partición; por consiguiente.

$$A = 2k + 1$$
.

Por otra parte, sea p el número de segmentos de la partición de tipo 1 1 y sea q el número de segmentos de tipo 1 2: entonces, el número A de vértices 1 será

De la igualdad

$$2k + 1 - 2 = 1$$

A = 2p + q.

se deduce que q es impar.

B. Un triángulo cuyos vértices están numerados mediante las cifras 1, 2 y 3 se divide en triángulos menores de modo que dos cualesquiera triángulos de la partición no tienen puntos comunes, tienen un vértice común o tienen un lado comús (pero no una parte de lado). Todos los vértices de los triángulos de la partición se numeran también con las

105

cifras 1, 2 y 3 con la particularidad de que para numerar los vértices que aparecen en los lados del triángulo mayor se emplea una de las cifras que llevan los extremos de los lados correspondientes (fig. 69, b). Demuéstrese que habrá al menos un triángulo de la partición cuyos vértices están numerados con cifras distintas

SOLUCIÓN. Demostremos que el número de triángulos de tino 1 2 3 es impar. Calculemos con este fin el número total A de lados de tipo 1 2 en los triángulos de la partición. Sea k el número de segmentos de tipo 1 2 que se encuentran dentro del triángulo principal y sea l el número de segmentos de este tipo que aparecen en el lado 1 2 del triángulo mayor (los otros dos lados de este triángulo no pueden tener segmentos de tipo 1 2). Cada uno de los k segmentos pertenece a dos triángulos de la partición y cada uno de los l segmentos pertenece a un triángulo de la partición; por eso.

A = 2k + l.

Por otra' parte, sea p el número de triángulos de la partición de tipo 1 2 2 o de tipo 1 2 1 y sea q el número de triángulos de tipo 1 2 3. Cada uno de los p triángulos tiene dos lados de tipo 1 2 y cada uno de los q triángulos tiene un lado de este tipo; por eso.

$$A = 2p + q.$$

De la igualdad

2k + l = 2p + q

se deduce que q es par o impar según lo sea l. Pero, en virtud de la proposición A, el número l es impar y, por lo tanto, también q es impar.

C. La proposición inicial.

SOLUCION. Sea A el número de caras de tipo 1 2 3 en los tetraedros de la partición. Si k de estas caras se encuentran dentro del tetraedro principal y l de estas aparecen en su cara 1 2 3, tenemos

$$A = 2k + l.$$

Por otra parte, si p es el número de tetraedros de la partición de tipo 1 1 2 3, 1 2 2 3 ó 1 2 3 3 y q es el número de tetraedros de la partición de tipo 1 2 3 4, tenemos obviamente

$$A=2p+q.$$

De la igualdad

$$2k+l=2p+q$$

se deduce que los números q y l son ambos pares o ambos impares. Pero, en virtud de la proposición B, l es un número impar de modo que también q es impar.

En la introducción a este parágrafo hemos explicado que la inducción según el número de dimensiones puede ser sustituida a veces por la inducción corriente. Veamos ejemplos que lo confirman.

Ejemplo 31. Demuéstrese la proposición del ejemplo 30 A empleando la inducción según el número n de segmentos de la partición.

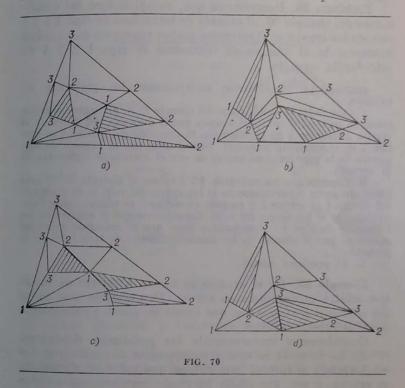
SOLUCION. 1°. Para n = 1 la proposición se hace evidente.

2°. Supongamos que nuestra proposición ha sido ya demostrada para cualquier partición del segmento en n segmentos menores. Consideremos una partición del segmento 12 en n + 1 segmentos menores. Si estos segmentos no son todos de tipo 12, habrá un segmento cuyos extremos llevan cifras iguales, por ejemplo, un segmento de tipo 1 1. Contrayéndolo a un punto, obtendremos una partición del segmento 1 2 en n segmentos menores. Según la hipótesis inductiva, en esta partición y, por consiguiente, también en la inicial habrá al menos un segmento de tipo 1 2 que es lo que queríamos demostrar.

Ejemplo 32. Demuéstrese la proposición del ejemplo 30 B empleando la inducción según el número n de triángulos de la partición.

Solucion. 1°. Para n = 1 la proposición se hace evidente y para n = 2 se demuestra sin dificultad.

2°. Supongamos que nuestra proposición ha sido demostrada ya para cualquier partición del triángulo 1 2 3 en no en menor número de partes. Consideremos una partición en n + 1 triángulos. Si estos triángulos no son todos de dos vértices. Este lado 11 corresponde a dos triángulos de o un triángulo (si está dentro del triángulo principal, fig. 70, a) triángulo principal, fig. 70, b). Contrayendo el segmento 1 1 a un punto, obtenemos una partición nueva del triángulo $1 \ 2 \ 3 \ en \ n \ - 1$ (primer caso, fig. 70, c) o en n (segundo caso, fig. 70, d) triángulos. Según la hipótesis inductiva, en esta partición (y, por consiguiente, también en la inicial) habrá al menos un triángulo cuyos vértices sean de tipo $1 \ 2 \ 3$.



Problema 37. Demuéstrese el teorema del ejemplo 30 C empleando la inducción según el número n de tetraedros de la partición.

SUGERENCIA. La demostración es análoga a la demostración de la proposición del ejemplo 32.

La proposición del ejemplo 30 puede ser precisada. Con este fin introducimos el concepto de orientación para todo tetraedro cuyos vértices están numerados mediante las cifras 1, 2, 3 y 4 distinguiendo dos tipos de orientaciones

106

según que el recorrido, de la cara 1 2 3, del vértice 1 al vérsegun que el local vértice 3, sea visto desde el vértice 4 en el mismo sentido que se mueven las agujas del reloj o en el sentido contrario. Tiene lugar entonces la proposición siguiente.

Problema 38. Demuéstrese que, cumpliéndose las condiciones del ejemplo 30, el número de tetraedros de tipo 1 2 3 4 orientados igual que el tetraedro mayor supera en una unidad exactamente el número de tetraedros de tipo 1 2 3 4 de orientación opuesta.

SUGERENCIA. Considérense sucesivamente los problemas siguientes.

A. Cumplidas las condiciones del ejemplo 30 A, distinguiremos dos clases de segmentos de tipo 1 2 según que la dirección del vértice 1 al vértice 2 coincida o no coincida con la dirección del vértice 1 al vértice 2 en el segmento principal. Demuéstrese que el número de segmentos de la primera clase supera en uno el número de segmentos de la segunda.

B. Diremos que un triángulo 1 2 3 (véase el ejemplo 30 B) está orientado según (contrariamente a) las agujas del reloj si su recorrido del vértice 1 al vértice 2 y después al vértice 3 se realiza según (contrariamente a) las agujas del reloj. Demuéstrese que el número de los triángulos de tipo 123 orientados igual que el triángulo principal supera en uno el número de los demás triángulos de tipo 123 de la partición.

C. El problema inicial.

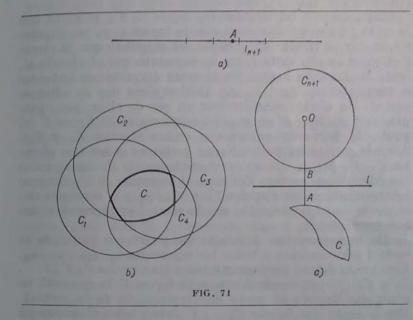
Ejemplo 33. En el espacio se toman n esferas de modo que cuatro cualesquiera se corten. Demuéstrese que todas las esferas se cortan, o sea, que existe un punto perteneciente a todas ellas.

Consideremos sucesivamente los problemas siguientes. A. En la recta se toman n segmentos de modo que dos cualesquiera se corten. Demuéstrese que todos los segmentos se cortan, o sea, que existe un punto perteneciente a todos

SOLUCION. 1°. Para n = 2 la proposición se hace evidente.

2°. Supongamos que nuestra proposición ha sido demostrada ya para n segmentos cualesquiera. Sean l_1, l_2, \ldots ..., l_n , $l_{n+1}n + 1$ segmentos de la recta que se cortan dos a dos. En virtud de la hipótesis inductiva, los n segmentos l_1, l_2, \ldots, l_n se cortan. Sea l la parte común de los mismos (que es, obviamente, un punto o un segmento). Demostremos que s Demostremos que el segmento l_{n+1} se corta con l. Suponga-mos lo contrario: enterna de la segmento l_{n+1} se corta con l. Supongamos lo contrario; entonces existe un punto A que separa

 l_{n+1} y l (fig. 71, a). Pero todos los segmentos l_1, l_2, \ldots, l_n contienen l y, por hipótesis, se cortan con el segmento I_{n+1} ; luego, todos estos segmentos contienen el punto A que, por consiguiente, pertenece a l. Esta contradicción obtenida muestra que l_{n+1} y l se cortan; la parte común



de ambos pertenece a todos los segmentos considerados $l_1, l_2, \ldots, l_{n+1}$

B. En el plano se toman n círculos de modo que tres cualesquiera se corten. Demuéstrese que existe al menos un punto que pertenece a todos ellos.

SOLUCIÓN. 1°. Si n = 3, la proposición se hace evidente.

2°. Supongamos que nuestra proposición ha sido demostrada ya para n círculos cualesquiera. Consideremos en el plano n + 1 círculos $C_1, C_2, \ldots, C_n, C_{n+1}$. En virtud de la hipótesis inductiva, los n círculos C_1, C_2, \ldots, C_n se cortan; sea C la parte común de los mismos (fig. 71, b) (el «polígono circular» C puede ser un círculo y también puede reducirse a un punto). Debemos demostrar que la figura Cy el círculo C_{n+1} se cortan. Supongamos lo contrario; entonces podremos trazar una recta l que separa las figuras C_{n+1}

y C: por ejemplo, podemos considerar que esta recta es la perpendicular l a la recta que une el centro O del círculo C_{n+1} y el punto A de la figura C más próximo a O levantada en el punto medio del segmento AB, donde B es el punto de intersección del segmento OA y de la circunferencia del círculo C_{n+1} (fig. 71, c)¹).

Cada uno de los círculos C_1, C_2, \ldots, C_n se corta con la recta l ya que todos contienen la figura C y, por hipótesis, cortan el círculo C_{n+1} . Sea a_1 el segmento que el círculo C_1 corta en la recta l, sea a_2 segmento que el círculo C_2 corta en la recta l, etc. En la recta l tendremos entonces n segmentos a_1, a_2, \ldots, a_n . Cualesquiera dos de ellos se cortan. En efecto, consideremos un par de ellos, por ejemplo, a_1 y a_2 . Sea M un punto cualquiera de la figura C (el punto M pertenece entonces a ambos círculos C_1 y C_2). Además, existe un punto N que pertenece a los tres círculos C_1, C_2 y C_{n+1} ya que tres cualesquiera de los círculos considerados se cortan. Entonces el segmento MN pertenece íntegramente a los círculos C_1 y C_2 , y, por consiguiente, el punto de su intersección con la recta l pertenecerá a ambos segmentos a_1 y a_2 .

De la proposición A resulta que existe un punto de la recta l perteneciente a todos los segmentos a_1, a_2, \ldots, a_n . Este punto deberá pertenecer a todos los círculos $C_1, C_2, \ldots, \ldots, C_n$, y, por consiguiente, a la figura C lo que está en contradicción con el modo de construcción de la recta l. Por lo tanto, las figuras C_{n+1} y C deben tener al menos un punto común que será un punto común de todos los círculos $C_1, C_2, \ldots, C_n, C_n, C_n, C_{n+1}$.

C. El problema inicial.

SOLUCION. 1°. Si n = 4, la proposición se hace evidente.

2°. Supongamos que nuestra proposición ha sido demostrada ya para *n* esferas cualesquiera. Consideremos n + 1esferas $\Phi_1, \Phi_2, \ldots, \Phi_n, \Phi_{n+1}$. Sea Φ la intersección de las *n* esferas $\Phi_1, \Phi_2, \ldots, \Phi_n$ (que existe en virtud de la proposición inductiva). Entonces podemos demostrar, razonando igual que en el ejemplo 33 B, que si la esfera Φ_{n+1} no se corta con Φ , existe un plano π que separa estas figuras. Las intersecciones de cada una de las esferas Φ_1, Φ_2, \ldots \ldots, Φ_n con el plano π representan círculos situados de modo que tres cualesquiera se cortan; por consiguiente, en el plano π existe un punto que pertenece a todos estos círculos y, por ende, a Φ lo que contradice a la definición del plano π .

También la proposición del ejemplo 33 se puede demostrar empleando la inducción según el número de figuras en lugar de la inducción según el número de dimensiones.

Ejemplo 34. Demúestrese la proposición del ejemplo 33 B empleando la inducción según el número de figuras.

SOLUCIÓN. Demostraremos la proposición correspondiente al caso de polígonos circulares, o sea, de figuras que representan cada una la intersección de un número finito de círculos; de aquí se podrá deducir, en particular, nuestra proposición inicial.

1°. Si n = 3, la proposición se hace evidente.

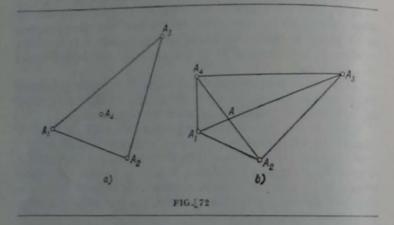
Tomemos cuatro polígonos circulares C_1 , C_2 , C_3 y C_4 de modo que tres cualesquiera se corten. Sea A_1 un punto común de las figuras C_2 , C_3 y C_4 ; sea A_2 un punto común de las figuras C_1 , C_3 y C_4 , etc. Se pueden presentar dos casos:

a) Uno de los puntos A_1 , A_2 , A_3 ó A_4 , digamos A_4 , pertenece al triángulo que forman los otros tres puntos (fig. 72, a). Puesto que todo el triángulo $A_1A_2A_3$ pertenece a C_4 , el punto A_4 también pertenecerá entonces a C_4 , y, por consiguiente, el punto A_4 será un punto común de las cuatro figuras C_1 , C_2 , C_3 y C_4 .

b) Entre los puntos A_1 , A_2 , A_3 y A_4 no hay ninguno que pertenezca al triángulo que forman los tres restantes. En este caso el punto A de intersección de las diagonales del cuadrilátero (convexo) $A_1A_2A_3A_4$ (fig. 72, b) será un punto común de las cuatro figuras C_1 , C_2 , C_3 y C_4 por ser un punto común de los triángulos $A_1A_2A_3$, $A_1A_2A_4$, $A_1A_3A_4$ y $A_2A_3A_4$.

¹) En efecto, sí la recta l no separa las figuras angulo OAK del triángulo OAK será agudo; además, por definición del punto A, tendremos $OA \leq OK$. Por consiguiente, el pie L de la tos A y K. Puesto que ambos puntos A y K pertenecen a todos los punto L pertenecerán a cada uno de los círculos C_1, C_2, \ldots, C_n , ción obtenida (da perpendicular es más larga que la oblicua») demuestra nuestra proposición.

2°. Supongamos que nuestra proposición ha sido demostrada ya para n polígonos circulares. Consideremos n + 1trada ya para n poligono $C_1, C_2, \ldots, C_n, C_{n+1}$. Sea C la inter-poligonos circulares $C_n, C_2, \ldots, C_n, C_{n+1}$. Sea C la inter-sección de las figuras C_n y C_{n+1} (es obvio que también C es un polígono circular); demostremos que tres cualesquiera de las *n* figuras $C_1, C_2, \ldots, C_{n-1}, C$ se cortan. En efecto, si entre estas tres figuras no está C, se cortan por hipótesis.



Consideremos ahora una terna cualquiera en la que aparece C, por ejemplo, la terna C_1 , C_2 , C. Como quiera que tres cua-lesquiera de las cuatro figuras C_1 , C_2 , C_n y C_{n+1} se cortan, resulta, en virtud de 1º, que estas cuatro figuras tienen un punto común que será precisamente un punto común de las figuras C1, C2 y C.

Es decir, tres cualesquiera de las n figuras C_1, C_2, \cdots ..., C_{n-1} , C se cortan; en virtud de la hipótesis inductiva, resulta que existe un punto común a todas estas figuras que será, a la vez, un punto común de las n + 1 figuras $C_1, C_2, ...$ Cn. Cn+1

Problema 39. Demuéstrese la proposición del ejemplo 34 C empleando la inducción según el número n de esferas.

SUGERENCIA. Demuéstrese la proposición correspondiente para el caso de «poliedros esféricos», o sea, de cuerpos que representan cada uno la intersección de un número finito de esferas. La demostración se basa en razonamientos análogos a los empleados en el ejem-

Problema 40. (Teorema de Young¹)). En el plano se toman n puntos A_1, A_2, \ldots, A_n de modo que la distancia entre dos cualesquiera no pase de la unidad. Demuéstrese que están todos comprendidos en un círculo de radio $1/\sqrt{3}$.

SUGERENCIA. Domuéstrese primero que tres cualesquiera de estos nuntos están comprendidos en un círculo de radio 1/1/3. Construyendo, desnués, en cada uno de los puntos como centro círculos de radio 1/1/3. demuéstrese que tres cualesquiera de estos círculos se cortan. Uno de los puntos comunes a todos los círculos (que existe en virtud del resultado del ejemplo 33 B) puede ser tomado como centro del círculo de radio 1/1/3 que comprende los puntos dados.

Problema 41. En el espacio se toman n puntos A_1, A_2, \ldots ..., An de modo que la distancia entre dos cualesquiera no pase de la unidad. Demuéstrese que están todos compren-

didos en una esfera de radio $\frac{\sqrt{6}}{4}$.

SUGEBENCIA. La demostración es análoga a la del problema 40.

La generalización del ejemplo 33 y algunas aplicaciones de un teorema más general aparecen en el libro "Figuras convexas" mencionado en la pág. 32.

Ejemplo 35. Se tiene un número finito de semiespacios²) que llenan el espacio. Demuéstrese que se pueden escoger cuatro (o menos) semiespacios que también llenan el espacio.

Consideremos sucesivamente los problemas siguientes.

A. La recta está cubierta con un número finito de semirrectas. Demuéstrese que se pueden escoger dos semirrectas que cubran la recta.

SOLUCIÓN. Sea A el vértice extremo de la derecha entre los vértices de las semirrectas que van hacia la izquierda y sea B el vértice extremo de la izquierda entre los vértices de las semirrectas que van hacia la derecha. Puesto que, por hipótesis, las semirrectas cubren la recta, el punto B no puede estar a la derecha de A y las dos semirrectas que tienen sus vértices en los puntos A y B cubren toda la recta.

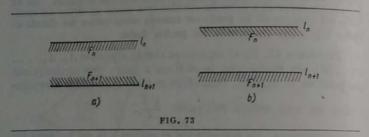
1) Young J. W., matemático inglés del siglo XIX. 2) Se denomina semiespacio a la parte del espacio que se encuentra a un lado de un plano. 8-01271

B. El plano está cubierto con un número finito n de semiplanos¹). Demuéstrese que se pueden escoger dos o tres semiplanos que también cubren el plano.

solucion. Apliquemos para la demostración la inducción según el número n de semiplanos.

1°. Si n = 3, la proposición se hace evidente.

2°. Supongamos que nuestra proposición es válida en el caso de n semiplanos. Consideremos n+1 semiplanos



 $F_1, F_2, \ldots, F_n, F_{n+1}$ que cubren el plano. Sean l_1, l_2, \ldots ..., ln, ln+1 las fronteras de estos semiplanos. Se pueden presentar dos casos.

1^{er} caso. La recta l_{n+1} pertenece integramente a uno de los semiplanos dados, digamos a F_n . Entonces las rectas l_n y l_{n+1} son paralelas. Si los semiplanos F_n y F_{n+1} se encuentran a diferentes lados respecto a sus fronteras (fig. 73, a), los dos semiplanos F_n y F_{n+1} cubrirán ya el plano. En el caso contrario, uno de estos semiplanos estará comprendido integramente dentro del otro (por ejemplo, F_{n+1} estara contenido en F_n ; fig. 73, b) y la proposición se deduce de la hipótesis inductiva porque en este caso los n semiplanos $(F_1, F_2, \ldots, F_n$ en nuestro ejemplo) cubrirán ya el plano. 2^{do} caso. La recta l_{n+1} no pertenece a ninguno de los

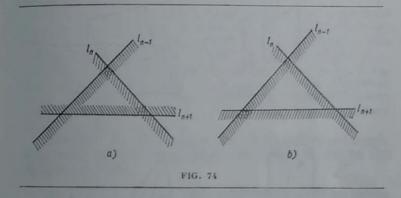
semiplanos F_1, F_2, \ldots, F_n . Entonces estos semiplanos la cubren y, además, determinan en ella $m \leq n$ semirrectas que también la cubren. Hemos visto en A que entre estas semirrectas se pueden escoger dos que también cubren la recta. Sean F_{n-1} y F_n los semiplanos correspondientes a estas dos semirrectas. Existen dos posiciones recíprocas

¹) Se denomina <u>semiplano</u> a la parte del plano que se encuentra a un lado de una recta.

de los semiplanos F_{n-1} , F_n y F_{n+1} que analizaremos por separado.

a) El semiplano F_{n+1} contiene el punto de intersección de las rectas l_{n-1} y l_n (fig. 74, a). En este caso los tres semiplanos F_{n-1} , F_n y F_{n+1} cubren todo el plano.

b) El semiplano F_{n+1} no contiene el punto de intersección de las rectas l_{n-1} y l_n (fig. 74, b). En este caso el plano



estará cubierto por los n semiplanos F_1, F_2, \ldots, F_n y nuestro teorema resulta de la hipótesis inductiva.

C. El problema inicial.

solucion. 'Apliquemos para demostrarlo la inducción según el número n de semiespacios tomados.

1°. Si n = 4, la proposición se hace evidente.

2°. Supongamos que nuestra proposición es válida para el caso de n semieespacios. Consideremos n + 1 semiespacios $V_1, V_2, \ldots, V_n, \hat{V}_{n+1}$. Sean $\pi_1, \pi_2, \ldots, \pi_n, \pi_{n+1}$ las fronteras de estos semiespacios. Se pueden presentar dos casos.

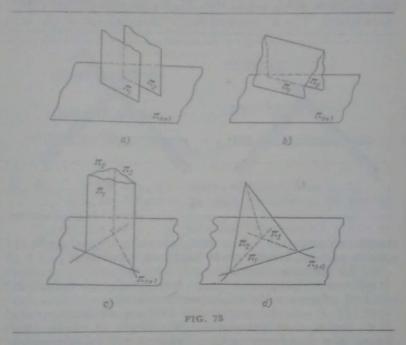
1^{er} caso. El plano π_{n+1} pertenece integramente a uno de los semiespacios V_1, V_2, \ldots, V_n , por ejemplo a V_n .

En este caso los planos π_{n+1} y π_n son paralelos. Si los semiespacios V_{n+1} y V_n se encuentran a diferentes lados respecto a sus fronteras, estos dos semiespacios cubrirán todo el espacio. En el caso contrario, uno de los dos semiespacios V_{n+1} o V_n estará comprendido integramente dentro del otro y el teorema se deduce de la hipótesis inductiva.

8*

2^{do} caso. El plano π_{n+1} no pertenece a ninguno de los semiespacios V_1, V_2, \ldots, V_n . Entonces estos semiespacios lo cubren y determinan en él $m \leq n$ semiplanos $F_1, F_2, \ldots, \dots, F_m$.

Según lo demostrado en B, entre estos semiplanos se pueden escoger dos o tres que cubren todo el plano (fig. 73, a



y fig. 74, a). Analicemos por separado los casos que puedenaquí presentarse.

a) El plano π_{n+1} resulta cubierto con dos semiplanos (fig. 73, a), digamos F_1 y F_2 , de modo que los planos correspondientes π_1 y π_2 son paralelos (fig. 75, a). En este caso los dos semiespacios V_1 y V_2 ya llenan el espacio. b) El plano π_{n+1} resulta cubierto por los dos semiplanos F_1 y F_2 pero los planos correspondientes π_1 y π_2 se cortan (fig. 75, b). Si el semiespacio V_{n+1} contiene la línea de intersección de los planos π_1 y π_2 , los tres semiespacios

 V_1 , V_3 y V_{n+1} llenan el espacio. En el caso contrario, el

semiespacio V_{n+1} resulta cubierto por los semiespacios V_1 y V_2 y el teorema se deduce de la hipótesis inductiva.

c) El plano π_{n+1} resulta cubierto por tres semiplanos (fig. 74, *a*), digamos F_1 , F_2 y F_3 , de modo que el plano π_3 es paralelo a la línea de intersección de los planos π_1 y π_2 (los planos correspondientes forman un «prisma»; véase la fig. 75, *c*). En este caso los tres semiespacios V_1 , V_2 y V_3 llenan el espacio.

d) El plano π_{n+1} resulta cubierto por tres semiplanos F_1, F_2 y F_3 y el plano π_3 no es paralelo a la línea de intersección de π_1 y π_2 (los planos correspondientes forman una epirámide»; véase la fig. 75, d). Si el semiespacio V_{n+1} contiene el punto de intersección de los planos π_1, π_2 y π_3 , los cuatro semiespacios V_1, V_2, V_3 y V_{n+1} llenan el espacio; en el caso contrario, el semiespacio V_{n+1} resulta cubierto por los semiespacios V_1, V_2 y V_3 y el teorema se deduce de la hipótesis inductiva.

Problema 42. Demuéstrese que en el espacio no puede haber más de cuatro semirrectas que formen de dos en dos ángulos obtusos.

SUGERENCIA. Supongamos que en el espacio se tiene un sistema finito de semirrectas que de dos en dos forman ángulos obtusos y supongamos, además, que este sistema es maximal, o sea, que no existe ninguna otra semirrecta que forme ángulo obtuso com cada una de las semirrectas consideradas. Hagamos corresponder a cada una de las semirrectas el semiespacio que está limitado por el plano perpendicular a dicha semirrecta y que la comprende. Puesto que nuestro sistema de semirrectas es maximal, estos semiespacios llenan el espacio y nuestra proposición se deduce del ejemplo 35.

Ejemplo 36. Sea $A_1A_2 \ldots A_n$ un poliedro espacial cuyos lados son de longitud no mayor que 1. Demuéstrese la existencia de un número C_3 tal que los lados del poliedro pueden ser colocados (sin alterar la longitud ni la dirección de los mismos) de modo que el poliedro así obtenido quede comprendido en una esfera de radio C_3 .

Siguiendo la idea principal de este parágrafo, consideremos primero los problemas «unidimensional» y ebidimensional» correspon-

A. En la recta se han tomado a puntos A_1, A_2, \ldots, A_n de modo que la longitud de cada uno de los segmentos A_1A_2, A_2A_3, \ldots $\dots, A_{n-1}A_n, A_nA_1$ no pase de 1. Demuéstrese la existencia de un número C_1 (que no depende de la posición de los puntos ni del número a) tal que los segmentos $A_1A_2, A_2A_3, \ldots, A_{n-1}A_n, A_nA_1$ se pueden colocar en la recta de forma que la equebradas B_1B_2, \ldots, B_nB_1 así obtenida (cada uno de los lados de la cual tiene la misma longitud y la misma dirección que uno de los lados de la equebradas $A_1A_2 \cdots$ \dots, A_nA_1) quede comprendida en un segmento de longitud $2C_1$. SOLUCIÓN. Aceptaremos que la longitud a_i del lado $A_i A_{i+1}$ (i = 1, 2, ..., n; el punto A_{n+1} coincide con A_1) de nuestra quebrada $A_1 A_2 ... A_n A_1$ es positiva si el punto A_{i+1} está a la dere-cha del punto A_i (consideramos que la recta en la que se toman los puntos es horizontal) y negativa en el caso contrario. Entonces, se puntos es nonzontar) y neces, se hace evidente que $a_1 + a_2$ es la longitud del segmento A_1A_3 (que, según lo aceptado, puede ser positiva o negativa), que $a_1 + a_2 + a_3$ es gón lo aceptado, puede ser positiva o negatival, que $a_1 + a_2 + a_3$ es la longitud del segmento A_1A_4 , etc., que $a_1 + a_2 + \cdots + a_{n-1}$ es la longitud del segmento A_1A_{n-1} y que, por último, $a_1 + a_2 + \cdots + a_{n-1}$ $\cdots + a_{n-1} + a_n = 0$ (ésta es la «longitud del segmento A_1A_{1*}). Puesto que cada lado de la «quebrada» $B_1B_2 \cdots B_nB_1$ es igual a uno de los lados de la «quebrada» inicial $A_1A_2 \cdots A_nA_1$, nuestra proposición se puede enunciar así:

Se han tomado n números a1. a2. ..., an-1, an (entre los cuales pueden haber positivos y negativos) no mayores que 1 en valor absoluto y de suma Igual a cero; demuéstrese que estos números se pueden colocar *y* de suma iguar a cros, dema en que a que en un orden a_{i_1} , a_{i_2} , ..., $a_{i_{n-1}}$, a_{i_n} (donde i_1 , i_2 , ..., i_{n-1} , i_n son los mismos números 1, 2, ..., n - 1, n pero considerados en otro orden) de modo que el valor absoluto de todas las sumas a_{i_1} , $a_{i_1} + a_{i_2}$. $a_{i_1} + a_{i_2} + a_{i_3}, \ldots, a_{i_j} + a_{i_2} + \ldots + a_{i_{n-1}}$ no sobrepase un número determinado C_1 (que no depende de la sucesión a_1, a_2, \ldots ..., an ni incluso del número n).

Démostremos que se puede tomar C_1 igual a 1. Sean a'_1, a'_2, \ldots ..., a'_p todos los números positivos de la sucesión a_1, a_2, \ldots, a_n y sean a", a", ..., a" todos los números negativos de la misma (p + q = n). Formemos abora una sucesión nueva procediendo del modo siguiente: para empezar, escribimos los primeros números positivos a'_1, a'_2, \ldots, a'_k $(k \ll p)$ en una cantidad k tal que la suma de los mismos no sobrepase la unidad (por ejemplo, escribimos el número ai solamente); después escribimos los primeros números negativos $a_1^*, a_2^*, \ldots, a_l^*$ $(l \leqslant q)$ en una cantidad tal que la suma de todos los números escritos se haga negativa pero no pase en valor absoluto de la unidad; después volvemos a escribir números positivos y así sucesivamente hasta agotar todos los números dados. La sucesión

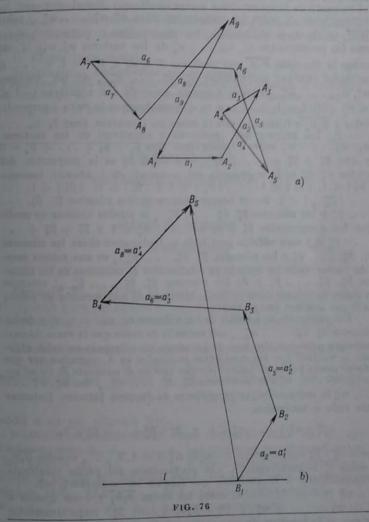
 $a_1^* = a_1', a_2^* = a_2', \ldots, a_k^* = a_k';$ $a_{k+1}^* = a_1^n, a_{k+2}^* = a_2^n, \ldots, a_{k+1}^* = a_1^n; \ldots$

así obtenida cumplirá, evidentemente, la propiedad requerida.

B. En el plano se toma un polígono $A_1A_2 \ldots A_n$ (que puede no ser convexo y cuyos lados pueden incluso entrecruzarse) de modo que la longitud de cada uno de sus lados no sobrepase la unidad (fig. 76, a). Demuéstrese la existencia de un número C_2 (independiente del polí-gono) tal que los bales del se la factoria de la companya de la compan gono) tal que los lados del polígono pueden ser colocados (sin alterar la longitud ni la dirección de los mismos) de modo que el polígono B_1B_2 ... B_n así obtenido quede comprendido en un círculo de ra-dio C_2 .

SOLUCION. Demostremos que se puede tomar C_2 igual a $\sqrt{5}$. Teniendo en cuenta que los lados del polígono $A_1A_2 \ldots A_nA_1$ tienen

longitud y dirección, o sea, considerando los mismos en tanto que vectores, representémoslos por a_1, a_2, \ldots, a_n . Escojamos entre ellos los vectores a'_1, a'_2, \ldots, a'_s de modo que el vector resultante $\overline{B_1B_s}$



de la quebrada que ellos forman (fig. 76, b) tenga la longitud mayo posible. Entonces, las proyecciones de los vectores a'_1, a'_2, \ldots, a'_n sobre el vector resultante $\overline{B_1B_s}$ tendrán todas la misma dirección que sobre el vector resultante de $\overline{B_1B_s}$ (si la proyección de uno de los vecto-coincide con la dirección de $\overline{B_1B_s}$ (si la proyección de uno de los vecto-res fuese de dirección opuesta, la eliminación del mismo conduciría res fuese de direccion opadel vector resultante). Por el contrario, las al sumento de la todos los vectores restantes $a_1^{"}, a_2^{"}, \ldots, a_{n-s}^{"}$ sobre $\overline{B_1B_1}$ tienen dirección opuesta. En otras palabras, podemos aceptar que las proyecciones $\alpha'_1, \alpha'_2, \ldots, \alpha'_n$ de los vectores $\alpha'_1, \alpha'_2, \ldots, \alpha'_n$ sobre la dirección $\overline{B_1B_s}$ son positivas $(0 \le \alpha'_i \le 1, i = 1, 2, ..., s)$ mientras que las proyecciones $\alpha_1^*, \alpha_2^*, \ldots, \alpha_{n-s}^*$ de los vectores $a_1^*, a_2^*, \ldots, a_{n-1}^*$ sobre esta misma dirección son negativas (-1 < $\langle \alpha_j \rangle \langle 0, j = 1, 2, ..., n - \varepsilon \rangle$. Consideremos la recta l perpendicular a $\overline{B_1B_n}$ y fijemos en ella la dirección «positiva». Sean $\beta_1, \beta_2, \ldots, \beta_n$ las proyecciones (positivas o negativas) de los vectores a_1, a_2, \ldots, a_n sobre l. Queda claro que $\beta'_1 + \beta'_2 + \ldots + \beta'_n = 0$ y que $\beta_1^* + \beta_2^* + \ldots + \beta_{n-s}^* = 0$ (aquí β_1^* es la proyección del vector a'_1 , β''_1 es la proyección del vector a''_1 , etc.); además, tenemos $|\beta_1| \leq 1, |\beta_2| \leq 1, \dots, |\beta_1'| \leq 1, y |\beta_1'| \leq 1, |\beta_2'| \leq 1, \dots$..., $|\beta_{n-s}^*| < 1.$ Según hemos visto en A, los números $\beta_1^*, \, \beta_2^*, \, \ldots$..., β'_1 y los números β''_1 , β''_2 , ..., β''_{n-s} se pueden ordenar de modo que las desigualades $\beta'_1 + \beta'_2 + \ldots + \beta'_y < 1$ y $\beta''_1 + \beta''_2 + \ldots$... + B < 1 sean válidas para todo v. Incluyamos ahora los números $\beta'_1, \beta'_2, \ldots, \beta'_n$ y los números $\beta''_1, \beta''_2, \ldots, \beta''_{n-n}$ en una misma sucesión conservando los órdenes ya establecidos de secuencia de los números $\beta'_1, \beta'_2, \ldots, \beta'_i$ y de los números $\beta''_1, \beta''_3, \ldots, \beta''_{n-s}$; entonces la suma de cualesquiera primeros términos de esta sucesión no pasará de 2 por muchos que se tomen.

Formemos ahora a partir de los números $\alpha'_1, \alpha'_2, \ldots, \alpha'_s$ y de los números $\alpha''_1, \alpha''_2, \ldots, \alpha''_{n-s}$ una sucesión de modo que la suma de cualesquiera primeros términos de la misma no sobrepase en valor absointo la unidad. Los razonamientos realizados en A, permiten ver que esto se puede hacer sin alterar el orden interno de secuencia de los númeras $\alpha'_1, \alpha''_2, \ldots, \alpha''_s$ y de los números $\alpha''_1, \alpha''_2, \ldots, \alpha''_{n-s}$. Sea $\alpha''_1, \alpha''_2, \ldots, \alpha''_n$ is ordenación correspondiente de nuestros vectores. Entonces para todo v tendremos:

 $\alpha_1^*\!+\!\alpha_2^*\!+\!\dots\!+\!\alpha_v^*\!<\!i \ y \ \beta_1^*\!+\!\beta_2^*\!+\dots\!+\!\beta_v^*\!<\!2,$

donde $\alpha_1^* \neq \beta_1^*$ son las proyecciones de $\alpha_h^* (k = 1, 2, ..., n)$ sobre $\overline{B_1 B_s}$ y sobre l. respectivamente. Las proyecciones del vector resultante correspondiente a la quebrada que forman los vectores $a_1^*, a_2^*, ..., a_{\psi}^* (\varphi = 1, 2, ..., n)$ sobre las rectas $\overline{B_1 B_s}$ y l son iguales a $\alpha_1^* + \alpha_2^* + ... + \alpha_{\psi}^* \neq \beta_1^* + \beta_2^* + ... + \beta_{\psi}^*$, respectivamente; por eso, si la longitud de este vector resultante es c_{ψ} , tenemos $c_{\psi}^2 = (\alpha_1^* + \alpha_2^* + ... + \alpha_{\psi}^*)^2 + (\beta_1^* + \beta_2^* + ... + \beta_{\psi}^*)^2$, o 508,

$$c_{\mathbf{v}}^2 \leqslant 5$$
 y $c_{\mathbf{v}} \leqslant \sqrt{5}$.

Hemos demostrado que la distancia entre cualquier vértice de la quebrada de vectores obtenida y el punto fino A_1 no pasa de $\sqrt{5}$; de aquí se deduce que el polígono obtenido está dentro de un círculo de radio $\sqrt{5}$.

C. El problema inicial.

SUGERENCIA. Demuéstrese que se puede tomar C_3 igual a $\sqrt{24}$. En este caso habrá que aplicar un razonamiento análogo al realizado en B, siendo $\beta_1, \beta_2, \ldots, \beta_n$ las proyecciones de los vectores a_1, a_2, \ldots \ldots, a_n sobre el plano perpendicular al vector resultante B_1B_s .

> 3. DETERMINACIÓN DE LUGARES GEOMÉTRICOS POR INDUCCIÓN SEGÚN EL NÚMERO DE DIMENSIONES

Ejemplo 37. Hállese el lugar geométrico de los puntos del espacio para los cuales es constante (e igual a d^2) la suma de los cuadrados de sus distancias a n puntos fijos A_1, A_2, \ldots

Consideremos sucesivamente los problemas siguientes.

A. En la recta se toman n puntos A_1, A_2, \ldots, A_n . Determinense los puntos M de la recta para los cuales

$$M_1^2 + MA_n^2 + \ldots + MA_n^2 = d^2,$$

donde d es un número fijo.

SOLUCION. Consideremos que nuestra recta es el eje numérico; sean a_1, a_2, \ldots, a_n los números correspondientes a los puntos A_1, A_2, \ldots, A_n y sea x el número correspondiente al punto M. En este caso, las longitudes de los segmentos MA_1, MA_2, \ldots, MA_n serán iguales a $|x - a_1|$, $|x - a_2|, \ldots, |x - a_n|$ y, por consiguiente, $MA_1^2 + MA_2^2 + \ldots + MA_n^2 =$

$$= (x - a_1)^2 + (x - a_2)^2 + \ldots + (x - a_n)^2.$$

Pero

$$\begin{aligned} (x-a_1)^2 + (x-a_2)^2 + \dots + (x-a_n)^2 &= \\ &= x^2 - 2a_1 x + a_1^2 + x^2 - 2a_2 x + a_2^2 + \dots + x^2 - 2a_n x + a_n^2 = \\ &= nx^2 - 2 \left(a_1 + a_2 + \dots + a_n\right) x + \left(a_1^2 + a_2^2 + \dots + a_n^2\right) = \\ &= n \left(x - \frac{a_1 + a_2 + \dots + a_n}{n}\right)^2 + \left(a_1^2 + a_2^2 + \dots + a_n^2\right) - \\ &= -\frac{(a_1 + a_2 + \dots + a_n)^2}{n}, \end{aligned}$$

o sea, representando por A el punto correspondiente al número

$$\frac{a_1 + a_2 + \dots + a_n}{n},$$

$$MA_1^2 + MA_2^2 + \dots + MA_n^2 = nMA^2 + (a_1^2 + a_2^2 + \dots + a_n^2) - \frac{(a_1 + a_2 + \dots + a_n)^2}{n}.$$
 (15)

Por consiguiente,

$$nMA^2 = d^2 - (a_1^2 + a_2^2 + \ldots + a_n^2) + \frac{(a_1 + a_2 + \ldots + a_n)^2}{n}$$

es decir,

$$MA = \sqrt{\frac{1}{n} \left[d^2 - (a_1^2 + a_2^2 + \ldots + a_n^2) + \frac{(a_1 + a_2 + \ldots + a_n)^2}{n} \right]}.$$

Si la expresión que figura debajo del radical es positiva, esta igualdad determina dos puntos M que satisfacen las condiciones del problema (y que están a uno y a otro lado del punto A).

B. Hállese el lugar geométrico de los puntos del plano para los cuales es constante (e igual a d^2) la suma de los cuadrados de sus distancias a *n* puntos fijos A_1, A_2, \ldots, A_n . solucion¹). Tomando en el plano un sistema rectangular de coordenadas, representemos por A'_1, A'_2, \ldots, A'_n y por A'_1, A'_2, \ldots, A'_n las proyecciones de los puntos A_1, A_2, \ldots \ldots, A_n sobre los ejes x e y; sean, además, M' y M'' las proyecciones del punto M sobre los ejes de coordenadas.

abocetado en el problema 22, pág. 77.

Entonces

y, por consiguiente,

 $MA_{1}^{2} + MA_{2}^{2} + \ldots + MA_{n}^{2} = (M'A_{1}'^{2} + M'A_{2}'^{2} + \ldots + M'A_{n}'^{2}) + (M''A_{1}''^{2} + M''A_{2}''^{2} + \ldots + M''A_{n}''^{2}).$

Pero, según la fórmula (15),

$$M'A_{1} + M'A_{2} + \dots + M'A_{n} =$$

$$= nM'A'^{2} + (a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2}) - \frac{(a_{1} + a_{2} + \dots + a_{n})^{2}}{n},$$

$$M''A_{1}''^{2} + M''A_{2}''^{2} + \dots + M''A_{n}''^{2} = nM''A''^{2} +$$

$$+ (b_{1}^{2} + b_{2}^{2} + \dots + b_{n}^{2}) - \frac{(b_{1} + b_{2} + \dots + b_{n})^{2}}{n},$$

donde a_1, a_2, \ldots, a_n y b_1, b_2, \ldots, b_n son las abscisas y ordenadas de los puntos A_1, A_2, \ldots, A_n mientras que A' y A'' son los puntos de los ejes x e y de coordenadas $\frac{a_1+a_2+\ldots+a_n}{n}$ y $\frac{b_1+b_2+\ldots+b_n}{n}$. Por lo tanto, $MA_1^2 + MA_2^2 + \ldots + MA_n^2 = nMA^2 + (a_1^2 + a_2^2 + \ldots + a_n^2) + (b_1^2 + b_2^2 + \ldots + b_n^2) - \frac{(a_1+a_2+\ldots+a_n)^2}{n}$

$$\frac{(b_1+b_2+\ldots+b_n)^2}{n}$$
 (16)

(A es el punto del plano cuyas proyecciones sobre los ejes de coordenadas son los puntos A' y A'', de donde

$$nMA^{2} = d^{2} - (a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2}) - (b_{1}^{2} + b_{2}^{2} + \dots + b_{n}^{2}) + \frac{(a_{1} + a_{2} + \dots + a_{n})^{2}}{n} + \frac{(b_{1} + b_{2} + \dots + b_{n})^{2}}{n}$$

123

y, por consiguiente,

$$MA = \frac{1}{n} \left[d^2 - (a_1^2 + a_2^2 + \ldots + a_n^2) - (b_1^2 + b_2^2 + \ldots + b_n^2) + \frac{(a_1 + a_2 + \ldots + a_n)^2}{n} + \frac{(b_1 + b_2 + \ldots + b_n)^2}{n} \right],$$

o sea, el lugar geométrico buscado es una circunferencia de radio

$$\sqrt{\frac{1}{n} \left[d^2 - (a_1^2 + a_2^2 + \dots + a_n^2) - (b_1^2 + b_2^2 + \dots + b_n^2) + \frac{(a_1 + a_2 + \dots + a_n)^2}{n} + \frac{(b_1 + b_2 + \dots + b_n)^2}{n} \right]}$$

Si

$$d > \sqrt{\frac{(a_1^{*} + a_2^{*} + \ldots + a_n^{2}) + (b_1^{*} + b_2^{*} + \ldots + b_n^{*}) - (a_1 + a_2 + \ldots + a_n)^2}{n} - \frac{(b_1 + b_2 + \ldots + b_n)^2}{n}}{n}}$$

consta solamente del punto A si

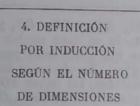
$$d = \sqrt{\frac{(a_1^2 + a_2^2 + \ldots + a_n^2) + (b_1^2 + b_2^2 + \ldots + b_n^2) - (b_1 + a_2 + \ldots + a_n)^2}{n} - \frac{(a_1 + a_2 + \ldots + a_n)^2}{n} - \frac{(b_1 + b_2 + \ldots + b_n)^2}{n}}$$

y no contienen punto alguno si

$$d < \sqrt{\frac{(a_1^2 + a_2^2 + \ldots + a_n^2) + (b_1^2 + b_2^2 + \ldots + b_n^2) - (a_1 + a_2 + \ldots + a_n)^2}{n} - \frac{(b_1 + b_2 + \ldots + b_n)^2}{n}}.$$

C. El problema inicial.

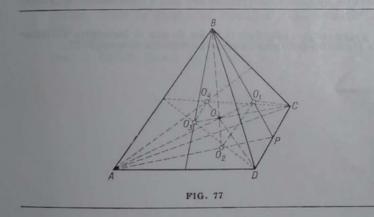
SUGERENCIA. Tomando un sistema rectangular de coordenadas z. y. z en el espacio, proyectar todos los puntos sobre el plano xOyy sobre el eje Oz y emplear después las fórmulas (15) y (16).



Ejemplo 38. Definición de las medianas y del baricentro del tetraedro.

A. Se denomina baricentro de un segmento su punto medio.

B. En el triángulo se denomina <u>mediana</u> el segmento que une cualquiera de sus vértices con el baricentro del lado opuesto. Es sabido que las medianas del triángulo



se cortan en un punto; este punto se denomina baricentro del triángulo.

C. Se denomina *mediana del tetraedro* todo segmento que une uno de sus vértices con el baricentro de la cara opuesta.

Demostremos que las medianas del tetraedro se cortan en un punto.

Consideremos el tetraedro ABCD (fig. 77) y sean O_1 , O_2 , O_3 y O_4 los baricentros de los triángulos DBC, ACD, ABDy ABC. Puesto que las rectas BO_1 y AO_2 se cortan en el punto medio P del segmento CD, las rectas AO_1 y BO_2 también se cortarán en un punto O_{12} ; de la misma forma las rectas $AO_1 ext{ y } CO_3$, $AO_1 ext{ y } DO_4$, $BO_2 ext{ y } CO_3$, $BO_2 ext{ y } DO_4$, $CO_3 ext{ y } DO_4$ se cortarán en unos puntos O_{13} , O_{14} , O_{23} , O_{24} $ext{ y } O_{34}$. Demostremos que todos estos puntos coinciden (con el punto O de la figura). En efecto, si los puntos $O_{12} ext{ y } O_{13}$, por ejemplo, no coinciden, las rectas AO_1 , $BO_2 ext{ y } CO_3$ estarían en un mismo plano π (el plano $O_{12}O_{13}O_{23}$); pero entonces la recta DO_4 que se corta con AO_1 , $BO_2 ext{ y } CO_3$ estaría en el mismo plano, o sea, los cuatro vértices del tetraedro estarían en el mismo plano π . Como esto es falso, los puntos $O_{12} ext{ y } O_{13}$ deben coincidír y con este mismo punto coincidirán todos los demás puntos O_{14} , O_{23} , $O_{24} ext{ y } O_{34}$.

El punto de intersección de las medianas del tetraedro se denomina baricentro del mismo.

Problema 43. Demuéstrese que el baricentro divide cada mediana del tetraedro en razón 3:1 contando a partir del vértice.

SUGERENCIA. Empléese el hecho de que el baricentro del triángulo divide sus medianas en razón 2 : 1 (véase el ejemplo 27).

A NUESTROS LECTORES:

«Mir» edita libros soviéticos traducidos al español, inglés, francés, árabe y otros idiomas extranjeros. Entre ellos figuran las mejores obras de las distintas ramas de la ciencia y la técnica: manuales para los centros de enseñanza superior y escuelas tecnológicas; literatura sobre ciencias naturales y médicas. También se incluyen monografías, libros de divulgación científica y ciencia ficción.

Dirijan sus opiniones a la Editorial «Mir», 1 Rizhski per., 2, 129820, Moscú, I-110, GSP, URSS.

A CONTRACTOR OF A CONTRACT OF

DK 12.0%