

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE ARARANGUÁ COORDENADORIA ESPECIAL DE FÍSICA, QUÍMICA E MATEMÁTICA (FQM) PLANO DE ENSINO

SEMESTRE 2017.2

I. IDENTIFICAÇÃO DA DISCIPLINA:				
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-AULA SEMANAIS		TOTAL DE HORAS-AULA SEMESTRAIS
		TEÓRICAS	PRÁTICAS	SEIVIESTRAIS
ARA7529	Laboratório Física Experimental A	0	4	72

HORÁRIO		MÓDULO
TURMAS TEÓRICAS	TURMAS PRÁTICAS	
-	3.1420 – 3.1620	Presencial

II. PROFESSOR(ES) MINISTRANTE(S)

Marcia Szortyka (marcia.szortyka@ufsc.br)

III. PRÉ-REQUISITO(S)		
CÓDIGO	ÓDIGO NOME DA DISCIPLINA	
	Sem pré requisitos	

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Graduação em Engenharia de Computação

V. JUSTIFICATIVA

Esta disciplina justifica-se pela contribuição de cunho experimental na formação básica de egressos da área de ciências naturais e tecnológicas. Ela é necessária para a complementação da formação do profissional em engenharia, fornecendo uma base para a compreensão de problemas relacionados à utilização de instrumentos de medidas, à medição análise e interpretação de grandezas físicas, bem como de conceitos em Física Experimental.

VI. EMENTA

Erros e Medidas: Introdução. Grandezas, dimensões e unidades. Medidas diretas e indiretas. Classificação dos erros. Algarismos significativos. População e amostra. Valor mais representativo duma grandeza. Valor verdadeiro, valor mais provável, erro e desvio. Discrepância e discrepância relativa. Exatidão e precisão.

Tratamento de Erros Experimentais: Freqüência e probabilidade. Representação de medidas como uma distribuição. Função de Gauss. Medidas de dispersão. Nível de confiança com o desvio padrão. Rejeição de dados. Limite de erro instrumental, desvio avaliado e desvio relativo. Propagação de erros Independentes. Regras para representação do valor e do desvio de uma medida.

Análise Gráfica: Regras (Guias) para a Representação Gráfica. Interpolação e Extrapolação. Determinação Gráfica dos Parâmetros da Função Linear. Linearização de Curvas. Linearização pelo Método Da Anamorfose. Linearização pelo Método Logarítmico. Método dos Mínimos Quadrados.

1 VII. OBJETIVOS

Objetivos Gerais:

Esta disciplina explora a observação de fenômenos, leituras, medidas, da teoria e tratamentos de erros.

Objetivos Específicos:

- Introduzir ao aluno os conceitos de medida, critérios de arredondamento e erro de medidas.
- Capacitar o aluno na leitura de instrumentos de medida, na análise gráfica de dados e sua interpretação.
- Utilizar técnicas de vídeo análise como ferramenta para obtenção de dados experimentais em Mecânica.
- Fornecer ao aluno verificações experimentais de conceitos introduzidos nas aulas teóricas de Física Clássica relativa ao tema de Mecânica.

VIII. CONTEÚDO PROGRAMÁTICO

Noções sobre medidas; Algarismos significativos; Transformações de unidades; Notação científica; Critérios de arredondamento; Operações com algarismos significativos; Erros de uma medida; Classificação de erros; Cálculo do erro aleatório provável; Erro de escala; Erro em instrumentos de medida analógicos e digitais; Erro relativo percentual; Propagação de erros; Construção manual de gráficos; Gráficos em computador; Linearização; Regressão linear; Experimentos em Mecânica.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Serão ministradas aulas práticas, com atividades em laboratório, em concomitância com a exposição de temas pertinentes às atividades realizadas.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento do aluno compreenderá **frequência e aproveitamento** nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente FS), ficando reprovado o aluno com mais de 25% de faltas (Frequência Insuficiente FI).
- A média do semestre será composta da seguinte maneiras
 - 1. 30% atividades em sala de aula
 - 2. 40% relatório dos experimentos realizados em laboratório
 - 30% lista de exercícios
- A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- Ao aluno que não comparecer às avaliações terá atribuída nota 0 (zero) nas mesmas. (Art. 70, § 4º da Res. nº 17/CUn/1997)

Observações:

Nova avaliação

- Pedidos de segunda avaliação somente para casos em que o aluno, por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, e deverá ser formalizado via requerimento de avaliação à Secretaria Acadêmica do Campus Araranguá dentro do prazo de 3 dias úteis apresentando comprovação.
- Para a recuperação de notas referentes a relatórios não entregues, será atribuída a nota obtida na no trabalho escrito;

XI. CRON	OGRAMA TEÓRICO	
AULA (Seman a)	DATA	ASSUNTO
1 ^a	31/07/17 a 05/08/17	Apresentação do plano de ensino. Noções sobre medidas; Algarismos significativos; Transformações de unidades; Notação científica; Critérios de arredondamento; Operações com algarismos significativos.
2ª	07/08/17 a 12/08/17	Erros de uma medida; Classificação de erros; Cálculo do erro aleatório provável; Erro de escala; Erro em instrumentos de medida analógicos e digitais; Erro relativo percentual; Propagação de erros;
3ª	14/08/17 a 19/08/17	Construção manual de gráficos; Linearização; Regressão linear.
4 ^a	21/08/17 a 26/08/17	Manipulação de instrumentos de medida
5 ^a	28/08/17 a 02/09/17	Experimentos em Mecânica I.
6ª	04/09/17 a 09/09/17	Experimentos em Mecânica II.
7 ^a	11/09/17 a 16/09/17	Experimentos em Mecânica III.
8 ^a	18/09/17 a 23/09/17	Experimentos em Mecânica IV.
9 ª	25/09/17 a 30/09/17	Experimentos em Mecânica V.
10 ^a	02/10/17 a 07/10/17	Experimentos em Mecânica VI.
11 ^a	09/10/17 a 14/10/17	Experimentos em Mecânica VII.
12ª	16/10/17 a 21/10/17	Experimentos em Mecânica VIII.
13ª	23/10/17 a 28/10/17	Experimentos em Mecânica IX.
14 ^a	30/10/17 a 04/11/17	Experimentos em Mecânica X.

15 ^a	06/11/17 a 11/11/17	Liberação do trabalho final
16 ^a	13/11/17 a 18/11/17	Dia livre
17 ^a	22/11/17 a 25/11/17	Entrega do trabalho final
18 ^a	27/11/17 a 02/12/17	Divulgação das notas finais

XII. Feriados previstos para o semestre 2017.2

7 m 1 0 m 2 0 p 0 m 2 0 p 2 m 2 0	00000
DATA	

XIII. BIBLIOGRAFIA BÁSICA

- 1. TIPLER, P. A.; MOSCA, G. Física para Cientistas e Engenheiros. v. 1. 5. ed. Rio de Janeiro, RJ: Livros Técnicos e Científicos, 2006. 840 p.
- 2. VUOLO, J. H. Fundamentos da Teoria de Erros. 2. ed. São Paulo, SP: Editora Edgar Blücher, 1992.
- 3. BARTHEM, B. R. Tratamento e Análise de Dados em Física Experimental. Rio de Janeiro, RJ: Editora da UFRJ, 1996.

XIV. BIBLIOGRAFIA COMPLEMENTAR:

- 4. Helene, O., S.P. Tsai e R. R.P. Teixeira, 1991. O que é uma medida? Revista de Ensino de Física,13,12-29.
- 5. Furtado, Nelson F., 1957. Sistemas de Unidades: Teoria dos Erros. Ao Livro Técnico Ltda.
- 6. NUSSENZVEIG, H. M. Curso de Física Básica. v. 1. 4. ed. São Paulo, SP: Edgard Blücher, 2002.
- 7. Helene, Otaviano A .M. e Vitor R. Vanin, 1981. Tratamento Estatístico de Dados em Física Experimental. Editora Edgard Blücher Ltda.
- 8. YOUNG, Hugh D; FREEDMAN, Roger A.; FORD, A. Lewis. Física. v1, 12. ed. São Paulo (SP): Addison Wesley, 2008.

Profa. Marcia Szortyka
Aprovado na Reunião do Colegiado do Departamento//_
Chefia
Aprovado na Reunião do Colegiado do Curso//
Coordenação