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ABSTRACT

Geostatistics aggregates a set of tools designed to deal with spatially corre-
lated data. Two significant problems that Geostatistics tackles are the spatial
interpolation and geostatistical simulation. Kriging and Sequential Gaussian
Simulation (SGS) are two examples of traditional geostatistical tools used for
these kinds of problems. These methods perform well when the provided
Variogram is well modeled. The problem is that modeling the Variogram re-
quires expert knowledge and a certain familiarity with the dataset. This com-
plexity might make Geostatistics tools the last choice of a non-expert. On
the other hand, an important feature present in neural networks is their abi-
lity to learn from data, even when the user does not have much information
about the particular dataset. However, traditional models, such as Multilayer
Perceptron (MLP), do not perform well in spatial interpolation problems due
to their difficulty in accurately modeling the spatial correlation between sam-
ples. With this motivation in mind, we adapted the Incremental Gaussian
Mixture Network (IGMN) model for spatial interpolation and geostatistical
simulation applications. The three most important contributions of this work
are: 1. An improvement in the IGMN estimation process for spatial interpo-
lation problems with sparse datasets; 2. An algorithm to perform Sequential
Gaussian Simulation using IGMN instead of Kriging; 3. An algorithm that
mixes the Direct Sampling (DS) method and IGMN for cluster-based Mul-
tiple Point Simulation (MPS) with training images. Results show that our
approach outperforms MLP and the original IGMN in spatial interpolation
problems, especially in anisotropic and sparse datasets (in terms of RMSE
and CC). Also, our algorithm for sequential simulation using IGMN instead
of Kriging can generate equally probable realizations of the defined simula-
tion grid for unconditioned simulations. Finally, our algorithm that mixes the
DS method and IGMN can produce better quality simulations and runs much
faster than the original DS. To the best of our knowledge, this is the first time
a Neural Network model is specialized for spatial interpolation applications
and can perform a geostatistical simulation.

Keywords: Geostatistics. Gaussian Mixture Models. Artificial Neural Networks.





RESUMO

A Geoestatística agrega um conjunto de ferramentas especializadas em dados
espacialmente correlacionados. Dois problemas importantes na Geoestatís-
tica são a interpolação espacial e a simulação. A Krigagem e a Simulação
Sequencial Gaussiana (SGS) são dois exemplos de ferramentas geoestatísti-
cas utilizadas para esses tipos de problemas, respectivamente. A Krigagem e
a SGS possuem bom desempenho quando o Variograma fornecido pelo usuá-
rio representa bem as correlações espaciais. O problema é que a modelagem
do Variograma requer um conhecimento especializado e certa familiaridade
com o conjunto de dados em estudo. Essa complexidade pode tornar difí-
cíl a popularização dessas técnicas entre não-especialistas. Por outro lado,
uma característica importante presente em Redes Neurais Artificiais é a ca-
pacidade de aprender a partir dos dados, mesmo quando o usuário não possui
familiaridade com os dados. No entanto, os modelos tradicionais, como o
Multilayer Perceptron (MLP), têm dificuldade em identificar a correlação es-
pacial entre amostras e não apresentam um bom desempenho em problemas
de interpolação espacial. Com essa motivação, nós adaptamos e aplicamos a
Incremental Gaussian Mixture Network (IGMN) em problemas de interpola-
ção espacial e simulação geoestatística. As três principais contribuições deste
trabalho são: 1. Melhoria no processo de estimação da IGMN para problemas
de interpolação espacial; 2. Um algoritmo para realizar simulação sequen-
cial gaussiana utilizando a IGMN como interpolador; 3. Um algoritmo que
mistura o método Direct Sampling (DS) e a IGMN para realizar simulação
multiponto (MPS) a partir de imagens de treinamento. Os resultados mos-
tram que a nossa abordagem é mais precisa que o MLP e a IGMN original
em problemas de interpolação espacial, especialmente em conjuntos de dados
esparsos e com anisotropia (em termos de RMSE e CC). Nosso algoritmo de
simulação sequencial que utiliza a IGMN como interpolador é capaz de gerar
simulações não condicionadas que respeitam características do conjunto ori-
ginal de dados. Finalmente, nosso algoritmo de simulação multiponto, que
mistura o método DS e a IGMN, é capaz de realizar simulações condicio-
nadas e produz realizações com qualidade superior num tempo de execução
inferior ao do DS. Até onde sabemos, esta a primeira vez que um modelo de
rede neural é especializado para aplicações de interpolação espacial e é capaz
de realizar simulação geostatística.

Palavras-chave: Geoestatística. Modelo de Mistura de Gaussianas. Rede
Neural Artificial.
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1 INTRODUCTION

1.1 MOTIVATION

Georeferenced data are an essential component of studies in environ-
mental sciences, such as natural resources evaluation, conservation biology,
and oil exploration. Often, only a small dataset of samples are available be-
cause this kind of study might involve obtaining data in harsh environments,
such as mountainous regions or deep water. Interpolation techniques are com-
monly applied to estimate mean values in unsampled areas. Some of these
studies also aim at analyzing risk, uncertainty and obtain equally probable
events in certain areas. Geostatistics provides a set of tools for assessing
these kinds of problems. For interpolation of mean values, one of its most
popular techniques is Kriging. For analyzing uncertainty, risk and generating
equally probable scenarios, Sequential Gaussian Simulation (SGS) is a well
accepted geostatistical tool in the petroleum industry (PetroWiki, c2015).

To use Kriging or SGS, it is necessary to model a function describing
the degree of spatial correlation between samples, which can be represented
as a variogram or correlogram. The variogram modeling procedure deter-
mines the main directions of anisotropy and range of influence of each data
point. However, modeling the variogram requires expert knowledge of geos-
tatistics procedures and familiarity with the dataset. Therefore, this modeling
process might be an obstacle for non-experts in geostatistics.

On the other hand, Artificial Neural Networks (ANNs) models have an
interesting feature: the ability to learn from data, even when the user does not
know much information about the particular dataset. They also do not require
any special model as input, like the variogram. Popular ANNs models, like
the Multi-Layer Perceptron (MLP), are well suited for function approxima-
tion (regression) and classification problems. However, they are not usually
the best choice in problems involving a spatial correlation between samples,
as showed in Chapter 5 of this dissertation and in these comparative studies
(Nevtipilova, V., et al, 2014; Gumus, K.; Sen, A., 2013).

The main reason to perform simulation rather than interpolation of
mean values is that it allows analyzing uncertainty, heterogeneity and visuali-
zing different possible scenarios (realizations). After generating many reali-
zations, one can model the local Probability Density Function (PDF) in every
simulated location. Then, this PDF can be used to create risk maps or analyze
the probability of occurrence of a particular event. For instance, one may be
interested in analyzing the probability of Zinc concentration being over 1700
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ppm in a particular area. This kind of analysis cannot be performed with only
mean values (interpolation).

In a typical study involving SGS, a realization is generated sequenti-
ally. Each new simulated point is incorporated into the current model, which
will be used to simulate the next points (Doyen, P., 2007). Consequently, the
model has to be updated after the incorporation of every new point. Then,
using a neural network model that does not allow online changes, such as
MLP with backpropagation learning, would cause an enormous overhead due
to the need for retraining the complete model for each new simulated point.
Also, MLP networks do not provide the variance of their estimates, which is
an essential requirement to perform SGS.

Thereupon, an ideal solution would be to combine the good perfor-
mance of geostatistical methods with the simplicity of use found in neural
networks. With this motivation in mind, we found the Incremental Gaussian
Mixture Network (IGMN) (HEINEN, 2011; HEINEN; ENGEL, 2011), a neu-
ral network based on parametric probabilistic models. IGMN meets most of
the requirements we are interested in, i.e., allows online learning, has good
performance in function approximation, does not require variogram modeling
and provides variance of its estimates. However, when solving spatial inter-
polation problems, IGMN may have some issues, especially when the data
set is clearly anisotropic and sparse. This is one of the problems we address
in this work.

Besides the classical geostatistical methods, when dealing with con-
nectivity patterns, a different class of simulation techniques that look promi-
sing is the Multiple-Point Simulation (MPS) (GUARDIANO; SRIVASTAVA,
1993). MPS introduced the idea of using a Training Image (TI) as input
data to define the spatial correlation, instead of a two-point Variogram mo-
del. From this class, the SNESIN (STREBELLE, 2002) has gained a lot of
attention by the oil industry (AITOKHUEHI; DURLOFSKY, 2005; HOFF-
MAN; CAERS, 2007) but has difficulties in simulating continuous variables
and performing co-simulation.

Recently, (MARIETHOZ; RENARD; STRAUBHAAR, 2010) propo-
sed a powerful technique, called Direct Sampling (DS), that can deal either
with categorical or continuous variables and also perform co-simulation. Howe-
ver, DS has the disadvantage of generating a lot of noise in its simulations. As
stated in (MEERSCHMAN et al., 2013), DS also provides a post-processing
step that aims at removing this noise. This post-processing step consists
in re-simulating every point multiple times with an informed neighborhood.
Although this might help to improve the quality of the image, the computati-
onal cost involved in post processing every realization may be impractical.

Motivated by these two problems found in DS, we propose to use
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IGMN and DS together to reduce the noise and speed up the simulation. Our
proposal consists in pre-processing the training image with IGMN to iden-
tify clusters representing regions of spatial continuity. These clusters are later
used to allow simulating multiple points at each step, instead of copying only
one point at a time (like the DS). The incremental aspect of IGMN allows us
not to specify the number of clusters beforehand. Also, the spatial dimensi-
ons of the clusters identified by IGMN help to determine the amount of points
that might be copied at once.

1.2 OBJECTIVES

1.2.1 General Objectives

The goal of this work is to adapt an Artificial Neural Network model,
based on Gaussian Mixture Models with incremental learning, to solve spatial
interpolation, sequential simulation, and multiple-point simulation problems,
without requiring expert knowledge in Geostatistics or a Variogram model as
input.

1.2.2 Specific Objectives

The specific objectives of this work are:

• Improve the IGMN estimation process for sparse and anisotropic spa-
tially correlated datasets;

• Develop a method to perform unconditional Sequential Gaussian Si-
mulation using IGMN, without requiring a Variogram model;

• Develop a method that mixes Direct Sampling and IGMN to perform
Multiple-Point Simulations faster and less noisy than DS.

1.3 OUTLINE

The remaining of this dissertation is organized as follows. Chapter
II presents basic concepts and some background about Geostatistics, Neural
Networks and Gaussian Mixture Models. Chapter III discusses the related
work. Chapter IV describes the specific problems we are trying to solving
and the proposed solutions. In that chapter, we firstly show the ideas for im-
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proving the estimation process of IGMN. Then, we describe our Incremental
Gaussian Mixture Sequential Simulation algorithm. Finally, we present our
MPS algorithm that mixes IGMN and DS. Chapter V details the experiments
performed to evaluate our proposal and the obtained results. Chapter VI pre-
sents our conclusions and future work.
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2 BACKGROUND

2.1 GEOSTATISTICS

Geostatistics has its origins in the petroleum and mining fields, starting
with Krige (1951) and further developed by Matheron (1962). It is concerned
with solving interpolation and estimation problems that arise when scientists
have sparse data to analyze. In the petroleum industry, for example, Geosta-
tistics tools are usually applied to help taking decisions concerning expensive
operations based on interpretations over a sparse spatially correlated dataset
available. Nowadays, Geostatistics is applied to many other fields, e.g., ocea-
nography, meteorology, soil sciences, forestry, hydrology, landscape ecology.

Different from traditional statistics, Geostatistics do not assume, for
example, all samples of a population are normally distributed and indepen-
dent from one another. This assumption is often not satisfied in earth science
datasets, which may contain high spatial correlation between nearby samples.
Instead, Geostatistics incorporates both the statistical distribution of the sam-
ples and the spatial correlation between them. That is why many earth science
problems are better addressed with geostatistical methods (ZHANG, 2011).

One may think, why not just use simple interpolation? We will illus-
trate the answer to this question with an example. But before that, we can
formalize the notation for a random process that has become conventional in
Geostatistics as follows (OLIVER; WEBSTER, 2014):

1. A realization of the process is the value of a property z(x) at any loca-
tion x (equivalent to x1,x2 in two dimensions) is one of an infinity of
values of a random variable Z(x) at that place.

2. The set of random values at all such locations, in a region, is a random
process, also denoted Z(x).

3. The random variable is spatially correlated at some scale.

Now, back to our example, suppose we want to estimate the permeabi-
lity at the unsampled location z0 (Figure 1). Using the basic Inverse Distance
Weighting (IDW) method, z0 can be calculated as:

z0 =
n

∑
i=1

wizi (2.1)

wi =
1/di

∑
n
i=1(1/di)

(2.2)
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(a) (b)

Figure 1: a) Estimation of the unknown permeability z0 based on a set of n known va-
lues; b) Estimation of the unknown z0 given 7 known values. Numbers in parenthesis
are weights assigned based on inverse distance. Adapted from (ZHANG, 2011).

From the above equations we can see that z0 is calculated as a weigh-
ted sum of the n known values. Each weight wi is determined solely by the
distances di between z0 and each known point zi. For n = 7, the weights cal-
culated to points 1, 2, 4 and 6 are all equal to 0.2. On the other hand, from the
point of view of geology, we would expect points 4 and 6 to be more similar
to z0 (have greater weight) because they are located in the horizontal direction
inside the sand body. So, this method does not incorporate spatial correlation
information. On the other hand, Geostatistics methods take into account both
spatial correlation and distance information. This information is encoded into
a model called Variogram.

2.1.1 Geostatistical Estimation

A typical geostatistical estimation consists of 3 steps (ZHANG, 2011):
(1) examining spatial correlation of the dataset via an experimental variogram
analysis; (2) modeling the Variogram, which consists in fitting a permissible
mathematical function to the experimental Variogram; (3) performing Kri-
ging interpolation based on the Variogram model and the dataset. Figure 2
illustrates a workflow for performing a geostatistical estimation study using
Kriging, one of the most well known geostatistical interpolation method.
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Figure 2: Geostatistical estimation workflow using Kriging. Adapted from (ZHANG,
2011).

2.1.1.1 Variograms

The variogram is defined by Cressie (1993) as the variance of the dif-
ference between field values at two locations (x and y):

2γ(x,y) = var(Z(x)−Z(y)) = E[((Z(x)−µ(x))− (Z(y)−µ(y)))2] (2.3)

We can rewrite this as the expectation for the squared increment of
the values between locations x and y assuming the spatial random field has a
constant mean µ (WACKERNAGEL, 2003):

2γ(x,y) = var(Z(x)−Z(y)) = E[(Z(x)−Z(y))2] (2.4)

where γ(x,y) is called the semivariogram, or simply variogram. The as-
sumption made by Matheron (1965) of instrinsic stationarity, allows us to
represent the variogram as a function γ(h) of the difference h = y− x, where
γ(h) is equivalent to γ(0,y− x). We can understand h as the separation dis-
tance between the locations and it is commonly known as lag distance. When
h = ‖y− x‖, the variogram is said to be isotropic, i.e., it depends only on the
separation distance h and does not take into account the direction between the
samples. When it takes into account the direction, it is said to be anisotropic
and we can specify a main direction of anisotropy.

When we speak about variogram it is important to separate two main
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Figure 3: Example of a variogram plot. Source: (PNNL, 2016).

concepts: the experimental (or empirical) variogram and the theoretical vari-
ogram (or variogram model). The experimental variogram can be calculated
over the field data using the method of moments (MATHERON, 1965):

γ̂(h) =
1

2m(h)

m(h))

∑
j=1
{z(x j)− z(x j +h)}2 (2.5)

where m(h) is the number of paired comparisons at lag distance h. By in-
crementing h in steps we obtain an ordered set of values, as shown in Figure
3. Calculating experimental variograms to examine the dataset is the first
step in an estimation process. The basic idea is to plot multiple directional
variograms to find out the main direction of anisotropy and other important
parameters:

• sill s: Limit of the variogram tending to infinity lag distances.

• range r: Represents maximum distance at which two samples are cor-
related. Conventionally, the distance when the variogram reaches 95%
of the sill.

• nugget n: The height of the discontinuity at the origin.

The second step in the estimation workflow is to replace the empirical
variogram with a variogram model, i.e., fit a model to the sample data. This is
necessary because when using Kriging, it may be required to access the vario-
gram values for lag distances different from those in the empirical variogram.
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More importantly, the variogram needs to be a positive definite function, in
order the Kriging system of equations to be non-singular (BOHLING, 2005).
Therefore, there is a list of licit variogram models where geostaticians can
choose from and combine them. Three of the most frequently used models
are (CRESSIE, 1993; CHILES; DELFINER, 2009):

• The spherical variogram model:

γ(h) = (s−n)
((

3h
2r
− h3

2r3

)
1(0,r)(h)+1[r,∞)(h)

)
+n1(0,∞)(h) (2.6)

• The exponential variogram model:

γ(h) = (s−n)
(

1− exp
(
−h
r

))
+n1(0,∞)(h) (2.7)

• The gaussian variogram model:

γ(h) = (s−n)
(

1− exp
(
−h2

r2

))
+n1(0,∞)(h) (2.8)

Figure 4 illustrates these three variogram models. The gaussian mo-
del has a parabolic behavior at the origin and represents properties that vary
very smoothly. The spherical and exponential models have linear behavior
at the origin and represents well properties with a higher level of short-range
variability (BOHLING, 2005).

2.1.1.2 Ordinary Kriging

Given spatial data Z(xi) and assuming an intrinsically stationary pro-
cess, i.e. having constant unknown mean µ and known variogram function
γ(h), the value at an unbserved location x0 can be calculated as a linear com-
bination of Ordinary Kriging weights ωOK

j and the known samples Z(xi):

Ẑ(x0) =
n

∑
j=1

ω
OK
j Z(xi) (2.9)

The weights ωOK
j are calculated by Ordinary Kriging and they have

two important goals in the estimation process: 1. reflect the proximity of
samples to the estimation location; 2. avoid bias caused by groups of samples
clustered (screening effect). The Ordinary Kriging system of equations can
be written as (LINCHTENSTERN, 2013):
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Figure 4: Plots of Gaussian, Spherical and Exponential theoretical variogram models.
Adapted from: (BOHLING, 2005).

n

∑
j=1

ω
OK
j γ(xi− x j)+λOK = γ(xi− x0) for i = 1, ...,n (2.10)

In the geostatistical formalism, the calculation of the weights ωOK
j has

two objectives: minimize the variance of estimation and ensure that the model
is unbiased. We can also re-write the above equation in a matrix form:

(2.11)

where ωOK := ((ω1)
OK , ...,(ωn)

OK)T ∈ Rn denotes the vector providing the
optimal weights ωOK

i . λOK ∈ R is the Lagrange multiplier of ordinary kri-
ging. γ(xi− x0) are the variogram values between the known samples and
the estimation location. The Ordinary Kriging variance can be calculated as
(LINCHTENSTERN, 2013):

σ
2
OK = λOK +

n

∑
i=1

ω
OK
i γ(xi− x0) (2.12)
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The weights can be calculated by solving the system for ω using Gauss
elimination, for example. Thus, inverting the γ matrix will be necessary. This
matrix inversion operation can computationally expensive when the number
of known points n is large.

There are other kinds of Kriging, such as the Simple Kriging (SK)
and Universal Kriging (UK). In the SK, the mean is assumed constant and
known over the entire domain, not only in the search neighborhood as in the
Ordinary Kriging. In the UK, it is possible to specify the trend using a general
polynomial model.

2.1.2 Geostatistical Simulation

Geostatistical simulation is a stochastic approach that provides means
for calculating different equally probable solutions (realizations), for an in-
terpolation problem. Interpolation methods, such as Kriging and IDW, do
not aim at representing the actual variability of the studied variable. In fact,
they aim at providing a good average value (PetroWiki, c2015). However,
some applications, such as oil reservoir modeling and risk mapping, are inte-
rested in studying different scenarios, capturing heterogeneity and assessing
uncertainty.

Therefore, in a typical Geostatistical simulation study, we are interes-
ted in generating multiple estimations for the same locations and use these es-
timations build, for example, local probability density functions (PDF). Then,
it is possible to analyze uncertainty, heterogeneity, build risk maps and other
kinds of analysis. It is important to notice that this uncertainty is due to our
lack of knowledge about the problem (sparse samples). Figure 5 illustrates a
common Geostatistical simulation workflow.

2.1.2.1 Sequential Gaussian Simulation

The Sequential Gaussian Simulation is a well accepted method for si-
mulating continuous variables in the petroleum industry (PetroWiki, c2015).
Figure 6 illustrates how this method works. Before running the algorithm,
it is defined a simulation grid and performed a normal score transformation
over the raw data (if data is not normally distributed). Then, the algorithm
works as follows (Doyen, P., 2007):

1. Randomly picks a non-simulated cell (i = 7);

2. Calculate Kriging mean and variance;
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Figure 5: Geostatistical simulation workflow. Source: (ZHANG, 2011).

3. Assigns a random value xi taken from a Gaussian distribution with
mean and variance calculated in step 2;

4. Incorporates xi as a known data point;

5. Repeat steps 1-4 until the whole grid is simulated.

In section 4.2 we present a modified version of this algorithm to perform
simulation using IGMN as interpolator instead of Kriging.

There are, also, other sequential simulation methods such as the Se-
quential Indicator Simulation (SIS), for discrete variables and the Direct Se-
quential Simulation (DSS), which is applied direct to the available data, not
performing any transformation.

2.1.3 Multiple-Point Statistics

Traditional geostatistics uses variogram models to characterize the
spatial correlation between samples. This is known as two-point geostatis-
tics, since a variogram value depends only on the separation distance and
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Figure 6: Illustration of SGS Operation. Adapted from (Doyen, P., 2007).

Figure 7: The variogram as a poor descriptor of geological heterogeneity. Three
different geological heterogeneities result in three similar variograms. Adapted from:
(CAERS; ZHANG, 2004).

direction between two samples. However, shapes of geological bodies, such
as channels, and curvilinear structures cannot be correclty captured by the
variogram model (JOURNEL, 1992; STREBELLE, 2002). Figure 7 shows
three images with very different spatial correlation patterns but with similar
variograms.

Therefore, Multiple-Point Statistics (MPS) was created to address this
issue. MPS offers a new set of tools tha can model complex and heterogeneus
geological environments through the use of Training Images (TI). A TI may
be a photograph, a draw, or anything that generally describes the geometrical
spatial characteristics of a region. For example, the images shown in Figure
7 could be used as input for a MPS simulation method.

Simulation methods based on MPS allow capturing geological ele-
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ments like channels, reefs, bars, dikes or different oriented facies, while ho-
nouring data information. Two popular MPS simulations methods are the
SNESIM (STREBELLE, 2002) and, more recently, the Direct Sampling (DS)
(MARIETHOZ; RENARD; STRAUBHAAR, 2010). We describe the DS
method with more details in the next chapter.

2.2 ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Network (ANN) can be defined as a computing
system composed by many highly interconnected simple processing units
(called neurons), which process information by their dynamic state response
to external inputs (CAUDILL, 1989). There are many kinds of ANN models
and they can be classified as supervised or unsupervised learning approaches.
Two examples of supervised learning models are the Multi-Layer Percep-
tron (MLP) (RUMENLHART; HINTON; WILLIAMS, 1986), which is by
far the most popular model, and the Radial Basis Function (RBF), which is
commonly used for non-linear regression tasks. On the unsupervised lear-
ning side, one example is the Self-Organizing Maps (SOM) (KOHONEN;
SCHROEDER; HUANG, 2001), which can detect patterns from the input
data and generate a topological map. Another interesting model is the ART,
which is an ANN model based on the adaptive resonance thory (CARPEN-
TER; GROSSBERG, 1987).

One interesting feature present in ANNs is their ability to learn from
data without requiring too much knowledge about the dataset or the ANN
model. This allows us to use them as black boxes by inputing some training
data and tweaking a few parameters. Also, the MLP model for example, is an
universal approximator and very powerful for either function approximation
or classification tasks (HORNIK; STINCHCOMBE; WHITE, 1989).

2.2.1 Multi-Layer Perceptron

The Multi-Layer Perceptron is one of the most popular ANN models.
Its architecture is organized in several layers of neurons which are fully con-
nected with the subsequent layer. It has a minimum of 3 layers, the input
layer, one or more hidden layers and the output layer. Each neuron return as
output the result of an activation function computed over a weighted combi-
nation of its inputs as shown in equation 2.13
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y j(n) = ϕ

(
D

∑
i=0

ω ji(n)yi(n)

)
(2.13)

where ϕ(x) is the activation function, D is the of inputs applied to neuron j,
ω ji is the synaptic weight that connects the neuron j from the previous layer
to the neuron i in the current layer and yi(n) is the input signal at neuron j (or
the output of neuron i from previous layer). The logistic function (equation
2.14) is commonly used as activation function.

ϕ(n) =
1

1+ exp
(
−∑

D
i=0 ω ji(n)yi(n)

) (2.14)

The training process in MLP is usually done using the Backpropaga-
tion algorithm (RUMENLHART; HINTON; WILLIAMS, 1986), which is a
supervised learning method that performs a gradient descent towards a global
minimum along the steepest vector of the error surface. In other words, the
training process can be summarized as (SATHYANARAYANA, 2014):

1. The Neural Network weights must be adjusted such that the error cal-
culated on a known training set is minimized.

2. The strategy to minimize the error is: iteratively change the weights by
a small amount proportional to the partial derivative of the error with
respect to that weight.

3. Keep refining the weights until the error is low enough or the error does
not fall anymore.

2.3 GAUSSIAN MIXTURE MODELS

We can define a Gaussian Mixture Model (GMM) as a parametric pro-
bability density function that assumes all the data points are generated from a
mixture of finite number of Gaussian distributions. This mixture is represen-
ted as weighted sum of Gaussian component densities as given by equation
2.15 (REYNOLDS, 2015).

p(x|λ ) =
M

∑
i=1

ωig(x|ui,Σi) (2.15)

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2 exp
{
−1

2
(x−µi)

′
Σ
−1
i (x−µi)

}
(2.16)
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Figure 8: Comparison of distribution modeling. a) histogram of an audio data; b)
maximum likelihood uni-modal gaussian; c) GMM and its underlying 10 components.
Adapted from (REYNOLDS, 2015).

where x is a D-dimensional data vector, ωi, i= 1, ...,M, are the mixture weights,
g(x|µi,Σi), i = 1, ...M are the component Gaussian densities as defined in
equation 2.16 with mean µi and covariance matrix Σi. The weights ωi are
non-negative and sum to 1 (convex combination). As Reynolds (2015) states,
the complete GMM is parameterized by its mean vectors, covariance matrices
and mixture weights:

λ = {ωi,µi,Σi} i = 1, ...,M. (2.17)

There are many configurations of GMMs, they may have full rank
covariance matrices or be constrained to diagonal covariance matrices. Also,
their covariance matrices may be unique for each component or a shared one
for all components. Figure 8 compares the adjust of an unimodal gaussian
and a GMM over some audio data. We can observe that the GMM is able to
clearly model the multimodal nature of the data besides smoothly fitting the
distribution.
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2.3.0.1 Maximum Likelihood Parameter Estimation

The most popular technique to estimate the parameters of a GMM is
the Maximum Likelihood (ML) estimation. It aims at maximizing the like-
lihood of the GMM given the training data. The GMM likelihood can be
calculated as:

p(X |λ ) =
T

∏
t=1

p(xt |λ ) (2.18)

where T is a sequence of training vectors X = {x1, ...,xT} and λ are the GMM
parameters. Because equation 2.18 is non-linear of the parameters λ , we
cannot maximize it directly. An alternative solution is to use the Expectation-
Maximization (EM) iterative algorithm. The elementary idea of EM is to
start with a model λ and, at each iteration, obtain a new model λ̄ such that
p(X |λ̄ ) ≥ p(X |λ ) until some convergence criteria is met. EM re-calculates
the weights, means and covariances using (REYNOLDS, 2015):
Mixture Weights

ω̄ =
1
T

T

∑
t=1

Pr(i|xt ,λ ) (2.19)

Means

µ̄i =
∑

T
t=1 Pr(i|xi,λ )xt

Pr(i|xi,λ )
(2.20)

Variances (diagonal covariance)

σ̄i
2 =

∑
T
t=1 Pr(i|xi,λ )x2

t

Pr(i|xi,λ )
− µ̄

2 (2.21)

Pr(i,xt ,λ ) is the a posteriori probability for the component i

Pr(i,xt ,λ ) =
ωig(xt |µi,Σi)

∑
M
k=1 ωkg(xt |µk,Σk)

(2.22)
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3 RELATED WORK

3.1 SPATIAL INTERPOLATION

Recently, our research group started investigating the possibility of re-
placing geostatistical methods with Neural Networks for spatial interpolation
tasks. Fazio and Roisenberg (FAZIO; ROISENBERG, 2013; FAZIO, 2013)
analytically proved that RBF networks and Kriging are equivalent when using
the variogram model as activation function of the RBF network. Also, they
showed that training an RBF network is faster than solving the Kriging sys-
tem of equations.

Other studies evaluated the performance of neural networks and other
methods in spatial interpolation problems. Gumus, K.; Sen, A. (2013) com-
pared MLP networks, Ordinary Kriging, IDW (Inverse Distance Weighting)
and MRBF (Multiquadratic Radial Basis Function) in the problem of interpo-
lating a digital elevation model. Regarding RMSE (Root Mean Square Error),
MLP obtained the worst results. Similarly, Nevtipilova, V., et al (2014) eva-
luated MLP against Kriging and IDW in the approximation of three surface
functions and MLP’s performance was even worse than IDW while Kriging
obtained the best performance in both studies.

On the other hand, Deligiorgi and Philippopoulos (Deligiorgi, D.; Phi-
lippopoulos, K., 2011) achieved better performance using MLP, rather than
Kriging, in the spatial interpolation of air pollution in Athens, Greece. Howe-
ver, the authors ignored potential anisotropy in the variogram model, choo-
sing an isotropic model, which may be responsible for the poor performance
of Kriging. This result endorses one of the motivations for this work: de-
velop a method that provides good performance without the need of expert
knowledge in geostatistics.

3.2 GEOSTATISCAL SIMULATION AND NEURAL NETWORKS

Some studies relate Gaussian Mixture Models and geostatistical simu-
lation. Gilardi, N. ; Bengio, S. ; Kanevski, M. (2002) compared Sequential
Gaussian Simulation (SGS) and Gaussian Mixture Models (GMMs) for envi-
ronmental risk mapping applications. Their results show that the simulation
grid generated from the GMM suffers from a high degree of smoothness when
compared to SGS. We attribute this high level of smoothness to the fact that
their method seems to adjust only a single global the GMM and do not se-
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Figure 9: General architecture of IGMN. Source: (HEINEN; ENGEL; PINTO, 2012).

quentially update the model to incorporate every new simulated point.
Grana and Mukerji (GRANA; MUKERJI et al., 2012) proposed a se-

quential simulation approach that uses Gaussian Mixture Models in the esti-
mation of the prior distribution for seismic inversion applications. Their ap-
proach uses the Expectation-Maximization (EM)(DEMPSTER; LAIRD; RU-
BIN, 1977) algorithm to adjust the GMM and a variogram model to control
the spatial correlation. Although they have obtained interesting results regar-
ding the correctness of the simulation, their approach still requires variogram
modeling and uses the non-incremental EM algorithm to adjust the GMM,
which may lead to a high computational cost.

3.3 THE INCREMENTAL GAUSSIAN MIXTURE NETWORK

This work builds upon IGMN; a neural network model proposed in
(HEINEN, 2011; HEINEN; ENGEL, 2011) that features particularly inte-
resting characteristics which may be explored and improved to solve geos-
tatistical problems. IGMN aims at approximating the results of the iterative
EM algorithm (DEMPSTER; LAIRD; RUBIN, 1977) for adjusting Gaussian
Mixture Models in an incremental way, using only a single scan through the
data. In this section, we briefly present the most relevant aspects of IGMN.
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3.3.1 Learning Process

Figure 9 shows the general architecture of IGMN. It consists of corti-
cal regions, N A,N S, for each variable and an association region P . Initi-
ally, the Gaussian Mixture Model inside IGMN has no Gaussian components.
New components are incrementally added to the model when necessary, ac-
cording to a novelty criteria. When a new training tuple x is given to IGMN, it
calculates the squared Mahalanobis distance d2

M(x, j) to every existing Gaus-
sian components j of its mixture model (PINTO; ENGEL, 2015). If this tu-
ple is not close enough to any existing component, according to a chi-square
test, with significance level being the novelty criteria controlled by the user,
a new Gaussian component is created, and all parameters of the model are
updated. Some of the parameters are: the means, covariance matrices, age
and the prior probability of each Gaussian component. Update equations for
all parameters are derived from the Robbins-Monro stochastic approximation
(ROBBINS, 1951) and the derivations are available in (ENGEL; HEINEN,
2010; ENGEL, 2009).

3.3.2 Adding New Gaussian Components to the Model

When a new training data x does not meet the novelty criteria, i.e., it
is far from all gaussian components in the mixture model, IGMN creates a
new gaussian component with the following initial values: mean µ j = x, co-
variance matrix C j = σ2

iniI, age sp j = 1, v j = 1 and prior probability p( j) =
1

∑
K
i=1 spi

. Where K is the number of components, including the newly crea-
ted(PINTO; ENGEL, 2015) one. The parameter σini is provided by the user
and it controls the initial values of the covariance matrices. An important
observation regarding the creation of new components is that IGMN assigns
a diagonal covariance matrix. Therefore, initially, the covariance matrix of a
new Gaussian component is aligned with the X ,Y axis. As more training data
is provided to IGMN, the better it will identify and update each component’s
covariance matrices to reflect potential anisotropy in other directions.

3.3.3 Inference on IGMN

During training, IGMN does not distinguish between inputs and tar-
gets, they are presented together, as an input tuple. For making an inference,
IGMN interpolates the center (means) of the target variable conditioned to
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the posterior probabilities of the given variables. For example, if we have a
tridimensional dataset, where each single data is x = (a,b,c). If we want to
estimate c, given a,b, first we split this tuple in two parts: xt = c (target) and
xi = a,b (input). Then, the posterior probabilities are calculated as in equa-
tion 3.1. The target xt can be estimated using the conditional mean equation
presented in equation 3.2.

p( j|xi) =
p(xi| j)p( j)

∑
K
q=1 p(xi|q)p(q)

∀ j (3.1)

x̂t =
K

∑
j=1

p( j|xi)(µ j,t +C j,tiC−1
j,i (xi−µ j,i)) (3.2)

C j,ti represents the sub-matrix of the jth gaussian component covari-
ance matrix relating the input and targets. C j,i represents the known part only
and µ j,t is the mean of the jth component of the target variable and µ j,i is
the mean of the jth componet of the input data (PINTO; ENGEL, 2015). The
covariance matrix with the mentioned sub-matrices is show below:

C j =

(
C j,i

C j,ti

∣∣∣∣C j,it

C j,t

)
(3.3)

IGMN is also able to provide the (co)variance of its estimates (equa-
tion 3.4). This will be particularly important for our sequential gaussian si-
mulation implementation, described in section III.

Ĉt =
K

∑
j=1

{
C j,t −C j,tiC−1

j,i CT
j,ti+ ‖ µ̄ j,t − x̂t ‖

}
(3.4)

3.4 MULTIPLE-POINT SIMULATION

A few years ago, Mariethoz, Renard e Straubhaar (2010) proposed
a powerful method called the Direct Sampling (DS). It is a Multiple-Point
Simulation algorithm that can deal either with categorical or continuous va-
riables and can also perform co-simulation. This method has been attracting
a lot of attention, mainly because it is straightforward to implement, easy to
parallelize and to use. One problem, though, is that DS generates noise in its
realizations. Meerschman et al. (2013) suggests post-processing each realiza-
tion to remove the noise. The post-processing step consists in re-simulating
every point with an informed neighborhood. While solving the problem of
the noise, post-processing increases computational cost. We describe the DS



41

algorithm in the next section. In Section 4.3 we modify this algorithm and
mix it with IGMN to reduce noise and speed it up.

3.4.1 The Direct Sampling Multiple-Point Simulation Algorithm

The DS algorithm aims at simulating a random function Z(x). As
input, it receives a simulation grid (SG), whose nodes are denoted x, a training
image (TI), whose nodes are denoted y and, optionally, a set of N conditioning
points z(xi), i ∈ [1, ...,N]. The steps of the algorithm are:

1. If there are conditioning points, assign them to the closests simulation
grid cells.

2. Define a path through the remaining unsimulated points in the SG. The
path specifies an order to visit each location. It may be Random (STRE-
BELLE, 2002), unilateral or any other kind of path.

3. For each location x in the path:

(a) Find the neighbors of x (n closest grid nodes {x1,x2, ...,xn} alre-
ady assigned in SG). If no neighbor exists, randomly take a node y
from TI and assign its value Z(y) to Z(x) in the SG. Then proceed
to the next unsimulated node.

(b) If it found neighbors, compute the the lag vector L= {h1, ...,hn}=
{x1− x, ...,xn− x} which define the neighborhood of x,N(x,L) =
{x+h1, ...,x+hn}. Figure 10a shows an example where x has th-
ree neighbors and the lag vectors are: L = {(1,2),(2,1),(−1,1)}.
It represents the relative locations of the already simulated points.

(c) Compute the data event dn(x,L)= {Z(x+h1), ...,Z(x+hn)}, which
is a vector with the values of the variable of interest at the neigh-
borhood. In the example of Figure 10a, dn(x,L) = {0,0,1}.

(d) Calculate the dimension of the search window in the TI. It is de-
fined by the maximum and minimum values at each dimension of
the lag vectors (Figure 10b).

(e) Randomly choose a location y in the search window and from this
location, start scanning the whole window. For each location y:

i. Calculate the data event dn(y,L) in the TI. In Figure 10c, a
random grid node was selected and its data event is dn(y,L)=
{1,0,1}.
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ii. Compute the distance d{dn(x,L),dn(y,L)} between data events
found in the SG and the TI. The distance may be computed
in many different ways. This is one of the most important
steps of DS, because this calculation is what allows it to si-
mulate either continuous or discrete variables and also per-
form cossimulation by joining different variables in the same
calculation. In our example, we perform a simple mean of
the categorical values as show in Equation 4.5.

d{dn(x),dn(y)}=
1
n

n

∑
i=1

ai ∈ [0,1],

where ai =

{
0 i f Z(xi) = Z(yi)
1 i f Z(xi) 6= Z(yi)

(3.5)

iii. Store y,Z(y) and d{dn(x,L),dn(y,L)} if it is the lowest dis-
tance calculated so far for the current point being simulated.

iv. If d{dn(x,L),dn(y,L)} is smaller than the acceptance threshold
t, the value Z(y) is assigned to Z(x). Figure 10d illustrates
this step. In that case, the data event in the TI matches exac-
tly the one in the SG, so the distance is zero and the value
Z(y) = 1 is copied to the SG.

v. Else, if the number of iterations exceeds a certain fraction
of the TI, the lowest distance of node y obtained so far is
accepted and the value Z(y) is copied to Z(x).
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Figure 10: Illustration of the DS method. (a) Define the data event in the simulation
grid. The question mark is the node to be simulated. The white and black pixels repre-
sent nodes that have been previously simulated. (b) Define a search window in the TI
grid by using the dimensions a, b, c, d of the data event. (c) scan the search window
starting from a random location until (d) the simulation data event is satisfactorily
matched. (e) Assign the value of the central node of the first matching data event to
the simulated node. Source: (MARIETHOZ; RENARD; STRAUBHAAR, 2010).
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4 PROBLEM FORMULATION AND PROPOSED SOLUTION

In this Chapter, we will present specific problems and proposed so-
lutions to apply IGMN to spatial interpolation and geostatistical simulation
applications. First, in Section 4.1, we describe an improvement to the IGMN
estimation process, inspired by how Kriging deals with trend and anisotropy
in its Variogram model. Then, in Section 4.2, provided with this improved va-
riant of IGMN, we describe our modified version of the SGS algorithm that
uses IGMN instead of Kriging for the interpolation and variance calculation
step. This version of SGS, using IGMN is unable to generate exact conditio-
ned simulations because IGMN does not store the original data values. So, it
is better suited to unconditioned simulations. Finally, in Section 4.3.2.1, we
describe our Multiple-Point Simulation algorithm, which can generate condi-
tioned simulations. This algorithm is a modified version of the Direct Sam-
pling (MARIETHOZ; RENARD; STRAUBHAAR, 2010) and uses IGMN to
reduce noise and speed up the simulation.

4.1 SPATIAL INTERPOLATION WITH IGMN

4.1.1 Problem Description: Lack of Trend Component in the IGMN

Figure 11 shows a simple example comparing the interpolation of
IGMN and Ordinary Kriging methods over a 1-dimensional small data set.
As can be seen, Ordinary Kriging estimations tend to a constant mean value
when the point being estimated distances from known points. In this example,
when the location being estimated is out of the range of influence (determined
by the variogram) of all known points, the interpolated value becomes equal
to the arithmetic mean of the data. On the other hand, IGMN estimations tend
to the closest known value, no matter how far it is.

This behavior is due to the normalization term of IGMN’s inference
equation (eq. 3.2), which uses Bayes’ rule. These posterior probabilities
represent the statistical distance between each component j of the Gaussian
mixture and the point to be estimated. When the point is far from all Gaussian
components of the mixture, all the components will have posterior probability
very close to zero. But, the closest Gaussian, will still have a probability
orders of magnitude greater than the other components, even if they are only
slightly further. Thus, after normalizing the posterior probabilities, the closest
Gaussian will have a probability close to 1, which generates the saturated
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Figure 11: Ordinary Kriging, IGMN and Modified-IGMN interpolating a simple 1-
dimensional data set.

appearance observed in figure 11.

4.1.2 Proposed Solution

Inspired by how Kriging handles its trend, we created the concept of
moving Gaussian trend component. This works as follows: firstly, a new
Gaussian component with mean µtrend = [µtrend,i,µtrend,t ] is created. The user
provides a constant value to the µtrend,t part of the mean (when not given
by the user, we set to the arithmetic mean of existing Gaussian components.
Similar to Ordinary Kriging). The other part of the mean, µtrend,i, represents
the location X ,Y of this Gaussian trend component. Then, we insert this
newly created Gaussian component in a distance inversely proportional to the
Mahalanobis distance from the closest Gaussian to the point being estimated
(Equation 4.1). So, if the closest Gaussian is too far, the Gaussian trend will
be placed near the point being estimated and, consequently, the trend will
have a higher influence in the estimate. Similarly, if the closest Gaussian is
near the location being estimated, the Gaussian trend will have a small impact.

µtrend,i = xi +(si− xi)∗
R

Md(si,xi)
(4.1)

In equation 4.1, xi is the point being estimated and si is the mean of the
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closest Gaussian component. Md(si,xi) is the Mahalobis distance between the
location being estimated and the closest Gaussian. R is a constant that defines
the minimum distance where the trend will start to have a higher influence in
the estimate. In this experiment, we set R = 6, which means that whenever
the closest Gaussian is distant from a Mahalanobis distance greater or equal
to 6 from the point being estimated, the trend Gaussian will be placed closer
and will have a higher influence on the estimation result.

Figure 12 illustrates how the concept of the moving Gaussian trend
component. The yellow X , represents the location being estimated. The red
circle represents the closest Gaussian component. The green circles represent
three potential locations to place the center (X ,Y ) of the moving Gaussian
trend. In the first example, µ1 is the location X ,Y where to place the mo-
ving Gaussian trend component. As we can see, it will be placed very close
to Xi because the closest Gaussian component Si is far away, which means
R < Md(si,xi), in this example R/Md(si,xi) = 0.5. On the other hand, when
R > Md(si,xi), like the example of µ3, where R/Md(si,xi) = 2, the trend com-
ponent will be placed twice as far as the closest component si. In this case,
the influence of the moving Gaussian component will be much smaller than
when placed in the µ1 position. The covariance matrix of the trend Gaussian
component is the same of a newly created component.

si-xi xisi

1

2

3

R / Md(si,xi) = 2

R / Md(si,xi) = 1

R / Md(si,xi) = 0.5

Figure 12: Example of placing the moving Gaussian trend component in three diffe-
rent locations
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4.1.3 Problem Description: Diagonal Covariance Matrix for New Gaus-
sian Components

As noted in Chapter III, IGMN initializes new Gaussian components
with a diagonal covariance matrix. Which means that every new component
will have a covariance matrix aligned to the axis of reference as shown in fi-
gure 13a. Potential anisotropies in other directions are learned incrementally,
as soon as more data is provided for training. For example, if the dataset has
a high continuity in the direction θ = 45◦ from the north and a lower con-
tinuity in the perpendicular direction, IGMN will incrementally update the
covariance matrix to make it look more like figure 13b during training.

The problem of relying solely on IGMN to learn anisotropies is that if
the data set available is too sparse, IGMN will not have many opportunities to
adjust the covariance matrix of each component incrementally. Consequently,
it may not have the chance to learn it correctly. Data sets with clear aniso-
tropies are not rare in environmental science studies. Figure 16 shows an
example of a data set with direction of maximum correlation around θ = 45◦

from the north.

a) b)

θ

Figure 13: Top view illustration of a 2-d gaussian function with: a) covariance matrix
aligned to the reference axis; b) covariance matrix rotated by θ .

4.1.4 Proposed Solution

To overcome this issue, we modified IGMN’s training procedure to
perform an initial rotation in the covariance matrix of new Gaussian compo-
nents. The rotation is performed as shown in equation 4.2 before this new
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Gaussian component is inserted into the mixture model. The angle of initial
rotation is pre-defined by the user.

Therefore, when solving a problem with a clear direction of aniso-
tropy, as in figure 16, the user can provide the initial angle of rotation which
will be applied to the covariance matrix. This shortcuts IGMN’s job of iden-
tifying the anisotropies and gives the opportunity for the user to insert expert
knowledge about the problem.

C′ = RCRT (4.2)

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(4.3)

4.2 SEQUENTIAL GAUSSIAN MIXTURE SIMULATION WITH IGMN

In Section 4.1 we proposed modifications to IGMN to improve its spa-
tial interpolation performance. The proposed improvements allow the user to
insert expert knowledge by configuring the angle of anisotropy and the trend
value. Also, the proposed solutions make the estimation result of IGMN a lit-
tle more similar to the estimation result of Kriging, as will be shown in Chap-
ter 5. Therefore, one natural next step is to use IGMN in the place of Kriging
for performing geostatistical simulation. In this section, we show how we can
unite the Sequential Gaussian Simulation (SGS) method and IGMN to per-
form unconditional geostatistical simulation. Using IGMN instead of Kriging
in SGS means we do not need to model a variogram.

IGMN is not able to directly perform a geostatistical simulation. But,
it has three characteristics that make it particularly attractive for this task: 1.
provides variance of its estimates; 2. on-line continuous learning and 3. le-
arns and incorporates spatial correlations automatically, through the Gaussian
Mixture Model. Based on that, we adapted the SGS algorithm by replacing
the estimation through Kriging for the estimation through IGMN and imple-
mented it inside IGMN. Also, we used the incremental learning characteristic
of IGMN to incorporate recent simulated values into the model. So, instead
of having to repeat the whole training procedure, as it would be necessary
for a non-incremental model, such as MLP, we only add a new training tu-
ple to the model. The detailed procedure is presented in algorithm 1. In this
example, the simulated cell is taken from a normal distribution with mean
and variance obtained from IGMN estimation. An alternative way is to take
the simulated cell from the mixture distribution identified by IGMN, but we
chose to maintain the simulation procedure as close as possible to the SGS.
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Algorithm 1 Incremental Gaussian Mixture Sequential Simulation

function IGMN_SIMULATION
for all realization r do

{Initializes the grid to be simulated}
build(grid)
while grid not empty do

cell = random cell from grid
remove cell from grid
{Calculates mean and variance (eq. 3.2 and 3.4)}
x̂t = ∑

K
j=1 p( j|xi)(µ j,t +C j,tiC−1

j,i (xi−µ j,i))

Ĉt = ∑
K
j=1

{
C j,t −C j,tiC−1

j,i CT
j,ti+ ‖ µ̄ j,t − x̂t ‖

}
{Takes value from a normal dist.}
simulated[cell,r] = gaussian(x̂t ,Ĉt)
{Incrementally incorporates new value}
IGMN_train([cell,simulated[cell,r]])

end while
return simulated

end for
end function

One significant limitation of this algorithm is that it is not capable of
performing exact conditional simulations. The reason is the same for spa-
tial interpolation: IGMN does not store the training points and may use one
single Gaussian component to represent multiple points. So, this method is
better applied to perform simulations that do not require exact reproduction
of conditioning points.

4.3 MULTIPLE-POINT SIMULATION WITH IGMN AND DS

4.3.1 Problem: Noise and Speed of the Direct Sampling Method

As presented in Chapter III, the Direct Sampling (DS) Multiple-Point
Simulation method has been attracting a lot of attention in the last few years.
Especially, because it can handle discrete or continuous variables, perform co-
simulation, and it is relatively easy to parameterize. However, one common
problem with DS is that its realizations end up having noise and outliers.
Figure 14 shows an example. The right side of Figure 14 is a realization
of DS, which was generated having as training image Figure 14a. As can be
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seen, the realization contains a lot of noise and outliers. To solve this problem,
Meerschman et al. (2013) suggests smoothing the result after each realization
by performing a post-processing step. This step consists in re-simulating the
whole grid with a known neighborhood.

(a) (b)

Figure 14: a) Training Image (TI); b) A realization of Direct Sampling based on the
provided TI.

Although post-processing each realization might help to remove the
noise, it slows down, even more, the simulation. In chapter III, we saw that,
for each simulated point (pixel), DS scans the training image looking for a
pattern match. The speed of this scanning process depends on two parame-
ters: the acceptance threshold and the maximum fraction of the TI that DS is
allowed to scan. So, setting the threshold too low and the fraction to scan to 1,
would increase the chance that DS scan the whole image for every simulated
point, which is very slow. On the other hand, setting the threshold too high
and the fraction of TI to a number close to zero would make DS runs faster
but produce poor simulations.

One of the main issues in the DS method is that it copies only a single
point from the training image to the simulation grid at each step. This issue
influences both speed and quality of the realizations. Instead, if DS copied
multiple points, the simulation could be much faster. From this insight, we
decided to use IGMN to help DS decide when and how many points to copy
at once.
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4.3.2 Proposed Solution

First, we pre-process the training image with IGMN to identify clus-
ters. These clusters are represented by multivariate Gaussians on IGMN
which are discovered incrementally during the IGMN training process. There
is no need to determine the number of clusters beforehand. As a result, we
obtain clusters with different sizes and we can find out the cluster of each
TI point. We can also determine the spatial dimensions of each cluster by
looking at the covariance matrices of the Gaussian components adjusted by
IGMN. Figure 15b shows the IGMN Gaussian components after the training
process with a TI (Figure 15a) as input. Note that IGMN has Gaussians with
different sizes, depending on the spatial continuity of the region.

Second, we run a modified version of DS that, instead of copying only
a single point at each step, copies multiple points at once. The criterion to
copy multiple points is that they must belong to the same cluster and be loca-
ted inside a radius R. R is proportional to the cluster spatial dimensions. Then,
when DS finds a match, if the current simulated point is inside a big cluster,
more of its neighbors will be copied together. On the other hand, if that point
matched is inside a small cluster, just a few (or none) of its neighbors will be
copied together. The concept behind this idea is that clusters represent conti-
nuity regions. So, the simulation can copy and paste more points in a region
with high continuity than in one with low continuity.

The gain of speed comes with the possibility of copying multiple points
and avoiding re-scanning the TI many times. Also, the noise present in DS is
significantly reduced because almost no point is copied alone. So, it is less
likely to have single outliers being copied over continuous regions.

Our solution inserts an overhead of the pre-processing step of cluste-
ring the TI using IGMN. But, this cost is accounted only once because it is
not executed for every realization. Instead, it is run only once for each TI. So,
in a typical simulation study, in which multiple realizations are required, this
becomes a constant cost and tends to become less important as the number
of realizations grows. In the following subsection, we describe the steps to
perform this simulation.

4.3.2.1 The Multiple-Point Simulation Algorithm with IGMN and DS

Similarly to the DS algorithm presented in Chapter III, this algorithm
aims at simulating a random function Z(x). Some of the steps are similar to
what was presented in chapter 3. As input, it requires a simulation grid (SG),
whose nodes are denoted x, a training image (TI), whose nodes are denoted
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(a) (b)

Figure 15: a) Training Image (TI); b) IGMN multi-variate gaussian components after
training

y, a radius range Rmin,Rmax, and, optionally, a set of N conditioning points
z(xi), i ∈ [1, ...,N]. The radius range defines a circular region around a node
where neighbors can be copied together. Then, the algorithm goes through
the following steps:

1. Train an IGMN model with the points of the Training Image as input.
Each training point consists of its 2d location y and its value Z(y).

2. Use the trained IGMN model to classify every point into clusters and
build a cluster grid C(y). This cluster grid is an image with the same
dimensions of the TI. But, instead of having Z(y) at every location, it
has C(y), which is a number that identifies whose cluster each location
y belongs to.

3. From the IGMN model, calculate the spatial dimension dim(c) of the
cluster c. In this work, we used dim(c) as the maximum value of vari-
ance between var(x,x) or var(y,y). These values are directly found in
the main diagonal of the covariance matrix of the corresponding Gaus-
sian component that represents cluster c on IGMN.

4. If there are conditioning points, assign them to the closest simulation
grid cells.

5. Define a path through the remaining unsimulated points in the SG. The
path specifies an order to visit each location. It may be Random (STRE-
BELLE, 2002), unilateral or any other kind of path.
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6. For each location x in the path:

(a) Find the neighbors of x (n closest grid nodes {x1,x2, ...,xn} alre-
ady assigned in SG).

(b) If no neighbor exists:

i. Randomly take a node y from TI, identify its cluster C(y) and
the spatial dimension of the cluster dim(C(y)).

ii. Calculate the radius R proportionally to the cluster C(y) di-
mension:

R = Rmin +(Rmax−Rmin)∗
dim(C(y))
max(dim)

(4.4)

iii. Get all neighbors N(y,R,C(y)) that are in a circle of radius R
centered in y and in the same cluster C(y)

iv. Calculate their relative location with respect to y (the center
of the circle) and assign their Z(y) values to the SG in the
respective Z(x) locations, relative to x.

(c) Else, if neighbors were found, compute the lag vector L= {h1, ...,hn}=
{x1−x, ...,xn−x}which defines the neighborhood of x,N(x,L) =
{x+h1, ...,x+hn}. Figure 10a shows an example where x has th-
ree neighbors and the lag vectors are: L = {(1,2),(2,1),(−1,1)}.
It represents the relative locations of the already simulated points.

(d) Compute the data event dn(x,L)= {Z(x+h1), ...,Z(x+hn)}, which
is a vector with the values of the variable of interest at the neigh-
borhood. In the example of Figure 10a, dn(x,L) = {0,0,1}.

(e) Calculate the dimension of the search window in the TI. It is de-
fined by the maximum and minimum values at each dimension of
the lag vectors.

(f) Randomly choose a location y in the search window and from this
location, start scanning the whole window. For each location y:

i. Calculate the data event dn(y,L) in the TI. In Figure 10c, a
random grid node was selected and its data event is dn(y,L)=
{1,0,1}.

ii. Compute the distance d{dn(x,L),dn(y,L)} between data events
found in the SG and the TI. In our example, we perform a
simple mean of the categorical values as show in Equation
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4.5.

d{dn(x),dn(y)}=
1
n

n

∑
i=1

ai ∈ [0,1],

where ai =

{
0 i f Z(xi) = Z(yi)
1 i f Z(xi) 6= Z(yi)

(4.5)

iii. Store y,Z(y) and d{dn(x,L),dn(y,L)} if it is the lowest dis-
tance calculated so far for the current point being simulated.

iv. If d{dn(x,L),dn(y,L)} is smaller than the acceptance threshold
t, then, repeats steps 5(b)i-iv to assign the accepted value and
neighbors to the SG.

v. Else, if the number of iterations exceeds a certain fraction
of the TI, the lowest distance of node y obtained so far is
accepted and the algorithm repets steps 5(b)i-iv to assign the
accepted value and neighbors to the SG.
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5 EXPERIMENTS AND RESULTS

To evaluate the proposals presented in Chapter 4 we performed three
experiments. The first one aims at evaluating how the solutions proposed in
Section 4.1 can improve the performance of IGMN in spatial interpolation
tasks. The second experiment aims at evaluating if the algorithm proposed
in Section 4.2 is, visually, able to generate different equally probable realiza-
tions (scenarios) that preserve important characteristics of spatial correlation
and anisotropy present in the dataset. Also, this second experiment aims at
evaluating if the multiple realizations, when averaged, honor (look like) the
mean values obtained through Ordinary Kriging and IGMN. The third ex-
periment intent to evaluate our MPS simulation algorithm that mixes IGMN
and DS proposed in Section 4.3.2.1. The first two experiments use the Meuse
River data set, which comprises 155 samples of four heavy metals measured
in the top soil of a flood plain along the river Meuse (Pebesma, Edzer, 2015).
The experiments described in this section use the variable Zinc, along with
its coordinates X and Y. Figure 16 shows a plot of the Zinc values.

5.1 SPATIAL INTERPOLATION COMPARISON EXPERIMENT

5.1.1 Methodology

In this experiment, we compared our modified version of IGMN (IGMN-
MOD) with Ordinary Kriging (Krig), IDW, MLP networks and the original
IGMN in a spatial interpolation problem. For doing so, we randomly split the
Meuse River dataset into two parts: test set and training set. For the test set,
we selected 55 samples, which we did not use for training. The remaining
100 samples, were arranged into four different training set sizes: 25, 50, 75
and 100 samples. The goal of using different training set sizes is to evaluate
the robustness of the spatial interpolation methods when the data set becomes
gradually more sparse.

We trained all methods with each of these training set sizes. We then
made each method estimate the Zinc values in the 55 locations (X ,Y ) of the
test set. As a metric of comparison, we used two criteria suggested in (ISA-
AKS, E. H.; SRIVASTAVA, R. M., 1989), the RMSE (root-mean-square er-
ror, equation 5.1) and CC (correlation coefficient, equation 5.2). Where σo
and σe are the standard deviation of observed and estimated data. We calcula-
ted these statistics between the 55 real values of the test set and the estimated
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Figure 16: Meuse River Data Set - Concentration of Zinc (ppm).

values from each interpolation method.

RMSE =

√
1
N

N

∑
i=1

[ẑ(xi)− z(xi)]2 (5.1)

CC =
∑

N
i=1[z(xi)− zm][ẑ(xi)− ẑm]

σeσoN
(5.2)

The variogram model used to perform ordinary kriging is presented
in equation 5.3. Nug and Sph represent the Nugget effect and the Spherical
variogram using the popular GSTAT notation (PEBESMA; WESSELING,
1998; PEBESMA, 2004). The variogram is anisotropic and has its direction
of maximum continuity at 45◦ from the north.

Variogram = 0.05Nug(0)+0.59Sph(1200,45, .4) (5.3)

The variogram modeling process for this dataset is available in (Pe-
besma, Edzer, 2015). In Figure 17 we show the plot of the directional vario-
grams in four different directions: 0◦, 45◦, 90◦, and 135◦ (0◦ is North and 90◦

is East). The directional tolerance is ±22.5◦, so the variogram in the 0 direc-
tion, for example, includes points from −22.5◦ to +22.5◦. The nugget, sill
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and model type (spherical) were derived from an omnidirectional variogram
plot. As we can see in Figure 17, the 45◦ direction has the largest range, thus,
largest continuity. The anisotropy ratio (0.4) was estimated by dividing the
range of the 135◦ direction by the range of the 45◦ one.

Figure 17: Directional variograms (0◦,45◦,90◦ and 135◦) of the Meuse River dataset.
Source: (Pebesma, Edzer, 2015).

The architecture of the MLP network was 2-H-1, with the locations
X ,Y as inputs and the Zinc values as output. For each training set size (25,
50, 75 and 100), we trained the network 80 times, where the number of neu-
rons H in the hidden layer varied from 2 to 10 and the training was repea-
ted ten times for each architecture, to avoid potential problems with random
weight initialization. Only the best result for each training set was selected
for comparison.

The IGMN parameters were set to δ = 0.06, τ = 0.05, range = max
([x,y,zinc]) −min([x,y,zinc]). The initial covariance matrix for each new
Gaussian component is initially defined as diag(δ ∗ range) and is later ro-
tated according to θ . The IGMN modified parameters were set to θ = 45◦

(direction of anisotropy) and µtrend = [x̄, ȳ, ¯zinc]) (arithmetic mean of the da-
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taset). τ is the predefined level of significance used by IGMN in a χ2 test to
decide when to create a new gaussian component. More details about other
parameters of IGMN can be found in (HEINEN, 2011). Finally, for the IDW
method we set the power parameter to 2.

5.1.2 Results

Figure 18 shows RMSE and CC mean results of the experiments for
30 runs of each of the four training set sizes (25, 50, 75 and 100). We rounded
the values of RMSE and truncated the values of CC to 2 decimal places. We
calculate RMSE and CC between the 55 real samples of in the test set and the
estimated values calculated from each of the four methods. As we can see,
the modified IGMN outperformed original IGMN, MLP, and IDW, in both
RMSE and CC. It does not outperform Kriging with but follows it closely.

Figure 18: Correlation Coefficient (Left) and RMSE (Right) between 55 real samples
and interpolated values by Kriging, IDW, MLP, IGMN and IGMN-MOD. The known
samples were divided into training set sizes of 25, 50, 75 and 100 samples.
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The RMSE results pointed out another important aspect present in Kri-
ging and modified IGMN: their robustness to sparse datasets. To further sup-
port this evidence, we can look again at the values of RMSE in figure 18.
The best result of Kriging, with 100 samples training set, is 242. The worst,
with only 25 samples in the training set, is 297, which gives a difference of
55 between the best and worst case. Similarly, modified IGMN has its best
case RMSE of 273 and the worst one equals to 328, also 55 of difference
between best and worst cases. On the other hand, original IGMN has the best
RMSE of 286 and worst of 383, a difference of almost 100, where most of
the worsening in performance happens with the training set sparse, with only
25 samples. A similar poor performance with the 25-sample training set is
observed in MLP and IDW as well. We credit the improvement in robust-
ness with sparse data sets found in our method mainly to the inclusion of the
moving Gaussian trend component, proposed in Section 4.1.

Moreover, it is important to note that IGMN has only a few configu-
ration parameters that do not require any expertise in geostatistics. On the
contrary, the performance of Kriging directly depends on the quality of the
modeled variogram. To support this observation we modified the range of the
variogram presented in equation 5.3 from 1200 to 120 and repeated the expe-
riment for Kriging. The RMSE and CC results are shown in the lower part of
figure 18. As we can see, the performance of Kriging became the worst when
using a poorly modeled variogram.

5.2 SEQUENTIAL GAUSSIAN MIXTURE SIMULATION EXPERIMENT

5.2.1 Methodology

The goal of this experiment was to observe two aspects, regarding the
sequential simulation algorithm proposed in Section 4.2: 1. If IGMN simu-
lation was capable of generating equally probable different scenarios (reali-
zations) that maintain the main characteristics of spatial correlation found in
the dataset; 2. If the mean of multiple realizations of IGMN sequential simu-
lation tends to approximate the interpolation using Kriging and the modified
IGMN as presented in figure 19.

For this experiment, we chose the same dataset of the previous ex-
periment, the Meuse River data set(figure 16). We trained IGMN using all
155 samples available. The simulation grid size was [77 x 55] = 4235 sam-
ples, with a cell size of [50 x 50], starting at X0 = 178605,Y0 = 329714. The
grid covers the whole rectangular area that englobes the Meuse River data set
presented in figure 16.
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Figure 19: Left: Ordinary Kriging interpolation over the simulation grid. Right:
IGMN interpolation over the simulation grid.

Figure 20 shows nine realizations performed with IGMN sequential
simulation algorithm. In these realizations, we can observe that the cha-
racteristic of high spatial correlation in the direction of approximately 45◦

from the north is maintained. Other important result presented in figure 20 is
that the realizations generated are significantly different from each other. For
example, the realization shown in the first column of the second row is very
different from the one beside it.

In addition, figure 21 presents the mean values of 30 realizations in
each point of the grid. As shown, this image looks like the estimation of Kri-
ging and IGMN presented in figure 19, which means that the simulation pro-
cess honors the mean values. These results suggest that even though IGMN
was able to generate very heterogeneous realizations, it still honors the mean
values and spatial correlation present in the original dataset.

5.3 MULTIPLE-POINT SIMULATION EXPERIMENT

5.3.1 Methodology

This experiment aims at comparing the performance of our proposal
(DS+IGMN) and the Direct Sampling (DS) method, regarding speed and qua-
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Figure 20: Nine realizations of the IGMN sequential simulation algorithm.
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Figure 21: Mean of 30 realizations performed with IGMN over the simulation grid.

lity of realizations. As described in Chapter 4, we proposed to use the modi-
fied IGMN together with DS to copy multiple points from the training image
to the simulation grid at each step. The two principal goals of our method
are to speed up the simulation and to reduce the noise present in DS. To use
as Training Image (TI) in this experiment, we generate a black square image
composed of randomly placed white circles with a radius between 4% and 8%
of the side of the image. We chose this procedure because this is the classical
example that is distributed with the DS Matlab implementation.

For comparing the noise produced by the two methods, we used the TI
shown in Figure 22a, with size 100x100 pixels. We performed 12 realizations,
six with DS and six with DS+IGMN. Then, we visually compare the amount
of noise of them. The size of the simulated grid is also 100x100 and the con-
figured parameters for both methods were: acceptance_threshold = 0.1 and
0, fract_of_ti_to_scan = 0.5, fixed_template_window = [20,20]. The specific
parameters configured for IGMN were: radius_range=[2,5], range=ti_size/4,
delta=0.1, tau=0.1, vmin=0, spmin=0, covtype=full.

To evaluate speed, we ran an experiment with different simulation
grids, ranging from 50x50 to 150x150. We recorded the total time and the
mean time of 5 realizations for each grid size. The TI generated for this
experiment was of size 150x150 and it is shown in Figure 22b. We ran all
the experiments on top of a Matlab environment, in an Intel Core i7-4500U
machine with 8gb of RAM running Ubuntu 16.04 Linux. The authors of
DS (MARIETHOZ; RENARD; STRAUBHAAR, 2010) provided the source
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Figure 22: Training images used to evaluate DS+IGMN: a) 100x100 TI used to eva-
lute noise; b) 150x150 TI used to evaluate speed

code for running the simulation and generating TIs at their website 1. Also,
IGMN authors provided us their source code upon our request.

5.3.2 Results

Figure 23 shows 12 realizations generated with DS and DS+IGMN. In
Figure 23a, we can see three realizations produced by DS+IGMN with para-
meter acceptance_threshold= 0.1. When compared to the three realizations
of DS Figure 23b, DS+IGMN generate realizations that reproduces the main
characteristics of the training image (Figure 22a) as well as DS does. On the
other hand, DS+IGMN realizations have less noise than DS ones. We credit
this noise reduction to our strategy of copying multiple points at once, which
reduces the chance of leaving unsimulated isolated locations.

In Figures 23c and 23d we show the result of the same experiment but
setting acceptance_threshold= 0. The goal was to observe the quality of the
realizations in an extreme case of very low tolerance. Again, DS produce
more noise than DS+IGMN.

In addition to the noise reduction, the mean time spent to generate
each single realization presented in Figure 23 was of around 8 seconds for
DS+IGMN with acceptance_threshold= 0.1 and 245s for DS with accep-
tance_threshold= 0.1. When setting acceptance_threshold= 0, DS+IGMN
was able to generate each realization in 28s, on average, and DS took 728s.

1www.minds.ch/gm/DS.htm
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So, DS+IGMN with acceptance_threshold= 0 is still much faster than DS
with acceptance_threshold= 0.1, which allows us to set parameters very tight
and obtain better quality simulations. In this example, with the same set of
parameters, DS+IGMN was more than 25 times faster than DS, besides ge-
nerating higher quality realizations. It is important to notice that we are using
the didatic implementation of DS and more optimized implementations may
exist.

We also measured the duration to produce realizations with different
grid sizes. Table 1 shows the mean time of 5 realizations for grid sizes varying
from 50x50 to 150x150, using the 150x150 training image shown in Figure
22b. DS+IGMN is again faster than DS in all grid sizes. This improvement is
possible because the most costly operation involved in DS is the search for a
pattern match in the TI. So, simulating multiple points at once, as we propose,
has the potential of speedup in a rate inversely proportional the number of
points that are copied (simulated) together at each simulation step.

The time spent training and clustering the training images using IGMN
was of 130s for the 100x100 TI and 292s for the 150x150 TI. This procedure
is executed only once when the image is created. So it is a constant cost and
gets less important as the number of realizations grows. For example, the total
time to generate five realizations in the 150x150 grid was around 3 minutes
with DS+IGMN and 64 minutes for DS. So, even adding the training time
of IGMN to the DS+IGMN total time, does not make it even close to the 64
minutes DS took to run. This huge improvement in speed, together with the
improvement in the simulation quality by reducing noise, gives a significant
contribution to the state of art of Multiple-Point Simulation.

Table 1: Mean duration of 5 realizations in various grid sizes using DS
and DS+IGMN with a 150x150 TI. Parameters: acceptance_threshold= 0.1 and
f ract_o f _ti_to_scan = 0.5

DS DS+IGMN
Grid size Mean σ Mean σ

50x50 53.2 24.5 3.1 2.1
75x75 118.7 75.6 7.8 4.9
100x100 378.6 176.7 20.1 11.8
125x125 450.2 225.9 30.6 10.7
150x150 770.7 134.8 44.1 15.8

It is important to notice that setting the radius_range parameter too
high, will make DS+IGMN copy more points at once and be faster. However,
the algorithm may start to insert some undesirable artifacts because it will
not be able to match the intersection between the big patches of points being
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DS + IGMN (Acceptance threshold = 0; Duration = 28s)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(c)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

DS (Acceptance threshold = 0; Duration = 728s)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(d)

Figure 23: a) DS+IGMN Realizations with acceptance_threshold= 0.1; b) DS Re-
alizations with acceptance_threshold= 0.1; c) DS+IGMN Realizations with accep-
tance_threshold= 0; d) DS Realizations with acceptance_threshold= 0.
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Figure 24: Example of a bad DS+IGMN realization with radius_range set too high
[20,25]

copied. For example, the algorithm may copy a patch of points from the
border of the TI to the middle of the simulation grid. Figure 24 shows an
example of setting the radius_range parameter too high [20,25] in a 100x100
grid.

Currently, we still have not defined a general rule for setting the ra-
dius_range parameter because it depends on the continuity and size of the
training image. This makes it harder to obtain a formula that generalizes.
But, the basic idea is to set this parameter to the maximum possible value,
as long as it does not affect the quality of the simulation. One way the user
can successful choose a good value for this parameter is by cropping a small
portion of the TI, running simulations with different radius_range values and
visually observing the quality of the produced realizations.
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6 CONCLUSION AND FUTURE WORK

In this work, we studied how the Artificial Neural Network model
IGMN, based on incremental Gaussian Mixture Models, could be adapted and
improved to solve spatial interpolation, sequential simulation, and multiple-
point simulation problems. We saw that geostatistical methods, such as Kri-
ging and SGS, require modeling a Variogram, which is not a simple task for
non-experts in Geostatistics. Therefore, one of the motivations of this study
was to investigate the possibility of using the IGMN model to solve geosta-
tistical problems, without the need to model a Variogram.

For spatial interpolation problems, we improved the performance of
IGMN by adding the possibility to specify a trend component and the di-
rection of maximum continuity. The concept of the moving Gaussian trend
component makes the IGMN estimation result tend to a user specified value
when the location being estimated is far from known points. Also, the user
may set an angle of rotation to the initial covariance matrices, which help
IGMN to identify the general anisotropy pattern of the training set.

As an alternative to the Sequential Gaussian Simulation (SGS) method,
we proposed and implemented inside IGMN a modified version of SGS. Our
proposed solution uses IGMN, instead of Kriging, in the interpolation and
variance calculation step. Thus, it enables IGMN to perform an unconditio-
nal sequential simulation. This approach has the same limitation stated for
spatial interpolation problems: it cannot reproduce exact conditioning points
because IGMN may represent many training points with a single Gaussian
component. Therefore, it is best applied to unconditional simulation.

Finally, we proposed a Multiple-Point Simulation algorithm that uni-
tes the IGMN model and the Direct Sampling (DS) method. Our algorithm
has a pre-processing step that clusters the Training Image using IGMN. Then,
it simulates multiple points at each simulation step by copying patches of si-
milar points identified by IGMN. This algorithm maintains the same capabi-
lities of DS, i.e., it can perform either conditional or unconditional simulation
with continuous or discrete variables and can also perform cossimulation.

To validate the proposed spatial interpolation improvements on IGMN
and our sequential simulation algorithm, we performed several experiments
using the Meuse River dataset. The results obtained from these experiments
demonstrated that: (i) Our modified version of IGMN has better performance
(regarding RMSE and CC) than the original IGMN, MLP, and IDW, espe-
cially in sparse and anisotropic datasets; (ii) Although not beating the per-
formance of Ordinary Kriging, our modifications in the IGMN estimation
process make its performance much closer to Ordinary Kriging than before;
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(iii) The proposed sequential simulation algorithm, which uses IGMN instead
of Kriging, is capable of generating heterogeneous realizations that preserve
important characteristics of the original data set, such as the direction of ma-
ximum continuity. Also, the mean values of various realizations honor the
mean of the IGMN interpolation over the grid.

To evaluate our Multiple-Point Simulation algorithm that unites Direct
Sampling (DS) and IGMN, we compared it with the DS method alone. Our
results demonstrated that: (i) DS+IGMN produces better quality simulations
with much less noise than the DS method; (ii) regarding speed, our approach
is orders of magnitude faster than the DS method.

One limitation of IGMN for spatial interpolation and Geostatistical si-
mulation tasks is that it does not store the training points and may use one
single Gaussian component to represent multiple points. So, our sequential
simulation approach is not able to perform simulations that require exact re-
production of conditioning points.

In future work, we will investigate strategies to automate the definition
of some required parameters. For example, the radius_range parameter in the
Multiple-Point Simulation algorithm. We think it is possible to achieve this
by using two information: the size of the Training Image (TI) and the size
of the clusters identified by IGMN, which indirectly describes the continuous
regions contained in the TI.

We believe the contributions presented in this dissertation add value to
existing works and represent an important step to make neural networks an
effective and popular tool for solving geostatistics problems. Our Multiple-
Point Simulation method may enable researchers to study more complexes
problems that were not viable before because of time complexity. We consi-
der this one of the main contributions of this work. Also, our improvements
in the spatial interpolation process of IGMN made its performance close to
Kriging without the need of providing a variogram model. So, the modifica-
tions to IGMN proposed in this work might turn IGMN into a handy tool for
non-experts in geostatistics.

Based on the contributions presented above, we believe that the main
objective of this work was achieved, i.e., adapting the IGMN to solve spatial
interpolation and geostatistical simulation problems. Besides studying how
to apply IGMN to address these kinds of problems, we also had a chance
to perform significant improvements in existing methods, such as the Direct
Sampling, by using IGMN to speed it up and enhance the quality of its reali-
zations.
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