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ABSTRACT

Security ceremonies are extensions of security protocols, including all
that is out-of-bounds for protocols. Nowadays we lack a base descrip-
tion language and a detailed threat model for security ceremonies in
order to be able to use symbolic evaluation methods and verify claims
embedded in ceremonies. Our goal is to contribute with a syntax and
detailed threat model for ceremonies description in order to establish
our proposal for a new attacker type named Distributed Attacker (DA
in brief). Moreover, we also developed a strategy for symbolic eval-
uation of our attacker model using First-Order Logic (FOL) and an
automatic theorem prover. Lastly, we present scenarios formally anal-
ysed with our methodology, including cases we could not have with
standard Dolev-Yao or Multi-Attacker models. For instance, our most
interesting scenario is when several attackers gather only pieces of an
user’s credentials and, by putting together their knowledge, collude to
attack this user’s email account.
Keywords: Security Ceremonies, Socio-Technical Security, Threat
Models, Attacker Types, Formal Analysis





RESUMO

Protocolos de segurança são subconjuntos das chamadas cerimônias de
segurança. Atualmente não se tem uma linguagem de descrição e um
modelo de ameaça detalhado para cerimônias de segurança, necessários
para o uso de métodos de avaliação simbólica e verificação de suposições
presentes em cerimônias. O objetivo desta dissertação é contribuir com
uma sintaxe para descrição de mensagens de cerimônias e apropriado
modelo de ameaça a fim de estabelecer a proposta para um novo tipo
de atacante (nomeado Atacante Distribuído). Adicionalmente, uma es-
tratégia para execução de avaliação simbólica também foi desenvolvida,
utilizando lógica de primeira ordem e um provador de teoremas au-
tomático. Por fim, cenários formalmente analisados com o modelo de
atacante proposto são exibidos, incluindo casos não passíveis de serem
simulados com modelos padrão como Dolev-Yao ou Multi-Attacker. Por
exemplo, o caso mais interessante é o que apresenta vários atacantes
com conhecimento apenas de partes das credenciais de um usuário,
mas que ao colaborar entre si conseguem atacar a conta de email desse
usuário.
Palavras-chave: Cerimônias de segurança, Segurança sócio-técnica,
Modelos de ameaça, Tipos de atacante, Análise formal



RESUMO ESTENDIDO 
 
 

INTRODUÇÃO 
 

Um dos problemas da área de protocolos de segurança é que mesmo            
protocolos massivamente testados ainda falham quando usados pelos usuários         
finais (BELLA; LONGO; PAULSON, 2003). A maioria dessas falhas está          
relacionada a suposições feitas pelo designer que acabam por não ocorrer da            
forma prevista após a implementação do protocolo. Tal problema leva a uma            
nova abordagem que considere o usuário na hora de criar as premissas            
necessárias: cerimônias de segurança. 

As cerimônias de segurança - vistas como extensões dos protocolos -           
incluem as ações humanas de forma explícita, como por exemplo através da            
modelagem das interações entre humanos, e entre humanos e máquinas          
(ELLISON, 2007). Mesmo assim, algumas hipóteses ainda são necessárias.         
Aqui pode-se citar o conhecimento inicial de cada agente humano presente na            
cerimônia. 

Atualmente, a falta de uma linguagem de descrição e de um modelo de             
ameaça padronizados para cerimônias de segurança - capazes de expressar as           
sutilezas do comportamento humano - dificulta o desenvolvimento de uma          
avaliação simbólica para cerimônias. 

É importante providenciar uma sintaxe de descrição para cerimônias e          
uma especificação minuciosa dos modelos de ameaça padrões para ser possível           
comparar diferentes cenários de uma mesma cerimônia, e determinar qual é a            
mais segura. 

Outra dificuldade encontrada é a falta de modelos automáticos que          
chequem se uma cerimônia realmente alcança os objetivos esperados, devido à           
complexidade da análise de cerimônias de segurança. Com uma ferramenta          
formal de análise, o teste e mecanização da comparação de cerimônias passa a             
ser viável. Adicionalmente, tal análise automatizada facilita o entendimento do          
modelo de ameaça ao qual os agentes do sistema estão sujeitos. 
 
 
 



OBJETIVOS 
 

O objetivo geral deste trabalho é estabelecer uma avaliação simbólica          
para cerimônias de segurança sociotécnicas. Primeiramente, é elaborada uma         
linguagem de descrição para representar os agentes, canais e mensagens das           
cerimônias de segurança. A seguir, é proposto um novo tipo de atacante,            
Atacante Distribuído (sigla DA em inglês), através do qual foram modelados           
alguns casos de estudo ao longo da dissertação. Por fim, com a automatização             
do modelo DA, foram analisadas formalmente as cerimônias dos casos de           
estudo por meio do provador de teoremas SPASS.  
 
Objetivos específicos 
 

● Descrever  cerimônias de segurança com a sintaxe de notação proposta; 
● Usar o framework de Bella et al. (2014) e relacionar cada camada das             

cerimônias com um modelo de ameaça (atacantes e habilidades), como          
sugerido por Carlos et al. (2013); 

● Avaliar o comportamento do modelo de Atacante Distribuído proposto         
nesta dissertação; 

● Mecanizar e formalizar os canais de comunicação, mensagens e agentes          
das cerimônias de segurança. 

  
METODOLOGIA 
 

O primeiro passo é entender as cinco camadas da metodologia Concertina           
de Bella et al. (2014). A primeira delas, camada 1, concentra-se na troca de              
mensagens pela rede (Internet) executada por dois usuários (agentes         
comunicantes). A camada 2 representa o protocolo (executado em nome da           
interface) que encaminha e recebe dados da rede. A terceira camada estabelece a             
conexão entre máquina e ser humano, caracterizada pelo usuário interagindo          
com a interface de seu computador e/ou celular. Esta camada é de crucial             
importância para que a cerimônia alcance os objetivos estimados. A camada 4 já             
se preocupa com o humor do usuário ao se relacionar com a interface, enquanto              
a camada 5 reflete a influência da sociedade sobre o comportamento do usuário.             
À ciência da computação cabe se concentrar nas camadas de 1 a 3, envolvendo              



máquina e humano. As camadas 4 e 5 são bem voltadas para a área social e,                
portanto, não são abordadas no presente trabalho. 

O segundo passo é saber como aplicar o modelo adaptativo de Carlos et             
al. (2013) para os modelos de ameaça. Segundo esse modelo, é plausível ter             
atacantes com um subconjunto de todas as capacidades de um atacante           
Dolev-Yao (DOLEV; YAO, 1983). Tal conjunto é originalmente composto         
pelas seguintes capacidades: Eavesdrop, Initiate, Atomic Break Down, Block,         
Crypto, Fabricate, Spoof, Re-order, Modifying e Replaying. Basicamente, o         
atacante é capaz de aprender o conteúdo das mensagens trocadas pela rede,            
bloquear e criar mensagens, iniciar novas comunicações com outros agentes do           
sistema, fazer uso de funções criptográficas de conhecimento público, modificar          
e replicar mensagens. 

A contribuição central desta dissertação é o modelo de Atacante          
Distribuído (DA), que se dá juntamente com contribuições menores tais como:           
descrição apropriada de cerimônias, uso das camadas da metodologia         
Concertina aplicadas ao modelo adaptativo, e a formalização do modelo DA no            
provador de teoremas SPASS.  

A grande novidade da proposta para Atacante Distribuído é a          
flexibilidade que os atacantes têm de poder compartilhar conhecimento (caso          
assim desejem). Os atacantes podem fazer associações entre si de maneira em            
que cada atacante obtém apenas parte das informações totais necessárias, e           
juntos são capazes de realizar o ataque com muito menos esforço individual. 

Por fim, apresentamos diversos cenários que ilustram nosso modelo DA e           
os analisamos formalmente - por meio da tradução e verificação da nossa            
metodologia através do SPASS.  
 
RESULTADOS 

 
A maior contribuição deste trabalho é o modelo de atacantes distribuídos           

(DA). O DA é um modelo poderoso ao permitir que os atacantes possuam             
conhecimento sobre camadas que eles não estão atacando ativamente, por meio           
das associações entre os atacantes. Por meio dessa cooperação entre os           
atacantes, o modelo DA flexibiliza ataques em cerimônias que usufruam de           
2-step verification (foco da dissertação). Diferentemente de modelos como         
Doley-Yao (DY) e Multi-Attacker (MA) [ver (ARSAC et al., 2010)], os           



atacantes DA são livres para atuarem em várias camadas ao mesmo tempo,            
inclusive com capacidades diferentes para cada camada. 

Como mostrado os estudos de caso, o uso do celular com o código do              
“segundo passo de autenticação”, além da senha habitual do usuário, contribui           
para a segurança do usuário ao envolver mais dispositivos na cerimônia.           
Contudo, o modelo DA permite que dois ou mais atacantes reúnam parte das             
informações (nesse caso, a senha e o código) cada um e juntos ataquem o              
sistema. Capturar a senha ou o código separadamente e atacar em conjunto é             
mais fácil do que apenas um atacante agindo sozinho ter de capturar ambos             
senha e código do celular. 

É relevante ressaltar a origem dos modelos empregados neste trabalho          
para entender melhor suas filosofias. O modelo DY data da época da guerra fria,              
focando na propriedade do sigilo. Já o modelo MA se origina da era da Internet               
e sua mudança na postura dos atacantes. Considera que qualquer agente do            
sistema pode se tornar um atacante DY (permitindo que hajam vários atacantes            
simultaneamente). 

Hoje em dia, ao usarmos celular ou cartão de crédito deixamos “traços”            
que podem ser rastreados, como alerta Snowden em entrevista após liberar           
informações sigilosas da NSA (SNOWDEN…, 2014). Motivado por esse         
contexto, o modelo DA considera atacantes com mais capacidades do que em            
modelos clássicos, adaptando-se à era de espionagem em que vivemos. 

Por último, foi apresentada a formalização do modelo DA em SPASS,           
juntamente com a análise dos estudos de caso com autenticação em 2 passos (a              
qual não é suportada pelos demais modelos inclusos). Os estudos de caso            
servem para mostrar a viabilidade do nosso modelo, por meio de diversos            
ataques diferentes, e para ilustrar que métodos formais podem auxiliar na           
compreensão de problemas práticos em cerimônias de segurança. 
 
Palavras-chave: Cerimônias de segurança, Segurança sociotécnica, Modelos de 
ameaça, Tipos de atacante, Análise formal. 
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1 INTRODUCTION

Nowadays, one of the problems of the security protocol commu-
nity is that even massively deployed protocols which are deeply verified
(proved secure by automated protocol analysis tools) still fail (BELLA;
LONGO; PAULSON, 2003). Most of these failures are related to assump-
tions taken by the protocol designer that are not fulfilled when the
protocol is implemented (for instance, an unexpected user behaviour).
These problems call for a new approach that better describe assump-
tions and take the user into account. We see then the appearance of the
socio-technical area of security ceremonies (MARTINA; CARLOS, 2010).

We define security ceremonies as a sequence of interactions among
entities, designed to achieve a given security goal (such as entity au-
thentication, key distribution, secrecy, etc). The distinction between
ceremonies and protocols, as described by Ellison (2007), is that cere-
monies are a super-set of security protocols. Ceremonies include as ex-
plicit interactions all assumptions considered out-of-scope in protocols,
being good examples the interactions between humans and devices, and
between humans and humans. Undoubtedly, ceremonies still need as-
sumptions, such as the initial knowledge of human peers. Nevertheless,
these assumptions tend to be more precisely described, fine grained and
realistic (CARLOS et al., 2013).

As in ceremonies we have to handle the daunting challenge of
adding human nodes into the specification, we rely on extra communi-
cation channels: human-device and human-human channels (CARLOS
et al., 2013). For the present work we apply the "Security Ceremony
Concertina Traversal" methodology to understand these channels as
layers (BELLA et al., 2014). The Concertina layers are broader in view
and help us mitigate cause and place of attacks during the ceremony
execution.

The Ceremony Concertina consists of a ceremony model that
links technology to society through a number of layers, ranging from
computer processes to user personas. The first three layers represent
the information pathway: the interaction between network and oper-
ating system, then between operating system and process running on
behalf of the interface and, lastly, between interface and user. At this
point, the information reaches the user expressing a given persona and
the last layer stands for the influence of society over this user’s de-
meanour.

Bella et al. (2014) argue that a ceremony can be layered and
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analysed in the specific sections of its description, enabling the com-
prehension of important aspects. Moreover, they say that we need rele-
vant descriptions to verify whether we can achieve our goals. However,
they do not assert a precise description syntax for security ceremonies.
They also do not establish a threat model where one can conduct formal
analysis. Thus, we find our motivation for defining the threat models
present in our case study ceremony scenarios and analyse them using
symbolic evaluation techniques.

It is useful to clarify the distinction between ceremony and sce-
nario. We may have several ceremonies to solve a given problem. How-
ever, when we fix one of those ceremonies we start talking about scenar-
ios for this fixed ceremony. Ceremony scenarios are different versions
of the same ceremony with a slight change in the threat model of one
of the ceremony messages.

Now moving to the attacker types considered for this disserta-
tion, we have the Dolev-Yao attacker (DY in brief) [see (DOLEV; YAO,
1983)], the Multi-Attacker (MA) [see (ARSAC et al., 2010)] and our pro-
posal for a Distributed attacker (DA).

The idea of representing an active attacker in a security protocol
comes from Needham and Schroeder (NEEDHAM; SCHROEDER, ACM
Press, 1978). Later, Dolev and Yao (DOLEV; YAO, 1983) formalised
Needham-Schroeder attacker and described in more details the capa-
bilities of the attacker. The capabilities of the attacker are in fact what
validate or not Needham-Schroeder claims, as shown by Lowe (1996).

A Dolev-Yao attacker, in turn, controls the channel - being capa-
ble of altering, copying, replaying and creating messages (DOLEV; YAO,
1983). In this context, the only restraint is that the attacker cannot
perform cryptanalysis and guess random numbers. A protocol consid-
ered secure against such an attacker is secure against less powerful ones
in the point of view of security protocols analysis and verification.

As a variant of the DY attacker, we have the Multi-Attacker
model. The MA model allows each participant agent to be a potential
attacker by behaving as a DY attacker. We may have several DY
attackers in this model, where neither collude nor share knowledge with
each other (ARSAC et al., 2010).

Our proposal for a more flexible attacker type (DA) is explained
later on in full detail - as it is our main contribution.

Regarding threat modelling, we notice that perceiving the thresh-
old between a realistic and secure ceremony, and an overly protected
one is also challenging. If we overestimate the attacker capabilities in
a ceremony we will probably end up designing complex and difficult
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ceremonies. However, if we underestimate the attacker, we might have
a flawed ceremony (CARLOS et al., 2013). To approach such a task,
Carlos et al. (2013) proposed an adaptive threat model for security
ceremonies. In their work, the ceremony may start with a powerful at-
tacker such as a DY. Then, the designer can adjust the set of attacker
capabilities to make the attacker more realistic. The full set of DY ca-
pabilities (DYcap) includes1: Eavesdrop, Initiate, Atomic Break Down,
Block, Crypto, Fabricate, Spoof, Re-order, Modifying, and Replaying
(CARLOS et al., 2013).

Carlos et al. (2013) establish that an over-powerful attacker may
be unrealistic in a human-human ceremony setting. They say that even
though the Dolev-Yao threat model can represent the most powerful
attacker possible in a ceremony, such an attacker is unrealistic in certain
scenarios, especially those related to human peers. Carlos et al. (2013)
believe that having an attacker which can overcome the laws of physics
and interfere with human speech or direct human action is usually above
reason for most cases. It other words, adjusting the set of capabilities
is generally used for those layers involving humans. This way, their
adaptive threat model leaves the well known Dolev-Yao attacker as
the standard setting for device-device channels (once a DY suits the
network layer perfectly).

Modelling and connecting the Ceremony Concertina layers to the
classic DY attacker and to the Multi-Attacker is a topic not discussed
yet. We will combine these attacker types (MA, DY and our DA)
and adaptively set the threat model, so that we can perform tests to
compare (among different sets) which ceremony is the most secure to
implement.

1.1 JUSTIFICATION

With ceremonies we are able to evaluate human peers along with
other peers of the system (CARLOS et al., 2013). Today, however, two
main points hinder the symbolic evaluation of security ceremonies: lack
of a standard notation for security ceremonies, which encompass the
subtleties of human peers, and lack of a standard threat model.

The lack of a standard description language makes it difficult to
envisage the creation of a symbolic evaluation tool for ceremonies. To
be able to analyse security ceremonies, we need a language capable of
collecting the description of human peers actions and interaction within

1We define each of these DY capabilities on our background chapter.
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the system, as well as the threat models that appear in each scenario.
Only with that we will be able to sketch a symbolic evaluation strategy
for ceremonies analysis. Claims will only be verifiable within a specific
scenario (primarily described by the threat model within each ceremony
layer). The lack of a standardised threat model makes any reasonable
claim imprecise.

Another difficulty we face is the lack of automated models (due
to the complexity of security ceremonies design) for checking that in-
deed a given ceremony achieves its claimed security goals. With a
formal analysis tool, we can test and compare ceremonies, being able
to distinguish between the secure from the flawed ones. Furthermore,
such analysis can also accomplish a better understanding of the threat
models the peers of the system are subject to.

1.2 MOTIVATION

We see that currently employed attacker types (as DY and MA)
do not allow information sharing. Bearing in mind that "Every time
you pick up the phone, dial a number, write an email, make a purchase,
travel on the bus carrying a cell phone, swipe a card somewhere, you
leave a trace [...]" (SNOWDEN. . . , 2014), we find ourselves in a new
reality in terms of ceremony threat models. It has even more impact
when thought from the point of view of the user. Users act naively
in many cases or avoid security measures (attempting to bypass the
system) by not knowing which threat model they are subject to.

In fact, powerful agencies have all kinds of information easily
on hands and by any means necessary. In here we must cite The Five
Eyes alliance and its mass surveillance - in part evidenced by documents
released by Edward Snowden 2. Within this context, we are considering
attackers with clearly more abilities than the standard models assume.
Therefore, we are proposing a more powerful attacker type which is
suitable for the espionage era we currently live in: our Distributed
Attacker.

We provide the mechanisation of the case study scenarios we
analyse throughout this dissertation as a means of validation of our
methodology. This is important because we need formalisation to com-
pare ceremony scenarios. However, the relevance of formally analysing
a ceremony goes beyond the comparison among scenarios. With for-
malisation, we are able to perform fast and automated tests to assess

2More info available at: https://www.privacyinternational.org/node/51



31

scenarios for further classification into those that achieve the ceremony
goal and those that do not. As a result, we are able to choose the best
ceremony scenario from the tested set.

1.3 OBJECTIVES

Our goal is to contribute with a notation and detailed threat
model for ceremony description in order to establish our proposal for a
new attacker type named Distributed Attacker (DA in brief).

1.3.1 Specific Objectives

• Describe ceremonies with our proposed syntax notation;

• Use the framework of Bella et al. (2014) and correlate each layer
with a threat model, as described by Carlos et al. (2013);

• Evaluate the behaviour of our proposed Distributed Attacker;

• Mechanise and formalise communication channels, messages and
peers of security ceremonies, showing the formalisation steps ap-
plied to our ceremony scenarios.

1.4 PUBLICATIONS

We would like to stress that most part of the contents of this
dissertation are derived from the publications listed below. Addition-
ally, we present part of a work we submitted to the Formal Aspects of
Computing - CryptoForma Special Issue which is still being evaluated
for publication.

• Ceremony Analysis Meets Verifiable Voting: Individual Verifia-
bility in Helios (Securware, 2015) - Qualis B3;

• Threat Modelling Service Security as a Security Ceremony (ARES,
2016) - Qualis B1.
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1.5 STRUCTURE OF THIS WORK

Chapter 2 brings ceremony threat modelling background. Fol-
lowing, chapter 3 presents our first accepted paper (as listed in 1.4). In
this chapter we show the beginning of our analysis, with informal and
somewhat primitive proofs. Chapter 4 has part of the contents of our
second accepted paper (also listed in 1.4), including our DA proposal
and our case study scenarios which exemplify our model. The formal-
isation of the discussed scenarios is given in chapter 5, along with our
mechanisation strategy. Finally, chapter 6 concludes this dissertation.
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2 BACKGROUND

This chapter presents all needed background on security cere-
monies, threat models and ceremony analysis to ease the comprehen-
sion of the following materials.

2.1 SECURITY CEREMONIES

Ceremonies extend protocols by including human peers to the
system specification. In protocols, all human actions are modelled as
assumptions and, when the protocol is implemented, these assumptions
may result in user interactions that are unrealistic or not well-specified
(ELLISON, 2007).

In ceremonies, additional channels are available to model human
interaction: human-human (HH) and human-device (HD) channels. We
have the device-device (DD) channel for the subset of protocols itself.
Taking these channels into account, we analyse ceremonies using the
adaptive threat model (CARLOS et al., 2013)1.

The distinction between ceremonies and protocols, as described
before, is that ceremonies are a super-set of security protocols. The
interactions between humans and devices (interfaces) and between hu-
mans and humans (human-human communication and transfers of phys-
ical objects that carry data) are good examples of out-of-scope situa-
tions for protocols, all of which are easily instantiated with the use of
security ceremonies (ELLISON, 2007).

Ceremonies, however, still need some assumptions as for exam-
ple the initial knowledge of human peers. Moreover, the gains from
designing and analysing security ceremonies are linked to the quality
and accuracy with which the involved components are described (CAR-
LOS et al., 2013).

Ellison (2007) says that "[...] A secure ceremony is secure against
both normal attacks and social engineering. However, some secure pro-
tocols imply ceremonies that cannot be made secure. [...] The problem
comes with modelling a human node. Like a computer protocol node,
the human node has state and a state machine. It receives and emits
messages which cannot be programed as done with device nodes. We
must instead learn the human state machine empirically, by observing
actual human behaviour.".

1We use HD and DD channels in our first publication, in chapter 3.
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In ceremonies, differently than in protocols, human behaviour is
neither considered predictable nor deterministic. We now move to the
specifics of the model we employed to address human and device nodes
for the ceremony analysis carried in our second publication - presented
in chapter 4.

In this point of our work we move from Carlos et al. (2013)
channels (HH, HD and DD) to Bella et al. (2014) layers, as the latter
are more expressive in terms of the human role played in ceremonies,
and define in a more detailed manner the information pathway.

2.2 CEREMONY CONCERTINA LAYERS

The Ceremony Concertina approach establishes security and pri-
vacy in the presence of humans. It links technology to society through
the following five layers (BELLA et al., 2014):

• Layer 1 (Informational) concerns the security protocol running
between computer processes. It aims to secure the messages ex-
changed between two users communicating over a potentially in-
secure network.

• Layer 2 (Operating System) is an intermediate level expressing
the communication between the process that executes the secu-
rity protocol on behalf of the user and the process that runs the
interface presented to that user;

• Layer 3 (Human-Computer Interaction) stands for the socio-technical
protocol whereby an user interacts with a graphical interface dis-
played in his communicating device. This layer is crucial for the
protocol to reach its end and achieve its goals;

• Layer 4 (Personal) is related to the user expression of a given
persona while interacting to the interface. The user’s persona
may differ accordingly to which technology or service the user
needs to deal with for a given task and to his own mood during
the execution of that task;

• Layer 5 (Communal) shows the society influence over the user
demeanour.

From all five layers, protocols just focus in the first one as they
only handle network traffic. Ceremonies allow us to study the three



35

first layers, once they include both human and device peers. Thus, we
cover up to the third layer in our work (standing in computer science
research area). As stated in the work of Bella et al. (2014), layers 4 and
5 are strongly related to social science (which is out of our scope) as
such layers deal with the non-deterministic nature of the human being.

Layer 4 does not appear in our modelling because it involves more
than just the simple interaction between user and device. It concerns
the mindset of the user while interacting with the system. We envisage
Pirandellian masks as one interesting strategy to address this layer.
Pirandellian masks are theatrical tool used by Luigi Pirandello, where
characters search for the actors to be performed (PIRANDELLO, 1922).
With that we ought to be able to design ceremonies that protect for
common user behaviour by having the meaningful masks people wear
when executing ceremonies.

Lastly, layer 5 represents the influence of the society over the
user’s attitudes, being clearly out of our reach as computer scientists
(alone). This way, both layers 4 and 5 remain for future work, as we
believe that such tremendous challenge (as modelling human actions)
may be manageable by joined work with social science experts.

2.3 ATTACKER TYPES

A ceremony can be designed and analysed with variants of the
mature methods already in use for a network protocol (ELLISON, 2007).
In this section, we enlist the attacker types we used throughout our
work. As such, we start with the standard attacker model for security
protocols: a Dolev-Yao (DY) attacker (DOLEV; YAO, 1983).

A Dolev-Yao attacker controls the channel, being capable of al-
tering, copying, replaying and creating messages. However, the attacker
is not allowed to perform cryptanalysis or guess random numbers. In
the point of view of security protocol analysis and verification, a proto-
col considered secure against this attacker is secure against less powerful
ones.

Along with the DY model, we use one of its variants: the Multi-
Attacker model (MA) (ARSAC et al., 2010). Any peer is a potential
attacker, behaving as a Dolev-Yao and never revealing his long-term
secrets to others. In this sense, each attacker neither colludes nor shares
knowledge with any other attacker. For this dissertation, we adapted
the MA model to also be able to act on layer 2 (besides layer 1, which
both MA and DY attacker types are able to attack).
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2.4 THREAT MODELS

The adaptive threat model proposed by Carlos et al. (2013) uses
the set of capabilities of a Dolev-Yao attacker, by dynamically adding
or removing capabilities from the whole set. By doing so, we are able
to avoid cases where overly stringent requirements are placed on users.
While such requirements are motivated by security concerns, they are
likely to negatively impact usability.

The Dolev-Yao full set of capabilities (DYcap) is defined as fol-
lows (CARLOS et al., 2013):

• Eavesdrop (E) – The attacker learns the contents of any message
sent through the communication channel, just by listening to the
channel.

• Initiate (I) – The attacker can use his own knowledge to initiate
a new communication with another peer of the system.

• Atomic Break Down (A) – The attacker can break any message
in its sub-components and learn each of the sub-components con-
tents individually.

• Block (B) – The attacker is able to block a message, preventing
its intended receiver from learning the message.

• Crypto (C) – Capability where the attacker performs crypto-
graphic operations, once he has the needed knowledge to do so.
For instance, if a given attacker knows a specific cryptographic
key he is able to decrypt any message encrypted with such key.

• Fabricate (F) – Represents the use of publicly known functions to
fabricate new messages. For this purpose, the attacker may use
his initial knowledge or the contents he learnt through any other
capability.

• Spoof (S) – Attacker’s capability of sending a message to an agent
pretending to be another agent. It is distinct from Initiate by not
allowing the attacker to be an internal agent in the execution of
the ceremony.

• Re-order (O) – The attacker is able to re-order the messages, so
the receiver will learn the contents in different order than origi-
nally sent.
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• Modifying (M) – This capability can be seen as the combination
of Block and Initiate capabilities. The receiver does not learn
the intended contents, learning a modified version (sent by the
attacker) instead.

• Replaying (R) – This capability can be seen as the combination
of Eavesdrop and Initiate capabilities.

The analysis process begins with the establishment of which
channels are present at the ceremony of interest. This consists of,
first, a list of all human and device nodes. Secondly, we identify which
pairs of these nodes exchange messages. Then we associate each pair
of nodes to the respective type of channel representing their communi-
cation (i.e., HH, HD or DD). This way we can proceed to the threat
modelling of the ceremony being analysed, where we vary attacker types
and capability sets to assess the impact on security.

The attacker’s goal is to learn the contents being exchanged
among nodes. The DY attacker type defines capabilities that allow
the attacker to achieve his goal. Thus, we observe how the attacker
may use his capabilities in order to obtain a realistic threat model to
each channel - following the adaptive threat model. Understanding the
threat model the user is subject to when interacting in a ceremony
will prevent him from being overloaded with unrealistic scenarios, and
guarantee that important security properties hold (CARLOS et al., 2013).

2.5 CEREMONY DESIGN AND VERIFICATION

Since ceremonies are a super-set of protocols and protocol design
and verification has been a well researched topic, we approach ceremony
formalisation by borrowing some ideas from the protocol research field.
During the initial phase of protocol verification in the 1980’s and mid-
1990’s, protocol verification was carried out informally. This is also the
case for security ceremonies.

Informal verification as a first step in ceremony formalisation
is important because it helps us understand the semantics behind the
messages. Due to its informality, it is often simpler to find minor flaws.
No complicated or extensive reasoning is usually involved in this stage,
making the outcome easy to comprehend.

From mid-1990’s, we started seeing an increased interest in the
usage of formal tools to assist the verification of security protocol mod-
els (MEADOWS, 1996). We can cite efforts such as:
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• Belief Logic (BURROWS; ABADI; NEEDHAM, 1990), which first rep-
resented formally the beliefs that peers running the protocol can
derive during the execution;

• Paulson’s Inductive Method, a formalism that allows us to prove
the existence of security properties via structural induction over
an unbounded protocol model (PAULSON, 1998; BELLA, 2007). It
is assisted by a very powerful tool called Isabelle, a theorem prover
for higher-order logic (HOL) (NIPKOW; PAULSON;WENZEL, 2002).

Formal verification techniques have been aimed to ensure the cor-
rect communication among devices in security protocols. We now face
a different new challenge of including everything else into the mix and
conducting symbolic evaluation of security ceremonies as we do with
protocols. Some works have already tried to address ceremony design
and verification. Carlos et al. (2012) pursued these formalisation ideas
using Isabelle/HOL, being able to capture some of the subtleties of cer-
emony design and verification. However, they seem to have abandoned
the idea due to the lack of a symbolic evaluation threat model and to
the difficulties of dealing with HOL.

Martina et al. (2015) further expanded Carlos et al. (2013) by
demonstrating how to conduct symbolic evaluation with the adaptive
threat model, and using first-order logic (FOL) and a theorem prover.
We based our mechanisation in Martina et al. work, as FOL is easily
molded and we were able to test the attacker types we employed with
different sets of capabilities.

We now move to chapter 3 which brings the contents of our
first accepted and published paper. It has the Helios voting system as
example ceremony. The purpose of the next chapter is to demonstrate
our very first steps regarding ceremony analysis with informal proofs
(basically just mathematical reasoning). Voting systems are not our
area of expertise, so Helios serves us simply as our case study.
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3 INFORMAL CEREMONY ANALYSIS FOR HELIOS
VOTING SYSTEM

We start this chapter by describing how Helios voting system
works, and then we present our informal analysis over two proposals
for interface usability improvement on Helios.

In order to engender voter trust in electronic voting, crypto-
graphic voting systems that offer verifiability while maintaining vote
secrecy have been proposed, and continue to gain ground.

Helios, open-source verifiable Internet-based voting system, stands
out for its continued use, primarily in academic contexts, for example,
in 2009, to elect the university president at the Université Catholique
de Louvain (ADIDA, 2008; ADIDA et al., 2009). It was also used in the
2013 Princeton University undergraduate student government elections,
and to elect the Board of Directors of the International Association for
Cryptologic Research (IACR) (PRINCETON, 2013; IACR, 2013).

Helios assumes that voters will verify their votes to ensure vote
integrity (ADIDA, 2008). While it is not known whether this assumption
is true for the elections where Helios has been used, findings from expert
reviews and user studies suggest that this is not likely to be the case,
due to the cumbersome nature of the verification process (KARAYUMAK
et al., 2011a, 2011b).

Usability improvements to the Helios voting interfaces, with a
specific focus on the verification aspect, have been proposed to ensure
that this assumption can be met. Voters can now verify their vote
(through the support of independent trusted institutes) in two forms:
either in the institutes’ web page, or via download and installation of
an app on the voters’ smartphone (maintained by those same insti-
tutes). We analyse the security of such improvements, a recommended
practice for usable security (SASSE; FLECHAIS, 2005). The focus is on
verifiability and integrity.

Several extensions to the Helios voting protocol have been pro-
posed, focusing on providing everlasting privacy (DEMIREL; GRAAF;
ARAúJO, 2012), privacy and correctness (CORTIER et al., 2013), and
preventing attacks against privacy (CORTIER; SMYTH, 2011). Tsoukalas
et al. (2013) proposed Zeus, which is a verifiable voting and counting
system, developed based on the Helios version in (ADIDA, 2008). The
authors propose that the voter enters an audit code to indicate that a
submitted vote should be verified. However, no analysis of the security
implications of these modifications is provided.
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Cortier et al. (2013) came up with a variant of Helios that pre-
vents ballot box stuffing. Comparatively, the research we report in this
chapter analyses the security of two proposals made to improve the
usability of verification in Helios, in order to ensure that voters can
indeed verify that their ballots are cast and counted in the final tally,
as intended1.

We apply ceremony analysis [see Ellison (2007)] using the adap-
tive threat model provided by Carlos et al. (2013), which is appropriate
to analyse the human-device and human-human channels. Following
standard practice, a Dolev-Yao [see (DOLEV; YAO, 1983)] adversary is
assumed on the device-device channels.

Our findings show that:

1. No threats to secrecy are present when the voter uses the smart-
phone app to verify;

2. Reputation attacks might be carried out to undermine the insti-
tutes participating in elections. In such cases, voter education on
necessary steps is required;

3. Semi-formal verification can be applied to election ceremonies.

We discuss the implications of these findings for voting and verification
in Helios.

3.1 HELIOS VOTING PROTOCOL

We focus here only on those aspects that are relevant to verifia-
bility and that are necessary to understand the proposals presented in
later sections.

To vote using Helios, the voter downloads the Helios ballot prepa-
ration system (BPS) onto his web browser (ADIDA, 2008). He indicates
his choice on the ballot. The BPS encrypts these choices (i.e. the vote)
and commits to this encryption by displaying a hash value, which we
refer to as a check-code. The voter should record the check-code dis-
played if he plans to verify it. At this point, the voter makes a choice
to either submit this encrypted vote to the public web bulletin board
or to challenge the voting system, verifying whether the vote has been
correctly encrypted.

1These proposals to improve Helios usability come from the PhD research of one
of the authors of our first paper (reported here in this chapter): Maina M. Olembo.
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If the voter decides to verify his vote, he interacts with the He-
lios ballot verifier system (BVS). The BPS displays the choice and the
randomness used for encryption. The voter selects and copies this in-
formation to the voting device clipboard and pastes it into the BVS,
which BPS opens in a new web browser window. The BVS encrypts the
corresponding choice and generates the hash value of this encryption.
This hash value is displayed together with the choice contained in the
vote received earlier.

In order to complete the verification process, the voter needs
to confirm that the check-code displayed by the BVS matches the one
displayed earlier by the BPS. Additionally, he needs to confirm that the
vote is correct. If both these conditions are met, the voter is assured
that the system correctly encrypted the vote in this instance. He can
repeat the verification process several times until he is satisfied that
the system is behaving correctly.

Once votes are verified they can no longer be submitted to the
public web bulletin board as the voter could easily prove how he voted
using the revealed randomness. Thus, new randomness is required. As
the BVS learns the content of the encryption, the use of test votes that
differ from the final vote has been recommended, to avoid the BVS
computing intermediate results (KARAYUMAK et al., 2011b).

If the voter chooses to submit his vote to the public web bulletin
board, he is prompted to authenticate himself, and his encrypted vote is
then posted on the public web bulletin board together with the check-
code. To verify that the encrypted vote is correctly stored on the
voting server or public web bulletin board, the voter needs to confirm
that the check-code appears on the public web bulletin board next to
his name, or some pseudonym (ADIDA, 2008; ADIDA et al., 2009). It is
only necessary to do this once as the Helios threat model assumes that
auditors continuously observe the bulletin board preventing malicious
behaviour.

3.1.1 Assumptions

We present assumptions of the original Helios system, as well as
our assumptions regarding the entities involved in the ceremony, and
the ceremony itself.

The attacker lies only on the channel as is the usual Dolev-Yao
assumption. Further, he cannot control more than one device-device
channel.
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Any participating verification institute is trustworthy as any ma-
licious behaviour would lead to a loss of reputation. We are not con-
sidering denial of service attacks.

The voter is an honest peer in the ceremony as a dishonest voter
can easily prevent a ceremony from concluding correctly. We also do
not consider coercion. Thus, the cases where the attacker is the voter
are not included.

Finally, the ceremony is assumed to have only one entry and one
exit point, so the voter is expected to follow all the steps provided in
the ceremony he is executing.

3.1.2 Security criteria

As the adaptive threat model will be applied to the electronic
voting context, we define necessary security criteria adapted from Neu-
mann, Budurushi e Volkamer (2013).

A number of security properties are considered relevant in the
electronic voting context. In this chapter, we focus on verifiability and
integrity, likely the most important properties for elections conducted
over a remote channel.

Integrity: The sum of all participating voters’ submitted votes
(votes submitted to and stored on the voting server or the public web
bulletin board) matches the declared election result.

Integrity violations must not go undetected (LANGER et al., 2010).
From this requirement, we obtain the definition of verifiability.

Verifiability: Property in which the voter assures himself of the
integrity of the individual vote and the public is assured of the integrity
of the election result. Verifiability consists of evidence of the following
aspects being provided:

• The vote correctly represents the voter’s choice;

• The vote has been stored on the voting server or public web bul-
letin board as it was cast by the voter;

• All valid votes on the public web bulletin board are tallied without
modification.
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3.1.3 Notation

The traditional protocol description of Needham e Schroeder
(ACM Press, 1978) consists of denoting each step of the protocol in
one line. Each line is numbered and shows the direction of the infor-
mation flow, generally from left to right. The sender is named on the
left and the receiver is named on the right. Lastly, we have the message
payload itself.

Figure 1 shows an example of this notation for a simple protocol
of just two messages. First step stands for message "Show Email", sent
from sender A to receiver S. Step number two has the answer "Learn
Meeting Date" sent from S back to A.

1. A −→ S : Show Email
2. S −→ A : Learn Meeting Date

Figure 1 – Protocol notation

For the ceremonies in this chapter we add text below the arrows
to identify the channel through which the message is being sent, as
Carlos et al. (2013) do in their work. For instance, HD1 is a Human-
Device channel with number 1 as ID. The same logic is applied for
the DD channels. We enumerate them because each different pair of
communicating devices forms a new channel (with its respective ID).

3.2 INSTITUTES WEBSITE PROPOSAL

We summarise the processes that voters would carry out using
a web-based ballot verifier provided by the trusted institutes. We then
analyse these processes using the adaptive threat model, and briefly
compare our results to those obtained in the case of a DY attacker -
closing this section with a discussion of the results.

3.2.1 Web-based verification and vote submission

The message flow for the web-based proposal is showed in Figure
2. Involved entities are represented as follows: V refers to Voter, Bo to
Booth, Inst to Institute, App to the smartphone application and BB
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to Bulletin Board.
The voting process is similar to that described in section 3.1. A

relevant difference for this ceremony is that the voter enters the URL
into the address bar of his browser in order to open the election website.
He receives the voting credentials via postal mail, rather than clicking
on a URL in the invocation email as in the original Helios.

We therefore concentrate on the verification processes where dif-
ferences emerge between the original Helios and across the proposals
discussed in this chapter. In order to verify that his vote is correctly
encrypted on the voting device, a voter first needs to record the check-
code displayed by the ballot preparation system (BPS) - see message 9
in Figure 2. This message presents the check-code contents which is a
hash function (H) of the encryption of user’s vote plus the randomness
information (Rand) used. This encryption is done with the election
public key (denoted by Epk).

Figure 2 – Verifying vote using website of independent institutes

The voter then expresses to BPS his intention to verify (in mes-
sage 10), views the verification institutes that are available (in message
11), then selects an institute that he trusts (in message 12). He is
re-directed to the verification web page of the selected institute, in a
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new browser window. The BPS transmits the information necessary
for verification, that is "Vote + Rand" and accompanying proofs to
the selected institute (in message 13). Since the vote is transmitted to
the institute, the case considered here is that the voter verifies a ’test
vote’, that is, one that is not equivalent to the final vote that he will
cast.

The institute will compute the check-code using the information
it receives from the booth, and displays this, along with the vote it re-
ceived, to the voter (message 14). The voter now needs to confirm that
the two check-codes match (the original check-code, produced by the
BPS, must be equal to the check-code just computed by the institute),
and that the vote displayed by the institute matches his selection on
the ballot.

Figure 3 – Submitting final vote using website of independent institutes

Next, we describe the process for the voter to verify that his vote
is correctly stored on the voting server or public web bulletin board.
This message flow is showed in Figure 3. The voter records the check-
code displayed to him (in message 9). He then logs in to submit his
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vote (in messages 10 - 12). Upon successful authentication, the booth
submits the vote to the bulletin board (in message 13). The voter would
select an institute from several options displayed after he submits his
vote (in message 15). A new web page would open. He would enter the
recorded check-code information and view the result returned by the
institute (in message 17).

Note that the institute additionally needs to display the Voter
ID in its response to the voter, in order to prevent a successful clash
attack (KüSTERS; TRUDERUNG; VOGT, 2012). A clash attack occurs
when different voters are showed the same check-code when they verify
that their vote has been stored on the bulletin board. This can only be
detected if the Voter ID is returned as it is a unique value.

3.2.2 Analysis

We apply the adaptive threat model of Carlos et al. (2013) in
our ceremonies so we can conclude which scenarios are realistic and
whether the attacker succeeds or not in his attempts to corrupt the
system.

3.2.2.1 Preliminaries

With the full Dolev-Yao (DY) attacker capabilities in mind and
applying the framework proposed by Carlos et al. (2013), we can evalu-
ate our ceremonies against a less powerful and more realistic variation
of such an attacker. We describe the adaptive threat model for each
Helios ceremony and compare the results to the DY threat model. In
the latter case, all the communication channels are under a full DY
attacker.

In the adaptive threat model, only the device-device (DD) chan-
nel is under a DY attacker. Regarding the human-device (HD) channel,
we assume there is a human being (and not a machine pretending to
be a human) communicating with a device. Thus, the voter interacts
with his device (for example, typing in the keyboard of his computer
or looking at his computer screen). In this setting, we consider the HD
channel as under a DY-E attacker. DY-E means that the attacker has
all DY capabilities except the Eavesdrop (E) capability.

We are assuming controlled environments, where the voter does
not need to check around his shoulders for someone eavesdropping his
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actions. As the attacker will not be able to Eavesdrop on the user,
we excluded such ability from his set of capabilities. This way, a DY-
E attacker is not able to compromise the secrecy of the messages sent
through HD channels. Once the attacker is not able to learn any voter’s
information, he can only apply his capabilities over the knowledge he
already has. So, as he can only use his initial knowledge, he poses no
threat to the voting and verifying ceremony.

We now present proofs for our Helios ceremonies making use of
the following notation:

• M1...10,12 represents the group of message consisting of the first
message up to the tenth message, plus message 12, for example;

• M9 ∪ DY means that message 9 is under the DY threat model,
for example;

• Each peer’s knowledge is showed with the predicate knows(Y),
which stands for the knowledge set of agent Y2. When we say "x
∈ knows(Y)" it means that agent Y knows message x. In other
words, x belongs to the set of knowledge of peer Y;

• The ∧ symbol stands for the logic connective AND.

Based on Figure 2, we check that the test vote is correctly en-
crypted on the voting device:

If the messages M1 to M12, and message M14 are run against a
DY-E attacker, and message M13 is run against a DY attacker: the at-
tacker (Att) can prevent the institute Inst from learning "Vote + Rand"
and instead send V oteatt + Rand instead, where V oteatt is chosen by
the attacker.

(M1...12,14 ∪DY − E) ∧ (M13 ∪DY )

V ote ∧ V oteatt ∈ knows(Att)∧
V ote ∈ knows(B)∧

(V ote+R) /∈ knows(Inst) ∧ (V oteatt +R) ∈ knows(Inst)

Assume the attacker Att initiated two simultaneous pairing ses-
sions between the booth Bo and the institute Inst in message 13. Att
uses his block, atomic breakdown, fabricate and initiate capabilities in

2This predicate comes from the work of Carlos et al. (2013)



48

this message, preventing Inst from learning the correct vote and ran-
domness information, that is (Vote+R), forcing it to receive (Voteatt
+R) instead.

Based on Figure 3, we check that the final vote is correctly stored
on the voting server or public web bulletin board:

If the messages M1 to M12, M14, M15 and M17 are run against
a DY-E attacker, and messages M13 and M16 are run against a DY
attacker, the attacker (Att) can prevent the bulletin board BB from
receiving the correct {V ote}Epk. Att can also prevent the institute Inst
from learning H{{V ote + Rand}Epk}. The attacker uses his crypto
capability to generate the {V oteatt}Epk information and his fabricate
capability to generate Hatt{{V oteatt}+Ratt}Epk}. Then, he sends these
altered information {V oteatt}Epk and Hatt{{V oteatt+Randatt}Epk} to
the bulletin board BB and the institute Inst, respectively, where V oteatt
is chosen by the attacker.

(M1...12,14,15,17 ∪DY − E) ∧ (M13,16 ∪DY )

{V ote}Epk ∧ {V oteatt}Epk ∧H{{V ote+Rand}Epk}∧
Hatt{{V oteatt +Randatt}Epk} ∈ knows(Att)∧
V ote ∈ knows(B) ∧ {V ote}Epk /∈ knows(BB)∧

{V oteatt}Epk ∈ knows(BB)∧
H{{V ote+Rand}Epk} /∈ knows(Inst)∧

Hatt{{V oteatt +Randatt}Epk} ∈ knows(Inst)

We assume the attacker Att initiated two simultaneous pair-
ing sessions between booth Bo and the public web bulletin board BB
maintained by institute Inst. The attacker Att uses his block, fab-
ricate and initiate capabilities (message 13 in Figure 3) and sends
{V oteatt}Epk to the BB - instead of the correct {V ote}Epk the BB
was supposed to receive. Similarly, for message 16, we have that Inst
receives the altered information Hatt{{V oteatt +Randatt}Epk} instead
of H{{V ote + Rand}Epk}. As a result, the user receives (in turn) the
altered hash in message 17. This user, then, believes the institute is
untrustworthy given that the hash in message 17 is different than the
original hash previously displayed to him in message 9.

Note that the attacker can know the existing votes and the public
key of the election, however the attacker cannot know the randomness
information Rand.
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3.2.3 Results

If we consider scenarios with the DY threat model, the attacker
would have total control over the ceremonies above and would be able
to manipulate the voter in the whole voting process. In these scenarios,
the attacker intercepts all original sent messages, sending messages in
his knowledge instead to booth Bo, institute Inst, and bulletin board
BB.

At the same time, the attacker displays to the voter the right
contents (those he blocked before reaching the intended receivers), pre-
tending to be the legitimate entities. Therefore, the voter is led to
believe that his vote was encrypted, submitted and stored as intended
when this is not the case.

Nevertheless, such a scenario is highly unlikely to happen in real
world situations, as the HD channel limits the attacker’s actions. Fur-
thermore, by involving the human peer, it is difficult for the attacker
to control this latter channel, and the information being exchanged
through it without being noticed.

A scenario that is realistic and feasible involves the attacker in-
tercepting messages on the DD channel only. Therefore, the institute
receives altered information and calculates a different check-code from
the one expected by the voter. The voter then no longer trusts the in-
stitute, believing it to be unreliable. This outcome highlights the need
for multiple institutes to be available, providing verification services to
voters. The voter is free to verify with several other institutes. If these
subsequent checks also return a failed result, he can then contact the
election commission.

Analysing the two ceremonies presented above, we can see the
message (Vote+R) being sent without any encryption in the first cer-
emony (for the test vote) while the second one contains the vote en-
crypted with the public key of the election (Epk). From this, we can
conclude that secrecy does not hold in the ceremony for the test vote,
represented in Figure 2. Secrecy does hold when the voter decides to
cast his final vote in the second ceremony, represented in Figure 3.

Our conclusions are given the fact that even when the DY at-
tacker intercepts message 13 in the DD channel, he only sees a check-
code that gives no information about the vote or the randomness in-
formation used. In other words, the attacker does not know the voter’s
final vote in the second ceremony, which is more secure than the test
vote ceremony.
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3.3 INSTITUTES APP PROPOSAL

We describe here the processes that voters would carry out to
verify with a verifier installed as an app on their smartphones. With
this proposal, the voter has a way to verify which is separate from the
voting device. Thus, it uses a device that is in the voter’s possession
and that he likely trusts (with respect to secrecy and integrity). We
analyse these ceremonies using an adaptive threat model, and compare
our findings to those using a DY attacker. We conclude this section
with the results of our analysis.

3.3.1 Using a smartphone app and QR codes

The message flow for this proposal is showed in Figure 4. The
ballot preparation system (BPS) displays a QR code containing the
check-code in addition to the human-readable value, in message 9. The
voter opens the smartphone app and scans the QR code containing the
check-code, in messages 10 and 11. This check-code will be stored by
the app for later use during the verification process. The voter then
expresses his intention to verify to the voting booth, in messages 12-14.

He scans a second QR code, in message 15, and the app com-
putes the check-code and compares it to the first check-code. It then
informs the voter that the check-codes match (in a success scenario),
and prompts him to confirm that the displayed vote matches his initial
input on the ballot, in messages 16 - 17. This is an implementation
of a forcing function, preventing the voter from proceeding without
confirming that his vote is correct (NORMAN, 2002).

In order to verify that a vote is correctly stored on the voting
server or public web bulletin board (see Figure 5), the voter scans the
first QR code containing the check-code as in the previous ceremony,
in message 10. He logs in (messages 12 - 14) and the booth submits his
vote upon successful authentication, in message 15. The voter instructs
the app to check the public web bulletin board for the stored check-
code, in message 17. The app does this by querying the public web
bulletin board for the check-code, in message 18.

In a success scenario, the app displays a message to the voter
that the check-code was stored on the public web bulletin board. To
prevent clash attacks, the app should return the accompanying voter ID
as well (KüSTERS; TRUDERUNG; VOGT, 2012). In a failure scenario, the
voter will be informed that the check-code was not found. He can use



51

other apps for verification. To finalise the ceremony, the voter will be
directed to contact the election commission in case of multiple checks
with various apps return failed results.

Figure 4 – Verifying vote using institutes’ app
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Figure 5 – Submitting final vote using institutes’ app

3.3.2 Analysis

Before we present the analysis and results, we first review nec-
essary considerations for the adaptive threat model.

3.3.2.1 Preliminaries

Although DD channels are usually under a DY attacker, it is not
realistic for channel DD2 (seen in message 11 - Figure 4, for instance).
This channel characterises what we call a ’visual channel’, once there is
no Bluetooth or connection of any kind between the involved devices.
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In this case, we have the voter using his smartphone app to scan the QR
code which is being displayed by the booth running in his computer.
We consider the ideal case where the smartphone has no virus or worms,
for simplicity.

Both smartphone and computer are considered to be in voter’s
possession, and not under the attacker’s control. Hence, we have a sim-
ilar situation as that of a HD channel (as described in section 3.2.2.1).

It is clear that the attacker cannot block any contents passing
through DD2 channel as this would imply the attacker literally block-
ing the computer screen from the voter and his smartphone. Hardly
any attempt of an attack would succeed as the attacker’s capabilities
are very limited. The attacker cannot put his capabilities in motion
without being noticed by the voter or without the possession over the
voter’s devices. The latter is only feasible if the voter leaves the devices
unattended in the middle of the vote casting process. Nonetheless, in-
structions regarding the safety for the completion of the ceremony could
be given to the voter. So, the voter would be aware of the threat model
he is subject to and decide whether to continue or quit the remaining
proceedings.

Therefore, we consider the DD2 channel as being DY - E, similar
to the HD channel. Any weakened variation of the DY - E attacker
(capability set of the full DY attacker less the Eavesdrop capability)
can be used because this attacker will not be effective. This is due to
the fact that Eavesdrop is the only capability which can compromise
the secrecy of the voter’s vote.

We now move to the analysis of each ceremony involving the
app individually, using the adaptive threat model, and the DY threat
model, respectively.

Based on Figure 4, we verify that the vote is correctly encrypted
on the voting device:

If all messages M1 to M18 are run against a DY-E attacker, the
attacker cannot perform any significant attack with respect to secrecy
and integrity.

M1...18 ∪DY − E

∅

For this ceremony, we consider that the DD2 channel (in mes-
sages 11 and 15 of Figure 4) is not under a full DY attacker. This means
that this channel is a weakened variation of the DY threat model, be-
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cause the scenario involves a computer displaying a QR code to be
scanned by the voter’s mobile device. Considering that the attacker is
unable to Eavesdrop on the communication, all the other capabilities
the attacker has will not have an effect on the secrecy of the voter’s
vote in the ceremony. We justify this assumption once the environment
can be controlled or the voter himself could watch over his shoulders
to guarantee he is not being eavesdropped. Moreover, as the attacker
cannot possess the voter’s devices and he cannot know the voter’s vote,
he can perform no significant attack at all.

Based on Figure 5, we verify that the final vote is correctly stored
on the voting server or public web bulletin board:

Consider messages M1 to M14, M16 and M17 are run against
a DY-E attacker, and messages M15, M18 and M19 are run against a
DY attacker. The attacker (Att) can prevent the bulletin board BB from
learning the correct values of {V ote}Epk and H{{V ote+Rand}Epk}.

(M1...14,16,17 ∪DY − E) ∧ (M15,18,19 ∪DY )

V ote ∧ V oteatt∧{Vote}Epk ∧
{Voteatt}Epk ∧H{{Vote + Rand}Epk} ∧

Hatt{{V oteatt +Randatt}Epk} ∈ knows(Att) ∧
V ote ∈ knows(B)∧

{Vote}Epk ∧H {{Vote + Rand}Epk} /∈ knows(BB) ∧
{Voteatt}Epk ∧Hatt{{V oteatt +Randatt}Epk} ∈ knows(BB)

We assume the attacker Att initiated two simultaneous pairing
sessions between the booth Bo and the bulletin board BB (message 15
in Figure 5) and between App and BB (messages 18 and 19 in Figure
5). We continue to assume that the DD2 channel has a DY-E attacker
since it is a visual channel. The attacker Att uses his capabilities of
block, fabricate and initiate in messages 15, 18 and 19 where Att sends
to the bulletin board BB a different value of the encrypted vote and a
different value of the check-code, instead of the original ones.

3.3.3 Results

The ceremony seen in Figure 4 is more secure due to the presence
of the visual channel, which limits the attacker’s actions, once it has the



55

same behaviour as on the HD channels. If we consider the DY threat
model, the attacker can trick the voter by manipulating the information
displayed to him. Such a situation can be considered realistic (see
Figure 5). However, it is highly unlikely to happen due to the fact that
HD channels are secure under our assumption that the environment is
controlled.

A very important contribution of the app proposal is that both
test and final votes are secret, when compared to the proposal that
uses the institutes (where the test vote is sent in clear through a full
DY channel). Such a contribution means that the security property of
secrecy holds in the app ceremony and, as the messages are no longer
interrupted and modified, we can conclude this ceremony also ensures
integrity.

The attacker cannot control more than one DD channel in the
ceremonies for verification using the app showed above (CARLOS et al.,
2013). Therefore, either the attacker controls the message between the
booth Bo and the bulletin board BB (message 15 of Figure 5) or he
controls the messages between App and BB (messages 18 and 19 of
Figure 5). When the attacker succeeds, the bulletin board BB does
not display to the voter the expected confirmation in message 19 of
Figure 5. In such a situation, the voter would be advised to contact
the election commission.

3.4 FINAL CONSIDERATIONS

The proofs presented in this chapter (contents of our first ac-
cepted and published paper) were subject to formal verification using
the theorem prover SPASS (WEIDENBACH, 2007) and are available at:
https://github.com/tacianem/HeliosSpass3

The first verification proposal consists of a web-based verifier
provided by a trusted institute. Our results show the possibility of
secrecy violations when the voter verifies that his vote is correctly en-
crypted on the voting device. Integrity violations were found when the
voter also verifies that his vote is correctly submitted to the bulletin
board. Integrity violations, on the other hand, take the form of ’rep-
utation’ attacks, resulting in the voter mistrusting the institute as he
detects that it displays incorrect information.

The situation improves with regard to the smartphone app. First,

3At the time, this formalisation was made by one of the authors of our paper -
strictly following Martina et al. (2015) ideas.
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secrecy is maintained due to the presence of a visual channel, and be-
cause information is transmitted in encrypted form. Our results also
show that no significant attack can occur when the voter verifies that
his vote is correctly encrypted on the voting device. Integrity viola-
tions, as in the previous case, are reputation attacks which lead to a
mistrust of the participating institute.

One can argue that the impact of the reputation attacks is low
due to the availability of mitigating strategies. We highlight that in-
tegrity assurances in both verification proposals rest on the distribution
of trust. It is, there are several options, whether web-based verifiers or
smartphone apps from trusted institutes, available for the voter to use.

Should the verification process fail in one case, the voter can
verify using other sources. Indeed, voters who do not want to trust any
of the available institutes can use all the provided verification mecha-
nisms. We acknowledge that this is not an ideal case with regard to
usability, however, we note that it places less of a burden on the voter
than would be the case if a more powerful adversary was considered.

Throughout this chapter, we were able to verify early proper-
ties desired for our Helios ceremony scenarios. Nevertheless, informal
proofs are very limited and result in a great amount of time spent on
short ceremonies. So, it is unfeasible to perform manual tests over
long ceremonies. Having this in mind, we walk towards an automated
ceremony analysis to quickly run tests in a reliable way. Starting on
the next chapter, we have our proposal for a Distributed Attacker and
its mechanisation in order to establish the symbolic evaluation of our
2-step verification scenarios.
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4 PROPOSED DISTRIBUTED ATTACKER MODEL

Moving from our informal proofs to a strategy for security cere-
mony formalisation, this chapter brings two of the contributions of our
second published paper.

We present our notation for the description of security cere-
monies (4.1), based on the traditional protocol message description
proposed by Needham e Schroeder (ACM Press, 1978), as suggestion
to be standardised.

In addition, we demonstrate how our Distributed Attacker works
and what are its main characteristics. We exemplify our attacker pro-
posal through the threat modelling of our 2-step verification case study
ceremony.

4.1 PROPOSED SYNTAX NOTATION

To be able to properly discuss properties on security ceremonies,
we must establish the basis for the notation representing them. The no-
tation we chose started with the early paper from Needham e Schroeder
(ACM Press, 1978) and was refined over time. We augment this nota-
tion by adding the Ceremony Concertina layers, representing the infor-
mation pathway (BELLA et al., 2014).

Recalling Figure 1, we continue to have enumerated steps corre-
sponding to the ceremony messages, entities (first entity is the sender,
and the second is the receiver), and message payload. We add the
Concertina layer information (in capital letter) below the arrow in each
step.

When describing ceremonies, independently of the approach cho-
sen, it is necessary to show the layer involved in each message due to
the presence of human peers along with devices and interfaces. Besides,
linking messages and layers is important to demonstrate the informa-
tion flow - as each message crosses the Concertina layers from one end
to the other.

Our notation steps, however, are in a dotted version. This stands
for a same given message crossing the Concertina layers (L3 through
L1 or vice-verse). Thus, the contents of a message appears three times,
each relating to a different Concertina layer. For instance, step 1.1 is
the first message payload related to layer 1, as step 1.2 relates the same
message to layer 2, and 1.3 to layer 3.
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Our next step is to set a threat model for each layer. We believe
that a notation is only fully comprehensible when put in the context of
the threat model it is used with. We describe the threat model between
parenthesis, after the layer information, stating the capabilities the
attacker has for each layer. Such capabilities are either the Dolev-Yao
full set of capabilities or a subset of this DY full set - accordingly to
the adaptive threat model of Carlos et al. (2013) stated in 2.4.

We have the following four different threat model cases for a
given layer:

• "N": represent safe model, meaning the absence of threat model
or attacker;

• In case of a subset of the DY full set of capabilities containing
just one capability, we write this capability in capital letter (e.g.
"E");

• In case of a subset of the DY full set of capabilities (with size
greater than one), we use "+" to split the capabilities. For ex-
ample: "E+B" stands for the subset containing Eavesdrop and
Block capabilities.

• "DYcap": full set of the DY attacker capabilities;

To finalise, we add an attacker type to the set of capabilities, it
is: DY for Dolev-Yao, MA for Multi-Attacker or DA for Distributed
Attacker - our proposal for a distinct attacker type which is the major
contribution of our work.

The DY attacker type is an attacker which has DY full capa-
bility set and follows strictly the DY threat model. This means that
a DY attacker is always linked to the full set of the DY capabilities
((DYcap)DY ), and never to a subset of these capabilities.

On the other hand, we adapted the MA to be associated to
different attacker capability sets. Its main difference from the DYmodel
is the possibility of having more than only attacker. For this reason, we
give each attacker a number to serve as his unique identification (e.g.
MA1).

Messages are described on the right side of each step, after the
colon symbol (":"). Message components are separated by a comma
(","). We denote the usage of public key encryption for messages cross-
ing the network by involving the message contents with curly braces
("{" and "}"), and showing the public key itself at the end of the
message.
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Figure 6 illustrates our notation. Its two sample messages are
the same as those used in the protocol example of Figure 1). Now we
detail our example ceremony to show the difference of our syntax to
the protocol description.

1.1 UA −−−−→
L3(N)

S : Show Email

1.2 UA −−−−−−−→
L2(E)MA1

S : Show Email

1.3 UA −−−−−−−−−→
L1(DYcap)DY

S : {Show Email}Spk

2.1 S −−−−−−−−−→
L1(DYcap)DY

UA : {Learn Meeting Date}Spk

2.2 S −−−−−−−−−−−−−−−−→
L2(E)MA1

,(DYcap)MA2

UA : Learn Meeting Date

2.3 S −−−−→
L3(N)

UA : Learn Meeting Date

Figure 6 – Proposed ceremony notation

The first message can be read as: the user A (UA) sends a mes-
sage to server S requesting access to his email. This message starts
with the user interacting with his device’s graphical interface and then
crosses through the following lower layers until it reaches the server.

The user interface is characterised by layer 3 (L3) of the Cer-
emony Concertina (step 1.1). We consider no threats for this layer.

This same first message then flows through the operating system
of the user’s device (L2). For this layer we present the possibility
of a keylogger installed. We represent a keylogger by the Eavesdrop
capability, as it allows the attacker to see and learn all contents typed
in the infected device. Thus, we have the threat model for this step
(1.2) denoted by E - subset of DY capabilities consisting only of the
Eavesdrop capability.

Attacker type has a Multi Attacker with ID 1 (MA1) for layer 2.
Again, we add a number to differentiate MAs as they may be several
and may attack more than one layer simultaneously.

We chose MAs (besides the well-known Dolev-Yao attacker type)
to exemplify attackers acting in more than only one channel. As stan-
dard for protocol messages, a DY only acts on messages being trans-
mitted in the network (layer 1 of the Concertina methodology). It is
convenient to emphasise that both models do not allow the attacker to
share information with other attackers in any protocol or ceremony.
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Step 1.3 shows the message reaching the server through the inse-
cure network (layer 1) which is under standard security protocol setting.
This setting is a DY full capability set under a DY attacker type. We
use the server public key (Spk) for encrypting of messages crossing layer
1.

The second message brings the answer from server S to user A.
This answer comes through the network (layer 1) first, assuming the
same full set of capabilities under a DY attacker (step 2.1).

This message follows to layer 2 representing the possibly com-
promised operating system (OS) of the user’s device (step 2.2). In here,
we added one more attacker to show several attackers at the same time
in the same layer. We may have as many attackers as we want for the
ceremony layers.

The second MA (MA2) with DY full set of capabilities (meaning
a virus installed on the user’s device). A virus is able to completely
compromise this device, that is why we use all DY capabilities to rep-
resent it on layer 2.

With this new attacker we also want to bring attention to the
change in the threat model throughout the ceremony execution. The
user’s computer only got infected during the second message (the an-
swer from the server). We highlight here that our notation is able to
capture such subtleties of the threat models and describe variations at
exact points during the ceremony execution. This way we increase the
number of scenarios we can test for a given ceremony.

Regarding the expressiveness of our proposed syntax notation
we have a much more complete notation than the one used in Carlos
et al. (2013), for instance. They just include the ceremony channel
information for each step, leaving behind attacker types, threat models,
and their changes during the ceremony execution.

Finally, the last step (2.3) of our example shows the answer from
the server reaching the user through the interaction with his devices’
interface (assumed secure - N).

4.2 THREATMODELLINGWITH THE DISTRIBUTED ATTACKER
APPROACH

In this section, we demonstrate that our notation is comprehen-
sive enough to describe subtleties of a real ceremony based on our 2-step
verification email log-in case study.

Alongside attacker types DY and MA, we developed a new one
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based on a distributed and flexible approach. We call our attacker type
proposal "Distributed Attacker" (DA in brief), which can be subject
to tests for analysis in all possible scenarios as the MA is.

In our DA model, we allow several attackers to be distributed
throughout the layers of a security ceremony - even more than one per
layer. It is, we may have any number of attackers distributed as they
like on the ceremony layers.

A DA attacker may either control more than one ceremony layer
or control exactly one specific layer in the whole ceremony (simulating
the DY attacker behaviour). He is free to adapt himself to the best
occasion, inclusive by changing his behaviour. If he decides to attack
another layer, our notation is able to capture this alteration precisely
when it happens.

Moreover, we consider that information sharing makes more so-
phisticated attacks feasible. A DA decides whether to share knowledge
with other attackers or not (in the latter, attempting to corrupt the sys-
tem by himself as in standard models). This attacker can have various
associations and act in several layers with different powers.

In Table 1, we compare the attacker types used for this disser-
tation in terms of information sharing, capabilities and layers.

Attacker type Share knowledge Same capabilities Different layers
DY No Yes No
MA No Yes Yes
DA Yes No Yes

Table 1 – Comparison among attacker types

As we can see, the DY attacker type does not share knowledge
(information sharing goes against its principles). A DY has always the
full set of capabilities, so there is no change in its capabilities whatso-
ever. The major contrast here is that a DY appears only in the network
layer (layer 1) - no different layers, just one.

The MA also does not share knowledge and has always the same
capability setting (behaving as a DY attacker). On the other hand, he
may appear in more than one layer - being able to attack both layers
1 and 2 (network and operating system, respectively).

Our DA model encourages the information sharing, although it
is a decision the attacker makes during the ceremony execution. A DA
can have different capability sets in each layer. Finally, our DA appears
in any ceremony layer (ranging from layer 1 to 3). To summarise, our
DA has the capacity of appearing in several layers with varied powers
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- sharing knowledge whenever he judges advantageous.
A point to highlight about sharing knowledge under our threat

model (DA) is that DAs can choose what information to share. So, for
example, if a DA has capabilities of Eavesdrop and Initiate, he is able
to decide whether to share only what he is eavesdropping or creating
and sending to other peers, or even both information (up to all his
knowledge).

In the next section, we apply our notation and attacker type
proposals in the threat modelling of our 2-step verification email log-
in case study ceremony. We present several scenarios, discussing our
choices for the threat models of each ceremony layer.

4.3 2-STEP VERIFICATION CASE STUDY CEREMONY

We focus on the 2-step verification factor to exemplify the be-
haviour of our proposed DA model. We start with the default scenario
for our 2-step verification email log-in case study.

The entities involved are C and P as the user’s computer and
phone, respectively. The interface between the user and his devices are
then represented by UC and UP , while S stands for the server of the
email. Italic messages stands for the user’s s credentials. The remaining
messages indicate the flow of the ceremony, such as the requests sent
to the server and its responses.

For completeness, we now describe all the steps in our 2-step
verification ceremony. They stand for the following communication
between user and server: First of all, the user enters the email site on
the browser of his computer. The user then waits for the email log-in
page to be displayed back. When it does, the user enters his information
of email address and password. Email server answers with the 2-step
verification page to the user’s browser, also sending an authentication
code for the current session to the user’s cell phone. The user reads
this code from his phone and types it to the computer. Finally, the
user successfully logs-in to his email account (given that he typed the
code correctly and before the session expired).

Although the communication in our scenarios is between the
user’s devices and the server directly, they represent the user inter-
acting with such devices. It is relevant to state that the user’s actions
are the key for the ceremony to achieve its goals.
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4.3.1 Scenario I - Default

Our first scenario in Figure 7 represents the protocol for 2-step
verification log-in itself (which is by definition also a ceremony). This
means that we have the protocol threat model setting for this scenario:
layer 1 (Internet) with standard DY threat model (DY full set of ca-
pabilities) under a DY attacker type as only threat. It shows that the
network is insecure and subject to all kinds of conceivable attacks.

On the other hand, layers 2 and 3 are safe (no threat). No
virus or keylogger is installed on user’s devices, and no attacker is in
the same environment as the user (e.g. attempting to eavesdrop him).
Both computer and cell phone are safe in this basic scenario.

The first message (steps 1.1, 1.2 and 1.3) in Figure 7 has as
sender UC (user’s computer) and receiver S (email server). Messages 3
and 6 (and their corresponding steps) follow the same structure as the
first message. They are also sent from the user’s device to the server
(layer 3 to 1)

At some point, the server answers the request coming from the
user. As such, messages 2, 4 and 7 (and their respective steps) stand for
the responses from the server to the user - where the layers are crossed
in contrary order (layers 1 to 3).

Message 5 (composed of steps 5.1 and 5.2) is a communication
between the server and the user’s cell phone UP . We do not consider
layer 1 for this message as no Internet is required. The phone simply
receives the 2-step verification code sent by the email server as an SMS.
Therefore, we have layer 2 standing for the operating system of the
phone and layer 3 for the user interaction with his phone (to open the
text message containing the code).
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1.1 UC −−−−→
L3(N)

S : Email server URL

1.2 UC −−−−→
L2(N)

S : Email server URL

1.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {Email server URL}Spk

2.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {Email log-in page}Spk

2.2 S −−−−→
L2(N)

UC : Email log-in page

2.3 S −−−−→
L3(N)

UC : Email log-in page

3.1 UC −−−−→
L3(N)

S : email,password

3.2 UC −−−−→
L2(N)

S : email,password

3.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {email,password}Spk

4.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {2-step verification}Spk

4.2 S −−−−→
L2(N)

UC : 2-step verification

4.3 S −−−−→
L3(N)

UC : 2-step verification

5.1 S −−−−→
L2(N)

UP : Code message

5.2 S −−−−→
L3(N)

UP : Code message

6.1 UC −−−−→
L3(N)

S : authentication code

6.2 UC −−−−→
L2(N)

S : authentication code

6.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {authentication code}Spk

7.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {User’s email page}Spk

7.2 S −−−−→
L2(N)

UC : User’s email page

7.3 S −−−−→
L3(N)

UC : User’s email page

Figure 7 – Default 2-step verification email log-in ceremony
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4.3.2 Scenario II - Eavesdrop on layer 3

For our second scenario (Figure 8), we introduce a subtle power-
ful threat which consists of the Eavesdrop capability. The simple fact
of having an attacker on the same environment as the user ("shoulder-
surfing" him) may compromise significantly the insurance of a given
ceremony. This is so because most people do not watch their back
while entering critical credentials in their devices.

We now exemplify our first proposed attacker type DA. We enu-
merated our DAs (as well as the MAs) once we allow several attackers
to be present over the layers, and we need to identify each attacker
uniquely.

An interesting point we want to highlight is that an DA attacker
which appears in layer 3 can have visual of both user’s computer and
cell phone devices. This way, the DA attacker controls two different
communication channels over the same layer (L3).

In Figure 8, DA1 is able to eavesdrop the user entering informa-
tion in his computer and also on his cell phone. It happens because
the user and the attacker are in the same environment while the user
is switching his attention between his devices. Thus, the attacker is
perfect capable of eavesdropping on the information being exchanged
by the user on both devices.

It is important to clarify that, although user interactions with
both computer and phone are represented by layer 3, they stand for
different channels. The interaction between user and computer needs
to be understand as independent from the interaction between user and
his phone. For example, eventually only one of these channels may be
compromised (say by a virus), none or both - all possibilities should
be considered for a complete view of the threats present at a given
scenario.

The messages for our scenarios are always the same, we just vary
the threat model in order to analyse how each change impacts the final
security level of the ceremony in question. In this example, the DA is
not able to share information even if he is willing to do so because the
only other attacker present in this context is a DY, which by definition
does not share his knowledge.
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1.1 UC −−−−−−→
L3(E)DA1

S : Email server URL

1.2 UC −−−−→
L2(N)

S : Email server URL

1.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {Email server URL}Spk

2.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {Email log-in page}Spk

2.2 S −−−−→
L2(N)

UC : Email log-in page

2.3 S −−−−−−→
L3(E)DA1

UC : Email log-in page

3.1 UC −−−−−−→
L3(E)DA1

S : email,password

3.2 UC −−−−→
L2(N)

S : email,password

3.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {email,password}Spk

4.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {2-step verification}Spk

4.2 S −−−−→
L2(N)

UC : 2-step verification

4.3 S −−−−−−→
L3(E)DA1

UC : 2-step verification

5.1 S −−−−→
L2(N)

UP : Code message

5.2 S −−−−−−→
L3(E)DA1

UP : Code message

6.1 UC −−−−−−→
L3(E)DA1

S : authentication code

6.2 UC −−−−→
L2(N)

S : authentication code

6.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {authentication code}Spk

7.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {User’s email page}Spk

7.2 S −−−−→
L2(N)

UC : User’s email page

7.3 S −−−−−−→
L3(E)DA1

UC : User’s email page

Figure 8 – Eavesdrop on layer 3 in 2-step verification email log-in cer-
emony
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4.3.3 Scenario III - Eavesdrop combined with virus

For our third scenario, depicted in Figure 9, we added a new
DA for the user’s computer (namely DA2). Attacker DA2 is able to
eavesdrop through an active (real time) keylogger he installed in the
user’s computer, for instance. Both DA1 and DA2 are eavesdropping,
but in different ways as to adapt to the layers they are acting upon.
Now, we have the possibility of information sharing between DA1 and
DA2.

We consider the capability of the attacker to retain what he
eavesdrops only doable to some point. For example, too complicated
passwords can be difficult for the attacker to memorise or even copy to
a device of his own. This way, human cognitive limitations are properly
taken into consideration in our analysis.

In this scenario, if DA1 happens to miss the user’s password (e.g.
because it is too long), DA2 is able to retrieve such an information
through the installed keylogger. In exchange, DA1 provides the code
sent by the server to the user’s cell phone (as such code is usually small
and practical to remember). Due to the fact that DA1 is in the same
environment as the user, the probability of him being able to learn at
least one of the user’s credentials is high.

It is relevant to notice that although DA1 may catch all needed
information to impersonate the user, DA2 has no access to the code sent
to the user’s cell phone at all. We consider attacker DA2 to be remotely
controlling the contents being exchanged in the user’s computer only.

For the user’s cell phone, we added a third DA with a virus
(DA3).. By doing so we just expanded the possibilities of collusion
among the (current) three DA attackers. DA3 has the piece of infor-
mation DA2 does not (which is the authentication code). If they work
together, each one can easily get his part of the user’s credentials and
then they can log-in into the user’s email account together.

We already mentioned the possibility of collaboration between
DA1 and DA2 some paragraphs above. Now, for when DA1 and DA3

cooperate with each other, DA1 would be responsible for memorising
the user’s password while DA3 would retrieve the authentication code.
Although DA1 probably would get the code by himself (with no further
help), maybe he still would be interested in the partnership for his own
reasons. In all described alliances, the attackers involved are able to
successfully steal user’s credentials.

In case they decide not to share information with each other,
they corrupt the system in their own ways. Again, the DY does not
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1.1 UC −−−−−−→
L3(E)DA1

S : Email server URL

1.2 UC −−−−−−→
L2(E)DA2

S : Email server URL

1.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {Email server URL}Spk

2.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {Email log-in page}Spk

2.2 S −−−−−−→
L2(E)DA2

UC : Email log-in page

2.3 S −−−−−−→
L3(E)DA1

UC : Email log-in page

3.1 UC −−−−−−→
L3(E)DA1

S : email,password

3.2 UC −−−−−−→
L2(E)DA2

S : email,password

3.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {email,password}Spk

4.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {2-step verification}Spk

4.2 S −−−−−−→
L2(E)DA2

UC : 2-step verification

4.3 S −−−−−−→
L3(E)DA1

UC : 2-step verification

5.1 S −−−−−−−→
L2(DY )DA3

UP : Code message

5.2 S −−−−−−→
L3(E)DA1

UP : Code message

6.1 UC −−−−−−→
L3(E)DA1

S : authentication code

6.2 UC −−−−−−→
L2(E)DA2

S : authentication code

6.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {authentication code}Spk

7.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {User’s email page}Spk

7.2 S −−−−−−→
L2(E)DA2

UC : User’s email page

7.3 S −−−−−−→
L3(E)DA1

UC : User’s email page

Figure 9 – Eavesdrop combined with virus in 2-step verification email
log-in ceremony
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share information with any other attacker in the system.

4.3.4 Scenario IV - Dynamic change in the threat model

When moving from one scenario to the next, we do small changes
to the threat models to assess how our notation and model deal with
each change, highlighting important aspects of our proposals.

In Figure 10, we illustrate a dynamic change in the initial cere-
mony threat model. At the beginning, layer 2 had only attacker DA2

eavesdropping on the user’s computer for the first two messages of the
ceremony. Now suppose the user is with several tabs opened in his
browser and he happens to install a virus in other tab than the one
in which our ceremony is running. Such virus is now on the user’s
computer and may compromise our ceremony from this point on.

For this scenario, we use an MA (namely MA1) with DY full set
of capabilities. Multi Attackers, as well as DY attackers, do not share
knowledge with other attackers. From the third message until the last
ceremony message, we see that the initial threat model for layer 2 (user’s
computer) changed and currently has two attackers: MA1 and DA2.

It is worthy to recall that the Ceremony Concertina allows the
compression of layers (e.g. layers 1 and 2 seen as one). However, we do
not compress layers because it could hide the dependence between each
layer and the next one. Showing the threat models for all messages
enables us to understand if anything has changed throughout the cer-
emony execution, and precisely in which step the changes took place.
If the threat model remains intact for a given layer, we know that the
communication through such layer was not altered.
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1.1 UC −−−−−−→
L3(E)DA1

S : Email server URL

1.2 UC −−−−−−→
L2(E)DA2

S : Email server URL

1.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {Email server URL}Spk

2.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {Email log-in page}Spk

2.2 S −−−−−−→
L2(E)DA2

UC : Email log-in page

2.3 S −−−−−−→
L3(E)DA1

UC : Email log-in page

3.1 UC −−−−−−→
L3(E)DA1

S : email,password

3.2 UC −−−−−−−−−−−−−→
L2(DY )MA1

,(E)DA2

S : email,password

3.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {email,password}Spk

4.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {2-step verification}Spk

4.2 S −−−−−−−−−−−−−→
L2(DY )MA1

,(E)DA2

UC : 2-step verification

4.3 S −−−−−−→
L3(E)DA1

UC : 2-step verification

5.1 S −−−−−−−→
L2(DY )DA3

UP : Code message

5.2 S −−−−−−→
L3(E)DA1

UP : Code message

6.1 UC −−−−−−→
L3(E)DA1

S : authentication code

6.2 UC −−−−−−−−−−−−−→
L2(DY )MA1

,(E)DA2

S : authentication code

6.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {authentication code}Spk

7.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {User’s email page}Spk

7.2 S −−−−−−−−−−−−−→
L2(DY )MA1

,(E)DA2

UC : User’s email page

7.3 S −−−−−−→
L3(E)DA1

UC : User’s email page

Figure 10 – Threat model dynamic change in email 2-step verification
log-in ceremony
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4.3.5 Scenario V - A complex scenario

It is important to state that the ceremony depicted in Figure 11
is one of many. We are assuming the threat models and the commu-
nication flow so that the ceremony is achievable and yield the security
goals. To evaluate any claims regarding our ceremony it is necessary
to evaluate all its variants.

For our last scenario, we set the subset of capabilities Eavesdrop
and Block (E+B) as the threat model for layer 3. We consider that the
user will not let his computer unattended, so the contents the user is
entering into the device will not be tampered by anybody else without
the user’s notice. This assumption allows us to remove the remaining
capabilities as they rely on the attacker manipulating the user’s devices
himself. Once the devices are under user possession only, the only
remaining feasible capabilities are Eavesdrop and Block.

Regarding the attacker type for layer 3, we set a DA attacker
(DA1). Once DA1 is in the same environment as the user, DA1 also
appears in message 5 (where the user interacts with his phone).

In fact, literature has not yet established how the DY set of
capabilities is manifested in the context of human-human communica-
tion. It is open to discussion how the capabilities may occur in the user
environment and whether they remain realistic or not.

We believe Block is a feasible capability for layer 3. We see Block
as an attempt of the attacker to delay the operations the user is at-
tempting to perform, or disturb the surroundings of the user with noise
of some kind - aiming to gain time or any advantage for an attack. Such
circumstances are certainly more plausible then the attacker literally
blocking the user’s device screen out of no reason (which could also
happen).

For layer 2, we consider a second DA (namely DA2) with Eaves-
drop (E) only - a keylogger. For layer 1 we consider the standard
protocol setting DY as the threat mode, with a DY attacker.

Now, moving to the layers between server and cell phone: for
step 5.1, layer 2 involves attacker MA1. He does not share knowledge
with any other attacker, and is controlling the user’s cell phone via a
virus. We have a second attacker type associated for this step. A third
DA (DA3) is controlling layer 2 also under a DY threat model, sharing
or not his knowledge with others.

Besides the possible combinations of the three DA attackers men-
tioned before, they may also decide to cooperate among themselves. In
this case, DA2 and DA3 could promptly manage to get the user’s pass-



72

word and code, while DA1’s capability of Block would come in handy
by talking to the user or delaying his actions somehow. This way,
attackers DA2 and DA3 have the necessary time to access the user’s
account before him, invalidating the authentication code received. The
user would need to get a new code for his next attempt to log-in to his
(now compromised) email.

Our work is a proposal for a new attacker type, so it is liable of
being tested. If the reader is not satisfied with our particular threat
model choices, we encourage him/her to explore another scenarios and
change the threat models to ascertain the results.

We would like to stress that once we can analyse such ceremonies
with an automatic tool we may vary parameters, such as attacker pow-
ers and attacker types. This analysis would result in a set of secure
ceremony scenarios for which these message exchanges hold security
guarantees. In this sense, the intention is to produce ceremonies that
satisfy security properties for their intended usage scenario.
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1.1 UC −−−−−−−−→
L3(E+B)DA1

S : Email server URL

1.2 UC −−−−−−→
L2(E)DA2

S : Email server URL

1.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {Email server URL}Spk

2.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {Email log-in page}Spk

2.2 S −−−−−−→
L2(E)DA2

UC : Email log-in page

2.3 S −−−−−−−−→
L3(E+B)DA1

UC : Email log-in page

3.1 UC −−−−−−−−→
L3(E+B)DA1

S : email,password

3.2 UC −−−−−−→
L2(E)DA2

S : email,password

3.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {email,password}Spk

4.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {2-step verification}Spk

4.2 S −−−−−−→
L2(E)DA2

UC : 2-step verification

4.3 S −−−−−−−−→
L3(E+B)DA1

UC : 2-step verification

5.1 S −−−−−−−−−−−−−−→
L2(DY )MA1

,(DY )DA3

UP : Code message

5.2 S −−−−−−−−→
L3(E+B)DA1

UP : Code message

6.1 UC −−−−−−−−→
L3(E+B)DA1

S : authentication code

6.2 UC −−−−−−→
L2(E)DA2

S : authentication code

6.3 UC −−−−−−−−−→
L1(DYcap)DY

S : {authentication code}Spk

7.1 S −−−−−−−−−→
L1(DYcap)DY

UC : {User’s email page}Spk

7.2 S −−−−−−→
L2(E)DA2

UC : User’s email page

7.3 S −−−−−−−−→
L3(E+B)DA1

UC : User’s email page

Figure 11 – Complex threat models for email 2-step verification log-in
ceremony
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5 DISTRIBUTED ATTACKER FORMALISATION

For this dissertation, we used the automated theorem prover
SPASS [see (WEIDENBACH, 2007)] for our formalisation in First-Order
Logic (FOL). We developed a script to translate ceremonies described
with our proposed notation into symbolic formulae verifiable with SPASS.
We adapted the Ceremony Concertina layers, along with the threat
models and attacker types described in our work for our translation.
Our mechanisation is based in the work of Martina et al. (2015), where
they also employed SPASS as verification tool.

Our formalisation process consisted in translating all steps of
our 2-step verification scenarios into FOL formulae. The attacker model
was differentiated fromMartina et al. (2015) by the creation of three dif-
ferent intruder predicates, representing the Dolev-Yao (DY), the Multi-
Attacker (MA) and our Distributed Attacker (DA).

The DY() predicate is unary and represents the only almighty
Dolev-Yao attacker. The MA() predicate takes as only argument the
MA enumeration. Our contribution is the DA() predicate which also
takes the attacker number (ID) as parameter. The option of willing
to share information with other DAs can be made directly in the con-
jectures. In our specification, we represent the layers of the Ceremony
Concertina and the DY capabilities. We created predicates for the
layers by concatenating each layer to a capability in the DY set. For
instance, L3_E() stands for the capability of Eavesdrop on layer 3 and
has as parameters a sent predicate and the attacker identification.

The sent() function illustrates a message being sent from one
peer to another, and as such has as parameters a sender, receiver and
message payload1. This way, a message sent through layer 3 with at-
tacker DA1 eavesdropping is translated to the following formulae:

• formula(L3_E(sent(a,b,m), DA1)).

• formula( forall([xa, xb, xm, xatt],
implies(

and(
Agent(xa),
Agent(xb),
Honest(xa),
Honest(xb),
Attacker(xatt),

1The sent() function is from Martina et al. (2015) model.
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Knows(xa, xm),
L3_E(sent(xa,xb,xm),xatt)

),
and(

Knows(xb, xm),
Knows(xatt, xm),
L3_Sender(xa,xm)

)
)),

Eavesdrop_L3).

The first formula above states that message m was sent from
sender a to receiver b through layer 3 with DA1 eavesdropping. It works
based on the rule "Eavesdrop_L3" seen in the second item above. We
defined such rule as: if xa and xb are honest agents (predicates Agent()
and Honest() are valid for both xa and xb) - meaning xa and xb are not
attackers; there is an attacker xatt; xa knows a given message xm2 and
xa sends message xm through the L3_E() predicate, then both receiver
xb and attacker know (as the attacker is eavesdropping) message m.
Finally, we set the sender for this message to be xa (we have a Sender()
predicate only for precaution in case of a Spoof attempt).

Likewise, we have similar definitions for the remaining capabili-
ties in the set of a DY attacker for layers 2 and 1. In other words, we
created predicates for all capabilities in all layers. For instance, consid-
ering layer 3 our predicates are: L3_E (demonstrated earlier), L3_B,
L3_S, L3_I, L3_C, L3_O and L3_F. Same predicates are also present
for layers 2 and 1. As capabilities Modifying (M) and Replaying (R)
are a combination of others we do not have specific predicates for them,
we just use the already existing ones.

Our implementations for a given capability are the same for all
layers. So our Eavesdrop capability (explained before) has the same
implementation as predicates "Eavesdrop_L2" and "Eavesdrop_L1",
because for SPASS it suffices to mechanise the idea for each capability.
The conditions for the capabilities to be realistic for each layer must be
defined by the ceremony designer when performing tests and evaluating
the results.

Regarding the remaining capabilities, we also implemented them
accordingly to their definitions described in our background (chapter
2) - as we can see with the Eavesdrop description above. Although we
do not enter in further detail in here, we leave the link for our repository
where our implementation is available: github.com/tacianem/CryptoForma.

2Knows() predicate is also from Martina et al. (2015).
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It is important to emphasise that all mentioned predicates until here
constitute the basis of our mechanisation, and as such are common
for all scenarios. We now move to the specifics of each scenario (its
individual threat modelling).

5.1 MECHANISATION OF SCENARIOS

We apply our symbolic evaluation strategy to each scenario (pre-
sented in the previous chapter) to support our claims. For scenario I,
we simply proved that the DY attacker knows all messages sent through
layer 1. However, he is not able to learn these messages contents as
they are encrypted under the public key of the server. The conjecture
for this proof is:

• formula(
and(

KnowsEncr(dy,encr(email_server_url,public_server)),
KnowsEncr(dy,encr(email_log_in_page,public_server)),
KnowsEncr(dy,encr(pair(email,password),public_server)),
KnowsEncr(dy,encr(2step_verification,public_server)),
KnowsEncr(dy,encr(authentication_code,public_server)),
KnowsEncr(dy,encr(users_email_page,public_server))

),
dy_knowledge).

In fact, this formula is present in all scenarios as we fixed the
DY attacker for layer 1. Function encr() receives the message con-
tents and the encryption key. It indicates that the given message is
encrypted. The predicate KnowsEncr() links an encrypted message to
the knowledge set of a peer of the ceremony, in this case the attacker.
Declarations for functions and predicates are part of the SPASS struc-
ture, but irrelevant for the comprehension of our results.

For scenario II, we have also the set of conjectures for the knowl-
edge of the DA1 attacker:

• formula(
and(

Knows(da1,email_server_url),
Knows(da1,email_log_in_page),
Knows(da1,email),
Knows(da1,password),
Knows(da1,2step_verification),
Knows(da1,code_message),
Knows(da1,authentication_code),
Knows(da1,users_email_page)
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),
da1_knowledge).

We can see that DA1 knows the "code_message", which the DY
attacker has no access to. The and() function operates similarly to the
logical AND operation.

The DA1 knowledge conjectures remain for scenario III, and we
have a new set including the knowledge of attackers DA2 and DA3:

• formula(
and(

Knows(da2,email_server_url),
Knows(da2,email_log_in_page),
Knows(da2,email),
Knows(da2,password),
Knows(da2,2step_verification),
Knows(da2,authentication_code),
Knows(da2,users_email_page),
Knows(da3,code_message)

),
da2_and_da3_knowledge).

It is noticeable that the information the attacker DA3 lacks in
knowledge is in the knowledge set of attacker DA2 and vice-verse. This
example encourages collaboration between these two DAs.

For scenario IV we have that MA1 has almost the same knowl-
edge as attacker DA2, as he entered in layer 2 few steps after the very
beginning of the ceremony:

• formula(
and(

Knows(ma1,email),
Knows(ma1,password),
Knows(ma1,2step_verification),
Knows(ma1,authentication_code),
Knows(ma1,users_email_page)

),
ma1_knowledge).

And, finally, for scenario V we have MA1 with the same knowl-
edge set of attacker DA3:

• formula(
Knows(ma1,code_message)

ma1_knowledge).
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Sharing allows a flexible and powerful attack where each of the
attackers involved does not need to get all the information to be suc-
cessful in an attempt to stole user’s credentials. Knowing part of the
information is sufficient in this case. We are able to prove it in SPASS
by just adding more formulae so that the set of the knowledge of both
attackers (when summed) correspond to all needed credentials for the
attack.

As example of how we do this, in the list of conjectures we present
formulae which prove the knowledge of each peer of the system. We
are adding the credentials known by attackers DA2 and DA3 below. As
mentioned before, together they have both password and code. This
way SPASS is able to prove our formulae and we conclude that together
they are able to attack the user.

• formula(Knows(da2, password), da2_knows_password).

• formula(Knows(da3, auth_code_msg), da3_knows_code).

5.2 IMPLEMENTATION

In our repository on github, we have a complete description for
each of the ceremony scenarios presented in the previous chapter - in
files with extension ".tex". Theses files consist simply of the ceremony
flows described with mathematical libraries for latex (exactly as we
used to generate the figures presented throughout this dissertation).

At first, we tried to create a python3 program to directly adapt
our latex descriptions to equivalent ".dfg" files (readable by the SPASS
theorem prover). However, it turned out that the latex files were not
easily translated and the code got a bit cumbersome due to the regular
expressions (regex) we needed to employ. Thus, we switched to json4,
as it is clean and straightforward. We kept the latex descriptions just
for completion, as our focus changed to the ".json" files.

It is practical to map json to python and vice-verse, as python
gives support to json. We, then, successfully developed our python pro-
gram for the translation of json ceremony structures to SPASS readable
files. Each json file has the following fields for each ceremony step:

• Sender: sender of the message corresponding to the given step;
3Available at: https://www.python.org/
4Available at: http://www.json.org/
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• Layer: indicates the current layer the message is crossing;

• Attackers: Array of attackers. Each object in the array contains
two properties - attacker and capability. The attacker field has
the attacker’s ID (DY, MAx or DAx, where x is the number which
composes the ID). The capability property stands for the set of
capabilities of the attacker. We use DY for the full set of capa-
bilities or a combination formed by a subset of these capabilities,
themselves if only one or we separate them by the symbol "+" -
e.g. E and E+B, respectively). In case of no threat (no attackers
whatsoever), this entry is empty;

• Receiver: receiver of the intended message;

• Message: contents of the message itself.

Now we move to the specifics about our python program ("cer-
emony_json_to_spass.py"). It iterates over each of the ceremonies
descriptions in ".json" and automatically generates their correspond-
ing descriptions in .dfg (SPASS extension). In order to do it, all the
information present in each step is stored: agents, message contents,
which layer the message is current related to, and the attackers and
their respective powers for such a layer.

After all important data is stored, our program follows accord-
ingly to our ceremony specification model designed in SPASS ("cere-
mony_model.dfg") to create a particular ".dfg" file for each ceremony
scenario. Our model contains basic and generic information, which can
be applied for any ceremony being analysed, such as our attacker types
and layers predicates.

After our python program creates a SPASS file for each json one,
it fills each SPASS file with the specifics of each scenario. It declares the
agents and messages as variables. The program also links the agents
to their initial knowledge. Afterwards, it states the messages in the
order they happened, along with the layer information and the attackers
capabilities. Then, the program creates a list of conjectures based on
what knowledge the agents should have gained over the messages sent.

Finally, the python program calls the terminal to run each cere-
mony description created in ".dfg" in SPASS with the flag "-DocProof".
The results for each ceremony are put in a file of same name but ex-
tension ".txt" for further reading. In these ".txt" files we can observe
all the reasoning made by SPASS over the listed conjectures. It is pos-
sible to see whether the theorem prover SPASS actually found a proof
for each conjecture, or if it just ran all feasible derivations and got
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nothing. As expected, we were able to prove all our conjectures, suc-
cessfully linking the contents of the messages to the attackers present
at the compromised ceremony layers.

5.3 FINAL CONSIDERATIONS

With our approach, we believe that the usage of the cell phone
contributed to the safety of the ceremony as it is certainly more difficult
for the attackers to handle both devices than just one. If we consider a
situation where the user is not using his personal computer (if he is at
work or in a public environment, for instance), it increases the chance of
this computer being compromised. In this untrustworthy environment,
an ttacker may have access to the user’s account by stealing the user’s
password with a keylogger for instance. In here the 2-step verification
is crucial, where the user (in possession of his cell phone) has a second
credential to which the attacker has no access (ideally). This example
shows a scenario where it is feasible to attack without the 2-step ver-
ification, and it is not when the user has 2-step verification activated.
This can even be proven with our mechanisation, although we are only
showing our particular scenarios in here.

Now considering a virus in the untrustworthy computer the user
is using, the attacker would know in real time the user’s password. For
2-step verification scenarios, then, this attacker would have to steal the
code sent to the user’s cell phone in some other way (which makes the
attack harder). Our formalisation is also able to capture that.

In a DA scenario, even with the 2-step verification it is less dif-
ficult for cooperating attackers to log-in the user’s account pretending
to be him. Suppose we have a DA on the Internet layer (L1) of a user’s
computer and another DA in the operating system (L2) of this same
user’s cell phone. Consider the first DA happens to steal the user’s
password by a broken HTTPS link or other means, and the second
DA is able to check the code sent to the user’s cell phone via a virus.
Therefore, it is clear that threats involving the user environment while
he interacts with his devices may be more devastating than we expect.

This way, it is possible to exchange information between them
in order for both to have knowledge of the password and the code,
being able to successfully attack the user. If the user logs in before
them, the captured code will no longer be valid. Nevertheless, this
mischievous attack can be repeated later in time. Among the current
threat models and attacker types, we do not have such a possibility.
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With our proposal, we are able to formally analyse complex scenarios
like this one.
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6 CONCLUSIONS

In the beginning of our work, we informally analysed the security
of two verification proposals made to improve the usability of the Helios
voting system. We considered the verification processes in Helios as
ceremonies in order to perform our analysis. This first part of our
research clearly shows that informal methods are already capable of
showing us some insights about the security of the system. However,
this manual work takes too much time even for short ceremonies. Given
that, we continued our formalisation study where we started developing
a more precise description syntax for security ceremonies. In our syntax
there is space for describing the agents involved, messages and the layers
they traverse, as well as the threat models and attacker types related
to each layer.

As our syntax comes directly as a variation of the notation used
for protocols, it is easy to be put in practice. A complex and com-
pletely different notation from the ones currently in use would com-
plicate the migration from protocol to ceremony description. Besides,
our proposed syntax notation is clear and efficient in linking all needed
information for each ceremony step.

We proposed a new attacker type, Distributed Attacker, where
the attacker may act in several layers at once. A DA can have different
capabilities in each layer or be the same in all layers under his domain.
Furthermore, he may or not share his knowledge with other attackers
in order to perform more sophisticated attacks. Such an approach
is powerful in allowing the attackers to have information about more
layers than usual. Moreover, we have combined Dolev-Yao and Multi-
Attacker models to our proposal for a Distributed Attacker. All three
attacker types are under the well known Dolev-Yao threat model or the
adaptive threat model.

It is relevant here to recall the differences in the origin of each of
the attacker types we employ in our work and that we just cited above.
The DY model dates back to the Cold War, and represents the most
powerful protocol attacker until nowadays. On the other hand, the
MA model follows from the Internet era and its change in the attacker
prototype. As such, any agent (internal or not) is allowed to attack
the protocol. In this setting, we may have several MAs behaving as
DY attackers: not colluding or sharing information with other attack-
ers. Our DA proposal comes in a "Post-Snowden" era, where users are
becoming more aware of the threat models they are subject to.
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As current attacker types do not take into account information
sharing, they are not suitable to describe and assess important cere-
monies (such as our 2-step verification case study). The main gain in
using our DA model comes for ceremonies with more than only one user
credential. That justifies our choice for a 2-step verification example
ceremony, where we have two credentials: user’s password and server
code sent to the user’s cell phone.

We encourage information sharing and cooperation among at-
tackers as it decreases the number of credentials required for each at-
tacker to gather. In other words, instead of having one attacker acting
alone and pursuing both password and code, we propose two (or more)
attackers acting together: one gets the password and the others gets
the code (for instance). This way, our model reflects the espionage era
we live in, and allows us to design more complex attacks.

Furthermore, we brought the adaption of a formalisation tech-
nique from Martina et al. (2015), which enabled us to verify our claims
and to experiment with the subtleties of security ceremonies. Our
mechanisation now encompasses our proposed notation, the Security
Ceremony Concertina methodology, our DA proposal (along with DY
and MA attacker types), and the threat models used.

We showed several ceremony scenarios to exemplify our attacker
type, discussing feasible threat models for each ceremony layer. We
represented various types of infection of the user’s devices, and tested
the outcomes using our symbolic evaluation. We believe that the usage
of formal methods helps us understand practical problems in security
ceremonies.

Our next step is to study how to expand the applicability of our
approach, through the creation of push button systems to do ceremony
verification. Our plan is to have a fast and automatic analysis for
any scenario, under our syntax and threat modelling. For example, we
can extend our model by adding predicates and/or functions such as
Triple() and Quadruple() - for now we only support the pair() function.
Other interesting path for future work is the study of how to apply
Pirandellian masks to shape the ceremony accordingly to the user’s
behaviour.

We also envisage the specification of our notation as a grammar
in order to do the classification of security ceremonies, given the se-
curity properties they hold. In this case, we would classify a group
of ceremonies in sets where each set contains the subset of ceremonies
that guarantees the property represented by the set. This way, the cer-
emony designer has the advantage of choosing which ceremony better
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fits his necessities. He can also assess the big picture of all achievable
properties that ceremonies can grant for the problem in question.
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