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RESUMO 

 

 

Compósitos de matriz vítrea de borossilicato reforçados com 

alumina (CFG), (1-x)vidro + xAl2O3(x = 0 - 20% em volume) foram 

fabricados por sinterização convencional entre 800 e 850°C e pela técnica 

de queima rápida (fast firing) a temperaturas entre 850°C e 1000oC. Os 

efeitos do tamanho de partícula do vidro borossilicato e  alumina, a taxa 

de aquecimento e o tempo de patamar sobre a composição de fases e a 

densificação foram investigados. Foi estudado o efeito da adição de Al2O3 

na microestrutura, resistência à flexão, resistência à fratura, 

condutividade elétrica, e no coeficiente de expansão térmica. Al2O3 inibe 

parcialmente a formação de cristobalita e aumenta as propriedades 

mecânicas do vidro de borossilicato. Compósitos contendo 10% em 

volume de alumina fabricados por sinterização convencional mostraram 

densidade relativa de 97%, resistência à flexão de 175 MPa e resistência 

à fratura de 1,9 MPa.m1/2. A observação do caminho de trinca e superfície 

de fratura mostraram que a deflexão, ponteamento e  arrancamento pelos 

grãos de alumina foram os mecanismos responsáveis pelo aumento da 

tenacidade à fratura. Amostras fabricadas por queima rápida mostraram 

uma diminuição na resistência à flexão de ~50% que pode estar 

relacionada com a presença de microfissuras originadas pela 

transformação de βα da cristobalita durante o resfriamento rápido a 

partir da temperatura de sinterização. A dureza aumentou com a adição 

de alumina, assim como a constante dielétrica de 5.5 para vidro de 

borossilicato a 7.4 em compósitos contendo 10% em volume de alumina. 
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ABSTRACT 

 

 

Alumina-filled borosilicate glass composites (1-x) glass + xAl2O3 (x=0, 

5, 10vol.%) were fabricated by conventional sintering at 800 and 850oC 

and by fast firing technique at temperatures between 850 and 1000oC. The 

effect of the particle size of borosilicate glass and alumina, heating rate 

and holding time at maximum temperature on phase composition and 

densification was investigated. The effect of Al2O3 addition on the 

microstructure, flexural strength, fracture toughness, electrical 

conductivity, and thermal expansion coefficient is reported. Al2O3 

hinders cristobalite formation and increases mechanical properties of 

borosilicate glass. Composites containing 10 vol% alumina fabricated by 

conventional sintering shown relative density of 98%, flexural strength of 

175 MPa and fracture toughness of 1.9 MPa.m1/2. Crack path and fracture 

surface observations shown that crack deflection, crack bridging and pull-

out by alumina grains were the mechanisms responsible for the increase 

in fracture toughness. Samples fabricated by fast firing shown a decrease 

in flexural strength of ~50% when compared to conventional sintering 

that could be related to the presence of microcracks originated by β => α 

cristobalite transformation during rapid cooling from sintering 

temperature. In conventionally sintered samples hardness increased, from 

4.75 in borosilicate glass to 5.6 GPa, and the dielectric constant from 5.5 

to 6.5, in composites contain 5 vol.% alumina. 
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1. INTRODUCTION 

 

 

Ceramic-filled glasses (CFG) are composites constituted of a 

vitreous matrix and ceramic filler. The different physical  and chemical 

properties of the matrix and the filler when combined produce a 

composite with improved properties.[1] CFG when compared to pure 

glasses show an increase in mechanical resistance, microhardness, 

fracture toughness and voltage isolation.[2, 3] 

 

The increase in mechanical resistance and fracture toughness is 

mainly related to the introduction of the reinforcements stronger (failure 

strength) than the matrices used. The resistance provided by 

reinforcements depends on their quantity and aspect ratio, e.g. whiskers, 

platelets and fibers form.  

 

The enhancement of fracture toughness is due to 

matrix/reinforcement interrelation, which mainly causes cracks deviation, 

particles “bridges” and pull-outs with resultant fracture energy 

absorption. If the filler particles have a larger coefficient of thermal 

expansion than the matrix there is a development, during cooling, of a 

compressive stress in the matrix and a radial tensile stress close to the 

particle, so cracks are deflected away from the particles.[4] On contrary, 

if the filler particles have a lower coefficient of thermal expansion than 

the matrix, the matrix has more contraction therefore a compressive 

residual stress through the particles and a tensile stress on the matrix are 

generated.  

 

Hardness is higher in ionic solids because of their crystalline 

structure, the ionic lattice. This holds the particles together with a strong 

polar bonding and allows breakage only along the polar edges of the 

lattice.[2] In a CFG composite the increase in microhardness is achieved 

by changing covalent bonds to ionic bonds due the interaction between 

matrix and filler.[2] 

 

Borosilicate glasses show a higher voltage isolation compared to 

alumina.[1, 2] When compared to soda-lime glasses, borosilicate glasses 

present higher electrical stability. Soda-lime glasses contain alkaline ions 

such as Na+ that under the effect of an electric field migrate, creating 

voids in the microstructure, decreasing the mechanical strength of the 

material.[5] 

http://en.wikipedia.org/wiki/Physical_property
http://en.wikipedia.org/wiki/Chemical_property
http://en.wikipedia.org/wiki/Chemical_property
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At temperatures >700oC, borosilicate glasses show the formation 

of cristobalite. Crystallization during the fabrication thermal cycle and 

thermal ageing results in a product exhibiting porosity and reduced 

strength due to the transformation during cooling from  to  cristobalite. 

The transformation is associated with changes in the volume of the unit 

cell.[6] 

 

Al+3 ions act as a network former, and its presence inhibit the 

formation of cristobalite[7]. When alumina is used as filler in CFG [2, 8], 

the combination of borosilicate glass and alumina results in a material 

with a higher thermal stability in comparison to pure glass.[9] 

 

Due to the low sintering temperature (<1000oC) CFG composites 

represent low-cost alternative to ceramics to be used as Low Temperature 

Co-fired Ceramics (LTCC) substrates in the microelectronic packaging 

industry.[10] Characteristics such as low CTE matching to silicon 

semiconductor material (3.10-6/oC), low dielectric constant (5 at 1 MHz), 

sintering temperatures of around 800-850oC enabling co-firing with 

conductors such as gold and copper,[8, 11] make CFG composites an 

ideal substrate material.  

 

CFG have been fabricated in the past using different types of 

borosilicate glass and ceramic fillers, e.g. lead borosilicate glass with 

alumina [3], soda-borosilicate glass with Si3N4 whiskers[12], borosilicate 

glass with SiC fibers[13], C-fibers[14], and zirconia fibers[15], (see Table 

1). The sintering of borosilicate glass (Pyrex®)-alumina composites using 

particles and platelets as fillers has been reported [5-19], and a summary 

of related literature is presented in Table 2. 
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Table 1. Experimental data from literature of ceramic-filled borosilicate glass composites. 
  

 

*+ other alkaline oxides. 

 

Glass 

Composition 

(wt.%) 

Ceramic 

filler 

 

Filler 

(vol.%) 

 

Morphology 

Particle 

size 

(m) 

Conformation 

Method 

Sintering 

method 

Sintering 

temperature 

(oC) 

Relative 

density 

(th.%) 

Flexural 

strength 

(MPa) 

CTE 

(10-6.oC-1) 
Ref. 

 
20PbO, 10B2O3,, 

67SiO2, 2A1203, 

1Na20   

 

 

Alumina 

 

 

0-65 

 

 

Particle 

 

 

1-5 

 

- 

 

Hot pressing 

 

 

800 

 

 

 

73 

 

 

 

122 

 

 

- 

 

[3] 

 

 

80.3 SiO2, 2.3 

A1203, 13.3B2O3, 

4Na2O
*
 

 

Si3N4 

 

 

0-20 Whisker 5-200 Uniaxial 

Pressing 

Conventional 1070 - - - [12] 

79SiO2, 13B2O3, 

4Na2O, 2.5Al2O3 
SiC 0-60 Fiber - Tape casting Conventional 1000 - - - [13] 

 

 
79SiO2, 13B2O3, 

4Na2O, 2.5Al2O3
*
 

Carbon 

 
0-40 Fiber 

 
- -  Hot pressing 

 
800-1300 94 1000 - [14] 

 

 
70–75 SiO2, 20–25 

B2O3
* 

 

TiO2 0-50 Particle 0.2 Uniaxial Conventional 850-925 97  8 [16] 

60SiO2.24B2O3, 

16Na2O 
Zirconia  0-38 Fiber 

 
-  Isostatic  

Pressing 

Conventional 600-675 98 - 8.6 [15] 

 

 
77PbO, 10B2O3, 

10SiO2, 2Al2O3, 

1P2O5 

Alumina 0-45 Particle 3 Uniaxial 

Pressing 

Conventional 333-600 95 - 8.6 [17] 

18PbO, 8.5 B2O3, 

62SiO2, 8.5 CaO* 
Alumina 45 Particle 2.6 Tape casting Conventional 550-925 98 - 8.1 [18] 
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Table 2. Experimental data from literature of alumina-filled borosilicate glass composites 

 

Alumina 

(vol.%) 

Morphology Particle 

size(m) 

Pressing 

method 

Sintering 

method 

Sintering 

temperature 

(oC) 

Holding 

time 

(min)  

Relative 

density 

(th.%) 

Flexural 

strength 

(MPa) 

Fracture 

toughness 

(MPa.m1/2) 

Dielectric 

Constant 

(at 1MHz) 

CTE 

(10-6.oC-1) 

Ref

. 

             

0-10 Particle 0.6 Uniaxial 

 

Conventional 900 240 85 - -  - - [19] 

0-10 

 

Particle 3 Uniaxial 

 

Conventional 750-900 480 - - -  - - [5] 

0-30 

 

Platelet 5-25 - Hot pressing 650-800 - 99 150 1.9 - - [20] 

0-50 Particle 100 Uniaxial Conventional 600-1000 300 95 - - 7.2 9.2 [21] 

0-25 

 

Particle 0.3-0.6 Uniaxial 

 

Conventional 950 30 91 - -  - - [22] 

0-15 

 

Platelet 2-5 Uniaxial 

 

Conventional 800 60 97 122 1.4 - - [7] 

0-25 

 

Particle 2.5 Uniaxial 

 

 

Conventional 800 180 92 - -  5-7.2 5.9 [23] 
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1.1 Motivation 

 

The present work was motivated to study borosilicate glass 

behavior during pressureless sintering, and to improve its mechanical 

properties such as flexural strength and fracture toughness, to fabricate a 

reliable substrate candidate, using LTCC technology, in microelectronic 

packaging.   

 

 

1.2 Objectives 

 

1.2.1 General objective 
 

The main objective of this work refers to the development of 

guidelines to fabricate alumina-filled borosilicate glass composites 

investigating the relationship between processing parameters and final 

density.  

 

1.2.2 Specific objectives 

 

The specific objectives may be summarized as follow: 

 

 Characterize the relationship between thermal treatment 

parameters such as sintering temperature, holding time and heating rate 

used, and the final density of compacts of pure borosilicate glass; 

 

 Characterize the relationship between particles size of 

borosilicate glass powder and the density of compacts after sintering;  

 

 Investigate the effect of thermal treatment parameters and 

powder particle size on glass crystallization; 

 

 Produce CFG composites showing desired properties to use as 

substrates for electronic packaging such as high flexural strength, low 

dielectric constant and low coefficient of thermal expansion. 
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 Investigate the effect of fast firing on densification and final 

properties of the CFG composites. 

 

 Characterize the CFG composites. 
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2. LITERATURE REVIEW 

 

2.1 Sintering 

 

 Sintering is the process of firing and consolidating a body shaped 

from powder particles. [24] The driving force for sintering is the tendency 

to reduce the free energy of the system.[2, 25, 26] As shown in Fig. 1, 

considering the solid-liquid-pore content sintering processes can be 

divided into four categories: 

 

 

Figure 1. Ternary solid-liquid-pore diagram showing different types of 

sintering.[25] 

 

 Solid state sintering (SSS), which involves only solid and pores and 

so is covered by the right-hand edge of the figure; [27]  

 

 Liquid phase sintering (LPS), which involves all three components 

but is concentrated at the solid apex since most material is solid (< 

20% liquid); [28] 

 

 Viscous glass sintering (VGS), also termed viscous flow which is the 

glass powders densifying mechanism present in glazing and 

enameling. This involves liquid (molten glass) and pores, and; [27, 
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29] 

 

 Viscous composite sintering (VCS) or vitrification, where liquid 

content is >20% and is the region relevant to sinter whiteware such 

as porcelain. [25, 27] 

 

2.1.1 Viscous flow sintering 
 

 Viscous sintering occurs when a viscous glass or liquid present 

at the sintering temperature flows under the action of the capillary force 

filling up the porosity of the body. [24, 30] Fig. 2 shows an example of 

the sintering of two glass particles by viscous flow. [24] 

 

 

Figure 2. Two-particle model made of glass spheres. (x and r are, respectively, 

the radius of the neck and the sphere).[24] 

 Although the path by which matter flows is still under 

discussion,[29, 30] three models  have been proposed to explain the 

different stages during viscous flow sintering: an initial (Frenkel’s 

model), an intermediate (Scherer’s model) and a final (Mackenzie–

Shuttleworth’s model). [24, 31] 

 Frenkel’s model (F) of viscous sintering describes the early 

stages of sintering of spherical and mono dispersed particles, and allow 

to calculate the shrinkage rate of two equal particles whose centers 

approximate each other. The energy released by the decrease of surface 
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area is used for viscous flow, which is responsible for the mass transport 

that produces densification.[29] The rate of initial neck growth (see 

equation 1) increases with the contact radius, x, and is proportional to the 

square root of time, t. [24, 31] 

𝒙

𝒓
=  (

𝟑𝜸

𝟐𝜼𝒓
)

𝟏/𝟐
𝒕𝟏/𝟐                                        (1) 

 

where γ is the surface energy and η is the viscosity of the material. 

 The macroscopic result of particles whose centers approximate 

each other is a linear shrinkage, y, of the powder compact, and can be 

calculated using equation 2, [24] 

𝒚 ≈  
𝒙𝟐

𝟒𝒓
                                           (2) 

the relative change in length, y/r, is [24]  

𝒚

𝒓
=

𝟑𝜸

𝟖𝜼𝒓
𝒕                                          (3) 

Thus the initial rate of shrinkage is directly proportional to time 

(t) and to the surface tension (γ) and inversely proportional to the viscosity 

(η) and particle size (r). [24, 32] 

 For the intermediate stage of viscous sintering, G. W. Scherer (S) 

proposed a model of basic cells which are a cubic array of intersecting 

cylinders (see Fig. 3). The cylinders stand for strings of particles. In this 

model, particles are aligned along the borders of a cubic structural unit, 

and each particle has a small number of neighbors and, hence, a small 

number of contacts. [29] 
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Figure 3. Diagram of Scherer’s model resembling the microstructure. l is the cell 

length and a is equivalent to the particle size. [33] 

 For this model, Scherer derived the densification rate (�̇�𝒇) given 

by [33] 

�̇�𝒇 = − (
𝜸𝒏𝟏/𝟑

𝜼
)

𝝅−𝟒√𝟐𝒙

𝒙𝟏/𝟑(𝟑𝝅−𝟖√𝟐𝒙)
𝟐/𝟑                 (4) 

 

where the variable x is correlated to the relative density ρ through the 

follow equation. 

𝜌 = 3𝜋𝑥2 − 8√2𝑥3                                            (5) 

𝑛 is the number of pores per unit volume, and using the geometric model 

shown in  Fig. 3, in terms of geometric parameters and green density : 

𝒏𝟏/𝟑 =
𝟏

𝒍𝟎𝝆𝟎
𝟏

𝟑⁄
                                              (6) 

where 

𝒍𝟎 =  
√𝝅𝒅𝟎

𝟐(𝟏−𝟐𝒙𝟎)𝟐                                       (7) 

and 𝑥0 is the root of equation 7 considering that 𝜌 = 𝜌0, where 𝜌0 is the 

initial relative density and 𝑑0 is the initial particle diameter.   

 The model developed by J. K. Mackenzie and R. Shuttleworth 
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(M–S) describes the final stage of viscous sintering, when the pores are 

spherical and isolated in the glass, as shown in Fig. 4. [31, 34] 

 

Figure 4. Compact with isolated pores of radius, a. [33] 

 In terms of that structure, the Mackenzie and Shuttleworth model 

gives the following densification rate:[29] 

 

𝐝𝝆

𝐝𝒕
=

𝟑𝜸

𝟐𝒂𝟎𝜼
(𝟏 − 𝝆)                                   (8) 

 

where a0 is the initial pore radius. 

 Based on the fact that small particles preferentially cluster in the 

open spaces left by larger particles, and sinter faster, the Clusters model 

was further developed.[29] Each of these clusters sintered individually, 

passing through the stages proposed by Frenkel and Mackenzie-

Shuttleworth. 

 The model considers the sample’s shrinkage as the sum of the 

partial shrinkage of clusters, each consisting of equally sized particles and 

showing an independent F or M–S behavior. Fig. 5 shows that the F and 

M–S behavior may occur simultaneously in a sample having a particle-

size distribution. [31] 
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Figure 5. (a) SEM micrographs of a polydispersed compact of an alumina-

borosilicate glass.(b) Diagram of the Cluster model. [31] 

 For a polydispersed compact with volume fraction vr of particles 

of radius r, the following expression holds true for the densification 

kinetics at a given temperature: [29] 

 

𝝆(𝒕) =
∑ [𝝆𝑭(𝒓,𝒕)𝝃𝒓𝜽𝐅(𝒕𝟎.𝟖−𝑡)+𝜌M−S(𝑟,𝑡)𝜃M−S(𝑡−𝑡0.8)]𝒓 𝜈𝑟

∑ [𝜈𝑟𝜉𝑟𝜃F(𝑡0.8−𝑡)+𝜃M−S(𝑡−𝑡0.8)]𝑟
        (9)  

 

 Equation 9 sums up the relative density ρ(r, t) for each particle 

size, r, as a function of time, t. During the Frenkel´s stage of sintering, the 

ρ(r, t) =ρF(r, t) < 0.8 condition is met and ρF(r, t) is calculated using the 

Frenkel´s equation. Later, ρ(r, t) =ρM-S(r, t) > 0.8, and ρM-S(r, t) is 

calculated by the M-S worth model. For each cluster, the passage from 

the Frenkel regime to the M-S regime is performed using the step 

functions θF(t0.8 - t) and θM-S(t - t0.8,), whose values alternate between 1 

and 0 at t = t0.8when  ρF(r, t) = 0.8 is reached. Thus, θF(t0.8 - t) = 1 and θM-

S(t - t0.8) = 0 for t < t0.8, θF(t0.8 - t) = 0 and θM-S(t - t0.8) = 1 for t > t0.8. ξr is 

the neck-forming ability of each particle, which can be calculated from 

the particle-size distribution and ξr = 1/rC, where c is a constant that 

depends on the particle-size distribution.[31, 32] 

 

2.1.2 Viscous sintering of glass-ceramic composites 
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 Composite materials of vitreous matrix loaded with ceramics 

(CFG) densify by a three stage process described as “non-reactive liquid 

phase sintering” (NLPS).[35] As shown in Fig. 6 densification is a 

combination of glass redistribution, grain rearrangement and viscous 

flow. 

 

 

Figure 6. Schematic illustration of viscous sintering of glass (G) with crystalline 

ceramic(C) composites.[36] 

The densification during NLPS depends  on the ceramic filler 

concentration , the viscosity of the matrix, and the viscosity of the CFG 

composite[37]. Composite densification may be hindered when the 

concentration of “non-sinterable” inclusions is sufficient high to form a 

connected ceramic particulate network. [36] Densification rate usually 

decrease as the volume fraction of the filler increases. The effect of Al2O3 

content on the relative density (ρr) is illustrated in Fig.7. The relative 

density of the composites decreases for volume fractions of filler higher 

than 5%.[23] 
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Figure 7. Effect of Al2O3 filler content on the relative density of the sintered 

composites in a borosilicate matrix.[23] 

 

2.2 Fast firing 
 

[3840]  In conventional firing of ceramic materials a constant heating 

rate, generally ≤ 15oC/min, is used until reaching a maximum sintering 

temperature (Tmax ) and a holding time at Tmax  until obtained the required 

densification level is obtained. [52-54]During heating, the temperature of 

the surface changes continuously while the temperature within the sample 

changes according to the thermal diffusivity (TD). [41, 42] The thermal 

diffusivity is a thermal inertia that indicate show how fast the heat diffuses 

through the material. The higher the thermal diffusivity of the material 

the greater the rate at which heat is transported from the surface to the 

center of the powder compact during heating.  

 A high thermal gradient ensures greater heat diffusion within the 

compact. For a specific material the gradient depends on the rate of heat 

input at the surface. Faster heating rates generate  higher  thermal 
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gradient, and  rapid densification. [39] During the heating up process in a 

conventional furnace, the rate of surface heating is governed primarily by 

the rate of heat transfer from the furnace to the body. Convection provides 

the major contribution to the total heat transfer at lower temperatures, and 

radiation is the typically controlling factor at high sintering temperatures. 

Radiation quickly heats the surface of the green compact, and then the 

heat diffuses toward the center of the body. [42] 

The fastest heating rate possible to be obtained using 

conventional heating is accomplished by radiation, when a powder 

compact is introduced into a preheated intermittent furnace at sintering 

temperature or into a sintering zone in a continuous furnace. This 

procedure has been used in the past, in combination with a short (≤ 10 

min) or even no dwell time, and it is known as fast firing, [43, 44] and has 

been shown to be effective for achieving high density and fine grain size 

in several ceramics, for example Al2O3and BaTiO3.[45] When a powder 

compact is introduced into the preheated furnace at Tmax, the 

densification mechanisms, such as grain boundary and lattice diffusion, 

are favored. [46, 47] The short residence time of the compact in the 

furnace at Tmax, hinders grain growth increasing the driving force for 

sintering and densification occurs in an abnormally high rate. [46, 47] 

These high densification rates observed during fast firing could 

also be related to a change in the internal structure of the powder compact. 

[42] The presence of high thermal gradients within the compact during 

fast firing  are responsible for the formation of a densification front 

moving from the outer surface toward the center of the sample. [42] The 

formation of a dense outer layer controls the flux of heat to the interior of 

the compact increasing the rate at which heat diffuses from the outer 

surface to the center of the body and the amount of energy available for 

sintering. [41] The velocity of the densification front moving from the 

outer surface toward the center of the compact determines the time 

necessary to achieve full densification. [48]As long as the rate of heat 

transfer is enough to sustain the advance of the sintering front, no 

differential densification occurs. [42] 
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2.3 Crystallization 
 

Crystallization is the process of formation of solid crystals 

precipitating from a supersaturated medium such as a solution, a melt or 

a gas. In glasses there are two types of crystallization: surface and 

internal. Surface crystallization begins at the surface of a material and 

progresses into the volume. Internal crystallization, occurs when crystals 

form in the bulk of the precipitating medium.[18] The crystallization 

process consists of two major events: nucleation and crystal growth.[6] 

Fig. 8 shows an example of internal crystallization in the formation of 

glass-ceramic from glass. 

 In the nucleation process, a nuclei grow into crystals through mass 

diffusion, and the driving force for it is the change in free energy between 

the supersaturated medium and crystal. There are two types of nucleation: 

homogeneous and heterogeneous. In homogeneous nucleation, the nuclei 

has the same composition of its precursor[2]. Nuclei are formed as 

molecules constantly colliding with the surrounding molecules and start 

to gather into clusters [6] forming particles smaller than a stable nucleus 

named embryos. On further growth however, once embryo reach a critical 

size or radius, r*, with a respective free energy of formation of an embryo 

of critical size,G*, it remains growing by material deposition. That leads 

to a lower free energy and a stable system, until the formation of 

crystals[2]. 

 

Figure 8. Internal crystallization in the formation of glass-ceramic from glass  (a) 

nuclei formation, (b) crystal growth on nuclei, (c) glass-ceramic 

microstructure.[6] 

http://en.wikipedia.org/wiki/Precipitation_(chemistry)
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In heterogeneous nucleation, foreign particles added to the melt or 

structural imperfections such as bubbles and die walls,  named substrates, 

act as nuclei, lowering the thermodynamic barrier to nucleation[6]. The 

lower the wetting contact angle between the supersaturated melt and the 

substrate, , the higher the possibility to the substrate act as nuclei (see 

Fig. 9), as the free energy decreases with decreasing contact angle. 

 

Figure 9. Spherical cap model of heterogeneous nucleation.[2] 

 

Fig. 10 shows the change in the free energy of a spherical nucleus 

as function of its radius for an embryo of a critical size, for homogeneous, 

G*, and heterogeneous nucleation, G*
het. 

 

 

Figure 10. Free energy of spherical nuclei as function of its radius.[2] 
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The critical radius, r*, is the same for both homogeneous and 

heterogeneous nucleation. However, the free energy is smaller for 

heterogeneous nucleation.[2] 

For further crystallization kinetics concepts such as nucleation 

rate, homogeneous and heterogeneous nucleation rate and crystal growth, 

see Appendix 1. 

 

 

2.4 Cristobalite 

 

The silica polymorph forms are quartz, tridymite, and cristobalite. 

Cristobalite has an anisotropic expansion behavior and is the high 

temperature crystalline form of silica. Cristobalite undergoes a rapid, 

reversible inversion from a high-temperature cubic structure, -

cristobalite to low-temperature tetragonal structure-cristobalite, at 

~215°C, during cooling.[6] 
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Figure 11. Thermal expansion curves for polymorphic forms of silica.[6] 

Table 3 shows the changes in structural data for both types,  and 

 cristobalite, the changes in their unit cells, and consequently causing a 

large change in thermal expansion. The a- and c-axis of -cristobalite 

increase rapidly at rates of 9.3 x 10-5 and 3.5 x 10-5, ÅoC-l, respectively; 

whereas in -cristobalite, a-axis expands at only 2.1 x 10-5ÅoC-l. This 

behavior translates into very large, spontaneous strains of -1% along a-

axis and -2.2% along c-axis during inversion, creating microcracks during 

cooling.[6] 

 
Table 3. Cristobalite structural data 

 

Structural Data for Cristobalite 

Unit Cell -Cristobalite -Cristobalite 

a (Å) 7.1 4.9 

c (Å) -- 6.9 

V (Å3) 361 171 
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Some physical properties of cristobalite are shown in Table 4. Fig. 

12 shows an idealized (a) model of -cristobalite, corner-bonded SiO4 

tetrahedral. And (b) shows its crystal form crystallized in an obsidian rock 

matrix.[6] 

Table 4. Physical properties of cristobalite 
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Figure 12. a) Tetragonal model of -cristobalite;[6] b) Cristobalite crystals form 

in obsidian rock. 

 

2.4.1 Cristobalite inhibition in borosilicate 

matrix by alumina particles 

 

During the sintering of compacts, a strong coupling reaction 

between alkali ions from borosilicate glass (BSG) and Al+3from alumina 

occurs, thus causing a diversion in the transport of alkali ions from BSG 

to alumina, and Al+3 ions to the matrix. Due to of this strong coupling 

between alkali and Al+3 ions, the resulting reaction layer around alumina 

is formed far more rapidly than that of cristobalite formation which is thus 

its rate-controlling step.[5, 7] 

 
 

 

2.5 Thermal expansion 
 

Changes in temperature affect the dimensions of a body. Thermal 

expansion is a consequence of an increase in the average distance between 

the atoms. The interatomic distance depends on the potential energy of 
the system, which increases with temperature. As shows Fig. 13, the 

potential-energy-versus-interatomic-spacing curve for a solid material 

has the form of a potential energy trough. The value r0 corresponds to the 

trough minimum, i.e., the interatomic distance of equilibrium at 0 K. 

Heating to higher temperatures increases the vibrational energy from E1 
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to E2 to …En, and the atomic vibrational amplitudes from r1 to r2 to …rn. 

The vibrational average amplitude corresponds to the trough width at each 

temperature, and is represented by its mean position.[49] 

 

Figure 13. Plot of potential energy versus interatomic distance [49]. 

The expansion with increasing temperature is due to the 

asymmetric curve form of the potential energy trough, rather than the 

distance of the atomic vibrational amplitude. If the potential energy curve 

were symmetric, there would be no net change in interatomic separation 

and, consequently, no thermal expansion could be observed. The potential 

energy trough depends on the bonding strength, i.e., the energy required 

to separate two atoms. The greater the atomic bonding energy, the deeper 

and narrower its potential energy trough.[49] 

The CTE of a material quantifies how dimensions change with 

temperature measuring the fractional change in size per degree. CTE is 

related to the molecules bond strength, which in turn depends on the ionic 

radii size. The larger the radii atomic the weaker the bond strength. The 

greater the distance between nuclei and electrons, the weaker the 

attraction between them and the higher the CTE. Strong ionic bonding 

forces found in ceramics imply in low values of CTE, which range 

between 0.5x10-6 and 15x10-6/ºC.[49] For metals, due to their metallic 
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bonds, interatomic forces are weaker than ceramics and consequently 

have a higher CTE, most ranging from 10x10-6to 25x10-6/ºC. For 

inorganic glasses, which have ionic and covalent bonds, the coefficient of 

thermal expansion range between 3.0x10-6 and 10x10-6/ºC.  

The addition of alkali oxides on glasses promote oxygen bond 

break affecting the thermal expansion. Pure silica glass at room 

temperature is a three-dimensional random network of edge-linked 

SiO4 tetrahedrons bonded in different angles. As shown in Fig. 14, silicon 

is tetrahedrally surrounded by four oxygens and each oxygen is bonded 

to two silicons. In an alkali silicate glass silicon is tetrahedrally 

surrounded by four oxygens but some of the oxygens are only bonded to 

one silicon as shown in Fig. 15.[50] The alkali ions are held weakly in the 

silicon-oxygen network, compensating the negative charges of the broken 

bonds created by the addition of the alkalis oxides. Consequently the 

addition increases the CTE of glasses due the formation of weaker bonds. 

As shown in Fig. 16, when alkaline oxides are added to silicate glasses, 

the value of its coefficient of thermal expansion follows the order of the 

radii size of the added cation: K>Na>Li. 

 

Figure 14. Glass-network of SiO4 tetrahedrons. 
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Figure 15. Representation of alkali silicate glass network; where a) oxygens are 

bonded to one silicon, and Na+ is sharing one oxygen´s electron. b) Silicon 

tetrahedrally surrounded by four oxygens. 

 

 

Figure 16. Volume expansivity of binary alkali silicates at indicated temperatures 

vs. composition. ss and ls refers to solid and liquid state, respectively [50]. 
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The CTE of borate glasses shows a different behavior than alkali 

silicates glasses when alkaline oxides are added. Borons change the 

number of surrounding atoms as a result of oxygen added from alkaline 

molecules to the vitreous network [2]. The glass bonds become stronger 

when all the oxygens stemmed from alkalis are bonded and consequently 

the CTE decreases; the network composed only of B2O3 where each boron 

has coordination 3, and a planar triangle configuration units (BO3)-3 are 

connected tridimensionally by oxygen bridges. The resulting arrangement 

is known as Boroxol ring (B3O6)-3. [51] With the continuous addition of 

alkali ions the coordination number changes to 4, creating a tetrahedral 

form. Each oxygen stemmed from alkalis oxide, breaks a B-O-B bond, 

producing two non-bridging oxygen, and the formation of two boron-

oxygen tetrahedral consume the additional oxygen originated from the 

alkali oxide. The negative charges  generated, are compensated by the 

alkalis ions and the tetrahedral (BO4)-5, as shows Fig. 17 [52] acts like an 

anion associated with a cation. The addition of alkali ions results in a 

progressive strengthening of the network and then the CTE decreases. 

 

 

Figure 17. 3D representation of triangle structure of Boroxol ring (B3O6)
-5units 

changing to tetrahedral configuration with addition of Na2O.[52] Triangles are 

indicated with black dots on the left hand side. Tetrahedron is indicated inside the 

continuous gray circle on the right hand side. 

The addition of alkalis ions up to 35 mol% to borates glasses 

results in a continuous reinforcement of the network. At higher 

concentrations boron starts to change its coordination number from 4-fold 

to 3-fold. Without the formation of non-bridging oxygen the triangles 
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configuration begins to form again, and the tetrahedrons starts to 

extinguish up to complete elimination around 65-75 mol% of alkalis 

addition as shows Fig.18.  

 

 

 

 

 

 

 

 

 

Figure 18. The fraction of boron atoms in fourfold coordination (N4) as function 

of concentration of alkalis oxides. [52] 

In Fig. 19 the resulting linear thermal expansion coefficients of 

alkali borate glasses as function of alkalis composition, is shown. The 

decrease in the CTE and a graduate increase above around 35 mol%, is 

originated in the resumption of triangle configuration.  
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Figure 19. Mean linear thermal expansion coefficients of alkali borate glasses as 

function of composition. [52] 

The thermal expansion of polycrystalline materials is a 

consequence of the relative composition and CTE of each phase, and the 

microstructure (porosity, microcracks, anisotropic crystal structure) [51]. 

The CTE  is the sum of the product of the CTE´s of each phase by its 

volumetric fraction [2]. In a crack-free composite CTE can be calculated 

if it´s assumed that the expansion of each grain is the same as the overall 

expansion [2], for a composite constituted of i-phases CTE can be 

calculated using the equation  developed by Turner:  

𝛼𝑚 =
∑𝛼𝑖.𝑣𝑖.𝐾𝑖

∑𝑣𝑖.𝐾𝑖
                          (10) 

where 𝑣𝑖  and 𝐾𝑖 are respectively the volume fraction and the bulk 

modulus, which is the resistance to uniform compression, of the i-phase. 

[2] 
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2.6 Percolation 

 

 

Percolation is the formation of long-range connectivity in a 

random particulate system. In a binary system, at a critical concentration 

inclusions start to contact with each other and form an extended rigid 

network.  

The percolation threshold is the critical value of the occupation 

probability p, such that connectivity (percolation) first occurs.[53] The 

percolation threshold refers to simplified lattice models in random 

systems or networks and the nature of the connectivity in them. 

Considering a large d-dimensional densely-packed powder compact 

formed by random mixing of convex-shaped rigid (inclusions) and non-

rigid (matrix) particles, at the percolation threshold the rigid particles 

form a large connected network (or cluster). Considering the interaction 

of spherical particles, the percolation threshold is reached when the 

volume fraction of particles is 16 vol.%, and at a critical volume of 

inclusions of vol. all the inclusions are connected into a network 

(probability p=1).[53, 54] 

 

Fig. 20 illustrates schematically the percolation phenomena. The 

occupation of a lattice of N squares, N being a very large number, and p 
the probability of a square lattice being occupied by a dot; then p.N 

defines the number of squares occupied, and (1-p).N the number of 

squares empty.[26] 

 

 

Figure 20. Schematic representation of the percolation phenomena showing a 

square lattice being occupied by dots  (a) shows parts of an square lattice; in (b) 

some squares are occupied with black dots; in (c) the clusters, groups of 
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neighboring occupied squares, are encircled; (d) critical volume of inclusions, all 

the black dots are in contact.[54] 

Considering spherical particles and no variation of particle size of 

both the matrix and inclusions, some models have been proposed to 

identify the critical fraction of inclusions where the percolation 

begins[55]. As shown in equation 11 for the Bouvard and Lange´s model, 

the percolation threshold is determined by R, which is the size ratio 

between Rm, the radius of matrix particles, and Ri the radius of the 

inclusion particles,  

 

𝑛𝑖 =
𝑓𝑖

𝑓𝑖+
(1−𝑓𝑖)

𝑅3

                                      (11) 

 

where ni is the number of inclusions, f i  the volume fraction of inclusions, 

and R the size ratio. Fig.21 shows the dependence of the percolation 

threshold with R. [55] 

 

 

 

Figure 21. Number fraction of inclusions, showing where the percolation 

threshold begins, as function of R. [55] 
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The sintering of a composite where the inclusion concentration is 

higher than the percolation threshold decreases due to the formation of a 

rigid network. The formation of a continuous network of inclusions 

reduces the sintering, inhibiting the densification. The increased stiffness 

due to rigid contacts between particles, retards sintering, and if the 

structure is completely rigid, sintering not further progress.[45] 

 

 

2.7 Residual Stress 

 

In glass matrix composites reinforced by rigid particles, the 

presence of a secondary phase generates residual stress due to the 

difference in thermal expansion coefficients and the magnitude of this 

stress is dependent on the mismatch in elastic modulus among phases. 

Also microcracking in brittle materials generally results from large 

localized residual stresses that develop from either thermal contraction 

anisotropy or a phase transformation.[56] 
 

The microstructure of such composite comprises a matrix 

material filled by rigid inclusions, as shows Fig. 22. When the coefficient 

of thermal expansion of the dispersed phase is larger than that of the 

matrix material, thermal residual stress will become the dominant 

toughening mechanism in ceramic materials.[57] 
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Figure 22.  Composite’s microstructure scheme: matrix material filled by rigid 

particles.[58] 

On the reinforcement of such composites, the improvement in 

mechanical properties is mainly related to fracture toughness due to crack 

deflection.[7] The direction of the extension of a crack may change when 

it meets an obstacle such as a second phase particle. [4] 

 The enhancement of fracture toughness is due to 

matrix/reinforcement interrelation, which mainly causes cracks deviation, 

particles “bridges” and pull-outs with resultant fracture energy 

absorption. If the filler particles have a larger coefficient of thermal 

expansion than the matrix, there is a development, during cooling, of a 

tangential compressive stress in the matrix and a radial tensile stress close 

to the particle, so cracks are deflected away from the particles.[59] A 

crack propagates perpendicular to the tensile axis and parallel to the 

compressive stress, which means that the residual stress field may also 

deflect the crack.[4] Fig. 23 shows both cases. 
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Figure 23. Residual stress schemes created on cooling a) tangential tensile stress 

on the matrix with a radial compressive stress on the particle and b) tangential 

compressive stress on the matrix with a radial tensile stress on the particles. 

 

A particle having a thermal expansion coefficient higher than the 

matrix has around itself a radial tension and hoop compression. Such a 

stress field produced by the particle in the plane of a crack may deflect 

the crack and force it to travel around the particle. Due to this deviation 

in direction, the crack travels a longer path and the stress intensity at the 

crack tip is reduced since the plane of the crack is no longer perpendicular 

to the tensile stress. [4] 

A misfit between the coefficients of thermal expansion 

introduces a stress field in the matrix and can also produce microcracks 

when the residual stress is larger than the mechanical strength: If the filler 

particles have a lower coefficient of thermal expansion than the matrix, 

the matrix has more contraction therefore a compressive residual stress 

through the particles and a tensile stress on the matrix are generated. 

On toughening, the main crack may be deflected or branch in the 

presence of microcracks, reducing the stress intensity at the crack tip and, 

consequently, increasing toughness. Conversely, excessive microcracks 

can also lead to a decrease in fracture toughness and fracture strength.[4] 
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2.8 Definition of glass-ceramics and ceramic-filled glass 

 

Glass-ceramics are ceramic materials formed through the 

controlled nucleation and crystallization of glass. Glasses are melted, 

shaped, and then thermally converted into a predominantly crystalline 

ceramic. The basis of controlled internal crystallization lies on an efficient 

nucleation that allows the development of a pore-free and crackless glass-

ceramic containing small and randomly oriented grains, generally. Glass-

ceramics have the fabrication advantage of glass as well as properties of 

ceramics such as mechanical resistance, voltage isolation and 

biocompatibility.[6]  

 

CFG are ceramic materials formed through an addition of a 

crystalline second phase in a glass matrix, usually used as reinforcement, 

allowing the material to combine the different physical and chemical 

properties of the matrix and the filler producing a composite with 

improved properties.[1] CFG when compared to pure glasses show an 

increase in mechanical resistance, microhardness, fracture toughness and 

voltage isolation.  

 

2.9 Low temperature co-fired ceramics 

 

LTCC is a technology used to produce substrates for multilayer 

circuits from through the co-firing of stacks of individual tapes of 

ceramics with printed metals such as Ag, Au or Cu at T≤ 1000°C.[60, 61] 

 

As shown in Fig. 24, the LTCC fabrication process initiates with 

flexible ceramic tapes in a green state, which are cut to the required size 

(typically 100-200 mm square). Vias and cavities are then punched in the 

blank tiles and filled with a paste of metals, such as Ag, Au or Cu.[60, 61]  

Subsequently, the required pattern is printed with a conductive paste. 

Once all of the layers have been produced individually, the layers are 

collated in to a stack, laminated under pressure, sintered, and cut to 

individual pieces.  
 

http://en.wikipedia.org/wiki/Physical_property
http://en.wikipedia.org/wiki/Chemical_property
http://en.wikipedia.org/wiki/Chemical_property
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Figure 24. Process flow of a LTCC substrate.[60] 

 

The substrates employed in microelectronic packages must fulfill 

the following requirements:[60] 

 

a) Low dielectric constant to minimize crosstalk 

and signal delays;[62] 

 

b)  The coefficient of thermal expansion must 

match with the silicon semiconductor (3.5x10-6/oC) 

maintaining the reliability of the connection of the 

interconnects (board and components);   

 

c) Ability to withstand the manufacturing  

temperature (500-1000 °C); 

 

d) High mechanical strength to withstand the 

stresses during manufacture, as well as while in use; 
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e) Physical and chemical compatibility between 

the conductor and substrate to have good adherence during the 

firing [63] 

 

The advantages of the LTCC process are the flexibility in design, 

the possibility to tailor dielectric properties through composition; LTCC 

can be suited to high volume production, and low cost due to the 

possibility of parallel manufacturing and low firing temperature. [61, 

64]There are also some limitations for LTCC technology: As the 

substrates are not polished, the surface roughness can result in 

transmission loss, i.e., the conduction path of the conductor becomes 

longer. A high control of the process must be taken to avoid substrate 

warping during fabrication and the presence of carbon residues must be 

prevented as carbon reduces insulating properties. [61, 65] 

Commercial substrates fabricated using LTCC technology are 

shown in Table 5.[61] 

 

Table 5. Glass-ceramic substrates from different companies fabricated 

using LTCC technology. 

 

LTCC 

Suppliers 

Products 

(composition) 

 

Dielectric 

constant 

(c) 

 

Resistivity 

(Ω*cm) 

 

Thermal 

expansion 

coefficient 

(ppm/ °C) 

 

Thermal 

conductivity 

(w/m*K) 

 

Flexural 

strength 

(MPa) 

 

Firing 

Temperature 

( °C) 

Asahi 

glass 

35Al2O3 

+ 25Forserite 
+ 40NSG (wt. %) 

7.4 >1014 5.9 4.2 235 

900-1000 
Kyocera 

BSG + SiO2

+ Al2O3

+ Cordierite 
5.0 > 1014 4.0 2 190 

Crystallized glass
+ Al2O3 

6.2 > 1014 4.2 3 210 

Dupont 
Al2O3 + CaZr03

+ Glass 
8.0 > 1012 7.9 4.5 200 

 

 

CFG are composites of glass matrix reinforced with ceramics. 

Borosilicate glasses show a higher voltage isolation compared to 

http://pt.wikipedia.org/wiki/%CE%A9
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alumina[1, 2] (andat 1MHzrespectively), a higher electrical 

stability under an electric field, CTE of 3.5.10-6.oC-1 reducing the 

differential thermal expansion strain at the semiconductor (Si)-insulator 

(CFG) interface, and a sintering temperature of around 800oC. When 

alumina is used as filler in CFG [2, 8],  the combination of borosilicate 

glass and alumina results in a material with a higher thermal stability and 

mechanical resistance in comparison to pure glass.[11] 
 

Due to the chemical and physical properties and the low sintering 

temperature, CFG composites could represent low-cost alternative to 

ceramics to be used as substrates using the LTCC technology.[10] 

 

2.10 Characterization methods studied 
 

2.10.1 Flexural strength 

 

Flexural strength is a mechanical parameter for brittle materials. It 

is defined as a material's ability to resist deformation under load. Fracture 

of polycrystalline ceramics at room temperature is occurring by initiation 

from inherent flaws and fracture stress. Flexural strength,  is governed 

by the Griffith-Orowan relationship. [66] 

 

𝜎 =
𝐸𝛾

√𝜋𝑐
                                       (12) 

 

where:       

                 E= Young´s Modulus 

=Fracture energy 

                 c= Flaw size  

 

For composites, the value of E can be estimated using the rule of 

mixtures while fracture energy can be estimated from the fracture 

toughness, KIc, and Young´s Modulus using the relationship: 
 

𝛾 =
𝐾²

2𝐸
                                      (13) 
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Flexural strength can be determinate by three- or four-point 

transverse bending test. Fig. 25 shows a schematic representation of a 

three-points transverse bending test equipment used to determine flexural 

strength.   

 

Figure 25. Schematic representation of a three-points transverse bending test 

equipment.[49] 

 

The flexural strength represents the highest stress experienced 

within the material at its moment of rupture. A uniaxial load is applied on 

a bar specimen and recorded as function of the strain. The specimen is 

placed on two supports that are a distance apart (L), and the actuator 

applies a load in the middle of the two supports (L/2). Width and height 

of the specimen are b and d, respectively. Immediately before failure, the 

equipment records a force (Ff), and a deformation in mm. The flexural 

strength (σ) of the specimen is calculated using the following equation 

[67]: 
 

 

𝜎𝑟𝑓 =
3𝐹𝑓𝐿

2𝑏𝑑²
                                                            (14) 
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2.10.1.1  Weibull Modulus 

 

The Weibull distribution is a probability analysis and is one of the 

most widely used lifetime distributions in reliability engineering. Weibull 

developed a statistical model based on the following expression:[67, 68] 

 

𝐹 = 1 − 𝑒𝑥𝑝 [− (
𝜎

𝜎0
)

𝑚
]                            (15) 

 

 

where F is  the probability of failure, σ0 the strain at which 63.2% of 

samples tested brake in and m is the Weibull module, which is a constant 

related to measurement repeatability. F can be calculated by the 

expression: 

 

𝐹 =
𝑛

𝑁+1
                                          (16) 

 

where N is the number of samples used and n is the ranking of the sample 

ranging from 1 to N. To determine the parameters of Weibull (σ e m), 

ln[ln(1/(1-F))] is plotted as function of flexural strength() using the 

equation 17.[67] 

 

𝑙𝑛 [𝑙𝑛 (
1

1−𝐹
)] = 𝑚𝑙𝑛𝜎 − 𝑚𝑙𝑛𝜎0                  (17) 

 

 

In the plot m is the slope of de curve. The greater the m value, the 

lower the dispersion of flexural strength values. Measurements made with 

higher Weibull modulus will exhibit higher reliability and their strengths 

are distributed uniformly throughout the material. 

 

2.10.2 Fracture toughness 
 

Fracture toughness describes the ability of a material containing a 

crack to resist fracture. Metals energy dissipation at the crack tip occurs 

via plastic deformation through dislocation. Brittle materials such as 
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ceramics and glasses not deform plastically, and absorb relatively little 

energy prior fracture during crack propagation.[69] 

 

The fracture toughness can be determined using a Vickers 

indentation fracture formulation based on an ideal "sharp indenter" 

geometry (see Fig. 26).  

 

Figure 26. Top and cross-section views around Vickers indent as median 

cracks.[66] 

The indentation measurement model can be used for the 

determination of fracture toughness (KIc) in glasses and ceramics, and the 

obtained results are comparable to those obtained using the notched beam 

technique (NBT)[67]. Fracture toughness can be calculated using Lawn 

and Fuller´s model, which has the following equation[67, 71] 

 

𝐾𝐼𝐶 =
𝑃/𝑐3/2

𝜋3/2 tan ψ
                                        (18) 

 

where P is the contact load, c is the crack length as shown in Fig. 26,  is 
the half-angle of the indenter between opposing pyramid edges equal to 

68o .  

2.10.3 Dielectric constant 
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A material exhibits capacitance (C) or “dielectricity” if it has the 

ability to store energy when an external electric field is applied. If a DC 

voltage source V is applied across a parallel plate capacitor (Fig.27), more 

charge is stored when a dielectric material is placed between the plates 

with respect to vacuum ( no material between plates). 

 

Figure 27. Schematic representation of a parallel plate capacitor.[72] 

Permittivity is the measure of the resistance that is encountered 

when forming an electric field in a medium. The permittivity of a medium 

describes how much electric field (more correctly, flux) is 'generated' per 

unit charge in that medium. Permittivity depends on frequency of the field 

applied, temperature, molecules orientation, atmospheric pressure, and 

molecular structure of the material.[67] 

 

Coulomb’s law is physics’ law which describes the electrostatic 

interaction between electrically charged particles. The law states if there 

is an electric field due to a single point A of charge of value q [C] at a 

distance R(m) (see Fig. 28), the effect of the electric-field is directly 

proportional to the product of the magnitudes of the charge and inversely 

proportional to the square of the distance between the charge and the 
point, with a Coloumb force constant of proportionality k, k = 1/(4πε0).  
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Figure 28. Scheme of a electric field of a single point A of charge of value Q [C] 

at a distance R(m): 

|𝐸| = 𝑘
𝑞

𝑅²
=

𝑞

4𝜋𝜀𝑟𝜀0𝑅²
=

𝑞

4𝜋𝜀𝑅²
            (19) 

 

 

where 0  is the permittivity of free space(vacuum), which is a constant 

measured in Farads/meter. r is known as the dielectric constant or relative 

permittivity.  

 

The permittivity of a medium is expressed as the product of the 

dielectric constant and the free space permittivity:[67] 

 

𝜀 = 𝜀𝑟𝜀0                                       (20) 

 

 

 

The dielectric constant is always greater than or equal to 1. That 

means the electric field in equation 19 is always reduced relative to the 

electric field in free space.[67] 

The method that can be used to measure the dielectric constant is 

the parallel plate method. A thin sample of a solid material or liquid 

placed between two electrodes to form a capacitor can be used to 

determinate the dielectric constant. Capacitance is measured 

automatically, then is used to calculate dielectric constant using equation 

21.  

𝐶 = (𝜀0𝜀𝑟A)/D                                       (21) 
 

where r is the dielectric constant of the material, 0 is 8,854 × 10−12 F.m−1, 

A is the specimen area and D the thickness of the specimen, that is, the 
distance between plates. 
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3. MATERIALS AND EXPERIMENTAL PROCEDURES 

 

3.1 Materials 

 

Alumina-filled borosilicate glass composites were produced using 

powders of borosilicate glass as matrix and aluminum oxide, alumina 

(Al2O3) as filler. 

 

3.1.1 Borosilicate glass 
 

Chemical composition, weight percent (wt.%) and some physical 

data of commercial borosilicate glass (79SiO2, 13B2O3, 4Na2O, 

2.5Al2O3) (Pyrex®) used in this work are shown in Table 6 and Table 

7, respectively.  

Table 6. Typical chemical composition of borosilicate glass. [73] 

 
Chemical composition (wt.%) 

SiO2                                                79.84 

B2O3                                               12.76 

Na2O                                               4.19 

Al2O3                                              2.50  

CaO                                                0.09 

Fe2O3                                              0.06 

BaO                                                < 0.1  

K2O                                                0.10  

Co2O3< 0.1  

MgO                                               < 0.05 

Cr2O3< 0.1  

MnO                                               < 0.05 

PbO                                                 < 0.1  

SrO                                                 0.07  

P2O5< 0.05 

ZnO                                                < 0.1  
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Table 7.  Physical data of commercial borosilicate glass (Pyrex®).[73] 

  

Coefficient of mean linear thermal expansion α (20 -300 °C) 3.3 x 10-6 K-1 

Dielectric constant (at 1 MHz) 4.1 

Glass transition temperature T g 525 °C 

Softening point (at viscosity η in Pa x s:107.6 ) 
 

Density 

825 °C 
 

2.23 g.cm-3 
 

 

Borosilicate glass powder was obtained by dry ball milling of 

glass cullet during 1 to 3 h at 80 rpm using an alumina jar of 10 cm 

diameter and Al2O3 balls (= 10-30 mm). The ball to powder weight 

ratio was 1:3. After milling, powders were sieved with water with 230, 

550 and 625 mesh sieves, and dried for 48 h at 90oC. The presence of 

cristobalite can be detected by XRD (see Fig. 29). 

 

 
 

Figure 29. XRD analysis of ball-milled borosilicate glass. 
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3.1.2 Aluminum oxide 

 

The material used as filler was high purity (>99.7 wt.%) alumina 

powder (Almatis Alumina Premium, Netherlands), with particle size 

varying from 0.3 to 3 m. Table 8 and 9 show its chemical composition 

as informed by the manufacturer and the main physical properties of 

alumina, respectively. 

 

Table 8.Chemical composition of as received alumina (wt.%) 

 

Al2O3                                     99.7 

Na2O                                      0.06  

Fe2O3                                     0.02  
SiO2                                       0.01  

CaO                                       0.01  

B2O3                                      0.01 

 

 

Table 9. Physical properties of as received alumina 

 

Coefficient of mean linear thermal expansion α 

(20  - 300°C) 

8.9x10-6 K-1 

Dielectric constant (at 1 MHz) 9.1 

Melting point 2070 oC 

Density 3.94 g.cm-3 
 

 

 

3.2 Powder characterization 
 

3.2.1 Particle size and particle form 

 

The particle size distribution of borosilicate glass after milling 

and as received alumina powder was determined using a Malvern 

Mastersizer 2000 and a Malvern Zetasizer ZS90 equipment. Suspensions 

containing 1 vol.% of powder, 98.5 vol.% distilled water, and 0.5 vol.% 
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of Dolapix CE 64 (Zschimmer & Schwarz, Lahnstein/Rhein, Germany) 

used as dispersing agent, were analyzed. The particles morphology was 

characterized by Scanning Electron Microscopy (SEM, Hitachi 

TM3030).  

 

3.2.2 Powder density (true density) 

 

The density of glass powder after milling was determined using 

a helium picnometry ( a1305 Micromeritics). The density measurement 

was performed 10 times.  

 

 

3.3 Samples preparation 

 

3.3.1 Uniaxial pressing 
 

Powder mixtures containing borosilicate glass and 0, 5, 10, 15, 20 

vol.% alumina, and 3 wt.% isopropyl alcohol were mixed for 1 h at 100 

rpm using a PVC jar and silicone balls (= 10 mm). The ball to powder 

weight ratio used was 1:3. After mixing, powders were sieved, uniaxially 

pressed in a steel die at 15 MPa, and dried at 60 oC during 24 h, resulting 

in bars of 40 x 5 x 4 mm. The green density was determined geometrically 

on three samples and the arithmetic mean value with the standard 

deviation was calculated. 

 

3.3.2 Sintering 
 

The green samples were conventionally sintered in air using an 

electric furnace at 800 to 1000oC, and holding times varying from 0 to 10 

min, heating rates of 1 to 15oC/min and cooling rate of 10ºC/min. Samples 

were also sintered using the Fast Firing procedure introducing green 

samples in the pre-heated furnace at 850 to 1000oC, using holding times 

of 3 to 7 min with heating rate of approximately 500ºC/min, 3 samples 

were used for each parameter change.  
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3.3.3 Tape casting 

 

Slurries of powder mixtures containing 5 and 10 vol.% alumina 

were produced following the experimental procedure as presented in  

reference [3] First 50 wt.% solids were mixed with 27 wt.% distilled 

water, 1 wt.% deflocculant (Darvan 821A, EUA), and 0.05 wt.% anti-

foam (Sigma-Aldrich-Germany) was added. The slurry was milled for 4 

h at 100 rpm using a PVC jar and silicone balls (= 10 mm). The ball to 

liquid weight ratio was 1:3. Then 21.95 wt.% binder (Mowilith® 

containing 20 wt.% dibutyl phthalate plasticizer) was added and mixed 

for 30 min. 

 

Tapes were produced using a tape casting machine (Richard E. 

Mistler, Inc., CC-1200, EUA), by casting the slurry on polyethylene 

terephthalate (PET) Mylar carrier film coating with a fine silicone layer 

(G10JRM, Mistler). The casting speed was 6 cm/min and the gap between 

the blade (doctor blade) and the carrier was adjusted manually to obtain a 

tape thickness of 900 µm. The tapes, after drying, was then dried at room 

temperature for 24 h, and detached from the film. 

 

The rheological behavior of the slurries was measured in a 

rotational viscometer (System/52p, Rheomex, Haake) with concentric 

cylinders geometry and at room temperature. The rheograms of the 

slurries were made with a shear rate of 0.02 to 50 s-1. The apparent 

viscosity was determined by best fit to the curves of Casson´s model [74]. 

 

3.3.3.1 Tape debinding and sintering 

 

Debinding of the green tapes was obtained heating at 1oC/min up 

to 500oC using a holding time of 30min. Afterwards the tapes were heated 

to sinter from 500oC to 800oC holding time of 5 min using a heating rate 

of 15oC/min. 
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3.4 Sample characterization 

 

3.4.1 Thermal treatments 

 

Dimensional changes of the borosilicate glass powder as function 

of temperature and time was analyzed using dilatometry analysis (DIL, 

Netzsch DIL 402 C, Germany). Differential scanning calorimetry 

analyses (DSC, Netzsch DSC 404 F1, Germany) was also performed. The 

sintering temperature, glass transition temperature, softening point, 

crystallization and phase changes temperatures were determined at 

temperatures ranging from 30 to 1000oC using heating rates of 2 and 15 
oC/min.  

 

3.4.2 Bulk density 

 

The bulk density of sintered samples was measured in water 

using the Archimedes´ Principle. The density was determined on 

3samples, 3 times each, and the arithmetic mean value with the standard 

deviation was calculated. 

3.4.3 Determination of flexural strength 
 

The flexural strength of sintered samples was determinate at room 

temperature by using a loading speed of 1 mm/min, using only 10 samples 

for each determination, due to the difficulty in assembling green samples 

and their fragility while managing. The flexural strength (σ) was 

calculated using the following equation: 

 

𝜎𝑟𝑓 =
3𝐹𝑓𝐿

2𝑏𝑑2                                      (22) 

 

where Ff is the maximum load, L the distance between the  supports, 42 

mm in this case, and  b and d are width and  high of the sample, 
respectively. 

 

The Weibull module was determined as explained in Section 

2.10.1.1. 
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3.4.4 Determination of fracture toughness 

 

The fracture toughness was measured at room temperature using 

the indentation method as described in Section 2.11.2, in 3 samples 

processed at the same conditions. Three different places of the same 

sample were indented, and the arithmetic mean value with the respective 

error was calculated. 

A standard microhardness tester with a Vickers diamond pyramid 

and indenter loads of 10 N were used. With the diamond indenter in 

position nearly touching the sample, the indenter was released using a 

loading rate of 2 mm/min. After 5s the indenter was removed. Using the 

graticule scale of an optical microscope (Shimadzu) the length of the 

cracks extending from the pyramidal diamond indenter impression 

corners was measured. Using the Lawn and Fuller´s model described in 

the section 2.11.2, the fracture toughness (KIc) was determined. 

 

 

3.4.5 Determination of Vickers Hardness (HV) 
 

The Vickers hardness of sintered samples were determined using a 

Vickers Hardness tester (HMV-Shimadzu, Microhardness Tester) on 

samples using a load of 5 N, in 3 samples processed at the same 

conditions. Three different places of the same sample were indented, and 

the arithmetic mean value with the standard deviation was calculated 

 

The HV number was determined by the ratio F/A, where F is the 

force applied to the diamond in kilograms-force and A is the surface area 

of the resulting indentation in square millimeters. 

 

3.4.6 Determination of the coefficient of thermal 

expansion 

 

The coefficient of thermal expansion from 25 to 300oC of 

borosilicate glass and CFG composites was determined in sintered 

samples heated at 7.5oC/min using a Pushrod Dilatometer (Netzsch, Mod. 

DIL 402 C). 
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3.4.7 Determination of the dielectric constant 

 

Dielectric constant of 3 sintered samples at the same conditions 

were determined by parallel plate method, using an LCR meter Agilent 

E4980A equipment (Keysight technologies). Cylindrical samples of 

diameter =20 mm and height h=1.5 mm, were placed between two 

electrodes of =20 mm. The capacitance (Cp) was measured at a 

frequency of 1 MHz and amplitude of 1V. The dielectric constant was 

calculated with the equations presented in Section 2.10.3. 

 

3.4.8 X-ray diffraction 

 

X-ray diffraction at room temperature was performed in powdered 

samples and diffraction angles 2θ between 10° and 105°, using a Rigaku 

Desktop Miniflex II (30KV, 15mA, Cu Kα radiation). 

 

3.4.9 Scanning electron microscopy  
 

Polished samples were etched in a solution with hydrofluoric acid 

2 wt.% for 2 min and coated with gold. Analyses were performed using 

SEM, Hitachi TM3030. 

 

4. Security 
 

The lab commitment to safety and environmental protection is 

priority. Therefore, to maintain the environmental safety and security of 

the lab and its researchers, some procedures were implemented: 

a) Before using a reagent, its security datasheet was analyzed 

and followed according to its hazardous degree. When 

necessarily, appropriated equipment was used. For example, 

Fig. 30 shows the exposure controls section of hydrofluoric 
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acid datasheet used for etching polished samples for SEM 

observations. In this case was needed the use of exhaust 

ventilation, impervious gloves, chemical resistant goggle, lab 

coat and boots.   

 

Figure 30. Exposure controls section of hydrofluoric acid datasheet, and the 

protection apparatus used as underlines. 

 

b) When fast firing experiments had been scheduled, people 

working in lab facilities were previously warned to keep away 

from the furnace room. The security material used by the 

operator consisted in a high thermal resistant suit, face-shield, 

boots, gloves and long tweezers to maintain distance from the 

heat furnace. See Fig. 31. 
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Figure 31. Fast firing procedure. 

In each experiment, the appropriated measurements as response 

and neutralizers were in place in case of accident.  
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5. RESULTS AND DISCUSSION 

 

5.1 Powder characterization 

 

5.1.1 Borosilicate glass 
 

The effect of milling time on particle size of borosilicate glass 

was analyzed. As shown in Fig. 32 the particle size (D50) varies with 

milling time (t) according to equation indicated in the graph.  

 

 
Figure 32. Particle size of borosilicate glass as function of milling time. 

Fig. 33 shows particle size distribution of borosilicate glass after 

milled for 195 min.  
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Figure 33. Particle size distribution of borosilicate glass after milled for 195 min. 

The curve shows a bimodal distribution, with most of the particles 

showing sizes up to 20 m. 

 

The morphology of borosilicate glass particles after milling was 

characterized by scanning electron microscopy (SEM). As presented in 

Fig. 34 particles show an irregular form.   
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Figure 34. SEM image of borosilicate glass particles after milling for 195 min. 

 

5.1.2 Alumina 
 

Fig. 35 shows the particle size distribution of alumina as received. 
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Figure 35. Particle size distributions of as received Almatis Premium Alumina. 

The curve shows a narrow distribution of alumina particles and sizes 

of D50=0.3, 0.8 and 2.9 m. As presented in Fig. 36 aluminum oxide 

particles have a platelet-like form. 
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Figure 36. SEM image of as received aluminum oxide powder. 

 

5.1.3 Powder density and green density of 

samples after pressing 

 

Powder density as determined using helium was 2.223 ± 0.003 

g/cm³ for borosilicate glass and 3.966 ± 0.005 g/cm³ for alumina. The 

geometrical density (green density) of samples after pressing is shown in 

Table 10. 
 

Table 10. Green density of pressed samples 

  

Material Green density(g/cm3) Density, th.(%) 

Borosilicate glass 1.16 ± 0.16 52 

Borosilicate glass +    

5 vol.% alumina 
1.32 ± 0.21 55 

Borosilicate glass + 

10 vol.% alumina 
1.34 ± 0.34 56 

Borosilicate glass + 

15 vol.% alumina 
1.29 ± 0.31 52 

Borosilicate glass + 

20 vol.% alumina 
1.36 ± 0.23 53 
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5.2 Conventional sintering 

 

5.2.1 Dilatometric and DSC analysis 

 

Dimensional changes during heating and sintering of borosilicate 

glass compacts fabricated using powder of particle size of 20 m was 

analyzed using dilatometry. Fig. 37 shows the dimensional change of a 

compact heated at 15oC/min.  

 

 

Figure 37. Dilatometric analyses of a borosilicate glass compact heated at 

indicated heating rate. 

Fig. 37 shows that the compact begins to shrink at ~670 oC, the 

softening point of borosilicate glass [1] the sample reach the maximum 

velocity of shrinkage at ~810 oC, and that sintering finishes at ~900 oC, 

where L/T=0. The temperature region where the maximum velocity of 

shrinkage was observed, namely 800 and 850 oC, have been chosen for 

further sintering studies.  
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Fig. 38 shows the DSC analysis of the borosilicate glass heated at 

2 oC/min. 
 

 
Figure 38. DSC analysis of borosilicate glass heated at 2 oC/min. 

In the dDSC/dT curve in Fig. 38 two exothermic peaks are 

observed at ~700 to ~820 oC and ~820 to ~900 oC, related to 

crystallization at those temperatures ranges.[75] 

 

 

5.2.2 Sintering 

 

 

The effect of the particle size of borosilicate glass on densification 

was analyzed. Fig. 39 shows the relative density of borosilicate glass 

compacts after sintering at 800oC. 
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Figure 39. Relative density of borosilicate glass samples after sintering at 800 oC 

as function of particle size. 

Fig. 39 shows an increase in densification up to 20 m, and above 

a decrease in glass sintering related to the larger particle size, which 

demands a higher energy to sinter when compared to the other sizes. Fig. 

40 shows XRD of borosilicate glass sintered samples revealing a higher 

peak with particle size of 1 m. Fig. 41 shows a SEM image of the 

microstructure after sintering of the samples, varying borosilicate particle 

size of 1, 20 and 64 m. 
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Figure 40. XRD of sintered borosilicate glass at indicated particle sizes. 
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Figure 41. SEM image of borosilicate samples fabricated using powders of 

particle size as indicated, heated at 10 oC/min to 800 oC and sintered for 5 min. 

Fig. 41 shows a microstructure with more cristobalite formation 

for samples sintered with glass particle size of 1 m. The image with glass 

particle size of 64 m shows cristobalite formation though with a smaller 

size when compared to the first image, another reason for decreasing the 

glass sintering is the bigger particle size, which demands a higher energy 

to sinter than other. Fig. 40 and 41 show the effect of borosilicate particle 

size on sintering, as cristobalite is formed, presenting a slight decrease in 

crystallization with increasing particle size above size of 20 m.  
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The effect of heating rate on the densification of borosilicate glass 

powder of particle size of 20 m was investigated using heating rates of 

1 to 15oC/min, and is shown in Fig.42.  

 
 

Figure 42. Relative density of borosilicate glass samples sintered for 5 min at 

indicated temperatures using heating rates of 5, 10 and 15 oC/min. 

In Fig. 42 an increase in densification with increasing heating rate 

is observed. The determination of density on samples sintered using 

heating rates of 1 and 3oC/min was not possible due to the high brittleness 

of the samples. The observed decrease of sinterability with decreasing 

heating rate is related to the crystallization of cristobalite, as presented in 

Fig.43.   
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Figure 43. XRD of borosilicate glass, sintered at 800°C, using a holding time of 

5 min and the indicated heating rates. 

As shown in Fig. 43, the amount of cristobalite formed is inversely 

proportional to the heating rate. This behavior can be explained by the 

time in which samples have to diffuse for nucleation and crystallization 

until reaches maximum temperature. The formation of cristobalite affects 

densification. If crystallization occurs before full densification, the 
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reduction of viscous flow of the system hinders densification and a porous 

body is obtained [75].  

 

Fig. 44 shows SEM images of the microstructure of the samples 

after sintering, using heating rates from 5 to 15 oC/min. 

 
 

Figure 44. SEM images of borosilicate glass, sintered at 800 °C, holding time of 

5 min, varying the heating rate as indicated. Red circles show cristobalite crystals. 

Fig. 44 shows the characteristic “flower” form of cristobalite. The 

increase in heating rate hinders crystallization, both the size and quantity 

of cristobalite decreases with increasing heating rate.  
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The effect of holding time and sintering temperature on 

densification was analyzed.  

 
 

Figure 45. Relative density as function of sintering time for borosilicate glass 

powder compacts, heated at 15oC.min-1 up to indicated temperature. 

As shown in Fig. 45 the highest density obtained was 99.6 th.% ± 

0.4 after sintering for 5 min at 800oC.  

 

 

5.2.3 Conventional sintering of borosilicate glass 

and alumina compacts 

 

 

The effect of the content and particle size of alumina on the 

densification of borosilicate glass-alumina compacts was analyzed and 

results are shown in Fig. 46. Alumina powders with particles size (D50) 

of 0.3, 0.8 and 3 m were used, varying alumina content from 5 to 20 

vol.%.  
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Figure 46. Relative density as function of alumina content of borosilicate glass 

compacts heated at 15 oC.min-1 up to 800 oC and held for 5 min, using alumina 

powders with particle size (D50) as indicated. 

The relative density of the composites decreases with the particle 

size and increasing amount of alumina. There are two possible motives 

for the behavior: 

 

a) The presence of alumina acting as nondensifying inclusions 

giving rise to different sintering rates, and the development of 

transient and residual stresses that hinders densification. 

Causing porosity and leading to microstructural damage in the 

sintered material such as crack-like voids.[76] 

 

b) The formation of a continuous network of inclusions reduces 

the sintering, inhibiting the densification. That phenomenon 

is related to the percolation threshold, i.e., the formation of 
long-range connectivity, which depends on the size ratio of 

the grain matrix and inclusion and inclusions content.[77] In 

a binary system such as proposed, using Bouvard and Lange´s 

model shown in Section 2.6, at a critical concentration of 2 
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vol.%, inclusions start to contact with each other and form an 

extended rigid network. As the theoretical model considers 

the inclusions perfectly dispersed in the matrix, in our 

experiments some degree of alumina agglomeration could be 

present, contributing for the increases of the percolation 

threshold from 2 vol.% to 5 vol.%.    

 

The effect of sintering temperature on the densification of 

borosilicate glass-alumina compacts (alumina, D50= 3 m) was 

investigated.   
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Figure 47. Relative density as function of alumina content in borosilicate glass 

powder compacts heated at 15 oC.min-1 up to indicated temperature and sintered 

during 5 min. 

Samples containing 5 vol.% alumina show the highest density 

(99.0 ± 0.2 th.%). A decrease in the relative density above 5 vol.% 

alumina was observed.  

 

The effect of alumina content on the crystallization of borosilicate 

glass during sintering of glass-alumina compacts was analyzed. Fig. 48 

shows XRD of composites containing different amounts of alumina, 

sintered at 800°C during 5 min. 
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Figure 48. XRD of composites, sintered at 800°C, holding time of 5 min, varying 

alumina content as indicated. 

Fig. 48 shows a decrease in the cristobalite with increasing of 

alumina content, indicating its influence upon crystallization. Na+ cations 

are present in borosilicate glass composition (see Table 6), and its 

transport kinetics in Pyrex is known to be the rate-limiting step for 

devitrification.[5] Al+3cations, present in alumina, are a network former, 

which can coordinate tetrahedrally with oxygen of SiO4 presented in the 

glass structure. The negative charge created by the substitution of Si+4 by 

Al+3 in the glass network provides an electrochemical potential for alkali 

ions, maintaining electroneutrality at the local level, inhibiting Na+ 

migration and cristobalite crystallization. 

 

The microstructure of samples sintered at 800oC during 5 min and 

heated at 15oC/min was analyzed by SEM, and it is shown in Fig. 49. 
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Figure 49. SEM images of borosilicate glass and composites samples 

conventionally sintered at 800oC during 5 min and heated at 15oC/min. Alumina 

content as indicated. 
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5.2.4 Coefficient of thermal expansion (CTE) 

 

 

Using dilatometry analysis the CTE of sintered samples of 

borosilicate glass and CFG composites was determined between 25 and 

300oC using a heating rate of 15oC/min. An increase in CTE was observed 

as the volume of alumina added increases. The CTE determined were 3.5, 

4.9 and 5.4.10-6/oC for borosilicate glass, and composites containing 5 and 

10 vol.% alumina, respectively. The increase in the CTE of CFG when 

compared to borosilicate glass, is related to the CTE of alumina which is 

9.10-6/oC, respectively.    

 

Fig. 50 shows the theoretical CTE as function of cristobalite 

content, calculated using Turner´s model (in section 2.4). The 

experimental data are higher than theoretical data, due, probably, to the 

presence of cristobalite which has CTE of 10.10-6/oC. In Fig. 50 is 

possible to observe the influence of cristobalite on the thermal expansion 

of the sintered materials. Considering only the presence of alumina and 

glass, the calculated CTE of CFG composites is 4.2 for 5 vol.% alumina 

and 5x10-6/oC for 10 vol.% alumina. The volume of cristobalite in the 

sintered samples can be estimated from Fig. 50 and from the experimental 

CTE data 3.5, 4.9 and 5.4x10-6/oC, for 0, 5 and 10 vol.% alumina, 

respectively. For glass, the estimation of cristobalite volume content is 

~29%. For composites with 5 vol.% alumina content the cristobalite 

volume decreased to ~23%, and for 10 vol.% alumina, ~16%. 

Considering the content of cristobalite estimated from Fig. 50, after 

conventional sintering during 5 min at 800oC and a heating rate of 

15oC/min, the actual relative density for borosilicate glass samples is 

98%, and for composites containing 5 and 10 vol.% alumina 98% and 

97%. 
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Figure 50. Theoretical linear CTE of borosilicate glass and CFG composites 

containing 5 and 10 vol.% alumina, as function of cristobalite content between  

25 and  300oC. 

 

 

 

5.2.5 Fast firing of borosilicate glass and 

alumina-filled borosilicate glass compacts 

 

 

As shown previously in Fig. 42, using conventional firing 

increasing the heating rate increases densification and hinders 

crystallization. To investigate the effect on densification and cristobalite 

formation of the fastest heating rate possible to be used, compacts of 

borosilicate glass and borosilicate glass containing 5 to 20 vol.% alumina 

(D50= 20 m) were introduced in a pre-heated furnace at temperatures 

between 850° and 1000 oC and held during 3 to 7 min. Fig. 51 shows the 

relative density of borosilicate glass compacts after fast firing at indicated 

temperatures, as function of holding time and Fig. 52 shows the relative 

density of alumina-filled borosilicate glass composites after fast firing as 

function of alumina content. 
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Figure 51. Relative density of borosilicate glass compacts as function of holding 

time after fast firing at indicated temperatures. 
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Figure 52. Relative density of alumina-filled borosilicate glass compacts as 

function of alumina content, fast fired at indicated holding time and temperatures. 

 

The highest relative density was obtained after fast firing 

borosilicate glass compacts during 5 min at 900oC and for 3 min at 950oC. 

For alumina-filled borosilicate glass compacts containing 5 vol.% of 

alumina after fast firing during 5 min at 900oC exhibited de highest 

density. For alumina content above 5 vol.% densification shows similar 

behavior observed using  conventional sintering  and the same origin for 

this behavior could be addressed.   

 

When compared to conventional sintering (see Fig. 45), a reduction 

in sinterability of compacts fired at 850 oC can be observed. It is thought, 

that this temperature is not high enough to create a thermal gradient within 

the compact to favor mass transport during fast firing up to 7 min.  
 

The microstructure of the samples fast fired at 900 oC for 3 min 

was analyzed by SEM, and it is shown in Fig. 53. 
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Figure 53. SEM images of borosilicate glass samples fast fired at 900oC for 3 

min. 
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Fig. 53 shows a microstructure with isolated cristobalite 

agglomerates for both borosilicate glass and composites. Cracks around 

cristobalite crystals can be observed in a larger amount when compared 

to conventional sintered samples (see Fig. 49). When compared to 

conventionally sintered samples, fast fired samples showed the same 

relative density for composites with 5 vol% considering the error.  

 

 

5.3 Flexural strength analysis  

 

5.3.1 Conventional sintering 
 

 

The flexural strength (σ) and Weibull modulus (m) of borosilicate 

glass and CFG composites containing 5 and 10 vol.% of alumina  

conventionally sintered during 5 min at 800 oC, heated using  heating rate 

of 15 oC/min,  were determined and are shown in Fig. 54. 
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Figure 54. Flexural strength and Weibull distribution of borosilicate glass and 

CFG composites sintered at 800 oC, heating rate of 15 oC/min for 5 min. 

Fig. 54 shows an increase of flexural strength of borosilicate glass 

with alumina addition. The flexural strength of borosilicate glass was 

97±15 MPa and for composites containing 5 and 10 vol.% alumina,175 ± 

38 MPa and 188 ± 32 MPa, respectively. The Weibull module for 

borosilicate glass, and composites containing 5 and 10 vol.% alumina 

were 5.5, 4, and 4.8. The reduction in Weibull module of composites 

when compared to borosilicate glass samples could be related to alumina 

agglomeration causing a broad distribution of size defects.  

 

The increase in flexural strength determined in alumina-filled 

borosilicate composites, could be related to load-transfer due to the 

presence of high- elastic modulus alumina particles in the glass matrix 

decreasing the tendency for deformation during loading.[20, 78] Also, the 

presence of residual compressive internal stresses in the matrix created 

during cooling due to the thermal expansion mismatch between matrix 

and inclusions, could have further contributed to the observed increase in 
strength.[20] Cristobalite formation is lower in composites as shown in 

Fig. 47, as transformation of  to  cristobalite during cooling creates 

detrimental stresses, (See section 2.5) the absence of cristobalite could 

have contributed to the increase in mechanical strength.  
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5.3.2 Flexural strength analysis of fast fired 

samples 
 

 

The flexural strength and Weibull modulus of borosilicate glass 

and CFG composites containing 5 and 10 vol.% alumina fast fired at 900 
oC for 5 min were determined and are shown in Fig. 55.  

 

 
 

Figure 55. Flexural strength and Weibull distribution of borosilicate glass and 

CFG composites fast fired at 900oC for 5 min. Composition as indicated. 

 

The flexural strength and Weibull modulus in fast fired samples is 

lower than those determined for samples fabricated by conventional 

sintering. The flexural strength of fast fired samples  increases with 

increasing alumina content, but when compared to conventional sintered 

samples σ was 55% lower (54 ± 10 MPa) for borosilicate glass, and for 

composites containing 5 and 10 vol.% alumina, 42% (79 ± 16 MPa) and 

57% (101 ± 23 MPa) lower, respectively. The Weibull module of the 

borosilicate glass, and the composites containing 5 and 10 vol.% alumina 

were 4.5, 3, and 3.1, respectively.  



80 

 

 

To try to find an explanation for the decrease on mechanical 

properties of fast fired samples when compared to those obtained by 

conventional sintering, the formation of cristobalite during fast firing was 

analyzed by XRD and compared to samples conventionally sintered (see 

Fig.56). 

 

 
 

Figure 56. XRD of samples conventional sintered during 5 min at 800oC, heating 

rate of 15oC/min and fast fired samples at 900oC for 5 min. Composition as 

indicated. 

 

When compared to fast fired samples, in conventional sintering is 

observed higher peaks of cristobalite, which can be related to a higher 

degree in crystallinity.[79] A decrease in cristobalite formation with 

increasing alumina content can be observed.  In fast fired samples, the 

presence of alumina has not shown any effect on crystallization, probably 

due to the short time at high temperature used during the entire sintering 

process. The amount of cristobalite formed during conventional sintering 

and fast firing seems to be the same and, therefore, the decrease in 

mechanical properties in fast fired samples cannot be related the amount 

of cristobalite formed. 

 

Fig. 57 shows SEM images of the microstructure of transversal 

section of samples conventional sintered (CONV) and fast fired (FF). 
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Figure 57. SEM images of samples tested mechanically conventionally sintered 

during 5 min at 800oC, heating rate of 15oC, and fast fired at 900oC for 5 min. 

 

Fig. 57 shows a surface mostly occupied by cracks related to the 

stress developed during the test. No difference in the microstructure of 

samples conventionally sintered and fast fired could be observed. 

 

Although the cause of the difference in mechanical properties 

between conventional and fast fired samples could not be observed from 

SEM images and the cause remains elusive, it is thought that it could be 



82 

 

related to cristobalite transformation during rapid cooling in fast fired 

samples. During cooling cristobalite transforms from to -cristobalite. 

The changes in their unit cells, causes a large change in thermal 

expansion. In-cristobalite, a-axis expands at only 2.1 x 10-5 Å oC-l; 

whereas in -cristobalite the a- and c-axis increase rapidly at rates of 9.3x 

10-5 and 3.5 x 10-5, ÅoC-l, respectively. This behavior translates into very 

large, spontaneous strains of -1% along a-axis and -2.2% along c-axis 

during inversion, and could have created microcracks.[6] 

 

The actual transition temperature of cristobalite transformation is 

dependent upon the degree of crystallinity of the specimen: well-

crystallized materials transform at the highest temperatures; and materials 

which are poorly crystallized have a lower transition temperatures.[80] 

As shown in Fig. 56, fast fired samples are less crystalline, so the 

transformation temperature of cristobalite is expected to be lower than in 

conventional sintered samples. The deformability of borosilicate glass 

matrix decreases with temperature i.e., is more rigid, and consequently 

the stress created during the  to -cristobalite transformation could not 

be relaxed easily by matrix deformation. Both rapid cooling and the 

rigidity of the borosilicate glass could have contributed to avoid stress 

relaxation having as a consequence the formation of microcracks which 

could have reduced mechanical resistance.  

 

 

5.4 Fracture toughness analysis 
 

 

The fracture toughness of borosilicate glass and CFG composites 

fabricated by conventional sintering was determinate and shown in Table 

11. 
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Table 11. Fracture toughness of borosilicate glass and CFG composites. 
 

Material  KIc (MPa.m1/2) 

Borosilicate glass 0.7 ± 0.1 

Borosilicate glass + 5 vol.% 

alumina 

1.3 ± 0.1 

Borosilicate glass + 10 vol.% 

alumina 

1.9 ± 0.1 

 

Table 11 shows an increase in fracture toughness with alumina 

content. The crack propagation path in borosilicate glass and composites 

was analyzed and is shown in Fig. 58. 

 

 
 

 
 

Figure 58. SEM images of crack path in borosilicate glass and CFG composites. 

 

Toughening mechanisms acting upon the crack can be identified 

by the SEM images. In borosilicate glass the crack propagates practically 

straight due to the flat surface. In composites, crack deflection, crack 

bridging and pull-out were observed on the crack propagation path. The 

observed toughening mechanisms could be related to the thermal 

expansion coefficient mismatch between alumina (= 9×10−6/oC) and 

borosilicate glass matrix (= 3.5×10−6 /oC).  The development of radial 
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compressive stresses in the matrix around the reinforcement upon cooling 

is expected and consequently cracks are deflected by alumina particles.  

 

The interface between alumina and borosilicate glass was analyzed 

by SEM.    

 

 

 
 

Figure 59.SEM image of conventional sintered alumina-filled borosilicate glass 

fabricated sintering time 5 min at 800oC, and heating rate of 15oC/min. 

 

Fig. 59 shows that alumina and borosilicate glass in CFG-

composites form weak interfaces which are probably related to the 

increase on fracture toughness. Alumina particles are almost detached 

from the borosilicate glass matrix forming a weak interface. It was not 

possible to find information in literature about wettability of borosilicate 

glass on alumina, but the observed small interaction between alumina 

particle and the glass, could indicate poor wettability. Also, due to the 

higher CTE of alumina compared to borosilicate glass, the higher 
retraction of alumina during cooling could have contributed to observed 

detachment between alumina particles and the glass.  

 

The fracture surface of borosilicate glass and CFG composites was 

analyzed by SEM and is shown in Fig. 60. 
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Figure 60. Fracture surface of conventionally sintered borosilicate glass and CFG 

composites, sintered during 5 min at 800oC, heating rate of 15oC/min. Alumina 

pull-out indicated by circles. 
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Examination of SEM images in Fig.60 shows an almost flat 

borosilicate glass fracture surface indicating that the crack path has not 

been deflected. An increasing on roughness of the fracture surface for 

composites containing 5 and 10 vol.% alumina can be observed, 

indicating that the crack has been deflected. The fracture propagates 

through the glass matrix around the inclusion. No alumina particles 

cutting have been observed.  

 
 

5.5 Vickers hardness analysis 

 

Vickers hardness was determined in fast fired and conventionally 

sintered samples using Vickers indentation tests at a load of 5N, and the 

results are shown in Fig. 61. 

 

 

 
 

Figure 61. Vickers hardness of samples conventionally sintered during 5 min at 

800oC, heating rate of 15oC/min, and fast fired at 900oC for 5 min. 

 

Due to the presence of alumina (Hv = 19 GPa), hardness in 

composites is higher than borosilicate glass and increases with increasing 
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alumina content. Fast fired samples shown lower hardness when 

compared to conventionally sintered samples, possibly due to a high 

amount of microcracks created in fast firing during cooling as explained 

in section 4.3.2. 

 

 

5.6 Dielectric constant analysis 

 

 

Electrical conductivity measurements of borosilicate glass and 

CFG composite samples were performed and the respective dielectric 

constant,  calculated. Results are shown in Table 12.  
 
 

Table 12. Dielectric constant at 1 MHz. 

 
Material Dielectric constant() (1 MHz) 

Borosilicate glass             5.0 ± 0.5 

 

Borosilicate glass + 5 vol.% 

alumina 

6.5 ± 0.3 

Borosilicate glass + 10 vol.% 

alumina 

7.4 ± 0.4 

 

 

The dielectric constant increases with increasing alumina content.  

As shown in section 2.11.3, the addition of Al2O3 particles leads to 

changes in glass structure, such as substitution of Si4+ by Al3+ and glass 

composition.[5, 23] The difference in the dielectric constant shown in 

Table 12, from 5 for glass to 7.4 for composites with 10 vol.% is attributed 

to the presence of Al3+ ions in the glass structure acting as modifier. The 

excess of negative charge originated by the substitution of Si4+ by Al3+, is 

compensated by the Na+ ions contained in the glass network, maintaining 

electroneutrality at the local level. As shown in Fig. 62, the ions 

substitution occurrence causes an increase in the number of dipoles, 

increasing conductivity. [5, 23] 
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Figure 62. Schematic representation of glass network containing Al3+ ions.[23] 

 

 

5.7 Tape casting of alumina-filled borosilicate mixtures 
 

 

To study the behavior as tapes of the proposed material containing 

5 and 10 vol.% alumina the rheological behavior of the borosilicate glass 

and mixtures of borosilicate glass and alumina slurries was analyzed. The 

viscosity was determined for glass and mixtures containing 5 and 10 

vol.% alumina, the values were 1098, 1154, 1235 mPa∙s, respectively.  

 

The slurries were able to be casted onto the coated carrier, with an 

easy removal after drying. The tapes presented a smooth and 

homogeneous surface and good flexibility as shown in Fig. 63. The green 

relative density of the sheets was approximately 50 th.%, and thickness 

of 0.9 mm.   
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Figure 63. Green tapes of mixtures of borosilicate glass with 5 vol.% alumina 

content. 

Dried tapes were heated up to 500oC in a furnace, with a heating 

rate of 1oC/min, and debinded for 30 min. Then, using a heating rate of 

15oC/min heated up to 800oC and sintered of 5 min. The relative density 

of the glass and composites containing 5 and 10 vol.% alumina after 

sintering were 95 ± 5%, 92 ± 6% and 89 ± 5%, respectively, the linear 

retraction was 17 ± 0.5% for composites containing 5 vol.% alumina, and 

16.0 ± 0.7% for composites containing 10 vol.% alumina. Fig. 64 shows 

the tape with 5 and 10 vol.% alumina after sintering. Thickness of the 

sintered tapes was ~0.75 mm.  

 

 
 

Figure 64. Alumina-filled borosilicate glass tape containing 5 vol.% alumina, 

after sintered at 800oC for 5 min. 
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6. CONCLUSIONS 

 

 Uniaxial pressed compacts and tapes of borosilicate glass and 

alumina-filled borosilicate glass composites were fabricated by 

conventional sintering and uniaxial pressed compacts by fast firing 

and the relation between processing parameters and final density 

were studied. 

 The optimized processing parameters for conventional sintering 

which achieved the highest relative density with the mechanical 

properties suitable to use as substrate for microelectronic packaging 

were a heating rate of 15ºC/min, holding time of 5min, sintering 

temperature of 800ºC, glass particle size of D50 = 20m and alumina 

particle size of D50 = 3m. 

 Increasing the heating rate, increases densification and inhibit 

cristobalite formation in conventionally sintered borosilicate glass. 

 Alumina hinders cristobalite formation in borosilicate glass during 

conventional sintering.  

 Alumina addition increases flexural strength and fracture toughness 

of conventionally sintered borosilicate glass.  

  Alumina addition increases fracture toughness of borosilicate glass 

by crack deflection, crack bridging and pull-out.  

 Alumina addition increases hardness, dielectric constant and 

coefficient of thermal expansion of conventionally sintered 

borosilicate glass. 

 Alumina addition has no effect on cristobalite formation during fast 

firing. 

 Flexural strength of fast fired borosilicate glass and alumina-filled 

borosilicate glass composites decreased when compared to 

conventionally sintered samples due to, possibly, the presence of 

microcracks originated during rapid cooling by cristobalite 

transformation. 
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 Hardness of fast fired samples decreased when compared to 

conventionally sintered, probably due to microcracks formation. 

 

 

 

7. Appendix 1 

 

7.1 Nucleation rate 
 

For nucleation in condensed phases, close to the equilibrium 

melting temperature, Tm, the free-energy change per unit volume on 

transforming phases, Gv, is approximately proportional to the difference 

between the melting and crystallization temperature, T, i. e., the degree 

of undercooling.[2] The free-energy change per unit volume can be 

calculated using equation 23: 

∆𝐺𝑣 ≈
∆𝐻𝑣∆𝑇

𝑇𝑚
                       (23) 

where Hv is the heat of transformation per unit volume. The overall 

change in free energy, G(v), for phase transformation is the sum of 

energy required to the formation of the interface and the change in volume 

free energy related to the phase transformation . Considering a 

spherical nucleus with radius r, the free energy change is 

∆𝐺(𝑟) = 4𝜋𝑟2𝛾𝑆𝐿 +  
4

3
𝜋𝑟3∆𝐺𝑣             (24) 

 

where 𝛾𝑆𝐿 is the interface energy. 

The critical size of the embryo that has the maximum free energy, 

G* and which leads to a continuous growing in size and decrease in free 

energy ( see Fig. 4) is given by[2] 
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𝑟∗ =  − 
2𝛾𝑆𝐿

∆𝐺𝑣
                        (25) 

 

7.2 Homogeneous nucleation rate 
 

The nucleation of most phase transformation takes place 

heterogeneously on substrates which reduce the thermodynamic barrier 

to nucleation. Substituting r* into equation 24, the energy barrier 

associated to homogeneous nucleation, G* can be calculated by[2] 

∆𝐺∗ =
16𝜋𝛾𝑆𝐿

3

3∆𝐺𝑣
2 =

16𝜋𝛾𝑆𝐿
3 𝑇𝑚

2

∆𝐻𝑣
2∆𝑇2

               (26) 

The steady-state nucleation rate per unit volume is defined as  

𝐼 = 𝜑𝑛∗                                (27) 

where 𝑛∗ is the steady-state population of critical nuclei per unit volume 

(m-3),  and 𝜑 is the frequency factor or rate at which atoms join critical 

nuclei (s-1). 

 

𝑛∗ = 𝑛0𝑒𝑥𝑝(− ∆𝐺∗ 𝑘𝑇⁄ )                   (28) 

n* depends on both the absolute temperature, 𝑇 and the 

undercooling, ∆𝑇.   

φ = 𝜔 𝑒𝑥𝑝(−∆𝐺𝑚 𝑘𝑇)⁄                  (29) 

 

where n0 is the single molecules  per unit volume, k the Boltzmann 

constant,    the atomic vibrational frequency andGv, is the activation 

energy for atomic migration.[2]can be written by an alternative form 

considering the melt viscosity 
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𝜑 =
𝑘𝑇

3𝜋𝑎0𝜂
                            (30) 

Substituting G* in Eq.24 for G* in equation 29, the 

homogeneous nucleation rate I, can be calculated using equation 31: 

𝐼 = 𝑛0𝜔𝑒𝑥𝑝
−16𝜋𝛾3𝑇𝑚

2

3𝑘𝑇∆𝐻𝑣
2(𝑇𝑚−𝑇)2

𝑒𝑥𝑝 (−
∆𝐺𝑚

𝑘𝑇
)                 (31) 

 

 

7.3 Heterogeneous nucleation rate 

 

For the steady-state heterogeneous nucleation, the free energy for 

forming a critical-size embryo having the shape of a spherical cap on a 

substrate is given by 

∆𝐺ℎ𝑒𝑡
∗ =  ∆𝐺∗𝑓(𝜃)                              (32) 

where ∆𝐺ℎ𝑒𝑡
∗  is the free energy barrier to heterogenous nucleation, ∆𝐺∗ 

the energy barrier to form an embryo of a critical size. 

𝑓(𝜃) =  
(2+cos 𝜃)+(1−cos 𝜃)2

4
                             (33) 

 

where 𝜃 is the contact angle between substrate and nucleus. The 

thermodynamic barrier for nucleation on a substrate decreases with 𝜃. 

The steady-state heterogeneous nucleation rate per unit area of substrate, 

Is, in condensed phases is 

𝐼𝑠 = 𝐾𝑠𝑒𝑥𝑝 (
−∆𝐺ℎ𝑒𝑡

∗

𝑘𝑇
)                        (34) 

where 

𝐾𝑠 ≈ 𝑛𝑠
0𝜔𝑒𝑥𝑝 (

−∆𝐺ℎ𝑒𝑡
∗

𝑘𝑇
)                         (35) 
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The expression is similar to homogenous nucleation rate, however 

the number of molecules is per unit area,𝑛𝑠
0, due to the contact with 

substrate, instead of molecules per unit volume for homogeneous 

nucleation.  

 

7.4 Crystal growth 

 

After a stable nucleus has been formed, the rate of growth is 

determined by the rate at which material reaches the nucleus-melt 

interface that depends on the temperature and the degree of 

supersaturation of the melt.[81] 

The growth rate per unit area of the nucleus-melt interface, 𝑢, can 

be calculated by equation 36 

𝑢 =  𝜑𝑎0 [1 − 𝑒𝑥𝑝 (−
∆𝐺

𝑘𝑇
)]                             (36) 

where 𝑎0 is the thickness of the  layer on the interface and is  the 

molecular diameter of the constituted nucleus composition.  
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