UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

DINÂMICA DAS OSCILAÇÕES AUTO INDUZIDAS EM TUBULAÇÕES

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA

RENATO BARBIERI

FLORIANÓPOLIS SANTA CATARINA - BRASIL

DEZEMBRO 1984

DINÂMICA DAS OSCILAÇÕES AUTO INDUZIDAS EM TUBULAÇÕES

RENATO BARBIERI

ESTA TESE FOI JULGADAS ADEQUADA PARA A OBTENÇÃO DO TÍTULO DE

" MESTRE EM ENGENHARIA "

ESPECIALIDADE EM ENGENHARIA MECÂNICA E APROVADA EM SUA FORMA FINAL PELO PROGRAMA DE PÓS-GRADUAÇÃO.

Delletta Prof. Domingos Boechat Alves, D.Sc. **PRAENTADOR** Prof. Clóvis Razmundo Maliska, Ph.D. eoordenador OP, Cellellells Prof. Domingos Beechat Alves, D.Sc. Presidente Prof. Arnd Blass Ph.D Prof. Clóvis Baimundo Maliska, Ph.D.

BANCA EXAMINADORA:

Domingos Boechat Alves

SUMÁRIO

CAPITULO I	āσ.
1. IDENTIFICAÇÃO DO PROBLEMA	1
1.1 Origem do Problema	1
1.2 Objetivos	2
1.3 Organização do Trabalho	2
CAPÍTULO II	
2. FORÇAS DE ARRASTE E SUSTENTAÇÃO	4
2.1 Generalidades	4
2.2 Derivação da Força de Sustentação	7
2.3 Análise Experimental	18
2.4 Generalização das Forças de Flutuação	21
2.4.1 Força de Sustentação	23
2.4.2 Força de Arraste	25
CAPITULO III	
3. MASSA ADICIONAL E ATRITO VISCOSO	28
3.1 Generalidades	28
3.2 Massa Hidrodinâmica	29
3.3 Amortecimento Viscoso	35
CAPÍTULO IV	
4. MODELAMENTO MATEMÁTICO	38
4.1 Discretização da Estrutura	38

	4.2	Energia Cinética do Tubo	41
	4.3	Energia de Deformação do Tubo	44
	4.4	Energia Cinētica do Escoamento Interno	47
	4.5	Trabalho das Forças Externas	51
	4.6	Princípio de Hamilton	53
	4.7	Linearização do Sistema de Equações	59
	4.8	Análise do Escoamento do Fluído Interno	61
	4.9	Forças Externas	63
	4.10	Sistema Linearizado	64
CAP	TULO	L V	
5:	SOLU	ÇÃO NUMÉRICA DO SISTEMA LINEARIZADO	68
	5.1	Adimensionalização das Equações	68
	5.2	Método de Galerkin	69
CAP	ĨTULO	VI	
6.	DISC	JSSÕES E CONCLUSÕES	75
	6.1	Considerações Preliminares	75
	6.2	Comportamento do Sistema	76
	6.3	Conclusões	85
	6.4	Comparação de Resultados	89
	6.5	Sugestões	91
REFI	ERÊNCI	IAS BIBLIOGRÁFICAS	92
APÊ	NDICE	I - METODO DE MULLER	97
APÊ	NDICE	II - FUNÇÕES CARACTERÍSTICAS DE VIGAS	104
	•		

ν

LISTA DE FIGURAS

Figura	1	<u> </u>	Formação da esteira de vórtices	8
Figura	2	-	Fileira de vórtices com sistema de referência	8
Figura	3	-	Forma característica do escoamento da esteira de	
			vortices movendo-se com velocidade u*. Superfície	
			de contrôle de y = $-\infty$ a y = $+\infty$	9
Figura	4	-	Esteira de vórtices em 5 instantes de tempo dis-	
			tintos	11
Figura	5	_ '	Cilindro Equivalente	18
Figura	6	-	Nº de Strouhal e C $_{\mathbb{D}}$ em função do Nº de Reynolds .	19
Figura	7	-	Classificação do Escoamento	20
Figura 8	8	-	Coeficiente C _D para cilindros rugosos em função	
			do Nº de Reynolds	21
Figura	9	-	Coeficiente de sustentação e coeficiente de arras	
			te alternante em função do Nº de Reynolds	26
Figura	10		Nº de Strouhal obtido por Bishop e Hassan [7]	26
Figura	11	7.	Valôr de C_{L}^{*} para cilindros oscilantes	27
Figura	12	-	Massa Adicional	30
Figura	13	-	Comparação para cilindros circulares fixos em	
			fluido oscilante	31
Figura	14		Comparação para cilindros circulares oscilantes	
.			em fluido parado	31
Figura	15	-	Coeficiente da massa adicional em função de R_2/R_1	33
Figura	16		Influência do comprimento na massa adicional	34

Pág.

Figura 17 -	Coeficiente Im(H) para Cálculo do Amortecimento	
·	Viscoso	37
Figura 18 -	Discretização da Estrutura	39
Figura 19 -	Tempo Médio de Computação para Determinação de ω .	76
Figura 20 -	Freqüências Adimensionais Complexas	7'8
Figura 21 [°] -	Freq üê ncias Adimensionais Complexas	79
Figura 22 -	Freqüências Adimensionais Complexas	80
Figura 23 -	Freqüências Adimensionais Complexas	81
Figura 24 -	Freqüências Adimensionais Complexas	83
Figura 25 -	Freqüências Adimensionais Complexas	84
Figura 26 -	Freq ü ências Adimensionais Complexas	86
Figura 27 -	Freqüências Adimensionais Complexas	87
Figura 28 -	Freqüências Adimensionais Complexas Obtidas por	
	Paîdossis & Issid [15]	90
Figura 29 -	Método de Müller	97

.

vii

LISTA DE TABELAS

Tabela 1	- Valôres de C _D e C _L para Cilindro Oscilante-Flu <u>i</u>	
	do Estacionārio [31]	35
Tabela 2	- Influência de 🗴 nas Velocidades Críticas e de	
	Acoplamento	82
Tabela 3	- Condições Críticas de Estabilidade (Apoios Sim	
	ples)	88

Pág.

LISTA DE SÍMBOLOS

a = amplitude de oscilação do cilindro. A = area projetada do cilindro. **a**, = vetor de constantes. c = amortecimento genérico. C_n = coeficiente de arraste médio. C_{Do} = coeficiente de arraste oscilante. C, = coeficiente de sustentação. C_v = Coeficiente de amortecimento viscoso equivalente. C_m = Coeficiente de massa adicional. **d** = diâmetro do cilindro. **d** = diâmetro do cilindro equivalente. ds = elemento infinitesimal de área. = módulo de Elasticidade do material do tubo. E EI = rigidez efetiva do tubo. f = freqüência induzida de oscilação do tubo. fs = frequência de Strouhal. F_a = força axial no tubo. F_n = força de arraste. $\mathbf{F}_{\mathbf{I}}$ = força de sustentação. F_v = força na direção y. g = aceleração da gravidade.

h = espaço entre as duas fileiras de vortices.

 $\mathbf{\tilde{h}}$ = espaço equivalente entre as duas fileiras de vortices. J_{v} = momento do fluído contido na superfície de controle. Im(H) = coeficiente para obtenção do C_{y} . = espaço entre dois vortices consecutivos. = espaço equivalente entre dois vórtices consecutivos. ē L^{*} = energia Lagrangeana. = comprimento do tubo. L = massa do tubo por unidade de comprimento. Rì ma = massa adicional. = massa do fluído interno por unidade de comprimento do tubo. М = pressão do fluxo interno. р $\bar{\mathbf{p}}$ = pressão na extremidade do tubo. P_v = força devido à pressão na superfície de controle. = campo de deslocamentos. q = vetor posição de um ponto genérico do tubo após deformação. R Rë = número de Reynolds. R_{CR} = número de Reynolds crítico. Ro = vetor posição de um ponto genérico pertencente à linha de centro do tubo. R = velocidade absoluta do ponto genérico do tubo. R_r = velocidade do ponto com relação ao sistema rotativo.

= nº de Strouhal.

S

х

- S* = frequência adimensional do tubo oscilante.
- Sy = momento na direção y da massa de fluido em escoamento (exter no).
- S_{t} = ārea da seção transversal do tubo.

T = energia cinética total.

T = tensão inicial nos extremos do tubo.

 T_{e} = tensão axial efetiva.

T_{fi} = energia cinética do fluído interno.

 T_+ = energia cinética do tubo.

t = tempo.

u* = velocidade de translação da esteira de vórtices.

u = deslocamento na direção x do ponto genérico do tubo.

 $\mathbf{u}_{\mathbf{0}}$ = deslocamento inicial na direção x do ponto genérico do tubo.

U = velocidade média do fluxo de fluído interno.

U* = energia de deformação do tubo.

 U_y = componente da velocidade do fluxo externo na direção y. U_z = componente da velocidade do fluxo externo na direção z. U_m = velocidade do fluxo livre.

v = deslocamento na direção y do ponto genérico do tubo. v_x = componente da velocidade do fluxo externo na direção x. v_y = componente da velocidade do fluxo externo na direção y. v^{*} = deslocamento transversal genérico.

 $\mathbf{v_n}$ = componente normal à superfície de contrele da velocidade do fluxo externo.

V = velocidade média do fluxo externo.

 $V_{0} = volume.$

Vc = volume de contrôle.

 V_{-} = velocidade absoluta do fluxo interno apos deformação do tubo.

V* = velocidade adimensional do fluxo interno.

x = coordenada axial ao tubo.

w = deslocamento do ponto generico na direção z.

W_{FYT}= trabalho das forças externas.

w = energia transferida.

 W_{ax} = trabalho realizado pelas forças axiais.

y = coordenada transversal ao tubo.

z = coordenada transversal ao tubo.

z* e z_o= coordenadas locais dos vórtices.

 ρ = densidade do fluido interno.

 ρ_+ = densidade do tubo.

Γ = circulação do vórtice unitário.

Γ* = carregamento externo adimensional.

 β = razão de massas.

 γ = peso adimensional.

 ψ = ângulo de fase.

 ξ = coordenada adimensional.

 η = deslocamento transversal adimensional.

 $\eta' = \operatorname{aproximação} \operatorname{de} \eta$.

- χ = amortecimento adimensional.
- τ^* = tempo adimensional.

 $\phi_n(\xi)$ = série de funções admissíveis no espaço.

 $\phi_n(\tau^*)$ = série de funções admissíveis no tempo.

- ε = erro infinitesimal genérico.
- ω = freqüência de oscilação do tubo.
- $\omega_{s} = 2 \pi f_{s}$
- $i = \sqrt{-1}$

 σ_{xx} = tensão na direção x.

 ε_{xx} = deformação na direção x.

- Ω = velocidade angular do sistema rotativo com relação ao inercial.
- v = coeficiente de Poisson.
- υ = viscosidade cinemática do fluído.

 K_c/D = rugosidade superficial adimensionável do tubo.

 τ = vetor unitário tangente à linha de centro do tubo.

RESUMO

O sistema analisado no presente trabalho é um longo t<u>u</u> bo flexível e delgado, sujeito a um escoamento externo perpendic<u>u</u> lar a sua direçao axial e outro interno, com extremidades suport<u>a</u> das por apoios elásticos.

Um tubo quando submetido ao escoamento externo fica s<u>u</u> jeito às forças de sustentação e arraste, além do efeito da massa adicional, responsável por uma parcela da força de inércia.

O efeito do escoamento interno é traduzido principalmen te pelos fatores pressão do fluxo, velocidade e massa do fluxo. A pressão é responsável por uma parcela do carregamento axial do t<u>u</u> bo, a velocidade é responsável pela força de Coriolis e a massa contribui com uma parcela na força inercial.

O comportamento oscilatório da estrutura e obtido supon do apenas pequenos deslocamentos laterais. São deduzidas equações gerais para previsao das oscilações do tubo,com condições de contorno quaisquer. Posteriormente, essas equações são linearizadas e analisadas na sua forma completa para o caso de articulações simples nos dois extremos.

Mostra-se que quando a velocidade do fluxo interno excede a certos valores, a tubulaçao flamba. Uma série extensa das frequências naturais de vibração da estrutura, que variam com a velocidade do fluxo interno, são calculadas na tentativa de dete<u>r</u> minar o comportamento dinâmico do sistema. Nota-se claramente que a força de Coriolis proveniente do fluxo interno em determinadas faixas desestabiliza o sistema e, em outra, estabiliza.

ABSTRACT

The analised system in present work is a long flexible and thin pipe, loaded by crossed external and internal flow,with elastic constrains in both ends.

In the case of constant internal flow velocity, the $d\underline{i}$ namics of the system is examined in a general way by energetic aproach and assumed only small transversal structural displacements.

An especial enphasis is givem for the giroscopic forces generated by the internal flow, which are responsable for the complexity of the pipe dinamic behavior, sometimes stabilizing and othertimes destabilizing the system.

CAPÍTULO I

1. IDENTIFICAÇÃO DO PROBLEMA

1.1 Origens do Problema

Devido à crescente necessidade de otimização de projetos estruturais, à sua complexidade e ao alto grau de confiabilidade exigidos na indústria nuclear, petrolífera, de telecomunicações, etc., o estudo da interação fluido-estrutura passou a ser de gra<u>n</u> de interesse nas últimas décadas e tem sido extensamente investigado.

O sistema analisado no presente trabalho é um longo t<u>u</u> bo flexível e delgado, sujeito a um escoamento interno e outro e<u>x</u> terno, com extremidades suportadas por apoios elásticos.

Um tubo, ou um prisma obtuso, quando submetido ao escoa mento externo de um fluído viscoso, fica sujeito às forças de sus tentação e arraste. A força de sustentação aparece na direção per pendicular ao fluxo e está estreitamente ligada à formação da es teira de vórtices, apresentando um caráter periódico com freqüência aproximadamente igual à de geração dos vórtices. Já a força de arraste, surge devido à diferença de pressão no cilindro (pris ma). Além dessas duas forças, aparece também na estrutura o efeito da "massa adicional", responsável por uma parcela da força de inércia.

O efeito do escoamento interno é traduzido principalme<u>n</u> te pelos fatores pressão do fluxo interno, velocidade e massa do fluido. A pressão é responsável por uma parcela do carregamento do tubo, a velocidade é responsável pela força de Coriolis e a ma<u>s</u> sa contribui para uma parcela da força inercial.

1.2 Objetivos

O objetivo deste trabalho é analisar o comportamento d<u>i</u> nâmico do sistema descrito e desenvolver uma metodologia eficiente para determinação da velocidade crítica do escoamento interno, tomada em relação ao primeiro modo de flambagem da estrutura.

1.3 Organização do Trabalho

O capitulo inicial é destinado unicamente à identificação do problema.

No Capitulo II é analisado o escoamento externo. Especial ênfase é dada na determinação das forças de sustentação e arraste.

O Capítulo III ainda trata do escoamento externo. São detalhados o "amortecimento viscoso" e a "massa adicional", assim como suas respectivas forças e influências no comportamento da t<u>u</u> bulação.

O modelamento matemático do problema é efetuado minunci<u>o</u> samente no Capítulo IV. São levantadas equações gerais e suas co<u>n</u> dições de contorno, que permitem a obtenção do comportamento din<u>â</u> mico da estrutura, mesmo para escoamentos variáveis no tempo. Posteriormente, essas equações são linerizadas e aplicadas para o caso da velocidade do fluxo interno constante. O Capitulo Y é destinado para a solução numérica do si<u>s</u> tema de equações linerizado que descreve o comportamento oscilat<u>ó</u> rio.

Finalmente, no último Capítulo são analisados, discutidos e comparados resultados obtidos e levantadas algumas sugestões para futuros trabalhos.

CAPÍTULO II

2. FORÇAS DE ARRASTE E SUSTENTAÇÃO

2.1 Generalidades:

Informações sobre forças de arraste (drag) e de sustent<u>a</u> ção (lift) atuantes em cilindros tem considerável interesse prático em aeroelasticidade, assim como no entendimento básico da din<u>â</u> mica dos fluidos. Tal interesse pode ser inteiramente justificado pelo grande número de aplicações imediatas em projetos estruturais, tais como chaminés, mísseis, aerofólios, estacas submarinas, tubos de trocadores de calor, antenas, etc. |5|.

A obtenção do conjunto de forças hidrodinâmicas atuantes na tubulação provenientes do escoamento externo é feita, unicumente, a partir das equações de Navier-Stokes, caso a estrutura em estudo fosse considerada rígida. Entretanto, a presente análise é voltada para a situação de tubulações oscilantes e, segundo Bishop e Ha<u>s</u> san |7|, o conjunto de forças hidrodinâmicas depende também das características dinâmicas da estrutura, tais como: freqüência e amplitude de vibrações.

Sendo assim, a análise estrutural e as equações de Navier-Stokes devem ser utilizadas simultaneamente para determinação das forças hidrodinâmicas. Caracteriza-se plenamente um problema de i<u>n</u> teração fluido-estrutura e devido a grau de dificuldade existente no modelamento matemático, a análise experimental é a mais utiliz<u>a</u> da. De maneira geral, quando um longo corpo obtuso é imerso em um escoamento transversal de fluido viscoso, haverá a formação de vórtices periódicos uma vez excedido um certo número de Reynolds (este valor para cilindros circulares é da ordem de 50). A form<u>a</u> ção desses vórtices dará origem a forças oscilantes periódicas (su<u>s</u> tentação e arraste), superpostas à força de arraste média, que é aproximadamente constante para cada número de Reynolds.

No entanto, para número de Reynolds muito altos, a formação dos vórtices já não obedecerá um caráter periódico, tornandose aleatória. Nesta faixa, as forças que eram antes alternantes e periódicas, perdem a periodicidade e passam a não ter mais uma am plitude e período bem definidos, sendo necessária uma análise est<u>a</u> tística mais detalhada para suas previsões.

Muito embora exista um grande número de publicações a respeito do assunto, são detetados pontos ainda não muito claros que não permitem a perfeita compreensão dessas forças |4|.

O coeficiente de sustentação C_L , por exemplo, tem sido obtido experimentalmente por um grande número de pesquisadores, se<u>n</u> do que os resultados apresentam uma grande dispersão, o que não dã subsidios suficientes para que se trace um correlacionamento entre as diferentes análises |3|.

É interessante, neste ponto, enumerar algumas das caract<u>e</u> rísticas experimentais observadas por Bishop e Hassan |7| para o sistema em referência nas condições de excitação induzida pelo e<u>s</u> coamento externo de fluidos, a saber:

> a- Quando a freqüência de excitação induzida do cilindro é apreciavelmente diferente de f_s , atuarão no cilindro forças com frequências $2f_s$ e f_s , respectivamente, e as

5.

forças de inércia e outros efeitos com a frequência induzida f;

- b- Quando a freqüência f do cilindro se aproxima da freqüência de Strouhal, as forças com freqüência f_s se "sincronizam" e passam a oscilar com a mesma freqüência f do sistema. Esta "sincronização" persiste dentro de uma faixa (Δf), denominada de "faixa de sincronização";
- c- Dentro da "faixa de sincronização" as forças de arraste e sustentação sofrem mudanças na fase e amplitude assim que a freqüência imposta e variada. A amplitude aumenta ou decresce de maneira comparável com a resposta de um simples oscilador sob a influência de uma força harmon<u>i</u> camente imposta. O ângulo de fase entre a força exerc<u>i</u> da pelo fluido e o movimento imposto muda de maneira correspondente.

Além disso, a mudança de fase e amplitude perto de ce<u>r</u> tas regiões críticas é repentina, o ângulo de fase e a<u>m</u> plitude "saltam" de um lado para outro. Ainda, dentro dessa "zona de sincronização" a força de sustentação e a de arraste atingem suas amplitudes máximas;

- d- O sistema apresenta uma forma de histerese. Então a fr<u>e</u> quência crítica induzida, na qual o "salto" na amplitude e ângulo de fase ocorrem, variará de acordo com a m<u>a</u> neira como for incrementada a frequência f (decrescente ou crescente);
- e- Outra característica importante é a "freqüência demult<u>i</u> plicadora" na qual as forças de arraste e sustentação são sincronizadas quando a freqüência induzida está pr<u>ó</u>

xima de um múltiplo inteiro da frequência natural.

As relações analíticas mostradas, a seguir, são resultados obtidos por Chen |3| e Sallet |10|, que utilizaram os crit<u>é</u> rios de estabilidade de Von Karman e da mínima resistência de Kr<u>o</u> nauer para estabelecer o comportamento dos coeficientes C_L e C_D em função dos parâmetros do escoamento. A análise estabelecida por Chen |3| é baseada em cilindros estacionários, o que não correspo<u>n</u> de propriamente ao caso em estudo. Uma tentativa de contornar o problema é feita por Sallet |10|, sendo que a análise de ambos os casos é necessária para a perfeita compreensão das forças que atuam na estrutura.

2.2 Derivação da força de sustentação:

A expressão, em notação complexa, da velocidade para a esteira ideal de vórtices não viscosos de Von Karman, compostos de colunas retilíneas de vórtices com sinais de circulação opostos , é:

$$\mathbf{v}_{\mathbf{x}} + \mathbf{i}\mathbf{v}_{\mathbf{y}} = \mathbf{u}^* + \frac{\Gamma}{2\pi\mathbf{i}} \cot g \frac{\pi}{\Re} (z - z_0) + \cot g \frac{\pi}{\Re} (z - z_0) \}$$
(1)

onde u* é a velocidade de translação da esteira de vórtices com relação à velocidade do fluxo livre.

De acordo com Von Karman 30, tem-se também:

$$u^* = \frac{\Gamma}{2\ell} \tanh\left(\frac{\pi h}{\ell}\right)$$
(2)

onde h é o espaço lateral das duas colunas de vórtices.

Figura 2 - Fileira de vórtices com sistema de referência

As componentes da velocidade (v_x, v_y) podem ser comput<u>a</u> das utilizando-se o seguinte sistema de coordenadas:

$$z = x + iy$$

$$z_{0} = \frac{\ell}{4} + i \frac{h}{2}$$
(3)

Utilizando-se as relações (2) e (3) em (1) e separando as partes reais e imaginárias, obtém-se as componentes:

$$v_{x} = \frac{\Gamma}{2\ell} \left\{ \tanh\left(\frac{\pi h}{\ell}\right) + \frac{\operatorname{senh}\left(\frac{2\pi}{\ell}\right)\left(y - \frac{h}{2}\right)}{\cosh\left(\frac{2\pi}{\ell}\right)\left(y - \frac{h}{2}\right) - \cos\left(\frac{2\pi}{\ell}\right)\left(x - \frac{\ell}{4}\right)} - \frac{\operatorname{senh}\left(\frac{2\pi}{\ell}\right)\left(y + \frac{h}{2}\right)}{\cosh\left(\frac{2\pi}{\ell}\right)\left(y + \frac{h}{2}\right) - \cos\left(\frac{2\pi}{\ell}\right)\left(x + \frac{\ell}{4}\right)} \right\}$$
(4)
$$v_{y} = \frac{\Gamma}{2\ell} \left\{ - \frac{\operatorname{sen}\left(\frac{2\pi}{\ell}\right)\left(x - \frac{\ell}{4}\right)}{\cosh\left(\frac{2\pi}{\ell}\right)\left(y - \frac{h}{2}\right) - \cos\left(\frac{2\pi}{\ell}\right)\left(x - \frac{\ell}{4}\right)} + \frac{\operatorname{sen}\left(\frac{2\pi}{\ell}\right)\left(y - \frac{h}{2}\right) - \cos\left(\frac{2\pi}{\ell}\right)\left(x - \frac{\ell}{4}\right)}{\cosh\left(\frac{2\pi}{\ell}\right)\left(y + \frac{h}{2}\right) - \cos\left(\frac{2\pi}{\ell}\right)\left(x - \frac{\ell}{4}\right)} \right\}$$
(5)

е

Para análise das forças de flutuação escolhe-se uma su perfície de controle perpendicular à esteira de vórtices , com lim<u>i</u> tes de y = - ∞ a y = + ∞ , como mostrado na figura abaixo:

Fig. 3 - Forma característica do escoamento da esteira de vórti ces movendo-se com velocidade u: Superfície de controle de y = $-\infty$ a y = $+\infty$.

A componente do momento na direção y da massa de fluido em escoamento nesta superfície de controle é descrita por:

$$S_{y} = \int_{-\infty}^{+\infty} \rho v_{x} v_{y} dy$$
 (6)

onde $\rho \in a$ densidade do fluido e v_x e v_y as componentes da veloc<u>i</u> dade do fluxo.

Esta componente do momento será máxima ou mínima para $x = K\ell$ ou $(K - \frac{1}{2})\ell$, respectivamente, e zero para $x = (K - \frac{1}{4})\ell$ ou $(K - \frac{3}{4})\ell$ porque $v_y = 0$ (veja campo de velocidades na Fig. 3), onde K é um número inteiro.

Então, para se obter a máxima componente do momento na direcão y é sufuciente utilizar-se x = K ℓ . As componentes da velocid<u>a</u> de são:

$$\mathbf{v}_{\mathbf{x}} = \frac{\Gamma}{2\ell} \left\{ \tanh(\frac{\pi h}{\ell}) + \tanh\frac{2\pi}{\ell}(y - \frac{h}{2}) - \tanh\frac{2\pi}{\ell}(y + \frac{h}{2}) \right\}$$
(7)

$$v_{y} = \frac{\Gamma}{2\ell} \left\{ \frac{1}{\cosh\left(\frac{2\pi}{\ell}\right)(y - \frac{h}{2})} + \frac{1}{\cosh\left(\frac{2\pi}{\ell}\right)(y + \frac{h}{2})} \right\}$$
(8)

Substituindo-se as Equações (7) e (8) em (6), após simpl<u>i</u> cações, tem-se:

$$S_{y} = \rho \frac{\Gamma^{2}}{2\ell} \tanh(\frac{\pi h}{\ell})$$
(9)

ou ainda:

е

$$S_y = \rho \cdot \Gamma \cdot u^*$$

(10)

Portanto, o máximo valor da componente do momento na di reção y é uma expressão relativamente simples. Esta componente d<u>e</u> pende somente da velocidade de translação u* da esteira de vórt<u>i</u> ces e da circulação Γ de um simples vórtice.

Seja agora, a superfície de controle ABCDA ao redor do cilindro submetido a um escoamento transversal, como mostrado aba<u>i</u> xo.

Fig. 4 - Esteira de vórtices em 5 instantes de tempo distintos

A força F_y exercida pelo escoamento sobre o cilindro na direção y pode ser deduzida pela expressão:

$$P_{y} = \frac{dJ_{y}}{dt} + S_{y} + F_{y}$$
(11)

onde temos:

 a - P é a força devida a pressão na superfície de cony
 trole e vale:

$$P_{y} = - \left\{ \int_{S} p \, ds \, \cos(n, y) \right\}$$
(12)

onde cos(n,y) é o cosseno diretor entre a componente normal da velocidade e a direção y e p a pressão.

$$J_{y} = \begin{cases} \rho v_{y} dVc \end{cases}$$
(13)

c - S_y é a quantidade de movimento do fluido que escoa através da superfície de controle, e vale:

$$S_{y} = \left[\int_{S} \rho v_{x} v_{n} ds \right]$$
(14)

onde v_n é a componente normal da velocidade.

A força P_y provocada pela pressão na superfície de controle causará, então, um acréscimo no momento do fluido contido na superfície de controle por unidade de tempo, gerará um momento d<u>e</u> vido ao escoamento do fluido pela superfície e será responsável p<u>e</u> lo surgimento de uma força sobre o corpo.

Considere-se a esteira de vórtices em dois instantes di ferentes \underline{a} e \underline{e} , com defasagem no tempo de exatamente a metade do período de geração das fileiras de vórtices (ver Fig. 4).

As distâncias AB, AD e BC são consideradas infinitamente grandes. O propósito dessas considerações é obter a diferença e<u>n</u> tre as quantidades P_y, S_y e J_y nas duas situações em consideração, para previsão do comportamento de F_y neste intervalo de tempo.

As condições do fluido nas superfícies AD e BC são idênticas para as duas situações, uma vez que as velocidades $v_x e v_y$ para $y = \pm \infty$ se anulam, de acordo com as Equações (4) e (5). Evidentemente, na superfície AB o fluido também permanece inalterado, pois o fluxo não é perturbado nesta região. Portanto, a única mo dificação encontrada é na superfície CD, que se situa no ponto in termediário de dois vórtices de diferentes colunas (ver Fig. 4). O valor da velocidade do fluxo nesta superfície será igual em mo dulo, porém terá direção diferente para os dois instantes. No en tanto, fica claro que não haverá mudanças na pressão neste inte<u>r</u> valo de tempo.

As considerações anteriores levam à conclusão de que a força P_y na superfície de controle permanece constante para os dois instantes em consideração.

O momento devido ao escoamento do fluido, S_y, através das superfícies AB, AD e BC permanece constante. Somente na superfície

13

CD é que teremos alterações nesta quantidade, que mudará de direção. A variação total é:

$$\Delta S_{y} = 2 \int_{-\infty}^{\infty} \rho v_{y} v_{x} dy \qquad (15)$$

e pela Equação (10) tem-se:

$$\Delta S_y = 2 \cdot \rho \cdot u^* \cdot \Gamma$$
$$a \stackrel{\rightarrow}{=} e$$

Considere-se agora, o momento devido ao fluido contido na superfície de controle. As linhas C_1D_1 e C_2D_2 são escolhidas exatamente no centro de dois vórtices adjacentes (como na Fig. 4a). O campo CDD_1C_1 ou $C_1D_1D_2C_2$ designa a metade do par de vórtice.

A forma do escoamento em cada um desse campos é simétrica com relação a vertical (y), tomada no centro de cada vórtice. D<u>e</u> vido a isto, a integral $J_y = \int_{V_C} \rho v_y dVc$ sobre cada dois campos que contenham o par de vórtice será sempre zero. Através de<u>s</u> se resultado é fácil notar que a integral do momento do fluido co<u>n</u> tido entre D₂D = ℓ será automaticamente zero. De maneira análoga se cancelarão sucessivamente todas as integrais para os outros campos. O problema está justamente no último campo, D₃D_n, que su<u>r</u> ge logo após o cilindro.

Por este motivo, é feita a suposição de que o instante <u>a</u> é escolhido de tal maneira que a integral em referência se canc<u>e</u> le também. Ou seja, o vórtice da coluna superior deve estar com sua formação completa. Dessa maneira, para o instante <u>a</u>, o momento devido ao fluido contido na superfície de controle é zero. O particionamento da esteira de vórtices nos campos DD_2 , $D_2D_3 \dots D_3D_n$, como na Fig. 4a, serve como fundamento para o mod<u>e</u> lo matemático. As linhas de separação CD, C_2D_2 , C_3D_3 , ... são mantidas fixas no espaço. A forma do escoamento em cada campo m<u>u</u> da de instante a instante (ver Fig. 4a, 4b, 4c, 4d e 4e).

O intervalo de tempo para dois instantes subsequentes é $\zeta/8$, correspondente a um deslocamento da esteira de $\ell/8$. Este mo delo leva à unificação do momento do fluido contido em cada campo; assim, a vazão de fluido que passa na superfície $C_2D_2C_3D_3$ durante um período de tempo ($\zeta = 1/f_s$) será a mesma que passa no campo subsequente CDC_2D_2 durante o mesmo período de tempo. Desse modo , após um período de tempo ζ ocorrerá, por exemplo, uma nova configuração <u>a</u>, <u>b</u>, <u>c</u>, <u>d</u>, etc.. Devido a isto, conclui-se que o momento efetivo do fluido contido em um novo campo de vórtices permanecerá igual, não importando qual o instante <u>t</u> de tempo.

Considere-se agora, o instante <u>b</u>. As linhas C'D' $eC_2'D_2'$ designam a nova configuração do instante <u>a</u>. A configuração de v<u>e</u> locidade do fluido já não é mais simétrica neste campo. No enta<u>n</u> to, é fácil notar que a configuração da velocidade para os subca<u>m</u> pos C'D'DC e $C_2'D_2'D_2C_2$ é exatamente a mesma. Portanto, o result<u>a</u> do total do momento do fluido contido no campo não simétrico CDD₂C₂ deve ser igual ao que estava contido no velho campo simétrico C'D'D₂'C₂', isto é, zero.

Sucessivamente pode-se estender esta análise até o últ<u>i</u> mo campo $C_3D_3D_nC_n$. Desta maneira, o resultado geral desse momento permanecer**ã** inalterado para um novo instante de tempo e, conseque<u>n</u> temente, para um novo campo de vórtices gerados.

Devido às considerações acima, chega-se à conclusão de

que o valor do momento do fluido contido em toda esteira de vort<u>i</u> ces que estão incluídos na superfície de controle permanecerá con<u>s</u> tante para qualquer instante de tempo.

Portanto tem-se:

$$J_{\mathbf{v}} = 0 \tag{17}$$

e consequentemente:

$$\frac{d J_y}{dt} = 0$$
(18)

Reescrevendo-se a Equação (11) para os instantes <u>a</u> e <u>c</u>, resulta:

$$\Delta P_{y} = \Delta \left(\frac{d J_{y}}{dt}\right) + \Delta S_{y} + \Delta F_{y}$$
(19)

ou ainda:

$$\Delta F_{y} = -2 \rho \cdot u^{*} \Gamma$$

$$\underline{a} \rightarrow \underline{e}$$
(20)

A mudança na força exercida pelo escoamento sobre o co<u>r</u> po é igual à mudança do momento devido ao escoamento do fluido p<u>e</u> la superfície de controle CD. Assim, como o momento devido ao e<u>s</u> coamento passa de um máximo positivo a um máximo negativo, a fo<u>r</u> ça F_y sobre o corpo também se alterna em extremos. Portanto, a m<u>á</u> xima força que o escoamento produzirá sobre o cilindro é:

 $F_{y max.} = \rho . u^* \Gamma$

(21)

Utilizando a Equação (2) na Equação (21) obtem-se:

$$F_{y \text{ max.}} = C_{L} \cdot \frac{\rho}{2} \cdot U_{\infty}^{2} \cdot d \qquad (22)$$

onde $C_L = \left(\frac{\Gamma}{\ell U_{\infty}}\right)^2 \cdot \frac{\ell}{d} \cdot \tanh\left(\frac{\pi h}{\ell}\right)$ é o denominado "coeficiente de sustentação"; d é o diâmetro do cilindro e U_{∞} é a velocidade mé dia do externo fluxo não perturbado.

Uma vez que o "coeficiente de arraste constante" é descrito por¹:

$$C_{\rm D} = \frac{h}{d} \left\{ \frac{2\ell}{\ell U_{\rm m}} - \frac{h}{\ell} \left(\frac{\Gamma}{\ell U_{\rm m}} \right)^2 \right\}$$
(23)

Com auxílio da expressão acima, e do coeficiente de sus tentação C_L , é possível obter um relacionamento entre os dois coeficientes que é:

$$C_{\rm D} = \frac{h}{d} \{2 \sqrt{C_{\rm L}} \frac{d}{\ell} \tanh^{-1}(\frac{\pi h}{\ell}) - \frac{h}{\ell} C_{\rm L} \frac{d}{\ell} \tanh^{-1}(\frac{\pi h}{\ell})\} (24)$$

A análise feita até o momento é utilizada para produzir uma idéia das forças atuantes em cilindros estacionários. Este equacionamento através de momentos em geral não fornece uma estimativa da força de sustentação quando o cilindro é elasticamente suportado, isto é, livre para suportar vibrações auto induzidas.

Para se estabelecer uma tendência qualitativa de como as vibrações transversais influenciarão na força de sustentação (na ausência de todos outros efeitos como inerciais e de massa adicio nal), o diâmetro <u>d</u> do cilindro oscilante é repassado para um c<u>i</u> lindro fictício de diâmetro <u>d</u> (ver Fig. 5). O diâmetro <u>d</u> é igual

¹ - Maiores detalhes ver Ref |10|.

a distância projetada entre duas posições extremas de oscilação do corpo.Supondo que a formação dos vórtices se processe e que as propriedades da esteira permaneçam aproximadamente iguais às formu ladas até aqui, as equações permanecem as mesmas, com inconveniên cia de que h e ℓ são também repassados para \overline{h} e $\overline{\ell}$ [10].

Fig. 5-Cilindro Equivalente

Devido à omissão de todos outros efeitos que são necess<u>á</u> rios para efetuar a troca entre os cilindros oscilatório e estaci<u>o</u> nário equivalente, a avaliação por intermédio de constantes equivalentes fornece apenas uma grosseira estimativa dos coeficientes $C_{\rm L}$ e $C_{\rm D}$ [10].

2.3 Análise Experimental

Devido à grande dificuldade para o estabelecimento de um modelo matemático que propicie uma aproximaçao satisfatória das forças de sustentaçao e arraste atuantes no cilindro oscilante, a análise experimental é a mais usual em virtude da simplicidade de utilização dos resultados,muito embora, como já citado, exista uma grande dispersão nestes dados.

Na figura 6 é mostrada a variação do " coeficiente médio

18

de arraste", C_D , e do número de Strouhal² em função do número de Reynolds, obtido por vários pesquisadores |7|.

E fãcil de notar que o coeficiente C_D sofre um súbito d<u>e</u> créscimo quando o número de Reynolds está compreendido na faixa de 100.000 a 500.000. O limite exato dessa zona de transição (r<u>e</u> gião crítica) é denominado de número de Reynolds crítico (R_{CR}) e depende de muitos fatores, tais como rugosidade da superfície do cilindro, turbulências, etc.. Nesta faixa, o ponto de separação da camada limite desloca-se para trás sobre o cilindro |5|, o que serve para dar uma noção sobre a causa da diminuição do coeficie<u>n</u>

² - Definição: Nº de Strouhal (S)

$$S = \frac{f_s. d}{U_{\infty}}$$

te C_D.

Para número de Reynolds menores que o crítico, a esteira próxima ao cilindro tem um comportamento claramente periódico, com uma frequência dominante, expressa pelo número adimensional S (número de Strouhal) |5|.

Para número de Reynolds maiores que o crítico, a esteira é muito turbulenta e o problema é tratado por intermédio da anál<u>i</u> se espectral e não por uma frequência dominante [5].

Segundo este comportamento do coeficiente C_D, Achenback |8| classifica o escoamento em subcrítico, crítico, supercrítico e transcrítico, como segue:

N9 Reynolds

Fig. 7 - Classificação do Escoamento.

Achenback |8| mostra, também, o efeito da rugosidade su perficial do cilindro sobre o coeficiente C_D em função do número de Reynolds e, consequentemente, sobre a "zona crítica". De mane<u>i</u> ra geral, para um acréscimo da rugosidade do cilindro correspond<u>e</u>

20

rã um deslocamento dessa "zona crítica" para a esquerda e também, uma queda menos súbita e de menor amplitude do coeficiente C_D . Ainda, para $R_e > 10^7$ o coeficiente C_D tende a um valor constante para cada valor de rugosidade³.

Fig. 8 - Coeficiente C_D para cilindros rugosos em função do número de Reynolds.

2.4 Generalização das Forças de Flutuação

Segundo Bishop e Hassan |7|, as forças que atuam sobre o cilindro podem ser expressas genericamente na forma:

³ - Maiores detalhes, ver Ref. |8|.
$$F(t) = \Phi(\overset{a}{/}_{d} ; \frac{U_{\infty} d}{\upsilon} ; \frac{f d}{U_{\infty}}) \overset{1}{/}_{2} \rho \quad U_{\infty}^{2} A$$
(25)

onde: A é a área projetada do cilindro,

a é a amplitude de oscilação,

d é o diâmetro do cilindro,

f é a frequência induzida de excitação,

 U_{∞} é a velocidade do fluxo não perturbado de fluido,

υ ē a viscosidade cinemática do fluido, e

ρ é a densidade do fluido.

Os parâmetros adimensionais que aparecem na Equação (25)

são:

 $-a_{d}$ é a razão de amplitude;

- Re = $U_{\infty} d/\upsilon$ ë o número de Reynolds; e

- $S^* = fd/U_{\infty}$ é a frequência adimensional do cilindro os cilante.

O último desses parâmetros, S*, pode ser comparado anal<u>o</u> gamente com S (número de Strouhal) quando referenciado aos cili<u>n</u> dros estacionários.

Denotando $\frac{\rho U_{\infty}^2}{2}$ por q e a razão $\frac{2F}{\rho U_{\infty} A}$ pelo símbolo C*, tem-se:

$$\frac{F}{q \cdot A} = C^* = \Phi(\frac{a}{d}; Re; S^*)$$
(26)

O símbolo C* será utilizado com os indices subscritos D e L que indicarão "arraste" e "sustentação", respectivamente. Ai<u>n</u> da, na ausência do asterisco (*), o coeficiente C estarã se<u>n</u> do referenciado ao cilindro estacionário. วร

2.4.1. Força de Susteatação

As expressões obtidas por Chen |3|, e Sallet |10|não têm muitas aplicações práticas devido a sua complexidade e \vec{e} conveniente trabalhar com expressões mais simples, da forma apresentada por Bishop e Hassan |7|:

$$F_{L}(t) = \frac{1}{2} C_{L} \rho U_{\infty}^{2} A \cos(\omega_{s}t)$$
(27)

onde $\omega_s = 2\pi f_s$, sendo f_s a frequência de Strouhal e t é o tempo.

⁹ Vale a pena ressaltar que a expressão acima é v<u>á</u> lida somente para o regime subcrítico e cilindro estacionário e, assim mesmo, com algumas restrições: é conhecido que as forças de flutuação (arraste e sustentação) não apresentam uma amplitude constante. Por esta razão, métodos estatísticos são utilizados p<u>a</u> ra especificação de C_L, apresentado grande dispersão nos resultados de autor para autor, mesmo quando refere-se a cilindro estaci<u>o</u> nário.

Em se tratando de cilindros oscilantes dentro da faixa subcrítica, Bishop e Hassan |7| ainda propõem a hipótese de que a componente F_L ^(t) tenha um caráter oscilante e com uma frequência igual à de Strouhal. Porém os próprios autores mostram a existência de um ângulo de fase entre esta força e o movimento oscilatório transversal do cilindro, que dependerá do número de Keynolds, da razão de amplitude e da frequência de oscilação ind<u>u</u> zida no cilindro. De maneira análoga, também mostram como C_L^* é afetado por estes fatores.

Assim, supondo que o coeficiente C_L^* seja constan te (mesmo não sendo de todo verdadeira esta hipótese, pois a amplitude dessa força é variável) e que a força de sustentação <u>a</u> presente uma frequência aproximadamente constante, ê conveniente representá-la, dentro do regime subcrítico, por:

$$F_{L}(t) = \frac{1}{2} C_{L}^{*} \cdot \rho \cdot U_{\infty}^{2} A \cos(\omega_{t} + \psi)$$
 (28)

onde ψ ē o ângulo de fase.

Já no regime supercrítico, a principal caract<u>e</u> rística das forças induzidas em cilindros circulares é sua aleat<u>o</u> riedade. Admitindo-se esse fato, nota-se q**ue se a** resposta de um $c_{\underline{i}}$ lindro elástico com carregamento devido a formação de vórtices for computada uma análise harmônica generalizada será suficientemente apropriada |5|.

Fung |5| verificou que a aparência geral dos dados obtidos para cilindros oscilantes no regime supercrítico, mostram que o valor r.m.s. do coeficiente C_L^* para varias frequên cias de excitação e razão de amplitude cai na mesma faixa de dis persão e conclui que é impossível delinear os efeitos da razão de amplitude e frequência de oscilação forçada na direção da fo<u>r</u> ça de sustentação.

Portanto, uma tentativa de chegar a uma concl<u>u</u> são é que para $R_e > 600.000$, para S* < 0,12 e para razões de a<u>m</u> plitude menores que 1:12, o coeficiente C_L* não é influenciado p<u>e</u> las oscilações forçadas dentro de uma grande faixa do número de Reynolds (até 1,4 x 10⁶).

2.4.2 Força de Arraste

A força de arraste total, a exemplo da força de sustentação, também pode ser obtida analiticamente⁴. No entanto, é conveniente trabalhar com um modelo simplificado e com coefic<u>i</u> entes experimentais.

A força de arraste total é composta por duas pa<u>r</u> celas superpostas: a força de arraste média e a força de arraste alternante. A força de arraste média atua no cilindro devido à d<u>i</u> ferença de pressão e é aproximadamente constante em amplitude p<u>a</u> ra uma determinada velocidade de escoamento. A força de arraste alternante é de caráter periódico, com frequência aproximadamente igual a $2f_s$ e amplitude também aproximadamente constante. É co<u>n</u> veniente representar a força de arraste total como:

$$F_{\rm D}(t) = \frac{1}{2} \rho U_{\infty}^2 A(C_{\rm D} + C_{\rm Do} \cos(2\omega_{\rm s} t))$$
(29)

A força de arraste alternante é muito pequena qua<u>n</u> do comparada com a força de arraste média, sendo difícil sua detecção; e por isso mesmo, pouco tem sido pesquisada | 7 |.

Resultados experimentais mostram que C_{Do} é apr<u>o</u> ximadamente $\frac{1}{12}$ a $\frac{1}{9}$ vezes C_L , variando de 0,05 para R_e = 6.000 ao limite de 0,075 para R_e = 11.000. As figuras seguintes ilu<u>s</u> tram a variação de C_{Do} , C_L e do número de Strouhal em função do número de Reynolds, dentro do regime subcrítico e para cilindros estacionários.

⁴ - Ver dedução analítica nas Refs |10| e |30|.

Fig. 9 - Coeficiente de Sustentação e Coeficiente de Arraste Alternante em Função do Número de Reynolds.

Fig. 10 - Número de Strouhal obtido por Bishop e Hassan | 7 | . x - teste com força de sustentação.

o - teste com força de arraste.

De maneira análoga ao verificado com C_L^* , os co<u>e</u> ficientes C_D^* e C_{Do}^* estão correlacionados com o número de Reynolds, a freqüência de oscilação do cilindro e a razão de amplit<u>u</u> de de oscilação. Alguns valores obtidos experimentalmente para os coeficientes C_L^* , C_D^* e C_{DO}^* podem ser encontrados nas referências |7| e |5|.

CAPÍTULO III

3. MASSA ADICIONAL E ATRITO VISCOSO

3.1 Generalidades

Quando um componente estrutural submerso em um meio fluido sofre vibrações, o fluido que está ao redor do corpo tende de<u>s</u> locar-se para "acomodar" ao movimento oscilatório. Como resultado desse processo de "acomodação", pressões são geradas sobre o corpo, cujo efeito geral é traduzido como uma força de característica hidrodinâmica que atua na estrutura.

O fluido movendo-se com a estrutura influencia de maneira importante o comportamento dinâmico do sistema e, em particular , a, freqüências naturais de vibração e características de amortecimento. A influência na freqüência natural está associada com a massa hidrodinâmica, enquanto que o efeito de amortecimento é atr<u>i</u> buído às perdas por efeito dissipativo viscoso e radiação acúst<u>i</u> ca |11| e |12|.

Genericamente, as forças de origem hidrodinâmica que atuam sobre o cilindro circular podem ser expressas como:

$$F_{a} = m_{a} \frac{\partial^{2} v}{\partial t^{2}} + c_{v} \frac{\partial v}{\partial t}$$
(30)

onde:

F, é a força hidrodinâmica total,

v* é um deslocamento transversal qualquer da tubulação, m_a é a massa adicional de fluido, e c_v é o coeficiente equivalente de amortecimento viscoso. A primeira parcela dessa força aparece devido às oscilações do fluido conjuntamente com o corpo e esta em fase com sua aceleração, enquanto que a segunda parcela é atribuída principalmente ao amortecimento viscoso originado da viscosidade do fluido e é oposta ao movimento do corpo.

3.2 Massa Hidrodinâmica

Quando um componente estrutural movimenta-se em um fluido ideal infinito com velocidade constante, ele não sofrerá resis tência alguma. Tal fenômeno é conhecido como "paradoxo de D'Alambert". No entanto, se o corpo move-se com velocidade variável, fi cará sujeito a uma força resistente. Seu comportamento é como se uma "massa adicional" de fluido estivesse rigidamente ligada e movimentando-se com a estrutura. Quando o sistema sofre excitações, não somente sua massa fica sujeita a esta alteração, mas também, a "massa adicional" de fluido é afetada |12|.

Se a estrutura é um longo e rígido prisma montado em apoios elásticos, oscilando na direção perpendicular ao seu eixo axial, o escomanto de fluido em sua vizinhança pode ser essencial mente considerado bidimensional. Sob estas condições, a "massa adicional" é a massa de fluido contida em um cilindro circular de mesmo comprimento que o prisma, com diâmetro igual ao lado do prisma projetado em um plano perpendicular à direção do movime<u>n</u> to |11|.

Fig. 12 - Massa adicional

Considerando pequenas amplitudes do movimento oscilatório do cilindro, o fenômeno da "massa adicional" pode ser descrito em termos do coeficiente de massa adicional, C_m, definido como:

$$C_{\rm m} = \frac{{\rm massa \ adicional \ de \ fluido}}{{\rm massa \ de \ referência \ do \ fluido}}$$
(31)

onde a massa de referência do fluído é aquela correspondente ao cilindro de fluido com diâmetro igual à dimensão perpendicular à direção do movimento, ou, em alguns casos, à massa de fluido de<u>s</u> locado |11|.

As duas figuras anteriores mostram resultados experimentais obtidos por diversos pesquisadores com relação ao coeficiente C_m . Por simples inspeção, é fácil notar-se que o valor de C_m para fluido movimentando-se ao redor de cilindros estacionários , (Figura 14) é maior que seu valor para cilindros oscilantes em fluido estacionário (Figura 13).

Para cilindro estacionário submerso em fluido móvel, $C_m \approx 2,0$, o que resulta numa força hidrodinâmica atuando na estru tura com valor igual a duas vezes a massa de fluido deslocado mul tiplicada pela aceleração do fluido. Para o cilindro circular mo vendo-se em fluido estacionários, $C_m \approx 1,0$, o que proporciona uma força inercial igual à soma das massas do cilindro e massa adicio nal de fluido, multiplicada pela aceleração do cilindro. No caso onde temos ambas situações, estas duas forças devem ser calculadas separadamente e depois, superpostas |11|.

Para um corpo com três graus de liberdade de tran<u>s</u> lação e rotação; uma descrição completa da "massa adicional" r<u>e</u> quer uma matriz de ordem 6 x 6. A "massa adicional" para uma estrutura com N graus de liberdade pode ser representada por $|m_{ai,j}|$ (i, j = 1, 2, 3, ..., N). Pode-se mostrar que $|m_{ai,j}|$ é simétrica e; portanto, o número de termos requeridos para descrever completamente a "massa adicional" é N(N + 1)/2 |12|.

Para a situação de tubos oscilantes em fluido estacionário, é mais apropriado utilizar os resultados obtidos por Chen e Chung |12| que são mostrados na figura 15.

Convém lembrar que vários fatores influenciam o coeficie<u>n</u> te C_m, tais como: flexibilidade da estrutura, freqüência de oscilação, tamanho, ..., etc.. A influência de vibração pode ser ana-

. 3.2..

lisada através dos resultados obtidos por Chen e Chung |12|. A flexibilidade dos cilindros é um fator importante que tende a d<u>i</u> minuir o valor da massa adicional e, é fácil notar esse efeito por simples inspeção das Figuras (13) e (14). O coeficiente da massa adicional é menor para os tubos rígidos com apoios flexíveis.

O efeito do tamanho da estrutura pode ser visualizado f<u>a</u> cilmente na figura 16. Tais dados foram obtidos para tubos de com

primento finito onde o escoamento é livre nos extremos. A concl<u>u</u> são imediata é que, neste caso, a resistência inercial ao movime<u>n</u> to é menor do que para tubos infinitamente longos.

Fig. 16 - Influência do comprimento na massa adicional.

Apesar da dificuldade de abordagem do problema através da interação fluido-estrutura, alguns autores |31 - 32| utilizam métodos numérico avançados para obtenção do comportamento dinâmico da tubulação e determinação dos coeficientes desejados para análise das forças provenientes do escoamento externo.

O inconveniente nestas análises ainda é a limitação do número de Reynolds considerado, que permanece dentro do regime l<u>a</u> minar. A tabela que segue são resultados apresentados na Ref. |31| para cilindros oscilantes em fluido parado.

Reo	a/d	C ¹	c_1	c _{m²}	C _d ²
1	0,1	2,58	39,00	2,59	40,20
10	0,1	1,47	10,70	1,45	11,00
100	0,1	1,03	3,60	1,03	3,50
100	1,0	1,07	2,25	1,08	2,30
100	2,0	1,68	1,64	1,70	1,70

Método dos Máximos Valôres
 Método dos Mínimos Quadrados

 $Re = \omega ad/\upsilon$

TAB. 01- Valores de C_D e C_L para Cilindro Oscilante-Fluido Estacionário [31]

3.3 Amortecimento Viscoso

Com referências às forças de amortecimento atuantes em estruturas submersas; seu valor é relativamente pequeno e muitas vezes; não é incluído na análise de forças. Em outros casos, es tas forças de amortecimento são repassadas para um atrito viscoso equivalente, sendo que suas principais contribuições são devidas a |11|:

- *. viscosidade do fluido;
 - . componentes de impacto;
 - . geração de ondas no fluido; e

. gerações acústicas.

As duas últimas componentes responsáveis por incrementos no atrito viscoso equivalente são geralmente desprezíveis quando comparadas com outros termos. Com relação à componente de impacto; ela só será significativa quando a relacionarmos com feixe de tubos, sendo portanto, também desprezível para um único cilindro; |11|.

Como na análise feita para a massa adicional, a força de amortecimento viscoso também pode ser representada pelo coeficiente de atrito viscoso, C_v , definido para cilindros isolados como:

$$C_{\rm r} = -\rho \pi R^2 \omega I_{\rm m}(H) \tag{32}$$

onde ω é a frequência de oscilação do cilindro; ρ a densidade do fluido; R é o raio; e I_m(H) é dado pela figura 16⁵.

Outros resultados experimentais com relação ao coeficien te de atrito viscoso, C_v , podem ser encontrados na Ref. |11|, mui to embora, o próprio autor saliente restrições nas faixas de apli cabilidade de cada resultado.

Analogamente ao verificado com o coeficiente C_m , o coeficiente C_v é obtido com análise bidimensional do escoamento, isto

5 - Maiores detalhes sobre a dedução da Equação (32) e o valor de $I_m(H)$ serão encontrados nas Ref. |12| e |13|.

é, os movimentos axiais são desprezados. Ainda, é fácil de notar que o coeficiente C_v também é dependente da frequência de oscil<u>a</u> ção, amplitude de oscilação, tamanho do cilindro, viscosidade do fluido, ..., etc., através dos resultados apresentados na Ref. |11|, |12| e |13|.

CAPÍTULO IV

4. MODELAMENTO MATEMÁTICO

4.1 Discretização da Estrutura

Com referência a Figura 18, o modelo em consideração é um longo tubo posicionado verticalmente, com área da seção tran<u>s</u> versal S_t , rigidez efetiva de flexão EI e massa por unidade de comprimento m constantes. O tubo é submetido a um escoamento e<u>x</u> terno perpendicular a sua direção axial, com velocidade média U e outro escoamento interno com velocidade média V; sendo nas e<u>x</u> tremidades suportado por apoios elásticos.

O efeito do escoamento externo sobre o comportamento os cilatório do tubo é considerado através de um sistema de forças <u>e</u> quivalentes: forças de sustentação, arraste, amortecimento visc<u>o</u> so equivalente e inércia ("massa adicional"). Na Figura 18 estão mostradas as forças de arraste e sustentação, assim como suas d<u>i</u> reções de atuação. Já as forças de inércia e amortecimento visc<u>o</u> so serão incorporadas diretamente às equações finais do movimento, sem perda de generalidade do problema.

Com hipóteses anteriores em consideração, pode-se obter o sistema de equações diferenciais correspondentes ao comportame<u>n</u> to oscilatório do tubo utilizando-se o Princípio de Hamilton ; c<u>o</u> mo desenvolvido e apresentado por Benjamin [14]:

Fig. 18 - Discretização da Estrutura.

$$\delta \int_{T_{1}}^{T_{2}} L^{*} dt - \int_{T_{1}}^{T_{2}} MV \{R_{o} |_{x=L} + V \zeta |_{x=L} \}; \delta R_{o} |_{x=L} dt = 0$$
..... (33)

onde M é a massa de fluído por unidade de comprimento do tubo, R_o é o vetor posição de um ponto genérico pertencente à linha de centro do tubo na posição deformada; ξ é o vetor unitário tangente à linha de centro do tubo após a deformação,

L* é a energia lagrangeana; e o símbolo

; indica produto interno.

A energia lagrangeana é composta por três partes distintas: a energia cinética do tubo, a energia cinética do fluído in terno e a energia potencial do sistema. Convém salientar, que o escoamento externo é analisado à parte.

Assim sendo, a energia lagrangeana é:

$$L^{*} = T_{f_{i}} + T_{f} - (U^{*} - W_{FYT})$$
(34)

onde T, é a energia cinética do tubo;

T_{fi} é a energia cinética do escoamento interno,

U* é a energia de deformação do tubo, e

 W_{FXT} é o trabalho realizado pelas forças externas.

Para obtenção da energia de deformação do tubo é necess<u>á</u> rio o conhecimento do possível campo de deslocamento de um ponto genérico do corpo. Como existem carregamentos externos nos planos x-y e x-z, dados pelas forças de sustentação e arraste, e com eventuais carregamentos na direção axial somados ao efeito da gr<u>a</u> vidade, o campo de deslocamento do ponto, q é:

$$q = (u, v, w) \tag{35}$$

onde u,v e w são osdeslocamentos nas direções x, y e z respectivamente. A relação existente entre esses deslocamentos é:

$$u = u_0 - yv_{,X} - zw_{,X}$$
 (36.a)

$$v = v(x,t)$$
 (36.b)

$$w = w(x,t) \tag{36.c}$$

onde u_o é uma deformação axial devida à carga axial apenas e o símbolo

, indica $\frac{\partial}{\partial x}$.

4.2 Energia Cinética do Tubo

Seja o sistema x,y,z, mostrado na figura 17, como sendo o referencial inercial e, por conveniência, outro sistema rotat<u>i</u> vo de mesma origem e solidário ao tubo. Assim sendo, o vetor p<u>o</u> sição do ponto genérico do tubo, após sofrer a deformação, pode ser escrito com referência a qualquer um dos dois sistemas.

Designando por R a posição do ponto genérico da linha média da parede do tubo após a deformação, com relação ao sistema intrínseco ao tubo, a velocidade desse ponto é

$$\dot{R} = R_r + \Omega \times R$$
(37)

onde Ŗ 🗧 a velocidade absoluta do ponto em consideração,

Ř_r é a velocidade do ponto com relação ao sistema rotativo, Ω é a velocidade angular do sistema rotativo com relação ao

inercial, e o símbolo

"." significa derivação com relação ao tempo.

Na análise que segue, o termo $\Omega \propto R$ é desprezado e, co<u>n</u> sequentemente, as parcelas correspondentes à aceleração centrípeta e de Coriolis, que surgiriam na derivação posterior com rel<u>a</u> ção ao tempo⁶. Assim, o referencial "rotativo" é confundido com o referencial inercial x,y,z.

Com a aproximação anterior, a posição genérica de um ponto pertencente a linha média da parede do tubo é

$$R = (x + u)\vec{i} + (y + v)\vec{j} + (z + w)\vec{k}$$
(38)

Sua derivada com relação ao tempo, após a simplificação mencionada, é

$$\dot{\mathbf{R}} = \dot{\mathbf{u}} \cdot \dot{\mathbf{i}} + \dot{\mathbf{v}} \cdot \dot{\mathbf{i}} + \dot{\mathbf{w}} \cdot \dot{\mathbf{k}}$$
(39)

Então, com auxílio da Equação (39), escreve-se imediat<u>a</u> mente a expressão da energia cinética do tubo, que é

$$T_{t} = \frac{1}{2} \int_{V_{o}} \rho_{t}(\dot{R}; \dot{R}) dV_{o}$$
 (40)

onde ρ_t é a densidade do tubo (suposta constante) e V_0 indica o volume do corpo.

6 - Ver maiores detalhes na Ref. [21]

Levando em consideração as expressões do deslocamento do ponto genérico do tubo, dadas pelas Equações (36.a), (36.b) e (36.c), é fácil mostrar, com auxílio da Equação (40) que:

$$T_{t} = \frac{1}{2} \int_{V_{0}} \{ \dot{u}_{0}^{2} + y^{2} v, x^{2} + z^{2} w, x^{2} - 2y \dot{u}_{0} \dot{v}, x^{-} - 2z \dot{u}_{0} \dot{v}, x^{+} + 2y z \dot{v}, x^{w}, x^{+} \dot{v}^{2} + \dot{w}^{2} \} dV_{0}$$
(41)

Com relação à Equação (41), as integrais
$$\int_A ydA$$
; $\int_A zdA$ e yzdA se anulam, uma vez que os eixos y e z são eixos prin-

A cipais de inércia. As integrais $\int_A y^2 dA = \int_A z^2 dA$ correspondem

ao momento de inércia I da seção, e, devido à simetria da seção, terão valores iguais.

Com base nestas observações, a Equação (41) é reduzida a:

$$T_{t} = \frac{1}{2} \int_{0}^{L} \rho_{t} \cdot S_{t} \{ \dot{u}_{0}^{2} + \dot{v}^{2} + \dot{w}^{2} \} dx +$$

$$+ \frac{1}{2} \int_{0}^{L} \rho_{t} I\{v, x^{2} + w, x^{2}\} dx \qquad (42)$$

O primeiro termo da Equação (42) representa a energia c<u>i</u> nética devida à translação do ponto genérico do tubo, enquanto que o segundo termo é a parcela correspondente à inércia rotatória. Para aplicação do Princípio de Hamilton é necessária a primeira variação da energia cinética , que é

$$\delta \int_{t_1}^{t_2} T_t dt = \int_{t_1}^{t_2} \int_0^L -\rho_t S_t \{ \ddot{u}_0 \delta u_0 + \ddot{v} \delta v + \ddot{w} \delta w \} dx dt +$$

+ T.O.S

onde T.O.S representa os termos de ordem superior.

Para obtenção da expressão (43) foram desprezados os ter mos da inércia rotatória e aplicadas as hipóteses pertinentes ao Princípio de Hamilton. Os termos da inércia rotatória podem ser negligenciados devido à hipótese inicial adotada correspondente à rotação do sistema intrínseco do tubo. Outrossim. é fácil verifi car que a energia cinética devida à inércia rotatória é muito pe quena quando comparada com a parcela de translação. Para isto, é suficiente analisar a ordem das derivadas de cada termo e associar com a Teoria da Elasticidade para pequenos deslocamentos е deformações.

4.3 Energia de Deformação do Tubo

Como já está implícito nas hipóteses simplificadoras ad<u>o</u> tadas para obtenção da energia cinética do tubo, a estrutura é cons<u>i</u> derada como sendo uma viga de Euler-Bernoulli . Para obtenção da energia de deformação do tubo serão, inicialmente mantidas as relações deformação - deslocamento, relativas à Teoria da Elasticidade não linear. Assim procedendo, obtém-se:

44

(43)

$$U^{*} = \int_{V_{o}}^{1} \frac{1}{2} \sigma_{xx} \varepsilon_{xx} dV_{o}$$
(44)

ou, ainda,

$$U^* = \int_{V_0} \frac{E}{2} \varepsilon_{XX}^2 dV_0$$
 (45)

onde tem-se:
$$\sigma_{xx}$$
 é a tensão normal na direção x;
 ε_{xx} é a deformação específica na direção x;
E é o módulo de elasticidade longitudinal; e
U* é a energia de deformação do tubo.

Da teoria da Elasticidade não linear tem-se:

$$\varepsilon_{XX} = u_{,X} + \frac{1}{2} \{ u_{,X}^{2} + v_{,X}^{2} + w_{,X}^{2} \}$$
(46)

Substituindo as Equações correspondentes ao deslocamento do ponto genérico na Equação (46) e levando-se em consideração as mesmas observações relativas à simetria e eixos principais de inércia da seção, obtém-se:

$$U^{*} = \frac{E}{2} \{S_{t} \int_{0}^{L} [u_{0}, x^{2} + u_{0}, x(v, x^{2} + w, x^{2})] dx +$$

+
$$I \int_{0}^{L} [(v, x^{2} + w, x^{2}) + 3u_{0}, x(v, x^{2} + w, x^{2})] dx +$$

$$+\frac{E}{2} \int_{V_{O}} \left[-y^{3}v_{,XX}^{3} - z^{3}w_{,XX}^{3} - 3y^{2}v_{,XX}^{2}w_{,XX} - 3yz^{2}v_{,XX}^{2}w_{,XX}^{2} \right] dV_{O} +$$

$$+\frac{E}{2} \int_{V_0} \left[u_0, x^3 + \frac{1}{4} \left(u, x^2 + v, x^2 + w, x^2 \right)^2 \right] dV_0$$
(47)

Claramente, as três últimas parcelas da energia de defo<u>r</u> mação representam quantidades de ordem superior quando comparadas com os termos restantes, pois todas as derivadas, ou produtos de d<u>e</u> rivadas, tem ordem maior ou igual a 3. Portanto, é suficienteme<u>n</u> te boa a aproximação:

$$U^{*} \simeq \frac{E}{2} \{ S_{t} \int_{0}^{L} [u_{0}, x^{2} + u_{0}, x(v, x^{2} + w, x^{2})] dx + I \int_{0}^{L} (v, xx^{2} + w, xx^{2}) dx \} + T.O.S.$$
(43)

cuja variação necessária para aplicação do Princípio de Hamilton é:

$$\delta \int_{t_1}^{t_2} U^* dt = \int_{t_1}^{t_2} \int_{0}^{L} -ES_t \{u_0, x_1 + \frac{1}{2} (v, x^2 + w, x^2), x\} \delta u_0 dx dt +$$

$$\int_{t_1}^{t_2} \int_{0}^{L} EI\{v, xxxx \delta v + w, xxxx \delta w\} dx dt +$$

$$+ \int_{t_{1}}^{t_{2}} \int_{0}^{L} -E S_{t} \{ (u_{0}, {}_{x}v, {}_{x}), x \delta v + (u_{0}, {}_{x}w, {}_{x}), x \delta w \} dx dt + \int_{t_{1}}^{t_{2}} E S \{ u_{0}, {}_{x}^{2} + \frac{1}{2} (v, {}_{x}^{2} + w, {}_{x}^{2}) \} \delta u_{0} \Big|_{0}^{L} dt + \int_{t_{1}}^{t_{2}} E I \{ v, {}_{xx} \delta v, {}_{x} \Big|_{0}^{L} + w, {}_{xx} \delta w, {}_{x} \Big|_{0}^{L} \} dt + \int_{t_{1}}^{t_{2}} E S u_{0}, {}_{x} \{ v, {}_{x} \delta v, {}_{x} \Big|_{0}^{L} + w, {}_{x} \delta w, {}_{x} \Big|_{0}^{L} \} dt + \int_{t_{1}}^{t_{2}} E S u_{0}, {}_{x} \{ v, {}_{x} \delta v, {}_{y} \Big|_{0}^{L} + w, {}_{x} \delta w \Big|_{0}^{L} \} dt$$

$$+ \int_{t_{1}}^{t_{2}} E S u_{0}, {}_{x} \{ v, {}_{x} \delta v, {}_{0} \Big|_{0}^{L} + w, {}_{x} \delta w \Big|_{0}^{L} \} dt$$

$$(49)$$

4.4 Energia Cinética do Escoamento Interno

A energia cinética do fluido que escoa internamente na tubulação é:

$$\Gamma_{fi} = \frac{M}{2} \int_{0}^{L} (\underline{V}; \underline{V}) dx$$
(50)

onde T_{fi} é a energia cinética do fluido interno;

- M é a massa de fluido por unidade de comprimento do tubo; e
- V é a velocidade absoluta do fluxo de fluído após a de

formação do tubo.

De acordo com Chen [17], a velocidade absoluta do fluido é expressa como:

$$V = R_0 + V \tau$$
(51)

onde R_o é o vetor genérico de um ponto pertencente à linha de centro do tubo após deformação;

- V é a velocidade média do escoamento, e
- um vetor unitário tangente à linha de centro do tubo após a deformação.

O vetor R_0 é obtido diretamente da Equação (38), fazendo apenas y = z = 0; ou seja:

$$R_{0} = (x + u_{0})\vec{i} + v\vec{j} + w\vec{k}$$
 (52)

Derivando com relação ao tempo esse vetor posição central, temos:

$$\dot{R}_{0} = \dot{u}_{0}\dot{i} + \dot{v}\dot{j} + \dot{w}\dot{k}$$
(53)

O vetor unitário τ é obtido com auxílio da Equação (52), e é definido como:

$$\tau = \frac{R_{o'x}}{|R_{o'x}|}$$
(54)

Novamente, utilizando a Equação (52), obtem-se as grandezas necessárias para a determinação de <u>r</u>, que são:

$$R_{0,x} = \{ (1 + u_{0,x}) \dot{i} + v_{x} \dot{j} + w_{x} \dot{k} \}$$
(55)

$$R_{0,x} = \{ (1 + u_{0,x})^{2} + v_{x}^{2} + w_{x}^{2} \}^{\frac{1}{2}}$$
(56)

Lembrando que é utilizada a Teoria da Elasticidade não linear para pequenas deformações e deslocamentos, e tendo-se em mente que $(1 + x)^{-1/2} \approx (1 - \frac{1}{2}x + ...)$ para -1 < x < 1, pode-se f<u>i</u> nalmente escrever o valor de <u>r</u>, que é:

$$\underline{\tau} \simeq \{ (1 + u_0, x)^{\frac{1}{2}} + v_{,x}^{\frac{1}{2}} + w_{,x}^{\frac{1}{k}} \} \cdot \{ (1 - u_0, x)^{\frac{1}{2}} - \frac{u_0, x^2}{2} - \frac{v_{,x}^2}{2} - \frac{w_{,x}^2}{2} \}$$
(57)

ou ainda:

e

$$\underline{\tau} = \{1 - \frac{3}{2} u_0, x^2 - \frac{v_x^2}{2} - \frac{w_x^2}{2}\} + \{v_x - u_0, v_x^3\} + \{w_x - u_0, v_x^3\} + \{w_y - u_0, v_x^3\} + T.0.S.$$
(58)

Finalmente, a velocidade absoluta do escoamento após a deformação do tubo pode ser obtida e é:

$$\underline{V} \simeq \{ u_{0} + V \left[1 - \frac{3}{2} u_{0}, x - \frac{V, x^{2}}{2} - \frac{W, x^{2}}{2} \right] \} \vec{i}$$

$$+ \{ u + V \left[v, x - u_{0}, x v, x \right] \} \vec{j} +$$

$$+ \{ w + V \left[w, x - u_{0}, x w, x \right] \} \vec{k}$$

$$(59)$$

Então, o produto V;V é:

$$V; V = \dot{u}_{0}^{2} + 2 \dot{u}_{0} V(1 - \frac{3}{2} u_{0}, x^{2} - \frac{v \cdot x^{2}}{2} - \frac{w \cdot x^{2}}{2}) + V^{2} (1 - 3 u_{0}, x^{2} + T.0.S) + \dot{v}^{2} + \dot{w}^{2} + V^{2} + \frac{v \cdot x^{2}}{2}) + 2 \dot{v} V(v \cdot x - u_{0}, x^{2} v \cdot x) + 2 \dot{w} V(w \cdot x - u_{0}, x^{2} w \cdot x) + V^{2} (-2 u_{0}, x^{2} (v \cdot x^{2} + w \cdot x^{2}) + u_{0}, x^{2} (v \cdot x^{2} + w \cdot x^{2})) + V^{2} (-2 u_{0}, x^{2} (v \cdot x^{2} + w \cdot x^{2}) + u_{0}, x^{2} (v \cdot x^{2} + w \cdot x^{2})) + \dots (60)$$

Desprezando-se novamente os termos de ordem superior,tem-se:

$$V; V \simeq \dot{u}_{0}^{2} + \dot{v}^{2} + \dot{w}^{2} + V^{2} + 2\dot{v}v_{,x}V + 2\dot{w}w_{,x}V +$$

$$+ 2\dot{u}_{0}V - 2u_{0}^{2}, v_{,x}^{2}V^{2} - 2u_{0}^{2}, w_{,x}^{2}V^{2} - 3u_{0}^{2}, x^{2}V^{2} +(61)$$

Portanto, para obtenção da energia cinética do escoamento, é suficiente efetuar a integração nos limites de 0 a L da Equação (61) e multiplicar por $\frac{M}{2}$. A variação dessa energia , necessária para aplicação do Princípio de Hamilton, é:

$$\delta \int_{t_1}^{t_2} T_{fi} dt = - \int_{t_1}^{t_2} \int_{0}^{L} \frac{M}{2} \{ \ddot{u}_0 \ \delta \ u_0 + \ddot{v} \ \delta v + \ddot{w} \ \delta w \} dx dt$$
$$- \int_{t_1}^{t_2} \int_{0}^{L} \{ M \dot{v} v, x + 2 M V \dot{v}, x \} \delta v + (M \dot{v} w, x + 2 M V \dot{v}, x \} \delta v dt$$

 $+ 2 M V \dot{w}, x \delta w dx dt$

$$+ \int_{t_{1}}^{t_{2}} \int_{0}^{L} 2 M V^{2} \{u_{0}, v_{1}, v$$

4.5 Trabalho das Forças Externas

A tensão axial efetiva T_e representa o efeito combinado de uma tensão T_o inicialmente imposta e aplicada nos extr<u>e</u> mos do tubo (será negativa no caso de compressão) e da pressão interna p, que produzirá influências na flambagem. Ainda, a defo<u>r</u> mação devida à pressão interna induz uma tensão axial cuja magnitude depende do coeficiente de Poisson do material. Esta tensão desaparece caso a extremidade do tubo se encontre livre para sofrer deformações axiais [18].

51.

De maneira geral, a tensão T_{e} é espressa como:

$$T_{e} = T_{0} - (1 - 2v\theta)\bar{p}A$$
 (63)

onde T é a tensão efetiva axial,

T é a tensão axial aplicada na extremidade do tubo,

A é a área de escoamento do fluxo interno,

p é a pressão do fluxo de fluído na saída do tubo,

v 🛛 é o coeficiente de Poisson do tubo, e

 θ = zero para tubos com extremidades sem restrições, e

θ = 1 para tubos com restrição total de deslocamento na direção axial.

A força axial total será o efeito combinado da tensão axial efetiva, mais o peso do tubo e da massa de fluído do escoamento interno.

$$F_{ax} = (m \pm M)g + T_{e}$$
 (64)

onde m é a massa do tubo por unidade de comprimento,

M é a massa do fluído interno por unidade de comprimento do tubo, e

géa aceleração da gravidade.

O sinal "±" na expressão acima é justificado pelo sentido do escoamento do fluido interno. Como, a estrutura é ainda solicitada pelas forças arraste e sustentação, o trabalho e<u>x</u> terno total realizado por todas estas forças é:

$$W_{EXT} = \int_{0}^{L} (F_{ax}, F_{L}, F_{D}); (u, v, w) dx$$
 (65)

ou ainda,

$$W_{EXT} = \int_{0}^{L} \{F_{ax} (u_{o} - yv_{x} - zw_{x}) + F_{L}v + F_{D}w\} dx \quad (66)$$

onde W_{EXT} é o trabalho das forças externas.

4.6 Principio de Hamilton

Para a aplicação efetiva do Princípio de Hamilton , co mo apresentado na Equação (1), falta ainda o cálculo do segundo termo da expressão, que será denominado por H_1 . Assim procedendo, com o auxílio das Equações (53) e (58) é fácil determinar a expressãode H_1 , que é:

$$H_{1} = \int_{t_{1}}^{t_{2}} MV \left[\{ \ddot{u}_{0} + V(1 - \frac{3}{2} u_{0}, x^{2} - \frac{v_{x}^{2}}{2} - \frac{w_{x}^{2}}{2} + \frac{w_{x}^{2}}{2} \} \Big|_{X=L}^{t_{1}} + \left\{ \dot{v} + V(v_{x} - u_{0}, v_{x}) \right\} \Big|_{X=L}^{t_{1}} + \left\{ \dot{v} + V(w_{x} - u_{0}, w_{x}) \right\} \Big|_{X=L}^{t_{1}} \right];$$

$$(\delta u_{0}\vec{i} + \delta v \vec{j} + \delta w \vec{k}) \Big|_{\chi=L} dt$$
(67)

ou simplesmente:

$$H_{1} = \int_{t_{1}}^{t_{2}} MV\left[\left[u_{0} + V(1 - \frac{3}{2}u_{0}, x^{2} - \frac{v_{x}}{2} - \frac{w_{x}}{2} \right] \right] \Big|_{x=L} \delta u_{0} \Big|_{x=L}$$

+
$$\left[\mathbf{v} + \mathbf{V}(\mathbf{v}, \mathbf{x} - \mathbf{u}_{o}, \mathbf{x}, \mathbf{v}, \mathbf{x}) \right] \Big|_{X=L} \delta \mathbf{v} \Big|_{X=L} +$$

+ $\left[\dot{\mathbf{w}} + \mathbf{V}(\mathbf{w}, \mathbf{x} - \mathbf{u}_{o}, \mathbf{x}, \mathbf{w}, \mathbf{x}) \right] \Big|_{X=L} \delta \mathbf{w} \Big|_{X=L} dt$ (68)

É repetida, por conveniência, a expressão (33) do Princípio de Hamilton obtida por Benjamin [14], na sua forma apro priada para utilização

$$\delta \int_{t_1}^{t_2} \{T - (U^* - W_{EXT})\} dt - \int_{t_1}^{t_2} MV\{R_o |_{X=L} + V_{\tilde{L}} |_{X=L}\}; \delta R_o |_{X=L} dt = 0$$
.... (69)

que será denotada simplesmente por δH . Finalmente, utilizando as Equações (43),(49),(62),(66),(68) e (69) pode-se obter as equações do movimento oscilatório do tubo, ou seja:

$$\delta H = \int_{t_1}^{t_2} \int_{0}^{L} \{-(M + \rho_t S_t) \ddot{u}_0 + (M + \frac{ES_t}{2})(v_{,x} + w_{,x}^2)_{,x} + (3MV^2 + ES_t)u_{,xx} - M\dot{v} + F_{ax}\}\delta u_0 dx dt$$

$$+ \int_{t_1}^{t_2} \int_{0}^{L} \{-(M + \rho_t S_t) \ddot{v} - (M\dot{v}v_{,x} + 2MV\dot{v}_{,x}) + (2MV^2 + ES_t)(u_{,x}v_{,x})_{,x} - EIv_{,xxxx} + F_L\}\delta v dx dt +$$

Como cada variação é arbitrária, é fácil verificar que a Equação (70) só será válida se cada uma de suas parcelas for identicamente nula. Assim sendo, as três primeiras parcelas dão origem ao sistema de equações diferenciais do movimento oscilatório do tubo e as posteriores, gerarão as possíveis condições de contorno.

Então, as equações diferenciais são:

$$(m + M)\ddot{u}_{0} - (MV^{2} + \frac{ES_{t}}{2})(v,_{x}^{2} + w,_{x}^{2}),_{x} - (3MV^{2} + ES_{t})u_{0},_{xx} + M\dot{v} = F_{ax}$$

$$(m + M)\ddot{v} + EIv,_{xxxx} + (M\dot{v}v,_{x} + 2MV\dot{v},_{x}) - (2MV^{2} + ES_{t})(u_{0},_{x}v,_{x}),_{x} = F_{L}$$

$$(m + M)\ddot{w} + EIw,_{xxxx} + (M\dot{v}w,_{x} + 2MV\dot{w},_{x}) - (2MV^{2} + ES_{t})(u_{0},_{x}w,_{x}),_{x} = F_{D}$$

$$\dots (71)$$

sujeitas às condições de contorno para x = 0:

$$\int_{e} -y F_{ax} + EIv_{xxx} - (ES_t + 2MV^2)u_{o,x}v_{,x} + MV\dot{v} = 0$$

$$E I v_{,xx} = 0$$
 ou $\delta v_{,x} = 0$ (72.a)

$$\begin{cases} -z F_{ax} + E I w, _{xxx} - (E S_{t} + 2MV^{2})u_{o}, _{x}w, _{x} + MV \dot{w} = 0 \quad ou \quad \delta w = 0 \\ e \\ E I v, _{xx} = 0 \quad ou \quad \delta w, _{x} = 0 \end{cases}$$
(72.b)

$$\left\{-(ES_{t} + 3MV^{2})u_{0}, x - (\frac{ES_{t}}{2})MV^{2})(v_{x}^{2} + w_{x}^{2}) = 0 \quad \text{ou} \quad \delta u_{0} = 0 \\ \dots (72.c)\right\}$$

e às seguintes condições de contorno para X=L:

$$- y F_{ax} + E I v_{,xxx} - (E S_{t} + 2 MV^{2}) u_{o',x} v_{,x} + MV v + + MV(v + V(v_{,x} - u_{o',x} v_{,x})) = 0 \quad ou \quad \delta v = 0 e, E I v_{,xx} = 0 \quad ou \quad \delta v_{,x} = 0$$
(73.a)

$$\begin{cases}
- y F_{ax} + E I W_{,xxx} - (E S_{t} + 2 M V^{2}) u_{0,x} W_{,x} + M V \dot{w} + \\
+ M V (\dot{w} + V (W_{,x} - u_{0,x} W_{,x})) = 0 \quad ou \quad \delta w = 0 \\
e \\
E I W_{,xx} = 0 \quad ou \quad \delta W_{,x} = 0
\end{cases}$$
(73.b)

$$\begin{bmatrix} -(ES_{t} + 3MV^{2})u_{0}, x - (\frac{ES_{t}}{2} + MV^{2})(v_{1}, x^{2} + w_{1}, x^{2}) \\ -MV(\dot{u}_{0} + V(1 - \frac{3}{2}u_{0}, x^{2} - \frac{v_{1}, x^{2}}{2} - \frac{w_{1}, x^{2}}{2}) = 0 \text{ ou } \delta u_{0} = 0 \quad (73.c) \end{bmatrix}$$

Na realidade, ao sistema de Equações (72) falta acresce<u>n</u> tar os termos referentes ao amortecimento viscoso equivalente e as forças inerciais correspondentes à acerelação da massa adici<u>o</u> nal . Tais efeitos somente serão incorporados nas equações co<u>r</u> respondentes aos de camentos na direção transversal do tubo, uma vez que o escoamento externo é tratado como sendo bidimensional, o que permite que as hipóteses de que massa adicional e amortec<u>i</u> mento viscoso equivalente sejam negligenciados na direção axial. Logo, as equações do sistema (71) ficam:

$$(m + m_a + M)\ddot{v} + EIv_{,xxxx} + c\dot{v} + (MVv_{,x} + 2MV\dot{v}_{,x}) - (2MV^2 + ES_t)(u_{o',x}v_{,x})_x = F_L(t) + m_a\dot{U}_y$$

$$(m + m_{a} + M)\ddot{w} + EIw,_{xxxx} + c\dot{w} + (M\dot{V}w,_{x} + 2MV\dot{w},_{x}) - (2MV^{2} + ES_{t})(u_{o},_{x}w,_{x}),_{x} = F_{D}(t) + m_{a}\dot{U}_{z}$$
(74)

onde as últimas componentes, $m_a \dot{U}_y = m_a \dot{U}_z$, correspondem ao efei to da 'massa adicional'' para fluido em movimento com cilindro para do e os índices y e z representam as componentes da aceleração do
fluido externo nessas duas direções.

Os termos c^v e c^w são de origem não conservativa e, cl<u>a</u> ramente esse sistema é não conservativo. No entanto, para casos em que o escoamento externo é nulo, a análise do comportamento do sistema com relação à transferência de energia é feita desprezando-se apenas os termos correspondente ao amortecimento, massa adicional e a parte não homogênea do sistema (71). Benjamin [14] descreve a transferência de energia do tubo, ou para o tubo, atr<u>a</u> vés da equação:

$$\Delta w = \int_{t_1}^{t_2} - M V \left(\dot{R}^2 + V \tau; \dot{R} \right) dt$$
(75)

onde Aw é a energia transferida.

Se, por exemplo, o sistema executa vibrações com amplit<u>u</u> des constantes em torna da posição de equilibrio, a razão de tran<u>s</u> ferência da energia deverá ser zero; então, a quantidade dada pela Equação (75) deve se cancelar quando a integração se estender por um ciclo completo.

Quando a velocidade V é pequena, a Equação (75) mostra que as vibrações em torno da posição de equilíbrio são sempre amortecidas, uma vez que o primeiro termo no integrando predomina sobre o outro e, portanto Δw é sempre negativo. Note-se ainda, que o primeiro termo dessa equação é sempre negativo e, no entanto, para grandes vibrações e para V também grande, Δw pode ser maior que zero.

Se $\Delta w = 0$, a transferência ou extração de energia da flui

do para o tubo não ocorre. Neste caso, diz-se que o sistema é conservativo (biengastados, engastado-apoiado e simplesmente apoiado nos extremos) pertencem a esse grupo de tubos). Por outro lado; se o tubo admite movimento na extremidade, Δw geralmente é diferente de zero. Há o fluxo de energia e o sistema é considerado não conservativo (tubos em balanço é um exemplo típico desse tipo de sistema) [14].

4.7 Linearização do Sistema de Equações

Numa grande quantidade de problemas de tubulação, a rig<u>i</u> dez axial é muito maior que a rigidez de flexão do material. Se<u>n</u> do assim, as hipóteses simplificadoras adotadas por Benjamin [14], Païdossius e Issid [15], Païdossius e Gregory [16] e Païdossius, [19 - 20], podem ser utilizadas nestes tipos de problemas, e são:

1- Contração na direção axial:

$$u_{0} = -\int_{0}^{x} (ds - dx) = -\frac{1}{2} \int_{0}^{x} (v_{x}^{2} + w_{x}^{2}) dx$$
(76)

2- Energia de deformação do tubo:

$$U^{*} = \frac{EI}{2} \int_{0}^{L} (v_{,xx}^{2} + w_{,xx}^{2}) dx + T.0.S$$
 (77)

3- Energia cinética do tubo:

$$T_{t} = \frac{1}{2} \int_{0}^{L} \rho_{t} S_{t} (\dot{v}^{2} + \dot{w}^{2}) dx + T.0.S$$
 (78)

4- Energia cinética do escoamento interno:

$$\Gamma_{fi} = \frac{M}{2} \int_{0}^{L} \{2V \frac{d}{dt} \int_{0}^{x} \frac{1}{2} (v, x^{2} + w, x^{2}) dx + V^{2} + \dot{v}^{2} + \dot{v}^{2} + \dot{w}^{2} + \dot{w}^{2} + \dot{w}^{2} + \dot{w}^{2} + \dot{w}^{2} + \dot{v}^{2} + \dot{v}$$

É necessária, novamente, a aplicação do Princípio de Ha milton para obtenção do sistema de equações que governam o movimento oscilatório da estrutura. As variações necessárias da ener gia cinética do tubo e da energia de deformação, podem ser obtidas diretamente das expressões mostradas anteriormente, uma vez que as hipóteses atuais são apenas simplificações das Equações (42) e (47). Assim, tem-se:

$$\delta \int_{t_1}^{t_2} T_t dt = - \int_{t_1}^{t_2} \int_{0}^{L} \rho_t S_t \{ \ddot{v} \delta v + \ddot{w} \delta w \} dx dt$$
(80)

$$\delta \int_{t_1}^{t_2} U^* dt = E I \int_{t_1}^{t_2} \{v, x_X \delta v, x \Big|_{0}^{L} + w, x_X \delta w, x \Big|_{0}^{L} \} dt -$$

е

$$- E I \int_{t_1}^{t_2} \{v, xxx \delta v \Big|_0^L + w, xxx \delta w \Big|_0^L \} dt +$$

+ EI
$$\int_{t_1}^{t_2} \int_0^L \{v, xxxx \delta v + w, xxxx \delta w\} dx dt \quad (81)$$

4.8 Análise do Escoamento do Fluido Interno

Antes de efetuar a variação necessária da energia cinét<u>i</u> ca do fluído interno, é mais apropriado e conveniente tratar ap<u>e</u> nas o primeiro termo da Equação (79) separadamente. Designa-se por T_{fi}^* essa parcela e, integrando por partes e utilizando a variação necessária, resulta:

$$\delta \int_{t_{1}}^{t_{2}} T_{fi}^{*} dt = \delta \int_{t_{1}}^{t_{2}} -MV \frac{d}{dt} \{x \int_{0}^{x} (v_{x}^{2} + w_{x}^{2}) dx \Big|_{0}^{L} - \int_{0}^{L} x(v_{x}^{2} + w_{x}^{2}) dx \} dt$$
(82)

Após substituição dos limites de integração a equação acima reduz-se a:

$$\delta \int_{t_1}^{t_2} T_{fi}^* dt = \delta \int_{t_1}^{t_2} -MV \frac{d}{dt} \left\{ \frac{1}{2} \int_{0}^{L} (L - x) (v_{x}^2 + w_{x}^2) dx \right\} dt$$
(83)

ou ainda.

$$\delta \int_{t_1}^{t_2} fi^* dt = - \int_{t_1}^{t_2} MV \frac{d}{dt} \left[\{v, v \delta v \mid 0 + w, v \delta w \mid 0 \} - \frac{1}{2} + \frac{1}{2} \int_{t_1}^{t_2} MV \frac{d}{dt} \left[\{v, v \delta v \mid 0 \} - \frac{1}{2} + \frac{1}{2} +$$

$$-\int_{0}^{L} (\{v, x(1-x)\}, \delta v + \{w, x(1-x)\}, \delta w] dt \quad (84)$$

Efetuando, novamente, a integração por partes com relação ao tempo resulta:

+
$$\int_{t_{1}}^{t_{2}} \int_{0}^{L} M\dot{V}\{(L - x)w,_{xx} - w,_{x}\} \delta w dx dt$$
 (85)

Feito isso, a variação total da energia cinética do flu<u>1</u> do interno é facilmente obtida, e vale:

$$\delta \int_{t_1}^{t_2} T_{fi} dt = M \int_{t_1}^{t_2} \int_{0}^{L} \{-2\dot{v}, x v - \dot{v} + \dot{v} [(L - x)v, x x]\} \delta v dx dt +$$

+
$$M \int_{t_1}^{t_2} \int_{0}^{L} \{-2\dot{w}, v - \ddot{w} + \dot{v}[(L - x)w, xx]\} \delta w dt$$

$$- M \int_{t_{1}}^{t_{2}} \dot{V}(L - x) \{v, x \delta v \mid_{0}^{L} + w, x \delta w \mid_{0}^{L} \} dt + W \int_{t_{1}}^{t_{2}} \dot{V} \delta v \mid_{0}^{L} + \dot{w} \delta w \mid_{0}^{L} \} dt$$

$$+ M V \int_{t_{1}}^{t_{2}} \{\dot{v} \delta v \mid_{0}^{L} + \dot{w} \delta w \mid_{0}^{L} \} dt$$

$$(86)$$

4.9 Trabalho das Forças Externas

A força axial, como mostrado na Equação (64), pode ser explicitada em função das tensões aplicadas nos extremos do tubo e da pressão interna do fluido. Para determinar o trabalho real<u>i</u> zado por esta força, é suficiente multiplicar pelo deslocamento na direção axial e integrar, ou seja:

$$W_{ax} = \int_{0}^{L} (m + M)g u(x) dx + \left[\bar{T} - \bar{p}A(1 - 2\nu\theta)\right] u(L)$$
(87)

onde W_{ax} é o trabalho externo realizado pelas forças axiais, e o símb**o**lo,

"-" significa valores tomadas na extremidade do tubo.

Substituindo o valor de u(x), tem-se:

$$W_{ax} = - \int_{0}^{L} (m + M)g \int_{0}^{x} \frac{1}{2} (v_{x}^{2} + w_{x}^{2}) dx dx -$$

$$-\left[\bar{T} - \bar{p}A(1 - 2\nu\theta)\right] \int_{0}^{L} \frac{1}{2} (v_{,x}^{2} + w_{,x}^{2}) dx \qquad (88)$$

A variação necessária para obtenção das equações do movimento é:

$$\delta \int_{t_1}^{t_2} W_{ax} dt = (m + M)g \int_{t_1}^{t_2} (L - x) \left[v_{,x} \delta v \Big|_0^L \right] dt - (m + M)g \int_{t_1}^{t_2} \int_0^L \{ (L - x) v_{,x} \}_{,x} \delta v dx dt - (m + M)g \int_{t_1}^{t_2} \int_0^L \{ (L - x) w_{,x} \}_{,x} \delta w dx dt + \left[\overline{T} - \overline{p} A(1 - 2v\theta) \right] \int_{t_1}^{t_2} \{ v_{,x} \delta v \Big|_0^L + w_{,x} \delta w \Big|_0^L \} dt - \left[\overline{T} - \overline{p} A(1 - 2v\theta) \right] \int_{t_1}^{t_2} \left\{ v_{,x} \delta v + w_{,xx} \delta w \right\} dx dt$$
....(89)

4.10 Sistema Linearizado

Falta ainda, a determinação do valor de H_1 . Utilizando os valores obtidos na Equação (68) e a hipótese simplificativa d<u>a</u> da pela Equação (76) é possível sua determinação, que se reduz a

$$H_{1} = -\delta \frac{MV^{2}}{2} \int_{t_{1}}^{t_{2}} \int_{0}^{L} (v_{x} + w_{x}) dx dt + T, 0.S$$
(90)

quando se leva em consideração o fato de que as deformações e des locamentos são insignificantes quando comparados com os termos restantes.

Assim sendo, o Princípio de Hamilton , tal qual apresen tado por Benjamin [14], pode ser aplicado diretamente, obtendo-se:

$$\begin{split} \delta H &= \int_{t_1}^{t_2} \int_{0}^{L} (-(m+M)\ddot{v} - EIv_{,XOXX} - M(2\dot{v}_{,X}V - \dot{V}(L-x)v_{,XX}) \\ &+ F_L - MV^2 v_{,XX} + (m+M)g \left[(L-x)v_{,X} \right]_{,X} + \\ &+ \left[\ddot{T} - \bar{p}A(1-2v\theta) \right] v_{,XX} \right] \delta v dx dt + \\ &+ \int_{t_1}^{t_2} \int_{0}^{L} (-(m+M)\ddot{w} - EIw_{,XOXX} - M(2\dot{w}_{,X}V - \dot{V}(L-x)w_{,XX}) + \\ &+ F_D - MV^2 w_{,XX} + (m+M)g \left[(L-x)w_{,X} \right]_{,X} + \\ &+ \left[\ddot{T} - \bar{p}A(1-2v\theta) \right] w_{,XX} \right] \delta w dx dt + \\ &+ \int_{t_1}^{t_2} \left\{ (EIv_{,XXX} + \left[(-M\dot{V} + (m+M)g)(L-x) + \left[\ddot{T} - \right. \\ &- \bar{p}A(1-2v\theta) \right] v_{,X} + MV\dot{v} + MV^2 v_{,X} \right\} \delta v \Big|_{0}^{L} - EIv_{,XX} \delta v_{,X} \Big|_{0}^{L} \right\} dt \end{split}$$

+
$$\int_{t_1}^{t_2} \{ \{ E I w, xxx + \left[-MV + (m+M)g \right] (L-x) + \left[\tilde{T} - \tilde{p}A(1 - 2v\theta) \right] w, x + \left[1 - MV + (m+M)g \right] (L-x) + \left[\tilde{T} - \tilde{p}A(1 - 2v\theta) \right] w, x + \left[1 - MV + (m+M)g \right] (L-x) + \left[1 - \tilde{T} - \tilde{p}A(1 - 2v\theta) \right] w, x + \left[1 - MV + (m+M)g \right] (L-x) + \left[1 - \tilde{T} - \tilde{p}A(1 - 2v\theta) \right] w, x + \left[1 - MV + (m+M)g \right] (L-x) + \left[1 - \tilde{T} - \tilde{p}A(1 - 2v\theta) \right] w, x + \left[1 - MV + (m+M)g \right] (L-x) + \left[1 - \tilde{T} - \tilde{$$

+
$$MV\dot{w} + MV^2 w, {}_X\} \delta w \Big|_0^L - EIw, {}_{XX} \delta w, {}_X\Big|_0^L\} dt$$
 (91)

Novamente, como as variações são arbitrárias, as duas primeiras parcelas da Equação (91) originam o sistema de equações diferenciais do comportamento oscilatório do tubo nas direções y e z e, as outras parcelas, proporcionam as possíveis condições de contorno para o sistema.

As equações diferenciais são:

$$(m + M)\ddot{v} + EIv_{,xxxx} + M[2\dot{v}_{,x}V + \dot{V}(L - x)v_{,xx}] + MV^{2}v_{,xx} - (m + M)g[(L - x)v_{,x}]_{,x} - [\bar{T} - \bar{p}A(1 - 2v\theta)]v_{,xx} = F_{L}(t)$$

$$(m + M)\ddot{w} + EIv_{,xxxx} + M[2\dot{w}_{,x}V + \dot{V}(L - x)w_{,xx}] + MV^{2}w_{,xx}$$

$$(92)$$

$$- (m + M)g\left[(L - x)w, x\right], x - \left[\overline{T} - \overline{p}A(1 - 2\nu\theta)\right]w, xx = F_{D}(t)$$

sujeitas às condições de contorno:

е

$$E I v_{,XXX} + \left\{ \left[-M\dot{V} + (m + M)g \right] (L - x) + \left[\bar{T} - \bar{p}A(1 - 2v\theta) \right] \right\} v_{,X} + MV\dot{v} + MV^{2}v_{,X} = 0 \quad \text{ou} \quad \delta v \Big|_{0}^{L} = 0$$
(93)

 $w \geq$

$$e \qquad E I v,_{xx} = 0 \quad ou \quad \delta v,_{x} \Big|_{0}$$

•

e ainda:

$$E I w_{,XX} + \left\{ \left[-MV + (m + M)g \right] (L - x) + \left[\overline{T} - \overline{p}A(1 - 2v\theta) \right] \right\} w_{,X} + MV \dot{w} + MV^{2} w_{,X} = 0 \quad \text{ou} \quad \delta w \Big|_{0}^{L} = 0 \quad (94)$$
e

$$E I w_{,XX} = 0 \quad \text{ou} \quad \delta w_{,X} \Big|_{0}^{L} = 0$$

As Equações (92), (93) e (94) servirão de base para to dos os estudos a partir deste ponto.

CAPÍTULO V

5. SOLUÇÃO NUMÉRICA DO SISTEMA LINEARIZADO

5.1 Adimensionalização das Equações

Antes de efetuar a solução numérica do sistema de equa ções representativo do comportamento oscilatório do sistema, é apropriado adimensionalizar essas equações. Define-se, para tal, o seguinto conjunto de variáveis:

$\xi = X/L ;$	$\eta = v/L$
$V^* = (M/EI)^{1/2} VL$;	$\beta = M/(M+m+m_a)$
$\gamma = (M+m+m_a) L^3 g/EI;$	$\Gamma^* = \overline{T}L^2 / EI$
$\Pi = \overline{p}AL/EI ;$	$\tau^* = (EI/(M+m+m_a))^{1/2} t/L^2$
$\chi = c L^2 / EI (M+m+m_a)^{1} /$	2 (95)

е

- onde V* é denominada de velocidade adimensional do fluxo interno;
 - β é denominada de razão de massas;
 - γ é denominado de peso adimensional;
 - τ* é denominado de tempo adimensional;
 - χ é denominado de amortecimento adimensional e

Il é denominado de pressão adimensional.

Substituindo esse conjunto de variáveis na primeira das equações do sistema (92) resulta:

$$\frac{\partial^4 \eta}{\partial \xi^4} + \{V^{\star 2} - \Gamma^{\star} + \Pi (1 - 2\nu \theta) + \{-\gamma + \beta^{1/2} \frac{\partial V^{\star}}{\partial \tau^{\star}}\} (1 - \xi)\} \frac{\partial^2 \eta}{\partial \xi^2} + \frac{\partial^2 \eta}{\partial \xi} + \frac{\partial^2 \eta}{\partial \xi$$

+ 2
$$\beta^{1/2}$$
 V* $\frac{\partial^2 \eta}{\partial \tau^* \partial \xi}$ + $\gamma \frac{\partial \eta}{\partial \xi}$ + $\chi \frac{\partial \eta}{\partial \tau^*}$ + $\frac{\partial^2 \eta}{\partial \tau^* 2}$ = $\frac{L^3}{EI}$ (F_L(t) - m_a $\frac{\partial U_y}{\partial t}$)
....(96)

Naturalmente, a segunda equação do sistema (92) apresentará uma estrutura completamente análoga à Equação (96), ressalvan do-se o fato de que apenas a componente não homogênea da equação é que difere quando são repassados os termos $F_L(t)$ para $F_D(t)$ e $\frac{\partial Uy}{\partial t}$ para $\frac{\partial U_Z}{\partial t}$. Evidentemente, as condições de contorno po dem, ou não, variar para essas equações.

5.2 Método de Galerkin

É fácil notar que a solução analítica da Equação (96), se existir, é bastante trabalhosa de ser obtida. Dessa maneira, uma provável solução viável para resolução dessa equação, é através da análise numérica com utilização do Método de Galerkin⁷.

 ⁷ - Outra proposta, apresentada por Païdossius [19], é a utilização de séries de potência.

$$\eta' = \sum_{n=1}^{r} a_n \phi_n (\xi) \Phi_n (\tau^*)$$
(97)

onde n' é a aproximação da função n,

a_n são constantes que podem, inclusive, ser complexas,

- ϕ_n (ξ) é um conjunto de funções linearmente independentes e que devem satisfazer pelo menos, as condições de conto<u>r</u> no geométricas do problema e
- $\Phi_n(\tau^*)$ é o conjunto de funções que descreverá o comportamento oscilatório do tubo no tempo.

Se £ é um funcional tal que f(n) reproduz e satisfaz a equação diferencial homogênea oriunda da Equação (96), tem-se:

$$\mathfrak{L}(\mathfrak{n}) = 0 \tag{98}$$

Como o número de termos da série de funções representativas da aproximação n' deve ser truncado devido à parte prática com putacional e que o operador £ é linear, resulta:

 $\mathfrak{L}(\mathfrak{n}') = \mathfrak{e} \tag{99}$

onde ε é um erro genérico.

A questão toda é a minimização desse erro ε com relação a cada função φ_n(ξ). Escrevendo matematicamente, tem-se:

$$\int_{0}^{1} \mathfrak{L}(\eta'); \ \phi_{n}(\xi) \ d\xi = 0$$
(100)

O resultado da execução da Equação (100) é a determinação

do conjunto de constantes a_n utilizadas na aproximação n' e ainda, a determinação das freqüências naturais de vibração da estrut<u>u</u> ra que é, a priori, o interesse maior da análise dinâmica do problema.

O sucesso da utilização da aproximação n'estâ na esc<u>o</u> lha das funções $\phi_n(\xi)$, que varia de problema para problema. Essa escolha é baseada fundamentalmente nas condições de contorno do problema, que devem ser necessariamente satisfeitas.

Para a estrutura tubular em análise, tem-se, para os diversos tipos de suporte, as funções características listadas no Apêndice II.

Para prosseguir a análise, é tomado como referência, sem perda de generalidade, o caso simplesmente apoiada. A função η é aproximada convenientemente por [18] :

$$\eta \simeq \eta' = \operatorname{Real}_{n=1}^{\Gamma} a_n \operatorname{sen}(n \pi \xi) e^{i\omega\tau^*}$$
 (101)

Substituindo este valor na Equação diferencial (96) e com auxílio da Equação (100) é obtido o sistema de equações line<u>a</u> res que permite a determinação da série mais conveniente para aproximação de n, já levando em consideração que a velocidade do fluxo de fluido é constante, ou seja:

 $\begin{cases} 1 & r \\ \{\text{Real } \sum_{n=1}^{r} a_n e^{i\omega\tau^*} \{n^4\pi^4 \text{sen}(n\pi\xi) - [V^{*2} - \Gamma^{*+}\Pi(1 - 2\nu\theta)^{\circ} - n^{*+}\Pi(1 - 2\nu\theta)^{\circ} - n^{*+}\Pi(1$

$$\frac{\frac{1}{2}}{2} = \gamma (1 - \xi) \frac{1}{2} n^2 \pi^2 \operatorname{sen}(n\pi\xi) + 2\beta \quad V^* \operatorname{in} \pi \cos(n\pi\xi) + \gamma n\pi \cos(n\pi\xi) + \gamma$$

7.1

es

+ $\chi i \omega sen(n \pi \xi) - \omega^2 sen(n \pi \xi)$; $sen(m \pi \xi)$ } $d\xi = 0$ (102)

onde n e m são inteiros;

 $i = \sqrt{-1}$; e,

 $\omega_{\rm s}$ são as frequências naturais de vibração do sistema.

A Equação (102) é melhor representada por:

$$\operatorname{Real}_{n=1}^{r} a_{n} e^{i\omega\tau^{*}} \{ [n^{4}\pi^{4} - \{V^{*2} - \Gamma^{*} + \Pi(1 - 2\nu\theta) - \gamma\} n^{2}\pi^{2} + \chi i\omega - n^{2}\pi^{2} + \chi i\omega - \eta \} \}$$

$$-\omega^{2}]I_{1} + [-\gamma n^{2} \pi^{2}]I_{3} + [2\beta V^{*2} n \pi i \omega + n \pi \gamma]I_{2} = 0$$
(103)

onde:

$$I_{1} = \int_{0}^{1} \operatorname{sen}(n \pi \xi) \operatorname{sen}(m \pi \xi) d\xi$$

$$\mathbf{I}_{2} = \begin{bmatrix} 1 \\ \sin(m\pi\xi) \cos(n\pi\xi) d\xi , e \\ 0 \end{bmatrix}$$

 $I_{3} = \int_{0}^{1} \xi \operatorname{sen}(n \pi \xi) \operatorname{sen}(m \pi \xi) d\xi.$

. O sistema de equações lineares obtido em (103) pode ser melhor visualizado reescrevendo-o na seguinte forma:

$$\operatorname{Real}_{n=1}^{r} a_{n} e^{i\omega\tau^{*}} A = 0$$
(104)

onde: $A_{\tilde{a}}$ é uma matriz de ordem n x n, cujos elementos são:

$$a_{nn} = \{n^{4} \pi^{4} - \left[V^{*2} - \Gamma^{*} + \Pi(1 - 2\nu\theta) - \frac{\gamma}{2}\right] n^{2}\pi^{2} + \chi i\omega - \omega^{2}\}/2$$
..... (103)

$$a_{nm} = \left\{ \frac{2\beta^{1/2} V^* nm\omega i}{(m^2 - n^2)} + \frac{2\gamma mn(n^2 + m^2)}{(n - m)^2 (n + m)^2} \right\}$$
(106)

se n e m forem de paridade distinta. Do contrário, $a_{nm} = 0$.

A igualdade da Equação (104) deve prevalecer para todo instante de tempo t, logo é fácil verificar que

$$\mathbf{A}_{\overline{n}} = \mathbf{0}_{\overline{n}}$$
(107)

Como não é interessante a solução trivial, a condição a ser satisfeita é que:

 $\det \mathbf{A} = 0 \tag{108}$

As raízes da Equação (108) corresponderão às freqüências naturais de vibração do sistema e a determinação do vetor \underline{a}_n é fe<u>i</u> ta utilizando-se a Equação (107). No entanto, o problema está ju<u>s</u> tamente na determinação dos autovalores ω que anulam o determinante em consideração, principalmente levando-se em consideração que a matriz A é complexa e não hermitiana.

O método utilizado para determinação desses autovalores

é o de Müller⁸, uma vez que a obtenção do polinômio característico torna-se praticamente impossível à medida que o tamanho da m<u>a</u> triz é aumentado para determinação precisa dos modos de vibração necessários.

Esquematicamente tem-se:

⁸ - Ver Apêndice I.

CAPITULO VI

6. RESULTADOS, DISCUSSÕES E CONCLUSÕES

6.1 Considerações Preliminares

O sistema de equações não lineares que descrevem o compor tamento oscilatório para a situação em análise, permite a obtenção de soluções para tubulações restritas apenas a pequenas vibrações e deslocamentos laterais. Já considerando as equações linerizadas, o sistema é limitado com relação à rigidez de flexão do tubo, que é considerada bastante inferior com relação à rigidez axial, muito embora, com grandes aplicações práticas. Ainda vale a pena ressaltar que ambos sistemas podem ser aplicados tanto para escoamentos variáveis no tempo, como constantes.

O objetivo principal deste trabalho foi a determinação das condições de estabilidade do movimento oscilatório, correlacionadas diretamente com as velocidades dos dois escoamentos. Para o estabelecimento desses limites de velocidades, obtidos da resolução das equações do movimento do tubo, foi utilizado o método de Gale<u>r</u> kin associado ao de Müller apresentando grande versatilidade na d<u>e</u> terminação das freqüências naturais de vibração. O incoveniente do método numérico utilizado é que, em determinadas regiões, os incr<u>e</u> mentos nas velocidades e os "chutes" iniciais devem ser muito bem detalhados.

Fig.19 - Tempo Médio de Computação para Determinação de ω .

6.2 Comportamento do Sistema

Com relação à Equação (96), que descreve o comportamento oscilatório do tubo na direção y, se as derivadas parciais com relação ao tempo forem anuladas e os parâmetros adimensionais $\underline{\beta}$, I, T e $\underline{\gamma}$ igualados a zero, tem-se:

$$\frac{\partial^4 \eta}{\partial \xi^4} + V^* \frac{\partial^2 \eta}{\partial \xi^2} = 0$$
(109)

Essa equação corresponde justamente ao caso de vigas su<u>b</u> metidas a cargas de compressão, onde MV^{*2} pode ser analisado como Carga Efetiva. Seus autovalores correspondem aos modos de flambagem e decrescem com o aumento da velocidade.

Fisicamente, o parâmetro V*² é entendido como carga ef<u>e</u> tiva de compressão. Alternativamente, e mais apropriadamente, para

o caso de escoamento de fluido, $V^* \frac{\partial^2 \eta}{\partial \xi^2}$ é considerada como força centrífuga generalizada, e quando esta força supera a força de restauração do tubo, ocorre a flambagem.

Para examinar o comportamento dinâmico do sistema pela obtenção da solução da Equação (96) na sua forma completa, é ut<u>i</u> lizado o método de Galerkin associado ao método de Müller.

Algumas das frequências adimensionais calculadas estão mostradas nas Figuras 20 a 27. As partes reais e imaginárias de<u>s</u> sas freqüências, Re(ω) e Im(ω), estão plotadas no diagrama de Argand com a velocidade V* como parâmetro.

Na Figura 20 nota-se que com acréscimo da velocidade а frequência do primeiro modo de vibração diminui com o acréscimo de V* e se anula em V* = π , que é a primeira velocidade crítica para flambagem. Similarmente, o segundo e terceiro modo se anulam em $V^* = 2\pi$ e $V^* = 3\pi$, respectivamente. Entretanto, para uma velocidade ligeiramente superior a 2π , a posição do primeiro e segundo modos permanecem no eixo imaginário - $Im(\omega)$ - e quando deixa esse eixo é em pontos simétricos que indicam o início do modo acoplado de flutuação, onde o primeiro e segundo modo se confundem.

Na figura 21 nota-se uma vez mais que o primeiro modo se anula em V* = π . Entretanto, o valor V* = 2π não corresponde à velocidade crítica para o segundo modo e, além disso, é o ponto onde o sistema ganha estabilidade novamente no primeiro modo. Para velocidades ligeiramente superiores a 2π , os primeiros e segu<u>n</u> do modos permanecem no eixo real - Re(ω) - e, uma vez mais, o início do acoplamento é verificado para V* \simeq 6,31. Com acréscimo de V*, a parte real da freqüência acoplada se anula para V* \simeq 9,41.

Fig.23-Frequências Adimensionais Complexas. $\gamma=10;\beta=0,5$ e $\chi=0$.

 O-mo
 19 modo

 Q
 modo

 Q
 modo

 O-mo
 19 e 29 modos

 O-mo
 19,29 e 49 modos

 O-mo
 19,29 e 39 modos

Similarmente ao ocorrido com o acoplamento do primeiro e segundo modos, o acoplamento envolvendo o terceiro modo ocorre em V* \simeq 9,51.

Nas Figuras 22 e 23 é mostrada a influência do parâmetro β (razão de massas) para valores de γ (peso adimensional) consta<u>n</u> te. Para $\beta = 0,1$, o primeiro modo perde estabilidade para $V^* \approx 3,81$ e o segundo em $V^* \approx 6,650$. O primeiro e segundo modos acoplados de vibração tem início em $V^* \approx 6,750$, enquanto que o terceiro e quarto se acoplam em $V^* \approx 12,880$. Para $\beta=0,5$, a perda de estabilidade no primeiro modo é verificada em $V^* \approx 3,8$, volta<u>n</u> do a ganhar estabilidade em $V^* \approx 6,670$ e o início do acoplamento dos dois primeiros modos, é em $V^* \approx 6,700$. A parte real desses acoplamentos com o terceiro e quarto modos ocorrem em $V^* \approx 9.800$ e 12,910 respectivamente.

As Figuras 24 e 25 caracterizam a influência do parâmetro adimensional χ (amortecimento adimensional) nos dois primeiros modos de vibração. A grande diferença com relação aos casos anteriores é a presença da componente complexa das freqüências adime<u>n</u> sionais, mesmo para V* menor que a velocidade crítica. Resumidame<u>n</u> te tem-se:

β	x	Ŷ	lº Vel. Crítica	lº Acoplamento	Cancelamento da Componente real do acoplamento
0,1	0,1	0	~π	~6,400	
0,1	0,1	1.0	~3,825	~6,775	
0,5	0,1	0	π	~6,310	9,410
0,5	0,1	10	~3,825	~6,700	9,670

TAB.2 - Influência de x nas Velocidades Críticas e de Acoplamento.

83

I

6.3 Conclusões

É importante notar o comportamento entre sistemas com altas e baixas razões de massas β . Para pequenos valores de β , o sistema flamba nos dois primeiros modos para que depois o acoplamento se verifique, com processo análogo para terceiro e quarto modos. Para valores de β altos, o sistema somente flamba no primeiro modo, com acoplamentos sendo verificados com os outros modos antes de ser atingida a velocidade crítica correspondente.

Estes resultados são importantes, uma vez que as instab<u>i</u> lidades oscilatórias não são possíveis quando ambos extremos do tubo são suportados e executam oscilações periódicas, nestes casos, os sistemas são considerados conservativos.

Vale a pena notar que colunas simplesmente apoiadas nos extremos (apoios simples), submetidas a cargas de compressão, mão ficam sujeitas a estes modos acoplados instáveis. Isto é, facilmente verificado fazendo simplesmente $\beta = 0$ e, neste caso, a carga no extremo do tubo é MV². É evidente, portanto, que as instabilidades oscilatórias estão estreitamente ligadas à prese<u>n</u> ça da força de Coriolis, que aparece somente quando $\beta \neq 0$ [15].

Outro ponto interessante de ser relatado é o efeito est<u>a</u> bilizante das forças giroscópicas. Aqui este efeito é demonstrado claramente quando, após ultrapassar a velocidade crítica de flambagem, a força de Coriolis estabiliza o sistema antes do início dos acoplamentos dos modos. Este efeito é mais pronunciado para altos valores de β , a força de Coriolis é proporcional a $\beta^{1/2}$.

Com relação à estabilidade de um dado sistema, do ponto de vista prático, é interessante determinar as condições de ope-

o---o- 1º modo ⊕---o- 2º modo ⊕---o- 1º e 2º modos.

ração para as quais não haverá alterações no seu funcionamento nor mal desejado. Neste caso, apoios simples, estas condições estão associadas com a flambagem no primeiro modo, Para estabilidade de funcionamento, os valores de V, Π e T devem ser suficientemente p<u>e</u> quenos, tais que V^{**2} = V^{*2} + $\Pi(1 - 2 \vee \theta)$ - T deve ser monor que os indicados na tabela abaixo.

γ	V** ²
-10	2,17
- 5	2,71
0	π
5	3,51
10	3,83
50	5,56

Condição Crítica de Estabilidade

TAB.3 - Condições Crítica de Estab<u>i</u> lidade (Apoios Simples)

É fácil de notar pelas Figuras 26 e 27 que as curvas características que representam as freqüências adimensionais, têm todas o mesmo comportamento para a razão de massa constante β , mesmo quando é considerado o amortecimento. A diferença entre um caso e outro está justamente na velocidade adimensional V*, onde é alcançado o limite da velocidade crítica e o início dos acoplamentos. Esta diferença está associada diretamente ao peso adimensional γ .

6.4 - Comparação de Resultados

Veloso e Loula [31] tentam conciliar o problema de tub<u>u</u> lações submetidas aos escoamentos interno e externo com utilização da teoria clássica de vigas na obtenção da equação diferencial que descreve o comportamento oscilatório de tubos elásticos, ou seja

$$(m + m_a) \frac{\partial^2 v}{\partial t^2} + C \frac{\partial v}{\partial t} + EI \frac{\partial^4 v}{\partial x^4} = \frac{1}{2} \rho U_{\infty}^2 C_L A \qquad (110)$$

Esta expressão pode ser obtida facilmente com intilização das equações (95) e (96), fazendo V = 0, p = 0, γ = 0 e T = 0. No entanto, quando tais simplificações são efetuadas é n<u>e</u> gligenciado o efeito do escoamento interno na tubulação. Assim se<u>n</u> do, a Equação (110) não pode ser utilizada com conveniência para obtenção do comportamento dinâmico da estrutura. Tubos de trocadores de calor, por exemplo, quando analisados por intermédio da Equação (110) não ficam submetidos às forças de Coriolis e, confo<u>r</u> me demonstrado, ela é a principal responsável pela desestabilização ou estabilização do sistema.

Além disso, o escoamento externo produz também as forças de arraste constante e alternante. Portanto, à Equação (110) d<u>e</u> ve ser acrescentada outra equação com mesma estrutura, porém com força de excitação igual à força de arraste total. Ainda, as fo<u>r</u> ças de excitação têm outra parcela originada da massa adicional e que deve também ser somada na Equação (110).

Para efeito de comparação de resultados, as freqüências obtidas por Paidossius e Issid [15] estão reproduzidas a seguir e, praticamente não existe erro comparando a solução numérica adotada e esses resultados.

b) $\Gamma = \gamma = \chi = \Pi = 0$ e $\beta = 0, 5$.

Os resultados apresentados por Poïdossius e Issid [15]foram obtidos na tentativa de explicar o comportamento dinâmico do sistema. No entanto, embora tais resultados sejam suficientes para detectar a influência da razão de massas β e a existência dos modos acoplados de vibração, a quantidade e análise dos diversos pa râmetros que influenciam o comportamento do tubo não é satisfato ria.

> Para tentar suprir esta deficiência as Figuras (21) a

90

ഗ S

desse

deslocados

estão nos

apenas

Os resultados plotados

obs.

Real(w)

a p.

Im(w) eixos

resultado

đ

clarez

maior

ara

paralelamente aos eixo

(26) foram obtidas com valores de V* bem mais detalhados e numa amplitude bem maior. Através desses resultados é possível visual<u>i</u> zar o comportamento das curvas de freqüências adimensionais para valores de V* bem altos, além da influência dos fatores γ , $\beta \in \chi$ na resposta da estrutura.

6.5 Sugestões

No mínimo, pode-se citar quatro sugestões para trabalhos posteriores dentro deste mesmo tema:

- Fazer análise do problema considerando a teoria das cascas e obtenção da resposta particular do sistema;
- 2 Obtenção da solução do sistema de equações não-line<u>a</u> rizado ;
- 3 Estender a análise feita para o caso de dois tubos
 e, posteriormente, para "n" tubos;
- 4 Fazer uma análise precisa do problema da estabilidade do sistema estudado; uma vez que, na pesquisa b<u>i</u> bliográfica feita, não foi possível determinar prec<u>i</u> samente porque o sistema conservativo estudado fica sujeito a instabilidades.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] ROSKO, A. Experiments on the Flow Past a Circular Cylin der at a Very High Reynolds Number , 1961. J. Fluid Mech. 10; pp. 345-356.
- [2] GERRARD, J. H. An Experimental Investigation of the Os cillating Lift and Drag of Circular Cylinder Shedding Tur bulent Vortices ,1.961, J. Fluid Mech. 11, pp. 244-256.
- [3] CHEN, Y.N. Fluctuating Lift Forces of the Kharmann Vortex Street on Single circular cylinder and in tube Bundles, 1971, Part 1 and 2. ASME Publications, Paper 71 - Vibr. 11-12.
- [4] HARTLEN, R.T. and CURRIE, I.G. Lift Oscillator Model of the Vortex-Induced Vibration, 1970; J. of the Engneering Mechanics Division, Proc. ASCE, pp. 577-591.
- [5] FUNG, Y.C. Fluctuating Lift and Drag Acting on a Cylin der in a Flow at Supercritical Reynolds Numbers, 1960, J. of Aeroespace Sciences, 27; pp. 801-814.
- [6] BISHOP, R.E.D. and HASSAN, A.Y. The Lift and Drag For ces on a Circular Cylinder in a Flowing Fluid , 1964, Proc. Royal Society of London, A, 277, pp. 32-50.
- [7] BISHOP, R.E.D. and Hassan, A.Y. The Lift and Drag For ces on a Circular Cylinder in a Flowing Fluid , 1964, Proc. Royal Society of London, A, 277, pp. 51-75.

- [8] ACHENBACK, E. Influence of Surface Roughness on the Cross Flow Around a Circular Cylinder, 1971, J. Fluid Mech., 46; pp. 321-335.
- [9] BUBLITZ, P. Unsteady Pressures and Forces Acting on a Oscillating Circular Cylinder in a Transverse Flow , 1972, Proc. IUTAM - IAHR Symposium Karlsruhe, pp. 443-453 (Flow Induced Vibrations - Ed. Eduardo Naudascher, 1974)
- [10] SALLET, D.W. On a Prediction of Flutter Forces, 1972, Proc. IUTAM - IAHR Symposium Karlsruhe, pp. 158-176 (Flow Induced Structural Vibrations - Ed. Eduardo Naudascher, 1974).
- [11] DONG, R.G. Effective Mass and Damping of Submerged Structures, 1978 - April, Lawrence Livermore Laboratory, University of California.
- [12] CHEN, S.S. and CHUNG, H. Design Guide for Calculating Hydrodinamic Mass - Part I: Circular Cylindrical Structures, June 1976, Argonne National Laboratory.
- [13] CHEN, S.S.; WAMBSGANSS, M.W. and JENDRZEJCZYK, J.A. Added Mass and Damping of a Vibrating Rod in Confined Viscous Fluids, June 1976, J. o Applied Mechanics.
- [14] BENJAMIN, T.B. Dynamics of a System of Articuled pipes Conveying Fluid - I. Theory; 1961-a. Proc. Royal Society (London) A, 293; pp. 457-86.
- [15] PAÏDOSSIUS, M.P. and ISSID, N.T. Dynamic Stability of Conveying Fluid, 1974, J. of Sound Vibration; 33(3), pp. 267-94.
- [16] GREGORY, R.W. and PAIDOSSIUS, M.P. Unstable Oscillation of Tubular Contilevers conveying Fluid I - Theory; 1966 a, Proc. of the Royal Society (London), A, 293, pp. 512-27.
- [17] CHEN, S.S. Flow Induced in Plane Instabilities of Cur ved Pipes, 1972, Nuclear Eng neering and Design, 23, pp. 29-38.
- [18] NAGULESWARAN, S. and Williams, C.J.H. Lateral Vibration of a Pipe Conveying Fluid , J. Mechanical Engeneering Sci ence, Vol. 10, nº 3, pp. 228-38.
- [19] PAÏDOSSIUS, M.P. Dynamics of Tubular Contilevers Conveying Fluid . Part 1 - Theory, 1970, J. Mechanical Enge neering Science, Vol. 12, nº 2, pp. 85-103.
- [20] PAIDOSSIUS, M.P. Dynamics of Flexible Slender Cylinders in Axial Flow, Part 1 - Theory; 1966, J. Fluid Mechanics, Vol. 26, pp. 717-36.
- [21] GOLDSTEIN, H. Classical Mechanics , Reading, Addison Wesley, New York, 1959.
- [22] YOUNG, D.M. and GREGORY, R.T. A Survey of Numerical Mathematics, Vol. I, 1972, Addison - Wesley Publishing Company.
- [23] CHANDRASEKARAN, A.R.; SAINI, S.S.; and MALHOTRA, M.M. -Virtual Mass of Submerged Structures, May - 1972, J. of Hydraylics Division, Proc. of the ASCE.

- [24] CLAUGH, R.W. Effects of Earthquakes on Underwater Struc tures. Proc. of 2nd World Conference on Earthquake Engineering, (Tókio, 1960).
- [25] CHANDRASEKARAN, A.R. and SAINI, S.S. Vibration of Submerged Structures, July 1971, Irrigation and Power.
- [26] SKOP, R.A.; ROMBERG, S.E., and Ferer, K.M. Add Mass and Damping Forces on Circular Cylinders, 1976, ASME pa per 76. Per-3.
- [27] SARPIKAYA, G.H. Forces on Cylinders and Spheres in Sinusoidathy Oscillating Fluid , March-1975, Transc. ASME, J. of Applied Mechanics.
- [28] KENKEGAN, G.H.; and CARPENTER, L.H. Forces on Cylinders and Plates in an Oscillating Fluid , 1958, J. of Research of the National Bureau of Standards, 6(5).
- [29] Newmark, N.M and Rosenblueth Fundamentals of Earthquake Engineering, 1971, Prentice Hall Inc., Englewood Cliffs; Chapter 6.
- [30] VON KARMAN, Th. Ueber den Mechanismus des Flüssigkeits-Widerstandes, den ein Bewegter Körper in einer Flüssigkeit erfährt, Nachrichten v.d. Königl, Gesellschaft d. Wissenschaften z. Göttingen, 1911.
- [31] HURLBUT, S.E.; SPAULDING, M.L. and WHITE, F.M. Numerical Solution for Laminar Two Dimensional Flow About a Cylinder Oscillating in a Uniform Stream, J. Fluids Engineering, Transc. ASME, June 1982.

- [32] BRATANOW, T.; ECER, A. and KOBISKE, M. Finite Element Analysis of Unsteady Incompressible Flow Around on Osci 11ating Obstacle of Arbitrary Shape, AIAA Journal, Vol. 11, nº 11, November 1973.
- [33] PATDOSSIS, M.P; CURLING, LI. R. and GAGNON, J.D. Expe riments on Fluidelastic Instability of Cylinder Clusters in Axial Flow, Transc. ASME, J. of Fluids Engineering, September 1982.

APENDICE I

I. METODO DE MULLER

I-1. Considerações Gerais

O método de Müller é considerado como sendo uma extensão do método da secante.

Dados três pontos <u>a</u>, <u>b</u> e <u>c</u> distintos; constrói-se o <u>po</u> linômio do segundo grau P(x), tal que:

P(a) = f(a)

$$P(b) = f(b)$$
 (I.1)

Fig. 29 - Método de Müller.

O processo numérico para determinação das frequências desejadas consiste na determinação da raiz <u>d</u> do polinômio P(x) e; a partir daí, estabelecer um processo iterativo fazendo d=c; c=b; b=a e assim, s<u>u</u> cessivamente até obtenção da convergência.

Seja então o polinômio

$$P(x) = Ax^2 + Bx + C$$
 (I.2)

que satisfaz às condições (I.1). Sendo assim, é mais conveniente esse polinômio ser reescrito como

$$P(x) = A^{*} (x - c)^{2} + B^{*} (x - c) + C^{*}$$
 (I.3)

A expressão (I.3) é obtida a partir da Equação (I.2) apenas substituindo <u>x</u> por [(x - c) + c]. Seus coeficientes estão relacionados como abaixo:

$$A^* = A$$

 $B^* = B + 2 c A$ (I.4)
 $C^* = C + c B + c^2 A$

Pelas condições (I.1) tem-se:

$$f(a) = A^* a^{*2} + B^* a^* + C^*$$

f(b) = A^* b^{*2} + B^* b^* + C^* (I.5)

$$f(c) = C^*$$

onde: $a^* = a - c$, e

b* = b - c

A solução do sistema (I.5) é:

$$C^{*} = f(c)$$

$$B^{*} = \left[a^{*2} \Delta(b) - b^{*2} \Delta(a)\right] / a^{*} b^{*} (a^{*} - b^{*})$$

$$C^{*} = \left[b^{*} \Delta(a) - a^{*} \Delta(b)\right] / a^{*} b^{*} (a^{*} - b^{*})$$

onde: $\Delta(a) = f(a) - f(c)$, e

$$\Delta(b) = f(b) - f(c)$$

Uma vez obtidos os coeficientes A^* , $B^* \in C^*$, é possível determinar <u>d</u> obedecendo à condição P(d) = 0.

Assim sendo, tem-se:

$$A^* d^{*2} + B^* d^* + C^* = 0$$
 (1.7)

onde d* = d - c

A solução da Equação (I.7) é obtida simplesmente por:

$$d^{*} = \frac{-B \pm \sqrt{B^{*2} - 4A^{*}C^{*}}}{2A^{*}}$$
(I.8)

onde qualquer uma das constantes pode assumir tanto valores reais como complexos.

I.2. Comentários

A grande aplicação do método de Múller está no fato de que não é preciso trabalhar com valores de derivadas da função f(x), mas sim, com seu valor em pontos distintos. Tal fato já justifica plenamente sua aplicação para o problema em estudo, uma vez que o determinante obtido da análise pelo método de Galerkin não pode ser expresso com facilidade como uma função explícita das frequências naturais de vibração do sistema.

Outra vantagem é que podemos trabalhar com valores in<u>i</u> ciais reais para obtenção de raízes complexas, fato que não é o<u>b</u> servado pelos métodos de Newton ou da posição falsa.

O incoveniente do método é que pelo menos uma noção das raízes do determinante é necessária para obtenção de soluções r<u>a</u>pidamente convergentes.

APENDICE II

II. FUNÇÕES CARACTERÍSTICAS PARA VIGAS

Para utilização conveniente do método de Galerkin é necessário determinar o conjunto adequado de funções $\phi_n(x)$ que ass<u>e</u> gure rápida convergência para a solução desejada. Na relação que segue estão apresentadas algumas das condições de contorno mais comuns e o conjunto de funções $\phi_n(x)$, assim como as condições de contorno geométricas satisfeitas.

$$\phi_{n}(\mathbf{x}) = \cosh(\lambda_{n}\mathbf{x}) - \cos(\lambda_{n}\mathbf{x}) - \sigma_{n}(\operatorname{senh}(\lambda_{n}\mathbf{x}) - \operatorname{sen}(\lambda_{n}\mathbf{x}))$$

$$\cos(\lambda_{n}\ell)\cosh(\lambda_{n}\ell) - 1 = 0$$

$$\sigma_{n} = \frac{\cosh(\lambda_{n}\ell) - \cos(\lambda_{n}\ell)}{\operatorname{senh}(\lambda_{n}\ell) - \operatorname{sen}(\lambda_{n}\ell)}$$

$$\phi_{n}(0) = \phi_{n}, \mathbf{x}(0) = 0$$

$$\phi_{n}(\ell) = \phi_{n}, \mathbf{x}(\ell) = 0$$

$$\begin{array}{c} & & & \\ &$$

$$\phi_{n}(\mathbf{x}) = \cosh(\lambda_{n}\mathbf{x}) - \cos(\lambda_{n}\mathbf{x}) - \sigma_{n}(\operatorname{senh}(\lambda_{n}\mathbf{x}) - \operatorname{sen}(\lambda_{n}\mathbf{x}))$$

$$\cos(\lambda_{n}\ell)\cosh(\lambda_{n}\ell) + 1 = 0$$

$$\sigma_{n} = \frac{\operatorname{senh}(\lambda_{n}\ell) - \operatorname{sen}(\lambda_{n}\ell)}{\cosh(\lambda_{n}\ell) + \cos(\lambda_{n}\ell)}$$

$$\phi_{n}(0) = \phi_{n}, \mathbf{x}(0) = 0$$

$$\phi_{n}, \mathbf{xx}(\ell) = \phi_{n}, \mathbf{xxx}(\ell) = 0$$

$$\phi_{n}(x) = \cosh(\lambda_{n}x) - \cos(\lambda_{n}x) - \sigma_{n}(\operatorname{senh}(\lambda_{n}x) - \operatorname{sen}(\lambda_{n}x))$$

$$\tan(\lambda_{n}x) = \tanh(\lambda_{n}x)$$

$$\sigma_{n} = \operatorname{cotang}(\lambda_{n}x) = \operatorname{cotanh}(\lambda_{n}x)$$

$$\phi_{n}(0) = \phi_{n}, \quad x(0) = 0$$

$$\phi_{n}(x) = \phi_{n}, \quad x(x) = 0$$

$$\phi_{n}(\mathbf{x}) = \cosh(\lambda_{n}\mathbf{x}) + \cos(\lambda_{n}\mathbf{x}) - \sigma_{n}(\operatorname{senh}(\lambda_{n}\mathbf{x}) + \operatorname{sen}(\lambda_{n}\mathbf{x}))$$

$$\tan g(\lambda_{n}\ell) = \tanh(\lambda_{n}\ell)$$

$$\sigma_{n} = \operatorname{cotang}(\lambda_{n}\ell) = \operatorname{cotanh}(\lambda_{n}\ell)$$

$$\phi_{n}, \mathbf{xx}(0) = \phi_{n}, \mathbf{xxx}(0) = 0$$

$$\phi_{n}(\ell) = \phi_{n}, \mathbf{xx}(\ell) = 0$$

f

$$\begin{array}{c|c} & \varphi_{n}(\mathbf{x}) = \cosh(\lambda_{n}\mathbf{x}) - \cos(\lambda_{n}\mathbf{x}) - \sigma_{n}(\operatorname{senh}(\lambda_{n}\mathbf{x}) - \operatorname{sen}(\lambda_{n}\mathbf{x})) \\ & \tan g(\lambda_{n}\ell) + \tanh(\lambda_{n}\ell) = 0 \\ & \sigma_{n} = \tanh(\lambda_{n}\ell) \\ & \phi_{n}(0) = \phi_{n}, \mathbf{x}(0) = 0 \\ & \phi_{n}, \mathbf{x}(\ell) = \phi_{n}, \operatorname{xxx}(\ell) = 0 \\ & \phi_{n}, \mathbf{x}(\ell) = \phi_{n}, \operatorname{xxx}(\ell) = 0 \\ & & & & \\$$

$$d_{n} = tanh(\lambda_{n}\ell) = 0$$

$$\sigma_{n} = tanh(\lambda_{n}\ell)$$

$$\phi_{n}, xx(0) = \phi_{n}, xxx(0) = 0$$

$$\phi_{n}, x(\ell) = \phi_{n}, xxx(\ell) = 0$$