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RESUMO

Esta tese apresenta uma nova abordagem de controle MPC distribuído,
ou seja, onde uma rede de controladores MPC é associada a uma rede
de subsistemas, aplicada a problemas convexos e a subsistemas acopla-
dos pelas entradas, sob restrições impostas tanto aos estados quanto às
entradas dos subsistemas.

Em geral, para que a interação entre os controladores distribuídos re-
sulte em uma solução global Pareto-ótima, os controladores são obriga-
dos a compartilharem um mesmo custo global fixo e imposto a todos.
A imposição de um custo global resulta em um altruísmo categórico,
fixo, onde cada controlador é obrigado a ceder parte de seu desempenho
para a satisfação do outro, qualquer que seja a situação.

Nesta tese, por outro lado, o controlador proposto implementa um al-
truísmo situacional, onde um custo global equivalente, não imposto
nem fixo, emerge da interação entre os controladores. O altruísmo
situacional é obtido através de uma abordagem satisfatória (o termo
“satisficing” foi traduzido aqui por satisfatório, embora o termo origi-
nal seja uma fusão de satisfação com suficiência, satisficing = satisfy +
suffice).

Na abordagem satisfatória (SIMON, 1955) é definido um desempenho
mínimo, local a cada controlador. Toda solução que leva a um desem-
penho melhor que o mínimo é uma solução válida e satisfatória. Os con-
troladores satisfatórios propostos nesta tese são também altruístas, na
medida em que incorporam em sua satisfação também a satisfação dos
outros. Os controladores aplicam um algoritmo distribuído de ponto-
interior para encontrar uma solução global que, no mínimo, pertence à
região onde as soluções são satisfatórias e suficientes para todos eles.
Tal solução é alcançada através da otimização na direção do centro
analítico da região satisfatória.

Mostra-se que a solução na direção do centro analítico da região sat-
isfatória, mesmo que sujeita às restrições do problema, corresponde à
solução ótima de um custo global equivalente que explica o comporta-
mento emergente. Mostra-se também que esse custo global equivalente
não é mais fixo e leva a um altruísmo que depende da situação atual -



um altruísmo situacional.

O altruísmo situacional proposto aqui faz com que aqueles contro-
ladores com piores desempenhos locais, medidos em relação ao desem-
penho mínimo, ganhem mais importância em relação àqueles com mel-
hor desempenho. Essa relação de importância é ajustada automatica-
mente, de forma dinâmica. Espera-se, assim, uma relação mais justa en-
tre os controladores, baseado em critérios locais. A definição de critérios
locais dá mais sentido ao que seria um comportamento aceitável; um
comportamento global é aceitável quando também é aceitável local-
mente.

A estabilidade em malha fechada do controlador satisfatório é demons-
trada com a inclusão de restrições adicionais que garantem a contração
dos custos locais.

Esta tese é organizada em sete capítulos, um apêndice e referências.
O Capítulo 1 tem o objetivo de contextualizar e motivar de forma
breve o assunto da tese. Os capítulos 2 e 3 resumem o controle dis-
tribuído e, mais especificamente, o MPC distribuído cooperativo, onde
é definida boa parte da nomenclatura e é apresentado muitos dos as-
pectos de interesse para o desenvolvimento do MPC satisfatório. As
principais contribuições teóricas desta tese são apresentadas nos capí-
tulos 4 e 5. No Capítulo 4, é apresentado o MPC satisfatório sem
os ingredientes para a estabilidade garantida, introduzidos apenas no
Capítulo 5 onde se prova a estabilidade em malha fechada. No Capí-
tulo 6, três exemplos são utilizados para avaliar os resultados do MPC
satisfatório se comparado a um MPC clássico centralizado. Algumas
conclusões são discutidas no Capítulo 7, incluindo uma lista de sug-
estões para trabalhos futuros. No apêndice é apresentado um assunto
específico, relacionados à teoria principal. Mostra-se que o altruísmo
mínimo necessário para a satisfação de todos os controladores pode ser
associado a multiplicadores de Lagrange. Esse assunto foi tratado no
apêndice por ser considerado acessório à teoria principal.

Palavras-chave: MPC satisfatório. MPC Distribuído. MPC sub-
ótimo. Altruismo situacional. Ponto-interior distribuído. Estabilidade
em malha fechada. Solução Pareto-otima. MPC multi-objetivo.



ABSTRACT

To obtain a Pareto-optimal solution, the classical cooperative MPC im-
plements a categorical altruism imposed by a fixed global cost shared
by all the local controllers. Instead, this thesis implements a situational
altruism where a global cost, neither imposed nor fixed, emerges from
convex local costs and local specifications. The satisficing controllers
employ a distributed algorithm to find a solution that lies in a convex
region that is satisfactory and sufficient for all controllers (satisficing
= satisfy + suffice), while optimizing in the direction of the analytic
center of such a region. The system is modeled as being a network of
linear subsystems, coupled by their inputs, and the algorithm uses a
distributed interior-point method to avoid fixed points when the con-
straints are also coupled. The optimal solution of the satisficing MPC,
besides Pareto-optimal, gives more importance to the controllers with
a worst performance at the moment. Situational altruism permits a
more balanced division of resources, avoiding the exploitation of one
controller by the others. The satisficing MPC is shown to be stabi-
lizing even if suboptimal, provided that it is satisficing. To this end,
stabilizing constraints are added to the basic formulation.

Keywords: Satisficing MPC. Distributed MPC. Sub-optimal MPC.
Situational altruism. Distributed interior-point method. Closed-loop
stability. Pareto-optimal solution. Multi-objective MPC.
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1 INTRODUCTION

Process plants, like refineries and petrochemical plants, are com-
posed by a number of complex and interconnected units. Complexity
arises from strict environmental regulations and product specifications,
and also from the fact that it is economically important to take ad-
vantage from the opportunities of energy integration inside and among
units. Highly integrated plants lead to the need for better control sys-
tems that can seamlessly cope with the increasing complexity.

Traditionally, the technology widely used to deal with the com-
plexity that arises from couplings and interactions is based on cen-
tralized, multi-variable, model-based controllers (SEBORG, 1994, 1999)
known as Model Predictive Control (MPC). Conceptually, MPCs are
controllers that use the knowledge of the process to be controlled, rep-
resented by a model, to predict what would be the outcome of the
action plan they are considering to apply. In possession of a criterion
they are able to choose a plan of action in comparison to another. This
process of selection is done by an optimization algorithm that chooses
the best plan considering the given criterion. In general, every MPC
has a prediction model, an objective function as criterion and a process
to decide the plan of actions (CAMACHO; BORDONS, 2004). At each
control cycle the MPC reads inputs from the unit, calculates a plan of
control outputs, applies only the first action of the calculated plan, and
starts another cycle respecting a deterministic interval.

Large MPC controllers are difficult to implement and maintain.
The overall time to model and implement a large MPC application
is considerable, and the process of tuning, that is, the translation of
control specification into a consistent set of relative weights and pa-
rameters required by an MPC is not a trivial task (QIN; BADGWELL,
2003). Once in operation, the available models can become out of date
due to units’ aging, or even the structure of the problem can change
dynamically because, for example, process variables may become un-
available in real time (QIN; BADGWELL, 2003). We advocate that small
MPC controllers are easy to tune, model and maintain than large ones.
Small MPCs are also easier to understand and faster to deploy, allowing
users to obtain gains earlier when compared to a large deployment of
a single MPC system.

In a plantwide control perspective, usually a process unit is con-
trolled by a number of local independent MPC controllers so that the
global solution is then a collection of local solutions. However, the
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strategy of using local independent small controllers, called decentral-
ized control, also has some drawbacks: although the interactions among
the MPCs may be treated by each other as disturbances, the global
outcome is not optimal and may lead to degraded performance (CUI;
JACOBSEN, 2002) or instabilities if the interactions are strong.

An alternative to the decentralized strategy above is to explicitly
model the interactions between the controllers and develop an iterative
process of solution. This strategy is called distributed and, differently
of the decentralized strategy, there must be communication between
controllers (SCATTOLINI, 2009). The approach is to decompose the
system in a number of local controllers and employ a coordination pro-
cess in such a way that the emerging global solution resembles the
performance obtained when a centralized control is employed. With
the use of smaller controllers, the control system can enjoy more flexi-
bility and scalability (CAMPONOGARA; SCHERER, 2011), preserving the
performance of a centralized controller.

In this work we show that for a distributed strategy to be op-
timal it will require some sort of altruism between controllers. This
is the case of the so called cooperative MPC (STEWART et al., 2010).
There, the controllers are forced to abdicate part of their own local
objectives in favor of a global objective shared by all. The global ob-
jective is the weighted sum of local objectives whose weights define the
relative importance of the controllers. The weights are fixed and have
to be chosen a-priori by the designer to tune the resulting global per-
formance associated to the obtained Pareto optimal solution. Other
examples of cooperative MPCs are (CAMPONOGARA; OLIVEIRA, 2009),
(CAMPONOGARA; SCHERER, 2011) and (CAMPONOGARA; LIMA, 2012)
that differ from (STEWART et al., 2010) mainly in the protocol they use
and in the treatment they give to coupled constraints.

The ad hoc tuning of fixed weights, besides difficult in most cases,
results in what Stirling (STIRLING; FROST, 2007) calls categorical altru-
ism. Categorical altruism condemns a controller to always please other
controllers even if the others are by far accomplishing their objectives.
In other words, the categorical altruism fixes the trade off among the
controllers ignoring the evolution of their objectives with time or even
the real need for altruism. Another issue applicable to the cooperative
MPC (and classical MPC in general) is cited by Qin e Badgwell (2003):

Prett and Garcia (1988) commented (...) : The combi-
nation of multiple objectives into one objective (function)
does not allow the designer to reflect the true performance
requirements. [reference in the original](QIN; BADGWELL,
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2003)

This thesis proposes a fair approach called situational altruism.
In situational altruism the weights, instead of being fixed, are dynam-
ically adjusted at each cycle according to the system’s current state.
The idea is to define a minimum level of satisfaction for each controller,
based on its objective, so that the less satisfied controller will automat-
ically receive more importance.

This research contributes in the sense of developing a theory
that allows large applications with small MPCs, but in a “satisficing’1
perspective (SIMON, 1955; STIRLING, 2003; GOODRICH et al., 1998),
where situational altruism is implemented.

1.1 CONTRIBUTIONS

A new linear distributed MPC with input and state coupled con-
straints and guarantee of stability is proposed, in which the relative im-
portance of the controllers dynamically changes according to the actual
conditions. The satisficing controllers have the following characteris-
tics:

• the emerging solution lies in a region that is satisfactory and
sufficient for all controllers (satisficing = satisfy + suffice);

• the solution may be optimal or suboptimal if desired, depending,
for example, on the time available to pursue an optimal solution.
Stability is guaranteed even for suboptimal solutions;

• a Pareto optimal solution exists and is equivalent to that ob-
tained by a classical centralized controller in which the relative
importance of controllers is not fixed but varies at each sample
time;

• there are no weights to be directly set. Instead, the relative
importance of the controllers is a byproduct of the distributed
optimization at each sample time. The less satisfied controller
automatically receives more importance and the tuning process
is much simplified;

• the definition of a minimum level of performance instead of weights
leads to a broader range of behaviors.

1Satisfacing is a combination of the words satisfy and suffice.
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From the point of view of applications, since petrochemical in-
dustries and refineries are becoming more complex, the demand for
multivariable controllers is increasing. The development of practical
techniques concerning distributed linear MPCs will permit an immedi-
ate and broader application of them. Due to the importance of linear
MPC controllers in practical applications, it makes sense to tackle prac-
tical aspects concerning linear, as opposed to non-linear MPC. Besides,
it may be the first step towards a satisficing non-linear theory.

A distributed satisficing MPC control system could be advanta-
geous:

because it is distributed: a “divide and conquer” strategy may be
applied, that is, a strategy that employs a set of small, simple con-
trollers rather than a large, complex controller. Small controllers
are easier to model, understand and analyze. Small controllers
can be tuned, maintained and operated individually and a fail-
ure in one MPC does not compromise the whole system. Small
MPCs are also faster to deploy allowing users to obtain gains
earlier on and in different phases when compared to a centralized
MPC deployment;

because it is satisficing: the satisficing criterion is conceptually eas-
ier to understand, the satisficing controller presents adaptiveness
features and it is stabilizing.

This thesis is organized in seven chapters, one appendix and
references. Chapter 1 aims to briefly contextualize and motivate the
subject of this thesis. Chapters 2 and 3 introduces the distributed
control and more specifically the cooperative distributed MPC, where
most of the nomenclature is defined and many aspects of interest for
the development of the satisficing MPC is presented. The main theo-
retical contributions of this thesis are in chapter 4 and 5. In Chapter 4,
the satisficing MPC is presented without the ingredients for stability,
introduced in Chapter 5 where stability is proven. In Chapter 6, three
examples are used to evaluate the results of the satisficing MPC against
a classical MPC. Some concluding remarks are discussed in Chapter 7,
including a list of suggestions for future developments.

The appendix presents the minimal altruism necessary for the
satisfaction of all controllers, and associates the minimal altruism to
Lagrange multipliers. This subject is original, but it was left to the
appendix because it was considered accessory to the main theory.
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2 DISTRIBUTED CONTROL

In a “divide and conquer” strategy, a large system may be un-
derstood as a network of interdependent subsystems, coupled in their
dynamics and constraints. A global behavior, then, results from the
interaction of the subsystems. The network of subsystems is controlled
by a network of controllers Cm, one controller for each subsystem m
or a group of subsystems. See, for example, Figure 1 that represents
a refinery distillation unit, used to process crude oil, divided into 8
subsystems.

Figure 1 – A distillation unit divided in 8 coupled subsystems.

This strategy has, at least, the following advantages:

1. small controllers are easier to model, understand and analyze;

2. small controllers can be tuned, maintained and operated individ-
ually;

3. a failure in one controller does not compromise the whole system;

4. small controllers are faster to deploy allowing users to obtain gains
earlier;

5. the number of controllers may grow according to the user’s im-
plementation schedule;
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6. changes may be done locally;

An overview of schemes applied to the divide and conquer strat-
egy may be found in (SCATTOLINI, 2009) and (CHRISTOFIDES et al.,
2013). The most common is to apply a decentralized approach, even
though the overall performance is not the same as would be obtained
by a centralized controller. In a decentralized approach, a controller
responsible for some subsystem m manipulates input um in order to
control the output ym, without communication with other controllers
regardless of the physical interactions among the subsystems (see Fig-
ure 2.a). Because the decentralized controller cannot calculate how the
interactions affect the output it is controlling, it can only react to these
effects. Although this scheme is widely used, the global outcome is not
optimal and may lead to degraded performance (CUI; JACOBSEN, 2002)
or instabilities if the interactions are strong.

An alternative is to use a distributed approach, where the in-
teractions between the controllers are explicitly modeled. Differently
of the decentralized strategy, there must be communication between
controllers (SCATTOLINI, 2009), allowing them to deal with subsystems
interactions. Figure 2.b illustrates this scheme.

In the distributed scheme, the emerging global solution resembles
the performance obtained by a centralized control but, on the other
hand, the amount of communication may be an issue.

a) b)

Figure 2 – Two strategies to control coupled subsystems S1 and S2:
a) Decentralized approach: there is no communication between con-
trollers C1 and C2. b) Distributed approach: there is communication
between controllers C1 and C2, which allows them to explicitly deal with
subsystems interactions.

In the following, it is discussed how to model coupled systems
in a network of subsystems amenable for distributed control and for
the theory presented in this work. The modeling discussed here is
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exemplified in Chapter 6 with the use of three examples. A coupled
system may be coupled in their dynamics, in their constraints or both.

2.1 COUPLINGS IN SUBSYSTEMS DYNAMICS

A system may be thought of as being a network of subsystems,
each subsystem defined by its outputs. To exemplify, let us consider
the system depicted in Figure 3 where output y1 is directly driven by
input u1 and influenced by input u2 and, on the other hand, output y2
is directly driven by input u2 and influenced by input u1.

+

+

Figure 3 – Example of system interactions. Subsystems S1,1 and S2,2
model the direct path from u1 to y1 and u2 to y2 respectively. S1,2 and
S2,1 model interactions.

Each connection is a discrete state space dynamic equation of
the form:

Sm,i :
#

xm,ipk � 1q � Am,ixm,ipkq �Wm,iuipkq

ym,ipkq � Cm,ixm,ipkq
(2.1)

where k is a discrete time and Sm,i, whenm � i, represents interactions.
Let us define a subsystem as being the collection of all direct

and interaction connections needed to define its output. The system of
Figure 3, for example, may be divided into two subsystems: one defined
by output y1 and the other defined by output y2. Subsystem 1 is the
collection of all connections needed to define output y1 (see Figure 4),
and the same reasoning is used to define subsystem 2.
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+

Figure 4 – The input/output representation of a subsystem collects
direct and interaction models needed to represent the output.

Subsystem 1 is given by:

S1 :
#

x1pk � 1q � A1x1pkq �B1,1u1pkq �B1,2u2pkq

y1pkq � C1x1pkq
(2.2)

where

x1pkq �

�
x1,1pkq
x1,2pkq

�
;A1 �

�
A1,1

A1,2

�
;

B1,1 �

�
W1,1

0

�
;B1,2 �

�
0

W1,2

�
;

C1 �
�
C1,1 C1,2

�
and 0 means matrices of zeros of proper dimensions. Subsystem 2 is,
in its turn, given by

S2 :
#

x2pk � 1q � A2x2pkq �B2,1u1pkq �B2,2u2pkq

y2pkq � C2x2pkq
(2.3)

where

x2pkq �

�
x2,1pkq
x2,2pkq

�
;A2 �

�
A2,1

A2,2

�
;

B2,1 �

�
W2,1

0

�
;B2,2 �

�
0

W2,2

�
;

C2 �
�
C2,1 C2,2

�
It can be seen that both subsystems have their dynamic equations
coupled by their inputs u1 and u2.

The definition of subsystems coupled by inputs allows the sys-
tem of Figure 3 to be represented by a direct graph connecting the
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subsystems, as in Figure 5. Inputs and outputs are made implicit in
the last figure.

+

+

Figure 5 – Each subsystem is coupled with other subsystems by their in-
puts, forming a network that represents the interactions between them.

Generalizing this procedure, couplings among subsystems dy-
namics can be represented by a directed graph G � pM, Eq, whose
vertex set M � t1, ...,Mu denotes the subsystems and whose arc set
E �M�M represents couplings. An arc pm, iq P E indicates that sub-
system i affects the state of subsystem m therefore affecting its output.

Formally, let us consider a class of coupled systems in which
each subsystem m PM is a linear, time invariant state space dynamic
system, affected by its own actions and also by the actions of its input
subsystems, as follows:

xmpk � 1q � Amxmpkq �Bm,mumpkq �
¸

iPMztmu

Bm,iuipkq (2.4)

where xm P Rnm and um P Rmm are the state and action of subsystem
m PM, Mztmu are all subsystems excluding m, and Am, Bm,m and
Bm,i are matrices of proper dimensions. Observe that, unless the sub-
systems are fully connected by the inputs, some matrices Bm,i will be
zero.

The dynamic equation above can be stated in a compact form
by

x�m � Amxm �Bmu (2.5)

where Bm � rBm,1, � � � , Bm,m, � � � , Bm,M s, and x�m is the successor
state when u is applied and the actual state is xm. The vector1

u � pu1, � � � , um, � � � , uM q

1A column vector will be represented by its elements in parentheses.
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is the collection of the actual subsystems’ inputs. The global system is
then represented by the collection of the resulting subsystems’ states

x � px1, � � � , xm, � � � , xM q

that emerges from the interaction of the subsystems.

2.2 COUPLINGS CAUSED BY CONSTRAINTS

The system may have associated constraints that must be satis-
fied by the states and actions, so that

xpkq P X, upkq P U

for all instants k. The set X is convex, U is convex and compact, and
each set has the origin in its interior. The constraints define a domain
of valid actions dependent on the actual state x,

Dpxq � tu | u P U, x� P Xu

These constraints in global level may impose local coupled constraints
to the subsystems, as exemplified in Figure 6. With coupled con-
straints, the constraints of subsystem 1 are dependent on subsystem
2 and vise-versa. The set of valid inputs of subsystem 1 given the
actual state and input of subsystem 2, is given by

D1px, u2q � tu1 | u P U, x� P Xu

This set is not the same if subsystem 2 chooses input u12 or u22.
Generalizing, we have that

Dmpx, u mq � tum | u P U, x� P Xu

in which the parameters are the actual state x and the other inputs
u m given by

u m � pui | i PMztmuq

Uncoupled constraints, on the other hand, are characterized by
X � Rn1 �� � ��RnM and U � U1�� � ��UM , the Cartesian product of
the individual constraints, where Um is only dependent on subsystem
m, for all m, so that Dm is independent of u m.
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Figure 6 – Coupled constraints. The constraints of subsystem 1 are
dependent on subsystem 2 and vise-versa. Input u1 must be in the set
of valid actions D1px, u2q � tu1 | u P U, x� P Xu.
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3 DISTRIBUTED MPC

This chapter presents, succinctly, the main components of a Dis-
tributed Model Predictive Control (DMPC) used to control coupled
subsystems. It is the basis from which the distributed satisficing MPC
is built, incorporating the satisficing ideas discussed in the following
chapters.

A DMPC control system is a distributed control scheme where
each local controller Cm, for each subsystem m, is a local MPC. Every
MPC is a decision maker, composed of three main components: a pre-
diction model, an objective function, and a decision process (CAMACHO;
BORDONS, 2004):

• Prediction model: allows the controller to predict the future evo-
lution of the system given a plan of actions;

• Objective function: is the criterion under which the predicted
evolution is valued;

• Decision process: is the process by which the controller decides
its plan of action, in order to result in a future evolution with a
good valued objective function. In general, the decision process
is an optimization problem.

At each time k, an MPC decides which plan of action evolves the system
in the best way, given its objectives. Once the action plan is decided,
the MPC applies only the first action of this plan. The system reacts to
the applied action and evolves to its successor state in k � 1 according
to its dynamic model. A next sample is made in time k � 1 and the
process is repeated. This scheme is also known as receding horizon
control.

The three components of MPCs are briefly discussed in the fol-
lowing. They will be developed later in the context of the distributed
satisficing MPC.

3.1 PREDICTION MODEL

Because the system we are considering is time-invariant, in the
rest of this thesis, the time k is always the actual time k � 0 and it will
be dropped from the variables most of the time. In this way, a variable,
for example, xmp1q is the same as xmpk � 1q.
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Every MPC controller Cm has an internal representation of sub-
system m, governed by the nominal dynamic equation (2.5)[Page 33],
and uses it to predict the evolution of its states

xm � pxmp1q, � � � , xmpNqq

along a prediction horizon N . This state trajectory xm can be obtained
from the initial state xm � xmp0q and the future input trajectory of all
the inputs using the following linear prediction model:

xm � rAmxm � rBmu (3.1)

where matrices rAm and rBm are obtained from the dynamic model (2.5)
and the action profile

u � pu1, � � � ,um, � � � ,uM q

includes the action plan of controllers Cm

um � pump0q, � � � , umpN � 1qq

and also the action plan of all controllers Ci, i P Mztmu. We may
summarize the action plans of the other controllers but controller Cm
in a vector

u m � pui, i PMztmuq

Although the controllers may not have an exact representation
of each other, in this thesis, the following assumption is made:

Assumption 3.1. Perfect information: all controllers know each other’s
variables perfectly.

This assumption is reasonable when the communication between
controllers is reliable and the controllers are credible. All controllers
know each other’s action plan correctly.

The evolution of the equivalent global system is then the collec-
tion of local state trajectories, being given by

x � px1, � � � ,xm, � � � ,xM q

Both the state predictions and the input trajectories must res-
pect the constraints along the full prediction horizon, that is, if we
define

X � tx | xpkq P X, k � 1 . . . Nu



39

U � tu | upkq P U, k � 1 . . . Nu

it is required that
x P X , u P U

These constraints define the domain of valid plans

Dpxq � tu | u P U , x P X u

that imposes local domains given the other plans and actual states

Dmpx,u mq � tum | u P U , x P X u (3.2)

for all m PM.

3.2 OBJECTIVE FUNCTION

MPC controllers are decision makers. They have to decide their
action plan, restricted to the domain of valid actions, based on the
internal representation they have and always trying to accomplish their
objectives. For that, each controller has to have a total ordering of its
options as explained below: let the symbols ©m and �m denote binary
relations meaning “better or as good as” and “as good as”, respectively,
under the point of view of controller Cm. A total ordering over the
domain of Cm given other controllers options is characterized when the
following properties are satisfied:

completeness: @u1m,u2m P Dmpu mq,
u1m ©m u2m or u2m ©m u1m;

reflexivity: @um P Dmpu mq, um ©m um;
antisymmetry: @u1m,u2m P Dmpu mq,

u1m ©m u2m, u2m ©m u1m ñ u1m �m u2m;
transitivity: @u1m,u2m,u3m P Dmpu mq,

u1m ©m u2m, u2m ©m u3m ñ u1m ©m u3m;

and, if a total order is established then the controller would compare
all options and choose one among the best of them.

Mathematically, it is convenient to have a function that captures
the totally ordered preferences:

Definition 3.1. A cost is a real-valued function over a domain D,
V : D Ñ R such that, for all u1 and u2 P D, u1 © u2 if, and only if,
V pu1q ¤ V pu2q.
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Any rational controller chooses its decisions so as to minimize its
cost. The cost of the controller should reflect the controller’s objective
so that any action that minimizes the cost is one of its best actions to
the accomplishment of the objective.

Usually, to each controller Cm it is associated a quadratic cost
Vm, a function of the actual state xm and action profile u, given by

Vmpxm,uq �
N�1̧

k�0
`mpxmpkq, umpkqq (3.3)

where the stage cost of controller Cm, `mpxmpkq, umpkqq, is a definite
positive function with `mp0, 0q � 0. In general,

`mpxmpkq, umpkqq � xmpkq
1Qmxmpkq � αm � umpkq

1Rmumpkq

where matrices Qm and Rm are positive definite and positive semi-
definite, respectively, and αm ¥ 0 is the sensibility to cost of controller
Cm.

3.3 DECISION PROCESS

A distributed control system has two or more controllers, each
one with its own objective. In this case, contrary to single-objective
optimization, there is not a single definition of optimum. Usually, the
optimum in a distributed control system follows the concept of Pareto
optimality.

Normally, in the DMPC framework, a Pareto solution is obtained
by a scalarization procedure, when the local objectives are aggregated
in a single scalar global objective obtained by the weighted sum of lo-
cal objectives. This is the approach used in the cooperative distributed
MPC (STEWART et al., 2010; CAMPONOGARA; OLIVEIRA, 2009; CAM-
PONOGARA; SCHERER, 2011) and explained here. Lately, the charac-
teristics of this approach will be compared to the satisficing approach
proposed in this thesis.

3.3.1 Pareto Optimality

Once defined the cost functions Vm of the controllers, it is clear
that a solution um for controller Cm is better than u1m if Vmpum|xm,u mq
  Vmpu1m|xm,u mq. If, under the point of view of the other con-
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trollers, it is still true that Vjpum|xj ,u mq ¤ Vjpu1m|xj ,u mq for all
j PMztmu, then the solution um is also better than u1m under a col-
lective point of view. In this case it is said that um dominates u1m.
But um does not dominate u1m if there exist at least one controller for
which u1m is better than um. Every non-dominated solution is optimal
in some sense because no other solution could dominate it (see Figure
7).

x

x

x
x

o

o

o

o
o

Figure 7 – For every dominated point (O) there is at least one non-
dominated point (X) that offer lower costs. All non-dominated points
are Pareto-optimal. The cone K defines the Pareto frontier for a given
multi-objective optimization problem. A point is Pareto if there is no
other point in the cone K with origin in the point.

In a multi-objective optimization framework, all Pareto solutions
are obtained by the optimization problem:

PF pxq :
#

MinimizeK Fpx,uq
subject to u P Dpxq

(3.4)

where

Fpx,uq � pV1px1,u1q, . . . , Vmpxm,umq, . . . , VM pxM ,uM qq (3.5)

is the vector-valued map composed of the controllers’ costs, and K is
the cone that defines a partial order to the problem. A partial order
is reflexive, antisymmetric and transitive but does not have the com-
pleteness property.
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From now on the cone K will be the classical Pareto-cone RM� .
In the example of Figure 7, the cone Fpx,uq�K defines a region where
any point dominates the point reached by u. There are no points in
cone Fpx,uq �K when u is Pareto. For a formal treatment of multi-
objective optimization see (PAPPALARDO, 2008).

All solutions of problem (3.4) are Pareto-optimal:
Definition 3.2. A decision vector u� is Pareto-optimal if there does
not exist another decision vector u in the domain such that Vjpxj ,uq ¤
Vjpxj ,u�q,@j � 1, . . . ,M and Vmpxm,uq   Vmpxm,u�q for at least
one index m. In other words, when there is no u such that Fpx,uq ¤
Fpx,u�q and Fpx,uq � Fpx,u�q.

An overview of methods available to solve problem (3.4) may be
found in (GAMBIER, 2008).

3.3.2 Scalarization

Observe that cone K defines a partial order because the com-
pleteness property of a total order is lost. A Pareto point can not be
compared to another Pareto point.

The classical way, used in the DMPC, to reestablish the total
order of options is to define a global cost V for the society of M con-
trollers through a scalarization approach (PAPPALARDO, 2008; LUC,
2008; BOYD; VANDENBERGHE, 2004) according to which the interests
of the controllers are aggregated in a global cost shared by all of them:

V px,uq �
M̧

m�1
wmVmpxm,uq, wm ¡ 0 (3.6)

The solution u P Dpxq that minimizes this global cost is Pareto-
optimal (BOYD; VANDENBERGHE, 2004). The adjustment of weights
wm define a fixed trade off among the controller objectives and, as a
consequence, a particular solution in the Pareto set. The adjustment
of wm is done manually and may not be a trivial task.

3.3.3 Cooperative Solution

The decision process in a distributed problem is iterative. The
controllers should cooperate in order to reach a Pareto solution. In the
so called cooperative DMPC, cooperation is obtained by forcing the
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controllers to share the same global cost V . Each cooperative controller
solves the following problem over their own variables um given the
states x and the variables of the other controllers u m:

PCo
m px,u mq :

#
Minimizeum

V pum|x,u
pEpq
 m q

subject to um P Dmpx,u
pEpq
 m q

(3.7)

where the superscript Ep indicates the readjustment scheme at each
iteration p. Two examples of readjustment schemes are the Gauss-
Seidel scheme where upEpq

 m � puppq1 , . . . ,uppqm�1,u
pp�1q
m�1 , . . . ,u

pp�1q
M q and

the Jacobi scheme where upEpq
 m � upp�1q

 m .

Definition 3.3. A fixed point u: � pu:1, . . . ,u
:
M q is (globally) conver-

gent with respect to a readjustment scheme Ep if it can be obtained as
the limit of the iterations:$'&'%

uppqm � rmpu
pEpq
 m q � arg sup

umPDm

V pum|x,u
pEpq
 m q, @m PM

u:m � lim
pÑ8

uppqm
(3.8)

where the superscript Ep indicates that the choice upEpq
 m depends on the

readjustment scheme selected.

The readjustment scheme is fundamental to the convergence of
the method (BASAR; OLSDER, 1999). One example of simultaneous
readjustment is given in (VENKAT et al., 2005, 2006; STEWART et al.,
2010). There, the scheme is:#

u�ppqm � rmpupp�1q
 m q

uppqm � γmu�ppqm � p1� γmqupp�1q
m , γm P p0, 1s,

°
mPM γm � 1

(3.9)
for all m iterating in parallel, where the reaction function rm was de-
fined in Equation (3.8) and uppqm is calculated by the convex combination
of u�ppqm and the previous solution upp�1q

m .
The authors show that this sequence produces non-increasing

global costs and converges to an optimal point in case the costs are
convex. These results are repeated here:

Proposition 3.1. (STEWART et al., 2010) The sequence of joint costs
tV px,uppqqupÑ8 generated by the simultaneous readjustment scheme
(3.9) is non-increasing and converges.
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Proof. (Adapted from (STEWART et al., 2010)): From Equation (3.9),
where

°
mPM γm � 1, and convexity of V pum|x,u mq it follows that

V puppqm |x,uppq mq � V px,uppqq

� V
�
x, rγ1u�ppq1 � p1� γ1qupp�1q

1 , . . . , γMu�ppqM � p1� γM qupp�1q
M s

	
� V

�
x, rγ1pu�ppq1 , . . . ,upp�1q

M q � . . .� γM pupp�1q
1 , . . . ,u�ppqM qs

	
¤

¸
mPM

γmV pu�ppqm |x,upp�1q
 m q

¤ V pupp�1q
m |x,upp�1q

 m q

where the first inequality follows from the convexity of V , and the
second inequality from the optimality of u�ppqm . The sequence converges
because the cost V is bounded below.

The requirement
°
mPM γm � 1 implies small steps when there

are many controllers.
In (CAMPONOGARA; OLIVEIRA, 2009) it is proposed a readjust-

ment scheme sequential by groups of non-neighboring controllers and
parallel inside groups. In this scheme there is a sequence of groups
tK1, � � � ,Kru that repeats until convergence, where Ki � M and�r
i�1Ki � M. Each group is composed by non-neighboring (non-

coupled) controllers that may iterate in parallel. While any controller
Cm P Ki reacts, all controllers in its neighborhood keep their decisions
to the next iteration, that is:#

uppqm � rmpupp�1q
νpmq q, @m P Ki, νpmq �MzKi

uppqνpmq � upp�1q
νpmq

(3.10)

before switching to the next group.
This sequential/parallel scheme ensures that only non-neighboring

controllers will update its decision at iteration p. It leads to a proposi-
tion similar to Proposition 3.1:

Proposition 3.2. The sequence of joint costs tV px,uppqqupÑ8 gener-
ated by sequential/parallel readjustment scheme (3.10) is non-increasing
and converges.

Proof. From the optimality of uppqm , we have that V puppqm |x,upp�1q
 m q ¤

V pupp�1q
m |x,upp�1q

 m q. Because outside groups we have that uppqνpmq �
upp�1q
νpmq then
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V puppqm |x,uppq mq ¤ V pupp�1q
m |x,upp�1q

 m q. The sequence converges because
the cost V is bounded below.

3.3.4 Coupled Constraints

Although all controllers share the same cost function, the dis-
tributed optimal solution u: may not be coincident with an optimal
solution of V . For the readjustment schemes just presented, the con-
vergent distributed solution is guaranteed to be the minimization of
V , and thereby Pareto-optimal, only if the constraints are not coupled.
This is because coupled constraints may create fixed points other than
the minimum of V . See, for example, Figure 8 extracted from (CAM-
PONOGARA; SCHERER, 2011) that shows a sequential readjustment that
leads to a fixed point, where the agents (controllers) can not improve
the solution further by using the same readjustment scheme.

To avoid fixed points even with coupled constraints, in (CAM-
PONOGARA; SCHERER, 2011) is proposed a distributed interior-point
method that leads the controllers through a central path exemplified
in Figure 8.

Figure 8 – Extracted from (CAMPONOGARA; SCHERER, 2011), the fig-
ure shows the nonequivalence between distributed and optimal solu-
tions under coupled constraints.
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4 DISTRIBUTED SATISFICING MPC

This chapter presents an alternative to the cooperative distributed
MPC presented in Chapter 3 and constitutes, together with Chapter
5, the main theoretical contribution of this thesis, that is a new dis-
tributed controller called Distributed Satisficing MPC (SMPC) (LIMA
et al., –).

The classical way of using fixed weights wm to define a global cost
V px,uq �

°
mPM wmVmpxm,uq, where wm defines a fixed trade-of bet-

ween the controllers, results in what Stirling (STIRLING; FROST, 2007)
calls categorical altruism. To explicitly show the altruism embedded in
the global cost V px,uq, let us rearrange it as follows:

V px,uq � wmVmpxm,uq �
¸

jPMztmu

wjVjpxj ,uq

� wm

��Vmpxm,uq � ¸
jPMztmu

λm,jVjpxj ,uq

��
where λm,j � wj

wm
¡ 0. Observe that λm,j is the amount of altruism

that controller Cm assigns to controller Cj by adding they costs to its
own cost.

In the categorical altruism, the controllers are categorically re-
quired to subjugate their own welfare, in all situations, in order to ben-
efit the society. This condemns the controller to always please other
controllers even if they are by far accomplishing their objectives.

Prett and Garcia, according to Qin e Badgwell (2003), raised
another issue:

Prett and Garcia (1988) commented (...) : The combi-
nation of multiple objectives into one objective (function)
does not allow the designer to reflect the true performance
requirements. [reference in the original](QIN; BADGWELL,
2003)

We advocate that a performance requirement must be defined to each
objective, individually. Instead of minimize a rather arbitrary combi-
nation of objectives, the controllers will try to satisfy their own require-
ments, and also the requirements of the others. It will lead to another
kind of altruism, called situational.

Situational x categorical altruism: The situational altruism is dy-
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namically adjusted at each cycle according to the system’s current
state, in opposition to the categorical altruism that is fixed and
adjusted a priori.

4.1 SATISFICING PROBLEM

The satisficing theory proposed by Simon (1955) defines that
each decision maker should decide if a solution is satisfactory and suf-
ficient comparing it against a standard, called aspiration level. If the
solution meets the decision maker’s aspiration level, the solution is sa-
tisficing, that is, it is satisfactory and sufficient (satisficing = satisfy +
suffice), and no further optimization is necessary.

In the context of this thesis, the aspiration level will be used to
define a set of global solutions that are satisfactory and sufficient to all
controllers. Such region is called the satisficing set and is defined as

Spxq � tu � pu1, . . . ,uM q | Vmpxm,uq ¤ γm, @m PMu

Here, the aspiration level is the maximal satisficing cost γm ¡ 0, still
satisficing for controller Cm. Any solution in Spxq is locally and globally
satisficing. The satisficing controllers, then, try to (distributively) solve
the following problem:

P S :
#
find any u P Dpxq
such that: Vmpxm,uq ¤ γm, @m PM

(4.1)

where the set
Dpxq � tu | u P U ,x P X u

is the problem’s domain.

Remark 4.1. Observe that γm is a local requirement, different of the
weights wm that are meaningful only in respect to others. It may be
constant or adjusted according to the circumstances and, in some cases,
γm is associated to physical parameters as is the case of the example in
Section 6.1.

Besides the fact that γm is local, another practical advantage
of the satisficing problem is that the inclusion of a new controller is
performed by adding the cost of the controller and its maximal satis-
ficing cost into the formulation, and reconfiguring only the subsystems
with which the new subsystem will be coupled. The definition of γm
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opens room for what Nikolaou in (NIKOLAOU, 2001) called “achievable
targets of performance”:

Similarly to the minimum-work concept in thermodynam-
ics, control theory should provide achievable targets of per-
formance and should do so under practical conditions, e.g.,
in the presence of inequality constraints and model inaccu-
racies (Morari, 1988) [reference in the original] (NIKOLAOU,
2001, emphasis added).

The satisficing problem P S is a feasibility problem that defines
a set of possible solutions, all of them satisficing. Any solution u of P S

is in the constrained jointly satisficing set, defined as

SDpxq � Spxq XDpxq

such that u P SDpxq respects the constraints and maintains the cost
below or equal to the maximal satisficing cost. The set SDpxq is convex
and must not be empty.

The following section presents a method to select a particular
solution in SDpxq, that leads to a situational altruism. In the method,
the controllers try to reach a Pareto-optimal solution represented by
the analytic center of the satisficing set. This results in an optimal
altruism (in the sense that it leads to a Pareto-optimal solution) with
an interesting characteristic: the controllers will be more altruistic to
the less satisfied controller.

In the Appendix A we show another method where the con-
trollers try to minimize their own selfish costs Vmpxm,uq offering a
minimum of altruism to the other controllers.

4.2 SATISFICING MPC

Although satisficing, a solution in SDpxq is normally suboptimal
because it may not be Pareto-optimal. In the following we propose
a controller that finds a particular satisficing solution in SDpxq that
is Pareto-optimal and has an interesting characteristic: the controllers
will be more altruistic to the less satisfied controller.

It will be shown that a Pareto solution is obtained if the following
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convex optimization problem is solved:

P SMPC :
#

minu
°
mPM �γm � logpγm � Vmpxm,uqq

subject to u P Dpxq
(4.2)

At each time step, the SMPC solves problem (4.2) in a dis-
tributed manner. Observe that the logarithms in (4.2) are defined
only if Vmpxm,umq   γm (strictly), for all m P M so that, the con-
trollers must be satisficing. The solution provides the control action
κm � u:mp0q, for all controller Cm, m PM, which is applied in a reced-
ing horizon scheme. The rest of the optimal trajectory is discarded.

The optimal solution of (4.2) is the constrained analytic center
of the satisficing set Spxq (see Figure 9).

Remark 4.2. Notice that the constrained analytic center of the satis-
ficing set Spxq may be not the analytic center of the constrained satis-
ficing set SDpxq � Spxq XDpxq.

Figure 9 – Optimizing towards the analytic center of the jointly satis-
ficing set Spxq. The solution is constrained by the constraints Dpxq.

In opposition to the solution obtained by minimizing the objec-
tive (3.6), the solution of Problem (4.2) induces a trade off that is not
defined a priori and is variable with the current state, as shown in the
following section.
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4.2.1 Equivalence of the Analytic Center

In the following theorem the optimality properties of the con-
strained analytic center of the satisficing set, and hence of the optimal
solution of problem P SMPC, are studied.

Theorem 4.1. The solution u: � pu:1, . . . ,u
:
M q of Problem P SMPC,

is Pareto optimal and equivalent to a solution u� � pu�1, . . . ,u�M q of
problem

V px,u�q � V pxq �min
M̧

m�1
wmpxmqVmpxm,uq

subject to u P Dpxq
(4.3)

where wmpxmq is defined as

wmpxmq � γm{pγm � Vmpxm,u:qq

�
γm

γm � Vmpxmq

(4.4)

and Vmpxmq � Vmpxm,u:q.

Proof. Let us describe the convex set Dpxq by

Dpxq � tu | hipx,uq ¤ 0, gjpx,uq � 0,
i � 1, . . . , q, j � 1, . . . , ru

where hi are convex functions and gj are affine functions.
The Karush Kun Tucker (KKT) conditions (BOYD; VANDEN-

BERGHE, 2004) will be applied to problem (4.2) and (4.3) to show
their equivalence:

1) An optimal solution u� � pu�1, . . . ,u�M q to problem (4.3) sat-
isfies the KKT conditions, that is, there exist Lagrange multipliers λ�i
and ν�j such that

M̧

m�1
wmpxmq∇Vmpxm,u�q

�
q̧

i�1
λ�i∇hipx,u�q �

ŗ

j�1
ν�j∇gjpx,u�q � 0
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for i � 1, . . . , q and j � 1, . . . , r, and

hipx,u�q ¤ 0,
gjpx,u�q � 0,

λ�ihipx,u�q � 0,
λ�i ¥ 0

2) On the other hand, the solution u: � pu:1, . . . ,u
:
M q of problem

(4.2) requires that there exist Lagrange multipliers λ:i and ν
:
j such that

M̧

m�1

γm
γm � Vmpxm,u:q

∇Vmpxm,u:q

�
q̧

i�1
λ:i∇hipx,u

:q �
ŗ

j�1
ν:j∇gjpx,u

:q � 0

for i � 1, . . . , q and j � 1, . . . , r, and

hipx,u:q ¤ 0,
gjpx,u:q � 0,

λ:ihipx,u
:q � 0,

λ:i ¥ 0

Comparing 1) and 2), it follows that, when

wmpxmq �
γm

γm � Vmpxm,u:q

the solution u: also fulfills the KKT conditions in 1) with u� � u:,
λ�i � λ:i and ν�j � ν:j .

Theorem 4.1 proves that solving Problem (4.2) is equivalent to
solving a centralized problem based on a global cost function with
state dependent weights. Implicitly, the satisficing controllers share
the global objective given by

V px,uq �
M̧

m�1
wmpxmqVmpxm,uq (4.5)

such that the trade off among the controllers are not fixed nor defined
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by the designer.

Remark 4.3. The weights wmpxmq are known only after the solution of
Problem P SMPC, which implies that the equivalent centralized problem
in Equation (4.3) just theoretical.

According to the expression of wmpxmq (Equation (4.4)), the far-
ther a controller is from its maximal satisficing cost, more it is satisfied
and less weight will be assigned to his local cost function. Observe that
the equivalent weights wmpxmq are normalized by γm:

wmpxmq �
γm

γm � Vmpxmq
�

1
1� Vmpxmq

γm

For example, being two controllers with their costs 10% from their
satisficing costs

γ1 � 100 γ2 � 20
V1px1q � 90 V2px2q � 18

results in equal weights,

γ1

γ1 � V1px1q
� 10 γ2

γ2 � V2px2q
� 10

4.2.2 Optimal Altruism

According to Theorem 4.1, a solution of problem P SMPC corre-
sponds to a global objective function with a situational altruism given
by:

λm,j �
wj
wm

�
1� Vmpxmq{γm

1� Vjpxjq{γj

¡ 0 (4.6)

for all m PM, j PMztmu, which depends on the maximum dissatis-
faction γm of each controller and on its cost function Vmpxm,u:q which,
in turn, depends on the current state and actions. Notice that a sa-
tisficing solution of problem P SMPC implies a cost strictly below their
maximum satisficing, Vmpxmq   γm, because of the logarithm function
in the problem’s objective. Therefore the situational altruism given by
Equation (4.6) is well defined and positive.

In every MPC cycle, problem P SMPC is solved in a distributed
manner, as shown in Section 4.2.3, resulting in a Pareto-optimal so-
lution that is equivalent to an optimal altruism. Moreover, no one of
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the controllers will be altruistic to the extent of being unsatisfied, that
is, its cost will always be lower than or equal to its maximal satisfi-
cing cost. Also, from (4.6) it can be seen that the closer an affected
controller is from its maximum cost, that is, if Vjpxjq Ñ γj , less it is
satisfied and more altruism will be deserved to it. On the contrary, if
Vmpxmq Ñ γm then controller Cm will be less satisfied and will be less
willing to be altruistic. This is a behavior difficult to obtain in classical
approaches.

4.2.3 Distributed Solution

The constrained analytic center problem P SMPC (4.2) is concep-
tually distributed in the sense that it is the combination of distributed
costs of a network of subsystems with their own states and controls.
Although this problem can be solved by a centralized solver, the con-
cept is reinforced if the problem is iteratively solved by distributed
controllers Cm, each one with its own problem

P SMPC
m px,u mq :

$&% min
um

°
jPM

�γj � logpγj � Vjpxj ,uqq

subject to um P Dmpx,u mq
(4.7)

where u m denotes the action profile of all the other controllers but
controller Cm, and Dmpx,u mq is the projection of Dpxq over the space
spanned by um with u m fixed. The profiles u m are constants in
Problem P SMPC

m as well as the actual states.
Let us suppose that the coupled constraints Dmpx,u mq can be

represented by convex functions hm,i, i � 1, . . . , rm, such that

Dmpx,u mq � tum | hm,ipum;x,u mq ¤ 0, i � 1, . . . , rmu

where the parameters of hm,ipum;x,u mq are explicitly shown after the
semicolon mark. Under this assumption, the set of problems tP SMPC

m uMm�1
can be solved in two phases, phase I and phase II described below.

4.2.3.1 Phase I

Phase I is used to calculate a feasible solution to be used in phase
II, and also to allow the controllers to negotiate in case of SpxqXDpxq �
H. Usually, phase I will be used just once due to the recursive feasibility
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of the SMPC with guarantee of stability.
The phase I of controller Cm consists in solving:

PIm : min
pum,rsmq

f I
m �

¸
jPM

sj �
rm̧

i�1
sm,i

s.t. : Vjpxj ,uq   γj � sj , @j PM
hm,ipum;x,u mq   sm,i, i � 1, . . . , rm
sj ¥ 0, @j PM
sm,i ¥ 0, i � 1, . . . , rm

(4.8)

where rsm � psj , sm,i | @j PM, i � 1, . . . , rmq. Observe that phase I is
always feasible because rsm ¥ 0 can be set as large as necessary. Let
f I�
m be an optimal objective to Problem PIm. If f I�

m � 0 for all m PM,
then the interior of the satisficing set is nonempty. If f I�

m ¡ 0 for any
m, then there does not exist a simultaneously satisficing solution for
all the controllers, in which case tm P M : sm ¡ 0u is the subset of
controllers that cannot be satisfied.

This phase is normally left implicit in the distributed literature
since it is considered that the first feasible solution may be obtained
measuring the system when in steady-state. In the satisficing approach,
phase I becomes important because the system may be not satisficing
at first, and also because there exists the possibility of negotiation as
explained below.

4.2.3.2 Negotiation

From the definition of the satisficing set and cost functions, it
can be seen that a smaller sensitivity αm and/or greater dissatisfaction
γm lead to larger satisficing sets. So, when the controllers can not
be simultaneously satisfied, they have to negotiate by adjusting their
sensitivity to cost or their maximal level of dissatisfaction.

In general, the negotiation protocol is context-dependent. An
example of negotiation is found in Section 6.1 where some controllers
agree in degrade their performance based in a predefined rule. Other
protocols may be devised. A possibility is, once feasibility is declared
impossible by the algorithm of phase I, to increase the maximal satisfi-
cing costs γm of all controllers by the value of their slack variables sm.
Another possibility is to define a hierarchy in order to decide which
controller negotiates first.
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Observe that, if closed-loop stability is guaranteed (see Chapter
5) then recursive feasibility is also guaranteed, so that an initially fea-
sible solution will be always feasible and no further negotiation will be
necessary, unless the control loses robustness due to measurements and
model errors.

4.2.3.3 Phase II

Phase II solves, starting from the solution found in phase I, the
set tPIImuMm�1 of problems given by:

PIIm : min
um

f II
m �

¸
jPM

�γj � logpγj � Vjpxj ,uqq

s. t.: hm,ipum;x,u mq ¤ 0, i � 1, . . . , rm
(4.9)

where functions f II
m, a slightly modified log barrier (BOYD; VANDEN-

BERGHE, 2004), force the solution in the direction of the analytic center
of the satisficing set Spxq.

4.2.3.4 Algorithm

Let phase I and phase II be the class of problems such that
the functions f I

m, f II
m and hm,i are convex and twice continuously dif-

ferentiable and the problems are strictly feasible. In (CAMPONOGARA;
SCHERER, 2011, Section IV), it is developed a distributed interior point
algorithm designed to handle this kind of problems with coupled con-
straints.

Camponogara e Scherer (2011): For a given current state, neigh-
boring conditions and initial feasible solution û � pû1, . . . , ûM q, the
controllers solve in an inner loop a series of problems

Pmpε
ppq, x,u mq : min

um

θmpum; εppq, x,u mq � fm � εppqφm

where fm is f I
m or f II

m if in phase I or phase II, respectively. The
constraints are included in the objective by the barrier function

φmpum;x,u mq �
ŗ

i�1
� logp�hm,ipum;x,u mqq
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The parameter εppq ¡ 0 is decreased at every outer iteration p until
convergence, according to Algorithm 1.

Algorithm 1: Outer loop: interior-point method for solving
P SMPC

input: a strictly feasible us, initial εp0q, decrease rate µ   1,
number of constraints r, and tolerance τ ¡ 0

initialize: p :� �1;
repeat

p :� p� 1;
centering step: obtain uppq � pu1, . . . ,uM q by

distributively solving a series of
problems tPmpεppq, x,u mqumPM
starting from us (see Algorithm 2);

if rεppq ¡ τ then
us :� uppq;
εpp�1q :� µεppq;

until rεppq ¤ τ ;
output: uppq

The outer loop forces the global solution uppq to follow a cen-
tral path as shown in Figure 8 (Page 45) and eventually converge with
arbitrary precision to the constrained optimal for an εppq Ñ 0 suffi-
ciently small. After convergence, the controllers apply the first action
κm � ump0q of their plans um � uppqm and use it as the initial solution
for the next iteration.

The problems Pmpεppq, x,u mq, for all m P M, are solved in
a serial/parallel scheme whereby the controllers are divided in groups
Ki � M such that

�q
i�1Ki � M and such that each group is com-

posed by non-neighboring (non-coupled) controllers. All couplings are
between groups. If the system is fully coupled, then there will be one
controller per group. The problems are solved following the sequence
of groups tK1, . . . ,Kqu that repeats until convergence.
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Algorithm 2: Inner loop: distributed solution of the center-
ing step

input: a strictly feasible u, current state x, parameter εppq,
and tolerance η ¡ 0

initialize: l :� 0; i :� 1; up0q :� u;
while }p∇θ1, . . . ,∇θM q} ¡ η do

for each m P Ki in parallel do
use an available solver to obtain the solution upl�1q

m

of Pmpεppq, x,u mq
for each m R Ki in parallel do

upl�1q
m :� uplqm ;

l :� l � 1, i :� pl mod qq � 1;
output: uplq
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5 STABILITY

The evolution of the subsystems, function of the actual state
x � px1, . . . , xM q and inputs u � pu1, . . . , uM q, may be represented by
the equation

x� � fpx, uq

where fpx, uq groups the subsystems’ dynamic equations (2.5) described
on page 33, and x� is the successor state. The subsystems are submit-
ted to a closed loop control, such that u � κpxq and κ � pκ1, . . . , κM q
is a vector with the satisficing MPC outputs. Observe that the control
action is function of the current state:

κ � gpxq

so that the closed loop evolution of the system is given by

x� � fpx, gpxqq � F pxq (5.1)

We want to show that the evolution (5.1) under satisficing control
is asymptotically stable.

Definition 5.1. (Stability) The origin, solution of the system xpk �
1q � F pxpkqq, is stable if for all ε ¡ 0 there exists δ � δpεq such that

@xp0q : |xp0q| ¤ δ ñ |xpkq| ¤ ε, @k

Stability of the origin means that any solution that starts near
the origin will stay near it for all times.

Definition 5.2. (Asymptotic stability) The origin, solution of the sys-
tem xpk � 1q � F pxpkqq, is asymptotically stable if

(stability:) it is stable,

(convergence:) and, there exists a constant δ ¡ 0 such that

@xp0q : |xp0q| ¤ δ ñ xpkq Ñ 0 when k Ñ8

With asymptotic stability, the solution will move closer to the
origin as time elapses.

Asymptotic stability may be characterized by the existence of a
strict Lyapunov function defined below.
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Definition 5.3. A definite positive function V : Rn ÞÑ R� is a strict
Lyapunov function in XS � Rn if there exist class K functions1 σ1pxq,
σ2pxq and σ3pxq such that

V pxq ¥ σ1p|x|q, @x P XS
V pxq ¤ σ2p|x|q, @x P Ω � XS

and
∆V pxq ¤ �σ3p|x|q

where ∆V pxq � V pF pxqq � V pxq, for all x in XS and Ω is a subset of
XS with the origin in its interior.

5.1 STABILITY OF THE SMPC

Let us consider the following SMPC formulation,

rP SMPC :
#

minu
°
mPM �γm � logpγm � Vmpxm,uqq

subject to u P rDpxq (5.2)

where, to impose asymptotic stability, the cost Vmpxm,uq is modified
to include a positive definite terminal cost Vf,mpxmq such that

Vmpxm,uq �
N�1̧

k�0
`mpxmpkq, umpkqq � Vf,mpxmpNqq (5.3)

and the set rDpxq is given by:

rDpxq � tu | u P U , x P X , stability constraints C.1 and C.2u

which includes the following stability conditions

xpNq P Ω (C.1)
Vmpxm,uq ¤ ρm, @m PM (C.2)

where, by doing
ρ�m � Vmpxmq (5.4)

1A scalar function σpxq, x ¥ 0, belongs to class K if it is continuous, strictly
increasing and σp0q � 0. A scalar function σpxq, x ¥ 0, belongs to class K8 if
σpxq P K and limxÑ8 σpxq � 8.
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a contraction Vmpx�q ¤ Vmpxmq is imposed to the optimal local costs,
that is, the optimal local costs do not increase at each next time. Con-
dition C.1 is a terminal condition, and Ω is a terminal set.

As will be clear later, the maximal satisficing costs γm are re-
quired to be constant:

γ�m � γm, constant (5.5)

In the following, the optimal value V pxq of the SMPC ( rP SMPC),
evaluated in the optimal solution u:, will be characterized as a strict
Lyapunov function. First, let us define invariance and assume the fol-
lowing:

Definition 5.4. (Admissible positive control invariant set) A set Ω �
X is admissible positive control invariant if, for all xpkq P Ω, there exist
upkq P U, such that xpk � 1q � fpxpkq, upkqq P Ω for all k ¥ 0.

Assumption 5.1. The set Ω � X is positive control invariant and
admissible under a jointly control ϑ � pυ1, . . . , υm, . . . , υM q P U and
the terminal costs Vf,mpxmq are definite positive with

Vf,mpx
�
mq ¤ Vf,mpxmq � `mpxm, υmq

for all x � px1, . . . , xM q P Ω and all m PM.

Assumption 5.1 establishes the invariance of the set Ω and it also
establishes that the terminal cost of all controllers are control Lyapunov
functions (CLFs), simultaneously decreasing in Ω. A common choice of
terminal cost and terminal constraint that satisfies Assumption 5.1 is
Vf,mpxmq � 0 and Ω � t0u, for all m PM, such that ϑ � 0. Another
possibility is presented by Maestre et al. (2011) that shows a method to
calculate a matrix Km, a positive definite matrix Pm and a set Ωm such
that υm � Kmxm, Vf,mpxmq � x1mPmxm, and Ω � Ω1 � . . .�ΩM � X
respect Assumption 5.1.

Let us also define the next time warm-start pu: (MAYNE et al.,
2000) based in the last known optimal solution u: � pu:1, . . . ,u

:
M q,

according to the following rule:

pu: � ppu:1, . . . , pu:m, . . . , pu:M q
pu:m � pu:mp1q, . . . , u:mpN � 1q, υmq,

and υm satisfies Assumption 5.1. The warm-start is used to derive
useful results:
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Lemma 5.1. (Local convergence of the warm-start) The warm-start
causes the local costs to decrease in a rate given by

Vmpx
�
m, pu:q � Vmpxmq ¤ �`mpxm, κmq (5.6)

where κm � u:mp0q is the control action of controller Cm.

Proof. The increment of the local costs are given by

Vmpx
�
m, pu:q � Vmpxmq � �`mpxm, κmq � T

where the term T , after some eliminations, is equal to

T � `mpxmpNq, υmq � Vf,mpxmpN � 1qq � Vf,mpxmpNqq

which is less than or equal to zero due to Assumption 5.1. It results
that

Vmpx
�
m, pu:q � Vmpxmq ¤ �`mpxm, κmq

Lemma 5.2. (Recursive feasibility of the warm-start) The next time
warm-start pu: � ppu:1, . . . , pu:M q
is feasible.

Proof. By construction, we have that pu: P U . We also have that the
resulting trajectory x� � pxp2q, . . . , xpN � 1qq has its first elements
pxp2q, . . . , xpNqq feasible with xpNq P Ω. Because Assumption 5.1
establishes that Ω is invariant under action υ � pυ1, . . . , υM q, the
tail of all the trajectories remains in Ω, that is, xpN � 1q P Ω �
X. Then, we have pu: P U , x� P X , xpN � 1q P Ω. Because of
Lemma 5.1 and condition (5.5), the warm-start is also satisficing since
Vmpx

�
m, pu:q ¤ Vmpxmq � `pxm, κmq ¤ γ�m. Altogether, the warm-startpu: P Spx�q X rDpx�q is feasible.
We want to prove stability by proving that the cost function

V pxq is a Lyapunov function. First, let us show that:

Lemma 5.3. The cost function V pxq is bounded below and above by
K-functions.
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Proof. Substituting wmpxmq in the expression of V pxq, we obtain

V pxq �
M̧

m�1

γm � Vmpxmq

γm � Vmpxmq

The bounds of V pxq will be derived considering that

a) θpsq � γs
γ�s defined in r0, γq is a K-function and θpsq ¥ s

b) βp|x1|q � βp|x2|q � ...� βp|xM |q
¥ βpp|x1|� |x2|� ...� |xM |q{2M q
� σ1p|x1|� |x2|� ...� |xM |q ¥ σ1p|x|q

c) θ � βf p|xm|q � σp|xm|q

d)
°
m σp|xm|q ¤Mσp|x|q � σ2p|x|q, since |xm| ¤ |x|

where θ, β, βf , σ, σ1 and σ2 are K-functions.
Based on properties a) and b), and knowing that Vmpxmq is

greater than or equal to x1mQmxm, we obtain

V pxq ¥
¸
m

x1mQmxm ¥ q
¸
m

|xm|
2 ¥ σ1p|x|q

for all x P XS � tx � px1, . . . , xM q | γm�Vmpxmq ¡ 0,m � 1, . . . ,Mu.
It can be shown that Vmpxmq ¤ Vf,mpxmq when x P Ω (see Proposition
5.5) and so, in virtue of c), d) and Vf pxmq ¤ βf p|xm|q, we have that

V pxq ¤
¸
m

θpVf pxmqq ¤
¸
m

θpβf p|xm|q �
¸
m

σp|xm|q ¤ σ2p|x|q

for all x P Ω.
In conclusion,

V pxq ¥ σ1p|x|q, @x P XS (5.7a)
V pxq ¤ σ2p|x|q, @x P Ω (5.7b)

The main result then follows:

Theorem 5.4. The optimal satisficing MPC ( rP SMPC) with contraction
ρ�m � Vmpxmq is asymptotically stabilizing if γm is constant, for all m.
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Proof. Considering that initially Vmpxmq ¤ γm, then, because Vmpx�mq ¤
Vmpxmq (condition C.2) and γ�m � γm, we have that Vmpx�mq ¤ γ�m and
the SMPC is always feasible.

The cost increment is given by:

∆V pxq � V px�q � V pxq

�
M̧

m�1
wmpx

�
mqVmpx

�
mq �

M̧

m�1
wmpxmqVmpxmq

From optimality we have V px�q ¤ V px�, pu�q and, then
∆V pxq ¤

M̧

m�1
wmpx

�
mqVmpx

�
m, pu�q � M̧

m�1
wmpxmqVmpxmq

If
wmpx

�
mq ¤ wmpxmq

then

∆V pxq ¤
M̧

m�1
wmpxmqrVmpx

�
m, pu�q � Vmpxmqs (5.8)

that, according to Lemma 5.1, results in

∆V pxq ¤ �
M̧

m�1
wmpxmq`mpxm, κmq

In other words, it is sufficient for cost decreasing that wmpxmq is not
increasing for all m PM. Indeed, from Vmpx

�
mq ¤ Vmpxmq (condition

C.2) and γ�m � γm we have that

γ�m � Vmpx
�
mq ¥ γm � Vmpxmq

that, from the definition of wmpxmq, results in wmpx�mq ¤ wmpxmq.
The negative increment of the optimal cost together with Lemma

5.3 characterize the optimal cost V pxq as a control Lyapunov function
and prove that the dynamic system is asymptotically stabilized by the
optimal solution of the distributed SMPC.

Remark 5.1. In Theorem 5.4, the maximal satisficing cost γm was
required to be constant. For the majority of applications, this limitation
seems reasonable.
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5.1.1 Distributed Solution

The distributed solution shown in Section 4.2.3 shall be modified
to include the warm-start and the stabilizing constraints.

The stabilizing distributed problems are

rP SMPC
m px,u mq :

$&% min
um

°
jPM

�γj � logpγj � Vjpxj ,uqq

subject to um P rDmpx,u mq
where u m denotes the action profile of all the other controllers but
controller Cm, and rDmpx,u mq is the projection of rDpxq over the space
spanned by um with u m fixed. The profiles u m are constants in
Problem rP SMPC

m as well as the actual states.
Algorithm 1, described in Section 4.2.3, shall be modified to use

the warm-start pu� � pu: as an initial solution for the next iteration as
shown in Algorithm 3.

Algorithm 3: Outer loop modified for using the warm-start
input: a strictly feasible us, initial εp0q, decrease rate µ   1,

number of constraints r, and tolerance τ ¡ 0
initialize: p :� �1;
repeat

p :� p� 1;
centering step: obtain uppq � pu1, . . . ,uM q by

distributively solving a series of
problems tPmpεppq, x,u mqumPM
starting from us (see Algorithm 2);

if rεppq ¡ τ then
us :� pu�, obtained from uppq;
εpp�1q :� µεppq;

until rεppq ¤ τ ;
output: uppq

Remark 5.2. The recursive feasibility of the SMPC (Lemma 5.2) has
an interesting consequence: when the first solution is feasible (by ne-
gotiation or not), all other solutions will be feasible. Then, no further
negotiation will be necessary, unless the control loses robustness due to
measurements and model errors.
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5.2 WHEN ANY SATISFICING SOLUTION IS STABILIZING

In the following it will be shown a stabilizing formulation that
guarantee stability based in a feasibility problem, without a specified
objective. By proving that any feasible solution of Problem (5.9) below
is asymptotically stabilizing, then it is established that any satisficing
scheme is stabilizing.

The stabilizing satisficing problem is defined as

P
S
pxq :

#
find any u P Dpxq
such that: Vmpxm,uq ¤ γm, @m PM

(5.9)

where Vmpxm,uq is given by Equation (5.3) and the set Dpxq is given
by:

Dpxq � tu | u P U , x P X , stability constraints C’.1, C’.2 and C’.3u

with the following stabilizing constraints added to the basic formula-
tion:

xpNq P Ω (C’.1)
Vmpxm,uq ¤ ρm, @m PM (C’.2)
Vmpxm,uq ¤ Vf,mpxmq, @x P Ω, @m PM (C’.3)

The maximal satisficing cost γm is a design parameter that must agree
with the law

γ�m ¥ γm � `pxm, umq (5.10)

One strategy is, for example, to design γm fixed, that is, γ�m � γm for
all m.

The formulation includes a contractive law, in our case chosen
to be, among other possibilities2,

ρ�m � Vmpx
�
m, pu�q (5.11)

where the next time warm-start pu� is based in the last known feasible

2Other contractive laws may be used. For example, we may have

ρ�m � ρm � µm � `mpxm, κmq, µm P p0, 1s

such that the evolution of Vmpxm,uq is bounded above by a decreasing value.
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solution u � pu1, . . . ,uM q, according to the following rule:

pu� � ppu�1 , . . . , pu�m, . . . , pu�M q
pu�m � pump1q, . . . , umpN � 1q, υmq,

and υm satisfies Assumption 5.1.
We want to prove, under Assumption 5.1 and constraints C’.1,

C’.2 and C’.3, that the control action κ � up0q obtained from any
constrained satisficing profile

u P SDpxq � tu | Vmpxm,uq ¤ γm, @m PMu XDpxq,

solution of Problem (5.9), asymptotically stabilizes the corresponding
system.

Problem (5.9) is a feasibility problem, without a specified objec-
tive. This problem is the basis for other schemes where an objective
function is included. By proving that any feasible solution of Problem
(5.9) is asymptotically stabilizing, then it is established that any satis-
ficing scheme is stabilizing, including the satisficing MPC described in
Section 4.2 or, for example, the scheme described in Appendix A.

Due to the lack of a global objective function, the global cost
V px,uq, defined below, will be our candidate Lyapunov function:

V px,uq �
M̧

m�1
Vmpxm,uq

�
N�1̧

k�0
`pxpkq, upkqq � V f pxpNqq

(5.12)

where

V f pxq �
M̧

m�1
Vf,mpxmq

`px, uq �
M̧

m�1
`mpxm, umq

5.2.1 Stabilizing Conditions

Condition C’.1 establishes Ω as a terminal constraint, and it
is fundamental to guarantee that the MPC will be always feasible as
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shown by Mayne et al. (2000) and Limón (2004).
Condition C’.2 is used to impose convergence by associating ρm

to a contractive law. The law (5.11) establishes that the cost in the
next state must be better than the cost obtained with the warm-start,
based in the last known solution.

Condition C’.3 is used to guarantee the stability of the origin. It
says that when Vf,mpxmq Ñ 0 then Vmpxm,uq Ñ 0. In other words,
when |xm|Ñ 0 for all m, then |u|Ñ 0.

This condition is always fulfilled by any action ϑ that respects
Assumption 5.1 as it can be seen following (PANNOCCHIA et al., 2011,
Proposition 9), repeated here:

Proposition 5.5. Condition C’.3 is always fulfilled by any action ϑ
that respects Assumption 5.1, for all x � px1, . . . , xM q P Ω.

Proof. Pannocchia et al. (2011): Consider any x P Ω, define xp0q � x
and choose any ϑp0q � pυ1p0q, . . . , υM p0qq satisfying Assumption 5.1.
We thus obtain Vf,mpxmp1qq � `mpxmp0q, υmp0qq ¤ Vf,mpxmp0qq. Be-
cause xp1q P Ω, we can choose ϑp1q satisfying Assumption 5.1 to obtain
Vf,mpxmp2qq � `mpxmp1q, υmp1qq � `mpxmp0q, υmp0qq ¤ Vf,mpxmp1qq �
`mpxmp0q, υmp0qq ¤ Vf,mpxmp0qq. Continuing in this fashion for k �
2, 3, . . . , N � 1, and defining

vm � pυmp0q, υmp1q, . . . , υmpN � 1qq

and
v � pv1, . . . ,vM q

we obtain Vmpxm,vq ¤ Vf,mpxmq.

An alternative condition is to use the modified condition C”.3
below:

Vmpxm,uq ¤ Vmpxm,vq, @x P Ω (C”.3)

for all m, where x � px1, . . . , xM q P Ω and v � pv1, . . . ,vM q is defined
in Proposition 5.5. Together with C’.2, this condition results that the
solution u, when x P Ω, is such that

Vmpxm,uq ¤ minpVmpxm,vq, ρmq

If condition C’.3 was changed to C”.3, it means that the satisficing
controllers will not perform less than the performance obtained by the
terminal profile v, in Ω (LIMóN et al., 2006).
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5.2.2 Stability Proof

To prove stability, it must be shown that

• the satisficing problem P
S (5.9) is always feasible (recursive fea-

sibility);

• that the states converge to the origin when u P SDpxq and κ �
up0q is the control action applied by the SMPC (convergence);

• and that the origin is stable when u P SDpxq (stability).

From the warm-start it can be derived some useful results:

Lemma 5.6. The local costs Vmpxm,uq are decreasing in a rate given
by

Vmpx
�
m,u�q � Vmpxm,uq ¤ �`mpxm, κmq (5.13)

where κm � ump0q is the control action of controller Cm.

Proof. The increment of the local costs are given by

∆Vmpxm,uq � Vmpx
�
m,u�q � Vmpxm,uq

¤ Vmpx
�
m, pu�q � Vmpxm,uq

� �`mpxm, κmq � T

(5.14)

where the inequality came from constraint C’.2 and contraction law
(5.11). The term T , after some eliminations, is equal to

T � `mpxmpNq, υmq � Vf,mpxmpN � 1qq � Vf,mpxmpNqq

which is less than or equal to zero due to Assumption 5.1 and constraint
C’.1. It results that

Vmpx
�
m,u�q � Vmpxm,uq ¤ �`mpxm, κmq

Corollary 5.7. The global cost V px,uq is decreasing in a rate given
by

V px�,u�q � V px,uq ¤ �`px, κq (5.15)

where κ � pκ1, . . . , κM q is the control action of controllers Cm, m PM.

Proof. The result comes directly from Lemma 5.6.
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Lemma 5.8. (Recursive feasibility of the warm-start) The next time
warm-start pu� � ppu�1 , . . . , pu�M q
is feasible for Problem P

S
pxq.

Proof. By construction, we have that pu� P U . We also have that
the resulting trajectory x� � pxp2q, . . . , xpN � 1qq has its first ele-
ments pxp2q, . . . , xpNqq feasible with xpNq P Ω, due to condition C’.1.
Because Assumption 5.1 establishes that Ω is invariant under action
υ � pυ1, . . . , υM q, the tail of all the trajectories remains in Ω, that
is, xpN � 1q P Ω � X. Then, we have pu� P U , x� P X , xpN �
1q P Ω. Condition C’.3 is fulfilled because of Proposition 5.5. Con-
dition C’.2 is fulfilled when u� � pu�. Then, pu� P Dpx�q. From
(5.14) and condition (5.10), the warm-start is also satisficing since
Vmpx

�
m, pu�q ¤ Vmpxm,uq � `pxm, κmq ¤ γ�m. Altogether, the warm-

start pu� P Spx�q XDpx�q is feasible.
The main result follows below.

Theorem 5.9. Any feasible solution of the satisficing problem P
S (5.9)

is asymptotically stabilizing.

Proof. The problem P
S is well defined since it is always feasible ac-

cording to Lemma 5.8. It remains to prove convergence and stability.
Because V px,uq is positive definite and strictly decreasing (Corol-

lary 5.7), it results that V px,uq Ñ V p0,0q and the convergence of x to
the origin is proved.

Eventually, the trajectory of the states enters the set Ω where
stability is proven in the following. Because x1Qx ¤ V px,uq ¤ V f pxq
in Ω, there exist K8-functions σ1pxq and σ2pxq such that

σ1p|x|q ¤ V px,uq ¤ V f pxq ¤ σ2p|x|q, @x P Ω (5.16)

Let us take δ � σ�1
2 pσ1pεqq. Then, for all |xp0q| ¤ δ in Ω, we

have

V pxp0q,uq ¤ V f pxp0qq ¤ σ2p|xp0q|q
¤ σ2pδq � σ2pσ

�1
2 pσ1pεqqq

� σ1pεq
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and, from convergence and (5.16),

σ1p|xpkq|q ¤ V pxpkq,uq ¤ V pxp0q,uq ¤ σ1pεq

ñ σ1p|xpkq|q ¤ σ1pεq

ñ |xpkq| ¤ ε

and stability is proven, according to Definition 5.1.
Then, because convergent and stabilizing, any feasible solution

of the satisficing problem (5.9) is asymptotically stabilizing.

It was shown that any satisficing problem that includes the sta-
bility constraints is stabilizing.



72



73

6 EXAMPLES

The following three examples extracted from the literature on
distributed control are used to test the concepts and methods developed
in this thesis.

The experimental analysis aims to assess the performance of the
distributed satisficing MPC by comparing it to a centralized MPC.
The formulation with guarantee of stability developed in Section 5.1 is
applied only in the third example, which is an unstable system. The
first two examples are stable systems and no stability conditions where
imposed.

6.1 EXAMPLE 1: URBAN TRAFFIC NETWORK

In this section the SMPC is applied to an urban traffic network
problem, as done in (LIMA; CAMPONOGARA, 2012). The urban traffic
network problem is to decide times of green to each traffic light that
control the access of vehicles to a specific junction.

The simple network illustrated in Figure 10 represents an urban
street, with a link e and two junctions A and B. An expression in
discrete time to represent the dynamics of link e is given by (GAZIS;
POTTS, 1963):

xepk � 1q � xepkq �∆T rqepkq � depkq � pepkq � sepkqs, (6.1)

where xe represents the number of vehicles in link e, the value qe is
the flow coming in and pe the flow leaving link e during one period,
k is a discrete time index and ∆T is the discretization time (sample
time). The values de and se represent the input and output distur-
bances (parking), respectively.

Figure 11 shows an example of network with 8 junctions where
link e is characterized by the two junctions involved, the one that dis-
charge its queues and the other affected by this discharge. The queue
in the link connecting junction i to junction m, for example, is repre-
sented by xm,i and controlled by a traffic light which time of green is
given by um,i. The boundary of our system was called H so xm,H is
the queue entering junction m from outside the system.

The system in Figure 11 can be readily represented as a directed
graph G � tM, Eu, where nodes inM are junctions and links in E are
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A B

Figure 10 – Example of an urban street.

arcs connecting nodes as in Figure 12. The interaction between nodes
can be generalized assuming a generic node m and a set of input nodes
Ipmq � ti1, ..., iIm

u and output nodes Opmq � tj1, ..., jOm
u 1 as in

Figure 13. For example, node 3 has as input nodes the set Ip3q � t1, 4u
and as output nodes the set Op3q � t2u. We classify the input nodes in
internal and external nodes. Internal nodes are the ones under control,
whereas external nodes are not controlled and represent the arrival of
vehicles willing to get into the network. For example, Ip7q � IIp7q Y
IEp7q where IIp7q � t6u is internal and IEp7q � tH1u is external.

1 2

3

45678

Figure 11 – Example of a traffic network. The queue xi,j is the queue
from junction j to junction i.

The mathematical model chosen to describe the dynamics of
the vehicle queues is based in Equation (6.1) and known as store-and-
forward (GAZIS; POTTS, 1963). There, the evolution of queues depends
on the initial queues, on physical characteristics of the network and on

1The cardinality of each set Ipmq and Opmq depends on m, but this fact is left
implicit to simplify notation.
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6

21

7 4

3

58

Figure 12 – Graph for the traffic network’s example.

...

...

Figure 13 – Illustration of input and output nodes of a node m.

the time of green of each traffic lights. Not considering the disturbances
for simplicity, the dynamic model that represents any junction m is
given by:#

xmpt� 1q � Amxmpkq �Bm,mumpkq �
°
iPIpmqBm,iuipkq

ympkq � xmpkq
(6.2)

where vector xmpkq � pxm,i1pkq, ..., xm,iIm
pkqq has the queues of junc-

tionm influenced by the green time signals uipkq � pui,i1pkq, .., ui,iIi
pkqq,

and vector umpkq � pum,i1pkq, .., um,iIm
pkqq consists of the green times

of the traffic lights that compose junction m at instant k.
In this model, matrix Am is the identity, matrix Bm,m expresses

the discharge of queues xm as a function of green times um, and matri-
ces Bm,i, i P Ipmq, represent how queues xm build up as queues xi are
emptied by ui green times. Matrices Bm,i, i P Ipmq Y tmu, are func-
tions of the physical characteristics of the traffic network. For example,
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consider node 3 for which matrices are:

B3,3 � ∆T3

�
�
S3,1
C3

0
0 �

S3,4
C3

�

B3,1 � ∆T3

�
ρ3,1,H1 �

S1,H1
C1

ρ3,1,H2 �
S1,H2
C1

ρ3,1,H3 �
S1,H3
C1

0 0 0

�
B3,4 � ∆T3

� 0 0
ρ3,4,H1 �

S4,H1
C4

ρ3,4,H2 �
S4,H2
C4

�
where ∆T3 is the sample time (in seconds), Si,j is the saturation flow of
link xi,j (in vehicles per second), ρm,i,j is the rate at which vehicles from
link xi,j enter node m, and Ci (in seconds) is the cycle time of junction
i as explained below. Notice that the entries in B3,3 are negative,
indicating queue discharge as a function of green time signals u3. The
network physical parameters, saturation S in vehicles per minute and
conversion rate ρ in percentage, are presented in Table 1. In Table 1 it
is also informed the capacity capi,j of the link xi,j that is the maximum
number of vehicles that the link can support. The capacity is assessed
based on the dimensions of the link.

The concept of cycle time is illustrated in Figure 14. Each cycle
is composed by stages meaning a particular traffic lights configuration.
In the example of Figure 14, after stage 3, stage 1 repeats starting
another cycle. From one stage to another there is a lost time added to
avoid interference between stages. The sum of all green times plus lost
times in a junction gives the cycle time for that junction.

lost time

cycle time

stage 1 stage 2 stage 3

green

green

green

Figure 14 – Illustration of the cycle time.

Three constraints are imposed to the junctions:
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Table 1 – Physical parameters

Linki,j
capi,j Si,j

conversion rate ρm,i,jp%q
m �

(veh) (veh/min) H 1 2 3 4 5 6 7 8
x1,H1 18 5 25 7 8 60
x1,H2 120 30 70 7 8 15
x1,H3 60 15 25 20 20 35
x2,1 120 20
x2,3 150 25
x3,1 30 5 60 40
x3,4 150 25 20 80
x4,H1 180 30 70 30
x4,H2 90 15 70 30
x5,1 30 5 40 60
x5,4 42 7 10 90
x6,1 54 9 10 90
x6,5 42 7 10 90
x7,6 42 7 10 90
x7,H1 60 10 50 50
x8,7 42 7 100
x8,H1 30 5 100

Constraint 1 The sum of the green times um,i and lost time lm,i must
add up to the cycle time Cm of the junction m,¸

iPIpmq

pum,i � lm,iq � Cm, @m PM

or, in a compact form

11 � um ¤ cm

with 1 being the vector of ones of adequate size and cm a constant
that incorporates the lost times.

Constraint 2 Green times can not be negative,

um ¥ 0, @m PM

Constraint 3 States are always nonnegative,

xm ¥ 0, @m PM
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This constraint imposes couplings between inputs, but it does not
add more arcs to the graph of the network.

For the urban traffic application, the controllers’ cost will be
defined as

Vmpxm,uq �
N�1̧

k�0
xmpk � 1q1Qmxmpk � 1q � αm � umpkq

1Rmumpkq,

where
Rm � 0

meaning that green times should not be penalized, and

Qm � diagp1{capm,i : i P Ipmqq

is diagonal matrix with its elements equal to the inverse of the capacity
of each link that approaches junction m, as proposed in (DIAKAKI et
al., 2002).

The satisficing controllers solve the constrained analytic center
of the set of problems tP SMPC

m umPM presented in Equation (4.7), and a
centralized controller solves PC : minu

°M
m�1 wmVmpxm,uq with wm �

1 fixed for all the controllers, while respecting the constraints.

6.1.1 Maximal Satisficing Costs

The maximal satisficing cost is define as

γm � Npxs1
mQmx

s
mq (6.3)

for all m, where the satisficing queues

xs
m � pxs

m,i, @i P Ipmqq

is a vector with the maximal but still satisfactory queues of junction
m, specified by the user.

The value of the satisficing queues used to calculate γm will limit
the average number of vehicles in node m as shown in Figure 15.

The idea is to maintain the average number of vehicles below the
maximal satisficing queues.

Remark 6.1. Observe that the maximal satisficing cost γm is defined
based on physical values: prediction horizon N , capacity capm,i of the



79

Figure 15 – Because Vmpxm,uq ¤ γm, the satisficing queues used to
calculate γm will limit the average number of vehicles xm in node m.

links and maximal satisficing queues xs
m.

6.1.2 Experimental Setup

There is one controller to each junction responsible for signaling
that junction. The controllers objective is to adjust the time of green of
the traffic lights that compose their junctions in order to maintain their
queues and the queues of the affected controllers below their satisficing
queues. The controllers were divided in three groups of non-neighboring
controllers, K1 � t1, 8u, K2 � t2, 4, 6u and K3 � t3, 5, 7u, represented
in Figure 16.

6

21

7 4

3

58

Figure 16 – Three groups of non-neighboring controllers, K1 � t1, 8u,
K2 � t2, 4, 6u and K3 � t3, 5, 7u.

There are four parameters that must be defined by the user, with
the advantage that all of them have a physical meaning. They are:

P.1) The cycle time Cm. The cycle time was chosen equal to 2 minutes
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(120 seconds).

P.2) The prediction horizon N . The prediction horizon is equal to 5
sample times, for all controllers.

P.3) The lost times (not considered in this simulation).

P.4) The satisficing queues xs
m: an average queue which is acceptable in

each link of junctionm. In this simulation, the maximal satisficing
queues were defined as two times the maximal discharge obtained
by the nominal green times

unom
1 � p40, 40, 40q, unom

2..8 � p60, 60q

that is,
xs
m � �2Bm,m � unom

m

for all m PM. The result is in Table 2.

The remaining parameters were set according to the following
rules:

R.1) ∆Tm � Cm: the sample time ∆Tm was made equal to the cycle
time for all controllers.

R.2) Matrix Rm � 0: in our simulation traffic signaling does not incur
any cost. Green times should not be penalized.

R.3) Matrix Qm � diagp1{capm,i : i P Ipmqq: the matrix Qm was set
diagonal with its elements equal to the inverse of the capacity of
each link that approaches junction m, as proposed in (DIAKAKI
et al., 2002).

6.1.3 Negotiation Rule

With the original definition of γm (see Equation (6.3)), an ex-
cessive number of vehicles coming from outside can make impossible
for the system to maintain all the queues below the maximal satisficing
queues.

To avoid unfeasibility, a policy was designed to maintain the
excess of vehicles outside the system. This policy, known as a “gat-
ing effect” (DIAKAKI et al., 2002), was implemented by modifying the
original definition of γm by the rule R.4 below.
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R.4) γm � Npxs01
m Qmx

s0
mq, where

xs0
m � pxs0

m,i,@i P Ipmqq

xs0
m,i � maxpxs

m,i, xm,iq, @i P IEpmq

xs0
m,i � xs

m,i, @i P IIpmq

and Ipmq � IIpmq Y IEpmq is the internal and external input
nodes of node m.

This rule makes nodes 1, 4, 7 and 8 to tolerate external queues
greater than the satisficing, tolerating at least their actual number of
vehicles, whatever it is. Observe that because nodes 2, 3, 5 and 6 have
only internal input nodes, their maximal satisficing queues are not mod-
ified by rule R.4.

6.1.4 Experimental Analysis

The analysis of the satisficing controllers was made against a
centralized one in which weights were set equal to wm � 1

8 for all
m P M. Notice that the tuning of the centralized controller is based
on an ad hoc definition of weights.

This simulation considers the initial and satisficing queues given
in Table 2, as well as a constant arrival of vehicles in node 1 and 4 in
vehicles per cycle respectively.

Table 2 – Initial and satisfactory average queues

Controller Queues
arrivals initial, xmp0q satisficing, xs

m

C1: (5, 15, 10) (10, 50, 20) (6, 40, 20)
C2: (60, 20) (40, 50)
C3: (5, 35) (10, 50)
C4: (15, 15) (120, 30) (60, 30)
C5: (10, 20) (10, 14)
C6: (9, 20) (18, 14)
C7: (0,0) (15, 20) (14, 20)
C8: (0,0) (17, 9) (14, 10)

Figures 17 to 24 show the evolution in 10 cycles (20 minutes) of
the vehicle queues, the calculated green times, and the cost of the satis-
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ficing and centralized controllers, respectively. The maximal satisficing
costs, in dash-dot line, are defined only for the satisficing controllers
but are repeated in the centralized case for comparison. The bars show
the vector components stacked from below. For example, in Figure 17,
the components of the vector x1 � px1,H1, x1,H2, x1,H3q are in black,
gray and white respectively.

We can see in Figures 17 and 20 that the satisficing controllers C1
and C4 use less time of green than the centralized controller uses and,
consequently, they accumulate more queues. This is because controllers
C1 and C4 have a compromise with the satisfaction of the internal con-
trollers. The negotiation policy leads controllers C1 and C4 to adjust
their required levels of satisfaction (dash-dot line) to permit higher
costs (solid lines) and to accommodate more queues. Remember that
the negotiation policy maintains the specification of the internal nodes
and degrades only the nodes receiving vehicles from outside the system.
This compromise does not emerge easily in the centralized control due
to its ad hoc nature.

In Figures 21 and 22 we see that the discharge made by the cen-
tralized controller overcharges node 5 and node 6 making then unable
to maintain the sum of the corresponding queues below the maximal
satisfactory (horizontal line) even with the maximal of green (120 sec-
onds). The costs of nodes 5 and 6 are very above the maximal level
specified for controllers C5 and C6 (horizontal dash-dot line) indicating
their dissatisfaction in the centralized case. On the other hand, the
satisficing controllers are able to maintain their performances near the
specified.

Figure 25 shows the trajectories of each equivalent weights wmpxmq
of the SMPC, variable with time. In this figure, the weights are nor-
malized so that

°M
m�1 wmpxmq � 1. Figure 25 shows that controllers C5

and C6 gain more importance, while C1 and C4 have a lower importance.

6.1.5 Simulation Under Model Error

The satisficing controllers also seem to present a better behavior
in the presence of model error. Figures 26 and 27 show the behav-
ior of junction 5 and 6 when the rates of flow coming from junction
4 are greater than what is expected by the nominal model. In this
case, instead of 30%, the flow from junction 4 to junction 5 is 70% of
the junction total flow. It can be seen that the satisficing controllers
maintain the queues in a satisfactory level while the queues build up
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Figure 17 – Queues, control signals and costs in junction 1.
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Figure 18 – Queues, control signals and costs in junction 2.
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Figure 19 – Queues, control signals and costs in junction 3.
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Figure 20 – Queues, control signals and costs in junction 4.
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Figure 21 – Queues, control signals and costs in junction 5.
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Figure 22 – Queues, control signals and costs in junction 6.
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Figure 23 – Queues, control signals and costs in junction 7.
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Figure 24 – Queues, control signals and costs in junction 8.
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Table 3 – Mean time to solution

time in seconds
phase I phase II total

serial satisficing tP SMPC
m umPM 32 32 64

serial/paralell satisficing tP SMPC
m umPM 12 12 24

centralized satisficing P SMPC 8
centralized optimization PC 0.8

even more under centralized control.

6.1.6 Numerical Analysis

The problems were simulated in Matlab and solved using CVX
(GRANT; BOYD, 2011), a package for specifying and solving convex
programs.

Table 3 shows the mean time to produce a solution at each cy-
cle, considering the 10 cycles of the simulation. The mean time for
convergence of the distributed satisficing controllers if iterating in se-
ries is shown in the first row. The second row considers the possibility
of parallelism within groups2. The third row is the average time for
solving the satisficing MPC by a centralized algorithm. The fourth row
brings the mean time for solving the classical centralized optimization
problem.

It can be seen that distributively solving the satisfacing problem
takes more time to converge than in the centralized case, although some
parallelism can greatly improve the time to convergence. Possibly, for
large and weakly interconnected problems, more controllers can iterate
in parallel in few groups and approach the time for convergence of the
centralized controller. Nevertheless, the time spent by the satisficing
controllers to iteratively produce an optimal solution was, in the worst
case, less than the cycle time. The time to solution can be further
reduced if we are only interested in a good enough solution. In such
case, phase II is not necessary.

2Calculated multiplying the number of groups that in our case is three by the
average time for convergence of a controller, that is the time for convergence of the
group itself.
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Figure 26 – Junction 5 under model error.
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Figure 27 – Junction 6 under model error.
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6.2 EXAMPLE 2: TWO REACTORS AND ONE SEPARATOR PRO-
CESS

The example represented in Figure 28, extracted from (STEWART
et al., 2010; VENKAT et al., 2006) and (LIU et al., 2009), consists of two
continuously stirred tank reactors (CSTRs) and a flash tank separator.

Figure 28 – Two reactors and one separator process.

Reactors 1 and 2 are fed with fresh reactant A by streams F10
and F20, respectively. The reactant A is then converted to the desired
product B and to an undesired side-product C. The effluent of reactor
2 feeds the separator tank. In the separator, the bottom product is
removed and the overhead vapor is condensed and recycled to Reactor
1. Part of the overhead vapor is purged before being recycled.

The manipulated variables are the amount of heat Q1, Q2 and
Q3 supplied to tanks 1, 2 and 3, respectively, and the feed and flesh
flow F10 and F20, as well as the recycle Fr. Flows F1, F2 and F3 are
consequence of the levels of liquid in the respective tank. The controlled
variables, on the other hand, are concentrations χA1, χB1, χA2, χB2
and χA3, χB3, as well as temperatures T1, T2 and T3, and tank levels
H1, H2 and H3.

These variables follow the dynamic nonlinear equations (6.4).
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f1 : H1

dt
�

1
ρA1

pF10 � Fr � F1q

f2 : dχA1

dt
�

1
ρA1H1

pF10χA0 � FrχAr � F1χA1q � kA1χA1

f3 : dχB1

dt
�

1
ρA1H1

pFrχBr � F1χB1q � kA1χA1 � kB1χB1

f4 : dT1

dt
�

1
ρA1H1

pF10T0 � FrTr � F1T1q�

�
1
Cp

pkA1χA1∆HA � kB1χB1∆HBq �
Q1

ρA1CpH1

f5 : H2

dt
�

1
ρA2

pF20 � F1 � F2q

f6 : dχA2

dt
�

1
ρA2H2

pF20χA0 � F1χA1 � F2χA2q � kA2χA2

f7 : dχB2

dt
�

1
ρA2H2

pF1χB1 � F2χB2q � kA2χA2 � kB2χB2

f8 : dT2

dt
�

1
ρA2H2

pF20T0 � F1T1 � F2T2q�

�
1
Cp

pkA2χA2∆HA � kB2χB2∆HBq �
Q2

ρA2CpH2

f9 : H3

dt
�

1
ρA3

pF2 � Fp � Fr � F3q

f10 : dχA3

dt
�

1
ρA3H3

pF2χA2 � pFp � FrqχAr � F3χA3q

f11 : dχB3

dt
�

1
ρA3H3

pF2χB2 � pFp � FrqχBr � F3χB3q

f12 : dT3

dt
�

1
ρA3H3

pF2T2 � pFp � FrqTr � F3T3q �
Q3

ρA3CpH3

(6.4)

where, for all i=1,. . . ,3,

Fi � kfiHi (6.5)

kAi � kA expp� EA
RTi

q (6.6)

kBi � kB expp� EB
RTi

q (6.7)
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and the purge flow is
Fp � 0.01Fr (6.8)

The concentrations of the side-product C and recycle concentra-
tions are given by equations (6.9) and (6.10), respectively.

χC1 � 1� χA1 � χB1

χC2 � 1� χA2 � χB2

χC3 � 1� χA3 � χB3

(6.9)

χAr �
αAχA3

αAχA3 � αBχB3 � αCχC3

χBr �
αBχB3

αAχA3 � αBχB3 � αCχC3

χCr �
αCχC3

αAχA3 � αBχB3 � αCχC3

(6.10)

The remaining parameters of this problem are presented in Table
4, and the constraints in Table 5.

A1, A2 area of tanks 1 and 2 3.0 m2

A3 area of tank 2 1 m2

EA activation energy of reaction A -831.4 kJ{kmol
EB activation energy of reaction B -1247.1 kJ{kmol
kA constant for reaction AÑB 0.02 1{s
kA constant for reaction BÑC 0.018 1{s

∆H1 Heat of reaction AÑB -40 kJ{kg
∆H2 Heat of reaction BÑC -50 kJ{kg
αA relative volatility of A 3.5
αB relative volatility of B 1.1
αC relative volatility of C 0.5
Cp heat capacity 25 kJ{kg �K
R gas constant 8.314 kJ{kmol �K
ρ solution density 0.15 kg{m3

T0 feed flow temperature 313 K
kfi flow coefficient, i � 1, 2, 3 2.5 kg/m s
χA0 concentration of A in the feed flow 1

Table 4 – Parameters of the problem.

Observe that system (6.4) is coupled by the states, and not only
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variable lower bound upper bound
F10 0 10
Q1 0 50
F20 0 10
Q2 0 50
Fr 0 75
Q3 0 50

Table 5 – System constraints.

by the inputs. The system must be linearized and transformed into an
equivalent system coupled only by the inputs. This process is described
below.

1. The system is linearized by calculating the Jacobian of the dy-
namic equations with respect to states

z � pH1, χA1, χB1, T1, H2, χA2, χB2, T2, H3, χA3, χB3, T3q

and inputs
v � pF10,Q1, F20,Q2, Fr,Q3q

around the steady-state operation point pz�, v�q given by Table
6. It results in matrices

Ac � JzpF pz, vqq|pz�,v�q

Bc � JvpF pz, vqq|pz�,v�q

where F pz, vq � pf1, . . . , f12q is the vector of equations (6.4) and
Jzpq|pz�,v�q and Jvpq|pz�,v�q are the Jacobians with respect to z
and v, respectively, valued in pz�, v�q (command jacobian in
Matlab).

In its discrete form, the linearized system is

∆z� � Ad∆z �Bdu

y � Cd∆z
(6.11)
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with

∆z � pH1 �H�1 , χA1 � χ�A1, χB1 � χ�B1, T1 � T�1 ,

H2 �H�2 , χA2 � χ�A2, χB2 � χ�B2, T2 � T�2 ,

H3 �H�3 , χA3 � χ�A3, χB3 � χ�B3, T3 � T�3 q

and

u � p F10�F
�
10, Q1�Q�1 , F20�F

�
20, Q2�Q�2 , Fr�F�r , Q3�Q�3 q

with Cd � I being the identity, so that y � ∆z. Matrices Ad,
Bd and Cd where obtained using the Matlab command c2d with
sample time ∆T � 0.1s.

H�1 � 29.8 H�2 � 30 H�3 � 3.27 m
χ�A1 � 0.542 χ�A2 � 0.503 χ�A3 � 0.238
χ�B1 � 0.393 χ�B2 � 0.421 χ�B3 � 0.570
T�1 � 315 T�2 � 315 T�3 � 315 K
Q�1 � 10 Q�2 � 10 Q�3 � 10 kJ/s
F�10 � 8.33 F�20 � 0.5 F�r � 66.2 kg/s

Table 6 – Steady-state operation point

2. To separate system (6.11) into subsystems, let us allocate one
controller to each tank so that there will be M � 3 controllers
and M � t1, 2, 3u subsystems for which the controlled variables
are

ym � pym,1, ym,2, ym,3, ym,4q

� pHm �H�m, χAm � χ�Am, χBm � χ�Bm, Tm � T�mq

for m � 1, 2, 3, and which manipulated variables are

u1 � pu1,1, u1,2q

� pF10 � F�10, Q1 �Q�1 q
u2 � pu2,1, u2,2q

� pF20 � F�20, Q2 �Q�2 q
u3 � pu3,1, u3,2q

� pFr � F�r , Q3 �Q�3 q
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To model the subsystems in the form

x�m � Amxm �
3̧

i�1
Bm,iui

ym � Cmxm

for m � 1, . . . , 3, suitable to the theory presented in this thesis,
one must obtain all sub-models Sm,i from the triple pAd, Bd

i , C
d
mq

and associate then as in Figure 4.
The resulting subsystems are then transformed to their minimal
form eliminating uncontrolled and unobserved modes (command
minreal in Matlab).

This example shows how dynamic equations coupled by states
can be transformed into dynamic equations coupled only by the inputs.
The corresponding graph is fully coupled and shown in Figure 29. The
states obtained by this procedure lose their physical meaning.

Figure 29 – Graph for the two reactors and one separator process. The
system is fully coupled through the inputs.

The controllers’ cost was defined as

Vmpxm,uq �
N�1̧

k�0
xmpk � 1q1Qmxmpk � 1q � umpkq

1Rmumpkq,

where N � 5,
Rm � 0.01 � I

and
Qm � C 1mQymCm � 0.001 � I
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with
Qym � diagp1, 0, 0, 0.1q, for m � 1, 2

Qym � diagp1, 0, 103, 0q, for m � 3

The satisficing controllers solve the constrained analytic center
of the set of problems tP SMPC

m umPM presented in Equation (4.7), and a
centralized controller solves PC : minu

°M
m�1 wmVmpxm,uq with wm �

1
3 fixed for all the controllers, while respecting the constraints.

6.2.1 Maximal Satisficing Costs

The maximal satisficing cost γm was adjusted considering that
a control system is satisfactory, for example, if, after a disturbance, it
allows a deviation from the steady-state of 20% in the reactors and 5%
in the separator, repeated over the prediction horizon. The idea is to
allow the reactors to absorb more variations and maintain the separator
more steady to guarantee the quality of the final product. Then

γm � N � ys
m
1Qymy

s
m

where the maximal satisficing deviation ys
m is

ys
1 � 0.20 � z�1 , ys

2 � 0.20 � z�2 , ys
3 � 0.05 � z�3

It results, approximately, in the following satisficing costs:

γ1 � 2200

γ2 � 2200

γ3 � 5

6.2.2 Simulation Results

It was simulated an initial condition where a disturbance caused
the level of reactor 2 to be 40% greater than the steady-state. The
SMPC is compared with an optimal MPC were the the three costs are
made equally important with w1 � w2 � w3 �

1
3 . In the SMPC, on

the other hand, the equivalent weights wmpxmq of the resulting closed
loop system are variable with time, as can be seen in Figure 30. In this
figure, the weights are normalized so that

°M
m�1 wmpxmq � 1.
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Observe that, although the maximal satisficing costs γm are
fixed, the equivalent weights wmpxmq are variable and converge to 1

3
when the controllers’ costs approach zero. Observe also that the most
severe limit of the satisficing cost of controller C3 results in the greatest
equivalent weight.

The results are shown in Figures 31 to 33 and summarized in Ta-
ble 7 that shows the response’s cost of each controller in the simulation
time interval Tsim � 100, for a sample time of 0.1s, given by:

Jm �
Tsim�1¸
t�0

xmpt� 1q1Qmxmpt� 1q � umptq
1Rmumptq

for m � 1, . . . , 3, where t is the discretized time of simulation.
Notice that, the satisficing controller C2 is the only one that

has a wost performance if compared with the optimal MPC, mainly
because of a higher deviation of temperature shown in Figure 32. As
expected, the SMPC controller C3 performs much better due to the
higher importance devoted to it. The surprise is the good performance
of the SMPC controller C1 that has probably being benefited by the
higher stability in the separator.

Table 7 – Costs of the MPC (classical) and SMPC

Controllers J1 J2 J3 Total
MPC 85 616 51 752
SMPC 31 713 12 756

SMPC % -64 % +16 % -76 % +0.5 %

Table 7 also shows that the satisficing controllers have reduced
the cost of C1 in 64 % and C3 in 76 % with a increasing in the cost of
C2 in only 16 %.
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Figure 30 – Normalized equivalent weights of the SMPCs.
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6.3 EXAMPLE 3: THREE UNSTABLE SUBSYSTEMS

The following system, described in (VENKAT et al., 2006), consists
of three unstable subsystems S1 � pu1, y1q, S2 � pu2, y2q and S3 �
pu3, y3q, represented by transfer functions, such that��y1

y2
y3

�� �

��G1,1 0 G1,3
G2,1 G2,2 0

0 G3,2 G3,3

����u1
u2
u3

�� ,
which nominal models are

G1,1 �

�
s�0.75

ps�10qps�0.01q
0.5

ps�11qps�2.5q
0.32

ps�6.5qps�5.85q
1

ps�3.75qps�4.5q

�

G1,3 �

�
s�5.5

ps�2.5qps�3.2q
0.3

ps�11qps�27q

�

G2,1 �

�
s�0.3

ps�6.9qps�3.1q
0.31

ps�41qps�34q
�0.19

ps�16qps�5q
0.67ps�1q
ps�12qps�7q

�

G2,2 �

�
s�0.5

ps�20qps�25q
0.6

ps�14qps�15q
�0.33

ps�3.0qps�3.1q
s�1.5

ps�20.2qps�0.05q

�

G3,2 �
�

0.9
ps�17qps�10.8q

�0.45
ps�26qps�5.75q

�
G3,3 �

�
s�3

ps�12qps�0.01q

�
Observe that each subsystem has one unstable pole. The corresponding
inputs and outputs are

u1 � pu1,1, u1,2q, u2 � pu2,1, u2,2q, u3 � pu3,1q,

y1 � py1,1, y1,2q, y2 � py2,1, y2,2q, y3 � py3,1q

and the inputs are subject to the uncoupled constraints

}u1,1} ¤ 1, }u1,2} ¤ 0.15,

}u2,1} ¤ 1.5, }u2,2} ¤ 0.2

}u3,1} ¤ 0.75
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The subsystems must be transformed in their discrete minimal
state representation

x�m � Amxm �
3̧

i�1
Bm,iui

ym � Cmxm

for m � 1, . . . , 3, where matrices Am, Bm,i and Cm where obtained
with sample time ∆T � 1s. This is done transforming each transfer
function Gm,i in its discrete state space form (commands ss and c2d in
Matlab) and combining them as in Figure 4. The resulting subsystems
are then transformed to their minimal form eliminating uncontrolled
and unobserved modes (command minreal in Matlab).

Observe from the graph shown in Figure 34 that the subsystems
are not fully connected. Matrices B1,2, B2,3 and B3,1 are zero and there
are no further couplings induced by constraints.

Figure 34 – Graph for the three unstable subsystems. Subsystem 2 is
influenced by subsystem 1, and so on.

6.3.1 Controllers Setup

There is one controller to each subsystem m which manipulates
um in order to control ym. The controllers’ cost was defined as

Vmpxm,uq �
N�1̧

k�0
xmpk � 1q1Qmxmpk � 1q � umpkq

1Rmumpkq,
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where N � 25,
Rm � I

and
Qm � C 1mQymCm � 10�6 � I

with
Qym � 25 � I, for m � 1, 2

Qym � 1, for m � 3

and I is an identity matrix of proper dimension.
Assumption 5.1 is fulfilled by employing a terminal cost Vf,m � 0

and a terminal state constraint Ω � t0u, that forces the states to the
origin at the end of the prediction horizon and is invariant under control
ϑ � 0. Condition C.2 is that of Equation (5.4).

The maximal satisficing costs were set equal to

γ1 � γ2 � γ3 � 10

6.3.2 Simulation Results

The system was simulated starting from the initially perturbed
outputs y1,1 � �1 and y3,1 � 1. The results are compared with a
optimal MPC were the the three costs are made equally important
with w1 � w2 � w3 �

1
3 .

Figure 35 shows that, in the SMPC, the equivalent weights change
with time. Initially, controller C3 has the highest importance, fol-
lowed by C1 and C2, but they soon converge to the same importance
wmpxmq �

1
3 when the controllers’ costs approach zero. If we see the

evolution of the local costs in Figure 37, the small importance of con-
troller C2 is justified by its low cost compared to its maximal satisficing.

The result is summarized in Table 8 that shows the response’s
cost of each controller in the simulation time interval Tsim � 40, for a
sample time of 1s, given by:

Jm �
Tsim�1¸
t�0

xmpt� 1q1Qmxmpt� 1q � umptq
1Rmumptq

for m � 1, . . . , 3, where t is the discretized time of simulation. We
can see that both controller C1 and controller C2 contributed to make
controller C3 more satisfied. To understand Table 8, we must consider
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Figure 35 – Normalized equivalent weights of the SMPC.

the structure of the network (Figure 34), the interaction gains (make
s � 0 in the transfer functions)

GainpG2,1q �

�
�14 0.2

2 �8

�
� 10�3,

GainpG3,2q �
�
5 �3

�
� 10�3,

GainpG1,3q �

�
�70

1

�
� 10�3

as well as the set of resultant altruisms given in Figure 36. Observe
that C2 is highly altruistic to C3 and, allied to the relatively small gain
between them, results that controller C2 almost does not load controller
C3. On the other hand, C3 does load controller C1 because of the low
altruism and the high gain between them. It results that controller C3
has a better result. Considering controller C1, it receive a high load
from controller C3 but its effect on controller C2 is limited because of
the not so high gain between them.
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Figure 36 – Situational altruism.

Table 8 – Costs of the MPC (classical) and SMPC

Controllers J1 J2 J3 Total
MPC 3.76 0.0083 8.39 12.16
SMPC 5.17 0.0098 7.29 12.47

SMPC % +37.5 % +17.5 % -13.1 % +2.6 %
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Figure 37 – Evolution of the predicted local costs Vmpx,uq.
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Figure 38 – Variables of subsystem 1



106

0 10 20 30 40
−20

−15

−10

−5

0

5
x 10

−3

u
2
,1

time(s)

0 10 20 30 40
−2

−1

0

1

2

3

4

5
x 10

−3

u
2
,2

time(s)

0 10 20 30 40 50
−5

0

5

10

15
x 10

−3

y
2
,1

time(s)

0 10 20 30 40 50
−5

0

5

10

15

20
x 10

−4
y
2
,2

time(s)

 

 

SMPC
MPC

Figure 39 – Variables of subsystem 2
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7 CONCLUDING REMARKS

The definition of maximal satisficing costs allows the satisficing
controllers to coordinate themselves to a solution that belongs to the
so called satisficing set. In the satisficing set, any solution is satisfac-
tory and sufficient (satisficing = satisfy + suffice) for all controllers. In
particular, the solution obtained by the SMPC is the constrained ana-
lytic center of the satisficing set that, besides satisficing, is also Pareto
optimal.

To obtain a Pareto-optimal solution, the classical cooperative
MPC implements a categorical altruism imposed by a fixed global cost
shared by all the controllers. Instead, this thesis proposes a situational
altruism where a global cost, not imposed nor fixed, emerges from the
local costs and from the specification of the maximal satisficing costs
γm. The value of γm constitutes a local requirement, differently of the
weights wm that are meaningful only in respect to others. In some
cases, γm may be associated to physical parameters as is the case in
the example of Section 6.1, or it may be associated to a minimal lo-
cal performance as in Section 6.2. The solution of the SMPC, besides
Pareto-optimal, gives more importance to the controllers with a worst
performance at the moment. Situational altruism permits a more bal-
anced division of resources, avoiding the exploitation of one controller
by the others. These characteristics of adaptiveness and equilibrium
allied to a negotiation mechanism to deal with infeasibility render the
distributed satisficing MPC a good alternative to the classical MPC.

The SMPC is also stabilizing when endowed with stabilizing con-
straints, as can be seen in the example of Section 6.3.

The presented distributed interior-point algorithm avoids fixed
points and reaches an optimal solution even under coupled constraints.
Nevertheless, a more elaborate mechanism of negotiation should be
developed and the algorithm should be optimized in order to be faster.

It is also worth to notice that, observing the results in the ex-
ample of Section 6.1, it seems that the satisficing MPC is more robust
to model mismatch. This is an important characteristic that should be
studied in future works.
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7.1 SMPC AND MULTI-AGENT SYSTEMS

Next, a parallel between MPC controllers and intelligent agents
will be done to conclude that the theory presented here approximates
control systems and multi-agent systems.

According to Jennings e Wooldridge (1998) or Wooldridge (1999),
an intelligent agent is a computational system situated in an environ-
ment and capable of taking autonomous and flexible actions pursuing
an objective. For flexibility it means reactivity, pro-activeness and so-
cial ability, which we summarize, somewhat arbitrarily, as adaptation
and social ability. An adaptable agent reacts and changes appropriately
to changes in the environment.

An MPC agent (LIMA et al., 2011) would be an agent with char-
acteristics both from a MPC controller and from an intelligent agent.
Observe in Table 9 that the more flexible is a MPC controller, the
more it will approach the definition of intelligent agents. One MPC
agent would be defined, then, as a MPC controller that incorporates
the flexibility proper to intelligent agents.

Table 9 – Comparison between MPC controllers and MPC agents

Distributed MPC Controller Intelligent Agent

• a computational system

• that interact with an envi-
ronment

• capable of taking actions
(control actions)

– autonomous
– model based

• a computational system

• that interact with an envi-
ronment

• capable of taking actions

– autonomous
– flexible: result of so-

cial ability and adap-
tation

• to achieve an objective • to achieve an objective

Also there is a similarity between the MPC controllers and belief-
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desire-intention (BDI) agents (RAO; GEORGEFF, 1995). Note that it
is possible to establish a direct relationship between the three main
components of a MPC controller and the three functional blocks of a
BDI agent. This relationship is:

1. Belief ðñ Model

2. Desire ðñ Objective function

3. Intention ðñ Decision

Given the similarities between the MPC controllers and (intel-
ligent) BDI agents, the evolution of the traditional MPC controllers
could be towards the fusion of these concepts and techniques. This
merging would result in what one could call MPC agents.

The satisficing MPC is a step towards a MPC agent. In special it
is in harmony with the following sociality axioms defined by (STIRLING;
FROST, 2007):

• Conditioning: “Members of a society (of controllers, in our case)
may condition their preferences on the preferences of other mem-
bers”

In the SMPC, the control action of one controller is a function of
its cost and also of the cost of other controllers, with costs being
the expression of local preferences.

• Endogeny: “If preference orderings exist for an autonomous soci-
ety, they must be determined by interactions among its members”

Pareto optimality is a reasonable notion of group rationality. In
the SMPC, a Pareto-optimal solution is not imposed from an
imposed global cost but it emerges from local specifications.

• Coherence: “No members of a society must be categorically re-
quired to subjugate their own welfare to the society in all situa-
tions in order to benefit the society”

The SMPC implements the situational altruism where more al-
truism will be deserved to the controller which needs most, but
none of the controllers will be altruistic to the extent of being
unsatisfied. If its cost approaches its maximal satisficing cost,
the controller becomes less and less altruistic.
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7.2 SUGGESTION FOR FURTHER RESEARCH

It follows a list of suggestions for future research:

• As the example in Section 6.1 suggests, the SMPC seems to be
more robust to model mismatches. Robustness is an important
issue that deserves a careful study.

• The controller must be integrated with a state observer.

• The theory should be extended to deal with setpoint changes.

• The theory should be extended to non-linear models.

• The theory should be extended to non-cooperative applications.

• The SMPC needs significant algorithm improvements, including
more elaborate mechanisms of negotiation.

• The theory presented here would allow asynchronous communi-
cation as well as the controllers would work with different sample
times.

• The similarities between MPC controllers and intelligent agents
suggests possibilities of interaction between the communities of
control and multi-agent systems. From this interaction it could
arise solutions in areas like software infrastructure, interaction
with the human operator, system diagnostics and fault isolation,
coordination and communication in distributed applications and
integration with other systems like production schedule.



APPENDIX A -- Minimal Altruism
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In this appendix it is shown that a minimum of altruism is nec-
essary to maintain the controllers satisficing. It is also shown that
this minimum altruism is associated with Lagrange multipliers (LIMA;
CAMPONOGARA, 2011).

To this end, it is analyzed the altruism that must be added to
selfish controllers to maintain all controllers satisfied. Selfish controllers
are those that try to minimize their own selfish costs. It is considered
that each controller solves the following problem over their own vari-
ables um given the states x and the variables of the other controllers
u m:

PMA
m px,u mq :

$'&'%
minum

Vmpum|xm,u mq
subject to Vipum|xi,u mq ¤ γi, @i PM

um P Dmpx,u mq
(A.1)

where Dm is the problem’s domain defined in (3.2) on page 39, and
the influence of um on the costs was made explicit by separating it
from the parameters: Vmpxm,uq � Vmpum|xm,u mq and Vipxi,uq �
Vipum|xi,u mq.

The solution obtained with this method is a Nash solution be-
cause the controllers minimize their own selfish costs. While at first
glance it may appear that the controllers stand a better chance to ob-
tain a higher selfish performance, there may exist a Pareto solution
where all controllers perform better. Besides non Pareto-optimal, the
convergence of the set of problems A.1 depends on the existence of a
Nash equilibrium. Fixed point theorems can be used to derive condi-
tions for the existence of the Nash equilibrium (see Kakutani’s theorem
in (AUBIN, 2003), for example).

Our intention here is not the method itself, but rather to an-
alyze the minimum altruism resulting from the satisficing constraints
Vipxi,uq ¤ γi, for all i, and associate it with Lagrange multipliers. Let
us, then, focus on the problem only with satisficing constraints:

rPMA
m px,u mq :

#
minum

Vmpum|xm,u mq
subject to Vipum|xi,u mq ¤ γi, @i PM

(A.2)

which solution u�m is satisficing,

u�m P Smpx,u mq � tum | u P Spxqu
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and

Spxq � tu � pu1, . . . ,uM q | Vmpxm,uq ¤ γm, @m PMu

The solution of rPMA
m produces the value

p�m � Vmpu�m|xm,u mq.

A.1 DUAL PROBLEM

The dual problem associated to the primal problem (A.2) above
is obtained from the Lagrangian function defined as

Lmpum,Λmq � Vmpum|xm,u mq �
M̧

i�1
λm,ipVipum|xi,u mq � γiq

where λm,i ¥ 0, for all i � 1, . . . ,M , are the Lagrange multipliers
associated to each satisficing constraint and Λm � pλm,1, . . . , λm,M q.

Observe that, because Vipxi,uq�γi is negative or zero in a satis-
ficing solution, the Lagrangian is a lower bound to the cost Vmpxm,uq
of controller Cm. In special, the dual function

lmpΛmq � min
umPSm

Lmpum,Λmq

is a lower bound to the value p�m of the primal problem (A.2), that is:

lmpΛmq ¤ p�m

for any value of Λm ¥ 0. The best estimate for the lower bound of p�m
is, then:

lmpΛ�mq � max
Λm¥0

lmpΛmq. (A.3)

Problem (A.3) is the dual of the primal problem (A.2) and its
value is d�m:

d�m � lmpΛ�mq

� max
Λm¥0

�
min

umPSm

Lmpum,Λmq
�
.

Two important properties hold when strong duality (BOYD; VAN-
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DENBERGHE, 2004) is verified:

p�m � d�m

and

max
Λm¥0

�
min

umPSm

Lmpum,Λmq
�
� min

umPSm

�
max
Λm¥0

Lmpum,Λmq
�

so that
p�m � min

umPSm

rLmpum,Λ�mqs (A.4)

Assumption A.1. Strong duality holds. The Slater Condition (BOYD;
VANDENBERGHE, 2004) says that, if the primal problem (A.2) is convex
and strictly feasible, then strong duality holds.

From (A.4) we have that

p�m � min
umPSm

rLmpum,Λ�mqs

� min
umPSm

�
Vmpum|xm,u mq �

M̧

i�1
λ�m,ipVipum|xi,u mq � γiq

�
� min

umPSm

�
Vmpum|xm,u mq �

M̧

i�1
λ�m,iVipum|xi,u mq �

M̧

i�1
γiλ

�
m,i

�
� min

umPSm

�
Vmpum|xm,u mq �

M̧

i�1
λ�m,iVipum|xi,u mq

�
because

°M
i�1 γiλ

�
m,i is constant. Therefore, we can conclude that the

primal problem (A.2) is equivalent to minimize the combination of the
costs, weighted by λ�m,i. As before, the parameter λ�m,i is the altruism
from controller Cm to controller Ci.

Next, the expression (A.4) is used to characterize the altruism
λ�m,i as the minimal altruism necessary to maintain the controllers sat-
isfied.
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A.2 MINIMAL ALTRUISM

Notice from Equation (A.4) that

p�m � min
umPSm

rLmpum,Λ�mqs

� min
umPSm

�
Vmpum|xm,u mq �

M̧

i�1
λ�m,ipVipum|xi,u mq � γiq

�

¤ Vmpu�m|xm,u mq �
M̧

i�1
λ�m,ipVipu�m|xi,u mq � γiq

¤ Vmpu�m|xm,u mq � p�m
(A.5)

where the last inequality is from the fact that λ�m,i ¥ 0 and Vipu�m|xi,u mq�
γi ¤ 0 so that the summation is negative or zero. In Equation (A.5),
we conclude that the inequalities hold with equalities, what implies the
condition known as complementary slackness (BOYD; VANDENBERGHE,
2004):

M̧

i�1
λ�m,ipVipu�m|xi,u mq � γiq � 0

Then,

• if Vipu�m|xi,u mq   γi, controller Ci will be satisfied and con-
troller Cm will select λ�m,i to be zero, that is, Ci will not deserve
any altruism from Cm;

• on the other hand, if Vipxi,u�m|u mq � γi, controller Ci will be in
the limit of satisfaction requiring some altruism from controller
Cm to guarantee its satisfaction.

The controller Cm will be altruistic to the minimum necessary
for the satisfaction of controller Ci.
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