UNIVERSIDADE FEDERAL DE SANTA CATARINA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

SISTEMA AUTO-ADAPTATIVO VERSÃO-H E IMPEDÂNCIA DE FRONTEIRA EM PROBLEMAS MAGNETODINÂMICOS

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FDERAL DE SANTA CATARINA PARA OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA ELÉTRICA

JOSÉ AIRTON AZEVEDO DOS SANTOS

FLORIANÓPOLIS, DEZEMBRO DE 1994

SISTEMA AUTO-ADAPTATIVO VERSÃO H E IMPEDÂNCIA DE FRONTEIRA EM PROBLEMAS MAGNETODINÂMICOS

JOSÉ AIRTON AZEVEDO DOS SANTOS

ESTA DISSERTAÇÃO FOI JULGADA ADEQUADA PARA OBTENÇÃO DO TÍTULO DE MESTRE EM ENGENHARIA ELÉTRICA, E APROVADA EM SUA FORMA FINAL PELO CURSO DE PÓS-GRADUAÇÃO

Prof. Adroaldo Raizer ORIENTA/DOR

Prof. Enio Valmor Kassick, Coordenador do curso de Pós-Graduação em Engenharia Elétrica

BANCA EXAMINADORA

Adroaldo Raizer, Dr.INPG 5

João Pedro Assumpção Bastos, Dr.d'ETat

Nelson Sadowski, Dr. INPT

Walter Pereira Carpes Junior, M. SC.

Margos Telló, M.SC.

A meus Pais

Helcio e Noemy

i

A minha avó

Laurinda

A minha esposa Dilma. Ao meu filho Helio que tanto sofreu pela longa

separação.

iii

. ...

AGRADECIMENTOS

Ao Prof. Adroaldo Raizer, pela interessada e competente orientação.

Aos funcionários e chefia do GRUCAD, pela atenção e presteza dispensada.

Aos membros da banca examinadora, pelos comentários e sugestões.

Aos meus colegas de curso pelo companheirismo.

Aos meus pais e irmãos, pelo estímulo que sempre demonstraram.

A minha esposa pelo companheirismo, compreensão e constante apoio.

À Universidade Federal de Santa Catarina e à CAPES, pelo apoio financeiro.

Ao trabalhador brasileiro, pelo financiamento desta pesquisa.

SUMÁRIO

SIMBOLOGIA	ix
RESUMO	xii
ABSTRACT	xiii
INTRODUÇÃO	xiv
CAPÍTULO 1 - CONCEITOS BÁSICOS	1
1.1 - Introdução	1
1.2 - Equações fundamentais	1
1.2.1 - Condições de fronteira na interface entre os materiais	3
1.2.2 - Potencial vetor na solução de problemas magnetodinâmicos	4
1.3 - Equacionamento do problema	4
1.3.1 - Equacionamento utilizando potencial vetor complexo	6
1.3.2 - Condições de contorno na fronteira do domínio de estudo	7
1.3.3 - Descontinuidades entre regiões do domínio	7
1.3.4 - O problema a ser solucionado	8
1.4 - Formulação fraca	9
1.4.1 - Método de Galerkin	11

1.4.2 - Método dos elementos finitos	12
1.5 - Identifição do erro	15
1.6 - Conclusões	16
CAPÍTULO 2 - GERAÇÃO AUTO-ADAPTATIVA	17
2.1 - Introdução	17
2.2 - Análise de erro	17
2.2.1 - Critério de refinamento "a-priori"	18
2.2.2 - Critérios de refinamento "a-posteriori"	19
2.2.3 - Critério baseado em formulações complementares	20
2.2.4 - Critérios baseados na regularidade dos campos	20
2.2.4.1 - Critério baseado na descontinuidade dos campos	20
2.2.4.2 - Critério do teorema de Ampère	22
2.2.4.3 - Critério da perturbação dos campos	23
2.3 - Geração da malha	24
2.3.1 - Algoritmo do programa EFCAD	24
2.4 - Refinamento da malha	26
2.4.1 - Os elementos a serem refinados	27
2.4.1.1 - Refinamento "a-priori"	27

vi

2.4.1.2 - Refinamento "a-posteriori"	27
2.5 - Conclusões	28
CAPÍTULO 3 - CONDIÇÃO DE IMPEDÂNCIA DE FRONTEIRA APLICADA AO MÉTODO DE ELEMENTOS FINITOS	29
3.1 - Introdução	29
3.2 - Determinação da condição de impedância de fronteira	30
3.3 - Modelagem matemática	32
3.3.1 - A formulação fraca	32
3.3.2 - A formulação de elementos finitos	34
3.3.3 - A matriz de contribuição unidimensional	36
3.4 - Conclusões	38
CAPÍTULO 4 - RESULTADOS E COMPARAÇÕES	39
4.1 - Introdução	39
4.2 - Refinamento auto-adaptativo	39
4.2.1 - Cabo trifásico	39
4.2.1.1 - Descontinuidades dos campos	41
4.2.1.2 - Teorema de Ampère	42
4.2.1.3 - Perturbação dos campos	43
4.2.1.4 - Refinamento "a-priori"e "a-posteriori"	44

4.2.1.5 - Tabelas	45
4.2.2 - Conclusões	46
4.3 - Condição de impedância de fronteira	47
4.3.1 - Linha de potência	47
4.3.2 - Curvas para o campo tangencial	51
4.3.3 - Conclusões	54
CONCLUSÃO FINAL	56
ANEXO	58
REFERÊNCIAS BIBLIOGRÁFICAS	63

SIMBOLOGIA

Ā	- Potencial vetor
Ā•	- Potencial vetor complexo
A*	- Solução aproximada
	- Potencial imposto
A°,	- Potencial vetor na superfície de separação
Ē	- Vetor indução magnética
B_{ij}	- Matriz de contribuição local
C _i	- Constantes desconhecidas
<i>C</i> ₀	- Funções contínuas, com derivadas parciais descontínuas
С	- índice de Convergência
$ar{D}$	- Vetor indução elétrica
D	- Área do triângulo
d	- Comprimento do elemento
Ē	- Vetor campo elétrico
F_{j}	- Matriz fonte
ſ	- Freqüência

$ar{H}$	- Vetor campo magnético
h	- "tamanho" do elemento
H_{0}	- Espaço com dimensão n
$ar{H}_t$	- Campo magnético tangencial
$ar{J}$	- Vetor densidade superficial de corrente
J,	- Descontinuidade na interface dos elementos
$ar{J}_{_{e}}$	- Vetor densidade de corrente imposta
$oldsymbol{ar{J}}_i$	- Vetor densidade de corrente induzida
K_{ij}	- Matriz real de contribuição local
n _e	- Indicador local de erro
ñ	- Vetor normal à superfície
nno	- Número de nós
nnf	- Número de nós da fronteira Γ_m
N_i	- Funções base
r _i	- Componente regular do erro
r	- Residual
R_{ij}	- Matriz de contribuição local
Re	- Real

t	- Tempo
v	- Função teste
W	- Freqüência angular
ρ	- Densidade volumétrica de carga
3	- Permissividade elétrica
μ	- Permeabilidade magnética
σ	- Condutividade elétrica
Ω	- Domínio de estudo
Г	- Fronteira do domínio
Γ_m	- Fronteira entre dois meios
δ	- Profundidade de penetração
γ	- Constante de propagação
∇	- Operador nabla
ν	- Relutividade magnética
[]	- Variação da grandeza no ponto
×	- Produto vetorial
•	- Produto escalar

RESUMO

Neste trabalho estudam-se os conceitos de geração de malhas adaptativas e condição de impedância de fronteira em problemas magnetodinâmicos.

Quatro critérios de erro são apresentados, sendo que um deles é baseado na "profundidade de penetração", e os outros são baseados na análise de valores de campo. É apresentada também, a formulação matemática para condição de impedância de fronteira pelo método de elementos finitos.

Além do estudo teórico, são apresentados e discutidos os resultados obtidos através dos critérios de erro e da condição de impedância de fronteira.

ABSTRACT

In this work the concepts of adaptive mesh generation and boundary impedance condition in magnetodinamics problems are studied.

Four error criterions are presented. One of them is based on the penetration depth, and the others are based on fields values analysis. It is also presented, a mathematical formulation for the boundary impedance condition by the finite elements method.

Besides the theoretical study, are presented and discussed the results obtained by the error criterions and boundary impedance condition methods are presented and discussed.

INTRODUÇÃO

Na década de 70, o método dos elementos finitos, que vinha sendo utilizado em problemas de engenharia mecânica já há muitos anos, começou também a ser aplicado a problemas eletromagnéticos, permitindo que as estruturas geometricamente mais complexas pudessem ser analisadas.

O método de elementos finitos é uma técnica geral para a solução de problemas de equações diferenciais com valores de contorno [3,5]. O seu princípio básico consiste na discretização do domínio de estudo, em um certo número de regiões elementares chamadas elementos finitos, caracterizadas por pontos definidos em seus vértices e/ou fronteiras, chamados nós. A coleção de nós é conhecida como malha de elementos finitos. A equação diferencial é então aproximada dentro de cada elemento como uma combinação, geralmente linear ou quadrática, das variáveis da equação definidas em cada nó.

A utilização deste método tornou possível a construção de poderosas ferramentas de cálculo que são aplicadas à modelagem de dispositivos eletromagnéticos [1,4]. Graças à evolução em termos de rapidez de cálculo e capacidade de memória dos computadores, este método permite descrever de maneira cada vez mais concisa o funcionamento destes dispositivos, onde intervêm fenômenos complexos como as correntes induzidas, movimentos relativos, etc. Entretanto, a solução obtida por este método é apenas uma aproximação da solução real, e a precisão da solução calculada pode variar consideravelmente em uma mesma estrutura. Nos últimos anos muitos trabalhos foram desenvolvidos nos campos de avaliação e redução de erros na solução obtida com a técnica de elementos finitos . É muito conhecido o fato segundo o qual bons resultados são atingidos neste sentido, aumentando-se o número de nós ou elementos da malha. Sabe-se também, que ao refinar-se a malha apenas nas regiões onde o erro é importante, obtém-se melhores taxas de convergência do que refinando-se a malha uniformemente [11,12,13,14].

A aplicação do método de elementos finitos na determinação de campos magnéticos variáveis no tempo apresenta um sério obstáculo, a discretização das regiões com correntes induzidas. Como o campo magnético é rapidamente atenuado nestas regiões a "profundidade de penetração", é em geral muito pequena. Para obter-se bons resultados devemos discretizar a borda destas regiões em elementos muito pequenos [1]. Em se tratando com médias e altas freqüências a "profundidade de penetração" é quase desprezível, por isto não podemos usar o método de elementos finitos clássico, o que despenderia muita memória em termos computacionais. Para contornar este problema, uma alternativa viável é a utilização da condição de impedância de fronteira, que permite a retirada das partes condutoras do domínio de estudo [17,18,19,20].

As comprovações das teorias expostas acima, só são possíveis em um ambiente informático essencialmente direcionado para o método de elementos finitos, o que é o caso do programa EFCAD [1], suporte lógico para este trabalho.

O EFCAD (Eletromagnetic Field Computer Aided Design) desenvolvido no GRUCAD (Grupo de Concepção e Análise de Dispositivos Eletromagnéticos), é um programa polivalente e confiável, destinado a pesquisa e a indústria. Ele permite a análise de problemas de campos elétricos, magnéticos e térmicos pela técnica numérica de elementos finitos.

Este sistema possui vários módulos (Figura 1), sendo que o módulo utilizado neste trabalho é o módulo EFCC (F.E. Complex Eddy Currents Calculation). Este módulo permite o cálculo de correntes induzidas, utilizando a formulação em números complexos, onde as fontes de campo são densidades de correntes variando senoidalmente no tempo e onde não há saturação de materiais. A estrutura analisada por este módulo pode ser invariante por translação ou invariante por rotação (axi-simetria).

Figura 1 Organização do programa EFCAD.

No primeiro capítulo são revistas as equações fundamentais, a formulação proposta para o cálculo de campos magnetodinâmicos, e as condições de fronteira que devem ser satisfeitas pelos vetores de campo. No segundo capítulo, são estudados os critérios de erro e o processo de geração de malha, e no terceiro, a formulação proposta para condição de impedância de fronteira. No quarto capítulo, serão analisados alguns resultados obtidos com os critérios de erro, e com a aplicação da impedância de fronteira.

CAPÍTULO 1

CONCEITOS BÁSICOS

1.1 INTRODUÇÃO

Neste capítulo são abordados os conceitos básicos, para a formulação matemática de campos magnéticos variáveis no tempo, pelo método de elementos finitos.

Inicialmente, são revisadas as equações fundamentais do eletromagnetismo. Em seguida, estuda-se a *formulação fraca* para um problema a ser resolvido, o *método dos elementos finitos* e a identificação do erro neste método.

1.2 EQUAÇÕES FUNDAMENTAIS

As equações fundamentais do eletromagnetismo são as equações de Maxwell [1], que estão representadas abaixo:

$$\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \tag{1.1}$$

$$\nabla \times \vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{J}$$
(1.2)

 $\nabla \cdot \vec{B} = 0 \tag{1.3}$

$$\nabla \cdot \vec{D} = \rho \tag{1.4}$$

onde $\nabla = \frac{\partial}{\partial x} \vec{i} + \frac{\partial}{\partial y} \vec{j} + \frac{\partial}{\partial z} \vec{k}$, e as outras grandezas são:

 \vec{D} - vetor indução elétrica (C/m^2) ;

 \vec{E} - vetor campo elétrico (V/m);

 \vec{B} - vetor indução magnética (T);

 \vec{H} - vetor campo magnético (A/m);

 \vec{J} - vetor densidade superficial de corrente (A/m^2) ;

 ρ - densidade volumétrica de carga (C/m^3) ;

t - tempo (s).

A estas expressões são acrescidas relações adicionais denominadas relações constitutivas, as quais dependem dos meios onde existe o campo:

$$\vec{D} = \| \varepsilon \| \vec{E} \tag{1.5}$$

$$\vec{B} = \parallel \mu \parallel \vec{H} \tag{1.6}$$

$$\vec{J} = \| \sigma \| \vec{E} \tag{1.7}$$

onde: $\| \varepsilon \|$ - tensor permissividade elétrica do meio (F/m);

 $\|\mu\|$ - tensor permeabilidade magnética do meio (H/m);

 $\| \sigma \|$ - tensor condutividade elétrica do meio (S/m).

Nos casos em que os meios são isotrópicos, os tensores $\|\varepsilon\|$, $\|\mu\|$ e $\|\sigma\|$ se reduzem aos escalares ε , $\mu \in \sigma$. Neste estudo apenas meios isotrópicos e lineares são considerados.

Na faixa de freqüência com a qual se trabalha em eletrotécnica, a corrente de deslocamento, $\frac{\partial \bar{D}}{\partial t}$ é muito menor que a corrente de condução \bar{J} . Em vista disso, pode-se simplificar a equação (1.2)

$$\nabla \times \bar{H} = \bar{J} \tag{1.8}$$

Neste estudo se está interessado em fenômenos eletromagnéticos variáveis no tempo. Assim as equações relativas à magnetodinâmica são as seguintes:

$$\nabla \times \vec{H} = \vec{J} \tag{1.9}$$

$$\nabla \cdot \vec{B} = 0 \tag{1.10}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{1.11}$$

A equação (1.11), é a equação que particulariza o domínio da magnetodinâmica, e indica que a variação temporal de \overline{B} cria um campo elétrico \overline{E} [1].

1.2.1 Condições de fronteira na interface entre os materiais

Na fronteira entre dois meios com características *constitutivas* diferentes, admitindo-se como hipótese que não existam cargas elétricas ou correntes superficiais nos limites entre os meios 1 e 2, verificam-se as seguintes condições de contorno [1,2]:

$$\vec{D}_1 \cdot \vec{n} = \vec{D}_2 \cdot \vec{n} \tag{1.12}$$

$$\vec{E}_1 \times \vec{n} = \vec{E}_2 \times \vec{n} \tag{1.13}$$

$$\vec{B}_1 \cdot \vec{n} = \vec{B}_2 \cdot \vec{n} \tag{1.14}$$

$$\vec{H}_1 \times \vec{n} = \vec{H}_2 \times \vec{n} \tag{1.15}$$

onde 1 e 2 representam os meios adjacentes e \vec{n} e o vetor normal à interface entre os dois meios.

As equações (1.12) e (1.14) estabelecem que a componente normal das induções elétrica e magnética são contínuas na interface entre dois meios diferentes. As equações (1.13) e (1.15) estabelecem que a componente tangencial dos campos elétrico e magnético são contínuas na interface entre dois meios diferentes. Para as condições de contorno nos limites do domínio, são consideradas as condições de *Dirichlet*, onde o valor do potencial é especificado, e as condições de *Neumann*, onde a derivada do potencial é especificada.

1.2.2) Potencial vetor na solução de problemas magnetodinâmicos

Para abordar um problema no qual existam correntes no domínio de estudo, utiliza-se o Potencial Vetor \overline{A} tal que:

$$\vec{B} = \nabla \times \vec{A} \tag{1.16}$$

cuja validade é verificada substituindo-se (1.16) em (1.10).

Agora, substituindo (1.16) em (1.9), e considerando a relação constitutiva (1.6), obtém-se:

$$\nabla \times \nu \ \left(\nabla \times \vec{A}\right) = \vec{J} \tag{1.17}$$

onde v é a relutividade magnética tal que $v=1/\mu$. A expressão (1.17) representa a equação de Poisson relativa ao potencial vetor magnético.

1.3 EQUACIONAMENTO DO PROBLEMA

Seja o problema a ser resolvido representado esquematicamente pela Figura 1.1, onde a corrente é variável no tempo, e onde existam meios condutores. Temse a subregião Ω_1 não susceptível à passagem de corrente ($\sigma = 0$), e uma subregião Ω_2 , onde a condutividade é diferente de zero ($\sigma \neq 0$), permitindo assim a criação de correntes induzidas no sentido perpendicular ao plano da figura. Considera-se que a subregião Ω_3 é constituida de fios muito finos, para que as correntes induzidas possam ser negligenciadas [1,25].

Figura 1.1 Representação de um problema bidimensional hipotético.

A densidade de corrente no domínio Ω de estudo é dado por:

$$\vec{J} = \vec{J}_i + \vec{J}_e$$

onde: \bar{J}_e - densidade de corrente externa imposta na subregião Ω_3 ;

 \vec{J}_i - densidade de corrente induzida na subregião Ω_2 ;

 $\Omega = \Omega_1 \bigcup \Omega_2 \bigcup \Omega_3.$

Observa-se que $\vec{J}_i = \sigma \vec{E}$, onde \vec{E} é o campo elétrico induzido na subregião Ω_2 . Apartir das equações (1.11) e (1.16) tem-se:

$$\vec{E} = -\frac{\partial \vec{A}}{\partial t} \tag{1.18}$$

onde os vetores \vec{E} e \vec{A} estão na direção $o\vec{z}$ (perpendicular ao plano da Figura (1.1)). Portanto, a equação (1.17) assume a forma:

$$\nabla \times \nu \left(\nabla \times \vec{A} \right) + \sigma \, \frac{\partial \vec{A}}{\partial t} - \vec{J}_e = 0 \tag{1.19}$$

onde $\vec{A} = A(t)\vec{k}$. O primeiro termo da equação (1.19) pode ser igualado à [1]:

$$\nabla \times \nu \left(\nabla \times \bar{A} \right) = -\nabla \cdot \left(\nu \nabla A(t) \right)$$
(1.20)

onde A(t) é a componente de \overline{A} na direção $o\overline{z}$, portanto um escalar. Então a equação (1.19) pode ser escrita sob a forma escalar:

$$\nabla \cdot (v \,\nabla A(t)) - \sigma \,\frac{\partial A(t)}{\partial t} + J_e(t) = 0 \tag{1.21}$$

já que $\vec{J}_e = J_e(t)\vec{k}$.

1.3.1 Equacionamento utilizando o potencial vetor complexo

Nos casos onde a excitação é senoidal e os meios não apresentarem "saturação", é mais conveniente resolver a equação (1.21) no domínio freqüência utilizando o Potencial Vetor Complexo A^{\bullet} [1].

Sendo $J_{e}(t)$ a alimentação cossenoidal de pulsação w, tem-se:

$$J_e(t) = J_e \cos(wt) \tag{1.22}$$

ou então:

$$J_e(t) = \operatorname{Re}(J_e e^{jwt})$$
(1.23)

onde $j = \sqrt{-1}$.

A resposta do sistema a esta excitação senoidal será em regime permanente, também senoidal e defasada. Portanto

$$A(t) = A\cos(wt + \alpha) = \operatorname{Re}(A^{\bullet}e^{jwt})$$
(1.24)

onde $A^* = Ae^{j\alpha}$, com α representando a defasagem de A(t) em relação $J_e(t)$, é a solução da equação (1.21), isto é:

$$\nabla \cdot (\nu \,\nabla A^* e^{jwt}) - \sigma \,\frac{\partial A^* e^{jwt}}{\partial t} + J_e e^{jwt} = 0 \tag{1.25}$$

o que dá

$$\nabla \cdot (v \nabla A^*) - j\sigma w A^* + J_e = 0 \tag{1.26}$$

1.3.2 Condições de contorno na fronteira do domínio de estudo

a) Condição de contorno de Dirichlet

$$A^* = A^*_0$$
 (1.27)

em Γ_1 , onde A_0^* é o valor do potencial imposto.

b) Condição de contorno de Neumann homogênea

$$v \, \frac{\partial A^*}{\partial \bar{n}} = 0 \tag{1.28}$$

em Γ_2 .

onde: $-\frac{\partial A^*}{\partial \bar{n}}$ é a derivada direcional de A^* na direção \bar{n} ;

- Γ_1 parcela de Γ onde se impõe condições de contorno de *Dirichlet*;

- Γ_2 parcela de Γ onde se impõe condições de contorno de Neumann;

- $\Gamma_1 \cup \Gamma_2 = \Gamma$;

- $\Gamma_1 \cap \Gamma_2 = \emptyset$.

1.3.3 Descontinuidades entre regiões do domínio

A equação (1.26) descreve o comportamento do campo nos pontos regulares do domínio de estudo Ω , ou seja , nos pontos em que as propriedades constitutivas sejam contínuas. Entretanto, existem pontos de descontinuidade na relutividade magnética. Dentro de cada subregião Ω_1 e Ω_2 , tem-se v₁ e v₂ contínuos.

$$\left[\nabla \times A^{\bullet}\right] \cdot \vec{n} = 0 \tag{1.29}$$

$$\left[\nu\nabla\times A^{*}\right]\times\vec{n}=0\tag{1.30}$$

onde [] indica o salto da derivada no limite onde existe a descontinuidade.

As equações acima tem por conseqüência a continuidade da componente normal e a descontinuidade da componente tangencial de \vec{B} .

1.3.4 O problema a ser solucionado

O problema a ser solucionado é a determinação da função A^* que sastifaça as seguintes condições:

1 - A equação diferencial parcial nos pontos internos às subregiões, isto é, nos pontos onde não existem descontinuidades:

$$\nabla \cdot (\nabla \nabla A^*) - j\sigma wA^* + J_e = 0 \tag{1.31}$$

em $\Omega_{1,2,3}$.

2 - A Condição de salto em pontos na interface Γ_m entre Ω_1 e Ω_2 :

$$\left[\nu\nabla \times A^{*}\right] \times \bar{n} = 0 \tag{1.32}$$

3 - A condição de contorno de *Dirichlet* em Γ_1 :

$$A^{\bullet} = A_{0}^{\bullet} \tag{1.33}$$

4 - A condição de contorno de Neumann homogênea em Γ_2 :

$$v \; \frac{\partial A^{*}}{\partial \bar{n}} = 0 \tag{1.34}$$

1.4 FORMULAÇÃO FRACA

Devido à existência de descontinuidades nas interfaces entre os meios com propriedades constitutivas diferentes, não se pode utilizar o tratamento clássico de equações diferenciais, que exige que a solução sastifaça a equação em todos os pontos do domínio. Para superar esta dificuldade, reformula-se o problema de forma a admitir soluções fracas na solução e em suas derivadas [3]. A *formulação fraca* para o ploblema pode ser enunciada como segue: determina-se uma função A^* tal que a equação diferencial (1.26), com apropriadas condições de contorno seja sastifeita em um sentido de "médias ponderadas".

A formulação fraca é obtida apartir da definição do residual r, tal que

[3]:

$$r = \nabla \cdot (\nu \, \nabla A^*) - j\sigma w A^* + J_e \tag{1.35}$$

em cada domínio regular de Ω .

Multiplica-se agora r por uma função suficientemente regular, chamada função teste v, integra-se sobre cada subdomínio no qual rv é regular e faz-se a média ponderada igual a zero.

$$\int_{\Omega} r \vee d\Omega = 0 \tag{1.36}$$

ou

$$\int_{\Omega} \mathbf{v} \nabla \cdot (\mathbf{v} \nabla A^*) d\Omega - j \int_{\Omega} \mathbf{v} \sigma w A^* d\Omega + \int_{\Omega} \mathbf{v} J_e d\Omega = 0$$
(1.37)

Integrando o primeiro termo da equação (1.37) por partes sobre Ω_1 e Ω_2 , e aplicando o teorema da divergência, obtém-se:

$$-\int_{\Omega_{1}} \nabla \mathbf{v} \cdot (\mathbf{v} \nabla A^{*}) d\Omega - \int_{\Omega_{2}} \nabla \mathbf{v} \cdot (\mathbf{v} \nabla A^{*}) d\Omega + \int_{\partial \Omega_{1}} \mathbf{v} \cdot \nabla A^{*} \cdot \bar{n}_{1} d\Gamma + \int_{\partial \Omega_{2}} \mathbf{v} \cdot \nabla A^{*} \cdot \bar{n}_{2} d\Gamma \quad (1.38)$$

onde $\partial \Omega_1$ e $\partial \Omega_2$ são as fronteiras das regiões 1 e 2, e \vec{n}_1 e \vec{n}_2 são os vetores normais às respectivas fronteiras.

Somando-se as contribuições do subdomínio Ω_1 e Ω_2 , obtém-se:

$$-\int_{\Omega_{L2}} \nabla \mathbf{v} \cdot (\mathbf{v} \,\nabla A^{\bullet}) d\,\Omega + \int_{\partial \Omega_{1}} \mathbf{v} \,\mathbf{v} \,\nabla A^{\bullet} \cdot \vec{n}_{1} \,d\,\Gamma + \int_{\partial \Omega_{2}} \mathbf{v} \,\mathbf{v} \,\nabla A^{\bullet} \cdot \vec{n}_{2} \,d\,\Gamma \tag{1.39}$$

Nota-se que as fronteiras $\partial \Omega_1 \in \partial \Omega_2$ são compostas de duas parcelas, uma que não coincide com a fronteira Γ_m , denotada de $\partial \Omega_1 - \Gamma_m \in \partial \Omega_2 - \Gamma_m$ (Figura 1.2,) e outra que coincide com a fronteira Γ_m .

Figura 1.2 Fronteira da região Ω_2 .

Decompondo as integrais referentes a $\partial \Omega_1$ e $\partial \Omega_2$, da equação (1.39),

obtém-se:

$$-\int_{\Omega_{1,2}} \nabla \mathbf{v} \cdot (\mathbf{v} \nabla \mathbf{A}^{*}) d\Omega + \int_{\Gamma_{m}} \mathbf{v} \mathbf{v} \nabla \mathbf{A}^{*} \cdot \vec{\mathbf{n}}_{1} d\Gamma + \int_{\Gamma_{m}} \mathbf{v} \mathbf{v} \nabla \mathbf{A}^{*} \cdot \vec{\mathbf{n}}_{2} d\Gamma$$
$$+ \int_{\partial \Omega_{1} - \Gamma_{m}} \mathbf{v} \mathbf{v} \nabla \mathbf{A}^{*} \cdot \vec{\mathbf{n}}_{1} d\Gamma + \int_{\partial \Omega_{2} - \Gamma_{m}} \mathbf{v} \mathbf{v} \nabla \mathbf{A}^{*} \cdot \vec{\mathbf{n}}_{2} d\Gamma \qquad (1.40)$$

Somando-se as integrais relativas a Γ_m , tem-se:

$$\int_{\Gamma_{m}} \mathbf{V} \mathbf{V} \nabla \mathbf{A}^{*} \cdot \mathbf{\bar{n}}_{1} \, \mathrm{d} \, \Gamma + \int_{\Gamma_{m}} \mathbf{V} \mathbf{V} \nabla \mathbf{A}^{*} \cdot \mathbf{\bar{n}}_{2} \, \mathrm{d} \, \Gamma$$
(1.41)

Para que (1.30) seja sastifeita, (1.41) tem que desaparecer. Como $\vec{n}_1 = -\vec{n}_2$ em Γ_m , a equação (1.37) torna-se:

$$-\int_{\Omega} \nabla \mathbf{v} \cdot (\mathbf{v} \nabla A^*) d\Omega + \int_{\Gamma} \mathbf{v} \cdot \nabla A^* \cdot \vec{n} d\Gamma - j \int_{\Omega} \mathbf{v} \sigma \, \mathbf{w} A^* d\Omega + \int_{\Omega} \mathbf{v} J_e \, d\Omega = 0 \tag{1.42}$$

onde $\Gamma = (\partial \Omega_1 - \Gamma_m) \cup (\partial \Omega_2 - \Gamma_m).$

Como foi visto na seção (1.3.2), se a condição de fronteira for de Neumann homogênea, o termo referente à fronteira desaparecerá. Para a condição de contorno de *Dirichlet*, a função teste \mathbf{v} é escolhida como pertencente a uma classe de funções teste tal que $\mathbf{v} = \mathbf{0}$ em Γ . Assim, tem-se:

$$-\int_{\Omega} \nabla \mathbf{v} \cdot (\mathbf{v} \, \nabla A^{*}) d\Omega - j \int_{\Omega} \mathbf{v} \sigma \, \mathbf{w} A^{*} d\Omega + \int_{\Omega} \mathbf{v} J_{e} d\Omega = 0$$
(1.43)

1.4.1 Método de Galerkin

Na seção anterior foi obtida a *formulação fraca* para o problema, ou seja, a equação (1.44) para qualquer \mathbf{v} em H_0 .

$$-\int_{\Omega} \nabla \mathbf{v} \cdot (\mathbf{v} \ \nabla A^{\bullet}) d\Omega - j \int_{\Omega} \mathbf{v} \sigma \, w \, A^{\bullet} d\Omega + \int_{\Omega} \mathbf{v} \, J_e \, d\Omega = 0$$
(1.44)

Onde H_0 é definido como uma classe de funções teste para o problema e contém somente as funções que se anulam na fronteira do domínio e cuja derivada tenha seu quadrado integrável [3,4,5]. Já a classe de funções admissíveis a qual pertence a solução A^* , é composta por funções cuja primeira derivada tenha seu quadrado intregável. A solução A^* e a função de teste v são linearmente independentes e pertencem a um conjunto de dimensões infinita. Desta forma, a procura da solução de (1.44) torna-se extremamente difícil.

O método de Galerkin consiste em procurar uma solução aproximada para (1.44) em uma classe de dimensão finita. Desta maneira, utiliza-se um número finito de *n* termos linearmente independentes, obtendo a aproximação A_n^* de A^* .

$$\mathcal{A}_{n}^{\bullet} = \sum_{i=1}^{n} c_{i} N_{i} \tag{1.45}$$

1.4.2 Método dos Elementos Finitos

O método de Galerkin fornece uma atraente estratégia para obtenção das soluções aproximadas do problema de contorno, mas não oferece uma maneira sistemática para construção de funções "base" N_i . Esta situação torna-se crítica quando o domínio é bi ou tridimensional, com as funções N_i tendo que satisfazer as condições de contorno em regiões com geometria complexa. Estas dificuldades podem ser resolvidas usando o método de elementos finitos.

Na aplicação deste método, primeiramente o domínio é particionado ou discretizado em elementos finitos. Sobre cada elemento são identificados certos pontos chamados nós ou pontos nodais. O conjunto de elementos e nós que formam o domínio aproximado do problema é chamado de malha de elementos finitos (Figura 1.3). Uma escolha adequada dos pontos nodais deve ser realizada e as funções de base N_i são geradas de forma que sejam contínuas nas fronteiras entre os elementos.

Figura 1.3 Malha de elementos finitos

Neste trabalho é utilizado o elemento finito bidimensional com funções de base lineares obtidas por polinômios de Lagrange com continuidade C° . Funções do tipo C° são funções contínuas com derivadas parciais descontínuas.

Considerando-se o seguinte elemento finito da Figura 1.4

Figura 1.4 Elemento finito triangular.

no qual A^* varia linearmente em seu interior, ou seja:

$$A^{*}(x, y) = a_{1} + a_{2} x + a_{3} y \tag{1.46}$$

A equação (1.46) deve ser satisfeita nos três nós do elemento, logo:

$$A_1^* = a_1 + a_2 x_1 + a_3 y_1 \tag{1.47}$$

$$A_{2}^{*} = a_{1} + a_{2} x_{2} + a_{3} y_{2} \tag{1.48}$$

$$A_{3}^{\bullet} = a_{1} + a_{2} x_{3} + a_{3} y_{3} \tag{1.49}$$

Resolvendo o sistema para a_1 , a_2 e a_3 e substituindo os coeficientes em (1.46), encontra-se:

$$A^{*}(x, y) = N_{1} A_{1}^{*} + N_{2} A_{2}^{*} + N_{3} A_{3}^{*}$$
(1.50)

onde:

:

$$N_{1} = \frac{1}{2D} \left[\left(x_{2} y_{3} - x_{3} y_{2} \right) + \left(y_{2} - y_{3} \right) x + \left(x_{3} - x_{2} \right) y \right]$$
(1.51)

$$N_{2} = \frac{1}{2D} \Big[(x_{3}y_{1} - x_{1}y_{3}) + (y_{3} - y_{1})x + (x_{1} - x_{3})y \Big]$$
(1.52)

$$N_{3} = \frac{1}{2D} \left[\left(x_{1} y_{2} - x_{2} y_{1} \right) + \left(y_{1} - y_{2} \right) x + \left(x_{2} - x_{1} \right) y \right]$$
(1.53)

sendo que N_i é igual a 1 sobre o nó *i* e igual a zero nos demais nós, e D é a área do triângulo.

A aproximação de (1.44) por elementos finitos finalmente é obtida

$$-\int_{\Omega} \nabla \mathbf{v} \cdot (\mathbf{v} \ \nabla \mathbf{A}^*) d\Omega - j \int_{\Omega} \mathbf{v} \sigma \ w \ \mathbf{A}^* d\Omega + \int_{\Omega} \mathbf{v} \ J_e \ d\Omega = 0 \tag{1.54}$$

onde A^* é a solução aproximada de A^* dada por:

$$A^* = \sum_{i=1}^{nno} A^*_i N_i \tag{1.55}$$

onde *nno* é o número de nós do elemento e A_i^* é o valor de A^* no nó *i*.

Substituindo (1.55) em (1.54), obtem-se:

$$-\int_{\Omega}\sum_{i=1}^{nno}\nabla \mathbf{v}\cdot \left(\mathbf{v}\nabla \mathbf{N}_{i}\mathbf{A}_{i}^{*}\right)d\Omega - j\int_{\Omega}\sum_{i=1}^{nno}\mathbf{v}\sigma \mathbf{w}\mathbf{N}_{i}\mathbf{A}_{i}^{*}d\Omega + \int_{\Omega}\mathbf{v}\mathbf{J}_{e}\,d\Omega = 0$$
(1.56)

Escolhendo a função de teste v de modo que $v_j = N_j$ e substituindo em (1.56), tem-se:

$$-\int_{\Omega}\sum_{i=1}^{nno} \nabla N_{j} \cdot \left(\nu \nabla N_{i} A_{i}^{*}\right) d\Omega - j \int_{\Omega}\sum_{i=1}^{nno} N_{j} \sigma w N_{i} A_{i}^{*} d\Omega + \int_{\Omega} N_{j} J_{e} d\Omega = 0$$
(1.57)

Retirando o somatório para fora da integral a equação (1.57) transforma-

se em:

$$\sum_{i=1}^{nno} \left[\int_{\Omega} \nabla N_{i} \cdot \left(v \nabla N_{i} A_{i}^{*} \right) d\Omega + j \int_{\Omega} N_{j} \sigma w N_{i} A_{i}^{*} d\Omega \right] = \int_{\Omega} N_{j} J_{e} d\Omega$$
(1.58)

o que representando na forma matricial, torna-se:

$$\sum_{i=1}^{nno} (K_{ij} + jB_{ij}) A_i^* = F_j \qquad (j = 1, nno)$$
(1.59)

Aqui K_{ij} e B_{ij} são respectivamente as matrizes real e imaginária de contribuição local, e F_j é a matriz fonte, sendo elas especificadas abaixo:

$$K_{ij} = \int_{\Omega} \nabla N_j \left(\nu \nabla N_i \right) d\,\Omega \tag{1.60}$$

$$B_{ij} = \int_{\Omega} N_j \,\sigma w \, N_i \, d\,\Omega \tag{1.61}$$

$$F_j = \int_{\Omega} N_j J_e d\Omega.$$
 (1.62)

Finalmente, as matrizes de contribuição local são condensadas em um sistema matricial global onde todos os nós da malha são considerados, assim este sistema é resolvido por um método de resolução de sistema lineares.

1.5 IDENTIFICAÇÃO DO ERRO

Reescrevendo a equação (1.41), relativa à fronteira entre dois meios com diferentes relutividades

$$\int_{\Gamma_{m}} \nabla v \frac{\partial A^{*}}{\partial \bar{n}_{1}} d\Gamma + \int_{\Gamma_{m}} \nabla v \frac{\partial A^{*}}{\partial \bar{n}_{2}} d\Gamma$$
(1.63)

A aproximação de (1.63) por elementos finitos é [4].

$$\int_{\Gamma_{m}} N_{j} \, v \frac{\partial \mathcal{A}^{*}}{\partial \bar{n}_{1}} d\Gamma + \int_{\Gamma_{m}} N_{j} \, v \frac{\partial \mathcal{A}^{*}}{\partial \bar{n}_{2}} d\Gamma$$
(1.64)

As funções de base N_i são funções do tipo C^0 , sendo regulares dentro de cada elemento, mas cujas derivadas são descontínuas nas interfaces entre os mesmos. Assim, a expressão (1.64), torna-se:

$$\int_{\Gamma_{m}} N_{j} v \frac{\partial \mathcal{A}^{*}}{\partial \bar{n}_{1}} d\Gamma + \int_{\Gamma_{m}} N_{j} v \frac{\partial \mathcal{A}^{*}}{\partial \bar{n}_{2}} d\Gamma = \int_{\Gamma_{m}} J_{n} d\Gamma$$
(1.65)

Como a solução de (1.41) é unica [4,6], então $A^* \in A^*$ não são iguais, e em geral:

$$\nabla \cdot (v \,\nabla A^*) - j\sigma w A^* + J_e = r_i \tag{1.66}$$

O erro então pode ser dividido em duas parcelas:

- r_i a componente regular do erro interna ao elemento i;

- J_n a descontinuidade " concentrada" na interface dos elementos.

1.6 CONCLUSÕES

Neste capítulo foi apresentada a formulação matemática para campos magnéticos variáveis no tempo. Mostrou-se também como a formulação fraca do problema é resolvida pelo método de elementos finitos, bem como a identificação do erro neste método.

No próximo capítulo serão apresentados quatro critérios de erro, e o processo de geração e refinamento da malha.

CAPÍTULO 2 GERAÇÃO AUTO-ADAPTATIVA

2.1 INTRODUÇÃO

Neste capítulo serão tratados aspectos importantes no que tange à construção de um sistema auto-adaptativo para problemas magnetodinâmicos.

Em procedimentos *adaptativos*, o modelo de elementos finitos é gerado iterativamente, começando com uma aproximação grosseira para o problema e refinandoa sucessivamente para minimizar o erro na solução. Em um esquema *auto-adaptativo*, o usuário não necessita controlar, ou mesmo estar atento à malha que está sendo desenvolvida. O computador determina onde colocar os elementos e providencia uma melhor qualidade na solução.

Neste trabalho é utilizado um refinamento *auto-adaptativo* Versão h. Neste procedimento a ordem das funções de interpolação é mantida constante, enquanto o tamanho dos elementos é progressivamente diminuído. Com esta estratégia consegue-se aumentar o número de elementos em regiões específicas da malha, reduzindo desta forma o erro [4].

A análise de elementos finitos *adaptativa* é baseada no acoplamento de dois diferentes aspectos do *método de elementos finitos*: (i) Geração e Refinamento da malha, (ii) Análise de erro.

2.2 ANÁLISE DE ERRO

No capítulo anterior foi constatada a existência de erros devido à incapacidade das funções de forma N_i sastifazerem às condições de fronteira, além do

fato de que a solução obtida é apenas uma aproximação da solução real. Na realidade, existem diferentes fontes de erros na solução obtida com este método, sendo que entre elas pode-se citar [4]:

- a discretização do domínio de estudo;

- a aproximação do potencial por uma função de interpolação de uma determinada ordem P;

- a aproximação deficiente nas fronteiras dos elementos, originando descontinuidades que violam as condições de contorno na interface dos elementos;

- o residual resultante dos sistemas de equações. Este erro depende do método utilizado na solução dos sistemas e da precisão alcançada pelo computador utilizado.

Nesta seção serão analisados quatro critérios de erro, um critério de erro "a-priori" e três "a-posteriori". Duas situações são possíveis, uma com o critério de erro "a-priori" sendo utilizado juntamente com qualquer um dos outros três, e a outra, com a utilização apenas de um critério "a-posteriori". O critério de erro "a-priori" atua somente na parte condutora do domínio, enquanto que os critérios "a-posteriori' podem atuar tanto na parte condutora quanto na não condutora. Portanto, quando os critérios de erro "apriori" e "a-posteriori" forem utilizados conjuntamente, o critério de erro "a-priori" atuará somente na região condutora.

2.2.1 Critério de refinamento "a-priori"

O refinamento "a-priori", que atua somente na parte condutora do domínio de estudo, utiliza o "tamanho" dos elementos da fronteira das regiões condutoras para identificar se estes elementos devem ser ou não refinados. Este refinamento é baseado na comparação entre o "tamanho" dos elementos da fronteira das regiões condutoras e a "profundidade de penetração" (Anexo).
$$\delta = \sqrt{\frac{2}{\mu \, \sigma \, \omega}} \tag{2.1}$$

O refinamento "a-priori" funciona do seguinte modo:

a - definir a malha inicial;

b - estimar o "tamanho" dos elementos da fronteira das regiões condutoras;

c - se o "tamanho" destes elementos for menor ou igual δ , parar o processamento "apriori", se não refinar estes elementos e voltar ao passo b.

2.2.2 Critérios de refinamento "a-posteriori"

O gerador de malhas *auto-adaptativas*, no refinamento "a-posteriori", utiliza erros locais, na solução calculada em uma malha inicial (geralmente grosseiramente discretizada), para identificar as regiões que requerem posteriores refinamentos.

O refinamento "a-posteriori" funciona da seguinte forma:

a - definir a malha inicial;

b - calcular a solução aproximada nesta malha;

c - estimar o erro;

d - se o erro estiver dentro dos limites aceitáveis parar o processamento, se não refinar os elementos e voltar ao passo b.

Existem na literatura diferentes critérios para estimação de erros, os quais estão em grande parte divididos em dois grupos: Métodos Baseados em Formulações Complementares [7,13,14], e Método Baseado na Regularidade dos Campos e/ou Potenciais [8,9,10,11,12].

2.2.3 Critério baseado em formulações complementares

Neste critério, os *princípios variacionais complementares* são utilizados para obter duas soluções aproximadas para o problema. A diferença entre as duas soluções provê uma medida de erro que pode ser calculada elemento por elemento. Embora este critério estabeleça de forma elegante um limite superior para o erro na malha, existem alguns inconvenientes na sua utilização, tais como a necessidade de resolver dois sistemas de equações bem como a dificuldade de implementação [13,14].

2.2.4 Critérios baseados na regularidade dos campos

Estes critérios baseiam-se na regularidade da solução aproximada e/ou, na análise do comportamento dos campos eletromagnéticos (derivadas da solução) como indicação da precisão alcançada.

Os três critérios de erro "a-posteriori" utilizados neste trabalho são apresentados com detalhes na seqüência.

2.2.4.1 Critério baseado na descontinuidade dos campos

Utilizando as três equações abaixo:

$$\nabla \times \vec{H} = \vec{J} \tag{2.2}$$

$$\nabla \cdot \vec{B} = 0 \tag{2.3}$$

$$\bar{B} = \nabla \times \bar{A}^* \tag{2.4}$$

A equação (2.3) é satisfeita com a continuidade C^0 de \overline{A}^* , o que não ocorre na equação (2.2). Esta última resulta em:

$$\nabla \times \bar{H} - \bar{J} = r \tag{2.5}$$

Aplicando-se a equação (2.2) na interface entre duas regiões quaisquer desprovida de densidade de corrente superficial, obtém-se a seguinte condição de fronteira (Figura 2.1):

$$\bar{H}_{t_1} = \bar{H}_{t_2} \tag{2.6}$$

Esta equação deve ser satisfeita na interface entre dois elementos quaisquer. Entretanto, considerando a equação (2.5), tem-se:

$$\bar{H}_{i_1} - \bar{H}_{i_2} = \Delta \bar{H}_i \tag{2.7}$$

onde $\Delta \vec{H}_{t}$ é o salto ou descontinuidade na componente tangencial de \vec{H} na interface entre os elementos 1 e 2.

Figura 2.1 Condição de fronteira entre dois elementos vizinhos.

O indicador local de erro é definido por:

$$n_{e} = Max_{j=1,3} \left| \int \frac{\left(\vec{H}_{i_{i}} - \vec{H}_{i_{j}} \right) d\Omega}{\sum \vec{B}_{i}} \right|$$
(2.8)

O erro em cada elemento é dado então pela maior descontinuidade entre cada elemento e os de sua vizinhança.

2.2.4.2 Critério do teorema de Ampère

O resíduo da equação (2.5), é estimado através da forma integral da equação (2.2) [26]:

$$\int_{\Gamma} \vec{H} \cdot d\vec{l} = \int_{\Omega} \vec{J} d\Omega \tag{2.9}$$

onde Γ é o contorno e Ω é a superfície do elemento.

A equação (2.9) é aplicada sobre o contorno Γ_i e a superfície Ω_i do elemento *i* (Figura 2.2).

O indicador local de erro é definido por:

$$n_{e} = \int_{\Gamma_{1}} \vec{H}_{i_{1}} d\vec{l}_{1} + \int_{\Gamma_{2}} \vec{H}_{i_{2}} d\vec{l}_{2} + \int_{\Gamma_{3}} \vec{H}_{i_{3}} d\vec{l}_{3} - \int_{\Omega_{i}} \vec{J} d\Omega$$
(2.10)

Figura 2.2 Aplicação do teorema de ampère.

2.2.4.3 Critério da perturbação dos campos

Este critério analisa a variação no módulo da indução magnética em um mesmo elemento durante o processo iterativo [4,11]. Após obter uma solução em uma malha inicial sem que exista uma solução referente a uma malha anterior, para que a variação de $|\vec{B}|$ possa ser quantificada, a seleção dos elementos a serem refinados é efetuada, comparando-se o valor de $|\vec{B}|$ em um elemento com a média calculada nos elementos vizinhos, ou seja, inicialmente o erro é estimado apartir de:

$$\left|n_{e}\right| = \left|\vec{B}_{i} - \vec{B}_{m}\right| \tag{2.11}$$

onde, $\vec{B}_i \in |\vec{B}|$ no elemento i .

$$\vec{B}_m = \frac{\vec{B}_1 + \vec{B}_2 + \cdots + \vec{B}_n}{n} \tag{2.12}$$

onde \vec{B}_{m} é a média de $|\vec{B}|$ nos elementos vizinhos, e *n* é o número de elementos.

Após os elementos terem sido subdivididos uma vez, o erro passa a ser estimado por:

$$|n_{e}| = |\vec{B}_{K+1} - \vec{B}_{K}|_{i}$$
(2.13)

onde \vec{B}_k é a indução magnética calculada na K-ésima iteração no elemento i.

Neste procedimento é considerado que os nós da malha corrente são conectados igualmente na malha anterior. Entretanto, isto é apenas uma aproximação, pois algumas vezes os nós são reconectados de modo a evitar que surjam elementos com ângulos muito pequenos entre os lados adjacentes de um elemento [11].

2.3 GERAÇÃO DA MALHA

A geração automática é o mecanismo que permite ao computador, após a estrutura ter sido fornecida pelo operador, discretizar o domínio de estudo construindo um modelo numérico do problema físico automaticamente.

Existe um alto nível de sofisticação nos algoritmos capazes de efetuar este trabalho, pois entre outras coisas, deseja-se que a malha adapte-se perfeitamente a região fornecida pelo operador, sem que no entanto existam elementos distorcidos.

2.3.1 Algoritmo do programa EFCAD [1]

Para compreender o algoritmo utilizado no programa EFCAD, deve-se observar a Figura (2.3). O primeiro passo, consiste na obtenção de um segmento padrão na divisão do perímetro de R em segmentos de comprimento igual ou muito próximo ao segmento padrão (2.3a). Em seguida, são fechados os ângulos agudos existentes (2.3b), iniciando assim a triangularização. Quando todos os ângulos estão fechados, é procurada alguma concavidade existente em R se encontrada, a região R é subdividida em duas novas regiões R_1 e R_2 no ponto da concavidade (2.3c).

Novamente, são procurados e fechados novos ângulos agudos que possam ter surgido após a operação anterior (2.3d). A região R_1 está agora totalmente discretizada, enquanto em R_2 não existem ângulos agudos, nem concavidades. O próximo passo, é então calcular o baricentro B de R_2 , formando o segmento BA o qual, sendo muito grande deve estar dividido no ponto C. Novos ângulos agudos são fechados (2.3e), um novo baricentro B_1 é calculado e finalmente os novos nós restantes são unidos a B_1 , finalizando a discretização (2.3f). Obviamente, a dimensão dos elementos e o número dos mesmos na malha depende da extensão do segmento padrão.

Figura 2.3a Divisão da região em segmentos.

Figura 2.3b Corte de ângulos agudos.

Figura 2.3c Corte na concavidade.

Figura 2.3d Corte de ângulo agudo em R_1 e definição de baricentro em R_2 .

Figura 2.3e Corte de ângulo agudo em R₂ e definição de baricentro B₁.

2.4 REFINAMENTO DA MALHA

O refinamento de um elemento qualquer na malha é efetuado, de maneira geral, através da bisseção dos lados do elemento. Ao ser refinado, cada elemento na malha é dividido em quatro elementos menores, através da conexão dos pontos médios dos lados de um quadrilátero ou triângulo (Figura 2.4 e 2.5).

Figura 2.4 Refinamento de um elemento quadrilateral.

Figura 2.5 Refinamento de um elemento triangular.

2.4.1 Os elementos a serem refinados

2.4.1.1 Refinamento "a-priori"

Como a "profundidade de penetração" é em geral muito pequena, deve-se discretizar os elementos da fronteira das regiões condutoras, para que sejam menores ou iguais a "profundidade de penetração". Seguindo este raciocínio, é calculado o "tamanho" h (Figura 2.6) de todos os elementos da fronteira. Em cada iteração os elementos que não satisfizerem à condição

$h \leq \delta$

serão escolhidos para serem refinados.

Figura 2.6 Fronteira de uma região condutora

onde: F - Fronteira da região condutora;

h - "Tamanho" do elemento;

 \overline{B} - Indução magnética.

2.4.1.2 Refinamento "a-posteriori"

O objetivo do refinamento é fazer o erro em cada elemento aproximadamente constante em toda a malha [4,15]. Seguindo este raciocínio, é calculado um valor médio para o erro em toda a malha, ou seja:

$$\|n_m\| = \sum \frac{\|n_e\|}{n} \tag{2.14}$$

onde: n_m - é o erro médio na malha;

 n_{e} - é o indicador de erro em cada elemento;

n - é o número de elementos.

Sendo este um processo iterativo, em cada iteração os elementos que não satisfazem a equação (2.15), serão escolhidos para serem refinados.

$$\|n_e\| \le \|n_m\| * K \tag{2.15}$$

Na equação (2.15), K é uma função definida externamente que estabelece o limite máximo para $||n_e||$ em cada elemento. Atribuindo-se a unidade ao valor de K, a cada iteração são refinados os elementos cujo n_e seja igual ou superior $||n_m||$. Assim, o erro médio na malha tende a diminuir, ao mesmo tempo em que o módulo do erro por elemento torna-se aproximadamente constante na malha. A interrupção do processo iterativo é efetuada quando o índice de convergência, definido pela equação (2.16), cai abaixo de um valor especificado externamente.

$$C = \frac{\|n_e\|_{K} - \|n_e\|_{K-1}}{\|n_e\|_{K}}$$
(2.16)

onde: K, K-1 - referem-se respectivamente ao modelo atual e o imediatamente anterior;

C - é o indice de convergência.

2.5 CONCLUSÕES

Neste capítulo foi apresentado o processo de geração e refinamento da malha. Apresentou-se também critérios de erro, que podem ser utilizados para identificar regiões em uma malha de elementos finitos que são mais afetadas pelo erro. Estas regiões são sucessivamente refinadas até uma malha de melhor qualidade ser obtida.

CAPÍTULO 3

CONDIÇÃO DE IMPÊDANCIA DE FRONTEIRA APLICADA AO MÉTODO DE ELEMENTOS FINITOS

3.1 INTRODUÇÃO

Quando se está trabalhando com médias e altas freqüências a "profundidade de penetração" dos campos é muito pequena nas regiões com correntes induzidas, portanto uma malha muito fina é requerida para discretizar estas regiões. A discretização destas regiões através de malhas adaptativas é muito dispendiosa em termos de memória computacional e tempo de processamento. Para superar esta dificuldade será utilizada a *condição de impedância de fronteira* [17,18,19,20,21,22,23]. A *condição de impedância de fronteira* [17,18,19,20,21,22,23]. A *condição de impedância de fronteira* (IBC - Boundary Impedance Condition) é uma condição de fronteira que é aplicada à fronteira das regiões condutoras. A utilização da condição de studo (Figura 3.1). Assim o número de elementos fica reduzido e o sistema a ser solucionado torna-se menor.

A condição de fronteira utilizada neste trabalho é uma condição de fronteira de Neumann não homogênea.

Figura 3.1 Exemplo de aplicação do IBC.

3.2 DETERMINAÇÃO DA CONDIÇÃO DE IMPEDÂNCIA

Supõa-se uma onda viajando na direção do eixo y, conforme Figura 3.2. O campo elétrico \vec{E} tem somente uma componente E_z na direção z, e o campo magnético \vec{H} tem somente uma componente H_x na direção x.

Figura 3.2 Penetração do campo em região condutora semi-infinita.

A equação que descreve o fenômeno na região condutora é:

$$\frac{1}{\mu} \nabla \cdot (\nabla \bar{A}^*) = j w \sigma \bar{A}^*$$
(3.1)

uma vez que $\vec{A}^* = A^* \vec{k}$ e os campos, para a onda plana uniforme, variam somente com y, a equação (3.1) torna-se:

$$\frac{d^2 A^*}{d y^2} - j w \sigma \mu A^* = 0 \tag{3.2}$$

Definindo-se a constante de propagação como:

$$\gamma^2 = j w \, \sigma \mu \tag{3.3}$$

a equação (3.2) torna-se:

$$\frac{d^2 A^{\bullet}}{d y^2} - \gamma^2 A^{\bullet} = 0 \tag{3.4}$$

Uma solução para equação (3.4), para uma onda se propagando na direção $y \in [20,21]$:

$$A^* = A^*_{o} e^{-\gamma y} \tag{3.5}$$

onde A_{o}^{*} é o potencial vetor na superficie de separação.

Como tem-se que para potencial vetor:

$$\vec{B} = \nabla \times \vec{A}^* \tag{3.6}$$

Para uma onda plana viajando na direção y a única parcela da equação (3.6) que contribui é:

$$\frac{\partial A^{\bullet}}{\partial y} = B_x \tag{3.7}$$

Seja, a equação (3.8),

$$B_{x} = \frac{\partial (A_{o}^{*} e^{-\gamma y})}{\partial y} = -\gamma A^{*}$$
(3.8)

Como a direção y é a direção normal então pode-se escrever:

$$B_x = \frac{\partial A^*}{\partial \bar{n}} = -\gamma A^* \tag{3.9}$$

A expressão (3.9), é a condição de impedância de fronteira que será utilizada neste trabalho.

3.3 MODELAGEM MATEMÁTICA

Considera-se que nesta seção o problema a ser resolvido é idêntico ao do capítulo 1.

A equação que rege o fenômeno no domínio de estudo Ω é:

$$\nabla \cdot (\nabla \nabla A^{\bullet}) - j w \sigma A^{\bullet} + J_e = 0$$
(3.10)

onde $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$.

3.3.1 A formulação fraca

A formulação fraca é obtida apartir da definição do residual r, tal que:

$$r = \nabla \cdot (\nabla A^*) - j w \sigma A^* + J_e$$
(3.11)

em cada domínio regular de Ω .

Multiplica-se agora r por uma função de teste v suficientemente regular e faz-se a média ponderada igual a zero.

$$\int_{\Omega} \mathbf{v} \nabla \cdot (\mathbf{v} \nabla A^*) d\Omega - j \int_{\Omega} \mathbf{v} \sigma w A^* d\Omega + \int_{\Omega} \mathbf{v} J_e d\Omega = 0$$
(3.12)

A equação que rege o fenômeno nas regiões não condutoras do domínio de estudo ($\Omega_1 \in \Omega_3$) é:

$$\int_{\Omega} \mathbf{v} \nabla \cdot \left(\mathbf{v} \nabla A^* \right) d\Omega + \int_{\Omega} \mathbf{v} J_e d\Omega = 0$$
(3.13)

Integrando-se o primeiro termo da equação (3.13) por partes e aplicando o teorema da divergência, obtém-se:

$$-\int_{\Omega} \nabla \mathbf{v} \cdot (\mathbf{v} \nabla A^{*}) d\Omega + \int_{\Gamma_{m}} \mathbf{v} \mathbf{v} \nabla A^{*} \cdot \bar{n} d\Gamma + \int_{\Omega} \mathbf{v} J_{e} d\Omega = 0$$
(3.14)

onde Γ_m representa a fronteira entre as regiões condutora e não condutora.

Considerando-se o segundo termo da equação (3.14):

$$\int_{\Gamma_m} \nabla V_1 \, \frac{\partial A^*}{\partial \bar{n}} d\,\Gamma \tag{3.15}$$

onde v_1 é a relutividade magnética na região não condutora (Ω_1) .

Este termo será usado como um meio de acoplar as formulações descrevendo o fenômeno em duas áreas condutora e não condutora. Como a continuidade de \bar{H}_i (tangencial) pode ser assegurada para a fronteira [17,18], então:

$$v_1 \left(\frac{\partial A^*}{\partial \bar{n}}\right)_{nc} = v_2 \left(\frac{\partial A^*}{\partial \bar{n}}\right)_c$$
(3.16)

onde: v_2 - relutividade magnética na região condutora (Ω_2) ;

nc - não condutora;

c - condutora.

Então a expressão (3.15), torna-se:

$$\int_{\Gamma_m} \nabla v_2 \frac{\partial A^*}{\partial \bar{n}} d\Gamma$$
(3.17)

Como mostra a aproximação unidimensional na seção 3.2, a derivada normal do potencial A^{\bullet} é:

$$\frac{\partial A^{\bullet}}{\partial \bar{n}} = -\gamma A^{\bullet} \tag{3.18}$$

Com a região condutora retirada do domínio de estudo, a expressão que descreve o fenômeno nas regiões Ω_1 e Ω_3 (Equação 3.14) torna-se:

$$\int_{\Omega} \nabla \mathbf{v} \cdot (\mathbf{v} \, \nabla A^{\bullet}) d\,\Omega + \int_{\Gamma_{m}} \mathbf{v} \, \mathbf{v}_{2} \, \gamma \, A^{\bullet} d\,\Gamma = \int_{\Omega} \mathbf{v} \, J_{e} \, d\,\Omega \tag{3.19}$$

3.3.2 A formulação de elementos finitos

Como visto no capítulo 1, o método de elementos finitos fornece uma técnica geral e sistemática para construir funções bases para a aproximação de Galerkin do problema de contorno.

Considerando-se o elemento finito da Figura 3.3:

Figura 3.3 Elemento finito unidimensional.

no qual a solução aproximada $A^* é$ da forma:

$$A^* = a_1 + a_2 \xi \tag{3.20}$$

onde ξ é uma coordenada local.

A equação (3.20) deve ser satisfeita nos dois nós do elemento, logo:

$$A_{1}^{*} = a_{1} + a_{2}\xi_{1} \tag{3.21}$$

$$A_{2}^{\bullet} = a_{1} + a_{2}\xi_{2} \tag{3.22}$$

Resolvendo o sistema para a_1 e a_2 e substituindo os coeficientes na equação (3.20), tem-se:

$$A^{*} = N_{1} A_{1}^{*} + N_{2} A_{2}^{*}$$
(3.23)

onde:

$$N_1 = 1 - \frac{\xi}{d} \tag{3.24}$$

$$N_2 = \frac{\xi}{d} \tag{3.25}$$

sendo N_i igual 1 sobre o nó *i* e igual a zero nos demais nós, e *d* é o comprimento do elemento.

A aproximação da integral de fronteira da equação (3.19), por elementos finitos é:

$$\int_{\Gamma_m} \mathbf{V} \, \mathbf{v}_2 \, \boldsymbol{\gamma} \, \mathcal{A}^* \, d \, \Gamma \tag{3.26}$$

onde A^* é a solução aproximada de A^* dada por :

$$A^* = \sum_{i=1}^{nnf} A_i^* N_i \tag{3.27}$$

onde *nnf*, é o número de nós da fronteira Γ_m .

Substituindo a equação (3.27) na equação (3.26), obtém-se:

$$\int_{\Gamma_m} \nabla v_2 \gamma \sum_{i=1}^{nnf} A_i^* N_i d\Gamma$$
(3.28)

e escolhendo a função de teste v da forma que $v_j = N_j$ e substituindo em (3.28), tem-se:

$$\int_{\Gamma_m} N_j \, v_2 \, \gamma \sum_{i=1}^{nnf} A_i^* \, N_i \, d \, \Gamma \tag{3.29}$$

retirando o somatório para fora da integral a equação (3.29), transforma-se:

$$\sum_{i=1}^{nnf} \int_{\Gamma_{m}} N_{j} v_{2} \gamma A_{i}^{*} N_{i} d\Gamma$$
(3.30)

Conseqüentemente a equação a ser integrada em todo domínio de estudo

 $\sum_{i=1}^{nno} \int_{\Omega} \nabla N_j \cdot \left(v \nabla N_i A_i^* \right) d\Omega + \sum_{i=1}^{nnf} \int_{\Gamma} N_j v_2 \gamma N_i A_i^* d\Gamma = \int_{\Omega} N_j J_e d\Omega$ (3.31)

onde o primeiro e o terceiro termo foram desenvolvidos no capítulo 1.

A equação (3.31) na forma matricial, torna-se:

$$\sum_{i=1}^{nno} K_{ij} A_i^* + \sum_{i=1}^{nnf} R_{il} A_i^* = F_j \qquad (j = 1, nno \ e \ l = 1, nnf)$$
(3.32)

Aqui K_{ij} e R_{ij} são as matrizes de contribuição local e F_j é a matriz fonte, sendo elas especificadas abaixo:

$$K_{ij} = \int_{\Omega} \nabla N_j \cdot (\nu \, \nabla N_i) \, d\,\Omega \tag{3.33}$$

$$R_{ij} = \int_{\Gamma m} N_j \, v_2 \, \gamma \, N_i \, d \, \Gamma \tag{3.34}$$

$$F_j = \int_{\Omega} N_j J_e d\Omega \tag{3.35}$$

3.3.3 A matriz de contribuição local unidimensional

Considerando-se o elemento Ω_e , como mostrado na Figura 3.4, onde 1 e 2 representam os índices nodais. O sistema de coordenada local ξ do elemento tem sua origem no nó 1. As funções N_1 e N_2 , são dadas em termos de coordenadas local por:

$$N_1 = 1 - \frac{\xi}{d} \tag{3.36}$$

$$N_2 = \frac{\xi}{d} \tag{3.37}$$

é:

Figura 3.4 Elemento finito unidimensional na fronteira.

De acordo com a equação (3.34), os coeficientes da matriz para o elemento genérico são:

$$R_{11} = v_2 \gamma \int_0^d N_1 N_1 d\xi = v_2 \gamma \frac{d}{3}$$
(3.38)

$$R_{12} = v_2 \gamma \int_0^d N_1 N_2 d\xi = v_2 \gamma \frac{d}{6}$$
(3.39)

$$\mathbf{R}_{21} = \mathbf{v}_2 \,\gamma \int_0^d \mathbf{N}_2 \,\mathbf{N}_1 \,d\,\xi = \mathbf{v}_2 \,\gamma \frac{d}{6} \tag{3.40}$$

$$R_{22} = v_2 \gamma \int_0^d N_2 N_2 d\xi = v_2 \gamma \frac{d}{3}$$
 (3.41)

Então a matriz para o elemento Ω_e é:

$$\frac{\nu_2 \gamma d}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
(3.42)

A matriz de contribuição local unidimensional para cada elemento da fronteira é armazenada em um sistema matricial global, onde todos os nós da malha são considerados.

3.4 CONCLUSÕES

A condição de impedância de fronteira aplicada ao método de elementos finitos, aplicando a formulação potencial vetor, apresenta as seguintes vantagens:

a) ganho no tempo de discretização,

b) sistema menor a ser solucionado e portanto ganho em memória computacional e

c) ganho no tempo de processamento.

No próximo capítulo será apresentado os resultados obtidos com a geração adaptativa e a condição de fronteira.

CAPÍTULO 4

RESULTADOS E COMPARAÇÕES

4.1 INTRODUÇÃO

Neste capítulo serão apresentados e comentados os resultados obtidos com o *refinamento auto-adaptativo* e com a *condição de impedância de fronteira*. Os resultados obtidos com os critérios de erro serão analisados através da suavização dos campos nas regiões de interesse e da variação da energia magnética a cada iteração para um cabo trifásico. Para testar a validade da *formulação de impedância de fronteira* serão realizadas duas comprovações:

- comparação entre as linhas de campo obtidas com o programa (EFCC), e o programa com a *condição impedância de fronteira* (EFCC + IBC) para uma linha de potência na presença de uma blindagem [18];

- confrontação entre soluções numéricas obtidas para o H_t (tangencial) na superfície de separação entre uma placa condutora e uma espira. O problema é axi-simétrico e uma fonte de excitação de alta freqüência é utilizada [27].

4.2 REFINAMENTO AUTO-ADAPTATIVO

4.2.1 Cabo trifásico

Nesta seção o objeto a ser analisado é a estrutura da Figura 4.1, onde temos um cabo trifásico com três condutores e uma blindagem. Os condutores internos possuem um raio de 24.25mm. A blindagem tem um raio interno de 109.5mm, e uma espessura de 16mm. Nos condutores $A \in B$ e na blindagem C serão induzidas correntes \vec{J}_i devido a uma variação temporal da corrente \vec{J}_e . As regiões condutoras possuem $\mu_r = 1$

e $\sigma = 1 \times 10^7 (1/\Omega m)$. Inicialmente é apresentado a estrutura do cabo na Figura 4.1, e a malha inicial na Figura 4.2. Em seguida são apresentadas as linhas equipotenciais para as freqüências de 100Hz (Figura 4.3), e 1000Hz (Figura 4.4). A malha inicial possui 444 nós e 826 elementos, e a "profundidade de penetração" do campo para 100Hz e 1000Hz são respectivamente 15.90 mm e 5.035 mm.

Figura 4.1 Estrutura do cabo.

Figura 4.2 Malha inicial.

Figura 4.3 Linhas equipotenciais-100Hz.

Figura 4.4 Linhas equipotenciais-1000Hz.

4.2.1.1 Descontinuidade de campo

As malhas finais obtidas com este critério são mostradas nas Figuras 4.5 e 4.6. Na freqüência de 100Hz a malha final possui 1548 elementos e 805 nós, e em 1000Hz possui 3312 elementos e 1667 nós

Figura 4.5 Malha final-100Hz.

Figura 4.6 Malha final-1000Hz.

As linhas equipotenciais estão mostradas nas Figuras 4.7 e 4.8.

Figura 4.7 Linhas equipotenciais-100Hz.

Figura 4.8 Linhas equipotenciais-1000Hz.

4.2.1.2 Teorema de Ampère

As Figuras 4.9 e 4.10 apresentam as malhas finais refinadas, e as Figuras 4.11 e 4.12 apresentam as equipotenciais relativas a este critério de erro. Na freqüência de 100Hz a malha final possui 1930 elementos e 996 nós, e em 1000Hz possui 3396 elementos e 1729 nós.

Figura 4.9 Malha final-100Hz.

Figura 4.10 Malha final-1000Hz.

Figura 4.11 Linhas equipotenciais-100Hz.

Figura 4.12 Linhas equipotenciais-1000Hz.

4.2.1.3 Perturbação dos campos

As malhas finais obtidas com este critério são mostradas nas Figuras 4.13 e 4.14, e suas linhas equipotenciais nas Figuras 4.15 e 4.16. Na frequência de 100Hz a malha final possui 1924 elementos e 993 nós, e em 1000Hz possui 2988 elementos e 1530 nós.

Figura 4.13 Malha final-100Hz.

Figura 4.14 Malha final-1000Hz.

Figura 4.15 Linhas equipotenciais-100Hz.

Figura 4.16 Linhas equipotenciais-1000Hz.

4.2.1.4 Refinamento "a-priori" e "a-posteriori"

Finalmente, as malhas finais obtidas com este critério são mostradas nas Figuras 4.17 e 4.18, e suas linhas equipotenciais nas Figuras 4.19 e 4.20. Na freqüência de 100Hz a malha final possui 1974 elementos e 1018 nós, e em 1000Hz possui 4802 elementos e 2432 nós. Como critério de erro "a-posteriori" é utilizado para este caso a descontinuidade de campo.

Figura 4.17 malha final-100Hz.

Figura 4.18 malha final-1000Hz.

Figura 4.19 Linhas equipotenciais-100Hz. Figura 4.20 Linhas equipotenciais-1000Hz.

4.2.1.5 Tabelas

A variação de energia magnética a cada iteração do cabo trifásico da seção 4.2.1, para uma freqüência de 60Hz é fornecida na Tabela 4.1. A Tabela 4.2 apresenta o número de nós e o tempo de processamento para o cabo nas freqüências de 100Hz e 1000Hz.

	Energia (J/m) 1 iteração	Energia (J/m) 2 iteração	Energia (J/m) 3 iteração	Energia (J/m) 4 iteração
Critério 1	0.6294×10^{-5}	0.8490×10^{-5}	0.1063 × 10 ⁴	0.1063 × 10 ⁴
Critério 2	0.6294×10^{-5}	0.9405 × 10 ⁻⁵	0.1778 × 10 ⁻⁴	0.1778 × 10 ⁻⁴
Critério 3	0.6294×10^{-5}	0.1172 ×10 ⁻⁴	0.2399 × 10 ⁴	0.2399×10^{4}
Critério 4	0.6294 × 10 ⁻⁵	0.7872×10^{-5}	0.2852 ×10 ⁻⁴	0.2852 ×10 ⁻⁴

Tabela 4.1

	Critério 1		Critério 2		Critério 3		Critério 4	
Freqüência (hz)	nno	Tempo (s)	nno	Tempo (s)	nno	Tempo (s)	nno	Tempo (s)
100	1018	200	805	166.8	943	180.9	996	175.4
1000	2432	689.3	1667	505	1530	464,4	1729	550

Tabela 4.2

onde: Criterio 1 - Critério"a-priori" e "a-posteriori" (Descontinuidade dos campos);

Critério 2 - Descontinuidades dos campos;

Critério 3 - Perturbação dos campos;

Critério 4 - Teorema de Ampère.

4.2.2 Conclusões

Como pode ser observado através da análise das malhas e linhas equipotenciais obtidas para o cabo trifásico na seção (4.2.1), os critérios de erro mostraram-se muito eficazes: em relação a suavização dos campos, e na identificação das regiões nessecitando refinamento. Através dos resultados obtidos em relação a variação da energia magnética, pode-se concluir que os quatro critérios de erro obtiveram uma boa convergência para a freqüência analisada (Tabela 4.1). Através da observação dos valores apresentados pela tabela 4.2, pode-se notar que o critério da descontinuidades dos campos apresentou um melhor resultado que os demais critérios em relação ao número de nós e ao tempo de processamento. Para todos os casos acima considerados, o critério de parada é o mesmo.

A grande dificuldade da utilização de critérios de erro "a-posteriori" está na malha inicial. Uma malha inicial mal definida pode gerar falsas estimação de erro, e por conseqüência uma malha final incorreta. A proposta inicial deste trabalho foi implementar um critério de erro "a-priori". Este critério teria o objetivo de colocar pelo menos um elemento dentro da "profundidade de penetração". Com isto se conseguiria uma malha inicial de melhor qualidade. Mas a utilização conjunta dos critérios de erro "apriori" e "a-posteriori" apresentou grandes dificuldades na discretização do domínio de estudo em médias e altas freqüências. O grande número de elementos gerados nestas freqüências para promover a discretização, despende muita memória computacional e tempo de processamento.

4.3 CONDIÇÃO DE IMPEDÂNCIA DE FRONTEIRA

4.3.1 Linha de potência

Para fazer uma comparação entre as linhas equipotenciais entre os dois programas, analizar-se-á a estrutura apresentada na Figura 4.21. Primeiro o problema será solucionado utilizando o programa EFCC. Depois esta análise será repetida retirando-se a região condutora do domínio de estudo e aplicando a *condição de impedância de fronteira*.

a) EFCC

As Figuras 4.21 e 4.22 apresentam a estrutura a ser estudada e a sua malha. A região condutora possui um $\mu_r = 1$ e $\sigma = 10^7 (1/\Omega m)$, e a "profundidades de penetração" para às freqüências de 3000Hz, 5000Hz e 7000Hz, são respectivamente **2,9mm**, **2,2mm** e **1,8mm**. Para que bons resultados sejam obtidos para as três freqüências, é necessário um forte refinamento na fronteira da região condutora, devido ao decaimento exponencial do campo à medida que penetra nesta região.

Figura 4.21 Estrutura.

Figura 4.22 Malha.

As linhas equipotenciais são mostradas nas Figuras 4.23, 4.24 e 4.25.

Figura 4.23 Linhas equipotenciais-3000Hz. Figura 4.24 Linhas equipotencia-5000Hz

Figura 4.25 Linhas equipotenciais-7000Hz.

Nas figuras 4.26 e 4.27, tem-se a estrutura a ser estudada e a malha. As linhas equipotenciais para as três frequências são mostradas nas Figuras 4.28, 4.29 e 4.30.

Figura 4.26 Estrutura.

Figura 4.27 Malha.

Figura 4.28 Linhas eqipotenciais-3000Hz.

Figura 4.29 Linhas equipotenciais-5000Hz.

Figura 4.30 Linhas equipotenciais-7000Hz.

Na Tabela 4.3 tem-se o número de nós e elementos, e o tempo de processamento obtidos para os dois programas na freqüência de 1000Hz.

	Número de nós	Número de elementos	Tempo de resolução (s)
EFCC	397	464	3
EFCC + IBC	104	169	0.28

Tabela 4.3

4.3.2 Curvas para o campo tangencial

O campo magnético tangencial através da superfície de separação entre as regiões condutora e não condutora da estrutura apresentada na Figura 4.31, é utilizado para fazer uma confrontação entre duas soluções numéricas. A solução numérica calculada por Sakellaris [27], para as freqüências de 1KHz e 10MHz são apresentadas nas Figuras 4.32 e 4.33. As soluções numéricas obtidas para as duas freqüências através do programa com *condição de impedância de fronteira* (EFCC + IBC) são apresentadas respectivamentes nas Figuras 4.34 e 4.35. A região condutora possui $\mu_r = 100$ e $\sigma = 5 \times 10^6$ (1/ Ω m).

Figura 4.31 Estrutura.

Figura 4.32 Solução numérica (sakellaris) [27]- 1KHz.

Figura 4.33 Solução numérica (Sakellaris) [27]- 10MHz.

Figura 4.34 Solução numérica (IBC)- 1KHz.

Figura 4.35 Solução numérica (IBC)- 10MHz.

Na Figura 4.36, tem-se a curva do campo tangencial para a condição de freqüência infinita, a qual corresponde ao caso em que o campo não penetra na região condutora (potencial vetor magnético constante na superfície de separação).

Figura 4.36 Freqüência infinita.

4.3.3 Conclusões

Através da confrontação entre as linhas equipotenciais para a linha de potência da seção 4.3.1, conclui-se que existe uma boa concordância entre o programa **EFCC** e o programa com a *condição de impedância de fronteira* (**EFCC + IBC**). Os resultados númericos obtidos apresentados na Tabela 4.3, comprovam que a utilização da *impedância de fronteira* torna menor o sistema a ser solucionado e o tempo de processamento.

Com referência a estrutura da Figura 4.31, pode-se notar que existe uma boa concordância entre as curvas obtidas por Sakellaris e o programa (EFCC + IBC) para a
freqüência de 1KHz (Figuras 4.32 e 4.34). Contudo para a freqüência de 10MHz, obteve-se uma pequena diferença entre os dois programas (Figuras 4.33 e 4.35).

Como alternativa para fugir do refinamento das regiões com correntes induzidas em médias e altas freqüências, geralmente era aplicada a condição Dirichlet na superfície de separação (condição de freqüência infinita - Figura 4.36). Pela observação das curvas obtidas para o campo tangencial nas freqüências de 1Khz e 10Mhz (Figuras 4.34 e 4.35), pode-se notar que este tipo de aplicação só consegue bom resultado na freqüência de 10Mhz.

CONCLUSÃO FINAL

No decorrer deste trabalho foram apresentados os conceitos de geração de malhas auto-adaptativas e impedância de fronteira.

Inicialmente, apresentou-se no Capítulo 1 alguns conceitos fundamentais sobre eletromagnetismo e sobre a solução de problemas magnetodinâmicos pelo método de elementos finitos. Em seguida no Capítulo 2 foram apresentados quatro critérios de erro e o processo de geração e refinamento da malha.

No Capítulo 3, foi apresentada a formulação matemática para condição de impedância de fronteira pelo método de elementos finitos.

O capítulo 4, apresentou os resultados obtidos com a condição de impedância de fronteira e com os critérios de erro. Os valores numéricos obtidos demonstram que a utilização do refinamento adaptativo melhora bastante a qualidade da malha inicial, tornando seu uso muito importante em problemas magnetodinâmicos. Constatou-se que em médias e altas freqüências a utilização do procedimento adaptativo aumenta a dimensão da matriz de contribuição global. Este procedimento torna o processo de calculo muito lento e com grande custo computacional. Foi constatado também, que a condição de impedância de fronteira é uma ferramenta muito útil na modelagem de problemas magnetodinâmicos em médias e altas freqüências.

Concluiu-se ainda, que a utilização da condição de impedância de fronteira reduz o tamanho do problema e o tempo de processamento, permitindo a análise de problemas magnetodinâmicos que antes eram de difícil abordagem.

Como sugestão para trabalhos futuros, pode-se citar a utilização da condição de impedância de fronteira em problemas magnetodinâmicos tridimensionais em médias e altas freqüências.

· č

,

ANEXO

PROFUNDIDADE DE PENETRAÇÃO

Supondo que uma onda progressiva se choca perpendicularmente à fronteira de um meio condutor, como mostra a Figura 1. Uma parte da energia incidente é refletida, enquanto o restante penetra no meio condutor. A onda refletida no nosso caso é desprezada [24].

Figura 1 Onda plana entrando em um meio condutor com incidência normal.

A equação de Maxwell obtida da lei de Ampère é:

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \tag{01}$$

ou em coordenadas retangulares:

$$\left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}\right)\vec{i} + \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}\right)\vec{j} + \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}\right)\vec{k} =$$

$$\sigma\left(E_{x}\vec{i}+E_{y}\vec{j}+E_{z}\vec{k}\right)+\frac{\partial\left(D_{x}\vec{i}+D_{y}\vec{j}+D_{k}\vec{k}\right)}{\partial t}$$
(02)

Para uma onda plana viajando na direção y as únicas componentes da equação (02) que contribuem são:

$$-\frac{\partial H_x}{\partial y} = \sigma E_z + \varepsilon \frac{\partial E_z}{\partial t}$$
(03)

A equação de Maxwell obtida da lei de Faraday é:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{04}$$

ou em coordenadas retangulares:

$$\left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}\right)\vec{i} + \left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right)\vec{j} + \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right)\vec{k} = -\frac{\partial \left(B_x\vec{i} + B_y\vec{j} + B_z\vec{k}\right)}{\partial t} \qquad (05)$$

Para uma onda plana viajando na direção y, as únicas componentes da equação (05) que contribuem são:

$$\frac{\partial E_z}{\partial y} = -\mu \frac{\partial H_x}{\partial t} \tag{06}$$

Derivando a equação (03) em relação a y e a equação (06) em relação a

t, tem-se:

$$-\frac{\partial}{\partial y}\frac{\partial E_z}{\partial t} = \frac{1}{\varepsilon} \left(\sigma \frac{\partial E_z}{\partial y} + \frac{\partial^2 H_x}{\partial y^2}\right)$$
(07)

$$-\frac{\partial}{\partial t}\frac{\partial E_z}{\partial y} = \mu \frac{\partial^2 H_x}{\partial t^2}$$
(08)

Visto que a ordem de diferenciação é indiferente, o lado esquerdo da equação (07) é igual ao lado esquerdo da equação (08), de modo que:

$$\frac{\partial^2 H_x}{\partial y^2} - \varepsilon \,\mu \frac{\partial^2 H_x}{\partial t^2} - \sigma \,\mu \frac{\partial H_x}{\partial t} = 0 \tag{09}$$

Admitindo a variação harmônica de H_x em relação a t, pode-se escrever:

$$H_x = H_0 e^{jwt} \tag{10}$$

Tomando a primeira e a segunda derivada da equação (10) em relação a t e substituindo estes valores na equação (09), tem-se:

$$\frac{\partial^2 H_x}{\partial y^2} + \varepsilon \mu w^2 H_x - j w \sigma \mu H_x = 0$$
(11)

o qual, reagrupando os termos torna-se:

$$\frac{\partial^2 H_x}{\partial y^2} - (jw\mu\sigma - w^2\mu\varepsilon)H_x = 0$$
(12)

seja

$$\gamma^2 = j w \mu \sigma - w^2 \mu \varepsilon \tag{13}$$

Então a equação (12), reduz-se a:

$$\frac{\partial^2 H_x}{\partial y^2} - \gamma^2 H_x = 0 \tag{14}$$

onde o termo γ é chamada de constante de propagação.

Uma solução da equação (14) para uma onda se propagando na direção positiva $y \in [24]$:

$$H_{x} = H_{0} e^{-\gamma y} \tag{15}$$

Nos condutores, $\sigma >> w\varepsilon$, de modo que a equação (13) se reduz a :

$$\gamma^2 = j w \,\mu \sigma \tag{16}$$

e

$$\gamma \cong \sqrt{j w \mu \sigma} = (1+j) \sqrt{\frac{w \mu \sigma}{2}}$$
(17)

Portanto, γ tem uma parte real e imaginária. Fazendo $\gamma = \alpha + j\beta$, vê-se que a parte real α está associada a atenuação e β , a parte imaginária, esta associada à fase.

Substituindo o valor de γ da equação (17) na equação (15), tem-se:

$$H_{x} = H_{0} e^{\frac{-\sqrt{w\mu\sigma}}{\sqrt{2}}y} e^{\frac{-j\sqrt{w\mu\sigma}}{\sqrt{2}}y}$$
(18)

Na equação (18), o fator de atenuação é dado por:

$$e^{\frac{-\sqrt{w\mu\sigma}}{\sqrt{2}}y} \tag{19}$$

e o fator de fase por:

$$e^{\frac{-j\sqrt{w\mu\sigma}}{\sqrt{2}}y}$$
(20)

onde w e a freqüência angular (rad/s), e y é a distância (m).

A equação (18), é uma solução da equação da onda para uma onda plana se propagando na direção positiva y em um meio condutor. Ela dá a variação de H_x tanto em grandeza como em fase, em função de y.

Recorrendo à Figura 1, e considerando a onda que penetra no meio condutor, isto é, a onda transmitida. Seja y = 0 na fronteira do meio condutor, de modo que y aumenta positivamente para dentro do meio condutor.

Seja a equação (18) escrita na forma :

$$H_{x} = H_{0} e^{\frac{-y}{\delta}} e^{-j\frac{y}{\delta}}$$
(21)

onde $\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$ e f, é a freqüência.

Em y = 0, $H_x = H_0$ esta é a amplitude do campo na superfície do meio condutor. Agora δ na equação (21) tem a dimensão de distância. A uma distância $y = \delta$, a amplitude do campo é:

$$|H_x| = H_0 e^{-1} \tag{22}$$

Desse modo, H_x diminui para 36,8 % do seu valor inicial, enquanto a

onda penetra a uma distância δ . Será chamado de "profundidade de penetração" o valor δ .

Observando a expressão (23):

$$\delta = \frac{1}{\sqrt{\pi f \,\mu \,\sigma}} \tag{23}$$

notamos que quanto maior a freqüência, menor é a penetração do campo, por outro lado, se o meio é ferromagnético ($\mu >> \mu_0$) menor será a penetração e , finalmente, quanto maior a condutividade menor será δ .

REFERÊNCIAS BIBLIOGRÁFICAS

- [01] BASTOS, J. P.A. "Eletromagnetismo e Cálculos de Campo". Editora da UFSC, Florianópolis, 1989.
- [02] SILVESTER, P. "Campos Eletromagnéticos Modernos". Editora Polígono, 1971.
- [03] BECKER, E. B. & CAREY, G.F. & ODEN, J.T. "Finite Elements: an Introduction". Vol. 1 in Texas Finite Elements Series, Englewood Cliffs (New Jersey-USA), Printice Hall, 1981.
- [04] VANTI M. G. "Um sistema Automático para Geração de Malhas Adaptativas".
 Dissertação de Mestrado, UFSC, Florianópolis, Julho de 1992.
- [05] STRANG, G. & FIX, O. J. "An Analysis of the Finite Element Method". Printice-Hall, 1983.
- [06] MESQUITA, R.C. "Calculo de Campos Tridimensionais usando Elementos Finitos: Magnetoestática". Tese de Doutorado, UFSC, 1990.
- [07] CENDES, Z. J. & SHENTON D. & SHAHNASSER, H. "Magnetic Field Computation using Delaunay Triangulation and Complementary Finite Element Methods". IEEE Trans. on Magn., vol. 19, number 6, pp. 2551-2554, November, 1983.
- [08] BABUSKA, I. & RHEINBOLDT, W. C. "A-Posteriori Error Estimates for the Finite Element Method". Int. J. Numer. Methods Ing., vol. 12,pp. 1597-1615, 1978.

- [09] COULUMB, J-L. "2D and 3D Mesh Generation. Expriment with the Delaunay's Tesselation". Journeés sur la Generation Automatique et L'adaptation de maillages, Grenoble-France, October 1987.
- [10] FERNANDES, P. & GIDIRNO, P. & MOLFINO P. & MOLINARI, G. & REPETTO, M. "A Comparison of Adaptative Strategies for Mesh Refinament based on "A-posteriori" Local Error Estimation Procedures". IEEE Trans. on Magn., vol. 26, number 2,pp. 795-798, March, 1990.
- [11] HOOLE, S.R.H. & JAYAKUMARAN, S. & HOOLE, N. R. G. "Flux Density and Energy Pertubations in Adaptative Finite Element Mesh Generation". IEEE Trans. on Magn., vol. 24, number 1, pp. 322-325, January, 1988.
- [12] RAIZER, A. & MEUNIER, G. & COULOMB, J. L., "An Approach for Automatic Adaptative Mesh Refinament in Finite Computation of Magnetics Fields". IEEE Trans. on Magn., vol 19, number 6, pp. 2311-2316, November, 1983.
- PENNAM, J. & FRASER, J. R. "Dual and Complementary Energy Methods in Eletromagnetism". IEEE Trans. on Magn., vol 19, number 6, pp. 2311-2316, November, 1983.
- [14] RIKABI, S., "An Error Based Approach to Complementary Formulations of Statics Fields Soluctions". Intern. J. Methods Eng., vol 26, 1988.
- [15] LYRA, P. R. M. "Uma Estratégia de Refinamento Auto-Adaptativo do Método dos Elementos Finitos Aplicado a Problemas Bidimensionais Regidos pela Equação de Campo". Dissertação de Mestrado, COPPE/UFRJ, Rio de Janeiro, 1988.

- [16] VANTI, M. G. & BASTOS, J.P.A.. "Um Sistema Automático para Geração de Malhas Adaptativas". Anais do Congresso Brasileiro de Eletromagnetismo Aplicado, pp. 413-421, Junho, 1992.
- [17] RAIZER, A. & MEUNIER, G. & SAKELLARIS J. & DARCHERIF, A. "The Impedance Boundary Condition Applied to the Finite Element Method Using the Magnetic Vector Potencial as State Variable: A Rigorous Solutions for Hight Frequency Aximetric Problems". IEEE Trans. on Magn., vol. 28, number 2, pp. 1643-1646, March, 1988.
- [18] RAIZER, A. & SAKELLARIS, J. & DARCHERIF, A. "On the Use of the Surface Impedance Concept in Shielded and Multiconductor Cable Characterization by Finite Element Method". IEEE Trans. on Magn., vol 28, number 2, March, 1991.
- [19] HOOLE, S.H.R. "The Natural Finite Element Formulation of the Impedance Boundary Conditions in Shielding Structures". Journal of Applied Phisics, vol 61, pp. 3863-3865, 1988.
- [20] SUBMARIAN, S. & HOOLE, S. R. H. "The Impedance Boundary Condition in Element Vector Potencial Formulation". IEEE Trans. on Magn., vol 24, pp. 2503-2505, 1988.
- [21] SUBMARIAN, S. & HOOLE, S. R. H. "The Impedance Boundary Element -Vector Potencial Formulation". IEEE Trans. on Magn., vol 5, number 3, pp. 2503-2505, November, 1988.
- [22] GYMESE, M. & LAVERS, D. "Impedance Boundary Condition for Multiply Connected Domains with Exterior Circuit Conditions". IEEE Trans. on Magn., vol 24, pp. 2101-2105, November, 1989.

- [23] FAWZI, T. & BURKLE, P. E. "On the Use of the Impedance Boundary Condition in Eddy Currents Problems". IEEE Trans. on Magn., vol 21, number 5,pp.1835-1840, September, 1985.
- [24] KRAUS & CARVER "Eletromagnetismo". Editora Guanabara, Rio de Janeiro, 1993.
- [25] CHARI, M. K V. "Finite-Element Solution of the Eddy-Current problem in Magnetic Structures". IEEE Trans. on Pas., pp. 62-72,1974.
- [26] RAIZER A. "Maillage Auto-adaptatif dans les Logiciels de Calcul de Champs Eletromagnetique Bidimensionnel et Tridimensionnel". Tese de Doutorado, Insttitute Polytechinique de Glenoble, 1991.
- [27] SAKELLARIS I. "Modelisation des Regions Minces en Presence de Courants de Focault". Tese de Doutorado, Institute Polytechinique de Grenoble, 1992.