UNIVERSIDADE FEDERAL DE SANTA CATARINA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

METODOLOGIA PARA O ESTUDO DA SEGURANÇA DINÂMICA DE SISTEMAS DE ENERGIA ELÉTRICA USANDO OS MÉTODOS SLEP ITERATIVO E DAS ÁREAS IGUAIS ESTENDIDO

*Dissertação Submetida à Universidade Federal de Santa Catarina para a Obtenção do Grau de Mestre em Engenharia Elétrica'

JORGE ENRIQUE GÓMEZ CASTRO

FLORIANÓPOLIS, AGOSTO DE 1995

METODOLOGIA PARA O ESTUDO DA SEGURANÇA DINÂMICA DE SISTEMAS DE ENERGIA ELÉTRICA USANDO OS MÉTODOS SLEP ITERATIVO E DAS ÁREAS IGUAIS ESTENDIDO

Jorge Enrique Gómez Castro

'Esta dissertação foi julgada para a obtenção do Título de

Mestre em Engenharia Elétrica,

Área de concentração em Planejamento de Sistemas de Energia Elétrica

e aprovada em sua forma final pelo Curso de Pós-Graduação'

Prof. Ildemar Cassana Decker, D. Sc. Orientador

Prof. Enio Valmor Kassick, Dr. Ing. Coordenador do Curso

Banca examinadora

Prof. Ildemar Cassana Decker, D. Sc - Presidente.

Prof. Aguinaldo Silveira e Silva, Ph. D.

Kobuts Salgadon

Prof. Roberto de Souza Salgado, Ph. D.

Prof. Luiz Gonzaga de Sonza Fonseca, D. Sc.

Prof. Edson Luz da Silva, Dr. Eng.

À minha esposa Martha Elena e

meus filhos Claudia Marcela e David

Aos meus pais Lucy e Fabio

iv

AGRADECIMENTOS

Ao professor Ildemar Cassana Decker pela acertada orientação e dedicação no presente trabalho. O seu apoio incondicional, espírito científico e amizade, foi sempre mais um motivo para lutar até a fatiga por conseguir alcançar os objetivos propostos. Obrigado

Aos professores do LABPLAN e LABSPOT, pelos conhecimentos transmitidos.

A todas as pessoas que ao oferecer para mim e minha família a sua sincera amizade, fizeram destes 18 meses um período inesquecível em nossas vidas. Que Deus os abençoe. Muito obrigado.

À CAPES pelo apoio financeiro.

À Interconexión Eléctrica S. A., ISA, pelo apoio institucional.

v

SUMÁRIO

Lista de Figuras	xi
Lista de Tabelas	xiii
Nomenciatura	XV
Operadores	xviii
Abreviaturas	xix
Resumo	xx
Abstract	xxi
Capítulo 1	xx
1. INTRODUÇÃO	1
CAPÍTULO 2.	7
2. Formulação matemática dos métodos SLEP iterativo e critério de áre	EAS IGUAIS
ESTENDIDO	7
2.1 Introdução	. 7
2.2 O método SLEP iterativo	7
2.2.1 Modelo matemático utilizado	7
2.2.2 O segundo método de Liapunov	9
2.2.3 A função energia	. 13

2.2.4 A Superficie Limite de Energia Potencial SLEP	
2.2.5 Processo iterativo de cálculo da energia crítica e tempo crítico de elimina	ção do
defeito	14
2.2.6 Extensões do método SLEP iterativo	17
2.2.6.1 Método da direção S	17
2.2.6.2 Redespacho através da análise de sensibilidade	18
2.2.6.3 Outras extensões do SLEP iterativo	19
2.3 O critério de áreas iguais estendido	19
2.3.1 O EEAC estático	20
2.3.1.1 Modelo equivalente agregado de duas máquinas	20
2.3.1.2 Modelo equivalente de uma máquina ligada a barra infinita	22
2.3.1.3 Aplicação do critério de áreas iguais	23
2.3.1.4 Cálculo do tempo crítico	25
2.3.1.5 Estratégias para a escolha dos conjuntos críticos candidatos	25
2.3.2 O critério de áreas iguais estendido dinâmico	27
2.3.2.1 Modelo equivalente do DEEAC	28
2.3.2.2 Simulação da trajetória e OMIB dinâmico equivalente	29
2.3.3 Extensões do EEAC	31
2.3.3.1 Incorporação do RAT no EEAC	31
2.3.3.2 Incorporação do "fast valving" e da rejeição de geração no EEAC	32
2.4 Conclusões	32
CAPÍTULO 3	32
3. Implementação computacional e avaliação crítica do critério de áreas iguais es	TENDIDO32
3.1 Introdução	32
3.2 Implementação computacional do EEAC	32
3.2.1 Seleção dos conjuntos críticos candidatos	34
3.2.2 Cálculo do ângulo crítico	35
3.2.3 Cálculo do tempo crítico	37

vii

3.2.4 Escolha do conjunto crítico para uma contingência.	39
3.2.5 Implementação do EEAC dinâmico (DEEAC)	40
3.3 Avaliação do critério de áreas iguais estendido	43
3.3.1 Sistemas de potência empregados na avaliação	.43
3.3.2 Critérios de escolha do conjunto crítico	44
3.3.2.1 Aceleração inicial	44
3.3.2.2 Critério composto : aceleração inicial - distância elétrica	46
3.3.2.3 Classificação das máquinas mais afastadas em t=tu	46
3.3.3 Avaliação comparativa dos métodos EEAC estático e dinâmico e do SLEP	
iterativo	51
3.4 Conclusões	57
Capitulo 4	59
 4. DETERMINAÇÃO DE AÇÕES DE CONTROLE PARA A MELHORIA DA SEGURANÇA DINÂMICA 4.1 Introdução 	59 59
4.2 Correção da segurança dinâmica	60
4.2.1 Metodologia geral de correção da segurança dinâmica.	60
4.2.2 Avaliação da segurança dinâmica	61
4.3 Integração das metodologias SLEP iterativo e EEAC	62
4.3.1 Determinação dos conjuntos críticos utilizando o SLEP iterativo	62
4.3.2 Margens de segurança do SLEP iterativo e do EEAC	64
4.4 Coeficientes de sensibilidade da margem de segurança usando o OMIB equivalente	68
4.5 Algoritmo proposto para a melhoria da segurança dinâmica dos SEE	69
4.6 Identificação e quantificação das ações de controle	71
4.6.1 Formulação do problema de otimização	71
4.6.1.1 Restrições de estabilidade transitória	72
4.6.1.2 Restrições dos componentes do sistema	72
4.6.1.3 Equação do balanço de potência	73
4.6.1.4 Função objetivo	73

4.6.1.5 A margem "global" e a sensibilidade da segurança do sistema	74
4.6.1.6 O problema de otimização completo	75
4.6.2 O módulo ACUCSO : Ações de Controle Utilizando os Coeficientes de	
Sensibilidade do OMIB	76
4.6.2.1 O ACUCSO para a pior contingência	77
4.6.2.2 O ACUCSO simultâneo	78
4.6.2.3 Implementação do algoritmo ACUCSO simultâneo	84
4.6.2.4 Situações peculiares no algoritmo ACUCSO	84
4.7 Conclusões	86
Capitulo 5	87
5. Testes Computacionais	87
5.1 Introdução	87
5.2 Validação das metodologias desenvolvidas	88
5.2.1 Correção da segurança da pior contingência	88
5.2.1.1 Sistema teste 1	. 88
5.2.1.2 Sistema teste 2	88
5.2.1.3 Comentários	89
5.2.2 Correção da segurança utilizando o ACUCSO simultâneo	94
5.2.2.1 Sistema teste 1	94
5.2.2.2 Sistema teste 2	96
5.3 Desempenho computacional	100
5.4 Comparação com o método da direção S	102
5.4.1 Sistema teste 1	102
5.4.2 Sistema teste 2	105
5.5 Comparação com a metodologia do redespacho através da análise de sensibilidade e	
programação linear	107
5.6 Conclusões	111

	-
Capitulo 6	112
5. Conclusões Gerais e Sugestões para Trabalhos Futuros	112
6.1 Introdução	112
6.2 Conclusões gerais	112
6.3 Contribuições feitas no presente trabalho	113
6.4 Sugestões para futuros trabalhos	114
APÊNDICE A	115
A. Critério de áreas iguais estendido - casos peculiares	115
APÊNDICE B	122
3. Expressões Analíticas dos Coeficientes de Sensibilidade das Marge	ENS DE SEGURANÇA 122
B.1 Sensibilidades de primeira ordem	123
B.2 Sensibilidades de segunda ordem	126
APÊNDICE C	129
C. Dados do Sistema Teste I : Equivalente Sul Brasileiro	129
IPÊNDICE D	133
D. DADOS DO SISTEMA TESTE 2: SISTEMA COLOMBIANO	133
REEPÊNCIAS RIBI IOCRÁFICAS	138

x

r

LISTA DE FIGURAS

Figura 2.2.1 - Representação da i-ésima barra de geração
Figura 2.2.2 - Trajetórias de um sistema hipotético para vários tempos de eliminação do
defeito12
Figura 2.2.3 - Ilustração de como é calculada a energia e o tempo crítico no SLEP iterativo17
Figura 2.2.4 - Ilustração da determinação da direção S
Figura 2.3.1 - Ilustração do critério de áreas iguais
Figura 2.3.2 - Representação do procedimento que utiliza o OMIB dinâmico
Figura 3.2.1 - Fluxograma do algoritmo implementado para a avaliação do EEAC
Figura 3.2.2 - Casos especiais no cálculo do ângulo crítico
Figura 3.2.3 - Fluxograma do algoritmo para a escolha do tempo e o conjunto crítico entre
uma lista de conjuntos candidatos
Figura 3.2.4 - Representação do procedimento que utiliza o OMIB dinâmico
Figura 3.3.1 - Ângulos das máquinas no tempo, com tempo de abertura de 0,031 segundos,
levemente maior que o tempo crítico (0,030 segundos)45
Figura 3.3.2 - Ângulos das máquinas para a contingência na linha 111-113 do sistema 2, com
tempo de abertura levemente maior que o tempo crítico (0,274 segundos)47
Figura 3.3.3 - Trajetória para o caso 1, com tempo de abertura de 0,309 segundos
Figura 3.3.4 - Mudanças no modo de oscilação para a contingência 391-398 do sistema 150
Figura 3.3.5 - Comparação qualitativa do erro no cálculo do tempo crítico dos métodos
SLEP iterativo, EEEAC e DEEAC
Figura 3.3.6- Comparação qualitativa do erro no cálculo do tempo crítico na faixa de
interesse para a segurança dinâmica56
Figura 4.2.1 - Algoritmo geral conceitual de melhoria da segurança dinâmica dos SEE61
Figura 4.3.1 - Trajetórias de um sistema hipotético para vários tempos de eliminação do
defeito

Figura 4.3.2 - Áreas acelerante e desacelerante do EEAC, para permanência da falta igual ao
tempo da proteção e ao tempo crítico65
Figura 4.5.1 - Diagrama de blocos do algoritmo proposto no presente trabalho, para
avaliação e correção da segurança dinâmica dos SEE70
Figura 4.6.1 - Algoritmo implementado para o módulo ACUCSO simultâneo
Figura 5.2.1 - Condições inicial e final de segurança do sistema 1, corrigido para a pior
contingência
Figura 5.2.2- Condições inicial e final de segurança do sistema 2, corrigido para a pior
contingência
Figura 5.2.3 - Condições inicial e final de segurança do sistema 2, corrigido pelo ACUCSO
simultâneo98
Figura 5.3.1 - Tempo de CPU gasto em cada iteração pela metodologia do presente trabalho,
em função do número de contingências
Figura 5.4.1 - Comparação dos redespachos feitos em cada iteração, pelo método da direção
S e o ACUCSO simultâneo, no sistema teste 1104
Figura 5.4.2 - Comparação da condição final do sistema 1, redespachado pelo ACUCSO
simultâneo e o método da direção S104
Figura 5.4.3 - Comparação da condição final do sistema 2, redespachados pelo ACUCSO e o
método da direção S106
Figura 5.4.4 - Redespachos feitos para o sistema 2 pela direção S, a pior contingência e o
ACUCSO simultâneo
Figura A.1 - Caso normal na aplicação do critério das áreas iguais
Figura A.2 - Aplicação critério de áreas iguais : (a) caso 1 (b) caso 2
Figura A.3 - Aplicação do critério de áreas iguais, casos 3 e 4119
Figura A.4 - Aplicação critério de áreas iguais : casos 5 e 6
Figura C.1 - Diagrama do sistema teste 1
Figura D 1 - Diagrama do sistema teste 2

xii

LISTA DE TABELAS

Tabela 3.3.1 - Acelerações inicias das máquinas para a contingência 202-106 do sistema 245
Tabela 3.3.2 - Classificação das máquinas para o exemplo 2, segundo o critério composto47
Tabela 3.3.3 - Classificação das máquinas mais afastadas para o exemplo 3
Tabela 3.3.4 - Parâmetros utilizados na execução do programa SLEP iterativo
Tabela 3.3.5 - Tempos críticos para o sistema teste 1, calculados pelo EEAC, SLEP iterativo
e simulações passo a passo52
Tabela 3.3.6 - Tempos críticos para o sistema teste 2, calculados pelo EEAC, SLEP iterativo
e simulações passo a passo53
Tabela 3.3.7 - Erro percentual no cálculo do tempo crítico do EEAC e o SLEP iterativo
Tabela 4.6.1 - Condição de geração atual de um sistema hipotético
Tabela 4.6.2 - Condição de segurança atual de um sistema hipotético
Tabela 5.2.1 - Condições inicial e final de segurança do sistema 1, corrigido para a pior
contingência90
Tabela 5.2.2 - Geração redespachada (MW) em cada iteração, para o sistema 190
Tabela 5.2.3- Condições inicial e final de segurança do sistema 2, corrigido para a pior
_ contingência92
Tabela 5.2.4 - Geração redespachada (MW) em cada iteração, para o sistema 292
Tabela 5.2.5- Condições inicial e final de segurança do sistema 1, corrigido pelo ACUCSO
simultâneo95
Tabela 5.2.6 - Geração redespachada (MW) em cada iteração, para o sistema 1
Tabela 5.2.7- Condições inicial e final de segurança do sistema 2, corrigido pelo ACUCSO
simultâneo97
Tabela 5.2.8 - Geração redespachada (MW) em cada iteração, para o sistema 2
Tabela 5.2.9 - Custos envolvidos nos redespachos de geração calculados para o sistema 299
Tabela 5.3.1 - Tempo de CPU, em segundos, gasto em cada iteração pela metodologia do
presente trabalho

Tabela 5.4.1 - Redespacho feito em cada iteração e redespacho total, na correção da
segurança do sistema 1 utilizando o método da direção S
Tabela 5.4.2 - Redespacho feito em cada iteração e redespacho total, na correção da
segurança do sistema 2 utilizando o método da direção S107
Tabela 5.5.1 - Avaliação da segurança do sistema 1, nas condições de [13], para diferentes
parâmetros na execução do SLEP iterativo109
Tabela 5.5.2 - Comparação da condição final obtida no sistema 1, segundo [13] e
redespachado pelo ACUCSO simultâneo
Tabela 5.5.3 - Redespachos calculados para a correção da segurança, do sistema 1 nas
condições de [13]110

t

.

xiv

- .

NOMENCLATURA

. ...

Y _{red}	- Matriz de admitâncias da rede equivalente reduzida;
Yij	- Módulo do <i>ij</i> -ésimo elemento da matriz Y_{red} ,
Bij	- Parte imaginária do ij -ésimo elemento da matriz Y_{red} ,
Gij	- Parte real do ij -ésimo elemento da matriz Y_{red} ;
Yif	- Distância elétrica do <i>i</i> -ésimo gerador ao ponto de falha;
Zgg, Zgl,	- Sub-matrizes da matriz de impedâncias nodais incluindo as reatâncias
Zlg, Zll	transitórias das máquinas e as impedâncias das cargas;
MRN.	- Margem de regulação negativa da <i>i</i> -ésima máquina

	Margoni de regulação negativa da r-csinia maquina,
MRP _i	Margem de regulação positiva da <i>i</i> -ésima máquina;
Pg_i^o	Geração atual da <i>i</i> -ésima máquina;
$Pmin_i$, $Pmax_i$	Limites técnicos de potência ativa do i-ésimo gerador;
Ig_i	Injeção de corrente do <i>i</i> -ésimo gerador;
Pg_i	Potência ativa gerada pela <i>i</i> -ésima máquina,
Vgi	Tensão na <i>i</i> -ésima barra externa de geração;
I _{li}	Corrente fornecida à carga conectada à <i>i</i> -ésima barra;
$e_i + jf_i$	Partes real e imaginária da tensão na <i>i</i> -ésima máquina;
$a_i + jf_i$	Partes real e imaginária da corrente injetada pelo i-ésimo gerador;
$X'd_i$	Reatância transitória de eixo direto da <i>i</i> -ésima máquina (p.u.);
ω_i	Desvio de velocidade da <i>i</i> -ésima máquina em relação ao centro de ângulos (rad./s).

xv

θ_i	-	ângulo atrás da reatância transitória da <i>i</i> -ésima máquina, em relação ao centro de ângulos (rad.);
δ_i .	-	ângulo atrás da reatância transitória da <i>i</i> -ésima máquina, em relação a uma referência que gira à velocidade síncrona (rad.);
M_i	-	Momento angular da i-ésima máquina (s/rad. elétricos);
Pm_i	-	Potência mecânica de entrada no i-ésimo gerador (p.u.);
n _g	-	Número de geradores do sistema;
S	-	Conjunto de máquinas críticas ("cluster" crítico);
A	-	Conjunto da máquinas restantes;
$\Gamma_{k,i}$	-	-1, se a <i>i</i> -ésima máquina pertence ao conjunto crítico da k -ésima contingência, 0 em caso contrário;
M_{s} , M_{a}	-	Momento de inércia dos conjunto $S e A$;
Pm_{eq}	-	Potência mecânica equivalente do OMIB;
Pm_s , Pm_a	-	Potência mecânica equivalente dos conjuntos $S e A$;
δ_s , δ_a	-	Centro parcial de ângulos dos conjuntos $S e A$;
γs , Ya	-	Aceleração da máquina equivalente dos conjunto $S e A$;
Pe_o , Pe_d , Pe_p	-	Potência elétrica equivalente inicial, durante defeito e pós-defeito;
Pc_{o}, Pc_{d}, Pc_{p}	-	Potência da carga local equivalente inicial, durante defeito e pós- defeito;
$Pmax_o$, $Pmax_d$,	-	Potência elétrica máxima na configuração inicial, durante defeito e pós-
$Pmax_p$		defeito;
Vo, Vd, Vp	-	Deslocamento angular da curva potência ângulo inicial, durante defeito e pós-defeito;
$\delta_{o}\left(\delta_{p} ight)$	-	Ângulo de equilíbrio inicial (pós-defeito)do OMIB equivalente,

xvi

-	
δ_{u}	Ângulo de equilíbrio instável na configuração pós-defeito do OMIE equivalente;
δ_c	Ângulo crítico de eliminação do defeito do OMIB equivalente,
δ_t	Ângulo correspondente ao instante de eliminação do defeito;
t _{cr} ^e	Tempo crítico calculado pelo EEEAC;
t _{cr}	Tempo crítico de eliminação do defeito;
t _{slep}	Tempo no qual a trajetória do sistema alcança a SLEP;
	•
η_e	Margem de segurança definida em termos de energia (SLEP);
η_{min}	Margem de segurança mínima para o sistema;
η_1, η_2	Margens de segurança definidas para o EEAC;
η_k^o -	Margem de segurança inicial da k-ésima contingência;
η_k	Margem de segurança obtida na contingência k depois do redespacho,
Ec	Energia cinética do sistema;
Ep	Energia potencial do sistema;
E _{crit}	Energia potencial crítica total do sistema;
Ee	Energia total do sistema no instante de eliminação do defeito,
Aace	Área acelerante na configuração sob defeito,
Ades	Área desacelerante na configuração pós-defeito;
S _{Pms} , S' _{Pms}	Coeficientes de sensibilidade de primeira e segunda ordem da margen
-	de segurança, em relação à potência gerada no conjunto crítico;
$S_{k,Pmsk}$, $S_{k'Pms,k}$	Coeficientes de sensibilidade de primeira e segunda ordem, da margen
	da k-ésima contingência, em relação à potência gerada no seu conjunto

<i>{M}</i>	- Conjunto de contingências críticas;
<i>{M1}</i>	- Conjunto de contingências críticas aumentado;
CR_{ij}	- Custo da realocação de geração entre as máquinas <i>i</i> e <i>j</i> ;
CIR _{ij}	- Custo "incremental" da realocação de geração entre as máquinas i e j;
FCIR _{ij}	- Fator de custo incremental da realocação entre as máquinas <i>i</i> e <i>j</i> ;
SGij	- Sensibilidade da margem global à realocação de geração entre as máquinas <i>i</i> e <i>j</i> ;
FSG _{ij}	- Fator de sensibilidade da margem global pela realocação entre as máquinas <i>i</i> e <i>j</i> ;
FGR_{ij}	- Fator global da realocação entre as máquinas <i>i</i> e <i>j</i> ;

OPERADORES

<i>∂</i> -	indica derivada parcial;
<i>d</i> -	indica derivada total,
€ -	indica que pertence a um conjunto;
⊿ -	indica variação incremental de uma grandeza;
Σ -	indica somatória de elementos
ż -	indica derivada da variável x em relação ao tempo

ABREVIATURAS

. .

SLEP	- Superficie Limite de Energia Potencial;
EEAC	- "Extended Equal Area Criterion";
EEEAC	- "Estatic Extended Equal Area Criterion";
DEEAC	- "Dinamic Extended Equal Area Criterion";
OMIB	- "One Machine Infinite Bus";
ACUCSO	- Ações de Controle Utilizando Coeficientes de Sensibilidade do OMIB,
TEF	- "Transient Energy Function";
UEP	- "Unstable Equilibrium Point",
NFE	- Não Foi Encontrado tempo crítico para a contingência;
RAT	- Regulador Automático de Tensão
SEE	- Sistemas de Energia Elétrica

RESUMO

No planejamento operativo de curto e muito curto prazo, dos sistemas de energia elétrica modernos, se deve dispor de ferramentas rápidas e automáticas, para realizar a avaliação e melhoria da segurança dinâmica. No presente trabalho é proposta uma nova metodologia, que utilizando o método SLEP iterativo e coeficientes de sensibilidade da margem de segurança, define ações de controle do tipo redespacho de geração para a melhoria da segurança.

O algoritmo desenvolvido é automático, iterativo e considera-se ter atingido a convergência final, quando o ponto de operação encontrado atende a uma margem de segurança mínima pré-estabelecida para o sistema.

Com o SLEP iterativo é feita a avaliação da segurança dinâmica, aproveitando sua precisão e confiabilidade no cálculo de tempos críticos e margens de segurança. Os coeficientes de sensibilidade são obtidos a partir do critério de áreas iguais estendido aplicado a um sistema máquina-barra infinita equivalente (OMIB equivalente). Para determinar o conjunto de máquinas críticas em cada contingência, e assim o OMIB equivalente, é utilizada a classificação das máquinas mais afastadas no ponto de cruzamento da trajetória crítica instável com a Superficie Limite de de Energia Potential (SLEP), obtida do SLEP iterativo.

O módulo ACUCSO, Ações de Controle Utilizando Coeficientes de Sensibilidade do OMIB equivalente, desenvolvido no presente trabalho, considera os custos de operação e a sensibilidade da margem global às realocações de geração, para identificar e quantificar os melhores redespachos. Isto é, nos redespachos de geração encontrados pelo ACUCSO, são levadas em consideração a otimização do sistema e a interação entre as contingências, em forma explícita.

Para avaliar a metodologia proposta, dois sistemas teste foram empregados. Os resultados mostram um bom desempenho, sendo que a qualidade mais destacada é a precisa quantificação dos redespachos, permitindo que a margem mínima requerida seja atingida com precisão.

xx

ABSTRACT

Short and very short term operating planning of modern electric power systems, requires fast and automatic assessments to evaluate and improve the dynamic security. In this work a new method is proposed to define control actions such that the system security is improved. The iterative PEBS (Potential Energy Boundary Surface) method and sensitivity coefficients of security margin are both used.

The developed algorithm is automatic, iterative and its final convergence is reached when the new operating point reaches a minimum pre-defined security margin.

The assessment of the dynamic security is obtained by the iterative PEBS method, considering its good accuracy and reliability in determinating the critical clearing time and security margins. The sensitivity coefficients are derived from an analytical equation from equivalent OMIB. To identify the critical machines for each contingence, and then the equivalent OMIB, it is used ranking of the machines more distant from a crossing point of the PEBS as indicated from instability critical trajectory taken of iterative PEBS method.

The ACUCSO model, developed in this work, considers operation cost and a global margin sensitivity to the reallocation of the generation, to identify and calculate the best rescheduling. That is, in the rescheduling found by ACUCSO, is explicitly considered the system optimization and the contingencies interactions.

Two power systems are used to test the proposed method. The results show a good performance, and is the precise quantification of the rescheduling, so that the required minimum margin is achieved.

xxi

CAPÍTULO 1

1. Introdução

O crescimento dos sistemas de energia elétrica (SEE) procurando um maior aproveitamento das redes de transmissão e das gerações mais econômicas, leva a uma operação cada vez mais próxima dos limites de estabilidade transitória. A segurança dinâmica, como parte das análises que procuram garantir a qualidade e a continuidade do serviço, torna-se mais importante. Fato este que se apresenta não só nos estudos a nível de planejamento, como também nas análises a nível de operação.

A análise da estabilidade transitória é feita, tradicionalmente utilizando programas de simulação no tempo, os quais permitem a modelagem detalhada de todos os elementos do sistema e fornecem resultados confiáveis. Mas o esforço computacional requerido é muito grande, a análise dos resultados é feita com gráficos e as medidas corretivas dependem diretamente de quão experiente é o engenheiro analista.

A grande quantidade de contingências que devem ser analisadas, além das diferentes condições de carregamento do sistema e possíveis mudanças na topologia da rede, tornam inviável a utilização das metodologias tradicionais na avaliação e na melhora da segurança dinâmica no planejamento da operação para os horizontes de curto prazo e tempo real. Por causa disso, os estudos de planejamento da operação, normalmente, são feitos considerando-se basicamente aspectos estáticos da rede : limites físicos dos equipamentos e níveis de tensão.

Então, normalmente, a segurança dinâmica só é avaliada nos horizontes de médio e longo prazos. Nestes estudos são encontrados os limites de geração, mínimos e máximos, das usinas ou conjunto de usinas, que garantam o comportamento transitório satisfatório do sistema ante perturbações tipo curto-circuito. Os limites assim fixados são utilizados como restrições "estáticas" no planejamento de curto prazo e no acompanhamento da operação em tempo real.

Nestas análises são empregadas configurações da rede normais, usualmente considerando disponíveis todas as linhas de transmissão e despachos de geração típicos, supondo uma disponibilidade média. Quando as condições reais de operação diferem daquelas com as quais foram fixados os limites, a segurança do sistema pode ficar comprometida.

A incorporação da função avaliação e correção da segurança dinâmica nos sistemas de gerência de energia (ou centros de controle) é um problema atual [12], que surge pela necessidade de analisar dezenas e até centenas de casos de estabilidade em pouco tempo. É portanto, desejável e necessário possuir metodologias para a análise e a melhoria da segurança dinâmica, que possam ser empregados no planejamento da operação de curto e muito curto prazo (tempo real).

O objetivo principal da análise da segurança dinâmica é determinar se o comportamento do sistema será estável ou não logo após a ocorrência de uma perturbação. A instabilidade do sistema é identificada pela perda de sincronismo das máquinas, isto é, pelo afastamento contínuo em relação a uma referência.

A análise da segurança dinâmica está diretamente ligada com os tempos críticos das perturbações : máxima duração possível do defeito, tal que o sistema possa evoluir para um outro ponto de equilíbrio estável em regime permanente. A diferença entre este tempo crítico e o tempo de atuação das proteções, pode ser considerada como uma Margem de Segurança. Assim o cálculo dos tempo críticos permite estabelecer uma medida do nível de segurança do sistema para um ponto de operação.

Procurando meios rápidos para a análise da segurança dinâmica dos sistemas de energia elétrica [22], três principais tendências são motivo de pesquisas na atualidade :

- O critério de áreas iguais estendido e os métodos baseados no segundo método de Liapunov;
- Utilização de computadores de alto desempenho, incluído processamento paralelo e vetorial;
- 3. Reconhecimento de padrões e sistemas especialistas.

No primeiro grupo, em que se enquadra o presente trabalho, podem ser destacadas [22] as seguintes metodologias:

- 1. O método da função de energia transitória (método direto) [20];
- 2. O critério de áreas iguais estendido [2, 3, 4, 5, 6, 7, 8];
- 3. O método da superficie limite de energia potencial iterativo (método híbrido) [1, 23];
- 4. O método híbrido que utiliza a função de energia transitória e simulações tradicionais
 [34].

A idéia básica no método da função de energia transitória, (TEF - "Transient Energy Funtion") [20], é calcular a energia transitória total do sistema ao final do período sob defeito, e comparar seu valor com uma energia potencial crítica do sistema. Essa energia crítica corresponde a energia potencial do sistema no ponto de equilíbrio instável (UEP - "Unstable Equilibrium Point"), associado a grupo de máquinas responsáveis pela perda de sincronismo para a contingência. A diferença entre os valores da energia transitória total e a energia crítica é denominada de margem de energia transitória. A principal dificuldade do método está na identificação do UEP.

No critério de áreas iguais estendido (EEAC - "Extended Equal Area Criterion") [2, 3, 4, 5, 6, 7, 8], a idéia básica é transformar o sistema multimáquina em um sistema equivalente com duas máquinas e, posteriormente, a um sistema de uma única máquina equivalente ligada a barra infinita (OMIB - "One Machine Infinite Bus"), para aplicar o clássico critério de áreas iguais.

A qualidade dos resultados obtidos pelo EEAC, como será mostrado no presente trabalho, vai depender da seleção apropriada do conjunto de máquinas responsáveis pela perda de sincronismo. Mas em compensação, podem-se obter expressões analíticas simples para representar a margem de segurança de cada contingência, o que torna o método atrativo para estudos de sensibilidade.

O conceito da Superficie Limite de Energia Potencial (SLEP), que será tratado com mais detalhes no capítulo 2, foi inicialmente proposto em [16] e posteriormente utilizado em [18]. Nestes trabalhos, a determinação de tempos críticos de eliminação do defeito utiliza como energia crítica, o valor da energia potencial do sistema no instante de cruzamento da trajetória do sistema com o defeito mantido e a SLEP. Este procedimento, em geral, fornece resultados pouco precisos nos casos em que a trajetória do sistema com o defeito mantido difere bastante da trajetória crítica do sistema

3

O método SLEP iterativo [23], utiliza as propriedades da SLEP na identificação de trajetórias estáveis e instáveis, dentro de um processo iterativo de cálculo de tempos críticos. Inicialmente são determinadas duas estimativas para a energia crítica, uma otimista e outra pessimista. A partir destas estimativas é realizado um processo iterativo no sentido de diminuir a diferença de valor entre elas, até que seja atendida uma tolerância pré-especificada. A energia crítica para a contingência sob análise será a última estimativa obtida.

As soluções assim determinadas, em termos de precisão, são comparáveis aquelas obtidas por simulação numérica [1, 9, 22]. Além disso, o algoritmo não é afetado por mudanças no modo de instabilidade, já que considera o comportamento do sistema pós-perturbação. No capítulo 2 do presente trabalho, será feita uma apresentação sucinta do método SLEP iterativo.

O método híbrido [32] é uma combinação da simulação tradicional no domínio do tempo (integração numérica passo a passo) e o método da função energia transitória, TEF. O método apresenta a vantagem de considerar, na simulação tradicional, modelos mais sofisticados para os elementos do sistema, mas têm como maior limitação o fato de requerer esforço computacional elevado.

Em [34] é apresentado um método que baseado em simulações no tempo, utiliza propriedades da energia calculada no processo para determinar a margem de energia transitória. A idéia fundamental no método desenvolvido para o cálculo da margem, chamado de "Second Kick", é aplicar e simular uma segunda falta capaz de provocar a perda de sincronismo do sistema. Para calcular a margem de energia transitória, é utilizada a energia cinética no ponto de cruzamento com a SLEP e a energia do sistema depois de removida a segunda falta, considerando também a variação na energia potencial durante o "Second Kick".

No método do "Second Kick", não se têm limitações na modelagem detalhada do sistema, resultando atrativo para utilizar em SEE com intrincadas sequências de controle ante a ocorrência de uma perturbação. Mas, o tempo de permanência da segunda falta deve ser adaptado para cada sistema particular e mudanças no modo de oscilação do sistema podem provocar estimativas pouco precisas da margem. Em [34], as máquinas críticas formam parte dos dados definidos para cada contingência, com a consequente perda de generalidade do método.

4

Os métodos anteriormente descritos são de análise da estabilidade transitória, mas precisa-se também de métodos de síntese, no sentido de definir ações de controle no sistema quando os resultados na análise não são satisfatórios.

Procurando meios automáticos para melhoria da margem de segurança, tem sido propostos vários procedimentos. Na referência [13], foi feita uma revisão bibliográfica cuidadosa das metodologias reportadas na literatura até então (1990), da qual pode ser constatada que o interesse por estas surgiu na década de oitenta e que ainda não se podia destacar um método com desempenho satisfatório, do ponto de vista da qualidade das soluções e tempo de cálculo.

Posteriormente, encontram-se vários trabalhos desenvolvidos, tais como o método da direção S [10], o redespacho através da análise de sensibilidade [11, 13, 14] e correção de segurança mediante alterações na rede [28, 29, 30]. Nestas metodologias emprega-se o método SLEP iterativo para o diagnóstico da estabilidade transitória. A primeira delas define uma direção viável ou direção S, obtida a partir das trajetórias pós-defeito e a SLEP, para modificar os despachos de geração do sistema para a contingência com menor valor de margem de segurança. Na segunda, o método de controle de segurança é desenvolvido através de coeficientes de sensibilidade da margem de segurança, obtidos do método SLEP iterativo. Então, é formulado um problema de otimização linear, utilizando uma função objetivo de mínimo esforço, para quantificar os redespachos. Estas duas metodologias, serão utilizadas para comparar os resultados obtidos com a metodologia desenvolvida no presente trabalho.

Além destas, em [31] é desenvolvida uma proposta de determinar a sensibilidade da margem de segurança em relação a um parâmetro genérico do sistema. Podem ser consideradas alterações no redespacho, na carga e na rede elétrica. A metodologia utiliza a função de energia transitória, TEF, na determinação de sensibilidades de primeira ordem da margem de segurança não normalizada, para quantificar as modificações requeridas no sistema.

Mais recentemente, em [33] é proposta uma metodologia de redespacho de segurança, baseada na conjectura de que ao se melhorar a coerência na oscilação das máquinas, é possível aumentar o tempo crítico e a margem de segurança. O método da TEF é utilizado para avaliar a estabilidade transitória. O redespacho é calculado para a contingência com menor margem, procurando que cada máquina possua a mesma taxa de variação da velocidade no instante de eliminação da falta.

Embora em [33] seja mostrado que a metodologia consegue melhorar a segurança do sistema, a conjectura utilizada parece pouco apropriada. Além disso, o fato de não utilizar sensibilidades da margem para quantificar os redespachos, vai provocar imprecisões ao querer atingir um nível mínimo de segurança.

O presente trabalho, tem como objetivo propor uma metodologia para a melhoria da segurança dinâmica em sistemas de energia elétrica. É utilizado o método SLEP iterativo na avaliação da estabilidade transitória, e coeficientes de sensibilidade da margem de segurança, obtidos do OMIB equivalente, na quantificação das ações de controle, do tipo redespacho de geração, necessárias no sistema. O algoritmo desenvolvido é automático, iterativo e considera-se ter atingido a convergência final quando o ponto de operação encontrado atende uma margem de segurança mínima pré-estabelecida para o sistema.

Para determinar as ações de controle foi desenvolvido um módulo denominado de ACUCSO, Ações de Controle Utilizando Coeficientes de Sensibilidade do OMIB equivalente, que identifica e quantifica os redespachos em cada iteração, levando em conta a interação existente entre as diferentes contingências e os custos de operação do sistema.

Para avaliar a metodologia proposta dois sistemas teste foram empregados, isto é, um equivalente do sistema sul brasileiro com 10 máquinas e um equivalente do sistema interligado colombiano com 17 máquinas. Os resultados mostram um bom desempenho, não só na qualidade, como também no tempo computacional. A qualidade mais destacada é a precisa quantificação dos redespachos sugeridos, quando comparado com outras metodologias.

O trabalho esta organizado assim : no capitulo 2 é apresentado em detalhe o critério de áreas iguais estendido (EEAC) e em forma sucinta o método SLEP iterativo. No capítulo 3 é apresentada a implementação computacional feita para o EEAC e a avaliação crítica da metodologia, visando determinar as vantagens e dificuldades que se têm ao emprega-la. No capítulo 4 é descrita a metodologia desenvolvida no presente trabalho, que integra o método SLEP iterativo e o EEAC, num processo automático e iterativo de avaliação e correção da segurança dinâmica. No capítulo 5, são feitos os testes computacionais e seus resultados são comparados com os obtidos por outras metodologias. Finalmente, no capítulo 6 apresentam-se as conclusões e sugestões para futuros trabalhos.

6

CAPÍTULO 2.

2. Formulação matemática dos métodos SLEP iterativo e critério de áreas iguais estendido

2.1 Introdução

Neste capítulo são apresentados em forma sucinta, as metodologias de análise rápida da estabilidade transitória dos Sistemas de Energia Elétrica (SEE), SLEP iterativo e critério de áreas iguais estendido (EEAC). As duas metodologias foram escolhidas no presente trabalho pelas razões a seguir :

- a precisão e confiabilidade dos resultados obtidos com o método SLEP iterativo na análise da estabilidade transitória [9,22];
- as potencialidade do EEAC para determinar ações de controle para melhoria da segurança dinâmica, utilizando coeficientes de sensibilidade [3, 4].

2.2 O método SLEP iterativo

Na apresentação sucinta do método SLEP iterativo, o maior destaque será feito nas fundamentações conceituais e de modelagem nas quais está baseada o método, isto é, a preservação da identidade da rede elétrica, a utilização do segundo método de Liapunov mediante a definição da função energia total do sistema, a superfície limite de energia potencial e a forma como é estabelecido o processo iterativo de cálculo de tempos críticos.

2.2.1 Modelo matemático utilizado

No método SLEP iterativo o SEE é descrito pelo modelo clássico, ou seja, os geradores são representados por uma fonte de tensão constante em série com a respectiva reatância transitória de eixo direto (X'_d) , os torques de amortecimento são desprezados e as cargas são consideradas com impedâncias constantes.

Contudo, é preservada a identidade da rede elétrica ao não reduzí-la às barras internas de geração. Deste modo, a representação de uma barra genérica de geração é como se mostra na Figura 2.2.1.

Figura 2.2.1 - Representação da i-ésima barra de geração onde :

 PL_i , QL_i : Potências ativa e reativa da carga na i-ésima barra $E_i e^{j\theta i}$: tensão atrás da reatância transitória do *i*-ésimo gerador $Vg_i = e_i + jf_i$: tensão na *i*-ésima barra externa de geração $Ig_i = a_i + jb_i$: injeção de corrente do *i*-ésimo gerador $I_{Li} = c_i + jd_i$: corrente fornecida à carga conectada à *i*-ésima barra

Com as considerações estabelecidas, e tomando o centro de ângulos como referência do movimento, as equações que descrevem a dinâmica dos n_g geradores [23] são :

$$\begin{cases} \mathbf{M}_{i} \frac{d\omega_{i}}{dt} = \mathbf{P}\mathbf{m}_{i} - \mathbf{P}\mathbf{g}_{i} - \frac{\mathbf{M}_{i}}{\mathbf{M}_{T}} \mathbf{P}_{c} \stackrel{\Delta}{=} \mathbf{g}_{i}(\theta) \\ \frac{d\theta_{i}}{dt} = \omega_{i} \qquad \qquad i = 1, 2, \dots, n_{g} \end{cases}$$

onde :

$$Pg_{i} = E_{i}B_{i}(-f_{i}\cos\theta_{i} + e_{i}\sin\theta_{i})$$

$$B_{i} = 1/X'd_{i}$$

$$P_{c} = \sum_{i=1}^{n_{i}} (Pm_{i} - Pg_{i})$$

$$M_{T} = \sum_{i=1}^{n_{i}} M_{i}$$

$$Ig_{i} = E_{i}B_{i}(\sin\theta_{i} - j\cos\theta_{i})$$

$$\begin{bmatrix}Vg\\V_{l}\end{bmatrix} = \begin{bmatrix}Z_{gg} & Z_{gl}\\Z_{lg} & Z_{ll}\end{bmatrix} \begin{bmatrix}Ig\\0\end{bmatrix}$$

(2.2.1)

ł	-	tempo (seg.),		
$ heta_i$	-	ângulo atrás da reatância transitória da <i>i</i> -ésima máquina em relação ao centro de ângulos (rad.);		
Wi	-	desvio de velocidade do rotor da <i>i</i> -ésima máquina em relação ao centro de ângulos;		
M_i	-	momento angular da <i>i</i> -ésima máquina (seg /rad. elétricos);		
Pm_i	-	potência mecânica de entrada no i-ésimo gerador (p.u.),		
Pg_i	-	potência elétrica injetada pelo <i>i</i> -ésimo gerador (p.u.);		
$X'd_i$	-	reatância transitória de eixo direto da i-ésima máquina;		
Zgg, Zg	gl, Zlg,	ZII - sub-matrizes da matriz de impedâncias nodais incluindo as reatâncias transitórias das máquinas e as impedâncias das cargas.		

O modelo utilizado preserva a identidade das cargas e da rede, o que implica na representação do sistema por dois conjuntos de equações não lineares, diferenciais ordinárias de primeira ordem e algébricas, descritas por :

$$x = f(x, y)$$

$$0 = g(x, y)$$
(2.2.2)

A determinação das potências Pg_i , $i=1,2,...,n_g$, ao longo do cálculo de trajetórias do sistema, requer a determinação de $Vg_i=e_i+jf_i$ $(i=1,2,...,n_g)$ e consequentemente da submatriz Zgg. Por isso, os elementos da Zgg são obtidos explicitamente a fim de permitir que as tensões e suas derivadas, empregadas no cálculo das trajetórias do sistema usando série de Taylor, possam ser representadas por funções analíticas. O método da compensação é usado no cálculo dos elementos da Zgg, para as configurações do sistema durante e pós-falta.

2.2.2 O segundo método de Liapunov

Os modelos matemáticos para análise de estabilidade transitória [15], podem ser descritos genericamente pela seguinte equação :

$$\dot{X} = f(X)$$
, $f(0) = 0$ (2.2.3)

onde :

0 : estado de equilíbrio do sistema

X: vetor de estados de dimensão $n (X \in \Re^n)$

t: variável independente (tempo)

f(X): função vetorial não linear $(f(.): \mathfrak{R}^n \to \mathfrak{R}^n)$

Para analisar a estabilidade de sistemas descritos pela equação (2.2.3), utilizando o segundo método de Liapunov, deve ser definida uma função escalar V(X), com as seguintes propriedades :

İ.	V(X)>0	;	<i>X</i> ≠0,	$X \in D$
ii.	V(X) = 0	;	X=0,	0 <i>∈ D</i>
iii.	• V (X) < 0	;	<i>X</i> ≠0,	$X \in D$
iv.	$\dot{V}(X) = 0$;	X = 0	

onde

V - função de Liapunov

X - vetor de estados do sistema

D - subconjunto do \Re^n que contém a origem em seu interior, aberto e conexo

V - derivada de V ao longo das trajetórias do sistema (2.2.3)

$$\dot{V} = \frac{dV}{dt} = \sum_{i=1}^{n} \frac{\partial V}{\partial X_i} \frac{dX_i}{dt} = \sum_{i=1}^{n} \frac{\partial V}{\partial X_i} f_i(X)$$

As condições *i*. e *ii*. indicam que a função V(X) deve ser definida positiva em um conjunto $D \subset \Re^n$, e as condições *iii*. e *iv*. que sua derivada V(X), seja definida negativa neste mesmo conjunto [23].

A utilização do segundo método de Liapunov para sistemas lineares, na análise da estabilidade assintótica do estado de equilíbrio, implica que todos os movimentos sempre conduzem para o estado de equilíbrio, independentemente da condição inicial. Isto não é verdadeiro para a dinâmica de sistemas não-lineares, e resultados conservativos são obtidos,

quando é utilizado o segundo método de Liapunov na análise de estabilidade transitória em SEE [1], devido à consideração apenas da configuração do sistema pós-defeito.

No sentido de suportar as considerações de aspectos físicos e práticos no método de Liapunov, os quais procuram a obtenção de resultados menos conservativos e a consideração da dinâmica do sistema sob defeito, foi definida (ver referências em [23]) uma região, chamada de domínio de atração, em torno do estado de equilíbrio, tal que os movimentos iniciados nesta região convergem para o ponto de equilíbrio.

Para determinar o domínio de atração, apresenta-se a seguir a definição de conjunto invariante e o teorema que fundamenta a utilização da teoria de Liapunov [23].

Conjunto invariante : Seja o sistema definido por :

$$X = f(X), \quad X(0) = X_0$$

 $X(t) \in \Re^n$ (2.2.4)

O conjunto Ω é chamado invariante em relação ao sistema (2.2.4), se para qualquer Xo em Ω , existe um to tal que o movimento X(t; Xo, to) pertence a Ω para todo $t \ge to$. Desta forma, toda trajetória (movimento) do sistema, é um conjunto invariante, assim como também o seu estado de equilíbrio Xo.

<u>Teorema 2.2.1</u> : Seja Ω um conjunto invariante para o sistema (2.2.4). Considere $X^{e} \in \Omega$ e $V(X - X^{e})$ ser uma função de valor real, definida em Ω com V(0)=0. Seja S(k) o conjunto definido como :

$$S(k) = \left\{ X \in \Omega / V \left(X - X^{e} \right) < k \right\}$$

supõe-se para algum $k_o > 0$ que

i. $V(X-X^{e})$ é definida positiva e crescente em $S(k_{o})$, e

ii. $V(X-X^e)$ é definida negativa em $S(k_a)$.

Então, X^e é um estado de equilíbrio do sistema (2.2.4) e o conjunto $S(k_o)$ está no domínio de atração de X^e .

Para ilustrar a aplicação conceitual do teorema (2.2.1), na Figura 2.2.2 são apresentadas as trajetórias de um sistema hipotético para vários tempos de eliminação do defeito [23].

A linha cheia representa a trajetória do sistema com o defeito mantido. O ponto assinalado por t_{cr}^{*} é denominado de tempo crítico de eliminação do defeito. As trajetórias S_1, S_2 , ..., S_n são estáveis, enquanto que as U_1 , U_2 são instáveis. O ponto X^{u} identifica o estado de equilíbrio instável pós-defeito mais próximo do ponto de cruzamento com a superfície SLEP.

Figura 2.2.2 - Trajetórias de um sistema hipotético para vários tempos de eliminação do defeito

Definindo Ω como a união de todas as trajetórias pós-defeito, mais o ponto de equilíbrio estável pós-defeito (X^e) , e considerando-se $V(X-X^e)$ ser a função energia, o valor de k_0 no teorema (2.2.1) corresponde ao maior valor de $V(X-X^e)$ adquirido pelo sistema sob defeito, capaz de permitir que as condições *i*. e *ii*. sejam satisfeitas.

Com esse valor de k_0 , pode-se determinar o tempo crítico de eliminação do defeito (t_{cr}^*) . Então o cálculo do valor de energia k_0 , para uma determinada contingência, torna-se a questão central do problema.

2.2.3 A função energia

No método SLEP iterativo [23], emprega-se como função de Liapunov, a função que representa a energia total do sistema, definida como :

$$V(\theta,\omega) = \frac{1}{2} \sum_{i=1}^{n_g} M_i \omega_i^2 - \sum_{i=1}^{n_g} \int_{\theta_i^e}^{\theta_i} g_i(\theta) d\theta_i \qquad (2.2.5)$$

que simbolicamente pode ser representada por :

$$V(\theta, \omega) = Ec(\omega) + Ep(\theta)$$
(2.2.6)

onde $Ec \in Ep$ representam respectivamente, a energia cinética e a energia potencial do sistema (2.2.1).

2.2.4 A Superficie Limite de Energia Potencial SLEP

Uma forma aproximada para se determinar k_o (energia crítica para a contingência) foi inicialmente proposta em [16], e utiliza o conceito da Superficie Limite de Energia Potencial, definida a seguir :

Seja θ^{e} o estado de equilíbrio pós-falta do sistema definido pela equação (2.2.1), estável no sentido de Liapunov e θ um vetor do sub-espaço de estados dos ângulos. Considerando os raios tirados de θ^{e}

$$\begin{aligned} \theta^{1} &= \theta^{e} + \lambda \mu \quad , \quad \lambda \in \Re \quad , \quad \lambda \ge 0 \quad e \\ \mu &= \frac{\theta^{1} - \theta^{e}}{\left\| \theta^{1} - \theta^{e} \right\|} \end{aligned}$$

a SLEP é definida [23], como sendo o conjunto S : $\{\theta | \theta = \theta^e + \lambda^* \mu\}$, onde :

$$\lambda^* = \min \left\{ \lambda / \frac{\partial E_p(\theta^e + \lambda \mu)}{\partial \lambda} = 0 \right\}, e$$

$$\frac{\partial E_p(.)}{\partial \lambda} \qquad \text{derivada direcional da energia potencial definida para configuração pós-defeito do sistema}$$

а

Considerando-se todos os raios emanados de θ^e , a Superficie Limite de Energia

Potencial SLEP, pode ser caracterizada [23] por :

$$\nabla E_p(\theta)(\theta^l - \theta^e) = -\sum_{i=l}^{n_g} g_i(\theta)(\theta^l - \theta^e) = 0$$
(2.2.7)

ou na forma vetorial

$$g^{T}(\theta) \bullet (\theta^{1} - \theta^{e}) = 0$$
onde:
$$(2.2.8)$$

$$g^{T}(\theta) = -\frac{\partial E_{p}}{\partial \theta} = -\nabla E_{p}$$

O produto escalar (2.2.8) é negativo na região interna à SLEP, nulo no ponto de cruzamento e positivo após o cruzamento. O vetor VEp é ortogonal às superficies equipotenciais de Ep e aponta na direção de crescimento dos contornos da Ep.

Essas propriedades foram inicialmente utilizadas em [16, 18], na determinação de tempos críticos de eliminação do defeito, utilizando-se apenas uma avaliação de energia crítica calculada no instante de cruzamento com a SLEP da trajetória com defeito mantido. Este procedimento, em geral, fornece resultados muito otimistas.

O método SLEP iterativo, também utiliza estas propriedades na identificação de trajetórias estáveis e instáveis, dentro de um processo iterativo de cálculo de tempos críticos, descrito brevemente no próximo item.

2.2.5 Processo iterativo de cálculo da energia crítica e tempo crítico de eliminação do defeito

O algoritmo proposto em [1, 23], basicamente consiste em se monitorar a derivada direcional da função energia potencial, definida na equação (2.2.8), ao longo das trajetórias de estados do sistema sob defeito e pós-defeito, calculadas utilizando-se expansão em série de Taylor, para detectar a instabilidade do sistema (instante de cruzamento com a SLEP).

O processo iterativo na determinação do tempo crítico, pode ser ilustrado na Figura 2.2.3 e descrito da seguinte forma. Calcular a trajetória do sistema sob defeito até o cruzamento com a SLEP (θ^{slep}). A energia potencial obtida neste ponto é usada como primeira estimativa de energia crítica. Em seguida, considerando-se ainda o estado do sistema durante o defeito, determina-se o instante de tempo no qual a energia total iguala-se à energia crítica

inicialmente estimada. O tempo assim calculado é, também, a primeira estimativa de tempo crítico (t_{crl}^{e})

Posteriormente, é simulada e monitorada a trajetória do sistema pós-defeito a partir de t_{cr1}^{e} . Se a trajetória pós-defeito não alcançar a SLEP, aumenta-se de um percentual a energia crítica anteriormente estimada e calcula-se um novo tempo crítico estimado (t_{cr2}^{e}) . Caso haja cruzamento atua-se de forma oposta. Assim, são definidas duas estimativas para a energia crítica, uma otimista e outra pessimista.

A partir dessas duas estimativas segue-se um processo do tipo bisseção de cálculo de novas estimativas otimistas e pessimistas para a energia crítica e correspondentes tempos críticos, conforme ilustra-se na. Figura 2.2.3.

Neste processo são calculados t_{cr1}^{e} , t_{cr2}^{e} ,..., t_{cr7}^{e} até obter-se uma aproximação da trajetória que "tangência" com a SLEP. A convergência é definida em termos de energia, entre duas estimativas no processo iterativo. Na ilustração da Figura 2.2.3, o tempo crítico corresponde a $t_{cr7}^{e} = t_{cr}^{*}$. Maiores detalhes podem ser encontrados em [1, 23].

O fato de realizar um processo iterativo para calcular mais de uma estimativa da energia crítica e o correspondente tempo crítico de eliminação do defeito, tem o objetivo de conseguir resultados precisos.

2.2.6 Extensões do método SLEP iterativo

Utilizando o SLEP iterativo, tem sido propostas metodologias automáticas para melhoria da segurança dinâmica. Duas destas metodologias serão empregadas posteriormente, para se comparar os resultados obtidos com a metodologia proposta no presente trabalho. Estas são, o método da direção S e o redespacho através da análise de sensibilidade.

2.2.6.1 Método da direção S

A partir do método SLEP iterativo, o procedimento proposto em [10] para melhoria da segurança dinâmica, utiliza uma direção viável para modificar os despachos de geração do sistema. Usando-se como referência o ponto de tangência da trajetória crítica do sistema com a SLEP (θ^{t}) , e supondo conhecido o ponto de equilíbrio estável pós-defeito (θ^{e}) , é definida a direção viável ou direção S, para o aumento do domínio de estabilidade do sistema pósdefeito. Na Figura 2.2.4, é ilustrada a forma de determinar a direção S. Sempre que os pontos de equilíbrio estáveis, $\theta^{o} e \theta^{e}$, respectivamente para as configurações antes e pós-defeito, estiverem relativamente próximos, a direção S pode ser definida a partir de θ^{o} .

Figura 2.2.4 - Ilustração da determinação da direção S.

O algoritmo de redespacho leva em conta que as alterações serão feitas em função do vetor S, associado à pior contingência, de modo a se diminuir a geração das máquinas com as maiores componentes angulares até um percentual previamente especificado. De forma semelhante e inversa, alocam-se as gerações nas máquinas com componentes negativas.Os custos incrementais de geração não são considerados na quantificação dos redespachos sugeridos para a melhoria da segurança dinâmica. Maiores detalhes podem ser obtidos em [10, 30].

2.2.6.2 Redespacho através da análise de sensibilidade

O problema de melhoria da segurança dinâmica, é formulado em [11, 13] como um problema de otimização linear com as seguintes características :

- as ações de controle devem modificar as margens de segurança de modo a se atingir um nível de segurança especificado;
- o acréscimo de margem é estimado utilizando coeficientes de sensibilidade de primeira ordem da margem, baseados no SLEP iterativo;
- a relação entre a variação de potência mecânica e a variação do estado de equilíbrio pré-falta, é expressa usando o fluxo de potência linear (inversa da matriz jacobiana);
- a função objetivo minimiza os desvios do ponto de operação inicial;
- as restrições do problema de otimização consideram o balanço de potência e as limitações físicas das máquinas.

A limitação deste método está no tratamento linear de um problema essencialmente não-linear

2.2.6.3 Outras extensões do SLEP iterativo

Em [14] foi empregada a mesma metodologia descrita no item anterior, mas a função objetivo utilizada no problema de otimização, maximiza a somatória dos fluxos de intercâmbio em um número de linhas definidas como de interligação.

Em [28, 29, 30] foram propostas metodologias para a correção da segurança via alterações na topologia da rede. Nestas, primeiro é procurado um deslocamento do ponto de operação pré-defeito para uma região de maior segurança, obtido com redespachos utilizando o

método da direção S. Posteriormente, é resolvido um problema de otimização não-linear, que determina as alterações na rede que provocariam o mesmo efeito do redespacho de geração.

2.3 O critério de áreas iguais estendido

O critério de áreas iguais estendido EEAC ("Extended Equal-Area Criterion") é uma metodologia de análise da estabilidade transitória de SEE, que tem sido motivo de muitas publicações técnicas nos últimos anos [2, 3, 4, 5, 6, 7, 8, 24].

Nesta metodologia a idéia básica é transformar o sistema multimáquina num sistema equivalente com duas máquinas e, posteriormente a um sistema de uma única máquina equivalente ligada a barra infinita ("One Machine Infinite Bus" - OMIB), para aplicar o clássico critério de áreas iguais. A transformação requer a identificação apropriada do conjunto de máquinas responsáveis pela perda de sincronismo em cada contingência, denominado de conjunto de máquinas críticas ou conjunto crítico.

O método evoluiu de uma formulação inicial [2, 3] denominada de EEAC estático (EEEAC), no qual o OMIB é mantido fixo durante o transitório todo, para o EEAC dinâmico (DEEAC), onde os parâmetros do OMIB são recalculados periodicamente, a partir da simulação da trajetória do sistema usando série de Taylor.

A seguir realiza-se uma descrição sucinta de ambas as formulações.

2.3.1 O EEAC estático

O modelo clássico de representação da dinâmica de um sistema de n_g máquinas é descrito pelas seguintes equações [2]:

$$\begin{cases} M_i \dot{\omega}_i = Pm_i - Pe_i \\ \dot{\delta}_i = \omega_i \end{cases}$$
(2.3.1)

$$Pe_{i} = E_{i}^{2}Y_{ii}\cos\theta_{ii} + E_{i}\sum_{\substack{j=1\\j\neq i}}^{\infty}E_{j}Y_{ij}\cos\left(\delta_{i}-\delta_{j}-\theta_{ij}\right)$$

$$(i = 1, 2, \dots, n_{g})$$

$$(2.3.2)$$

onde :

 δ_i - ângulo do rotor da *i*-ésima máquina em relação a uma referência síncrona;

- ω_i desvio de velocidade do rotor em relação à referência síncrona;
- M_i momento angular da *i*-ésima máquina;
- Pm_i potência mecânica de entrada da *i*-ésima máquina;
- Pe_i potência elétrica injetada na *i*-ésima barra pela *i*-ésima máquina;

 E_i - tensão atrás da reatância transitória de eixo direto (X'd_i);

 Y_{red} - matriz de admitâncias nodal da rede equivalente, reduzida às barras internas das máquinas

 Y_{ii} - módulo do *ij*-ésimo elemento da matriz Y_{red} ,

 θ_{ii} - ângulo do *ij*-ésimo elemento da matriz Y_{red} ,

 n_g - número de máquinas síncronas do sistema.

2.3.1.1 Modelo equivalente agregado de duas máquinas

Durante o transitório as n_g máquinas são classificadas [4] em dois grupos ou conjuntos. Cada conjunto é representado por uma máquina equivalente, e sua dinâmica é modelada em relação ao centro parcial de ângulos de cada conjunto.

Definindo-se :

- S : conjunto das máquinas do conjunto crítico ("cluster" crítico);
- s : máquina equivalente do conjunto S;
- A : conjunto das máquinas restantes;
- a : máquina equivalente do conjunto A.

Pode-se escrever :

$$M_{s} \stackrel{\Delta}{=} \sum_{i \in S} M_{i} \quad ; \quad \delta_{s} \stackrel{\Delta}{=} (\sum_{i \in S} M_{i} \delta_{i}) / M_{s} \quad ; \quad \gamma_{s} \stackrel{\Delta}{=} \widetilde{\delta}_{s} \Big|_{t=0^{*}}$$

$$M_{a} \stackrel{\Delta}{=} \sum_{j \in A} M_{j} \quad ; \quad \delta_{a} \stackrel{\Delta}{=} (\sum_{j \in A} M_{j} \delta_{j}) / M_{a} \quad ; \quad \gamma_{a} \stackrel{\Delta}{=} \widetilde{\delta}_{a} \Big|_{t=0^{*}}$$

$$(2.3.3)$$

onde :

 $t=0^+$ - tempo imediatamente posterior à ocorrência da contingência; M_s - momento angular da máquina equivalente do conjunto S; M_a - momento angular da máquina equivalente do conjunto A; δ_s - centro parcial de ângulos do conjunto S; δ_a - centro parcial de ângulos do conjunto A.

Então, as equações que descrevem a dinâmica das duas máquinas equivalentes são :

$$\begin{cases} M_s \, \tilde{\delta}_s = \sum_{i \in S} (Pm_i - Pe_i) \\ \delta_s = \omega_s \end{cases}; e \begin{cases} M_a \, \tilde{\delta}_a = \sum_{j \in A} (Pm_j - Pe_j) \\ \delta_a = \omega_a \end{cases}$$
(2.3.4)

Desprezando as diferenças angulares entre as máquinas de um mesmo conjunto, o que equivale a supor os ângulos das máquinas iguais ao centro parcial de ângulos do respectivo conjunto, tem-se :

$$\begin{cases} Pe_{i} = E_{i}^{2}Y_{ii}\cos\theta_{ii} + E_{i}\sum_{\substack{k\in\mathcal{S}\\k\neq i}}E_{k}Y_{ik}\cos\theta_{ik} + E_{i}\sum_{j\in\mathcal{A}}E_{j}Y_{ij}\cos(\delta_{s} - \delta_{a} - \theta_{ij}) , \quad \forall i \in S \\ Pe_{j} = E_{j}^{2}Y_{jj}\cos\theta_{jj} + E_{j}\sum_{\substack{k\in\mathcal{A}\\k\neq j}}E_{k}Y_{jk}\cos\theta_{jk} + E_{j}\sum_{i\in\mathcal{S}}E_{i}Y_{ji}\cos(\delta_{s} - \delta_{a} - \theta_{ij}) , \quad \forall j \in A \end{cases}$$

$$(2.3.5)$$

onde :

$$\delta_i = \delta_s, \quad \forall i \in S$$
$$\delta_j = \delta_a, \quad \forall j \in A$$

2.3.1.2 Modelo equivalente de uma máquina ligada a barra infinita

O sistema de uma máquina equivalente ligada a barra infinita ou OMIB equivalente, é obtido definindo-se :

$$\delta \stackrel{\scriptscriptstyle \Delta}{=} \delta_s - \delta_a$$
 ,

e, conseqüentemente :

$$\delta = \delta_s - \delta_a \, .$$

Então, das equações (2.3.4), pode-se escrever :

$$\ddot{\delta} = \frac{1}{M_s} \sum_{i \in S} (Pm_i - Pe_i) - \frac{1}{M_a} \sum_{j \in A} (Pm_j - Pe_j) = \frac{1}{M_s M_a} \left[M_a \sum_{i \in S} (Pm_i - Pe_i) - M_s \sum_{j \in A} (Pm_j - Pe_j) \right]$$
(2.3.6)

Multiplicando-se ambos os membros de (2.3.6) por $1/(M_s+M_a)$ e definindo-se :

$$M_T \stackrel{\Delta}{=} M_s + M_a \equiv \sum_{i=1}^{n_s} M_i$$
: Momento angular total do sistema

$$M_{eq} \stackrel{\Delta}{=} \frac{M_s M_a}{M_r}$$

: Momento angular do sistema equivalente

$$Pm_{s} \stackrel{\Delta}{=} \sum_{i \in S} Pm_{i} \qquad Pe_{s} \stackrel{\Delta}{=} \sum_{i \in S} Pe_{i}$$
$$Pm_{a} \stackrel{\Delta}{=} \sum_{j \in A} Pm_{j} \qquad Pe_{a} \stackrel{\Delta}{=} \sum_{j \in A} Pe_{j}$$

é obtida a equação que descreve a dinâmica do sistema equivalente :

$$M_{eq}\delta = Pm_{eq} - Pe_{eq} \tag{2.3.7}$$

onde :

$$Pm_{eq} \stackrel{\Delta}{=} \frac{1}{M_T} (M_a Pm_s - M_s Pm_a) \qquad : \text{Potência mecânica equivalente}$$

$$Pe_{eq} \stackrel{\Delta}{=} \frac{1}{M_T} (M_a Pe_s - M_s Pe_a) \qquad : \text{Potência elétrica equivalente.}$$

Utilizando-se a equação (2.3.5), e fazendo-se as transformações apropriadas, a potência elétrica do sistema equivalente, pode ser escrita na seguinte forma padrão :

$$Pe_{eq} = Pc + Pmax * \operatorname{sen}(\delta - \nu)$$
(2.3.8)

onde

$$Pc \stackrel{\Delta}{=} \frac{1}{M_{T}} \left[M_{a} \sum_{i \in S} \sum_{k \in S} E_{i} E_{k} G_{ik} - M_{s} \sum_{j \in A} \sum_{k \in A} E_{j} E_{k} G_{jk} \right]$$

$$Pmax \stackrel{\Delta}{=} \left(C^{2} + D^{2} \right)^{1/2}$$

$$v \stackrel{\Delta}{=} - \tan^{-1} (C/D)$$

$$C \stackrel{\Delta}{=} \left(M_{a} - M_{s} \right) M_{T}^{-1} \sum_{i \in S} \sum_{j \in A} E_{i} E_{j} G_{ij}$$

$$D \stackrel{\Delta}{=} \sum_{i \in S} \sum_{j \in A} E_{i} E_{j} B_{ij}$$

$$G_{ij} = Y_{ij} \cos \theta_{ij}, \quad B_{ij} = Y_{ij} \sin \theta_{ij}; \quad (i, j = 1, 2, ..., n_{g})$$

$$(2.3.9)$$

2.3.1.3 Aplicação do critério de áreas iguais

A aplicação do critério de áreas iguais é feita utilizando-se as expressões de potência elétrica, equação (2.3.8), associadas ao OMIB equivalente de cada configuração do sistema durante a perturbação, conforme é ilustrado na Figura 2.3.1.

onde :

o , d, p	- sub índices para diferenciar as condições antes da falta, durante a falta ou sob defeito e pós-defeito, respectivamente;
Peo, Ped, Pep	- potência elétrica do OMIB equivalente,
Pc_{o}, Pc_{d}, Pc_{p}	- representa a carga local equivalente,
Pm_{eq}	- potência mecânica equivalente;
V_{o} , V_{d} , V_{p}	- deslocamento angular da curva potência - ângulo;
δ_o	- ângulo de equilíbrio inicial do sistema;
δ_p	- ângulo de equilíbrio do sistema na configuração pós-defeito;
δ_t	- ângulo correspondente ao instante de eliminação do defeito;
δ_c	- ângulo crítico de eliminação do defeito;
δ_u	- ângulo de equilíbrio instável na configuração pós-defeito;
Aace	- área acelerante, adquirida no período sob defeito;
Ades	- área desacelerante máxima no período pós-defeito.
•	,

Inicialmente a potência elétrica Pe_o é igual à potência mecânica Pm_{eq} , e o sistema encontra-se em regime permanente com o correspondente ângulo δ_o . Quando ocorre a perturbação, o sistema é representado pela curva Pe_d e, como $Pm_{eq} > Pe_d$ (δ_o), a máquina equivalente sofre uma aceleração com o consequente aumento do ângulo δ . Ao se eliminar o defeito, com $\delta = \delta_t$, o sistema evolui sob a curva Pe_p , onde desacelera devido à $Pm_{eq} < Pe_d$ (para $\delta t < \delta < \delta_u$).

O critério de áreas iguais estabelece que, o sistema é estável se a área acelerante *Aace*, adquirida durante o defeito, é menor ou igual a área desacelerante máxima possível *Ades*, durante a configuração pós-defeito. Define-se a margem de estabilidade ou de segurança η [4], como :

$$\eta = Ades - Aace = f(\delta_t) \tag{2.3.11}$$

Então, se $\eta \ge 0$ o sistema é estável e, se $\eta < 0$ o sistema é instável. Fazendo $\eta=0$ na equação (2.3.11), pode ser obtido o ângulo limite para manter a estabilidade do sistema, chamado de ângulo crítico, δ_c .

No apêndice A, são apresentados os diferentes casos que podem ocorrer na aplicação do critério de áreas iguais estendido. É mostrado como, embora o cálculo das áreas acelerante e desacelerante mude segundo o caso, a equação da diferença destas áreas, definida para o EEAC como margem de estabilidade transitória ou margem de segurança dinâmica, permanece invariante e tem a seguinte forma analítica :

$$\eta = (Pc_p - Pm_{eq})(\delta_u - \delta_t) + Pmax_p [\cos(\delta_t - v_p) + \cos(\delta_p - v_p)] - (Pm_{eq} - Pc_d)(\delta_t - \delta_o) - Pmax_q [\cos(\delta_t - v_d) - \cos(\delta_o - v_d)]$$

$$(2.3.12)$$

2.3.1.4 Cálculo do tempo crítico

Para calcular o tempo crítico de uma contingência, utilizando o critério de áreas iguais estendido estático é feito [2] [4] o procedimento apresentado a seguir

- i. construir uma lista de conjuntos candidatos à conjunto crítico ("cluster" crítico), composto cada um deles, por uma ou várias máquinas;
- ii. calcular o ângulo crítico do OMIB equivalente e seu respectivo tempo crítico, para cada conjunto candidato da lista;
- iii. escolher como conjunto crítico para a contingência sob análise, o conjunto que forneça o menor tempo crítico.

Para determinar o tempo crítico, em [2, 3, 4. 5] é proposto um cálculo direto utilizando a expansão em série de Taylor do ângulo do OMIB equivalente para a configuração sob defeito, conforme a equação (2.3.13) :

$$\delta_{c} = \delta_{o} + \frac{1}{2\alpha} \gamma t_{c}^{2} + \frac{\alpha_{1}}{24\alpha^{2}} \gamma t_{c}^{4}$$
(2.3.13)

onde:

$$\gamma = \delta_{t_{\phi}^{+}}$$
 - aceleração do OMIB equivalente em t=0⁺

 $\alpha = \alpha_1 \alpha_2$ - fatores corretivos

O valor dos fatores corretivos depende do SEE que está sendo analisado e da localização do curto-circuito. No capítulo 3, será apresentada uma forma alternativa de calcular o tempo crítico.

2.3.1.5 Estratégias para a escolha dos conjuntos críticos candidatos

A questão fundamental para uma correta utilização do EEAC, é dispor de um meio apropriado para determinar a lista de conjuntos candidatos. Diferentes estratégias tem sido propostas na literatura, que serão apresentadas a seguir :

Critério da aceleração inicial [4]

Nesta estratégia, é suposto que as máquinas candidatas a perder o sincronismo, são as que tem maior aceleração no inicio do período transitório. O procedimento considera os seguintes passos:

- *i.* calcular a aceleração inicial absoluta das n_g máquinas : γ_i , $i=1,...,n_g$;
- ii. escolher as máquinas com aceleração maior que um determinado percentual da máxima. São assim classificadas c máquinas das n_g;
- iii. fazer todas as combinações possíveis das máquinas escolhidas no passo ii., o qual fornece 2^c-1 conjuntos críticos candidatos.

Critério composto : aceleração inicial e distância elétrica [5]

Esta estratégia considera que, além da aceleração inicial, as máquinas com maior probabilidade de perder o sincronismo são as que estejam eletricamente mais próximas da barra em curto-circuito. O procedimento é o seguinte :

i. calcular a distância elétrica pré-falta Y_{if} (i=1,...,ng) existente entre cada máquina e a barra onde ocorre o curto-circuito;

ii. calcular a aceleração inicial absoluta das n_g máquinas : γ_i , $i=1,...,n_g$;

iii. calcular o produto $p_i = \gamma_i^* Y_{if}$ (i=1,..., n_g);

iv. escolher as máquinas com $p_i \ge p_{lim}$;

v. fazer todas as combinações possíveis das máquinas escolhidas em iv.

Classificação ("ranking") das máquinas mais avançadas em t_{μ} [7]

Este procedimento foi proposto para o EEAC dinâmico, que será apresentado no próximo item , mas poderia também ser empregado no EEAC estático. A conjectura utilizada nesta estratégia, considera que as máquinas críticas podem ser identificadas segundo o grau relativo de afastamento de cada máquina, obtido na trajetória próxima da crítica (defeito mantido por um tempo superior ao tempo crítico) e observado no ponto de equilíbrio instável do OMIB equivalente, δ_{μ} .

A estratégia consiste em :

- *i.* utilizar o critério composto anterior para achar, utilizando o EEAC estático, o primeiro conjunto para o qual seja possível calcular um tempo crítico, t_{cr}^{e} ;
- ii. calcular o ângulo de equilíbrio instável pós-defeito δ_u^e e seu correspondente tempo t_u^e (ver Figura 2.3.1), para o OMIB encontrado em i.;
- iii. dividir os intervalos de tempo $[0 ; t_{cr} e] e [t_{cr} e ; t_{cr} e + t_{u} e] em subintervalos,$ segundo a precisão requerida. Então, utilizando a expansão em série de Taylor, $resolver o sistema de equações (2.3.1) para se obter os <math>\delta_i$ e suas derivadas ω_i $(\forall i=1,2,...,n_g);$
- iv. classificar em ordem decrescente as máquinas mais distantes (avançadas ou atrasadas em $t = t_{cr}^{e} + t_{u}^{e}$) em relação ao centro de ângulos;
- v. o primeiro conjunto crítico candidato está formado pela máquina mais distante. O segundo pelas duas primeiras, e assim por diante. O máximo número de conjuntos candidatos será de n_g.

O algoritmo assim proposto, supõe que a primeira estimativa de tempo crítico, t_{cr}^{e} , achado no passo *i*. é otimista (ou seja maior que o tempo crítico real). Por causa disso, sempre se terá perda de sincronismo do sistema na simulação passo a passo feita no passo *iii*., e as máquinas

mais distantes podem ser identificadas sem ambigüidades [6, 7]. Contudo, essa hipótese nem sempre se verifica, conforme será mostrado no capítulo 3.

2.3.2 O critério de áreas iguais estendido dinâmico

No sentido de melhorar a precisão do EEAC, foi proposto em [6, 7] o "Dynamic Extended Equal Area Criterion" (DEEAC). As principais mudanças feitas em relação ao EEAC estático, são :

- as diferenças angulares entre as máquinas de cada "cluster"; desprezadas no EEAC, são consideradas;
- os parâmetros do equivalente máquina ligada a barra infinita (OMIB), são recalculados durante o transitório;
- o cluster de máquinas críticas é determinado a partir de um "ranking", como foi apresentado no item anterior.

A metodologia para se aplicar o critério de áreas iguais estendido dinâmico, constitui-se de duas partes principais, descritas a seguir :

- obter um "ranking" de máquinas críticas ("Critical Machines Ranking"), como foi apresentado no item 2.3.1.5, e
- simular a trajetória do sistema para um tempo crítico estimado, t_{cr}^e, e atualizar os parâmetros do OMIB, o que será apresentado no item 2.3.2.2.

2.3.2.1 Modelo equivalente do DEEAC

Partindo das mesmas definições estabelecidas no item 2.3.1.1 e da equação (2.3.3), tem-se :

$$\delta_{k} = \delta_{s} + \xi_{k} , k \in S;$$

$$\delta_{j} = \delta_{a} + \xi_{j} , j \in A$$
(2.3.14)

onde :

- ξ_k diferença angular da k-ésima máquina ($k \in S$), em relação ao centro parcial de ângulos do conjunto S; e
- ξ_j diferença angular da *j*-ésima máquina ($j \in A$), em relação ao centro parcial de ângulos do conjunto A.

Assim, o OMIB dinâmico equivalente é descrito pela seguinte equação [6] :

$$M\ddot{\delta} = Pm_{ea} - Pe_{ea} \tag{2.3.15}$$

onde :

$$Pe_{eq} = Pc + Pmax \ sen(\delta - v)$$

$$Pc \stackrel{\Delta}{=} \frac{1}{M_T} \left[M_a \sum_{i \in S} \sum_{k \in S} G_{ik} \cos(\xi_i - \xi_k) - M_s \sum_{j \in A} \sum_{k \in A} G_{jk} \cos(\xi_j - \xi_k) \right]$$

$$Pmax \stackrel{\Delta}{=} (C^2 + D^2)^{1/2}$$

$$v \stackrel{\Delta}{=} - \tan^{-1} (C/D)$$

$$(2.3.16)$$

$$C \stackrel{\Delta}{=} \sum_{i \in S} \sum_{j \in A} B_{ij} \operatorname{sen}(\xi_i - \xi_j) + (M_a - M_s) M_T^{-1} \sum_{i \in S} \sum_{j \in A} G_{ij} \cos(\xi_i - \xi_j)$$

$$D \stackrel{\Delta}{=} \sum_{i \in S} \sum_{j \in A} B_{ij} \operatorname{sen}(\xi_i - \xi_j) - (M_a - M_s) M_T^{-1} \sum_{i \in S} \sum_{j \in A} G_{ij} \cos(\xi_i - \xi_j)$$

$$G_{ij} \stackrel{\Delta}{=} E_i E_j Y_{ij} \cos \theta_{ij} \qquad ; \qquad B_{ij} \stackrel{\Delta}{=} E_i E_j Y_{ij} \operatorname{sen} \theta_{ij}$$

Em relação às equações, as diferenças entre o OMIB estático e o dinâmico estão nos parâmetros Pc, Pmax e v, os quais variam com ξ_i e ξ_i que, por sua vez, variam no tempo.

2.3.2.2 Simulação da trajetória e OMIB dinâmico equivalente

Para se considerar a variação dos parâmetros do OMIB dinâmico, foi proposto em [6, 7] o procedimento apresentado a seguir :

- i. utilizar o EEAC estático para calcular um conjunto crítico inicial, t_{cr}^{e} , e seus correspondentes δ_{c}^{e} , δ_{u}^{e} , t_{cr}^{e} e t_{u}^{e} . O t_{cr}^{e} assim estimado é chamado de tempo crítico estático;
- ii. dividir os períodos sob defeito [0 ; t_{cr}^e] e pós-defeito [t_{cr}^e; t_{cr}^e + t_u^e] em subintervalos, segundo a precisão requerida. Utilizando a Figura 2.3.2 para se ilustrar o procedimento, seriam 3 e 4 intervalos respectivamente : 0, t_{cr}^e/3, 2 t_{cr}^e/3, t_{cr}^e, (t_{cr}^e+t_u^e)/4, (t_{cr}^e+t_u^e)/2, 3(t_{cr}^e+t_u^e)/4 e (t_{cr}^e+t_u^e);

- iii. calcular em cada subintervalo os ângulos individuais δ_i ($\forall i=1,2,...,n_g$) de cada máquina, utilizando série de Taylor para o sistema multimáquina, equação (2.3.1), e renovar os parâmetros do OMIB dinâmico equivalente, segundo as equações (2.3.15) e (2.3.16);
- iv. substituir o sistema multimáquina com o OMIB equivalente em cada subintervalo, e calcular as novas áreas correspondentes ao subintervalo de tempo simulado : A1, A2, A3, A4, A5, A6 e A7;
- v. somar em forma algébrica as áreas da "margem dinâmica" obtidas em cada intervalo de tempo :

$$\eta = (A4 + A5 + A6 + A7) - (A1 + A2 + A3)$$

vi. como a margem assim obtida, em geral não vai ser zero, se deve calcular a correção do tempo crítico, Δt_{cr} , que torna zero a "margem dinâmica", para assim obter o tempo crítico dinâmico :

$$t_{cr} = t_{cr}^{e} + \Delta t_{cr}$$

Para calcular o Δt_{cr} , em [6, 7] são descritas duas alternativas. A primeira utilizando o coeficientes de sensibilidade da margem em relação ao tempo crítico. E a segunda, usando o método de Newton. No presente trabalho, foi implementado o método da bisseção para calcular o Δt_{cr} como será mostrado no capítulo 3.

2.3.3 Extensões do EEAC

Utilizando a metodologia do EEAC, têm sido sugeridas na literatura [3, 4] diferentes aplicações que poderiam ser utilizados no planejamento e na operação em tempo real dos SEE. É reportada em [8], a implementação do EEAC no acompanhamento da operação em tempo real do sistema Norte da China desde setembro de 1992.

Estas extensões do EEAC estão baseadas no aproveitando das expressões analíticas que podem ser obtidas do OMIB equivalente, e, mais especificamente, dos coeficientes de sensibilidade calculados a partir da margem de segurança.

E é precisamente esta qualidade do EEAC que será explorada no presente trabalho, na procura de quantificar as ações de controle requeridas para a melhoria da segurança dinâmica dos SEE

Também foram apresentados trabalhos, nos quais é procurada a sofisticação na modelagem dos geradores, incluindo o regulador automático de tensão [26], e variações na potência mecânica das máquinas [27], que serão brevemente apresentados nos itens a seguir.

2.3.3.1 Incorporação do RAT no EEAC

Em [26] é proposta a incorporação do Regulador Automático de Tensão, RAT, na modelagem do sistema. Para possibilitar isto, no sistema equivalente de duas máquinas, nas quais o EEAC transforma o sistema multimáquina, os geradores devem ser considerados com modelos de dois eixos (d e q).

É considerado o modelo de gerador, que considera a tensão E'q constante e uma tensão variável Eq, atrás da reatância Xq do gerador. São, então, estabelecidas as transformações apropriadas nas equações do OMIB equivalente, onde a potência elétrica ficará com duas variáveis adicionais, Eq_s e Ep_A (tensões equivalentes nas máquinas equivalente dos conjuntos S e A, respectivamente). São calculados os parâmetros dos RAT equivalentes (de primeira ordem), em forma similar utilizada para os centros parciais de ângulos, conjuntos de máquinas S e A.

Um sistema de 6 equações diferenciais não-lineares de primeira ordem, é finalmente obtido para representar a dinâmica do OMIB, o qual é resolvido dentro de um procedimento passo a passo, que simula o sistema até que, na configuração pós-defeito, a potência elétrica equivalente seja menor ou igual à potência mecânica equivalente

Para calcular o tempo crítico, é seguido o mesmo procedimento feito para o DEEAC. Testes computacionais apresentados em [26], mostram resultados satisfatórios na maioria dos casos.

2.3.3.2 Incorporação do "fast valving" e da rejeição de geração no EEAC

Para se levar em conta o efeito na estabilidade transitória do "fast valving" e da rejeição de geração, no EEAC [27], a potência mecânica já não é considerada mais constante. O DEEAC é utilizado, e entre os parâmetros do OMIB equivalente dinâmico, que são recalculados na simulação passo a passo, a potência mecânica equivalente também deverá ser atualizada.

Em [27] são discutidos diversos fenômenos físicos, que devem ser considerados na incorporação destas duas extensões do EEAC, tais como a ação coordenada dos controles que comandam o "fast valving" e as possíveis mudanças no conjunto crítico, provocadas pelas variações na potência mecânica.

Também, são apresentadas em [27] testes feitos com sistemas reais, mostrando a melhoria conseguida no DEEAC ao se considerar estas extensões.

2.4 Conclusões

Neste capítulo foram apresentadas as metodologias SLEP iterativo e o critério de áreas iguais estendido, que serão empregadas no presente trabalho. Foi feita uma descrição sucinta da fundamentação teórica e da formulação matemática envolvidas.

Também foram apresentadas brevemente, algumas extensões conhecidas para as duas metodologias, e que serão utilizadas para se comparar com os resultados obtidos na metodologia desenvolvida no presente trabalho.

No que se refere a metodologia EEAC, somente serão utilizados os coeficientes de sensibilidade do OMIB equivalente, para quantificar as ações de controle na melhoria da segurança dinâmica.

Na fase de análise da estabilidade transitória, através do cálculo de tempos críticos, e na definição do conjunto de máquinas críticas, será utilizado o método SLEP iterativo, pelas características de confibilidade e precisão. Assim será feita no próximo capítulo uma avaliação da metodologia EEAC, visando dar confiabilidade também aos coeficientes de sensibilidade utilizados no presente trabalho.

CAPÍTULO 3

3. Implementação computacional e avaliação crítica do critério de áreas iguais estendido

3.1 Introdução

Neste capítulo será apresentada inicialmente a implementação computacional feita para a metodologia do EEAC [2, 5, 6, 7], incluindo diagramas de fluxo, algoritmos, critérios e heurísticas estabelecidas.

Posteriormente, é feita uma avaliação da metodologia, onde são apresentadas as dificuldades encontradas ao se empregar o método no cálculo de tempos críticos, as quais só podem ser contornadas quando se dispõe de uma estratégia apropriada para determinar as máquinas críticas do sistema, para cada contingência analisada.

3.2 Implementação computacional do EEAC

A implementação computacional da metodologia do EEAC, foi feita utilizando um algoritmo que contempla cinco (5) módulos básicos, a saber :

- 1. Módulo de leitura de dados da rede e da lista de contingências a se analisar;
- Módulo de cálculo da matriz admitância nodal da rede equivalente reduzida às barras internas dos geradores (Y_{red}), para as configurações pré-falta, sob e pós defeito;
- 3. Módulo para determinar a lista de conjuntos críticos candidatos, para cada contingência;

4. Módulo de escolha do conjunto crítico e cálculo do tempo crítico, *t*_{cr}, para cada contingência;

5. Módulo de impressão de relatórios.

O diagrama de fluxo correspondente é apresentado na Figura 3.2.1. Sob os módulos 3 e 4 será feita uma descrição mais detalhada no próximos itens, salientando os pontos onde foi preciso estabelecer mudanças com respecto à proposta original do EEAC [2, 5, 6, 7].

3.2.1 Seleção dos conjuntos críticos candidatos

Foram implementados os três algoritmos descritos no item 2.3.1.5, como estratégias possíveis de seleção da lista de conjuntos críticos candidatos, a serem considerados para cada contingência. Adicionalmente, implementou-se a possibilidade de fornecer externamente as máquinas críticas para cada contingência.

Para a estratégia da aceleração inicial, são escolhidas as máquinas que possuem aceleração absoluta maior que 50 % do valor máximo. Por sua vez, para o critério composto a percentagem escolhida foi de 30 %, segundo é sugerido em [5]. Nestas duas estratégias foi limitado em 9, o número máximo de máquinas a se combinar, resultando em um máximo de 511 conjuntos candidatos (para c máquinas tem-se 2^c-1 conjuntos).

Para a estratégia que determina um "ranking" de máquinas no ponto de equilíbrio instável do OMIB equivalente, foi implementada a simulação passo a passo do sistema multimáquina, utilizando a expansão em série de Taylor até sexta ordem, do sistema representado pelas equações (2.3.1) e (2.3.2).

Como passo de integração foi escolhido 0,05 segundos. Nos testes realizados, encontrou-se que valores maiores podem levar à instabilidade numérica e valores menores aumentam desnecessariamente o esforço computacional.

A classificação das máquinas é feita em ordem decrescente, quando a máquina mais afastada do centro de ângulos está adiantada, ou crescente se está atrasada. Este último caso, corresponde à perda de sincronismo por desaceleração.

3.2.2 Cálculo do ângulo crítico

Para um grupo de máquinas candidatas a conjunto crítico, cujos parâmetros do OMIB equivalente foram calculados, o ângulo crítico é encontrado utilizando a equação (2.3.12), na qual é feito $\eta = 0$, δ_t é substituindo por δ_c e resolvida a equação não linear resultante, apresentada a seguir :

$$R + Q\delta_c + A \cos \delta_c + B \sin \delta_c = 0 \qquad (3.2.1)$$

onde :

$$R = (Pc_p - Pm_{eq})(\pi - \delta_p - 2v_p) - (Pc_d - Pm_{eq}) + Pmax_p \cos(\delta_p - v_p) + Pmax_d \cos(\delta_o - v_d)$$

$$A = Pmax_p \cos v_p - Pmax_d \cos v_d$$

$$B = Pmax_p \sin v_p - Pmax_d \sin v_d$$

$$Q = Pc_d - Pc_p$$

Para resolver a equação não linear (3.2.1), foram implementados dois métodos complementares, apresentados a seguir :

Método 1 :

A equação (3.2.1) é transformada em :

$$\delta_c = \cos^{-1} \left(\frac{-R - Q \cdot \delta_c - B \cdot \operatorname{sen} \delta_c}{A} \right)$$
(3.2.2)

A expansão em série de Taylor da função coseno, em torno de $\delta_c^{o} = \pi/2$, é

$$f(\delta_c) = \cos \delta_c = f(\delta_c^o) + f'(\delta_c^o) \Delta \delta_c + \frac{1}{2!} f''(\delta_c^o) \Delta \delta_c^2 + \frac{1}{3!} f'''(\delta_c^o) \Delta \delta_c^3 + \dots$$

onde :

$$f(\delta_c^o) = \cos(\delta_c^o) = 0$$

$$f'(\delta_c^o) = -\sin(\delta_c^o) = -1$$

$$f''(\delta_c^o) = -\cos(\delta_c^o) = 0$$

$$f'''(\delta_c^o) = \sin(\delta_c^o) = 1$$

Truncando a série após o termo de terceira ordem, obtém-se:

$$\cos(\delta_c) = -(\delta_c - \pi/2) + (1/6)(\delta_c - \pi/2)^3 \tag{3.2.3}$$

e substituindo-se na equação (3.2.2) resulta :

$$\delta_c = \frac{\pi}{2} + \frac{1}{6} \left(\delta_c - \frac{\pi}{2} \right)^3 + \frac{1}{4} \left(R + Q \cdot \delta_c + B \cdot \operatorname{sen} \delta_c \right)$$
(3.2.4)

A equação (3.2.4) é resolvida em forma iterativa, pelo algoritmo apresentado a

seguir :

i. escolha δ_{c}^{o} ii. para k=0, 1, 2, ..., faça: iii. $\delta_{c}^{k+1} = \frac{\pi}{2} + \frac{1}{6} \left(\delta_{c}^{k} - \frac{\pi}{2} \right)^{3} + \frac{1}{4} \left(R + Q \cdot \delta_{c}^{k} + B \cdot \operatorname{sen} \delta_{c}^{k} \right)$ iv. se $|\delta_{c}^{k+1} - \delta_{c}^{k}| < \xi$, então, pare v. fim - para

Método 2 :

Para um valor de ângulo crítico, δ_c° , a equação (3.2.1) é interpretada como $f(\delta_c^{\circ}) = -$ ERRO, e é procurado o δ_c que anula o erro. O algoritmo implementado, utilizando o método da bisseção, é apresentado a seguir :

- *i. k*=0
- ii. escolha δ_c° e um passo inicial, $\Delta \delta$. Calcule ERRO = $f(\delta_c^{\circ})$
- *iii.* se ERRO < 0 , faça $\Delta \delta = -\Delta \delta$
- iv. se / ERRO / < ξ., então, pare.
- v. faça k=k+1 e $\delta_c^k=\delta_c^{k-1}+\Delta\delta$
- vi. calcule ERRO = $f(\delta_c^k)$
- vii. se / ERRO * $\Delta\delta$ / <0 , então, faça $\Delta\delta$ =-0,5* $\Delta\delta$

viii.volte ao passo iv.

Nos testes feitos foi observado que, na maioria dos casos o método 1 consegue determinar em poucas iterações o ângulo crítico. O método 2 é empregado quando o método 1 falha, ou quando é requerida uma maior precisão.

Dois casos especiais podem ocorrer, nos quais não existe o ângulo crítico :

• quando o sistema é transitoriamente estável com o defeito mantido (Figura 3.2.2-a);

(a) (b) Figura 3.2.2 - Casos especiais no cálculo do ângulo crítico.

quando não existe ponto de equilíbrio na curva pós-defeito, ilustrado na Figura 3.2.2b. O sistema é instável somente com o desligamento da linha (mesmo sem curto circuito). Neste caso é feito δ_c = δ_o.

3.2.3 Cálculo do tempo crítico

Uma vez calculado o ângulo crítico, a expansão em série de Taylor da evolução no tempo do ângulo do OMIB equivalente, pode ser utilizada para calcular o tempo crítico :

$$\delta_{t_n} = \delta_{t_{n-1}} + \dot{\delta}_{t_{n-1}} \Delta t + \frac{1}{2} \ddot{\delta}_{t_{n-1}} \Delta t^2 + \frac{1}{6} \ddot{\delta}_{t_{n-1}} \Delta t^3 + \frac{1}{24} \ddot{\delta}_{t_{n-1}} \Delta t^4 + \dots \qquad (3.2.5)$$

onde

 δ_{tn} - ângulo do OMIB equivalente no instante t_n t_{n-1} = $t_n - \Delta t$ Δt - passo de integração $\dot{\delta}_{t_n}, \ddot{\delta}_{t_n}, \dots$ - $d\delta/dt, d^2 \delta/dt^2, \dots$ no instante t_{n-1}

Duas estratégias poderiam ser empregadas para resolver a equação (3.2.5) e assim determinar o tempo crítico, apresentadas a seguir

Estratégia 1 :

Em [2, 3, 4, 5] é proposto um cálculo direto, utilizando as derivadas do ângulo em $t=0^+$ e compensando o erro com o fator α , assim

$$\delta_{c} = \delta_{o} + \frac{1}{2\alpha} \gamma t_{c}^{2} + \frac{\alpha_{1}}{24\alpha^{2}} \gamma t_{c}^{4}$$
(3.2.6)

onde:

$$\gamma = \delta_{t_o^+}; \quad \dot{\gamma} = \delta_{t_o^+}; \quad \alpha = \alpha_1 \alpha_2$$

Então, o tempo crítico seria calculado resolvendo a equação quadrática (3.2.6). Os parâmetros α , $\alpha_1 \in \alpha_2$ não são únicos, e deve ser estabelecida uma heurística para se determinar os valores apropriados, que dependem da localização da falta e do sistema analisado [4].

Estratégia 2 :

Utilizar integração numérica por passos, com renovação dos coeficientes da série em cada intervalo. Neste caso, se parte da equação de oscilação do OMIB equivalente, utilizando a forma padrão para a potência elétrica, apresentada a seguir :

$$M_{eq} \delta = Pm_{eq} - Pc - Pmax. \operatorname{sen}(\delta - \nu)$$

$$\delta = \omega$$
(3.2.7)

Expandindo em séries de Taylor em torno ao ponto $(t_n, \omega^n, \delta^n)$ e até $(t_n + \Delta t, \omega^{n+1}, \delta^{n+1})$, e desprezando os termos acima da quarta ordem, resulta :

$$\begin{bmatrix} \omega^{n+1} \\ \delta^{n+1} \end{bmatrix} = \begin{bmatrix} \omega^{n} \\ \delta^{n} \end{bmatrix} + \Delta t \begin{bmatrix} \omega \\ \delta \end{bmatrix} + \frac{\Delta t^{2}}{2!} \begin{bmatrix} \omega \\ \omega \\ \delta \end{bmatrix} + \frac{\Delta t^{3}}{3!} \begin{bmatrix} \omega \\ \omega \\ \delta \end{bmatrix} + \frac{\Delta t^{4}}{4!} \begin{bmatrix} \omega \\ \omega \\ \delta \end{bmatrix}$$
(3.2.8)

Aproveitando a relação existente entre $\omega \in \delta$, as suas derivadas de primeira até quarta ordem são :

$$\delta = \omega$$

$$\delta = \omega = \frac{1}{M_{eq}} \left[Pm_{eq} - Pc - Pmax. \operatorname{sen}(\delta - v) \right]$$

$$\bar{\delta} = \bar{\omega} = -\frac{Pmax}{M_{eq}} \cos(\delta - v).\omega \qquad (3.2.9)$$

$$\bar{\delta} = \bar{\omega} = -\frac{Pmax}{M_{eq}} \left[\cos(\delta - v).\omega - \operatorname{sen}(\delta - v).\omega^2 \right]$$

$$\bar{\delta} = \bar{\omega} = -\frac{Pmax}{M_{eq}} \left[\cos(\delta - v).\omega - \operatorname{sen}(\delta - v).\omega - \cos(\delta - v)\delta.\omega^2 \right]$$

Nos testes realizados para o cálculo do tempo crítico, com as duas estratégias descritas acima, a integração numérica por passos mostrou os melhores resultados, pois ela fornece maior precisão e não implica em esforço computacional adicional.

3.2.4 Escolha do conjunto crítico para uma contingência.

Na Figura 3.2.3 é apresentado o algoritmo conceitual que, partindo de uma lista de conjuntos candidatos para uma contingência, integra os procedimentos de cálculo do ângulo e tempo crítico, na determinação do conjunto crítico e seu respectivo tempo crítico, t_{cr} . Como pode ser observado, o conjunto crítico é aquele que fornece o menor tempo crítico entre uma lista de candidatos.

Figura 3.2.3 - Fluxograma do algoritmo para a escolha do tempo e o conjunto crítico entre uma lista de conjuntos candidatos.

3.2.5 Implementação do EEAC dinâmico (DEEAC)

Na Figura 3.2.4 é ilustrada a forma como mudam as curvas de potência-ângulo do OMIB equivalente ao se utilizar o "Dynamic Extended Equal Area Criterion" (DEEAC). Para este procedimento, os artigos [6, 7] deixam várias dúvidas, tendo sido necessário adotar uma série de critérios, o quais serão explicitados no procedimento implementado, apresentado a seguir :

- i. Calcular um conjunto crítico e seu tempo crítico "estático", t_c^e, utilizando a estratégia que considera a classificação das máquinas mais afastadas do centro de ângulos (estratégia 3 do item 2.3.1.5);
- ii. Dividir o período sob-defeito [0; t_{cr}^{e}] em um número de intervalos (mínimo 2). É assim determinado o passo de integração sob defeito, Δt ;
- iii. Calcular o ângulo inicial do OMIB, δ_0 , a partir dos ângulos individuais em $t=0^+$ (equação 2.3.3);
- iv. Fazer $\delta_t = \delta_o$ (δ_t é o ângulo atual do OMIB equivalente);
- v. Para cada intervalo sob-defeito $[t; t+\Delta t]$:
 - Calcular os parâmetros do OMIB equivalente, utilizando o conjunto de equações (2.3.16);
 - Simular o sistema multimáquina, entre t e t+∆t, para encontrar os ângulos individuais das máquinas. É utilizada a expansão em série de Taylor;
 - Calcular o $\delta_{t+\Delta t}$, que corresponde ao ângulo do OMIB em $t+\Delta t$ (equação 2.3.3); a partir dos ângulos individuais das máquinas;
 - Calcular a área acelerante do intervalo [δ_t; δ_{t+Δt}] (áreas A1, A2 e A3 da Figura 3.2.4);
 - Fazer $\delta_t = \delta_{t+\Delta t}$;
- vi. Armazenar os parâmetros do último OMIB equivalente do período sob defeito. O ângulo atingido pelo OMIB é considerado o ângulo crítico "dinâmico", δ_c^d (ver Figura 3.2.4);
- vii. Definir o passo de integração para o período pós-falta. Foi utilizado 0,1 segundos;

Figura 3.2.4 - Representação do procedimento que utiliza o OMIB dinâmico.

viii.Para cada intervalo do período de simulação pós-defeito :

- Calcular os parâmetros do OMIB equivalente e seus ângulos de equilíbrio estável, δ_p^i (i=1,2,...,número de intervalos), e de equilíbrio instável δ_u^d ;
- Fazer a simulação do sistema multimáquina entre t e $t+\Delta t$;
- Calcular o ângulo do OMIB equivalente em $t+\Delta t$, $\delta_{t+\Delta t}$ (equação 2.3.3), a partir dos ângulos individuais;
- Se o ângulo do OMIB equivalente $\delta_{t+\Delta t}$ é menor que δ_t , então, o sistema esta desacelerando (o t_{cr}^e é pessimista), o processo deve ser suspenso e é definido $\delta_{t+\Delta t} \leftarrow \delta_u^d$;
- Se o ângulo do OMIB equivalente $\delta_{t+\Delta t}$ é maior que δ_u^d , então, o ponto de equilíbrio instável seria ultrapassado neste intervalo (o t_{cr}^e é otimista), o processo deve ser suspenso e é definido $\delta_{t+\Delta t} \leftarrow \delta_u^d$;

- Calcular a área desacelerante do intervalo [δ_t; δ_{t+Δt}] (áreas A4, A5, A6 e A7 da Figura 3.2.4);
- Se é o primeiro intervalo, armazenar os parâmetros do OMIB;
- Fazer $\delta_t = \delta_{t+\Delta t}$

ix. Fim da simulação. Calcular a margem "dinâmica"; $\eta = \sum A_{desace_t} - \sum A_{acele_t} = f(\delta_c^d)$

- x. Procurar o novo ângulo crítico, δ_c^{novo} , tal que o η seja zero. Exceto a área do último OMIB equivalente sob-defeito (A3 da Figura 3.2.4) e a área do primeiro OMIB pós-defeito (A4 da Figura 3.2.4), as outras são consideradas fixas. Neste procedimento iterativo, o método da bisseção é empregado e considerando que, se $\eta > 0$, então $\delta_c^{novo} > \delta_c^d$.
- xi. Calcular o tempo crítico correspondente ao novo ângulo crítico. Os algoritmos apresentados no item 3.2.3, com os parâmetros do último OMIB equivalente sobdefeito, são empregados.

É importante salientar que, na configuração sob defeito, o tempo crítico "estático" estimado, t_{cr}^{e} , é utilizado para limitar o período de permanência do curto circuito. Contudo, na configuração pós-defeito não será empregado o t_{u} "estático", pois, tal como pode ser observado na Figura 3.2.4, o ponto de equilíbrio instável do OMIB equivalente dinâmico, δ_{u}^{d} , varia cada vez que seus parâmetros são recalculados.

Na expansão em série de Taylor, para simular o sistema multimáquina, o passo de integração é ajustado de forma que não seja maior que 0,05 segundos, para evitar instabilidade numérica.

Além das considerações especiais descritas acima, duas situações particulares podem ocorrer e devem ser levadas em conta :

para o δ_c^{novo} encontrado no passo x., deve-se testar que δ₂^d < δ_c^{novo} < δ_I^p. Caso não seja cumprida esta restrição, o processo é repetido a partir do passo *ii*., mas considerando o tempo crítico correspondente ao δ_c^{novo}.

 quando o tempo crítico "estático" estimado, t_{cr}^e, é otimista demais, o OMIB equivalente pós-falta pode não ter ponto de equilíbrio. Neste caso, a heurística empregada consiste em diminuir o tempo crítico em 10 %, e começar desde o passo *ii*.

3.3 Avaliação do critério de áreas iguais estendido

Neste item serão avaliados os aspectos a seguir :

- a definição do conjunto crítico,
- a precisão do EEAC e do DEEAC;
- o desempenho comparativo com o SLEP iterativo.

Na primeira fase, se apresentará uma síntese dos casos que mostram claramente as dificuldades encontradas. Nas outras duas, serão calculados os tempos críticos para uma lista de contingências e comparados com os encontrados, utilizando um programa de simulação tradicional.

No programa de simulação passo a passo empregado para encontrar os tempos críticos, que serão chamados de tempos críticos reais, foi empregado o modelo clássico na representação dos geradores. Por causa disso, os sistemas de controle, como reguladores de tensão e velocidade, foram desconsiderados.

3.3.1 Sistemas de potência empregados na avaliação

Para a avaliação da metodologia do EEAC foram utilizados dois sistemas teste, denominados de sistema teste 1 e sistema teste 2, descritos brevemente a seguir :

Sistema teste 1

Este sistema representa uma configuração do sistema sul brasileiro equivalente com 10 máquinas, 45 barras e 72 linhas de transmissão e transformadores. O diagrama unifilar, os parâmetros e dados deste sistema são apresentados no apêndice C. Neste, se tem uma condição de carga pesada com uma exportação de 900 MW, representada por uma carga equivalente na barra Ivaiporã 500 kV.

Sistema teste 2

Este sistema representa uma configuração do sistema interligado colombiano com 17 máquinas, 79 barras e 128 linhas de transmissão e transformadores. O diagrama unifilar, os parâmetros e dados deste sistema encontram-se no apêndice D. A condição de regime permanente utilizada neste sistema, foi obtida a partir de uma situação real em carga média, caracterizada por altas transferências. O despacho original otimizado foi alterado para se obter situações críticas de estabilidade transitória, que deverão ser corrigidas pela metodologia desenvolvida no presente trabalho.

3.3.2 Critérios de escolha do conjunto crítico

A correta utilização do EEAC, depende diretamente da escolha apropriada do conjunto crítico do sistema para cada contingência. Na literatura tem sido propostas diferentes estratégias [2, 4, 5, 7], que serão avaliadas nos itens seguintes. Será mostrado com casos específicos, que nenhuma delas pode garantir a determinação precisa do conjunto crítico

3.3.2.1 Aceleração inicial

Considere a contingência, no sistema teste 2, caracterizada por um curto circuito trifásico na barra 202 com desligamento permanente da linha de transmissão entre as barras 202 e 106 (S_CARLOS - BALSILLA). O tempo crítico real encontrado para esta contingência é de 0,030 segundos.

Neste caso, é mostrado como as máquinas que finalmente perdem o sincronismo, nem sempre possuem as maiores acelerações iniciais. Por causa disso, a estratégia que considera a aceleração inicial das máquinas para a escolha dos conjuntos candidatos, pode desconsiderar uma ou várias máquinas do conjunto crítico.

Na Figura 3.3.1 é apresentada a trajetória das 17 máquinas, em relação ao centro de ângulos, com tempo de abertura levemente maior que o tempo crítico e igual a 0,031 segundos. Também é indicado o instante de cruzamento com a SLEP, t_{slep} , encontrado com o SLEP iterativo. Observa-se como são nove as máquinas que perdem o sincronismo : 219, 221, 216, 210, 208, 203, 518, 515 e 513.

Capítulo 3

Figura 3.3.1 - Ângulos das máquinas no tempo, com tempo de abertura de 0,031 segundos, levemente maior que o tempo crítico (0,030 segundos).

Posição	Máquina	Aceleração inicial
· 1	219	83,18
2	203	66,80
. 3	210	53,75
4	221	44,88
5	216	40,34
6	208	30,65
7	518	20,35
8	112	14,80
9	310	14,66
10	109	13,58
11	305	10,89
12	515	9,13
13	513	8,43
14	-102	5,56
15	404	5,45
16	313	5,22
17	104	4,84

Tabela 3.3.1 - Acelerações inicias das máquinas para a contingência 202-106 do sistema 2

A classificação das máquinas, segundo o valor absoluto das acelerações iniciais é apresentada na Tabela 3.3.1. Pelo critério estabelecido, de escolher as máquinas com mais do 50% do máximo, são selecionadas as primeiras 4 máquinas para se obter, por combinações, os conjuntos candidatos.

Destes candidatos, o conjunto que fornece o menor tempo crítico para a contingência está formado pelas 4 máquinas, com um tempo de 0,126 segundos (320 % de erro).

3.3.2.2 Critério composto : aceleração inicial - distância elétrica

Será mostrado como o critério composto pela aceleração inicial e a distância elétrica, pode considerar como críticas algumas máquinas que nem terão perda de sincronismo. Para tal, foi selecionada no sistema 2, a contingência que considera um curto circuito trifásico na barra 111 com desligamento permanente da linha de transmissão entre as barras 111 e 113 (GUACA - MESA). O tempo crítico real para esta contingência é de 0,274 segundos.

Na Figura 3.3.2 é mostrada a trajetória das 17 máquinas, em relação ao centro de ângulos, com tempo de abertura levemente maior que o tempo crítico e igual a 0,275 segundos. Observa-se um grupo de 9 máquinas perdendo sincronismo por aceleração e as outras 8 por desaceleração.

Na Tabela 3.3.2 é apresentada a aceleração inicial, a distância elétrica pré e pósfalta e o valor composto, para as 17 máquinas do sistema teste 2. As primeiras 4 máquinas são escolhidas para fazer as combinações dos conjuntos candidatos. Mas como pode ser observado na Figura 3.3.2, as duas primeiras desta classificação, 112 e 109, estão desacelerando, enquanto que as outras duas, 203 e 219, perdem sincronismo por aceleração. Como resultado, o EEAC estático fornece a máquina 112 como conjunto crítico e 1,163 segundos como tempo crítico (314,6 % de erro).

<u>3.3.2.3 Classificação das máquinas mais afastadas em $t=t_{\mu}$ </u>

Serão apresentados dois casos, para mostrar que o *procedimento proposto* em [6, 7], para fazer a classificação das máquinas mais afastadas, com os ângulos individuais obtidos da trajetória próxima da crítica, e observado justo depois de se atingir o ponto de equilíbrio instável do OMIB equivalente, pode falhar.

Capítulo 3

Figura 3.3.2 - Ângulos das máquinas para a contingência na linha 111-113 do sistema 2, com tempo de abertura levemente maior que o tempo crítico (0,274 segundos).

Posição	Máquina	Aceleração inicial	Distância pré-falta	Distância pós-falta	Valor composto Acel * Dist. pré-falta
1	112	11,22	0,0165	0,0169	18,53
2	109	8,49	0,0148	0,0151	12,56
3	203	26,66	0,0031	0,0030	8,29
4	219	26,20	0,0022	0,0022	5,88
5	210	17,72	0,0020	0,0020	3,57
6	216	14,67	0,0018	0,0018	2,64
7	104	4,77	0,0052	0,0052	2,48
8	208	13,74	0,0018	0,0017	2,43
9	221	14,15	0,0016	0,0015	2,23
10	102	4,81	0,0045	0,0045	2,16
11	310	3,76	0,0024	0,0024	0,91
12	404	5,70	0,0016	0,0015	0,89
13	305	2,72	0,0020	0,0019	0,54
14	513	4,50	0,0011	0,0011	0,49
15	515	3,63	0,0011	0,0010	0,38
16	313	1,72	0,0011	0,0011	0,19
17	518	4,84	0,0003	0,0003	0,16

Tabela 3.3.2 - Classificação das máquinas para o exemplo 2, segundo o critério composto.

<u>Caso 1</u>: Considere para o sistema teste 1, um curto circuito na barra 370, com desligamento permanente da linha de transmissão entre as barras 370 e 368 (P.FUNDO ITAÚBA). O tempo crítico real encontrado para a contingência é de 0,327 segundos.

O primeiro passo do procedimento em [6,7] considera calcular *um* conjunto crítico, e seu tempo crítico, pela estratégia composta (aceleração inicial - distância elétrica).

Para esta contingência, é encontrado como primeiro conjunto crítico a máquina 366, com um tempo crítico "estático" estimado, t_{cr}^{e} , de 0,309 segundos e tempo para alcançar o ponto de equilíbrio instável do OMIB equivalente, t_{u} , 0,827 segundos.

Na Figura 3.3.3 é apresentada a trajetória do sistema obtida na simulação passo a passo, considerando 0,309 segundos como tempo de permanência da falta, e 0,827 segundos como tempo de simulação, instante no qual é feita a classificação das máquinas mais afastadas em relação ao centro de ângulos, t_u . Na Tabela 3.3.3 é mostrada a classificação feita.

Figura 3.3.3 - Tr	rajetória para o caso	l, com tempo de a	bertura de (0,309	segundos
-------------------	-----------------------	-------------------	--------------	-------	----------

Posição	Máquina	Ângulo relativo (graus)
1	392	-37,40
2	369	-35,42
3	394	-33,17
. 4	395	-31,19
5	381	-2,13
6	407	-1,22
7	397	-0,43
8	390	3,65
9	366	7,07
10	373	24,01

Tabela 3.3.3 - Classificação das máquinas mais afastadas para o exemplo 3

Com este "ranking", o EEAC não consegue calcular nenhum tempo crítico, pois para todos os conjuntos candidatos da classificação, o OMIB equivalente é estável com defeito mantido. Para este caso, a classificação errada acontece porque o tempo crítico "estático" estimado inicialmente, t_{cr}^{e} , é pessimista, e então, o sistema multimáquina não terá perda de sincronismo na simulação passo a passo feita.

Para tentar contornar esse problema, foi implementada a seguinte heurística

- em cada passo da simulação do sistema multimáquina, testar a perda de sincronismo (aumento contínuo do ângulo da máquina mais afastada);
- quando é detectado que o sistema está mantendo o sincronismo, a simulação é interrompida;
- se a simulação foi suspensa, o tempo crítico e o tempo de simulação são incrementados em 5% e começada de novo a simulação.

A heurística descrita acima foi provada com o sistema teste 1. Para uma lista de 40 contingências, foi detectado que não há perda de sincronismo em 20 destas contingências. O tempo computacional requerido, foi o dobro do tempo gasto pelo método SLEP iterativo para analisar as mesmas 40 contingências.

<u>Caso 2</u>: Neste se mostrará como o fato de se aumentar o tempo de permanência da falta, pode levar a mudanças no modo de oscilação do sistema, com a conseguinte classificação errada das máquinas críticas.

Considere-se a ocorrência de um curto circuito na barra 391, do sistema teste 1, com os desligamento permanente da linha de transmissão entre as barras 391 e 398. O tempo crítico real desta contingência é de 0,394 segundos.

Na Figura 3.3.4 é apresentada a evolução dos ângulos das máquina para diferentes tempos de permanência da falta. Para 0,395 segundos, tempo levemente maior que o tempo crítico real, se tem perda de sincronismo por desaceleração nas máquinas 392, 394 e 395. Ao se aumentar o tempo para 0,410 segundos, é a máquina 407 quem tem perda de sincronismo por aceleração. E com um tempo sob defeito de 0,430 segundos, se tem perda de sincronismo nas 392, 394 e 395 por desaceleração, mas também nas máquinas 369 e 373 por aceleração.

Os dois casos apresentados, mostram que o problema da estratégia que considera a classificação das máquinas mais afastadas em $t=t_u$, para a obtenção das máquina críticas da forma como foi proposto em [6, 7], está não só na obtenção do instante no qual é feita a classificação, como também na simulação da trajetória pós-defeito do sistema, feita com uma estimativa de tempo crítico de baixa precisão.

Para garantir a escolha do conjunto de máquinas críticas para cada contingência, no presente trabalho é proposta a utilização do método SLEP iterativo, questão que será discutida no capítulo 4. No item a seguir, será mostrado que ao fornecer externamente o conjunto de máquina críticas, o critério de áreas iguais estendido consegue calcular razoavelmente o tempo crítico para cada contingência, na faixa de interesse da análise de segurança dinâmica.

O fato de garantir a escolha precisa do conjunto de máquina críticas para cada contingência, possibilita a utilização confiavel do EEAC na determinação do OMIB equivalente, que por sua vez permitirá a obtenção de expressões analíticas para a margem de segurança e para os coeficientes de sensibilidade da margem.

3.3.3 Avaliação comparativa dos métodos EEAC estático e dinâmico e do SLEP iterativo

Neste item, será analisada a qualidade dos tempos críticos calculados com o EEAC e o SLEP iterativo, quando são comparados com os resultados obtidos com métodos tradicionais de simulação.

Para o EEAC, e devido às dificuldades descritas anteriormente, o conjunto de máquinas críticas para cada contingência analisada, será fornecido externamente. Apresentar-se-á o tempo crítico calculado com o EEAC estático (EEEAC) e dinâmico (DEEAC), com o qual se poderá observar a melhoria obtida no método.

Para a obtenção dos tempos críticos reais, os tempos de simulação foram limitados em 2,0 segundos, devido à representação do sistema pelo modelo clássico. Os parâmetros utilizados para o programa SLEP iterativo são apresentados na Tabela 3.3.4 [25].

DESCRIÇÃO	VALOR
Número de termos da série de Taylor	6
Número máximo de estimativas de tempo crítico	9
Intervalo de monitoração da Derivada Direcional	0,02 s.
Tolerância para a convergência em energia	99 %
Intervalo de tempo para a renovação da série	0,01 s .
Tempo máximo de simulação	2,0 s.
Tolerância, em segundos, na detecção da SLEP	0,001 s.

Tabela 3.3.4 - Parâmetros utilizados na execução do programa SLEP iterativo
Na Tabela 3.3.5 são apresentados, para uma lista de contingências do sistema teste 1, os tempos críticos reais e calculados pelo EEAC (estático e dinâmico) e pelo SLEP iterativo. De igual forma, a Tabela 3.3.6 contém os resultados obtidos para uma lista de contingências do sistema teste 2. O curto circuito é aplicado na barra origem.

	Linha ou trans	formador retirado			Ten	Tempo crítico calculado (s)					
No.	Barra Origem	Barra Destino	No.	Conjunto	EEAC	EEAC	SLEP	REAL			
	·		CIIC.	Crítico	estático	dinâmico	iterativo				
1	374 S.OSORIO.230	375 AREIA.230	1	373	0,093	0,111 (0,113)	0,112	0,112			
2	374 S.OSORIO.230	372 P.BRANCO.230	1	373	0,138	0,148 (0,148)	0,148	0,148			
3	408 ITAUBA.230	414 V.AIRES.230	1	407	0,150	0,171 <i>(0,174)</i>	0,172	0,172			
4	396 J.LACERDA230	380 R.QUEIMAD230	1	394,395, 392	0,291	0,296	0,296	0,296			
5.	382 AREIA.525	386 BARRACAO.525	1	366	0,041	0,057 <i>(0,059)</i>	0,066	0,061			
6	370 P.FUNDO.230	408 ITAUBA.230	1	369	0,300	0,318	0,316	0,314			
7	367 SIDEROPOL230	368 FARROUPIL230	1	395,394, 392	0,518	0,552	0,532	0,533			
8.	367 SIDEROPOL230	396 J.LACERDA230	1	395,394,392	0,527	0,551	0,532	0,536			
9	391 S.SANTIAG525	389 PINHEIRO.525	1	392,394,395	0,683	0,683	0,393	0,406			
10	391 S.SANTIAG525	389 PINHEIRO.525	1	392,394,395	0,683	0,683	0,393	.0,394			
11	437 FORQUILHI230	367 SIDEROPOL230	1	395,394,392	0,604	0,652	0,622	0,619			
12	382 AREIA.525	398 SEGREDO.525	1	366	0,245	0,248	0,246	0,245			
13	371 XANXERE.230	372 P.BRANCO.230	1	373	0,546	0,590	0,582	0,585			
14	382 AREIA.525	384 CUR.NORTE525	1	366	0,256	0,269	0,263	0,264			
-15	382 AREIA.525	375 AREIA.230	1	. 366	0,256	0,269	0,267	0,266			

Tabela 3.3.5 - Tempos críticos para o sistema teste 1, calculados pelo EEAC, SLEP iterativo e simulações passo a passo.

	Linha ou trans	sformador retirado	_	-	Tempo crítico calculado (s)						
No	Barra Origem	Barra Destino	No. circ.	Conjunto Crítico	EEAC estático	EEAC dinâmico	SLEP iterativo	REAL			
1	202 S CARLOS 220	114 NOROESTE	1	Α	0,010	0,010	0,012	0,001			
2	202 S CARLOS 220	106 BALSILLA	1	Α	0,037	(0,010) 0,030 (0,027)	0,027	0,030			
3	202 S CARLOS 220	301 ESMERALD	1	Α	0,061	0,045	0,047	0,050			
4	209 GUATAPE 220	218 JAGUAS 220	1	219	0,045	0,048 (0,048)	0,048	0,048			
5	202 S CARLOS 220	209 GUATAP 220	1	A	0,079	0,058 (0,063)	0,064	0,065			
6	209 GUATAPE 220	220 PLAYAS 220	1	Α	0,099	0,064 (0,073)	0,076	0,076			
7	301 ESMERALD 301 ESMERALD	307 YUMBO 307 YUMBO	1 2	В	0,209	0,112	0,091	0,097			
8	517 GUAJIRA 220	520 SANTAMAR	1	518	0,068	(0,118) 0,091 (0,092)	0,092	0,092			
9	204 ANCONSUR	301 ESMERALD	1	Α	0,123	0,082	0,092	0,097			
10	214 ORIENTE	220 PLAYAS 220	1	Α	0,202	(0,090) 0,121 (0.151)	0,147	0,152			
11	114 NOROESTE	105 TORCA	1	A	0,380	0,265	0,256	0,282			
12	511 BARRANQU 220	501 SABANALA 220	1	Α	0,279	0,263	0,249	0,261			
13	111 GUACA 220KV	113 MESA	1	А	0,354	0,275	0,268	0,274			
14	- 307 YUMBO	311 SANBERNA	1	А	0,498	0,331	0,361	0,376			
15	103 GUAVIO 220KV	105 TORCA	1	Α	0,704	0,600	0,418	0,427			
16	107 CIRCO	110 TUNAL	1	219	2,000	2,000	1,119	1,251			
17	306 PANCE	307 YUMBO	1	Α	0,792	0,792	0,531	0,566			
18	410 BUCMANGA	405 PALOS	1	404	0,820	0,820	0,892	0,960			
19	402 SN MATEO	403 TASAJERO 220	1	404	0,484	0,695	0,549	0,572			
20	312 BETANIA 220	311 SANBERNA	1	313	0,596	0,779	0,757	0,762			
	A : 219,518,22	1,210,216,203,208,515,513		B :	313,310,305,1	104,10 2 ,109,1	12				

Tabela 3.3.6 - Tempos críticos para o sistema teste 2, calculados pelo EEAC, SLEP iterativo e simulações passo a passo.

Tempo crítico	% erro EEEAC	% erro DEEAC	% erro SLEP	Tempo crítico	% erro EEEAC	% erro DEEAC	% erro SLEP
0,030	23,33	0,00	-10,00	0,274	29,20	0,36	-2,19
0,048	-6,25	0,00	0,00	0,282	34,75	-6,03	-9,22
0,050	22,00	-10,00	-6,00	0,296	-1,69	0,00	0,00
0,061	-32,79	-6,56	8,20	0,314	-4,46	1,27	0,64
0,065	21,54	-10,77	-1,54	0,376	32,45	-11,97	-3,99
0,076	30,26	-15,79	0,00	0,394	73,35	73,35	-0,25
0,092	-26,09	-1,09	0,00	0,406	68,23	68,23	-3,20
0,097	115,46	15,46	-6,19	0,427	64,87	40,52	-2,11
0,097	26,80	-15,46	-5,15	0,533	-2,81	3,56	-0,19
0,112	-16,96	-0,89	0,00	0,536	-1,68	2,80	-0,75
0,148	-6,76	0,00	0,00	0,566	39,93	39,93	-6,18
0;152	32,89	-20,39	-3,29	0,572	-15,38	21,50	-4,02
0,172	-12,79	-0,58	0,00	0,585	-6,67	0,85	-0,51
0,245	0,00	1,22	0,41	0,619	-2,42	5,33	0,48
0,261	6,90	0,77	-4,60	0,762	-21,78	2,23	-0,66
0,264	-3,03	1,89	-0,38	0,960	-14,58	-14,58	-7,08
0,266	-3,76	1,13	0,38	1,251	59,87	59,87	-10,55

Tabela 3.3.7 - Erro percentual no cálculo do tempo crítico do EEAC e o SLEP iterativo

Os percentuais do erro no cálculo do tempo crítico de todas as contingências, foram ordenados segundo o tempo crítico real e são apresentados na Tabela 3.3.7. Na Figura 3.3.5 é apresentado um gráfico, para se ter uma idéia qualitativa global e comparativa da precisão dos três métodos.

Da análise destes resultados, é conferida a boa precisão obtida com o método SLEP iterativo, que apresenta um error inferior ao 10 % em toda a faixa de tempos críticos.

É notável a melhoria conseguida pelo DEEAC, comparada com a precisão do EEEAC, no cálculo do tempo crítico para as contingências mais severas (tempo crítico menor que 0,150 segundos). Este fato fica mais em evidência ao se analisar os resultados obtidos para as contingências 7, 9 e 10 da Tabela 3.3.6.

Embora, na maioria dos casos o DEEAC apresente um desempenho aceitável, com um erro inferior ao 15 %, para os tempos críticos maiores, persistem situações nas quais não consegue "melhorar" o tempo crítico calculado pelo estático (contingências 9 e 10 da Tabela 3.3.5 e contingências 16, 17 e 18 da Tabela 3.3.6) e até faz estimativas "piores" (contingências 7, 8 e 11 da Tabela 3.3.5 e 19 da Tabela 3.3.6).

Estas situações correspondem a contingências consideradas não críticas (tempos críticos maiores de 0,350 segundos), onde a perda de sincronismo acontece na segunda ou terceira oscilação do sistema.

Dois pontos devem ser ressaltados: primeiro, o desempenho conseguido no DEEAC só foi possível fornecendo o "cluster" crítico externamente e de forma não automática. E segundo, na simulação passo a passo do sistema multimáquina, feita no DEEAC para recalcular os parâmetros do OMIB equivalente, o tempo crítico estimado inicial, t_{cr}^{e} , é calculado com o EEAC estático.

Em relação a segunda questão, foi comprovado para as contingências com os menores tempos críticos reais, que se além do conjunto crítico, fosse fornecido externamente o tempo crítico de cada contingência, para ser utilizado na simulação do sistema multimáquina, se teria uma precisão ainda melhor no DEEAC (exceto em uma contingência). Os valores assim obtidos são apresentados na Tabela 3.3.5 e na Tabela 3.3.6 entre parêntesis.

Na Figura 3.3.6 é comparada a precisão dos métodos DEEAC e SLEP iterativo, para os tempos críticos menores de 0,250 segundos. Nesta, para o DEEAC é graficado o erro no cálculo do tempo crítico, quando na simulação do sistema multimáquina é utilizado o t_{cr}^{e} e o tempo crítico real.

55

Figura 3.3.5 - Comparação qualitativa do erro no cálculo do tempo crítico dos métodos SLEP iterativo, EEEAC e DEEAC

DEEAC (*) : O tempo crítico real foi fornecido

Figura 3.3.6- Comparação qualitativa do erro no cálculo do tempo crítico na faixa de interesse para a segurança dinâmica.

3.4 Conclusões

Neste capítulo foi apresentada a implementação computacional desenvolvida para o cálculo do tempo crítico, utilizando o critério de áreas iguais estendido.

As dificuldades existentes na determinação dos conjuntos críticos candidatos, foram discutidas mediante casos específicos, os quais mostram como nenhuma das estratégias sugeridas na literatura [3, 5, 7], é totalmente confiável.

As questões que inviabilizam a utilização destas estratégias são :

- *i. Critério da aceleração inicial* : as máquinas que finalmente perdem o sincronismo nem sempre têm as maiores acelerações iniciais;
- *Critério composto de aceleração inicial e distância elétrica*: do mesmo modo que no critério anterior, a conjectura empregada para escolher as máquinas críticas candidatas, pode provocar a desconsideração das máquinas que realmente terão perda de sincronismo;
- iii. Classificação ("ranking") das máquinas mais afastadas : para se empregar este procedimento, uma estimativa inicial do tempo crítico, t_{cr}^{e} , e do tempo para o qual o sistema atingiria o ponto de equilíbrio instável, t_u , deve ser feita. Quando o tempo de permanência do curto circuito é menor que o tempo crítico real (estimativa pessimista), não se terá perda de sincronismo do sistema e, portanto, a classificação das máquinas mais afastadas em t_u , pode não coincidir com as máquinas críticas.
- Mas, se o tempo de permanência da falta é maior que o tempo crítico real, uma mudança no modo de oscilação (caracterizada pelas máquinas que perdem o sincronismo), pode acontecer, e, consequentemente, seria feita uma classificação errada das máquinas críticas.

Em outras palavras, a estratégia não é confiável quando a trajetória do sistema, empregada para obter a classificação das máquinas, difere muito da trajetória crítica real.

Neste capítulo, também foi feita uma avaliação da precisão do EEAC, no cálculo do tempo crítico e comparada com a precisão do método SLEP iterativo. Devido às dificuldades

na determinação do conjunto crítico do sistema, para cada contingência analisada o conjunto de máquinas críticas foi fornecido externamente.

O erro do SLEP iterativo encontra-se abaixo do 10 % em toda a faixa de tempos. O DEEAC melhora apreciavelmente o desempenho do EEAC, apresentando, na maioria dos casos, erros inferiores a 15 %. Mas, existem situações nas quais o erro atinge 20 % para tempos críticos menores que 0,150 segundos, e outras, caracterizadas pela perda de sincronismo na segunda oscilação com tempos críticos superiores a 0,350 segundos, nas quais o DEEAC não consegue melhorar a performance do estático (erros de até 74 %).

Para os tempos crítico menores, a precisão do DEEAC pode ser melhorada se, além do conjunto de máquinas críticas, é fornecida uma boa estimativa do tempo crítico real para cada contingência.

A escolha do conjunto de máquinas críticas do sistema, ou seja, as máquinas responsáveis pela perda de sincronismo, na ocorrência de uma contingência, é preponderante para uma correta aplicação do critério de áreas iguais estendido.

Aliás, a utilização apropriada dos coeficientes de sensibilidade da margem de segurança, obtidos do OMIB equivalente, na determinação de ações de controle para a melhoria da segurança dinâmica, depende diretamente da escolha precisa do conjunto crítico.

A estratégia da classificação das máquinas mais afastadas do centro de ângulos, mostra-se como a mais apropriada na identificação da máquinas críticas. Para garantir o sucesso desta estratégia, uma trajetória do sistema próxima da trajetória crítica deve ser utilizada.

No presente trabalho, é proposta a utilização do método SLEP iterativo na identificação das máquinas críticas do sistema para cada contingência. Além disso, e dada a melhor precisão, o SLEP iterativo também será empregado para avaliar a segurança dinâmica. O EEAC será utilizado para obter o OMIB equivalente do sistema para cada contingência, o qual permitirá encontrar expressões analíticas dos coeficientes de sensibilidade, que por sua vez permitirão identificar e quantificar ações de controle para a melhoria da segurança dinâmica.

CAPÍTULO 4

4. Determinação de ações de controle para a melhoria da segurança dinâmica

4.1 Introdução

A correção da segurança dinâmica dos SEE, empregando ferramentas automáticas, é uma das funções que se deve dispor nos centros de gerenciamento de energia, para fazer o planejamento da operação de curto e muito curto prazo conforme as necessidades do momento.

Nos SEE modernos, os despachos de geração são obtidos, geralmente, logo após um processo de otimização dos recursos energéticos disponíveis no sistema. Nestes, são levados em conta limites mínimos e máximos de geração de usinas ou conjunto de usinas, que foram encontrados através de estudos feitos "off-line", considerando condições típicas de configurações e disponibilidades.

Mas, geralmente acontece que, as condições reais de operação são diferentes das utilizadas na determinação dos limites. A segurança do sistema pode ficar comprometida, quando não se dispõe de uma ferramenta automática para a análise e correção da segurança dinâmica.

Quando é prevista uma condição insegura, face a ocorrência de uma falta na rede, a estratégia que normalmente emprega-se é a realocação da geração das máquinas. Esta ação de controle é chamada de redespacho de geração.

Neste capítulo, será apresentada a metodologia proposta no presente trabalho, que acoplando as metodologias SLEP iterativo e EEAC, faz a avaliação da segurança dinâmica do sistema e determina as ações de controle do tipo redespacho de geração, requeridas para levar o sistema a um nível de segurança pré-estabelecido.

4.2 Correção da segurança dinâmica

Com as metodologias tradicionais de análise da estabilidade transitória, feitas com simulações passo a passo, tem-se as seguintes dificuldades :

- a melhoria da segurança é procurada mediante um processo de tentativa e erro;
- não se tem indicações de como melhorar uma condição insegura;
- as ações de controle dependem da experiência do analista;
- pelo enorme esforço computacional requerido, o processo é feito só para as contingências que, a juízo do analista, sejam as mais representativas;
- não podem ser levadas em conta interações entre diferentes redespachos.

Pelo exposto acima, os estudos que procuram garantir a segurança dinâmica no planejamento de curto prazo e na operação de tempo real, com os procedimentos tradicionais, são praticamente inviáveis de realizar.

Os métodos diretos e híbridos para a análise da estabilidade transitória, além de ter a capacidade de analisar em forma automática um grande número de contingências, fornecem uma medida que quantifica a segurança do sistema : *a margem de segurança*. Dotando estas ferramentas, de meios para determinar as ações de controle requeridas para corrigir a segurança dinâmica, quando assim seja necessário, se teria o instrumento demandado no planejamento da operação dos sistemas de energia elétrica (SEE).

4.2.1 Metodologia geral de correção da segurança dinâmica.

Um procedimento geral para a correção da segurança dinâmica, deve contemplar basicamente os passos a seguir :

- estabelecer um valor mínimo para a margem de segurança (η_{min});
- avaliar a segurança do sistema, ou seja, para uma lista de n contingências, encontrar o conjunto que não satisfaz o nível de segurança requerido (η_k<η_{min});
- identificar e quantificar ações de controle, para obter uma condição segura;
- encontrar e avaliar a nova condição de regime permanente do sistema.

No procedimento conceitual descrito acima, e para se levar em conta as interações entre as contingências e os redespachos, e calcular as melhores ações de controle, se deve dispor de um módulo adicional de otimização. É estabelecido então um processo iterativo, ilustrado na Figura 4.2.1.

Figura 4.2.1 - Algoritmo geral conceitual de melhoria da segurança dinâmica dos SEE.

4.2.2 Avaliação da segurança dinâmica

O método SLEP iterativo [1] tem apresentado resultados precisos para a análise da estabilidade transitória, quando comparado com outras metodologias [9] [22], que utilizam o modelo clássico.

Aliás, como foi mostrado no capítulo 3, o erro do EEAC no cálculo dos tempos críticos pode atingir 20%, na faixa de interesse (tempos menores de 0,250 segundos). A imprecisão própria do EEAC, vai se refletir no cálculo das margens de segurança, que levaria à

sugestão de redespachos também imprecisos. Ações de controle excessivas, geralmente elevam os custos de operação, enquanto que as deficientes podem comprometer a eficácia das medidas adotadas para a melhoria da segurança dinâmica.

Por isso, o método SLEP iterativo será empregado no presente trabalho na avaliação da segurança dinâmica dos SEE, ou seja, no cálculo dos tempos críticos e das margens de segurança. No entanto, os coeficientes de sensibilidade da margem de segurança, obtidos do OMIB equivalente, serão utilizados na identificação e quantificação das ações de controle.

O critério de parada do algoritmo iterativo, implementado no presente trabalho, utilizará a margem de segurança calculada pelo SLEP iterativo. Assim, é necessário fazer compatível a quantificação da margem de segurança das duas metodologias, questão que será resolvida no item 4.3.2.

4.3 Integração das metodologias SLEP iterativo e EEAC

No capítulo 3, foi mostrado que nenhuma das estratégias propostas na literatura, para a determinação do "cluster" crítico do sistema para cada contingência, é totalmente confiável. A precisa determinação do conjunto crítico, deve ser garantida face a uma apropriada utilização dos coeficientes de sensibilidade do OMIB equivalente.

No próximo item, será apresentada a estratégia empregada no presente trabalho que, utilizando o método SLEP iterativo, faz a classificação das máquinas críticas. Posteriormente, é discutida a compatibilidade da margem de segurança das duas metodologias.

4.3.1 Determinação dos conjuntos críticos utilizando o SLEP iterativo

A classificação das máquinas mais afastadas do centro de ângulos, mostrou-se como a alternativa mais viável para se garantir a escolha das máquinas do conjunto crítico. Conceitualmente, esta estratégia precisa do conhecimento da trajetória crítica do sistema e do ponto de tangência com a SLEP [6, 7].

A trajetória crítica do sistema [1], obtém-se quando o tempo de permanência da falta é igual ao tempo crítico, t_{cr} , e é tal que, para todos os instantes de tempo de eliminação do defeito menores que t_{cr} , o sistema permanece transitoriamente estável.

Figura 4.3.1 - Trajetórias de um sistema hipotético para vários tempos de eliminação do defeito

Na Figura 4.3.1 são ilustradas diferentes trajetórias de um sistema hipotético, utilizadas no SLEP iterativo para calcular o tempo crítico, onde :

$\boldsymbol{\theta}^{e}$	-	ponto de equilíbrio estável pré falta;
θ^{t}	-	ponto de cruzamento com a SLEP da última trajetória instável;
Si	-	trajetórias estáveis,
U_i	-	trajetórias instáveis;
<i>t</i> _i	-	tempo de permanência da falta;
t_{cr}	-	tempo crítico de eliminação da falta;
t _{slep}	-	tempo no qual a SLEP é alcançada.

No capítulo 2, item 2.2.5, foi descrito o processo iterativo de cálculo da energia crítica e tempo crítico de eliminação do defeito.

Como aproximação prática do ponto de tangência com a SLEP, neste trabalho é proposta a utilização dos ângulos das máquinas no instante de cruzamento com a SLEP, da última trajetória instável obtida no processo iterativo SLEP, para fazer a classificação ("ranking") das máquinas críticas. Estas, informações podem ser o obtidos como um subproduto do método SLEP iterativo, sem representar nenhum esforço computacional adicional.

Então, utilizando esta estratégia, o EEAC escolhe o conjunto crítico de cada contingência, com o OMIB equivalente que fornece o menor tempo crítico "estático". Para este OMIB são calculadas as margens de segurança e os coeficientes de sensibilidade.

Se o tempo crítico, calculado pelo SLEP iterativo, t_{cr}^{slep} , for menor que 0,250 segundos, o DEEAC será empregado para melhorar a precisão do OMIB, e por conseguinte, a precisão das margens e dos coeficientes de sensibilidade. Neste casos, o t_{cr}^{slep} é utilizado como tempo de permanência da falta, na simulação requerida no DEEAC.

4.3.2 Margens de segurança do SLEP iterativo e do EEAC

A margem de segurança associada à k-ésima contingência, pode ser interpretada como uma medida da distância em relação à condição limite de estabilidade do sistema. Considerando-se um conjunto de contingências analisadas para tempos determinados de permanência da falta (por exemplo o tempo de atuação da proteção principal), a margem de segurança permite identificar as mais severas. A margem de segurança é, então, um índice de desempenho de um sistema, relativo aos transitórios eletromecânicos.

Em termos de energia, a expressão da margem de segurança para uma contingência, é definida em [1] como

$$\eta_e = \frac{E_{crit} - E_e}{E_{crit}} \tag{4.3.1}$$

onde :

 E_{crit} - energia potencial crítica total do sistema;

 E_e - energia total do sistema no instante de eliminação do defeito.

Para o critério de áreas iguais estendido em [3] [4], é definida uma margem absoluta de estabilidade do sistema, η_i , como a diferença entre a área desacelerante e a área acelerante dos gráficos potência ângulo associados, ou seja :

$$\eta_1 = A_{des} - A_{ace} \tag{4.3.2}$$

A equação (4.3.2) têm uma expressão analítica, apresentada no capítulo 2, que permite o cálculo do ângulo crítico do OMIB e o tempo crítico da contingência.

64

Na Figura 4.3.2 são ilustradas as áreas acelerante e desacelerante do OMIB, para permanência da falta igual ao tempo da proteção e ao tempo crítico. Utilizando a Figura 4.3.2, a margem absoluta η_1 pode ser reescrita como :

$$\gamma_1 = A_{2t} - A_{1t} \tag{4.3.3}$$

Dado que η_1 é uma medida absoluta, que não leva em conta o afastamento relativo à condição limite de estabilidade, é proposta uma segunda margem η_2 , que pondera a η_1 em relação à área acelerante crítica :

$$\eta_2 = \frac{A_{des} - A_{ace}}{A_{ace} \quad critica} \tag{4.3.4}$$

A área acelerante crítica no OMIB, é definida como a área entre as curvas de potência mecânica e potência elétrica da configuração sob-defeito, calculada entre o ângulo inicial δ_o e o ângulo crítico da contingência δ_c . Utilizando a Figura 4.3.2, a margem η_2 pode ser reescrita como :

$$\eta_2 = \frac{A_{2t} - A_{1t}}{A_{1c}} = \frac{\eta_1}{A_{1c}}$$
(4.3.5)

Em [23], é mostrado que a aplicação do método direto de Liapunov em um sistema máquina ligada a barra infinita, fornece o mesmo resultado que o critério de áreas iguais. A função de Liapunov, ou função energia para o sistema é dada pela seguinte expressão [23] :

$$V(\delta,\omega) = \frac{1}{2} M_{eq} \omega^2 - Pmax_p(\cos\delta - \cos\delta_p) - Pm_{eq}(\delta - \delta_p)$$
(4.3.6)

Figura 4.3.2 - Áreas acelerante e desacelerante do EEAC, para permanência da falta igual ao tempo da proteção e ao tempo crítico.

Fisicamente, a primeira parcela da equação (4.3.6) representa a energia cinética e as outras duas a energia potencial do sistema. Genericamente a equação (4.3.6) pode ser representada por :

$$V(\delta, \omega) = Ec(\omega) + Ep(\delta)$$

O critério de áreas iguais estabelece como condição para garantir a estabilidade que, segundo a Figura 4.3.2, a área A_{1t} seja menor que ou igual à área A_{2t} . Desconsiderando a carga local e as condutâncias da rede, sem perda de generalidade, as áreas A_{1t} , A_{2t} e A_{3t} podem ser calculadas como :

$$A_{It} = \int_{\delta_o}^{\delta_t} (Pm_{eq} - Pmax_d \, sen \, \delta) d\delta = \int_{\delta_o}^{\delta_t} M_{eq} \, \frac{d\omega}{dt} d\delta = \frac{1}{2} M_{eq} \omega_t^2 \tag{4.3.7}$$

$$A_{2t} = \int_{\delta_t}^{\delta_u} (Pmax_p \, sen \, \delta - Pm_{eq} \,) d\delta = -Pmax_p \, cos(\delta_u - \delta_t) - Pm_{eq}(\delta_u - \delta_t) \tag{4.3.8}$$

$$A_{3t} = \int_{\delta_p}^{\delta_t} (Pmax_p \, sen \, \delta - Pm_{eq} \,) d\delta = -Pmax_p \, cos(\delta_t - \delta_p) - Pm_{eq}(\delta_t - \delta_p) \tag{4.3.9}$$

$$A_{2t} + A_{3t} = \int_{\delta_p}^{\delta_u} (Pmax_p \, sen \, \delta - Pm_{eq} \,) d\delta = -Pmax_p \, cos(\delta_u - \delta_p) - Pm_{eq}(\delta_u - \delta_p) \tag{4.3.10}$$

A equação (4.3.7) mostra que, A_{1t} corresponde à energia cinética do sistema no instante de abertura da falta, ou seja, a energia cinética adquirida pelo sistema durante a falta. A equação (4.3.9) mostra que, A_{3t} é a energia potencial no ponto de abertura do defeito e, a equação (4.3.10) mostra que, $A_{2t}+A_{3t}$ (área entre as curvas de potência mecânica e potência elétrica na configuração pós-defeito), representa a energia potencial no ponto de equilíbrio instável, δ_u .

Utilizando as equações (4.3.7) à (4.3.9), o critério de áreas iguais também pode ser expresso como :

$$A_{1t} + A_{3t} \le A_{2t} + A_{3t} \tag{4.3.11}$$

ou

$$\frac{1}{2}M_{eq}\omega_t^2 - Pmax_p(\cos\delta_c - \cos\delta_p) - Pm_{eq}(\delta_c - \delta_p) \leq -Pmax_p(\cos\delta_u - \cos\delta_p) - Pm_{eq}(\delta_u - \delta_p)$$

ou simbolicamente

$$V_{\tau}(\delta_{c}, \omega_{c}) \le E_{P}(\delta_{u}, 0) \tag{4.3.12}$$

Da equação (4.3.12) conclui-se que para haver estabilidade, a energia total adquirida pelo sistema durante o defeito, deve ser menor ou igual à energia potencial no ponto de equilíbrio instável para a configuração pós-defeito.

Utilizando a expressão da margem de segurança em termos de energia, equação (4.3.1), e baseados nas conclusões acima, pode-se escrever a margem η_e em termos de áreas como :

$$\eta_e = \frac{A_{2c} + A_{3c} - A_{1t} - A_{3t}}{A_{2c} + A_{3c}}$$

Considerando-se que $A_{2c} + A_{3c}$ é igual a $A_{2t} + A_{3t}$, e A_{1c} é igual a A_{2c} , conforme se observa na Figura 4.3.2, pode-se rescrever η_e , da seguinte forma :

$$\eta_e = \frac{\eta_1}{A_{1e} + A_{3e}} \tag{4.3.13}$$

Com a margem de segurança η_e , definida pela equação (4.3.13), é possível fazer um acoplamento entre as metodologias SLEP iterativo e EEAC, no processo de análise e correção da segurança dinâmica dos SEE, objetivo do presente trabalho.

Embora seja compatível a quantificação da margem de segurança das duas metodologias, podem existir diferenças nos valores calculados. Devido às imprecisões próprias do EEAC, a margem de segurança fornecida pelo SLEP iterativo será utilizada para avaliar o nível de segurança de cada contingência, e como critério de parada do processo iterativo, descrito conceitualmente no item 4.2.1.

Mas, serão os coeficientes de sensibilidade da margem η_{e} obtidos do OMIB equivalente, os utilizados no presente trabalho na quantificação das ações de controle, e na análise da interação existente entre um grupo de contingências, questão que será abordada nos itens seguintes.

4.4 Coeficientes de sensibilidade da margem de segurança usando o OMIB equivalente

Na obtenção do OMIB equivalente para cada contingência, o sistema multimáquina é transformado para duas máquinas equivalentes, $S \in A$. O conjunto S ("cluster" crítico) está composto pelas máquinas responsáveis pela perda de sincronismo do sistema. No entanto, o conjunto A está formado pelas máquinas restantes.

Fazendo uma redistribuição (realocação) apropriada da geração entre estes dois conjuntos, será possível alterar convenientemente a resposta transitória do sistema. Deve ser observado que as variações de geração em um conjunto, por exemplo o conjunto S, são compensadas totalmente pelo outro, o conjunto A.

Calculando os coeficientes de sensibilidade da margem, em relação à geração de um conjunto (por exemplo o S), pode-se quantificar uma ação de controle do tipo redespacho, para melhorar a segurança dinâmica quando seja necessário.

Os coeficientes de sensibilidade de primeira e segunda ordem, da margem η_e são definidos como :

$$\frac{d\eta_e}{dPm_s} \stackrel{\Delta}{=} S_{P_{m_s}}$$

$$\frac{d^2\eta_e}{dPm_s^2} \stackrel{\Delta}{=} S'_{P_{m_s}}$$
(4.4.1)

No apêndice B é apresentada a dedução detalhada das expressões analíticas destes índices. Utilizando a expansão em série de Taylor até a segunda ordem, em torno do valor atual de η_{e_2} , se tem :

$$\eta_e^r = \eta_e^o + \Delta \eta_e = \eta_e^o + S_{P_{ss}} \Big|_{P_{ss}^o} \Delta Pm_s + \frac{1}{2} S'_{P_{ss}} \Big|_{P_{ss}^o} \Delta Pm_s^2$$

$$(4.4.2)$$

onde :

 η_e^r - margem de segurança obtida depois do redespacho;

 η^{o}_{e} - margem de segurança atual;

- $\Delta \eta_e$ variação na margem de segurança;
- ΔPm_s variação de geração no conjunto crítico;

- S_{Pms} coeficiente de sensibilidade de primeira ordem, da margem de segurança em relação à potência gerada no conjunto crítico,
- S_{Pms} coeficiente de sensibilidade de segunda ordem, da margem de segurança em relação à potência gerada no conjunto crítico;
- Pm_s° geração atual no conjunto crítico.

Resolvendo a equação (4.4.2) para ΔPm_s , se tem

$$\Delta Pm_{s} = \frac{-S_{P_{ms}^{0}} \pm \sqrt{S_{P_{ms}^{0}}^{2} + 2S'_{P_{ms}^{0}} \Delta \eta_{e}}}{S'_{P_{ms}^{0}}}$$
(4.4.3)

A equação (4.4.2) será utilizada no presente trabalho para estimar a nova margem de segurança de cada contingência, obtida logo após um redespacho de geração, no ACUCSO simultâneo. No entanto, a equação (4.4.3) é usada para quantificar a ação de controle, do tipo redespacho de geração, requerida no conjunto de máquinas críticas de uma contingência, para se obter um nível de segurança pré-determinado (a margem mínima).

4.5 Algoritmo proposto para a melhoria da segurança dinâmica dos SEE

A distribuição de geração entre as máquinas, nos SEE modernos, é obtida através de um despacho econômico de geração, que procura otimizar os recursos energéticos disponíveis no sistema. O perfil de geração assim obtido, deve ser preservado, a menos que o nível de segurança do sistema esteja comprometido.

Por isso, as ações de controle para a melhoria da segurança dinâmica, do tipo redespacho de geração, devem provocar o menor desvio possível em relação ao ótimo.

O algoritmo desenvolvido no presente trabalho, procura aproveitar as características de precisão e confiabilidade do método SLEP iterativo, no cálculo do tempo crítico e da margem de segurança, e as expressões analíticas dos coeficientes de sensibilidade da margem de segurança, obtidos do OMIB equivalente, na identificação e quantificação das ações de controle para a correção da segurança dinâmica.

O algoritmo conceitual desenvolvido para a melhoria da segurança em SEE, considera especificados um despacho inicial e uma lista de contingências. De modo geral, supõese que esse despacho inicial seja o despacho econômico. Os passos principais são apresentados a seguir :

70

- i. Calcular a condição de regime permanente do sistema;
- ii. Calcular com o SLEP iterativo o tempo crítico, a margem de segurança e os ângulos das máquinas no instante de cruzamento com a SLEP, t_{slep}, da última trajetória instável, para cada uma das contingências da lista;
- iii. Ordenar as contingências segundo a margem de segurança calculada pelo SLEP iterativo. Se para todas as contingências, $\eta_e > \eta_{min}$, o processo é encerrado;
- iv. Determinar o conjunto crítico e seu respectivo OMIB equivalente, mediante a classificação das máquinas em t_{slep}. Também são calculados, para cada contingência, os coeficientes de sensibilidade da margem de segurança;
- V. Identificar e quantificar ações de controle para a melhoria da segurança dinâmica, utilizando os coeficientes de sensibilidade da margem. Este módulo é chamado de ACUCSO (Ações de Controle Utilizando os Coeficientes de Sensibilidade do OMIB);
- vi. Voltar ao passo i.

Uma outra forma de visualização deste algoritmo é apresentada na Figura 4.5.1, onde são identificadas as metodologias envolvidas em cada bloco.

4.6 Identificação e quantificação das ações de controle

Não existe uma forma única de encarar o problema de identificar e quantificar as ações de controle, e diferentes critérios ou estratégias poderiam ser estabelecidos.

No presente trabalho, o problema de otimização é formulado, mas não será resolvido. Em compensação, é implementado um algoritmo heurístico que, levando em conta o aspecto econômico e a interação entre as contingências, procura as melhores ações de controle no sistema.

4.6.1 Formulação do problema de otimização

Um problema de otimização deverá ser resolvido, que minimizando o desvio do ponto de operação, leve o sistema para uma nova condição que satisfaça as restrições de estabilidade transitória e as limitações físicas dos equipamentos.

Assim serão apresentados nos próximos subitens as equações de restrições e a função objetivo.

4.6.1.1 Restrições de estabilidade transitória

Do conjunto de n contingências analisadas {N}, é obtido igual número de restrições de desigualdade a serem satisfeitas, expressas como :

$$\eta_k' \ge \eta_{min} \ (k=1,2,...,n)$$
(4.6.1)

onde :

$$\eta_{k}^{r} = \eta_{k}^{o} + S_{k, P_{ms,k}} \Big|_{P_{ms,k}^{0}} \Delta Pm_{s,k} + \frac{1}{2} S_{k}^{\prime} \Big|_{P_{ms,k}^{0}} \Delta Pm_{s,k}^{2}$$
(4.6.2)

$$\Delta Pm_{s,k} = \sum_{i=1}^{n} \Gamma_{k,i} \Delta Pg_i$$
(4.6.3)

- η_k^r margem de segurança da k-ésima contingência, obtida depois do redespacho;
- η_{min} margem mínima requisitada.
- η_k° margem de segurança atual da k-ésima contingência;
- $S_{k,Pmsk}$ coeficiente de sensibilidade de primeira ordem, da margem de segurança da k-ésima contingência, em relação à potência gerada no seu conjunto crítico;
- S'_{k,Pms,k} coeficiente de sensibilidade de segunda ordem, da margem de segurança da k-ésima contingência, em relação à potência gerada no seu conjunto crítico;
- $\Delta Pm_{s,k}$ variação de geração no conjunto crítico da k-ésima contingência;
- n_g número de geradores do sistema
- $\Gamma_{k,i}$ = -1 : se a máquina *i* pertence ao conjunto crítico da *k*-ésima contingência
 - = 0 : se a máquina *i* não pertence ao conjunto crítico k.
- ΔPg_i redespacho de geração para a *i*-ésima máquina.

4.6.1.2 Restrições dos componentes do sistema

Nestas, poderiam ser incluídas os limites de capacidade dos equipamentos da rede, como linhas de transmissão e transformadores. Mas, considerando unicamente as limitações fisicas das máquinas, tem-se as seguintes restrições a serem satisfeitas :

$$\Delta P g_i^{min} \leq \Delta P g_i \leq \Delta P g_i^{max}, \ (i=1,2,...,ng)$$

$$(4.6.4)$$

onde :

$\Delta P g_i^{min}$	=	$Pmin_i - Pg_i^o$
$\Delta P g_i^{max}$	=	$Pmax_i - Pg_i^o$
Pmin _i , Pmax _i	-	limites técnicos de potência ativa do i-ésimo gerador
ΔPg_i	-	redespacho de geração para a <i>i</i> -ésima máquina.
Pg_i^o	-	geração atual da <i>i</i> -ésima máquina

4.6.1.3 Equação do balanço de potência

Desprezando as variações nas perdas de potência do sistema, as quais poderiam ser levadas em conta neste ponto, a somatória dos redespachos feitos deve ser nula, ou seja :

$$\sum_{i=1}^{n_{t}} \Delta P g_{i} = 0 \tag{4.6.5}$$

onde, ΔPg_i é o redespacho de geração para a *i*-ésima máquina.

4.6.1.4 Função objetivo

Como a condição inicial do sistema é obtida de um processo de otimização dos recursos energéticos, na função objetivo devem ser penalizadas as variações de grande magnitude a partir da solução inicial [13] [25]. A forma analítica desta função objetivo é dada por :

$$f(\Delta Pg_i) = \sum_{i=1}^{n_g} \alpha_i (\Delta Pg_i)^2 \qquad (4.6.6)$$

onde, α_i é o fator de ponderação ou penalidade da *i*-ésima máquina.

Com esta função objetivo, em geral, o processo de otimização [25] tenderá a atribuir os maiores incrementos de potência às máquinas correspondentes aos menores valores de ponderação.

Diferentes alternativas podem-se empregar na escolha dos fatores de ponderação α_i , citadas a seguir :

 i. fatores de ponderação unitários (α_i=1,0, i=1,2,...,n_g). Neste caso, não são levados em conta explicitamente os custos incrementais ou a efetividade de cada máquina na variação da segurança do sistema;

- *ii.* fatores de ponderação iguais ao custo incremental de cada máquina, β_i , fornecidos pelo processo de otimização hidro-térmico. Desta forma, a interação entre as contingências e a efetividade de cada máquina na variação da segurança, não seriam levadas em conta explicitamente;
- iii. fatores de ponderação para acréscimos na geração, diferentes dos fatores para decréscimo [13]. Para esta alternativa valem os mesmos comentários da anterior;
- *iv.* fatores de ponderação que levem em conta a sensibilidade da margem "global" do sistema às variações de geração em cada máquina, definidos como $\alpha_i = \left(\frac{d\eta_T}{d\Delta Pg_i}\right)^{-1}$. Com estes fatores, os custos ocasionados pela melhoria da segurança, não seriam levados em conta explicitamente;
- v. fatores de ponderação que combinem os custos incrementais e a sensibilidade na segurança, definidos como $\alpha_i = \beta_i \left(\frac{d\eta_T}{d\Delta P_{g_i}}\right)^{-1}$. Desta forma, para máquinas com igual custo incremental, o redespacho dará prioridade à máquina mais efetiva, e para máquinas com igual efetividade, se dará prioridade à máquina com menor custo.

Conceitualmente, os fatores de ponderação discutidos em v., apresentam-se como os mais indicados a utilizar na função objetivo. Antes de apresentar em forma sintética o problema de otimização completo, serão definidas a margem "global" do sistema e a sensibilidade da seguirança do sistema às variações na geração de cada máquina.

4.6.1.5 A margem "global" e a sensibilidade da segurança do sistema

Seja {M} o conjunto das *m* contingências mais severas, nas quais $\eta_k \leq \eta_{min}$ (*k*=1,2,...,*m*). Então, a margem "global" do sistema, η_T , é definida sob o conjunto {M} como

$$\eta_T = \sum_{k=1}^m \eta_k \tag{4.6.7}$$

Utilizando as equações (4.6.2) e (4.6.3), a nova margem de segurança "global" e sua sensibilidade, devido à variação na *i*-ésima máquina, podem ser calculadas pelas expressões (4.6.8) e (4.6.9) respectivamente.

$$\eta_T = \sum_{k=1}^{m} \left[\eta_k^o + S_{k, P_{mak}} \Gamma_{k, i} \Delta P g_i + \frac{1}{2} S_k', P_{mak} \left(\Gamma_{k, i} \Delta P g_i \right)^2 \right]$$
(4.6.8)

$$SG_{i} \stackrel{\Delta}{=} \frac{d\eta_{T}}{d\Delta Pg_{i}} = \sum_{k=1}^{m} \Gamma_{k,i} \Big[S_{k,P_{ms,k}} + \Delta Pg_{i}S_{k',P_{ms,k}} \Big]$$
(4.6.9)

onde :

- $\Gamma_{k,i} = -1$: se a máquina *i* pertence ao conjunto crítico da *k*-ésima contingência, = 0: se a máquina não pertence ao conjunto crítico;
- SG_i sensibilidade da margem "global" a variações na geração da máquina *i*.

4.6.1.6 O problema de otimização completo

A formulação completa do problema de otimização, para corrigir a segurança dinâmica dos SEE, pode ser escrito como :

Minimizar:
$$f(\Delta Pg_i)_T = \sum_{i=1}^{n_g} \left[\frac{\beta_i (\Delta Pg_i)^2}{SG_i} \right]$$
(4.6.10)

sujeito a :

$$\begin{cases} \eta_{k}^{o} + S_{k,Pms_{k}} \sum_{i=1}^{n_{g}} \Gamma_{k,i} \Delta Pg_{i} + \frac{1}{2} S'_{k,Pms_{k}} \left(\sum_{i=1}^{n_{g}} \Gamma_{k,i} \Delta Pg_{i} \right)^{2} \geq \eta_{min}; \quad k = 1, 2, ..., n \\ \Delta Pg_{i} \leq \Delta Pg_{i}^{max}; \quad i = 1, 2, ..., n_{g} \\ \Delta Pg_{i} \geq \Delta Pg_{i}^{min}; \quad i = 1, 2, ..., n_{g} \\ \sum_{i=1}^{n_{g}} \Delta Pg_{i} = 0 \end{cases}$$

$$(4.6.11)$$

onde :

 ΔPg_{i} - redespacho de geração para a *i*-ésima máquina.

 n_g - número de geradores do sistema

 β_i - custo incremental da *i*-ésima máquina

- SG_i sensibilidade da margem "global", em relação à variações na geração da *i*-ésima máquina (equação (4.6.9));
- η_k° margem de segurança atual da k-ésima contingência;

 η_{min} - margem de segurança mínima requerida no sistema,

75

- coeficiente de sensibilidade de primeira ordem, da margem da k-ésima S_{k.Pmsk} contingência, em relação à potência gerada no seu conjunto crítico; - coeficiente de sensibilidade de segunda ordem, da margem da k-ésima Sk Pms.k contingência, em relação à potência gerada no seu conjunto crítico; = -1: se a máquina *i* pertence ao conjunto crítico da k-ésima contingência Γ_{ki} = 0 : se a máquina *i* não pertence ao conjunto crítico; $\Delta P g_i^{min}$ $= Pmin_i - Pg_i^o$ $\Delta P g_i^{max} = P max_i - P g_i^o;$ - geração mínima técnica de potência ativa do i-ésimo gerador; $Pmin_i$, geração máxima técnica de potência ativa do i-ésimo gerador Pmax, Pg_i^o - geração atual da i-ésima máquina.

O problema de otimização assim formulado, possui uma função objetivo nãolinear, com restrições também não-lineares. Este não será resolvido no presente trabalho, mas em compensação, é desenvolvido o módulo ACUCSO, para identificar e quantificar ações de controle, apresentado no seguinte subitem.

4.6.2 O módulo ACUCSO : Ações de Controle Utilizando os Coeficientes de Sensibilidade do OMIB

No presente trabalho foi desenvolvido um algoritmo, que utilizando os coeficientes de sensibilidade obtidos do OMIB equivalente, identifica e quantifica ações de controle para a melhoria da segurança dinâmica dos SEE.

O módulo ACUCSO, Ações de Controle Utilizando Coeficientes de Sensibilidade do OMIB, foi provido de duas estratégias diferentes para a melhoria da segurança, o redespacho para a contingência com menor margem de segurança e o redespacho simultâneo.

A primeira estratégia, não considera os custos incrementais de geração e procura corrigir a margem da pior contingência, em cada iteração do procedimento geral ilustrado na Figura 4.5.1. Desta maneira, podem não ser determinados os melhores redespachos, desde o ponto de vista de efetividade e de otimização do sistema, mas servirá para validar a metodologia empregada, na identificação e quantificação de ações de controle, utilizando coeficientes de sensibilidade da margem de segurança do OMIB equivalente.

A segunda estratégia, corrige de forma simultânea o conjunto de contingências com menor margem ($\eta_k < \eta_{min}, k=1,2,...,m$), considerando os custos incrementais de geração, a sensibilidade da margem "global" e a interação entre as contingências e os redespachos. O ACUCSO simultâneo, estabelece um processo iterativo local que procura identificar e quantificar os melhores redespachos de geração.

4.6.2.1 O ACUCSO para a pior contingência

A pior contingência é definida, como a de menor margem de segurança do conjunto {M}, composta pelas *m* contingências nas quais $\eta_k \leq \eta_{min}$ (k=1,2,...,m). A estratégia implementada considera os passos descritos a seguir :

- *i.* Achar no conjunto {M} a contingência com menor margem de segurança. Supor que esta corresponde à contingência p, com margem η_p ;
- ii. Calcular com a equação (4.4.3), a variação de geração ΔPm_s requerida no conjunto crítico desta contingência, para se levar a margem ao valor mínimo, $\Delta \eta = \eta_{min} - \eta_p;$
- iii. Distribuir ΔPm_s , entre as máquinas dos conjuntos S e A da contingência p, em proporção à margem de regulação de cada usina;

iv. Fim do ACUCSO para a pior contingência.

Embora os redespachos sejam calculados para a pior contingência, as contingências com margem inferior a 105% da margem mínima requerida, η_{min} , são levadas em conta. Isso é feito no passo *iii*. ao não permitir que as máquinas de seus conjuntos críticos possam aumentar geração (são bloqueadas);

Deve aclarar-se que, a margem de regulação negativa, MRN, é utilizada nas máquinas que baixam geração (conjunto S) e a margem de regulação positiva, MRP, nas máquinas que aumentam (conjunto A).

77

4.6.2.2 O ACUCSO simultâneo

O ACUCSO simultâneo identifica e quantifica os redespachos para levar o sistema ao nível de segurança requisitado, considerando em forma explícita os custos envolvidos na realocação de geração e a interação existente entre as contingências e os redespachos.

Na fase de identificação das melhores ações de controle, o algoritmo implementado, leva em conta os custos incrementais e a sensibilidade da margem "global" para cada máquina. Na fase de quantificação, as equações (4.4.2) e (4.4.3) serão utilizadas dentro de um processo iterativo local.

Identificação das melhores ações de controle do ACUCSO

A filosofia do ACUCSO simultâneo está baseada nas hipóteses descritas a seguir :

- Toda variação de geração numa máquina deve ser compensada por uma outra, o que provoca uma realocação de geração;
- ii. Para um par de máquinas, i e j (i,j=1,2,...,ng), a realocação de geração considera diminuição na i-ésima máquina e aumento na j-ésima;
- *iii.* Para um sistema com n_g máquinas, existe um total de n_g (n_g-1) realocações teoricamente possíveis;

iv. A realocação entre as máquina *i* e *j* (*i*,*j*=1,2,..., n_g) é viável, quando as duas máquinas possuem margem de regulação negativa e positiva, respectivamente. Isto é :

se $MRN_i > 0$ e $MRP_i > 0$, a realocação é viável;

- v. A toda realocação estarão associados um custo e uma variação na margem "global" do sistema, que podem ser quantificados;
- vi. As melhores realocações correspondem às que combinam o menor custo e a maior efetividade na margem "global";
- *vii.* Estabelecendo um fator que pondere os aspectos de economia e efetividade, será possível classificar e ordenar as n_g (n_g -1) realocações teoricamente possíveis;

Baseado nestas idéias, são definidos três fatores de penalidade ou ponderação, apresentados a seguir :

Fator de custo das realocações

Para cada realocação entre as máquinas $i \in j$ $(i,j=1,2,...,n_g)$, são definidos o custo da realocação, o custo incremental e o fator de custos, como :

$$CR_{ij} \stackrel{\Delta}{=} CIR_{ij} * \Delta Pg_{ij}$$

$$CIR_{ij} \stackrel{\Delta}{=} (\alpha_j - \alpha_i)$$

$$FCIR_{ij} \stackrel{\Delta}{=} CIR_{ij} / max |CIR_{ij}|$$

$$i, j = 1, 2, ..., n_g$$

onde :

CR _{ij}	- custo da realocação entre as máquina <i>i</i> e <i>j</i> ;
CIR _{ij}	- custo "incremental" da realocação entre as máquina i e j;
ΔPg _{ij}	- variação de geração entre as máquinas i e j,
α_i	- custo incremental da <i>i</i> -ésima máquina, a qual baixa geração;
α_{j}	- custo incremental da j-ésima máquina, a qual sobe geração;
FCIRij	- fator de custo incremental da realocação entre as máquinas i e j;
max CIR _{ij}	- valor absoluto da realocação de maior custo "incremental".

Deve ser notado que, se $CIR_{ij} > 0$ a realocação estará afastando o sistema do despacho ótimo, e se $CIR_{ij} < 0$ a realocação produz um ganho na otimização do sistema. Sempre que o despacho inicial for resultado de um processo de otimização hidrotérmico, a segunda situação deveria corresponder a uma realocação inviável.

No caso de ser viável, o despacho original pode não corresponder com um caso otimizado, ou o problema de melhoria de segurança não está considerando todas as restrições adotadas no processo de otimização hidrotérmico. Então, o custo de operação do sistema redespachado para garantir a segurança dinâmica, poderia ser menor que o custo do despacho original.

Fator de efetividade das realocações

A efetividade na margem "global" do sistema, devido à realocação entre as máquinas $i \in j$, pode ser quantificada utilizando a equação (4.6.9). Desconsiderando os

(4.6.12)

coeficientes de segunda ordem, a efetividade e o fator de efetividade são definidos pelas equações (4.6.13) e (4.6.14), respectivamente.

$$SG_{ij} \stackrel{\Delta}{=} \frac{d\eta_T}{d\Delta Pg_{ij}} = \sum_{k=1}^{m} (\Gamma_{k,i} - \Gamma_{k,j}) S_{k,P_{m,k}}$$
(4.6.13)

$$FSG_{ij} = SG_{ij} / max |SG_{ij}|$$
(4.6.14)

onde :

SG_{ij} -	sensibilidade	da margem	"global"	à realocação	de geração	entre as
	máquinas i e	İ		· · ·		

$I_{k,i}$	=	-1: se a màquina <i>i</i> pertence ao conjunto crítico da contingência k;
	=	0 : em caso contrário;

- $\Gamma_{k,j}$ = -1 : se a máquina *j* pertence ao conjunto crítico da contingência *k*; = 0 : em caso contrário;
- $S_{k,Pmsk}$ coeficiente de sensibilidade de primeira ordem, da margem da contingência k, em relação à potência gerada no conjunto crítico,

 FSG_{ij} - fator de sensibilidade da realocação entre as máquinas *i* e *j*;

 $max|SG_{ij}|$ - sensibilidade de maior valor absoluto.

Note que na equação (4.6.13), se as máquinas *i* e *j* pertencem ao mesmo conjunto (S ou A) da *k*-ésima contingência, a sua efetividade será nula. Antes de calcular cada valor de SG_{ij} , a viabilidade da realocação deve ser testada.

Fator global da realocação

Dado que, os melhores redespachos serão obtidos com as realocações de menor custo e de maior efetividade, deve-se compor um índice que leve em conta os dois aspectos simultaneamente. O fator global de cada realocação i-j $(i,j=1,2,...,n_s)$ é definido como :

$$FGR_{ij} \stackrel{\Delta}{=} FCIR_{ij} / FSG_{ij} \tag{4.6.15}$$

Na hora de compor os fatores FGR_{ij} , as realocações com fator de sensibilidade negativa ou nula, $SGij \leq 0$, são desconsiderados. Ou seja, as realocações que pioram a margem de segurança "global", as que não produzem efeito nenhum e as inviáveis, não serão levadas em conta na classificação. Isto reduz de maneira considerável a dimensão de realocações finalmente analisadas. Nos casos testados, o número total foi da ordem de 20-25% das realocações teoricamente possíveis.

Ordenando em forma ascendente os fatores FGR_{ij} , classificados, se terá uma lista das melhores realocações viáveis no sistema, para corrigir a segurança dinâmica do sistema. Isto encerra a fase de identificação das melhores ações de controle.

Quantificação das ações de controle do ACUCSO simultâneo

Tomando a lista ordenada dos fatores globais FGR_{ij} das realocações finalmente classificadas, é procurada no conjunto {M} a contingência p, na qual a i-ésima máquina pertence ao conjunto crítico ($i \in S$) e a j-ésima máquina não ($j \in A$). Então, utilizando a equação (4.4.3), rescrita em (4.6.16), é calculada a quantidade de geração requerida a se baixar no conjunto S, ΔPm_s , para se obter a margem mínima na contingência.

$$\Delta P_{ms} = \frac{-S_{P_{ms}^{0}} \pm \sqrt{S_{P_{ms}^{0}}^{2} + 2S'_{P_{ms}^{0}} \Delta \eta}}{S'_{P_{ms}^{0}}}$$
(4.6.16)

Como o par de máquinas escolhidas para o redespacho, corresponde àmelhor alternativa que combina os aspectos de custos e efetividade, o ΔPm_s calculado seria implementado totalmente, se as margens de regulação das máquinaso permitissem. Para levar em conta esta restrição, a quantidade de geração finalmente realocada corresponde ao menor valor absoluto entre ΔPm_s , $MRN_i e MRP_j$, expresso como :

$\Delta Pm = min \text{ ABS.} \{\Delta Pm_s; MRN_i; MRP_i\}$

Deve ser destacado neste ponto, que o valor de ΔPm implementado é sempre obtido usando os coeficientes de sensibilidade de segunda ordem e apenas na identificação das melhores realocações é que se faz aproximação de primeira ordem.

Para se ilustrar o processo de identificação e quantificação do ACUCSO simultâneo, é apresentado a seguir um exemplo hipotético.

Exemplo hipotético

Supor um sistema composto por 5 máquinas, com as condições atuais de geração e segurança apresentadas na Tabela 4.6.1.e na Tabela 4.6.2, respectivamente.

Máquina	Geração	Ger. máxima	Ger. mínima	Custo	MRN	MRP	
	(MW)	(MW)	(MW)	(\$/MWh)	(MW)	(MW)	
1	100	100	50	3	50	0	
2	50	200	50	100	0	150	
3	200	230	100	20	100	30	
4	120	130	0	5	120	10	
5	80	100	70	10	10	20	

Tabela 4.6.1 - Condição de geração atual de um sistema hipotético

Contingência	Margem de segurança	Conjunto crítico	S _{Pms}	S' _{Pms}
1	-0,20	3,4	-0,3	1,2
2	0,20	1	-0,2	2,0
3	0,25	4;5	-0,1	3,0

Tabela 4.6.2 - Condição de segurança atual de um sistema hipotético

As matrizes de custo "incremental" e de fator de custo das realocações possíveis neste sistema hipotético, serão :

		1	2	3	4	5		1	2	3	4	5
	1	0	97	17	2	7	1	0	1,000	0,175	0,021	0,072
	2	-97	0	-80	-95	-90	2	-1,000	0	-0,825	-0,979	-0,928
CIR	3	-17	80	0	-15	-10	FCIR _{ij} 3	-0.175	0,825	. 0	-0,155	-0,103
	4	-2	95	15	0	5	4	-0,021	0,979	0,155	0	0,052
	5	-7	90	10	-5	0	5	-0,072	0,928	0,103	-0,052	. 0

As matrizes de sensibilidade "global" e do fator de sensibilidade "global" serão :

		1	2	3	4	5			1	2	3	4	5
	1	*	0,0+0,2+0,0	-0,3+0,2+0,0	-0,3+0,2-0,1	0,0+0,2-0,1		1	*	0,50	-0,25	-0,50	0,25
SG	2	Ι	*	Ι	I	Ι		2	Ι	*	Ι	Ι	Ι
	3	Ι	0,3+0,0+0,0	*	0,0+0,0-0,1	0,3+0,0-0,1	FSG	3	Ι	0,75	*	-0,25	0,50
	4	I	0,3+0,0+0,1	0,0+0,0+0,1	*	0,3+0,0+0,0		4	Ι	1,00	0,25	*	0,75
	5	Ι	0,0+0,0+0,1	-0,3+0,0+0,1	-0,3+0,0+0,0	*		5	Ι	0,25	-0,50	-0,75	*

(I: Inviável)

O cálculo do elemento $SG_{l,4}$ é mostrado em detalhe para melhor ilustração :

- ° contingência 1, $S_{1,Pms2} = -0,3$; maq. 1 $\notin S_1$ e maq. 4 $\in S_1$, por tanto $\Gamma_{1,1}=0$ e $\Gamma_{1,4}=-1$;
- ° contingência 2, $S_{2,Pms2} = -0, 2$; maq. $1 \in S_2$ e maq. $4 \notin S_2$, por tanto $\Gamma_{2,1} = -1$ e $\Gamma_{2,4} = 0$;
- ° contingência 3, $S_{3,Pms3} = -0, 1$; maq. $1 \notin S_1$ e maq. $4 \in S_1$, por tanto $\Gamma_{3,1}=0$ e $\Gamma_{3,4}=-1$;
- ° então, segundo a equação (4.6.13), $SG_{1,4} = [0-(-1)](-0,3) + [-1-0](-0,2) + [0-(-1)](-0,1)$

Note-se como as realocações que consideram baixar geração na máquina 2 são inviáveis, e igualmente as que consideram aumentar geração na máquina 1.

FGR	Máquina i	Máquina j	MRNi	MRPj
-0,206	3	5	100	20
0,069	4	5	120	20
0,288	1	5	50	20
0,620	4	3	120	30
0,979	4	2	120	150
1,100	3	2	100	150
2,000	1	2	50	150
3,712	5	. 2	10	150

Para a ista ordenada das realocações finalmente classificadas seria :

______Note-se como a melhor realocação da lista, estabelecida entre as máquinas 3 e 5, têm fator global composto negativo, indicando que a condição inicial não corresponde a um despacho otimizado. A primeira contingência da lista ordenada, Tabela 4.6.2, na qual a máquina 3 pertence ao conjunto crítico e a máquina 5 não, é a número 1.

Utilizando a equação (4.6.16), o ΔPm_s correspondente para obter uma margem mínima de 0,3 seria :

$$\Delta P_{ms} = \frac{-(-0,3) \pm \sqrt{(-0,3)^2 + 2(1,2)[0,3 - (-0,2)]}}{1,2} = 0,250 \pm 0,946 = -0,696 pu$$

O valor negativo é escolhido, pois o redespacho deve baixar geração no conjunto crítico da contingência. Dos 69,6 MW requeridos para a contingência número 1, só podem ser implementados com a melhor realocação 20 MW, que correspondem à *MRP* da máquina 5.

4.6.2.3 Implementação do algoritmo ACUCSO simultâneo

A margem de segurança de cada contingência, obtida depois de fazer um redespacho, pode ser estimada utilizando a equação (4.6.2). Isso permite estabelecer um processo iterativo local, para corrigir a margem de segurança do conjunto {M}.

Para evitar oscilações no processo iterativo, o conjunto de contingências {M}, sob o qual é calculada a margem "global" do sistema, deve ser ampliado para o conjunto {M1}, que contêm as contingências com margem menor que o 105% da margem mínima. Os elementos adicionais de {M1} só serão monitorados, tentando evitar que passem para o conjunto {M}.

O algoritmo ACUCSO simultâneo implementado no presente trabalho é apresentado na Figura 4.6.1.

4.6.2.4 Situações peculiares no algoritmo ACUCSO

Dentro da identificação e quantificação das melhores ações de controle para corrigir a segurança dinâmica, várias situações particulares podem se apresentar, as quais são consideradas no algoritmo ACUCSO, da forma como se descreve a seguir

- Nas contingências com tempo crítico zero, não é possível calcular nem a margem de segurança nem os coeficientes de sensibilidade. Neste casos, se opta por baixar em 10% a geração das máquinas do conjunto crítico encontrado pelo EEAC estático. Além disso, o ACUCSO simultâneo desloca em forma fictícia a contingência para o conjunto {M1}.
- *ii.* Para os tempos críticos menores de 0,020 segundos, foram observadas situações nas quais obtém-se um coeficiente de sensibilidade de primeira ordem positivo, para a margem de segurança definida em termos de energia, η_e . Para contornar este problema, e poder quantificar um redespacho aproximado, o ACUCSO utiliza os coeficientes de sensibilidade da margem η_2 ou η_1 do EEAC, nos quais não foram observadas estas dificuldade de precisão.

Figura 4.6.1 - Algoritmo implementado para o módulo ACUCSO simultâneo

iii. Para o ACUCSO simultâneo, na lista ordenada dos fatores globais das realocações classificadas, FGR_{ij}, podem-se apresentar várias alternativas que agiriam igualmente sob uma mesma contingência. Por exemplo, duas máquinas no mesmo conjunto, com igual custo incremental e igual sensibilidade na margem "global". Nestes casos, é estabelecida uma regra de distribuição da realocação, que considera uma ponderação proporcional à margem de regulação das usinas envolvidas

4.7 Conclusões

Neste capítulo o problema da identificação e quantificação das ações de controle para a melhoria da segurança dinâmica de SEE foi abordado. Os passos gerais que devem ser seguidos em qualquer metodologia foram apresentados.

Posteriormente, foram discutidos os diferentes algoritmos e estratégias, utilizados para desenvolver os módulos da metodologia implementada no presente trabalho. Isto é, o método SLEP iterativo na avaliação da segurança dinâmica, a utilização da metodologia SLEP iterativo na determinação do conjunto de máquinas críticas para cada contingência, a compatibilidade das margens obtidas a partir do SLEP e do OMIB equivalente e, a utilização dos coeficientes de sensibilidade da margem de segurança na identificação e quantificação das ações de controle.

Foi formulado um problema de otimização para encontrar as melhores ações de controle, mas este não foi resolvido no presente trabalho. Contudo, foi desenvolvida uma metodologia heurística para realizar Ações de Controle Utilizando os Coeficientes de Sensibilidade do OMIB equivalente, denominada ACUCSO. Para esta metodologia foram desenvolvidos dois algoritmos : o primeiro define as ações de controle sem levar em conta os custos incrementais de cada usina, baseando-se somente na contingência mais severa a cada iteração, denominada da pior contingência.

O segundo encontra as melhores ações de controle, considerando em forma explícita os custos e a efetividade dos redespachos, ou seja, a otimização dos recursos energéticos e a interação entre os redespachos e as contingências. Este foi denominado de ACUCSO simultâneo.

No próximo capítulo, serão apresentados os diferentes testes computacionais realizados com a metodologia desenvolvida.

CAPÍTULO 5

5. Testes Computacionais

5.1 Introdução

Neste capítulo, serão apresentados os resultados de diferentes testes computacionais realizados com a metodologia desenvolvida no presente trabalho, para a melhoria da segurança dinâmica dos SEE.

Os testes realizados consideram duas fases. Na primeira se procura validar as metodologias desenvolvidas e na segunda fase é feita uma comparação dos resultados obtidos neste trabalho, com outras metodologias.

As contingências analisadas, são do tipo curto-circuito trifásico com o posterior desligamento de um elemento da rede (linha de transmissão ou transformador) em forma permanente. Esses elementos são identificados pelos números das barras origem e destino, respectivamente, e considera-se por convenção que o curto-circuito é sempre aplicado na barra origem. Além disso, considera-se que o tempo de atuação da proteção que desliga o elemento em falha, é de 0,100 segundos (6 ciclos), exceto em alguns casos onde o valor é posteriormente especificado.

Os parâmetros utilizados na execução do SLEP iterativo, são apresentados na Tabela 3.3.4, e foram escolhidos para se garantir a melhor precisão nos cálculos. Os sistemas teste 1 e 2 apresentados no capítulo 3, foram estudados para uma lista de 40 e 47 contingências, respectivamente. Somente serão apresentados os resultados relativos ao subconjunto de contingências com as menores margens de segurança.
5.2 Validação das metodologias desenvolvidas

Nesta fase dos testes, além de validar a metodologia geral de avaliação e melhoria da segurança dinâmica, o desempenho do módulo ACUCSO será discutido. Primeiro será utilizada a opção de redespachar para a pior contingência em cada iteração, e posteriormente, o ACUCSO simultâneo será usado.

5.2.1 Correção da segurança da pior contingência

Para se testar o procedimento e a validez na utilização dos coeficientes de sensibilidade da margem de segurança, obtidos do OMIB equivalente, será utilizada a heurística apresentada no item 4.6.2.1. Isto é, determinar em cada iteração um redespacho para corrigir a contingência com a menor margem de segurança.

Nesta estratégia não são considerados os custos incrementais, nem a sensibilidade na margem "global" dos redespachos. A distribuição de geração entre as máquinas é feita em proporção à sua margem de regulação. Como nível de segurança desejável para o sistema, foi especificado 0,3 para a margem mínima (η_{min}).

5.2.1.1 Sistema teste 1

_____Na Tabela 5.2.1 são apresentadas as condições inicial e final, obtidas no sistema teste 1. Para cada contingência, é apresentado o tempo crítico e a margem de segurança, calculados pelo SLEP iterativo. Na Figura 5.2.1 ilustra-se : (a) a mudança nos tempos críticos; (b) a forma como as margens de segurança são deslocadas e (c) o redespacho e as margens de regulação positiva (MRP) e negativa (MRN) iniciais para cada máquina deste sistema. Na Tabela 5.2.2 estão os redespachos feitos em cada uma das 8 iterações que precisou o algoritmo, para levar o sistema à margem mínima requisitada. Aliás, o redespacho total também é incluído.

5.2.1.2 Sistema teste 2

As condições de segurança inicial e final, do sistema teste 2, são apresentadas na Tabela 5.2.3. Nesta, são mostrados para cada contingência o tempo crítico e a margem de segurança, calculados pelo SLEP iterativo. Na Tabela 5.2.4 são apresentados os redespachos feitos em cada uma das 8 iterações que precisou o algoritmo, para levar o sistema à margem mínima requisitada. Aliás, o redespacho total também é incluído.

Na Figura 5.2.2 são ilustrados : (a) os deslocamentos conseguidos no tempo crítico para cada contingência; (b) a variação na margem de segurança e (c) o redespacho e as margens de regulação positiva (MRP) e negativa (MRN) iniciais para cada máquina deste sistema.

5.2.1.3 Comentários

O algoritmo proposto, mesmo realizando a cada iteração redespachos para correção da contingência mais severa, consegue obter um novo ponto de operação para o sistema.

Isso se deve aos coeficientes de sensibilidade da margem de segurança, calculados a partir do OMIB equivalente, os quais indicam a direção e a quantidade de geração que deve ser redespachada no processo iterativo, até atingir o nível de segurança requisitado.

É interessante observar como a maior quantidade de geração redespachada é feita nas primeiras iterações. Nos dois casos, 80% da geração total realocada foi determinada nas primeiras duas iterações.

Não menos importante, é a maneira como o nível mínimo de segurança procurado é atingido, isto é, a margem de segurança final dos sistemas analisados, ficou perto do valor mínimo requisitado. Não ocorreram oscilações, nem redespachos com sentidos opostos para uma mesma máquina ao longo do processo iterativo.

Esses dois aspectos são fruto da utilização dos coeficientes de sensibilidade de segunda ordem, com os quais de certo modo são consideradas de melhor forma a não linearidade própria dos sistemas elétricos.

	Elemento	removido	Condi	ção inicial	Condição final	
			T. crítico	Margem de	T. crítico	Margem de
No.	Barra origem	Barra destino	(S)	segurança	(s)	segurança
1	386 BARRACAO.525	382 AREIA.525	0,027	-12,85	0,118	0,30
2	382 AREIA.525	386 BARRACAO.525	0,066	-1,41	0,297	0,93
3	374 S.OSORIO.230	375 AREIA.230	0,112	0,22	0,119	0,31
4	374 S.OSORIO.230	372 P.BRANCO.230	0,148	0,58	0,154	0,62
5	374 S.OSORIO.230	371 XANXERE.230	0,148	0,58	0,153	0,61
6	374 S.OSORIO.230	433 C.MOURAO.230	0,151	0,60	0,156	0,63
7	386 BARRACAO.525	387 GRAVATAI.525	0,147	0,62	0,223	0,89
8	408 ITAUBA.230	414 V.AIRES.230	0,172	0,70	0,151	0,59
9	408 ITAUBA.230	370 P.FUNDO.230	0,198	0,79	0,182	0,74
10	382 AREIA.525	398 SEGREDO.525	0,246	0,87	0,361	0,95
11	382 AREIA.525	343 IVAIPORA.525	0,258	0,89	0,359	0,96
12	382 AREIA.525	375 AREIA.230	0,267	0,90	0,324	0,94
13	382 AREIA.525	384 CUR.NORTE525	0,263	0,90	0,366	0,96
14	382 AREIA.525	383 CURITIBA.525	0,267	0,90	0,366	0,96
15	396 J.LACERDA230	380 R.QUEIMAD230	0,296	0,93	0,259	0,90

Tabela 5.2.1 - Condições inicial e final de segurança do sistema 1, corrigido para a pior contingência

Usina	Iter. 1	Iter. 2	Iter. 3	Iter. 4	Iter. 5	Iter. 6	Iter. 7	Iter. 8	TOTAL
366	-169,70	-41,79	-14,96	0,00	-5,57	0,00	-2,00	0,00	-234,02
369	9,87	2,43	0,87	0,55	0,32	0,15	0,12	0,12	14,44
373	0,00	0,00	0,00	-9,52	0,00	-2,65	0,00	-2,00	-14,16
381	89,95	22,14	7,93	5,05	2,94	1,40	1,06	1,06	131,53
390	16,89	4,16	1,49	0,95	0,55	0,26	0,20	0,20	24,70
392	4,61	1,13	0,41	0,26	0,15	0,07	0,05	0,05	6,74
394	7,96	1,96	0,70	0,45	0,26	0,12	0,09	0,09	11,65
395	15,58	3,83	1,37	0,87	0,51	0,24	0,18	0,18	22,78
397	10,35	2,57	0,92	0,58	0,35	0,17	0,13	0,13	15,19
407	14,48	3,56	1,28	0,81	0,47	0,23	0,17	0,17	21,17
Total	169,7	41,79	14,96	9,52	5,57	2,65	2,00	2,00	248,18

Tabela 5.2.2 - Geração redespachada (MW) em cada iteração, para o sistema 1

Figura 5.2.1 - Condições inicial e final de segurança do sistema 1, corrigido para a pior contingência (a) tempos críticos (b) margens de segurança (c) redespachos e margens de regulação

	Elemen	to removido		Condi	ção inicial	Condição final		
No	Barra origem	Barra destino circ	uito	T. crítico (s)	Margem de segurança	T. crítico (s)	Margem de segurança	
1	202 S_CARLOS 220	114 NOROESTE	1	0,012	-69,87	0,117	0,30	
2	202 S_CARLOS 220	106 BALSILLA	1	0,027	-14,13	0,123	0,36	
3	202 S_CARLOS 220	301 ESMERALD	1	0,047	-3,76	0,131	0,44	
4	209 GUATAPE 220	218 JAGUAS 220	1	0,048	-3,60	0,119	0,32	
5	202 S_CARLOS 220	204 ANCONSUR	1	0,063	-1,67	0,139	0,52	
6	202 S_CARLOS 220	209 GUATAPE 220	1	0,064	-1,56	0,139	0,52	
7	209 GUATAPE 220	205 MIRAFLOR	1	0,071	-1,10	0,146	0,57	
8	209 GUATAPE 220	214 ORIENTE	1	0,073	-0,90	0,148	0,58	
9	209 GUATAPE 220	220 PLAYAS 220	1	0,076	-0,82	0,148	0,58	
10	301 ESMERALD 301 ESMERALD	307 YUMBO 308 JUANCHIT	3 1	0,083	-0,48	0,249	0,85	
11	517 GUAJIRA 220	520 SANTAMAR	1	0,092	-0,21	0,144	0,56	
12	204 ANCONSUR	301 ESMERALD	1	0,092	-0,17	0,239	0,83	
13	301 ESMERALD	308 JUANCHIT	1	0,121	0,32	0,283	0,88	
14	301 ESMERALD	302 ENEA	1	0,127	0,38	0,291	0,89	
15	517 GUAJIRA 220	519 CUESTECI	1	0,139	0,51	<mark>0</mark> ,181	0,74	

Tabela 5.2.3- Condições inicial e final de segurança do sistema 2, corrigido para a pior contingência

Usina	Iter. 1	Iter. 2	Iter. 3	Iter. 4	Iter. 5	Iter. 6	Iter. 7	Iter. 8	TOTAL
102	95,63	6,23	2,45	10,67	3,80	2,62	0,66	0,81	122,87
104	102,00	6,65	2,61	11,38	4,05	2,79	0,71	0,86	131,06
109	20,97	1,37	0,54	2,34	0,83	0,57	0,15	0 <mark>,1</mark> 8	26,94
112	24,51	1,60	0,63	2,73	0,97	0,67	0,17	0,21	31,49
203	-156,39	0,00	0,00	-17,07	-6,06	-4,17	0,00	-1,29	-1 4,97
208	-6, 9	0,00	0,00	-0, 3	-0,30	-0,20	0,00	-0,06	- ,2
210	-11, 1	0,00	0,00	-1,42	-0,51	-0,35	0,00	-0,11	-14,20
216	-43,31	0,00	0,00	-5,21	-1, 6	-1,2	0,00	-0,40	-52,06
219	-16,73	-1,3	-7,40	-1,24	-0,44	-0,31	-2,00	-0,09	-47,04
221	-4,33	0,00	0,00	-0,52	-0,19	-0,13	0,00	-0,04	-5,21
305	25,50	1,66	0,65	2,85	1,01	0,70	0,18	0,22	32,76
310	2,13	0,14	0,05	0,24	0,08	0,06	0,01	0,02	2,73
313	6,52	0,42	0,17	0,73	0,26	0,18	0,05	0,06	8,37
404	11,62	0,76	0,30	1,30	0,46	0,32	0,08	0,10	14,93
513	-6,10	0,00	0,00	-0,73	-0,26	-0,1	0,00	-0,06	-7,34
515	-9, 4	0,00	0,00	-1,1	-0,42	-0,29	0,00	-0,09	-11, 3
518	-33,46	0,00	0,00	-4,02	-1,44	-0,99	0,00	-0,31	-40,23
Total	288,86	18,83	7,40	32,22	11,48	7,90	2,00	2,45	371,16

Tabela 5.2.4 - Geração redespachada (MW) em cada iteração, para o sistema 2

Figura 5.2.2- Condições inicial e final de segurança do sistema 2, corrigido para a pior contingência (a) tempos críticos (b) margens de segurança (c) redespacho e margens de regulação

5.2.2 Correção da segurança utilizando o ACUCSO simultâneo

Neste item são apresentados os resultados dos testes computacionais com o algoritmo apresentado no item 4.6.2.2, também desenvolvido no presente trabalho. Foram empregados, os mesmos sistemas elétricos usados nos testes do ACUCSO para a pior contingência.

5.2.2.1 Sistema teste 1

Para o sistema equivalente sul brasileiro, foi adotado um custo unitário para todas as máquinas devido a não disponibilidade destes dados no momento da realização dos testes.

Este fato, implica em que os redespachos encontrados pelo ACUCSO simultâneo, obedecerão a uma otimização por efetividade na segurança do sistema, de cada uma das máquinas. A regra de desempate, descrita no item 4.6.2.4 situações peculiares no algoritmo ACUCSO, definirá como é distribuída a geração entre as máquinas que possuam a mesma sensibilidade na margem "global".

Na Tabela 5.2.5, as condições inicial e final do sistema teste 1 são apresentadas. O tempo crítico e a margem de segurança, calculados pelo SLEP iterativo, são mostrados para o conjunto de contingências mais críticas. O algoritmo necessitou de 5 iterações, para atingir em todas as contingências o nível de segurança desejado. Os redespachos parciais e totais, são apresentados na Tabela 5.2.6.

Ao se comparar os resultados obtidos com o algoritmo da pior contingência, pode ser dito que, em termos qualitativos e quantitativos os dois redespachos são equivalentes. A maior diferença apresenta-se no redespacho encontrado para a máquina 373, na qual o ACUCSO simultâneo recomenda baixar 2 MW a mais que o algoritmo da pior contingência.

O ganho obtido com o ACUCSO simultâneo, para o caso analisado, encontra-se no número de iterações necessário para levar o sistema ao nível de segurança requerido. Cinco iterações contra oito, representou um ganho de 40% no tempo computacional. Isso é fruto da simultaneidade no redespacho para todas as contingências com margem inferior à mínima.

	Element	o removido	Condiç	ção inicial	Condição final	
			T. crítico	Margem de	T. crítico	Margem de
No.	Barra origem	Barra destino circuito	(s)	segurança	(s)	segurança
1	386 BARRACAO.525	382 AREIA.525 1	0,027	-12,85	0,118	0,30
2	382 AREIA.525	386 BARRACAO.525 1	0,066	-1,41	0,297	0,93
3	374 S.OSORIO.230	375 AREIA.230 1	0,112	0,22	0,119	0,31
4	374 S.OSORIO.230	372 P.BRANCO.230 1	0,148	0,58	0,154	0,62
5	374 S.OSORIO.230	371 XANXERE.230 1	0,148	0,58	0,153	0,62
6	374 S.OSORIO.230	433 C.MOURAO.230 1	0,151	0,60	0,157	0,64
7	386 BARRACAO.525	387 GRAVATAI.525 1	0,147	0,62	0,223	0,89
8	408 ITAUBA.230	414 V.AIRES.230 1	0,172	0,70	0,152	0,60
9	408 ITAUBA.230	370 P.FUNDO.230 1	0,198	0,79	0,181	0,74
10	382 AREIA.525	398 SEGREDO.525 1	0,246	-0,87	0,358	0,95
11	382 AREIA.525	343 IVAIPORA.525 1	0,258	0,89	0,407	0,96
12	382 AREIA.525	375 AREIA.230 1	0,267	0,90	0,326	0,94
13	382 AREIA.525	384 CUR.NORTE525 1	0,263	0,90	0,422	0,96
14	382 AREIA.525	383 CURITIBA.525 1	0,267	0,90	0,427	0,96
15	396 J.LACERDA230	380 R.QUEIMAD230 1	0,296	0,93	0,259	0,90

Tabela J.Z.J- Condições inicial e inicia de segurança do sistema 1, corrigido pelo ACOCDO sinanc	ondições inicial e final de seguranca do sistema 1, corrigido pelo ACU	JCSO simultân
--	--	---------------

Usina	Iter. 1	Iter. 2	Iter. 3	Iter. 4	Iter. 5	TOTAL
366	-169,70	-41,59	-14,79	-4,81	-3,29	-234,18
369	10,36	2,58	0,86	0,43	0,34	14,56
373	-8,29	-2,80	0,00	-2,62	-2,51	-16,23
381	94,35	23,48	7,82	3,93	3,07	132,65
390	17,72	4,41	1,47	0,74	0,58	24,91
392	4,83	1,20	0,40	0,20	0,16	6,79
394	8,35	2,08	0,69	0,35	0,27	11,74
395	16,34	4,07	1,35	0,68	0,53	22,97
397	10,86	2,79	0,93	0,47	0,37	15,42
407	15,19	3,78	1,26	0,63	0,49	21,35
Total	177,99	44,39	14,79	7,43	5,80	250,41

Tabela 5.2.6 - Geração redespachada (MW) em cada iteração, para o sistema 1

5.2.2.2 Sistema teste 2

Para o sistema equivalente interligado colombiano, foram utilizados os custos incrementais de geração de cada unidade, de uma condição real semelhante. Neste caso, poderá ser feita uma melhor avaliação do algoritmo ACUCSO, na capacidade de se levar em conta a otimização do sistema e a sensibilidade da segurança, na procura dos melhores redespachos de geração.

O estado inicial representa uma condição subótima, obtida de um despacho inicial otimizado, para o qual não haviam problemas de estabilidade transitória.

As condições inicial e final de segurança obtidas no sistema teste 2 são apresentadas na Tabela 5.2.7. O tempo crítico e a margem de segurança, calculados pelo SLEP iterativo, são mostrados para as contingências mais críticas da lista estudada. Na Tabela 5.2.8, são apresentados os redespachos parciais e totais calculados pelo algoritmo ACUCSO simultâneo e, na Figura 5.2.3, é ilustrada a maneira como foram deslocados os tempos críticos e a margem de segurança das contingências.

O nível de segurança desejado, foi atingido em todas as contingências depois de 4 iterações. Ao se comparar com o desempenho do algoritmo para a pior contingência, um ganho de 50% no tempo computacional foi obtido. Mas, a questão não menos importante, refere-se aos custos envolvidos no redespacho encontrado pelos dois algoritmos.

Na Tabela 5.2.9 são apresentados, para cada uma das usinas dos sistema, o custo incremental, o redespacho calculado pelo dois algoritmos, o custo de cada realocação de geração e o custo total. Existe uma diferença apreciável nos custos globais do redespacho. O algoritmo da pior contingência, não se importou em redespachar as unidades de custos mais elevados do sistema. No entanto, o ACUCSO simultâneo consegue melhorar a segurança do sistema procurando minimizar o desvio do novo ponto de operação, em relação à condição inicial do sistema.

No caso analisado, e devido às mudanças introduzidas no despacho ótimo, a condição de operação inicial não é a de menor custo global. Por isso, o valor negativo para o custo total do redespacho encontrado pelo o ACUCSO simultâneo.

	Element	o removido		Condiç	ão inicial	Condição final		
No	-			T. crítico	Margem de	T. crítico	Margem de	
cont.	Barra origem	Barra destino circu	ito	(S)	segurança	<u>(S)</u>	segurança	
1	202 S_CARLOS 220	114 NOROESTE	1	0,012	-69,87	0,118	0,30	
2	202 S_CARLOS 220	106 BALSILLA	1	0,027	-14,13	0,123	0,36	
3	202 S_CARLOS 220	301 ESMERALD	1	0,047	-3,76	0,129	0,44	
4	209 GUATAPE 220	218 JAGUAS 220	1	0,048	-3,60	0,118	0,31	
5	202 S_CARLOS 220	204 ANCONSUR	1	0,063	-1,67	0,139	0,52	
6	202 S_CARLOS 220	209 GUATAPE 220) 1	0,064	-1,56	0,139	0,53	
7	209 GUATAPE 220	205 MIRAFLOR	1	0,071	-1,10	0,147	0,58	
8	209 GUATAPE 220	214 ORIENTE	1	0,073	-0,90	0,149	0,59	
9	209 GUATAPE 220	220 PLAYAS 220	1	0,076	-0,82	0,148	0,58	
10	301 ESMERALD 301 ESMERALD	307 YUMBO 308 JUANCHIT	3 1	0,083	-0,48	0,222	0,81	
11	517 GUAJIRA 220	520 SANTAMAR	1	0,092	-0,21	0,119	0,32	
12	204 ANCONSUR	301 ESMERALD	1	0,092	-0,17	0,231	0,82	
13	301 ESMERALD	308 JUANCHIT	1	0,121	0,32	0,266	0,87	
14	301 ESMERALD	302 ENEA	1	0,127	0,38	0,273	0,88	
15	517 GUAJIRA 220	519 CUESTECI	1	0,139	0,51	0,161	0,65	

Tabela 5.2.7- Condições inicial e final de segurança do sistema 2, corrigido pelo ACUCSO simultâneo.

Usina	Iteração 1	Iteração 2	Iteração 3	Iteração 4	TOTAL
102	111,79	17,19	6,20	2,11	137,30
104	119,25	18,34	6,61	2,26	146,45
109	0,00	0,00	0,00	0,00	0,00
112	0,00	0,00	0,00	0,00	0,00
203	-213,10	-29,44	-10,59	-3,18	-256,31
208	0,00	0,00	0,00	0,00	0,00
210	-60,00	0,00	0,00	0,00	-60,00
216	0,00	0,00	0,00	0,00	0,00
219	-39,18	-2,58	-0,77	-0,44	-42,96
221	0,00	0,00	0,00	0,00	0,00
305	0,00	0,00	0,00	0,00	0,00
310	15,00	0,00	0,00	0,00	15,00
313	0,00	0,00	0,00	0,00	0,00
404	82,00	0,00	0,00	0,00	82,00
513	0,00	0,00	0,00	0,00	0,00
515	0,00	0,00	0,00 -	0,00	0,00
518	-15,76	-3,52	-1,45	-0,75	-21,48
Total	328,04	35,54	12,81	4,37	380,75

Tabela 5.2.8 - Geração redespachada (MW) em cada iteração, para o sistema 2

		Pior con	ntingência	ACUCSO	simultâneo
Usina	Custo (US\$/MWh)	Redespacho pior conting, (MW)	Custo do redespacho (US\$)	Redespacho ACUCSO (MW)	Custo redespacho (US\$)
102	29,84	122,87	3666,49	137,30	4097,08
104	29,84	131,06	3910,88	146,45	4370,12
109	119,98	26,94	3232,24	0,00	0,00
112	119,98	31,49	3778,14	0,00	0,00
203	29,83	-184,97	-5518,56	-256,31	-7646,98
208	27,53	-8,28	-227,92	0,00	0,00
210	38,72	-14,20	-549,78	-60,00	-2323,04
216	27,53	-52,06	-1433,04	0,00	0,00
219	15,42	-47,04	-725,57	-42,96	-662,64
221	22,46	-5,21	-117,02	0,00	0,00
305	260,90	32,76	8547,08	0,00	0,00
310	0,00	2,73	0,00	15,00	0,00
313	211,69	8,37	1771,85	0,00	0,00
404	10,00	14,93	149,35	82,00	820,29
513	12,58	-7,34	-92,32	0,00	0,00
515	13,50	-11,83	-159,76	0,00	0,00
518	9,45	-40,23	-380,16	-21,48	-202,98
Total		371,16	15851,90	380,75	-1548,13

Tabela 5.2.9 - Custos envolvidos nos redespachos de geração calculados para o sistema 2

Em situações nas quais a condição inicial realmente corresponda com um despacho ótimo, isto não deve acontecer. Redespachos com custos negativos podem ser provocadas por uma modelagem deficiente do problema, tais como :

- a não consideração de restrições associadas a limites de capacidade de linhas de transmissão e transformadores;
- limitação na geração de unidades abaixo da capacidade normal, provocada por exemplo, por problemas nos sistemas de controle.

Contudo, mesmo que não tenha partido de um ponto ótimo, o objetivo de validar a metodologia, e mais especificamente o ACUCSO simultâneo, foi conseguido sem perda de generalidade.

5.3 Desempenho computacional

A metodologia desenvolvida no presente trabalho, foi implementada utilizando três programas computacionais separados : Fluxo de potência, SLEPM e REDESPA, os quais trocam informação através de arquivos. Isto quer dizer que os tempos computacionais apresentados neste item, podem ser substancialmente melhorados, fazendo uma integração física.

Dois computadores pessoais, PC1 e PC2, foram utilizados para a tomada de tempos de CPU, onde :

- PC1 : 486 DX2, 66 MHz, 8 Mbytes de RAM e 256 Kbytes de memória cache
- PC2 : PENTIUM P54C, 90 MHz, 16 Mbytes de RAM e 256 Kbytes de memória cache.

Na forma como foi implementada a metodologia, o tempo de CPU demandado em cada iteração é praticamente igual. O tempo gasto pelo fluxo de potência, é muito baixo quando comparado com o tempo total do processo, e foi desprezado.

Na Tabela 5.3.1, são apresentados os tempos de CPU gastos em cada iteração pela metodologia desenvolvida no presente trabalho, para os dois sistemas teste utilizados e diferente número de contingências. Na Figura 5.3.1 é ilustrada a forma como varia para processamentos realizados com diferente número de contingências.

A questão mais interessante a ser salientada na análise do desempenho computacional da metodologia, refere-se a maior quantidade de tempo (70-80%) gasto na avaliação da segurança dinâmica. Deve ser lembrado que o SLEP iterativo foi executado com os parâmetros mais exigentes, procurando a maior precisão nos resultados. Contudo, o tempo de processamento, gasto pelo SLEP iterativo na avaliação da segurança dinâmica dos SEE, é consideravelmente menor ao requerido por métodos tradicionais.

		Sistem	a teste 1	(10 máq	uinas)			Sisten	na teste 2	2 (17 mác	quinas)	
		PCI		1	PC2			PC1			PC2	
N.C.	SLEPM	REDESPA	Total	SLEPM	REDESPA	Total	SLEPM	REDESPA	Total	SLEPM	REDESPA	Total
1	1,26	0,44	1,70	0,55	0,38	0,93	1,76	1,37	3,13	0,72	0,66	1,38
5	3,13	1,04	4,17	1,10	0,50	1,60	6,43	4,84	11,30	2,04	1,76	3,80
10	5,71	1,42	7,13	1,76	0,66	2,42	11,81	7,47	19,30	3,51	2,63	6,14
15	7,63	1,98	9,61	2,31	0,83	3,14	17,63	9,17	26,80	5,16	3,24	8,40
20	9,72	2,25	12,00	2,97	0,94	3,91	22,68	9,78	32,50	6,54	3,46	10,00
25	11,59	2,58	14,20	3,46	1,09	4,55	28,45	12,14	40,60	8,13	4,29	12,40
30	12,91	2,86	15,80	3,86	1,26	5,12	34,44	13,51	48,00	9,77	4,66	14,40
35	15,21	3,02	18,20	4,51	1,26	5,77	40,26	15,99	56,30	11,43	5,49	16,90
40	17,57	3,35	20,90	5,16	1,37	6,53	46,08	18,29	64,40	13,01	6,26	19,30
45				 1			51,96	20,65	72,60	14,61	6,98	21,60

N.C. : Número de contingências

Tabela 5.3.1 - Tempo de CPU, em segundos, gasto em cada iteração pela metodologia do presente trabalho

Figura 5.3.1 - Tempo de CPU gasto em cada iteração pela metodologia do presente trabalho, em função do mímero de contingências

5.4 Comparação com o método da direção S

Para as mesmas condições dos sistemas teste utilizados no itens anteriores, foi realizada a correção da segurança dinâmica empregando o método da direção S [10]. A margem mínima exigida foi também de 0,3.

A quantificação da geração redespachada, no método da direção S, depende diretamente de dois parâmetros fornecidos pelo usuário. Isto é, duas constantes para definir o valor que multiplicado pela geração atual de cada máquina representa o máximo encargo de geração que a máquina pode receber (entregar) em cada iteração. Nos casos analisados foram utilizados dois pares de constantes 1,03, 0,97 e 1,05, 0,95, equivalentes a uma realocação máxima de 3% e 5%, respectivamente, por máquina em cada iteração.

Como o método da direção S também utiliza o SLEP iterativo para avaliar a segurança dinâmica, foram empregados os mesmos parâmetros para as duas metodologias, apresentados na Tabela 3.3.4. Os resultados e comentários são apresentados a seguir.

5.4.1 Sistema teste 1

Na Tabela 5.4.1 são apresentados os redespachos sugeridos pelo método da direção S a cada iteração e o total, para 5% de realocação máxima, e o redespacho total para 3%. Foram necessárias 6 e 8 iterações para atingir o objetivo, respectivamente.

Na Figura 5.4.1, é ilustrada a forma como as duas metodologias quantificaram os redespachos a cada iteração. É observado como, no método da direção S são quase da mesma magnitude. No entanto, utilizando os coeficientes de sensibilidade do OMIB equivalente, o redespacho é maior nas primeiras iterações e menor nas últimas.

Na Figura 5.4.2 são comparadas as condições finais obtidas pelos métodos da direção S (5% e 3%) e ACUCSO simultâneo. O método da direção S ultrapassa a margem mínima requerida, no entanto, o ACUCSO consegue atingir justamente o objetivo. Este fato, implicou num maior deslocamento total de geração no método da direção S, de 345 MW usando 5% e de 289 MW com 3% de realocação máxima, comparados com 250 MW deslocados pelo algoritmo ACUCSO simultâneo. Ultrapassar o nível mínimo de segurança especificado, para um algoritmo

de melhoria da segurança dinâmica, é inconveniente face à necessidade de otimização dos recursos energéticos do sistema.

No método da direção S, a quantificação dos redespachos depende diretamente da máxima realocação permitida em cada iteração. Para não ultrapassar sensivelmente a margem mínima procurada, realocações muito baixas deveriam ser feitas, provocando um aumento considerável no número de iterações.

Por outro lado, no algoritmo ACUCSO, devido à utilização dos coeficientes de sensibilidade de segunda ordem da margem de segurança, obtidos do OMIB equivalente, a quantificação dos redespachos é mais precisa, resultando numa alta taxa de convergência e, consequentemente, menor número de iterações e menor esforço computacional.

Redespachos em sentidos opostos são propostos para os geradores 369 e 407. A direção S propõe baixar geração nestas usinas e o ACUCSO recomenda aumentar. Ao não serem considerados os custos de geração para este sistema, fica mais dificil julgar qual das duas ações de controle é melhor.

-	R	ealocação	máxima d	le 5% por	usina em	cada itera	ção	Máxima 3%
Usina	Iter 1	Iter 2	Iter 3	Iter 4	Iter 5	Iter 6	TOTAL	TOTAL
366	-62,5	-59,4	-56,4	-53,6	-50,9	0,0	-282,8	-240,0
369	-1,0	-1,0	-0,1	0,0	-1,2	-4,3	-7,6	-5,2
373	0,0	0,0	10,0	0,0	0,0	-51,0	-41,0	-30,3
381	67,6	64,4	47,7	38,9	0,0	56,4	275,0	156,2
390	0,0	0,0	0,0	0,0	13,5	0,0	13,5	75,0
392	0,0	0,0	0,0	2,6	0,0	0,0	2,6	0,0
394	0,0	0,0	0,0	3,9	0,0	0,0	3,9	3,6
395	0,0	0,0	0,0	8,2	-0,2	0,0	8,0	7,2
397	0,0	0,0	0,0	0,0	42,9	0,0	42,9	47,3
407	-4,0	-4,0	-1,2	0,0	-4,1	-1,2	-14,5	-13,1
Total	67,6	64,4	57,7	- 53,6	56,4	56,4	345,9	288,6

Tabela 5.4.1 - Redespacho feito em cada iteração e redespacho total, na correção da segurança do sistema 1 utilizando o método da direção S.

Figura 5.4.1 - Comparação dos redespachos feitos em cada iteração, pelo método da direção S e o ACUCSO simultâneo, no sistema teste 1.

Figura 5.4.2 - Comparação da condição final do sistema 1, redespachado pelo ACUCSO simultâneo e o método da direção S.

104 ³

5.4.2 Sistema teste 2

Na Figura 5.4.3 são apresentadas as condições finais obtidas com os métodos da direção S e ACUCSO simultâneo. Foram necessárias 10 e 17 iterações, para 5% e 3% de realocação máxima, respectivamente. No entanto, o ACUCSO simultâneo necessitou de 4 iterações. Os redespachos calculados em cada uma das 10 iterações e a geração total realocada, pelo método da direção S com 5% de realocação máxima, são apresentados na Tabela 5.4.2.

Neste caso analisado, ficam mais uma vez em evidencia as diferenças entre as duas metodologias, na maneira como a melhoria da segurança dinâmica é procurada. No método da direção S, a quantidade de geração redespachada é maior que a mínima requerida, provocando a ultrapassagem do nível de segurança desejado. Diminuindo a quantidade de realocação máxima permitida por usina em cada iteração, é possível contornar este problema do método da direção S, mas, o custo computacional é elevado.

Aliás, o método da direção S ao não considerar os custos de geração, pode redespachar as máquinas com o maior custo incremental, tal como acontece com o ACUCSO da pior contingência.

Na Figura 5.4.4, são comparados os redespachos totais calculados para cada usina, pelo método da direção S com 5%, o ACUCSO da pior contingência e o ACUCSO simultâneo. Da análise desta figura, pode ser observada a concordância no sentido em que são feitas as variações globais de geração nas máquinas.

Pode-se, então, concluir que no método da direção *S*, a identificação das ações de controle, ou seja, a direção na qual devem ser feitos os redespachos, concorda com a metodologia empregada no presente trabalho, na qual se utiliza o conjunto de máquinas críticas, para mudar as condições de segurança do sistema.

Por outro lado, na quantificação das ações de controle, ou seja, no cálculo da magnitude de geração a se redespachar, a utilização dos coeficientes de sensibilidade da margem de segurança, obtidos do OMIB equivalente, apresenta um desempenho bem superior, quando comparado com a forma de calcular os redespachos pelo método da direção S.

Figura 5.4.3 - Comparação da condição final do sistema 2, redespachados pelo ACUCSO e o método da direção S

Figura 5.4.4 - Redespachos feitos para o sistema 2 pela direção S, a pior contingência e o ACUCSO simultâneo

	<u> </u>		Realoca	ação má	xima de	e 5% po	or usina	em cad	a iteraç	ão		Máxima 3%
Usina	Iter. 1	Iter. 2	Iter. 3	Iter. 4	Iter. 5	Iter. 6	Iter. 7	Iter. 8	Iter. 9	Iter. 10	TOTAL	TOTAL
102	10,0	10,5	11,0	11,6	12,2	12,8	13,4	14,1	14,8	15,5	125,8	120,9
104	10,0	10,5	11,0	11,6	12,2	12,8	13,4	14,1	14,8	15,5	125,8	120,9
109	1,8	1,9	. 2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,8	22,6	21,8
112	2,1	2,3	2,4	2,5	2,6	2,7	2,9	3,0	3,2	3,3	27,0	26,0
203	-15,4	-2,2	-2,0	-1,6	-2,6	-0,9	-3,0	-3,4	-4,3	-41,0	-147,2	-202,1
208	-0,3	-0,6	-5,3	-5,5	-6,4	-0,5	-0,7	-0,7	-6,0	-0,5	-26,5	-23,0
210	-1,7	-18,0	-3,1	-2,8	-4,5	-26,5	-25,2	-23,9	-11,6	-1,8	-119,1	-62,5
216	-0,3	-0,5	-11,2	-10,6	-10,1	-0,4	-0,6	-0,6	-9,5	-0,4	-44,3	-42,9
221	-0,8	-0,8	-6,2	-6,2	-5,5	-2,5	-1,0	-1,2	-5,2	-0,7	-30,1	-27,1
305	-0,1	1,3	1,7	1,6	1,3	2,2	2,5	2,7	2,4	3,2	18,9	17,9
310	0,0	0,3	1,0	0,3	0,5	0,6	1,1	1,3	0,7	1,7	7,5	8,4
313	0,7	2,0	5,7	2,9	4,4	1,4	3,2	4,4	4,1	6,9	35,8	40,6
404	3,3	3,5	3,5	3,9	4,0	4,3	4,4	4,6	4,8	4,7	41,0	37,9
513	-0,2	-0,4	-0,9	-0,7	-1,2	-0,4	-0,8	-0,9	-1,1	-1,0	-7,6	-10,0
515	-0,2	-0,4	-0,6	-0,8	-0,9	-0,7	-1,8	-2,1	-1,6	-4,3	-13,5	-19,0
518	-0,5	-1,2	-1,3	-1,1	-1,7	-1,4	-9,0	-12,2	-2,5	-2,6	-33,4	-28,4
219	-8,5	-8,1	-7,7	-7,2	-6,5	-5,8	-1,3	-1,5	-5,5	-1,3	-53,4	-48,7
TOTAL	27,9	31,0	36,6	34,9	38,1	36,9	40,8	44,0	45,0	50,4	404,6	402,8

Tabela 5.4.2 - Redespacho feito em cada iteração e redespacho total, na correção da segurança do sistema 2 utilizando o método da direção S

5.5 Comparação com a metodologia do redespacho através da análise de sensibilidade e programação linear

Ao não dispor do programa computacional da metodologia proposta em [13], tentou-se reproduzir um caso analisado, que utiliza o mesmo sistema teste 1 do presente trabalho.

As condições de geração e carga foram ajustadas convenientemente. Como foi descrito no capítulo 2, a metodologia do redespacho através da análise de sensibilidade [13], utiliza o método SLEP iterativo para avaliar a segurança do sistema. Mas, nesse trabalho não foram apresentados os parâmetros utilizados na sua execução. A precisão no cálculo dos tempos críticos e das margens de segurança, pelo SLEP iterativo depende desses parâmetros.

Capítulo 5

Com as condições de regime permanente do sistema 1, segundo [13], e tomando como tempo de abertura da falha 0,150 segundos (9 ciclos), na Tabela 5.5.1 é apresentada a avaliação da segurança dinâmica, para diferentes parâmetros de execução do SLEP iterativo. É mostrado para cada contingência, o tempo crítico e a margem de segurança.

Como se percebe da Tabela 5.5.1, existem diferenças na avaliação da segurança ao mudar os parâmetros de execução do SLEP iterativo. Estas diferenças são mais notáveis na magnitude da margem de segurança, as quais vão ter efeito na quantificação dos redespachos requeridos para levar o sistema ao nível de segurança procurado.

Apesar disso, o algoritmo ACUCSO simultâneo foi executado, utilizando para o SLEP iterativo os conjunto de parâmetros (3) da Tabela 5.5.1. Para os custos incrementais foi utilizado um valor unitário, que corresponde ao fator de penalidade dos incrementos de geração utilizados na função objetivo de [13]. A margem mínima requerida no sistema é de 0,30.

Na Tabela 5.5.2 é apresentada a comparação da condição final do sistema, segundo [13] e utilizando o ACUCSO simultâneo. É observado novamente que, como no método da direção S, o metodologia de [13] ultrapassa a margem mínima requerida. No entanto, o ACUCSO atinge com maior precisão o objetivo, como pode ser observado nas contingências 1 e 4 da Tabela 5.5.2.

No referente às quantidades redespachadas, na Tabela 5.5.3 são comparadas as magnitudes de geração realocadas, pelas duas metodologias. Também, é mostrada a geração que redespacharia o ACUCSO simultâneo, se fossem utilizados os parâmetros (2) para o SLEP iterativo.

Magnitudes de geração redespachada muito diferentes, apresentam-se para as usinas 366 e 390. Em [13] a geração de 366 é mantida baixa (35% da capacidade) e a de 390 alta (passa de 93% para 100%). No entanto, o ACUCSO ao não dispor dos custos incrementais das usinas, utiliza a regra de distribuição implementada, ou seja, aumentar em proporção à margem de regulação positiva. Por causa disto, a máquina 366 têm prioridade para aumentar geração no ACUCSO simultâneo.

108

109

				(1)			(2)			(3)	
Γ	Elemen	to removido	Tempo	crítico		i Tempo	crítico		Tempo	o crítico	
No	Barra origem	Barra destino	(s)	(cis)	Margem	(s)	(cls)	Margemi	(s)	(cls)	Margem
1	374 S.OSORIO.230	375 AREIA.230	0,100	6,0	-1,730	0,094	5,6	-2,14	0,094	5,6	-1,43
2	374 S.OSORIO.230	371 XANXERE.230	0,130	7,8	-0,600	0,129	7,7	-0,63	0,131	7,9	-0,43
3	374 S.OSORIO.230	433 C.MOURAO.230	0,140	8,4	-0,365	I I 0,131	7,9	-0,57	0,131	7, 9	-0,27
4	408 ITAUBA.230	414 V.AIRES.230	0,170	10,2	0,220	0,172	10,3	0,15	0,181	10,9	0,31
5	391 S.SANTIAG525	398 SEGREDO.525	0,280	16,8	0,779	0,274	16,4	0,73	0,269	16,1	0,77
6	370 P.FUNDO.230	368 FARROUPIL230	0,330	19,8	0,841	0,327	19,6	0,83	0,319	19,1	0,85
7	391 S.SANTIAG525	343 IVAIPORA.525	l 1 0,350	21,0	0,874	l 0,341	20,5	0,85	0,331	19,9	0,87
8	391 S.SANTIAG525	389 PINHEIRO.525	0,370	22,2	0,881	0,367	22,0	0,89	0,369	22,1	0,91
9	382 AREIA.525	343 IVAIPORA.525	0,410	24,6	0,916	0,403	24,2	0,90	0,394	23,6	0,91
10	382 AREIA.525	386 EARRACAO.525	0,440	26,4	0,871	0,436	26,2	0,92	0,444	26,6	0,94
11	382 AREIA.525	384 CUR.NORTE525	0,450	27,0	0,938	0,443	26,6	0,93	0,431	25,9	0,93
12	382 AREIA.525	383 CURITIEA.525	0,440	26,4	0,936	0,443	26,6	0,93	0,431	25,9	0,93
13	382 AREIA.525	398 SEGREDO.525	0,400	24,0	0,786	0,454	27,2	0,94	0,456	27,4	0,95
14	386 BARRACAO.525	387 GRAVATAI.525	0,430	25,8	0,924	0,437	26,2	0,96	0,444	26,6	0,97
15	388 V.AIRES.525	389 PINHEIRO.525	NFE	NFE	NFE	NFE	NFE	NFE	NFE	NFE	NFE
16	414 V.AIRES.230	408 ITAUEA.230	NFE	NFE	NFE	NFE	NFE	NFE	NFE	NFE	NFE

NFE : Não Foi Encontrado tempo crítico para a contingência.

(1) - Avaliação feita em [13]

(2) - Avaliação com os parâmetros da Tabela 3.3.4 para o SLEP iterativo

(3) - Avaliação com HI=0,05, TOLER=90, TMAX=0,1 e TOLTCR=0,01

Tabela 5.5.1 - Avaliação da segurança do sistema 1, nas condições de [13], para diferentes parâmetros na execução do SLEP iterativo

Em relação às usinas 392, 393 e 395, as duas metodologias indicam direções contrarias para o redespacho, justificado talvez, pelo fato de se utilizar em [13] um fator de penalidade, para baixar geração maior (1,2) que o fator para aumentar (1,0).

Outra situação a se destacar nesta comparação, são as diferenças apreciáveis na magnitude total da geração realocada, ao se mudar a precisão do método SLEP iterativo. Na Tabela 5.5.3, é observada uma diferença superior a 20%. Avaliações pessimistas da segurança dinâmica dos SEE, provocam redespachos excessivos, desnecessários e elevam os custos de operação. Mas pior ainda, avaliações otimistas comprometem a segurança do sistema, que tem um valor dificilmente quantificável.

			aj	presentc	uda 👘	obtida	com AC	:UCSO
			L.	em [13	1	e os p	arâmetr	ros (3)
No.	Elemento Barra origem	removido Barra destino circuito	Tempo (s)	crítico (cls)	Margem	Tempo (s)	crítico (cls)	Margem
1	374 S.OSORIO.230	375 AREIA.230 1	0,180	10,9	0,340	0,181	10,9	0,310
2	374 S.OSORIO.230	371 XANXERE.230 1	0,200	12,0	0,490	0,206	12,4	0,530
3	374 S.OSORIO.230	433 C.MOURAO.230 1	0,210	12,6	0,550	0,206	12,4	0,520
4	408 ITAUBA.230	414 V.AIRES.230 1	0,200	12,0	0,467	0,181	10,9	0,310
5	391 S.SANTIAG525	398 SEGREDO.525 1	0,220	13,2	0,591	0,256	15,4	0,720
6	370 P.FUNDO.230	368 FARROUPIL230 1	0,320	19,2	0,850	0,319	19,1	0,860
7	391 S.SANTIAG525	343 IVAIPORA.525 1	0,300	18,0	0,816	0,356	21,4	0,890
8	391 S.SANTIAG525	389 PINHEIRO.525 1	0,300	18,0	0,800	0,356	21,4	0,900
9	382 AREIA.525	343 IVAIPORA.525 1	0,360	21,6	0,882	0,456	27,4	0,930
10	382 AREIA.525	386 BARRACAO 525 1	0,360	21,6	0,825	0,419	25,1	0,920
11	382 AREIA.525	384 CUR.NORTE525 1	0,350	21,0	0,879	0,419	25,1	0,920
12	382 AREIA.525	383 CURITIBA.525 1	0,350	21,0	0,871	0,419	25,1	0,930
13	382 AREIA.525	398 SEGREDO.525 1	0,340	20,4	0,747	0,381	22,9	0,910
14	386 BARRACAO.525	387 GRAVATAI.525 1	0,380	22,8	0,891	0,356	21,4	0,930
15	388 V.AIRES.525	389 PINHEIRO.525 1	NFE	NFE	NFE	NFE	NFE	NFE
16	414 V.AIRES.230	408 ITAUBA.230 1	NFE	NFE	NFE	NFE	NFE	NFE

Tabela 5.5.2 - Comparação da condição final obtida no sistema 1, segundo [13] e redespachado pelo ACUCSO simultâneo.

Usina	Segundo [13]	ACUCSO com (3)	ACUCSO com (2)
366	3,90	96,26	116,70
369	0,80	3,58	4,34
373	-157,50	-177,65	-198,27
381	55,20	59,67	72,33
390	105,70	6,12	7,43
392	-2, 90	1,67	2,03
394	-3,00	2,89	3,50
395	-3,00	5,65	6,85
397	0,00	4,03	4,78
407	-1,60	-2,21	-19,67
TOTAL	168,00	179,86	217,94

Tabela 5.5.3 - Redespachos calculados para a correção da segurança, do sistema 1 nascondições de [13]

Condição final Condição final

5.6 Conclusões

Foi feita neste capítulo, a validação da metodologia proposta no presente trabalho. Utilizando dois sistemas teste, mostrou-se como a avaliação da segurança dinâmica dos SEE, e a identificação e quantificação de ações de controle, integrando as metodologias SLEP iterativo e EEAC, consegue atingir os objetivos fixados no presente trabalho.

Um melhor desempenho foi observado ao comparar-se com os resultados obtidos com outras metodologias. A maior qualidade, encontrou-se na quantificação das ações de controle, permitindo atingir o nível de segurança desejado com maior precisão.

Isto foi conseguido, pela utilização de coeficientes de sensibilidade da margem de segurança de segunda ordem, obtidos do OMIB equivalente, os quais permitem considerar de forma satisfatória a não linearidade própria dos SEE. Assim, o processo iterativo apresenta uma elevada taxa de convergência, caracterizada por redespachos de maior magnitude nas primeiras iterações e menores nas últimas.

O algoritmo ACUCSO desenvolvido no presente trabalho, e especificamente o ACUCSO simultâneo, apesar de ser um procedimento não formal de otimizar os redespachos, mostrou que pode não só considerar os custos de geração dos SEE, como também levar em conta a interação existente entre os redespachos e a margem de segurança das contingências. O ACUCSO simultâneo, permite definir de forma precisa e explícita os redespachos mais apropriados para a melhoria da segurança dinâmica dos SEE.

O desempenho em termos computacionais, da metodologia desenvolvida no presente trabalho, é considerada como satisfatória, e várias melhorias podem ser feitas em relação a esse aspecto, inclusive a implementação em ambiente de processamento paralelo.

CAPÍTULO 6

6. Conclusões Gerais e Sugestões para Trabalhos Futuros

6.1 Introdução

Neste capítulo serão apresentadas as conclusões obtidas através do desenvolvimento do presente trabalho. Além disso, serão listados as principais contribuições e sugestões a se levar em conta em trabalhos futuros.

6.2 Conclusões gerais

Este trabalho teve por objetivo, propor e desenvolver uma metodologia para a avaliação e correção da segurança dinâmica dos SEE, baseada na integração do método SLEP iterativo e do critério de áreas iguais estendido (EEAC).

A integração feita, aproveita o melhor de cada um deles, isto é, a precisão e confiabilidade do método SLEP iterativo na avaliação da segurança dinâmica, e os coeficientes de sensibilidade da margem de segurança, obtidos do OMIB equivalente do EEAC.

Na procura dos objetivos traçados, a metodologia do EEAC foi implementada computacionalmente e feita uma avaliação crítica. Mostrou-se que, a maior dificuldade do EEAC reside na correta determinação das máquinas críticas do sistema para uma perturbação, utilizando as estratégias propostas na literatura. Também foi mostrado como, fornecendo as máquinas críticas para cada contingência analisada e utilizando o OMIB dinâmico, a metodologia do EEAC consegue ter um desempenho aceitavel, no cálculo dos tempos críticos da faixa de interesse para a análise da estabilidade transitória, isto é, tempos críticos menores de 0,250 segundos.

Capítulo 5

Para se garantir a correta utilização do EEAC, foi então proposta e implementada neste trabalho, a utilização do SLEP iterativo na classificação das máquinas críticas. Esta estratégia, considera como aproximação do ponto de equilibrio instável do sistema (alcançado na trajetória crítica), a utilização do ponto de cruzamento com a SLEP da última trajetória otimista, no processo do SLEP iterativo.

Tomando então os ângulos individuais das máquinas neste ponto, foi feita a classificação das máquinas e, assim, determinado o conjunto crítico para cada contingência. Isto, não representou nenhum esforço computacional adicional no SLEP iterativo.

Na determinação e quantificação das ações de controle, para a melhoria da segurança dinâmica, foi implementado o módulo ACUCSO : Ações de Controle Utilizando Coeficientes de Sensibilidade do OMIB. O ACUCSO, encontra os melhores redespachos viáveis no sistema, levando em conta os custos incrementais de geração e a interação das contingências na margem de segurança.

A metodologia completa desenvolvida no presente trabalho, foi avaliada utilizando dois sistemas teste, e mostrou um bom desempenho, não só na qualidade dos resultados, como também no tempo computacional. Aliás, apresentou uma melhor precisão na quantificação dos redespachos requeridos para a melhoria da segurança, quando comparado com outras metodologias disponíveis.

A precisão, confiabilidade e baixo esforço computacional, fazem da metodologia muito atraente para ser utilizada pelas empresas do setor elétrico, no ámbito do planejamento de longo, médio e curto prazo.

6.3 Contribuições feitas no presente trabalho

A seguir serão listados as principais contribuições que ficam como produto do presente trabalho :

- Avaliação completa da metodologia do EEAC, muito pesquisada nos últimos anos;
- Compatibilização na quantificação da margem de segurança, das metodologias SLEP iterativo e EEAC;

113

- Determinação das máquinas críticas a partir do SLEP iterativo, questão fundamental na correta utilização do EEAC;
- Obtenção das expressões analíticas que permitem calcular de forma eficiente, os coeficientes de sensibilidade de primeira e segunda ordem das margens de segurança definidas para o EEAC;
- Levar em conta de forma explícita a interação das contingências;
- Determinação e quantificação das melhores ações de controle, do tipo redespacho de geração, através de um procedimento simples, efetivo e de baixo esforço computacional.

6.4 Sugestões para futuros trabalhos

No sentido de dar continuidade e possibilitar a melhoria da metodologia desenvolvida no presente trabalho, são feitas as seguintes sugestões :

- Implementação em ambiente computacional de alto desempenho (paralelo e/ou vetorial);
- Resolver o problema de otimização formulado no presente trabalho, que basea-se nos coeficientes de sensibilidade quadráticos, e comparar seus resultados com os obtidos pelo algoritmo ACUCSO;
- Tentar a inclusão em modelos de fluxo de potência ótimo;
 - Desenvolver e implementar coeficientes de sensibilidade das margens de segurança do EEAC em relação a outras variáveis. Com isso se abriria a possibilidade de escolher ações de controle diferentes ao redespacho de geração;
 - Estudar formas alternativas para quantificar a participação na margem de segurança, das máquinas do conjunto crítico. Isto é, o EEAC estabelece que para uma contingência, conceitualmente não existe diferença em qual seja a máquina redespachada dentro de um mesmo conjunto. Mas, na prática encontram-se situações nas quais isto não é válido;
 - Estudar a possibilidade de melhorar a modelagem do sistema nas duas metodologias, com a inclusão, por exemplo, do regulador automático de tensão (RAT).

APÊNDICE A

A. Critério de áreas iguais estendido - casos peculiares

Neste apêndice são discutidos os diversos casos que podem-se apresentar na aplicação do critério de áreas iguais estendido. É mostrado como, a equação para o cálculo da margem de segurança absoluta ($\eta = Ades - Aace$) não muda. Este fato, facilita o cálculo tanto de η como do ângulo crítico, δ_c .

A análise da estabilidade transitória utilizando o critério das áreas iguais estendido, é feita sob as curvas da potência elétrica das diferentes configurações da rede. Normalmente, são três as curvas de potência elétrica :

- Pré-falta (Pe_o) : condição inicial do sistema
- Durante defeito (Pe_d) : curto circuito trifásico em uma barra do sistema
- Pós-defeito (Pe_p) : condição final da rede, caracterizado pelo desligamento permanente de uma linha de transmissão ou transformador.

Figura A.1 - Caso normal na aplicação do critério das áreas iguais

A forma padrão das curvas de potência ângulo é :

$$Pe = Pc + Pmax * sen(\delta - v)$$

onde Pc representa a potência ativa absorvida pela carga local equivalente ligada na barra interna da máquina, Pmax é a máxima capacidade de transferencia de potência ativa da configuração e v é o desfasamento angular.

Na figura A.1 é apresentado o caso mais comum, considerado na análise das áreas acelerante e desacelerante, no qual $Pm_{eq} > Pc_d + Pmax_d$, sendo, portanto, a condição de maior severidade para o sistema.

As equações da potência elétrica, na forma padrão, referidas às diferentes configurações do sistema, são :

 $Pe_{o} = Pc_{o} + Pmax_{o}*sen (\delta - v_{o})$ $Pe_{d} = Pc_{d} + Pmax_{d}*sen (\delta - v_{d}) :$ $Pe_{p} = Pc_{p} + Pmax_{p}*sen (\delta - v_{p}) :$

onde:

(o) : condição inicial da rede

(d) : condição durante a falta (também chamada sob defeito)

(p) : condição pós-falta

 δ_o : ângulo de equilíbrio na condição inicial

 δ_p : ângulo de equilíbrio na condição final ou pós-defeito

 δ_t : ângulo para o qual o defeito é eliminado pelo desligamento de um elemento

 $\delta_u = \pi - \delta_p + 2v_p$: ângulo de equilíbrio instável na curva pós-defeito

O calculo das áreas acelerante e desacelerante, e da margem de segurança absoluta, é feito integrando a diferença entre as curvas de potência elétrica e potência mecânica equivalente., conforme as equações (A.1) apresentadas a seguir

$$Aace = \int_{\delta_{o}}^{\delta_{i}} \left[Pm_{eq} - Pc_{d} - Pmax_{d} * \operatorname{sen}(\delta - v_{d}) \right] d\delta$$
$$Ades = \int_{\delta_{i}}^{\pi - \delta_{p} + 2v_{p}} \left[Pc_{p} + Pmax_{p} * \operatorname{sen}(\delta - v_{p}) - Pm_{eq} \right] d\delta$$
$$\eta = Ades - Aace \qquad (A.1)$$

$$\eta = \int_{\delta_{i}}^{\delta_{i}} \left[Pc_{d} + Pmax_{d} * \operatorname{sen}(\delta - v_{d}) - Pm_{eq} \right] d\delta + \int_{\delta_{i}}^{\pi - \delta_{p} + 2v_{p}} \left[Pc_{p} + Pmax_{p} * \operatorname{sen}(\delta - v_{p}) - Pm_{eq} \right] d\delta$$

Com $cos(\pi - \theta) = -cos(\theta) = -cos(-\theta)$ a equação da margem de segurança assume a seguinte forma :

$$\eta = (Pc_p - Pm_{eq})(\pi - \delta_t - \delta_p + 2v_p) + Pmax_p \left[\cos(\delta_t - v_p) + \cos(\delta_p - v_p)\right] - (Pm_{eq} - Pc_d)(\delta_t - \delta_o) - Pmax_d \left[\cos(\delta_t - v_d) - \cos(\delta_o - v_d)\right]$$
(A.2)

Mas, quando a potência mecânica da máquina equivalente (Pm_{eq}) , for inferior a soma da potência de carga local mais a capacidade máxima de transferência de potência da configuração durante o defeito $(Pm_{eq} < Pc_d + Pmax_d)$, são identificados cinco casos possíveis, os quais são apresentados a seguir.

Figura A.2 - Aplicação critério de áreas iguais : (a) caso 1 (b) caso 2

Apêndice A

$$\frac{\text{Caso 1}: Pm_{eq} < Pmax_d + Pc_d, e \quad \delta_t < \delta_p < \delta_d \text{ (Figura A-2-a)}}{Aace = \int_{\delta_a}^{\delta_t} \left[Pm_{eq} - Pc_d - Pmax_d * \operatorname{sen}(\delta - \nu_d) \right] d\delta} + \int_{\delta_t}^{\delta_t} \left[Pm_{eq} - Pc_p - Pmax_p * \operatorname{sen}(\delta - \nu_p) \right] d\delta$$
(A.3)

$$Ades = \int_{\delta_{r}}^{\pi-\delta_{r}+2\nu_{r}} \left[Pc_{p} + Pmax_{p} * \operatorname{sen}(\delta-\nu_{p}) - Pm_{eq} \right] d\delta$$

E a margem de segurança é :

$$\eta = \int_{\delta_{r}}^{\pi-\delta_{r}+2vV_{r}} \left[Pc_{p} + Pmax_{p} * \operatorname{sen}(\delta - v_{p}) - Pm_{eq} \right] d\delta - \int_{\delta_{r}}^{\delta_{r}} \left[Pm_{eq} - Pc_{d} - Pmax_{d} * \operatorname{sen}(\delta - v_{d}) \right] d\delta - \int_{\delta_{r}}^{\delta_{r}} \left[Pm_{eq} - Pc_{p} - Pmax_{p} * \operatorname{sen}(\delta - v_{p}) \right] d\delta$$

Se o sinal negativo é introduzido nas integrais, podem-se agrupar as duas integrais que atuam sob a curva pós-defeito e assim obter a mesma equação A-1.

$$\underline{\text{Caso 2}: Pm_{eq} < Pmax_d + Pc_d, e \ \delta_d < \delta_l < \delta_p \ (\text{Figura A-2-b})}_{Aace = \int_{\delta_a}^{\delta_d} \left[Pm_{eq} - Pc_d - Pmax_d * \operatorname{sen}(\delta - \nu_d) \right] d\delta + \\ + \int_{\delta_t}^{\delta_p} \left[Pm_{eq} - Pc_p - Pmax_p * \operatorname{sen}(\delta - \nu_p) \right] d\delta$$

$$Ades = \int_{\delta_{p}}^{\pi - \delta_{p} + 2v_{p}} \left[Pc_{p} + Pmax_{p} * \operatorname{sen}(\delta - v_{p}) - Pm_{eq} \right] d\delta + \int_{\delta_{d}}^{\delta_{l}} \left[Pc_{d} + Pmax_{d} * \operatorname{sen}(\delta - v_{d}) - Pm_{eq} \right] d\delta$$

$$\eta = Ades - Aace$$

$$= \int_{\delta_{p}}^{\pi - \delta_{p} + 2v_{p}} \left[Pc_{p} + Pmax_{p} * \operatorname{sen}(\delta - v_{p}) - Pm_{eq} \right] d\delta + \int_{\delta_{d}}^{\delta_{e}} \left[Pc_{d} + Pmax_{d} * \operatorname{sen}(\delta - v_{d}) - Pm_{eq} \right] d\delta - \int_{\delta_{d}}^{\delta_{e}} \left[Pm_{eq} - Pc_{d} - Pmax_{d} * \operatorname{sen}(\delta - v_{d}) \right] d\delta - \int_{\delta_{e}}^{\delta_{e}} \left[Pm_{eq} - Pc_{p} - Pmax_{p} * \operatorname{sen}(\delta - v_{p}) \right] d\delta$$

118

(A.4)

Apêndice A

Como no caso anterior, se o sinal negativo é introduzido nas integrais, podem-se agrupar as integrais que atuam sob a curvas durante e pós-defeito, e assim obter a mesma equação do caso normal A-I.

$$\underline{Caso 3: Pm_{eq} < Pmax_d + Pc_d, e_{\delta_p} < \delta_t < \delta_d \quad (Figura A-3-a)}$$

$$Aace = \int_{\delta_t}^{\delta_t} \left[Pm_{eq} - Pc_d - Pmax_d * sen(\delta - \nu_d) \right] d\delta$$

$$Ades = \int_{\delta_t}^{\pi - \delta_p + 2\nu_p} \left[Pc_p + Pmax_p * sen(\delta - \nu_p) - Pm_{eq} \right] d\delta$$
(A.5)

Por simples observação, nota-se como o η obtido neste caso é igual a aquele obtido no caso chamado de normal, equação A-I.

Figura A.3 - Aplicação do critério de áreas iguais, casos 3 e 4

$$Caso 4: Pm_{eq} < Pmax_d + Pc_d, e \quad \delta_d < \delta_t < \pi - \delta_d + 2v_d \quad (Figura A-3-b)$$

$$Aace = \int_{\delta_a}^{\delta_d} \left[Pm_{eq} - Pc_d - Pmax_d * sen(\delta - v_d) \right] d\delta$$

$$Ades = \int_{\delta_d}^{\delta_d} \left[Pc_d + Pmax_d * sen(\delta - v_d) - Pm_{eq} \right] d\delta + \int_{\delta_d}^{\pi - \delta_p + 2v_p} \left[Pc_p + Pmax_p * sen(\delta - v_p) - Pm_{eq} \right] d\delta$$

E a margem de segurança é :

(A.6)

$$\eta = Ades - Aace$$

$$= \int_{\delta_{d}}^{\delta_{d}} \left[Pc_{d} + Pmax_{d} * \operatorname{sen}(\delta - v_{d}) - Pm_{eq} \right] d\delta +$$

$$+ \int_{\delta_{r}}^{\pi - \delta_{p} + 2v_{p}} \left[Pc_{p} + Pmax_{p} * \operatorname{sen}(\delta - v_{p}) - Pm_{eq} \right] d\delta -$$

$$- \int_{\delta_{q}}^{\delta_{d}} \left[Pm_{eq} - Pc_{d} - Pmax_{d} * \operatorname{sen}(\delta - v_{d}) \right] d\delta$$

Da mesma forma que no caso 2, se o sinal negativo é introduzido na terceira integral, podem-se agrupar as duas integrais que atuam sob a curva pós-defeito e assim obter o mesmo resultado do caso chamado de normal, equação (A. I).

Figura A.4 - Aplicação critério de áreas iguais : casos 5 e 6.

$$Caso 5: Pm_{eq} < Pmax_d + Pc_d, e \pi - \delta_d + 2v_d < \delta_t < \pi - \delta_p + 2v_p \quad (Figura A-4-a)$$

$$Aace = \int_{\delta_a}^{\delta_d} \left[Pm_{eq} - Pc_d - Pmax_d * \operatorname{sen}(\delta - v_d) \right] d\delta$$

$$+ \int_{\pi - \delta_d + 2v_d}^{\delta_t} \left[Pm_{eq} - Pc_d - Pmax_d * \operatorname{sen}(\delta - v_d) \right] d\delta$$

$$Ades = \int_{\delta_d}^{\pi - \delta_d + 2v_d} \left[Pc_d + Pmax_d * \operatorname{sen}(\delta - v_d) - Pm_{eq} \right] d\delta$$

$$+ \int_{\delta_t}^{\pi - \delta_p + 2v_p} \left[Pc_p + Pmax_p * \operatorname{sen}(\delta - v_p) - Pm_{eq} \right] d\delta$$

Da mesma forma que nos casos anteriores, a equação da margem de segurança obtida é igual à equação (A.1).

120

Apéndice A

$$Caso 6: Pm_{eq} > Pmax_d + Pc_d (normal) e \delta_l < \delta_p (Figura A-4-b)$$

$$Aace = \int_{\delta_a}^{\delta_l} \left[Pm_{eq} - Pc_d - Pmax_d * sen(\delta - v_d) \right] d\delta + \\ + \int_{\delta_l}^{\delta_p} \left[Pm_{eq} - Pc_p - Pmax_p * sen(\delta - v_p) \right] d\delta$$

$$Ades = \int_{\delta_p}^{\pi - \delta_p + 2v_p} \left[Pc_p + Pmax_p * sen(\delta - v_p) - Pm_{eq} \right] d\delta$$
(A.8)

Como nos casos anteriores, ao se calcular a margem de segurança η_1 é obtida a mesma equação (A.1).

<u>Caso 7 : $Pm_{eq} > Pmax_d + Pc_d$ (normal) $e \ \delta_l > \delta_p$ (Figura A-1)</u>

É idêntico ao caso chamado de normal.

APÊNDICE B

B. Expressões Analíticas dos Coeficientes de Sensibilidade das Margens de Segurança

Neste apêndice é apresentado em detalhe a obtenção das expressões analíticas dos coeficientes de sensibilidade de primeira e segunda ordem, das margens de segurança definidas para o critério das áreas iguais estendido.

As equações que finalmente podem ser obtidas, devido a seu comprimento, não serão apresentadas. Mas, em compensação, as expressões de cada um dos termos requeridos para o cálculo são definidos em forma sequencial. É assim como ao se calcular em forma ordenada e sistemática as equações enumeradas, pode-se computar facilmente o valor dos coeficientes de sensibilidade das margens, definidos como :

$$S_{P_{ms}} = \frac{d\eta_i}{dP_{ms}}$$
 e $S_{P_{ms}}^! = \frac{d^2\eta_i}{dP_{ms}^2}$ $(i = 1, 2, e)$

No capítulo 4, item 4.3.2, a margens de segurança η_1 , η_2 e η_e , para o EEAC foram definidas como

$$\eta_{1} = Ades - Aace$$
$$\eta_{2} = \frac{\eta_{1}}{A_{1c}}$$
$$\eta_{e} = \frac{\eta_{1}}{A_{1c} - A_{3c}}$$

(B-1)

As expressões analíticas dos termos requeridos para calcular as três margens são :

$$\eta_{1} = (Pc_{p} - Pm_{eq})(\pi - \delta_{t} - \delta_{p} + 2v_{p}) + Pmax_{p} [\cos(\delta_{t} - v_{p}) + \cos(\delta_{p} - v_{p})] - (Pm_{eq} - Pc_{d})(\delta_{t} - \delta_{o}) - Pmax_{d} [\cos(\delta_{c} - v_{d}) - \cos(\delta_{o} - v_{d})]$$

$$A_{1e} = (Pm_{eq} - Pc_{d})(\delta_{e} - \delta_{e}) + Pmax_{d} [\cos(\delta_{e} - v_{d}) - \cos(\delta_{e} - v_{d})]$$

$$A_{3c} = (Pc_p - Pm_{eq})(\delta_c - \delta_p) - Pmax_p \left[\cos(\delta_c - \nu_p) - \cos(\delta_p - \nu_p)\right]$$

Definindo os termos :

$$Aoo \stackrel{\Delta}{=} Pmax_{o} \cos(\delta_{o} - v_{o}) \qquad Boo \stackrel{\Delta}{=} Pmax_{o} \sin(\delta_{o} - v_{o}) \\Ado \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{o} - v_{d}) \qquad Bdo \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{o} - v_{d}) \\App \stackrel{\Delta}{=} Pmax_{p} \cos(\delta_{p} - v_{p}) \qquad Bpp \stackrel{\Delta}{=} Pmax_{p} \sin(\delta_{p} - v_{p}) \\Apt \stackrel{\Delta}{=} Pmax_{p} \cos(\delta_{t} - v_{p}) \qquad Bpt \stackrel{\Delta}{=} Pmax_{p} \sin(\delta_{t} - v_{p}) \\Adt \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{t} - v_{d}) \qquad Bdt \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{t} - v_{d}) \\Apc \stackrel{\Delta}{=} Pmax_{p} \cos(\delta_{c} - v_{p}) \qquad Bpc \stackrel{\Delta}{=} Pmax_{p} \sin(\delta_{c} - v_{p}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d}) \\Adc \stackrel{\Delta}{=} Pmax_{d} \cos(\delta_{c} - v_{d}) \qquad Bdc \stackrel{\Delta}{=} Pmax_{d} \sin(\delta_{c} - v_{d})$$

As equações dos termos para o cálculo das margens podem ser reescritas como :

$$\begin{cases} \eta_1 = (Pc_p - Pm_{eq})(\pi - \delta_t - \delta_p + 2\nu_p) - (Pm_{eq} - Pc_d)(\delta_t - \delta_o) + \\ + Apt + App - Adt + Ado \end{cases}$$
(B-3)

$$A_{1c} = (Pm_{eq} - Pc_{d})(\delta_{c} - \delta_{q}) + Adc - Ado$$
(B-4)

$$A_{3c} = (Pc_{n} - Pm_{ea})(\delta_{c} - \delta_{n}) - Apc + App \qquad (B-5)$$

Neste conjunto de equações, as variáveis que mudam ao se variar a potência mecânica do conjunto crítico, Pm_s , são Pm_{eq} , δ_o , δ_p , $\delta_t e \delta_c$. Para calcular as derivadas totais das margens com respecto à Pm_s , pode-se empregar a derivação em cadeia, ou bem a derivação implícita. A segunda opção vai ser empregada, pelo fato de facilitar o obtenção sequencial dos termos requeridos.

B.1 Sensibilidades de primeira ordem

Partindo da equação da potência mecânica equivalente, definida no EEAC como :

$$Pm_{eq} \stackrel{\Delta}{=} M_T^{-1}(M_a Pm_s - M_s Pm_a)$$

Derivando em relação à potência mecânica do conjunto S, e levando em conta que toda variação de geração no conjunto S é compensada no conjunto A, obtém-se :

(B-2)
Apéndice B

$$\frac{dPm_{eq}}{dPm_s} = M_T^{-1} \left(M_a \frac{dPm_s}{dPm_s} - M_s \frac{dPm_a}{dPm_s} \right) = 1$$
(B-6)

No ponto de equilíbrio inicial, $Pe_o = Pm_{eq}$ e então :

$$Pm_{eq} = Pc_o + Pmax_o \operatorname{sen}(\delta_o - v_o).$$

Derivando esta expressão com respeito à Pm_s , resulta :

$$\frac{dPm_{eq}}{dPm_{s}} = 1 = Pmax_{o}\cos(\delta_{o} - v_{o})\frac{d\delta_{o}}{dPm_{s}}$$

e por tanto :

$$\frac{d\delta_o}{dPm_s} = \frac{1}{Pmax_o\cos(\delta_o - v_o)} = \frac{1}{Aoo}$$
(B-7)

Em forma análoga, para o ângulo de equilíbrio pós-falta δ_p , se tem :

$$\frac{d\delta_p}{dPm_e} = \frac{1}{App} \tag{B-8}$$

As derivadas do primeiro bloco de equações do conjunto (B-2), são :

$$\frac{dAoo}{dPm_s} = -Pmax_o \operatorname{sen}(\delta_o - v_o) \frac{d\delta_o}{dPm_s} = -\frac{Boo}{Aoo}$$

$$\frac{dBoo}{dPm_s} = +Pmax_o \cos(\delta_o - v_o) \frac{d\delta_o}{dPm_s} = \frac{Aoo}{Aoo} = 1$$

$$\frac{dAdo}{dPm_s} = -Pmax_d \operatorname{sen}(\delta_o - v_d) \frac{d\delta_o}{dPm_s} = -\frac{Bdo}{Aoo}$$

$$\frac{dBdo}{dPm_s} = +Pmax_d \cos(\delta_o - v_d) \frac{d\delta_o}{dPm_s} = \frac{Ado}{Aoo}$$

$$\frac{dAdo}{dPm_s} = -Pmax_p \operatorname{sen}(\delta_p - v_p) \frac{d\delta_p}{dPm_s} = -\frac{Bpp}{App}$$

$$\frac{dBpp}{dPm_s} = +Pmax_p \cos(\delta_p - v_p) \frac{d\delta_p}{dPm_s} = -\frac{App}{App}$$

Para calcular as derivadas do ângulo de abertura δ_t e do ângulo crítico δ_c , em relação a Pm_s , se parte da equação do ângulo do OMIB equivalente, expressada em série de Taylor :

$$\delta_t = \delta_o + \frac{1}{2}\gamma_{o^+}t_t^2 + \frac{1}{24}\ddot{\gamma}_{o^+}t_t^4$$

124

(B-9)

onde :

$$\gamma_{0^{*}} = \ddot{\delta}\Big|_{t=0^{*}} = M_{eq}^{-1} \Big[Pm_{eq} - Pc_{d} - Pmax_{d} \operatorname{sen}(\delta_{o} - \nu_{d}) \Big] \\ = M_{eq}^{-1} \Big(Pm_{eq} - Pc_{d} - Bdo \Big)$$

$$(B-10)$$

$$\ddot{\gamma}_{0^{*}} = \ddot{\delta}\Big|_{t=0^{*}} = -M_{eq}^{-1} \Big[Pmax_{d} \cos(\delta_{o} - \nu_{d}) \Big] \gamma_{o^{*}} = -M_{eq}^{-1} \gamma_{o^{*}} Ado$$

e suas derivadas com respecto a Pm_s, são :

$$\frac{d\gamma_{o^{\star}}}{dPm_{s}} = M_{eq}^{-1} \left(\frac{dPm_{eq}}{dPm_{s}} - \frac{dBdo}{dPm_{s}} \right)$$

$$\frac{d\ddot{\gamma}_{o^{\star}}}{dPm_{s}} = -M_{eq}^{-1} \left(\gamma_{o^{\star}} \frac{dAdo}{dPm_{s}} + Ado \frac{d\gamma_{o^{\star}}}{dPm_{s}} \right)$$
(B-11)

e portanto :

$$\frac{d\delta_{t}}{dPm_{s}} = \frac{d\delta_{o}}{dPm_{s}} + \frac{t_{t}^{2}}{2} \frac{d\gamma_{o^{+}}}{dPm_{s}} + \frac{t_{t}^{4}}{24} \frac{d\ddot{\gamma}_{o^{-}}}{dPm_{s}}$$

$$\frac{d\delta_{c}}{dPm_{s}} = \frac{d\delta_{o}}{dPm_{s}} + \frac{t_{c}^{2}}{2} \frac{d\gamma_{o^{+}}}{dPm_{s}} + \frac{t_{c}^{4}}{24} \frac{d\ddot{\gamma}_{o^{+}}}{dPm_{s}}$$
(B-12)

Agora, as derivadas do segundo bloco de equações do conjunto B-2, são :

$$\frac{dAdt}{dPm_s} = -Pmax_d \operatorname{sen}(\delta_t - \nu_d) \frac{d\delta_t}{dPm_s} = -Bdt \frac{d\delta_t}{dPm_s}$$

$$\frac{dBdt}{dPm_s} = +Pmax_d \cos(\delta_t - \nu_d) \frac{d\delta_t}{dPm_s} = +Adt \frac{d\delta_t}{dPm_s}$$

$$\frac{dAdc}{dPm_s} = -Pmax_d \operatorname{sen}(\delta_c - \nu_d) \frac{d\delta_c}{dPm_s} = -Bdc \frac{d\delta_c}{dPm_s}$$

$$\frac{dBdc}{dPm_s} = +Pmax_d \cos(\delta_c - \nu_d) \frac{d\delta_c}{dPm_s} = +Adc \frac{d\delta_c}{dPm_s}$$

$$\frac{dApt}{dPm_s} = -Pmax_p \operatorname{sen}(\delta_t - \nu_p) \frac{d\delta_t}{dPm_s} = -Bpt \frac{d\delta_t}{dPm_s}$$

$$\frac{dBpt}{dPm_s} = +Pmax_p \cos(\delta_t - \nu_p) \frac{d\delta_t}{dPm_s} = +Apt \frac{d\delta_t}{dPm_s}$$

$$\frac{dApc}{dPm_s} = -Pmax_p \operatorname{sen}(\delta_c - \nu_p) \frac{d\delta_c}{dPm_s} = -Bpc \frac{d\delta_c}{dPm_s}$$

(B- 13)

Apêndice B

E as derivadas da área acelerante crítica, A_{1c} , e da área 3 crítica, A_{3c} , são apresentadas a seguir :

$$\frac{dA_{1c}}{dPm_{s}} = (Pm_{eq} - Pc_{d}) \left(\frac{d\delta_{c}}{dPm_{s}} - \frac{d\delta_{o}}{dPm_{s}} \right) + \delta_{c} - \delta_{o} + \frac{dAdc}{dPm_{s}} - \frac{dAdo}{dPm_{s}}$$

$$\frac{dA_{3c}}{dPm_{s}} = \delta_{p} - \delta_{c} + (Pc_{p} - Pm_{eq}) \left(\frac{d\delta_{c}}{dPm_{s}} - \frac{d\delta_{p}}{dPm_{s}} \right) - \frac{dApc}{dPm_{s}} + \frac{dApp}{dPm_{s}}$$
(B-14)

Com o conjunto de equações encontradas acima, pode-se definir o coeficiente de sensibilidade de primeira ordem das margens de segurança η_1 , η_2 e η_e em relação à potência mecânica do conjunto crítico Pm_s :

$$\frac{d\eta_1}{dPm_s} = (Pm_{eq} - Pc_p) \left(\frac{d\delta_t}{dPm_s} + \frac{d\delta_p}{dPm_s} \right) - (Pm_{eq} - Pc_d) \left(\frac{d\delta_t}{dPm_s} - \frac{d\delta_o}{dPm_s} \right) - (B-15)$$
$$-\pi + \delta_p - 2v_p + \delta_o + \frac{dApt}{dPm_s} + \frac{dApp}{dPm_s} - \frac{dAdt}{dPm_s} + \frac{dAdo}{dPm_s}$$

$$\frac{d\eta_2}{dPm_s} = \frac{1}{A_{1c}} \left(\frac{d\eta_1}{dPm_s} - \eta_2 \frac{dA_{1c}}{dPm_s} \right) \tag{B-16}$$

$$\frac{d\eta_e}{dPm_s} = \frac{1}{A_{1c} + A_{3c}} \left[\frac{d\eta_1}{dPm_s} - \eta_e \left(\frac{dA_{1c}}{dPm_s} + \frac{dA_{3c}}{dPm_s} \right) \right]$$
(B-17)

B.2 Sensibilidades de segunda ordem

Derivando as equações B-7 e B-8 em relação à Pms obtem-se :

$$\frac{d^2 \delta_o}{dPm_s^2} = \frac{d}{dPm_s} \left(\frac{1}{Aoo}\right) = -\frac{1}{Aoo^2} \frac{dAoo}{dPm_s} = \frac{Boo}{Aoo^3}$$

$$\frac{d^2 \delta_p}{dPm_s^2} = \frac{d}{dPm_s} \left(\frac{1}{App}\right) = -\frac{1}{App^2} \frac{dApp}{dPm_s} = \frac{Bpp}{App^3}$$
(B-18)

Para o conjunto de equações B-9, ao se derivar pela segunda vez em relação a Pm_s , obtém-se :

$$\frac{d^{2}Aoo}{dPm_{s}^{2}} = -\frac{1}{Aoo} \left(1 + \frac{Boo^{2}}{Aoo^{2}}\right)$$

$$\frac{d^{2}Boo}{dPm_{s}^{2}} = 0 \qquad (B-19)$$

$$\frac{d^{2}Ado}{dPm_{s}^{2}} = -\frac{1}{Aoo^{2}} \left(Ado + \frac{Bdo*Boo}{Aoo}\right)$$

$$\frac{d^{2}Bdo}{dPm_{s}^{2}} = \frac{1}{Aoo^{2}} \left(-Bdo + \frac{Ado*Boo}{Aoo}\right)$$

$$\frac{d^{2}App}{dPm_{s}^{2}} = -\frac{1}{App} \left(1 + \frac{Bpp^{2}}{App^{2}}\right) \qquad (B-20)$$

$$\frac{d^{2}Bpp}{dPm_{s}^{2}} = 0$$

Para as acelerações do OMIB em $t = 0^+$, utilizando a equação B-10, se tem :

$$\frac{d^2 \gamma_{o^*}}{dPm_s^2} = -M_{eq}^{-1} \frac{d^2 B do}{dPm_s^2}$$

$$\frac{d^2 \ddot{\gamma}_{o^*}}{dPm_s^2} = -M_{eq}^{-1} \left[\gamma_{o^*} \frac{d^2 A do}{dPm_s^2} + 2 \frac{d\gamma_{o^*}}{dPm_s} \frac{dA do}{dPm_s} + A do \frac{d^2 \gamma_{o^*}}{dPm_s^2} \right]$$
(B-21)

Para o ângulos de abertura δ_t e o ângulo crítico δ_c , se tem :

$$\frac{d^{2}\delta_{t}}{dPm_{s}^{2}} = \frac{d^{2}\delta_{o}}{dPm_{s}^{2}} + \frac{t_{t}^{2}}{2}\frac{d^{2}\gamma_{o}}{dPm_{s}^{2}} + \frac{t_{t}^{4}}{24}\frac{d^{2}\ddot{\gamma}_{o}}{dPm_{s}^{2}}$$

$$\frac{d^{2}\delta_{c}}{dPm_{s}^{2}} = \frac{d^{2}\delta_{o}}{dPm_{s}^{2}} + \frac{t_{c}^{2}}{2}\frac{d^{2}\gamma_{o}}{dPm_{s}^{2}} + \frac{t_{c}^{4}}{24}\frac{d^{2}\ddot{\gamma}_{o}}{dPm_{s}^{2}}$$
(B-22)

E tomando a segunda derivada das equações B-13 :

$$\frac{d^{2}Adt}{dPm_{s}^{2}} = -Bdt \frac{d^{2}\delta_{t}}{dPm_{s}^{2}} - \frac{dBdt}{dPm_{s}} \frac{d\delta_{t}}{dPm_{s}}$$

$$\frac{d^{2}Bdt}{dPm_{s}^{2}} = +Adt \frac{d^{2}\delta_{t}}{dPm_{s}^{2}} + \frac{dAdt}{dPm_{s}} \frac{d\delta_{t}}{dPm_{s}}$$

$$\frac{d^{2}Adc}{dPm_{s}^{2}} = -Bdc \frac{d^{2}\delta_{c}}{dPm_{s}^{2}} - \frac{dBdc}{dPm_{s}} \frac{d\delta_{c}}{dPm_{s}}$$

$$\frac{d^{2}Bdc}{dPm_{s}^{2}} = +Adc \frac{d^{2}\delta_{c}}{dPm_{s}^{2}} + \frac{dAdc}{dPm_{s}} \frac{d\delta_{c}}{dPm_{s}}$$
(B-23)

127

Apêndice B

$$\frac{d^{2}Apt}{dPm_{s}^{2}} = -Bpt \frac{d^{2}\delta_{t}}{dPm_{s}^{2}} - \frac{dBpt}{dPm_{s}} \frac{d\delta_{t}}{dPm_{s}}$$

$$\frac{d^{2}Bpt}{dPm_{s}^{2}} = +Apt \frac{d^{2}\delta_{t}}{dPm_{s}^{2}} + \frac{dApt}{dPm_{s}} \frac{d\delta_{t}}{dPm_{s}}$$

$$\frac{d^{2}Apc}{dPm_{s}^{2}} = -Bpc \frac{d^{2}\delta_{c}}{dPm_{s}^{2}} - \frac{dBpc}{dPm_{s}} \frac{d\delta_{c}}{dPm_{s}}$$

$$\frac{d^{2}Bpc}{dPm_{s}^{2}} = +Apc \frac{d^{2}\delta_{c}}{dPm_{s}^{2}} + \frac{dApc}{dPm_{s}} \frac{d\delta_{c}}{dPm_{s}}$$
(B-24)

Para a área acelerante crítica, A_{1c} , e a área A_{3c} se têm :

$$\frac{d^2 A_{1c}}{dPm_s^2} = (Pm_{eq} - Pc_d) \left(\frac{d^2 \delta_c}{dPm_s^2} - \frac{d^2 \delta_o}{dPm_s^2} \right) + 2 \left(\frac{d \delta_c}{dPm_s} - \frac{d \delta_o}{dPm_s} \right) + \frac{d^2 A dc}{dPm_s^2} - \frac{d^2 A do}{dPm_s^2}$$

$$\frac{d^2 A_{3c}}{dPm_s^2} = (Pc_p - Pm_{eq}) \left(\frac{d^2 \delta_c}{dPm_s^2} - \frac{d^2 \delta_p}{dPm_s^2} \right) + 2 \left(\frac{d \delta_p}{dPm_s} - \frac{d \delta_c}{dPm_s} \right) - \frac{d^2 A pc}{dPm_s^2} + \frac{d^2 A pp}{dPm_s^2}$$
(B-25)

e finalmente as expressões dos coeficientes de sensibilidade de segunda ordem das margens de segurança η_1 , η_2 e η_e , em relação à Pm_s são :

$$\frac{d^{2}\eta_{1}}{dPm_{s}^{2}} = (Pc_{d} - Pc_{p})\frac{d^{2}\delta_{t}}{dPm_{s}^{2}} + (Pm_{eq} - Pc_{p})\frac{d^{2}\delta_{p}}{dPm_{s}^{2}} + (Pm_{eq} - Pc_{d})\frac{d^{2}\delta_{o}}{dPm_{s}^{2}} + 2\left(\frac{d\delta_{p}}{dPm_{s}} + \frac{d\delta_{o}}{dPm_{s}}\right) + \frac{d^{2}Apt}{dPm_{s}^{2}} + \frac{d^{2}App}{dPm_{s}^{2}} - \frac{d^{2}Adt}{dPm_{s}^{2}} + \frac{d^{2}Ado}{dPm_{s}^{2}} + \frac{d^{2}Ado}{dPm_{s}^{2}}$$
(B-26)

$$\frac{d^2 \eta_2}{dPm_s^2} = \frac{1}{A_{1c}} \left[\frac{d^2 \eta_1}{dPm_s^2} - \eta_2 \frac{d^2 A_{1c}}{dPm_s^2} - 2 \frac{d\eta_2}{dPm_s} \frac{dA_{1c}}{dPm_s} \right]$$
(B-27)

$$\frac{d^2 \eta_e}{dPm_s^2} = \frac{1}{A_{1c} + A_{3c}} \left[\frac{d^2 \eta_1}{dPm_s^2} - \eta_3 \left(\frac{d^2 A_{1c}}{dPm_s^2} + \frac{d^2 A_{3c}}{dPm_s^2} \right) - 2 \frac{d\eta_3}{dP_{ms}} \left(\frac{dA_{1c}}{dPm_s} + \frac{dA_{3c}}{dPm_s} \right) \right] \quad (B-28)$$

APÊNDICE C

C. Dados do Sistema Teste 1 : Equivalente Sul Brasileiro

LINHAS E TRANSFORMADORES DO SISTEMA SUL EQUIVALENTE BRASILEIRO

	(Base de 100 MVA)								
No.	BARRA	BARRA	RESISTENCIA	REATÂNCIA	SUSCEPTÂNCIA				
	ORIGEM	DESTINO	(%)	(%)	(MVAR)				
1	343	344	0,070	1,450	166,10				
2	343	344	0,070	1,450	166,10				
3	343	382	0,180	2,270	227,21				
4	343	391	0,140	2,040	244,75				
5	344	431	0,000	0,630	0,00				
6	366	386	0,000	1,360	0,00				
7	367	368	3,860	19,850	34,00				
8	367	396	0,960	4,910	8,42				
9	367	437	0,330	1,670	28,59				
10	368	370	4,630	23,780	40,84				
11	368	370	4,630	23,780	40,84				
12	368	399	1,770	9,100	15,85				
13	368	399	1,770	9,100	15,85				
14	369	370	0,000	4,600	0,00				
15	370	371	1,630	8,350	14,40				
16	370	371	1,630	8,350	14,40				
17	370	408	2,500	15,480	46,90				
18	371	372	1,630	8,350	14,40				
19	371	374	3,160	16,210	27,84				
20	372	374	1,530	8,610	13,44				
21	373	374	0,000	1,140	0,00				
22	374	375	3,060	15,230	27,02				
23	374	433	3,440	17,600	30,40				
24	374	433	3,440	17,600					
25	375	376	2,450	12,560	20,41				
26	375	382	0,000	3,000	0,00				
27	376	377	0,880	4,150	52,11				
28	377	378	1,820	9,350	15,95				
29	377	378	1,820	9,350	15,95				
30	377	383	0,000	0,620	0,00				
31	378	379	1,540	7,760	13,50				
32	378	379	1,540	7,760	13,50				
33	379	380	2,160	11,050	18,63				
34	379	380	2,160	11,050	18,63				
35	379	385	0,000	0,620	0,00				
36	380	396	1,800	9,200	15,53				
37	380	396	1,800	9,200	15,53				
38	381	382	0,000	0,670	0,00				
39	382	383	0,190	2,800	335,76				
40	382	384	0,190	2,740	328,67				
41	382	386	0,140	1,950	239,68				

LINHAS E TRANSFORMADORES DO SISTEMA SUL EQUIVALENTE BRASILEIRO

-

(Continuação)									
No.	BARRA	BARRA	RESISTÊNCIA	REATÂNCIA	SUSCEPTÂNCIA				
	ORIGEM	DESTINO	(%)	(%)	(MVAR)				
42	382	398	0,050	0,700	83,92				
43	383	384	0,050	0,690	82,16				
44	383	385	0,120	1,750	209,70				
45	386	387	0,210	3,090	371,83				
46	387	402	0,000	0,620	0,00				
47	388	389	0,220	3,000	383,00				
48	388	414	0,000	0,620	0,00				
49	389	391	0,140	1,950	239,70				
50	390	391	0,000	1,140	0,00				
51	391	398	0,050	0,700	83,92				
52	392	393	0,000	8,710	0,00				
53	393	396	0,000	5,900	0,00				
54	394	396	0,000	7,010	0,00				
55	395	396	0,000	4,500	0,00				
56	396	437	1,290	6,570	11,28				
57	397	398	0,000	0,680	0,00				
58	399	402	0,220	1,110	2,32				
59	399	402	0,220	1,110	2,32				
60	399	402	0,190	1,010	2,04				
61	399	414	2,070	9,330	17,18				
62	399	414	1,680	9,300	17,20				
63	399	414	1,760	9,840	17,98				
64	407	408	0,000	2,360	0,00				
65	408	414	2,020	11,29	20,62				
66	430	431	1,250	6,410	11,09				
67	430	431	- 0,890	4,610	7,96				
68	430	432	1,100	11,84	20,27				
69	430	433	2,290	11,74	20,27				
70	431	432	1,720	8,840	14,34				
71	431	432	1,720	8,840	14,34				
72	432	433	1 810	9 290	16.07				

DADOS DOS GERADORES DO SISTEMA TESTE 1

(Base de 100 MVA)

BARRA	NOME	X'd	H	P.MIN	P.MAX
		(%)	(S)	(MW)	(MW)
369	P.FUNDO	10,39	10,56	0,0	260,0
381	F.AREIA	2,41	62,25	0,0	1860,0
366	BARRACAO	3,67	30,44	0,0	1860,0
373	S.OSORIO	2,84	38,34	0,0	1020,0
390	S.SANTIAGO	2,43	55,24	0,0	1402,0
392	J.LACERDAA	13,52	4,37	0,0	111,0
394	J.LACERDAB	15,34	6,80	0,0	156,3
395	J.LACERDAC	8,0	12,50	0,0	312,0
397	SEGREDO	2,16	62,46	0,0	1402,0
407	ITAUBA	4,32	20,24	0,0	556,0

DADOS DE BARRAS E CONDIÇÃO DE REGIME PERMANENTE

PARA O SISTEMA TESTE 11

	NOVE	Tensão	Ângulo	P.ger.	Q.ger.	P.carga	Q.carga	Comp.
No.	NOME	(p.u.)	(graus)	(MW)	(MVAr)	(MW)	(MVAr)	(MVAr)
366	BARRACAO13,8	1,019	0	1250	104	0	0	0
369	P.FUNDO_13,8	1,039	-16	215	63	0	0	0
373	S.OSORIO13,8	1,019	3	1010	155	- 0	· · · · · 0	0
381	F.AREIA_13,8	1,021	-3	1450	78	0	0	0
390	S.SANTIA13,8	1,018	2	1325	18	Ö	Q	-
394	J.LAC,B_13,8	1,029	-25	120	55	0	0	0
395	JLAC,C_13,8	1,029	-24	241	91	0	0	0
392	J.LAC,A_13,8	1,029	-27	90	46	. 0	. 0	0
397	SEGREDO 13,8	1,019	0	1355	-12	0	0	0
407	ITAUBA_13,8	1,000	-14	490	88	0	0	0
343	IVAIPORA 525	1,009	-15	0	- 0	900	Q	-205
344	LONDRINA_525	0,999	-18	0	0	0	0	0
367	SIDEROPOL230	0,963	-34	0	<u>o</u>	177	68	, v
368	PARKOUPIL230	1,006	-33	0	0	191	42	0
370	PIFUNDO_230	1,015	-21	0	, o	171	19	U S
371	XANXERE_230	0,990	-17	0	0 -	126	47	0 -
372	P BRANCO 230	0,987	-11	<u> </u>	<u> </u>	46	13	<u> </u>
374	5.050RI0_230	1,007	-3	0	0	281	57	U
375	AREIA 230	0,995	-13	Û.	<u> </u>	279	61	U D
376	S.MATEUS_230	0,969	-24	0	0	130	29	U
317		0,975	-24	0	<u>ġ</u>	427	-20	<u>v</u>
378	JUINVILE_230	0,919	-51	0	0	310	141	
379	BLUMENAU 200	0,953	-30	U I	<u>o</u>	424		U
380		0,964	-32	0	U	11/	دد م	
382	CUDITIDA 525	1,020	-8	U V	<u>o</u>	v	U O	125
383	CURITIBA_323	0,978	-22	0	U	0	U 70	-135
384	BILIMENALL 525	0,980	-20	U	U	806	//	-150
585 202	BLOMENAU_525	0,901	-28	U	U	U n m a	U 0	100
386	CPANATAL 525	1,018	-9	U A	U	1/4	-0	-100
38/		1,010	-28	U A	U A	v	U A	-102
200		1,031	- <u></u> 12	v v	U ^	U A	U	-100
207	S SANTIAG525	1,034	-13	V	U A	U A	v A	-100
186		1,020	رہ 21	U	<u>у</u>	194	لا ۸۵	U 0
293		U,777 D 004	-21 20	U A	U A	120	4V A	A A
200	SEGREDO 525	1 022	-2U A	<u>v</u>	U	<u>у</u> Л	N (1	<u>ч</u>
346	CECI 230	1,023	-4 20	U A	V A	V 012	110	ň
402	GRAVATAL 230	1,024	-20	- U	U A	612	_/55	<u>ب</u> ۲
402		1,032	- <i>32</i>	U A	V A	012 104	-4 <i>JJ</i> 196	Ň
408	V AIRES 230	1.026	-20 26	<u>ч</u>	V	404 202		<u>ب</u>
414		1,030	-20	V A	V A	272 767	-111 2 1	ň
420		0,904	-20	<u>ч</u>	ب ر م	202	192	ν Λ
421	MARINGA 230	0,902	-20	v n	v . A	227 184	105 AA	ĥ
432	$C MOUR \Delta O 230$	0,952	_1 <u>\$</u>	ν	<u>ν</u>	120	5 <u>4</u>	n N
423	-FOROLIII.HI230	0,240	-10	v 	А	122	יי גע גע גע	ň

APÊNDICE D

D. Dados do Sistema Teste 2: Sistema Colombiano

Figura D.1 - Diagrama unifilar do sistema teste 2

DADOS DE LINHAS DO SISTEMA INTERLIGADO COLOMBIANO

	Barra	Вапта	Resistência	Reatância	Suscentância	
No.	origem	destino	×(%)	(%)	(MVAr)	
1	106	113	0.361	2.714	4,34	
2	106	202	2,365	20.971	31,96	
3	107	103	0.804	9,833	21.15	
4	107	103	0.804	9,833	21,15	
5	107	108	0,804 9,833		8.43	
6	107	110	0.273	2,957	5.01	
7	111	113	0.046	0 496	0.84	
8	111	113	0.046	0 496	0.84	
9	111	108	0.069	0.744	1.26	
10	111	108	0.069	0 744	1.26	
	103	101	0 238	2 321	3.83	
12	103	101	0,230	2,021	3 71	
13	103	105	0.851	8 308	13.69	
14	103	105	0,851	8 308	13,69	
15	103	110	1.037	12 972	32,10	
16	114	202	2 237	19 779	30.22	
17	114	105	0 191	1 689	2.57	
18	108	115	0 312	3 374	5 72	
10	115	110	0,312	1 478	2.51	
20	204	205	0,137	1,780	2.98	
20	204	203	0,230	4 830	8 10	
$\frac{21}{22}$	200	207	0,610	4 830	8 10	
22	200	207	0.470	3 650	6,13	
25	200	205	0,470	5,000	8.61	
25	200	203	0,050	1 450	5.02	
26	213	209	0,790	6 2 50	10.47	
20	213	205	0,750	2 820	4 74	
27	215	214	0,110	0.860	2.98	
20	207	213	0.281	2 125	3 22	
30	209	210	0,201	5 040	8 4 5	
31	209	203	0,440	3.480	5.83	
32	209	220	2,610	9,760	1,92	
33	209	202	0,338	3,157	6,32	
34	209	202	0,338	3,157	6,32	
35	214	220	0,750	5,920	9,92	
36	222	406	1,972	8 265	10,/3	
38	304	306	0.750	5.655	8.75	
39	304	307	0,757	5,708	8,83	
40	308	301	2,759	21,575	34,99	
41	308	309	0,747	6,573	9,94	
42	308	311	1,871	8,933	19,01	
43	308	306	0,271	2,385	3,61	
44	306	309	0,582	5,124	7,75	
45	306	307	0,373	2,812	5,15	
46	307	301	2,633	20,071	31,51	
47	307	301	2,633	20,071	31,51	
48	307	301	- 2,773	19,381	32,55	

LINHAS DO SISTEMA INTERLIGADO COLOMBIANO

(CONTINUAÇÃO)

No	Barra 🔗	Barra destino	Resistência	Reatância	Susceptância (MVAr)
49	307	311	2.050	10 186	21.58
50	401	402	0 127	0 940	1 49
51	401	403	0.207	1.532	2.43
52	402	403	0.252	1,870	2.96
53	403	405	1.748	10.200	15.58
54	407	410	1,643	9.055	14,54
55	407	406	0.249	1.394	2.11
56	410	411	2.698	15.978	24,45
57	410	405	0,518	3,008	4,75
58	406	405	1,631	9,100	14,55
59	411	101	1,430	12,487	19,39
60	411	101	1,430	12,487	19,39
61	302	301	0,322	2,590	4,05
62	302	303	0,672	5,407	8,46
63	303	113	1,262	10,152	15,87
64	312	311	1,109	13,581	25,80
65	312	311	1,109	13,581	25,80
66	314	311	1,971	19,237	31,71
67	314	311	1,971	19,237	31,71
68	511	501	0,613	4,186	6,14
69	511	501	0,613	4,186	6,14
70	514	516	0,103	0,702	1,03
71	514	516	0,103	0,702	1,03
72	517	519	1,524	10,414	15,26
73	517	519	1,524	10,414	15,26
74	517	520	1,475	10,084	14,78
75	517	520	1,475	10,084	14,78
76	501	521	1,485	10,035	14,17
77	501	516	1,283	8,767	12,85
78	501	516	1,283	8,767	12,85
79	522	521	0,962	6,444	9,27
80	522	523	1,283	8,592	12,36
81	521	520	1,379	9,427	13,82
82	521	520	1,379	9,427	13,82
83	502	503	0,228	2,431	229,26
84	502	503	0,145	2,384	232,03
85	503	507	0,164	1,749	164,99
86	503	507	0,105	1,733	168,63
87	507	201	0,202	2,813	265,13
88	507	201	0,183	2,915	285,36
89	202	204	1,225	10,671	17,85
90	202	204	1,225	10,671	17,85
91	202	301	2,256	19,446	32,26
92	202	301	2,256	19,446	32,26
93	204	301	1,572	13,078	22,33
94	204	301	1,572	13,078	22,33
95	301	113	2,245	18,066	28,25
96	101	105	1,316	10,566	16,50
97	101	105	1,316	10,566	16,50
98	113	105	0,741	5,654	8,74

No.	Вагта	Barra destino	reatância	TAP (DU)
1	102	201	5.134	1.060
2	202	201	5,134	1.060
3	302	201	2.629	1.060
4	401	502	2,300	1.000
5	501	502	2,646	1.000
6	503	506	8.277	1,000
7	506	505	4,914	1,000
8	507	510	8,293	1,000
9	510	509	4,950	1,000
10	507	510	8,293	1,000
11	510	509	4,950	1,000
12	101	102	1,295	1,078
13	103	104	1,306	1,109
14	108	109	5,950	1,027
15	111	112	5,124	1,027
16	202	203	0,665	1,082
17	207	208	4,203	1,082
18	209	210	3,179	1,082
19	215	216	3,403	1,083
20	218	219	9,671	1,082
21	220	221	15,859	1,025
22	304	305	3,710	1,079
23	309	310	4,747	1,052
24	312	313	1,786	1,052
25	403	404	6,313	1,000
26	511	512	4,090	0,950
27	512	513	4,017	1,000
28	514	515	8,333	1,025
29	517	518	3.000	1.000

TRANSFORMADORES DO SISTEMA TESTE 2

DADOS DOS GERADORES DO SISTEMA TESTE 2

BARRA	NOME DA	X,q	H	P.MIN	P.MAX	Custo Incremental (*)
	USINA	(%)	(s)	(MW)	(MW)	US\$/MWH
102	CHIVOR	2,428	40,81	140,0	875,0	29,84
104	GUAVIO	2,590	45,44	160,0	920,0	29,84
109	PARAISO	11,430	7,22	36,0	184,0	119,98
112	GUACA	11,430	7,22	43,0	216,0	119,98
203	S.CARLOS	2,875	30,31	280,0	1085,0	28,83
208	GUADAP 4	12,866	7,32	115,0	150,0	27,53
210	GUATAPE	5,555	16,50	5,0	560,0	57,47
216	GUADALUPE	13,588	7,00	5,0	225,0	27,53
219	JAGUAS	26,666	2,85	85,0	170,	15,43
221	PLAYAS	18,465	4,40	110,0	132,0	22,46
305	ALTO ANCHI	6,666	15,03	50,0	345,0	260,90
310	SALVAJINA	14,310	6,76	45,0	45,0	0,00
313	BETANIA	4,706	21,45	120,0	166,0	211,69
404	TASAJERO	13,900	6,74	68,0	150,0	10,00
513	BARRNQULLA	10,000	15,00	80,0	111,0	12,58
515	CARTAGENA	12,580	15,76	70,0	120,0	13,51
518	GUAJIRA	4,050	13,00	150,0	320,0	9,45

(*) Para o dia no qual está baseado o despacho considerado

		7anaso	ångado	P.Ger	QGer	266	Cleanin (omgensel.
₩o	MORE SARRAS	30-023 1 059	(ग्रुग्डर) .२४	(254) 0	(#¥AR) 0	(R#99) 0	(BOYAN) A	(1674 #) ()
102	CHIVOR 13.8	1,009	-33	200	211	Ŏ	Ŭ	Û
103	GUAVIO 220KV	1,054	-35	O	0	Ŏ	i i i i i i i i i i i i i i i i i i i	Q
104	GUAVIO 13.8	0,990	-33 -36	200	300 N	0 200	230	ŏ
106	BALSILLA	0,952	-32	0	Õ	120	70	Ó
107	CIRCO	0,978	-38	<u>o</u>	ġ.	263	160	Q
108	PARAISO220KV	0,977	-35	0 36	0 46	0 N	0	ă I
110	TUNAL	0,975	-38	0	0	135	62	O
111	GUACA 220KV	0,976	-35	0	0	9	8	a
112	MESA	0,980	-33	43 0	57 0	Ŏ	Ö	ŏ
114	NOROESTE	0,970	-35	0	0	98	43	0
115	SAN_MTO	0,974	-37	a	Ö	29	19	172
202	S CARLOS 220	1.056		Ŭ.	Ŭ.	Ŭ.	ă ă	- 0
203	S_CARLOS15.8	1,004	0	1085	467	0	O	Û
204		0,985	-9	a	0	105	- 72 63	0
205	BARBOSA	1,027	a a	ŭ	ŏ	17	38	ŏ
207	GUADAL_4 220	1,060	3	0	0	0	0	0
208	GUADAL4 13.8	1,009	7	150		0	0	0
210	GUATAPE 13.2	1,009	- 1 9	560	206	Ö	ŏ	ŏ
211	TASAJERA	1,019	-1	0	0	116	50	0
213	ORIENTE	1,009	-1	0	0	98	75 48	0
215	GUADALUP 220	1,065	-,		ŏ	0	-0	ă l
216	GUADALUP13.2	1,000	9	225	55	0	O	Û
218	JAGUAS 220	1,036		470	59	0	0	0
220	PLAYAS 220	1,000	1	0	0	Ŏ	ŏ	Ö
221	PLAYAS 13.2	,997	13	132	10	0	O	0
222		0,988	-11	a a	0	12	105	a
302	ENEA	0,945	-20	Ö	Ö	48	22	o i
303	SAN_FELI	0,946	-31	0	0	38	17	0
304	ALTOANCH 220	1,004	-41	0	420	0	0	Q
306	PANCE	0,300		0	0	144	55	ŏ
307	YUMBO	0,959	-41	0	0	221	130	0
308	JUANCHIT	0,970	-42	0	0	125	80	0
310	SALVAJIN132	1,002	-41	30	100	Ö	Ŏ	ŏ
311	SANBERNA	1,008	-43	0	0	45	25	0
312	BETANIA 220	1,042	-30		53	. 50. O	30	0
314	JAMONDIN	1,004	-45	i Ç	, jo	- sõ	30	ŏ
401	CUCUTA	0,964	-32	0	0	65	36	0
402	TASA JERO 220	0,965	-32	0	0	22	n 11	a o
404	TASAJERO210	1,004	-29	68	57	ŏ	ŏ	ŏ
405	PALOS	0,955	-30	0	0	55	35	0
406	BARRANCA 220	0,956	-25	u 0	0	18	u 15	· 0
410	BUCMANGA	0,960		, j	Ō	54	20	ō
411	PAIPA 220	1,024	-36	0	0	83	37	0
502	SABANALA 220 SABANALA 500	1 014	-8 -8	0	0 0		0 0	-87
503	CHINUISA 500	1,016	-7	Ŏ	ŏ	Ŏ	Ŏ	-298
505	CHINUISA34.5	0,896	-10	0	0	0	0	-56
506	CERROMAT 500	1 018	-10	0	0	66	- 40 0	-299
509	CERROMAT34.5	0,956	-ă	Ň	Ŏ	ŏ	ŏ	-64
510	CERROMAT FIC	0,972	-8	0	0	69	40	O
512	BARRANCI 220	0,970	-12 -12	0 0	0	230	140	. n
513	BARRANCU13.8	1,000	i -iô	tti 🗌	51	Ĩõ	Ŏ	ŏ
514	CARTAGEN 220	0,988	-10	0	0	6	3	0
515	CARIAGEN138	1,000	-10	120	45	127	0	a l
517	GUAJIRA 220	1,005	14	ŏ	ŏ	0	õ	i i
518	GUAJIRA 13.8	1,009	19	320	30	0	0	0
519	CUESTECI SANTAMAP	1,006	13	· 0	o de la	41 59		a l
521	FUNDACIO	0,972	ů	ŏ	. O	17	9	ŏ
522	COPEY	0,958	-2	0	0	10	5	0

DADOS DE BARRAS E CONDIÇÃO DE REGIME PERMANENTE PARA O SISTEMA TESTE 2 DEMANDA MEDIA COM ALTAS TRANSFERÊNCIAS

Apêndice D

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] FONSECA, L.G.S. and DECKER, I.C "Iterative Algorithm For Critical Energy Determination In Transient Stability of Power Systems" Artigo apresentado no IFAC Symposium Planing & Operation Electric Energy Systems - Rio de Janeiro - Julho de 1985.
- [2] XUE, Y., CUTSEM, T.V. and PAVELLA, M.R. "A Simple Direct Method For Fast Transient Stability Assessment Of Large Power Systems" - 87 WM 104-3 IEEE/PES Winter Meeting - N.Orleans - 1987
- [3] XUE, Y. "Real-Time Analytic Sensitivity Method For Transient Security Assessment And Preventive Control" - IEE PROCEEDINGS, Vol 135, Pt. C, No. 2, March 1988
- [4] XUE, Y., PAVELLA, M. "Extended Equal-Area Criterion : An Analytical Ultra-fast Method For Transient Stability Assessment And Preventive Control Of Power Systems" -Electrical Power & Energy Systems Vol 11 No. 2, pp. 131 - 149 April 1989.
- [5] XUE, Y., WEHENKEL, L., BELHOMME, R. e outros "Extended Equal Area Criterion Revisted" - IEEE Transactions on Power Systems, Vol. 7, No. 3, August 1992.
- [6] XUE, Y., ROUSSEAUX, P., GAO, Z., BELHOMME, R., EUXIBIE, E., HEILBRONN, B. - "Dynamic Extended Equal Area Criterion. Part 1 : Basic Formulation; Part 2 : Embedding fast valving and automatic voltage regulation"- IEEE/NTUA Athens Power Tech Conference, Athens, Greece, Sept. 5-8, 1993.
- [7] XUE, Y. and PAVELLA, M. "Critical-Cluster Identification In Transient Stability Studies" - IEE PROCEEDINGS-C, Vol. 140, No. 6, November 1993
- [8] XUE, Y. "Extended Equal Area Criterion : Foundations And Applications" Artigo apresentado na IV Simpósio de Especialistas em Planejamento da Operação e Expansão Elétrica - Foz de Iguaçu - Brasil - Maio de 1994.

- [9] FONSECA, L.G.S., DECKER, I.C. e PEDROSO, A.S. "Métodos de Análise de Estabilidade Transitoria - Estudo Comparativo" - Artigo apresentado no Oitavo Congresso Brasileiro de Automática - Belém do Pará - Brasil - Setembro de 1990.
- [10] FONSECA, L.G.S., PEDROSO, A.S. "Correção De Segurança Dinâmica Em Sistemas De Potência De Grande Porte Via Redespacho" - Artigo apresentado no Oitavo Congresso Brasileiro de Automática - Belém do Pará - Brasil - Setembro de 1990.
- [11] FONSECA, L.G.S., MINUSSI, C.R. "Redespacho de Geração para Controle de Segurança Dinâmica Em Sistemas de Energia Elétrica Através de Analise de Sensibilidade"
 - Artigo apresentado no Oitavo Congresso Brasileiro de Automática - Belém do Pará -Brasil - Setembro de 1990.
- [12] PEDROSO, A. "Integração Da Segurança Dinâmica nos Sistemas de Gerência de Energia".
 Artigo apresentado no 2° SIMPASE (Simpósio de Automação de Sistemas Elétricos) CEMIG Belo Horizonte Brasil Setembro de 1994.
- [13] MINUSSI, C.R. "Controle de Segurança Dinâmica em Sistemas de Energia Elétrica" -Tese de Doutorado - EEL - UFSC - Florianópolis - Novembro de 1990.
- [14] MONTOYA, D. N. "Cálculo da capacidade de intercâmbio Simultâneo em Sistemas Interligados com Restrição de Estabilidade Transitória" - Dissertação de Mestrado - EEL -UFSC - Florianópolis - Julho de 1990.
- [15] PAI, M. A. "Power System Stability" Analysis by Direct Method of Liapunov Vol 3 -North Holland Publishing Company - 1981.
- [16] ATHAY, T., PODMORE, R., VIRMANI, S. "A Practical Method for the Direct Analysis of Transient Stability" - IEEE. Trans on Power Apparatus and Systems PAS-98 No. 2 March/April 1979
- [17] PAVELLA, M., MURTHY, P.G. and HORWARD, J.L. "The Acceleration Approach to Practical Domain Estimation in Power Systems" - IEEE PAS 1981 pp 471-477

- [18] KAKIMOTO, N., OHSAWA, Y. and HAYASHI, M. "Transient Stability Analysis of Electric Power System Via Lur'e Type Liapunov Function" - IEE of Japan, Vol. 98-E, No. 5/6, pp. 63-79, 1978.
- [19] DECKER, C. I. Estabilidade de Sistemas de Potência II : Parte I : Métodos Diretos e Híbridos - Apostilas - UFSC EEL 3222.
- [20] FOUAD, A.A., STANTON, S.E. "Transient Stability Analysis a Multimachine Power Systems. Part I : Investigation of System Trajetory, and Part II : Critical Transient Energy"
 - IEEE Trans. on Power Apparatus and Systems - Vol PAS 100 - pp 3408-3424 - 1981
- [21] IEEE Committe Report, "Transient Stability Test Systems for Direct Stability Methods", IEEE Committe report, IEEE trans. on PS, Vol7, No. 1 Feb 1992, pp 37-44.
- [22] CIGRE Task Force Report, Assessment of Practical Fast Transient Stability Methods"(Convener S. Greves) June 1992.
- [23] DECKER, C. I. "Análise de Estabilidade Transitória em Sistemas de Potência Usando o Conceito de Superficie Limite de Energia Potencial" - Disertação de Mestrado - EEL -UFSC - Florianópolis - Outubro de 1984.
- [24] PROGRAMA SLEP Manual do Usuário Adendo UFSC 05/92
- [25] SALGADO, R. Otimização Estática Aplicada a Sistemas de Potência Apostilas UFSC CTC-Grupo de sistemas de potência - Junho de 1994.
- [26] XUE, Y. and ZHANG, Y. "Practical and Flexible Incorporation of AVR into Extended Equal Area Criterion" - Vol. 5 pp 459-465
- [27] XUE, Y. and MAO, X. "Incorporation of Fast Valving and Generator Tripping in Extended Equal Area Criterion" - CSEE & IEEE/PES Joint Inter. Power System Conference. Beijing - China - October 1994.

- [28] FONSECA, L.G.S. & CARDOSO, E.N. "Correção da Segurança Dinâmica em sistemas de Energia Elétrica Via Alterações Incrementais das Admitâncias da Rede" - X Congresso Chileno de Ingeniería Eléctrica, pp. A207-A212, Valdivia, Chile, 1993.
- [29] FONSECA, L.G.S. & CARDOSO, E.N. "Correção da Segurança Dinâmica em Sistemas de Energia Elétrica Via Compensação Série das Reatâncias da Rede" - X Congresso Brasileiro de Automática e VI Congresso Latino Americano de Automática, Vol I, pp 269-274, Rio de Janeiro, RJ, Brasil.
- [30] CARDOSO, E. N. "Alterações Topológicas da Rede como uma Ação de Correção da Segurança Dinâmica de Sistemas de Energia Elétrica" - Tese de Doutorado - EEL - UFSC -Florianópolis - Outubro de 1994.
- [31] VITTAL, V.; SHOU, E-Z; HWANG, C.; FOUAD, A.A. "Derivation of Stability Limits -Using Analytical Sensitivity of the Transient Energy Margem" - IEEE Trans. PAS., Vol 4, No. 4, pp 1363-1372, October 1989
- [32] MARIA, G., TANG, C., KIM, J., "Hybrid Transient Stability Analysis" IEEE Trans. On Power Systems, Vol. 5, No. 2, pp. 384-393, May 1990
- [33] KUO, D., BOSE, A., "A generation Reschedulling Method to Increase the Dynamic Security of Power Systems" - IEEE Trans. On Power Systems, Vol 10, No. 1, pp 68-76, February 1995.
- [34] MANSOUR, Y., VAAHEDI, E., CHANG, A., CORNS, B., GARRETT, B., DEMAREE, K., ATHAY, T., and CHEUNG, K. - "B. C. Hydro's On-line Transient Stability Assessment (TSA) Model Development, Analysis and Post-processing" - IEEE Trans. On Power Systems, Vol 10, No. 1, pp 241-253, February 1995.