UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

ESTUDO DE UM CONVERSOR CC-CC EM PONTE COMPLETA, COM COMUTAÇÃO SUAVE E BAIXAS PERDAS DE CONDUÇÃO

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA ELÉTRICA

WADAED UTURBEY DA COSTA

Florianópolis, maio de 1995.

ESTUDO DE UM CONVERSOR CC-CC EM PONTE COMPLETA, COM COMUTAÇÃO SUAVE E BAIXAS PERDAS DE CONDUÇÃO

WADAED UTURBEY DA COSTA

ESTA DISSERTAÇÃO FOI JULGADA ADEQUADA PARA OBTENÇÃO DO TÍTULO DE MESTRE EM ENGENHARIA, ESPECIALIDADE ENGENHARIA ELÉTRICA E APROVADA EM SUA FORMA FINAL PELO CURSO DE PÓS-GRADUAÇÃO.

Prof. Ivo Barbi, Dr. Ing. ORIENTADOR

Prof. Enio Valmor Kassick, Dr. Coordenador do curso de Pós-graduação em Engenharia Elétrica.

BANCA EXAMINADORA:

Prof. Ivo Barbi, Dr. Ing.

Prof. João Carlos dos Santos Fagundes, Dr.

Prof. Denizar Cruz Martins, Dr.

A meus pais Elsa e Angel, Ao meu querido Luis.

.

AGRADECIMENTOS

Ao Prof. Ivo Barbi, por sua orientação profissional e segura; foi um privilégio ter trabalhado sob sua direção.

Aos demais professores do INEP, Kassick, Perin, Fagundes, Martins e Mohr, pela atenção e ajuda dispensada nestes dois anos.

Á Ana Rosa, Pedro e Elias pela colaboração na correção deste trabalho.

Aos colegas de mestrado Elizete, Pedro, Gilberto, Elias, Fábio, René, Odilon, Elias Teodoro, Samir, Johe, Fernando, Newton, Geraldo, pelo apoio que me brindaram nestes dois anos e por ter sido um ótimo grupo humano de trabalho.

Aos colegas de doutorado, pelo apoio e companheirismo brindado nestes dois anos.

Aos técnicos Coelho, Pacheco e Adenir pela colaboração competente e profissional com o trabalho de laboratório.

Aos engenheiros Peter e Paulo, por sua importante colaboração com o trabalho no laboratório.

À Luciano, pela sua excelente colaboração desde a secretaria do INEP.

Ao governo brasileiro, que através da CAPES deu suporte financeiro.

À Universidad Mayor del Uruguay e ao CONICYT, pelo apoio financeiro.

SUMÁRIO

SIMBOLOGIA		х	
RESUMO		xiii	
ABSTRACT	ABSTRACT		
INTRODUÇÃO	INTRODUÇÃO GERAL		
CAPÍTULO 1	- O CONVERSOR CC-CC EM PONTE COMPLETA,		
	COM COMUTAÇÃO SUAVE E BAIXAS PERDAS		
	DE CONDUÇÃO	4	
1.1 - INTROD	UÇÃO	4	
1.2 - TOPOLO	OGIA PROPOSTA	4	
1.3 - ETAPAS	DE FUNCIONAMENTO	5	
1.4 - ANÁLIS	E QUANTITATIVA	9	
1.4.1 - Cara	acterística externa	10	
1.4.2 - Lim	ite de funcionamento	12	
1.5 - CÁLCUI	O DOS ESFORÇOS NOS COMPONENTES	15	
1.5.1 - Cor	rente eficaz nos interruptores	15	
1.5.2 - Con	rente média nos interruptores	15	
1.5.3 - Corrente média nos diodos antiparalelo D_1 e D_2			
1.5.4 - Con	rente eficaz nos diodos retificadores de saída	16	
1.5.5 - Cor	rente média nos diodos retificadores de saída	16	

.

v

1.5.6 - Corrente eficaz na indutância L_{cd}		
1.6 - DIMENSIONAMENTO DO FILTRO DE SAÍDA		
1.6.1 - Indutância do filtro de saída		
1.6.2 - Capacitância do filtro de saída	18	
1.7 - CONCLUSÕES	19	
CAPÍTULO 2 - METODOLOGIA E EXEMPLO DE PROJETO	20	
2.1 - INTRODUÇÃO	20	
2.2 - CRITÉRIOS PARA A ESCOLHA DOS PARAMETROS DO CONVERSOR	20	
2.2.1 - Especificações		
2.2.2 - Escolha da frequência de operação		
2.2.3 - Escolha dos parâmetros n_a , n_p , D_{max}		
2.2.3.1 - Expressões das perdas de condução	21	
2.2.3.2 - Estudo comparativo das perdas	22	
2.3 - EXEMPLOS DE PROJETO		
2.4 - RESULTADOS DE SIMULAÇÃO		
2.4.1 - Formas de onda obtidas		
2.4.2 - Quadro comparativo de valores		
2.5 - CONCLUSÕES	31	
CAPÍTULO 3 - VARIAÇÕES TOPOLÓGICAS DO FB-ZVS-ZCS- PWM	33	
3.1 - INTRODUÇÃO		
3.2 - TOPOLOGIA DERIVADA DO CONVERSOR CC-CC TRÊS		

NÍVEIS COM COMUTAÇÃO SOB TENSÃO NULA E	
MODULAÇÃO POR LARGURA DE PULSO	33
3.2.1 - Descrição do funcionamento	34
3.2.2 - Formas de onda relevantes	37
3.2.3 - Exemplo de projeto e resultados de simulação	37
3.2.3.1 - Projeto do conversor	38
3.2.3.2 - Formas de onda de simulação	39
3.3 - TOPOLOGIA DERIVADA DO CONVERSOR CC-CC SÉRIE RESSONANTE COM GRAMPEAMENTO DA TENSÃO DO CAPACITOR RESSONANTE E MODULADO POR LARGURA DE PULSO	40
3.3.1 - Descrição do funcionamento	41
3.3.2 - Principais formas de onda	43
3.3.3 - Exemplo de projeto e resultados de simulação	43
3.4 - TOPOLOGIA DERIVADA DO CONVERSOR CC-CC TRÊS- NÍVEIS SÉRIE-RESSONANTE, COM GRAMPEAMENTO DA TENSÃO DO CAPACITOR RESSONANTE E MODULADO POR LARGURA DE PULSO	45
3.4.1 - Exemplo de projeto e resultados de simulação	46
3.5 - CONCLUSÕES	47
CAPÍTULO 4 - IMPLEMENTAÇÃO DO CONVERSOR E RESULTADOS EXPERIMENTAIS	49
4.1 - INTRODUÇÃO	49
4.2 - CONVERSOR DERIVADO DO TL-SRC-CVC-PWM	49
4.2.1 - O circuito primário	49

vii

4.2.2 - O circuito de saída			
4.2.3 - Resultados experimentais			
4.3 - CONVE	4.3 - CONVERSOR DERIVADO DO SRC-CVC-PWM		
4.3.1 - O c	ircuito primário	54	
4.3.2 - O c	ircuito de saída	54	
4.3.3 - Res	ultados experimentais	55	
4.4 - CONCLU	USÕES	58	
CAPÍTULO 5	-CONVERSOR CC-CC SÉRIE-RESSONANTE MODULADO EM FREQÜÊNCIA, COM GRAMPEAMENTO DA TENSÃO DO CAPACITOR RESSONANTE, E COM SAÍDA EM TENSÃO E CORRENTE	60	
5.1 - INTRODUÇÃO 60			
5.2 - CIRCUI FUNCIO	TO PROPOSTO E DESCRIÇÃO DO DNAMENTO	61	
5.2.1 - Modo I de funcionamento			
5.2.2 - Modo II de funcionamento			
5.3 - EXPRESSÕES MATEMÁTICAS RELEVANTES			
5.3.1 - Modo I de funcionamento			
5.3.2 - Modo II de funcionamento			
5.4 - CARACTERÍSTICA EXTERNA			
5.4.1 - Modo I de funcionamento			
5.4.1 - Modo II de funcionamento			
5.5 - LIMITES DE FUNCIONAMENTO			
5.5.1 - Limite entre os Modos I e II de funcionamento			

5.5.2 - Condução descontínua no Modo I	75
5.5.3 - Condução descontínua no Modo II	76
5.6 - METODOLOGIA DE PROJETO E RESULTADOS DE SIMULAÇÃO	78
5.7 - ESTUDO COMPARATIVO DE DESEMPENHO COM O SRC- CVC-FM	81
5.8 - CONCLUSÕES	85
CONCLUSÃO GERAL	87
REFERÊNCIAS BIBLIOGRÁFICAS	89

.

ix

SIMBOLOGIA

.

, .

C_{a}	=	Capacitância de saída, considera-se apenas a corrente de T_a ;
$C_{\rm C}$	=	Capacitância de comutação;
C _n	. =	Capacitância intrínseca do MOSFET;
C_{\circ}	=	Capacitância do filtro de saída;
C_{p}	=	Capacitância de saída, considera-se apenas a corrente de T_p ;
$C_{\mathbf{r}}$	=	Capacitância de ressonância;
D	=	Razão cíclica;
Dl	_	Razão cíclica limite;
D_{\max}	=	Razão cíclica máxima;
$D_{\mathbf{n}}$	=	Diodos;
ΔI	=	Variação da corrente na indutância L _f ,
Δt_1	=	Tempo de magnetização de L_{cd} e L_{rd} (ressonante, Modo I);
Δt_1 '	=	Tempo de magnetização L_{rd} (ressonante, Modo II);
Δt_2	=	Tempo de carga de C_r linear; Modo I;
$\Delta t_2'$	=	Tempo de carga de C_r linear; Modo II;
Δt_3	=	Tempo de desmagnetização de L_{rd} (ressonante, Modo I);
$\Delta t_3'$	=	Tempo de desmagnetização de L_{rd} (ressonante, Modo II);
Δt_4	=	Tempo de desmagnetização de L_{cd} e L_{rd} (linear, Modo I);
ΔV_{\circ}	=	Variação da tensão na capacitância C_o ;
E	=	Tensão média de saída referida ao primário de T_a ,
f	-	Freqüência de operação;
$f_{ m m}$	=	Freqüência máxima de operação;
$\overline{I_{\mathrm{xx}}}$	-	Corrente normalizada;

I_{av}	=	Corrente média;
$I_{\rm ef}$	=	Corrente eficaz;
Ii	=	Corrente média entregue desde a fonte de entrada;
$\dot{I}_{\rm Lcd}$	=	Corrente na indutância L_{cd} ;
i _{Lrd}	=	Corrente na indutância L_{rd} ;
I_{\max}	=	Corrente máxima;
Io1	=	Corrente média na indutância L_{f} referida ao primário de T_{p} ,
Ioa	-	Corrente média entregue à carga através de T_a ;
I _{oal}	=	Corrente I_{oa} referida ao primário de T_a ;
I_{op}	=	Corrente média na indutância L_{f} ;
I_{os}	=	Corrente média na carga;
$\overline{I_{\rm osl}}$	=	Corrente média de saída normalizada no limite de condução descontínua;
L_{c}	=	Indutância de comutação;
$L_{\rm cd}$	=	Indutância de comutação e de dispersão de T_a e T_p ,
L _r	=	Indutância de ressonância;
L _{rd}	=	Indutância de ressonância e de dispersão de T_p e T_a ;
n _a	=	Relação de transformação de T_a ;
n _p	=	Relação de transformação de T_p ,
Pa	=	Potência média entregue à carga através de T_a ;
Pi	=	Potência média de entrada;
Po	=	Potência média de saída;
P _p	=	Potência média entregue à carga através de T_p ;
q	=	Ganho estático de tensão;
$Q_{\mathbf{n}}$	=	Transistores de potência;
R _{DSON}	=	Resistência de condução do MOSFET;
R _o	=	Resistência de carga;
Т	=	Período de funcionamento;

T_{a}	=	Transformador com saída com característica de fonte de tensão;
tc	=	Tempo de crescimento da corrente em L_{f} ,
T _p	=	Transformador com saída com característica de fonte de corrente;
$V_{\rm ab}$	=	Tensão entre os pontos médios do conversor;
$V_{\rm cd}$	=	Tensão no primário de T_p ;
V _{Cc}	=	Tensão na capacitância de comutação;
V _{Cr}	=	Tensão na capacitância de ressonância;
Vγ	=	F.c.e.m. característica do IGBT;
Vi	=	Tensão média do barramento CC;
V。	=	Tensão média de saída;
W	=	Freqüência angular de operação;
wo	=	Freqüência angular de ressonância;
wr	=	Relação de frequências;
z	=	Impedância característica.

RESUMO

Neste trabalho estuda-se um conversor CC-CC em ponte completa, visando empregálo como fonte de alimentação de alta densidade de potência substituindo ao tradicional conversor em ponte completa, com comutação sob tensão nula e modulação por largura de pulso (Full-Bridge Zero-Voltage-Switching Pulse-Width-Modulated, FB-ZVS-PWM).

O conversor opera com modulação por largura de pulso, comutação não dissipativa e submete os interruptores de potência a baixo *stress* por corrente eficaz quando comparado com o conversor FB-ZVS-PWM.

Realiza-se o estudo analítico do conversor, obtém-se ábacos e estabelece-se uma metodologia de projeto. Os resultados são validados mediante simulações e experimentação.

Efetua-se ainda, um estudo teórico, comparativo do ponto de vista das perdas em condução dos interruptores de potência, com o conversor FB-ZVS-PWM.

ABSTRACT

This work introduces a new DC-DC power converter circuit intended to be used in the design of high power supplies, in the place of the well-known Full-Bridge Zero-Voltage-Switching Pulse-Width-Modulated (FB-ZVS-PWM) converter.

The new converter operates with soft commutation, is pulse width modulated and subjects the power transistors to lower rms current stress than the FB-ZVS-PWM one.

Circuit operation description, theoretical analysis, design procedure and example along with experimental results and a comparison with the FB-ZVS-PWM are presented.

INTRODUÇÃO GERAL

O conversor CC-CC em ponte completa com filtro indutivo na saída é amplamente empregado na indústria, quando os níveis de potência o justificam.

Quando operado com modulação por largura de pulso convencional (Full-Bridge Hard-Switching Pulse-Width-Modulated, FB-HS-PWM, Figura 1-a) o conversor apresenta baixas perdas de condução, devido à corrente que circula através dos interruptores ser zero na etapa de roda livre. Porém, a comutação é dissipativa, o que torna-o inadequado para a operação em alta freqüência.

Com o emprego de modulação por largura de pulso por deslocamento de fase (Full-Bridge Zero-Voltage-Switching Pulse-Width-Modulated, FB-ZVS-PWM, Figura 1-b) a comutação é não dissipativa, sob tensão nula, e as perdas de comutação são praticamente nulas. Como conseqüência esta é a topologia adequada para uma fonte chaveada com alta densidade de potência. A desvantagem deste conversor perante ao FB-HS-PWM são as elevadas perdas de condução, já que nesta topologia, nas etapas de roda livre, os interruptores conduzem a corrente de carga.

Figura 1 - (a) Conversor em ponte completa com comutação dissipativa, (b) Conversor em ponte completa com comutação ZVS.

A Figura 2 apresenta as formas de onda da corrente i_p para ambos os conversores. Observa-se claramente seu valor nas etapas de roda livre.

Figura 2 - Corrente no primário do transformador, i_p(t) e tensão V_{ab}(t), nos conversores (a) FB-HS-PWM e (b) FB-ZVS-PWM

Existem pelo menos três propostas recentes para diminuir as perdas de condução do FB-ZVS-PWM, [2], [3] e [4].

Propõe-se neste trabalho a diminuição destas perdas de condução adicionando um elemento à carga: uma fonte de tensão que permita a desmagnetização do indutor de comutação na etapa de roda livre. Obtém-se assim formas de onda de corrente similares às do conversor FB-HS-PWM. A fonte de tensão proposta será implementada através de um transformador com filtro capacitivo de saída, seu circuito primário será conectado em série ao primário do transformador já existente, com filtro capacitivo e indutivo.

No Capítulo 1 estuda-se o conversor proposto. São determinadas as etapas de funcionamento, realizado um estudo analítico deduzindo a equação característica e apresentados os ábacos correspondentes. São calculados ainda os esforços nos componentes do conversor.

No Capítulo 2 apresenta-se uma metodologia de projeto do conversor. Efetua-se um estudo comparativo das perdas em condução do conversor proposto *versus* o FB-ZVS-PWM, com a finalidade de estabelecer os critérios para a escolha dos parâmetros. Elaboram-se exemplos de projeto que são validados mediante simulações.

No Capítulo 3 estudam-se três variações topológicas do conversor proposto, derivadas das seguintes:

- três níveis com comutação sob tensão zero e modulado por largura de pulso (TL-ZVS-PWM); - série ressonante com grampeamento da tensão do capacitor ressonante e modulado por largura de pulso (SRC-CVC-PWM);

- três níveis série ressonante com grampeamento da tensão do capacitor ressonante e modulado por largura de pulso (TL-SRC-CVC-PWM).

No Capítulo 4 são apresentados os resultados experimentais, com a finalidade de analisar o desempenho do conversor e validar os resultados obtidos através do estudo analítico e simulação.

No Capítulo 5 estuda-se uma topologia derivada do conversor série ressonante com grampeamento da tensão do capacitor ressonante e modulado em frequência (SRC-CVC-FM) e do conversor estudado nos capítulos anteriores. Efetua-se a análise quantitativa do conversor. Estabelece-se uma metodologia de projeto e apresentam-se exemplos de projeto junto com a respectiva validação por simulação.

3

CAPÍTULO 1

O CONVERSOR CC-CC EM PONTE COMPLETA, COM COMUTAÇÃO SUAVE E BAIXAS PERDAS DE CONDUÇÃO

1.1 - INTRODUÇÃO

Neste capítulo estuda-se um conversor CC-CC em ponte completa, com comutação suave e baixas perdas de condução, que será referenciado como FB-ZVS-ZCS-PWM. Analisa-se qualitativa e quantitativamente e obtém-se ábacos característicos.

1.2 - TOPOLOGIA PROPOSTA

O conversor proposto é apresentado na Figura 1.1.

A corrente de saída é formada pela contribuição de dois transformadores com os circuitos primários conectados em série, T_a e T_p . As saídas dos transformadores têm característica de fonte de tensão e fonte de corrente respectivamente.

Os componentes restantes são descritos a seguir:

 Q_1 , Q_2 : interruptores com comutação sob tensão nula, ZVS;

 Q_3, Q_4 : interruptores com comutação sob corrente nula, ZCS;

 D_1 , D_2 , D_3 , D_4 : diodos anti-paralelo dos interruptores;

 C_1 , C_2 : capacitâncias de comutação de Q_1 e Q_2 respectivamente;

 V_i : tensão de entrada;

 L_{c} : indutância de comutação;

 $n_{\rm a}$: relação de transformação de $T_{\rm a}$;

 $n_{\rm p}$: relação de transformação de $T_{\rm p}$;

 $L_{\rm f}$: indutância do filtro de saída;

 C_{o} : capacitância do filtro de saída;

 $R_{\rm o}$: resistência de carga.

Figura 1.1 - Diagrama do estágio de potência do FB-ZVS-ZCS-PWM.

O conversor opera com modulação por largura de pulso, obtida por deslocamento de fase dos sinais de comando de Q_1 e Q_2 (ou braço ZVS) em relação aos sinais de Q_3 e Q_4 (ou braço ZCS). Cada interruptor conduz durante meio período, sendo complementar a operação dos interruptores de um mesmo braço.

Para simplificação da análise teórica são feitas as seguintes considerações:

- o conversor opera em regime permanente;

- os interruptores e diodos são ideais;

- a indutância de filtragem de saída é suficientemente grande para desprezar o *ripple* da corrente através dela;

- as correntes de magnetização de ambos os transformadores são desprezadas;

- a ondulação da tensão na carga é desprezível.

1.3 - ETAPAS DE FUNCIONAMENTO

Em um semi-período de operação, T/2, o conversor apresenta cinco estados topológicos, (Figura 1.2). O segundo semi-período é idêntico.

O circuito foi simplificado, representando-se a carga no primário da seguinte forma:

- o transformador T_p é substituído por uma ponte retificadora R_p cuja carga é a fonte de corrente I_{o1} ;

- I_{o1} representa a corrente média pelo indutor L_f referida ao primário de T_p ;

- o transformador T_a é substituído por uma ponte retificadora R_a cuja carga é a fonte de tensão E;

- E representa a tensão de saída V_o referida ao primário de T_a ;

- L_{cd} representa as indutâncias de comutação L_c e as de dispersão de ambos os transformadores.

Figura 1.2 - Etapas de funcionamento do FB-ZVS-ZCS-PWM.

Etapa 1 (t_0, t_1). Inicialmente, (t < t_o), a corrente i_{Led} é nula. No instante t = t_o conduz Q_4 sob corrente nula. Começa uma etapa linear na qual a corrente i_{Led} cresce com inclinação igual a (V_i -E)/ L_{cd} . A fonte I_{o1} permanece em curto-circuito através dos diodos da ponte R_p . A etapa finaliza quando i_{Led} atinge o valor I_{o1} , em t = t₁.

*Etapa 2 (t*₁,*t*₂). Nesta etapa a corrente i_{Lcd} é constante e igual a I_{o1} , transfere-se potência à carga através das duas pontes (os dois transformadores). A etapa finaliza quando o circuito de comando bloqueia Q_1 , em t = t₂.

*Etapa 2 (t*₁,*t*₂). Nesta etapa a corrente i_{Lcd} é constante e igual a I_{o1} , transfere-se potência à carga através das duas pontes (os dois transformadores). A etapa finaliza quando o circuito de comando bloqueia Q_1 , em t = t₂.

Etapa 3 (t₂,t₃). Nesta etapa produz-se a comutação sob tensão nula de Q_1 e Q_2 . A corrente i_{Q1} comuta de Q_1 para C_1 e C_2 . Carrega-se então C_1 e descarrega-se C_2 , com corrente constante e igual a $(I_{01}/2)$. A etapa finaliza quando a tensão V_{C1} atinge o valor da fonte V_i e V_{C2} atinge zero. *Etapa 4 (t₃,t₄).* Em t = t₃, quando V_{C2} se anula o diodo D_2 assume a corrente i_{Lcd} , que nesse instante vale I_{01} . Começa uma etapa de roda livre, a fonte I_{01} fica em curto-circuito através de R_p , e a corrente i_{Lcd} decresce linearmente, com inclinação E/L_{cd} . A etapa finaliza quando i_{Lcd} atinge zero.

*Etapa 5 (t*₄,*t*₅). A corrente i_{Lcd} permanece nula, ambos $Q_2 e Q_4$ têm sinal de comando. A etapa finaliza quando Q_4 comuta para Q_3 (logo após o tempo morto), sob corrente nula, iniciando-se o segundo semi-período de operação.

A condição para o adequado funcionamento do circuito é a condução descontínua no indutor L_{cd} , (DCM). A corrente i_{Lcd} deve-se anular na etapa de roda livre, em cada semiperíodo de operação.

A transferência de potência acontece durante as etapas 1, 2 e 4. Na etapa 2 através de T_p e T_a , e nas etapas 1 e 4 (etapas de magnetização e desmagnetização do indutor L_{cd} , respectivamente) através de T_a .

A etapa 3 corresponde ao intervalo de comutação ZVS entre Q_1 e Q_2 , que será desprezada na análise quantitativa.

A Figura 1.3 apresenta as principais formas de onda de tensão e corrente, junto com os sinais de comando dos interruptores. Observa-se que a forma de onda da corrente primária i_{Lcd} é similar à do conversor full-bridge com comutação dissipativa.

É importante notar que a corrente primária durante a etapa de roda livre não é puramente reativa, já que nessa etapa existe transferência de potência à carga, ao contrário do que ocorre com a estrutura FB-ZVS-PWM.

Figura 1.3 - Formas de onda relevantes.

1.4 - ANÁLISE QUANTITATIVA

Nesta seção é determinada a característica externa do conversor: corrente de saída normalizada em função do ganho estático e demais parâmetros do circuito. Obtém-se ainda a expressão que define a região de funcionamento do conversor e traça-se a curva característica para diferentes valores dos parâmetros.

Define-se:

- ganho estático de tensão:

$$q = \frac{V_o}{V_i} \tag{1.1}$$

- corrente genérica normalizada:

$$\overline{Ixx} = Ixx \cdot \frac{L_{cd} \cdot f}{V_i} \tag{1.2}$$

- frequência de operação:

$$f = \frac{1}{T} \tag{1.3}$$

- razão cíclica:

$$D = \frac{2 \cdot (t_2 - t_0)}{T} = \frac{2 \cdot \Delta t_{20}}{T}$$
(1.4)

- intervalo de tempo de magnetização do indutor L_{cd} :

 $\Delta t_1 = t_1 - t_0 \tag{1.5}$

$$\Delta t_{21} = t_2 - t_1 \tag{1.6}$$

- intervalo de tempo de desmagnetização de L_{cd} :

$$\Delta t_4 = t_4 - t_3 \tag{1.7}$$

1.4.1 - Característica externa

Calcula-se a potência de entrada do conversor; Pi:

$$Pi = V_i \cdot \overline{Ii} \tag{1.8}$$

$$\overline{Ii} = \frac{1}{T} \cdot \int_{0}^{T} Ii(t) \cdot dt$$
(1.9)

$$\overline{Ii} = \frac{2}{T} \cdot \left[\int_{0}^{\Delta t_{1}} \frac{I_{o1}}{\Delta t_{1}} \cdot t \cdot dt + \int_{0}^{\Delta t_{2}^{2}} I_{o1} \cdot dt \right]$$
(1.10)

$$Pi = Vi \cdot Io1 \cdot \left(D - \frac{\overline{Io1}}{1 - na \cdot q} \right)$$
(1.11)

Calcula-se a potência de saída, Po.

Define-se:

- P_p : potência transferida à carga através de T_p ;
- P_a : potência transferida à carga através de T_a ;
- Ios: corrente média na carga;

- I_{op} : corrente média por L_f , ou seja corrente média entregue através de T_p à carga;

- I_{oa} : corrente média entregue através de T_a à carga;

- I_{oa1} : corrente I_{oa} referida ao primário de T_{a} .

$$P_{\rm o} = P_{\rm p} + P_{\rm a} \tag{1.12}$$

$$P_o = V_o \cdot I_{op} + V_o \cdot I_{oa} \tag{1.13}$$

$$I_{oa} = I_{oa1} \cdot n_a \tag{1.14}$$

$$I_{op} = I_{ol} \cdot n_p \tag{1.15}$$

$$I_{oa1} = \frac{2}{T} \cdot \int_{0}^{T/2} i_{Lcd}(t) \cdot dt$$
(1.16)

$$P_{o} = V_{o} \cdot I_{o1} \cdot n_{p} + V_{o} \cdot I_{o1} \cdot n_{a} \cdot \left(D + \overline{I_{o1}} \cdot \frac{1 - 2 \cdot n_{a} \cdot q}{n_{a} \cdot q \cdot (1 - n_{a} \cdot q)} \right)$$
(1.17)

Ao efetuar o balanço de potência no circuito obtém-se:

$$\overline{I_{o1}} = \frac{D \cdot (1 - n_a \cdot q) - q \cdot n_p}{2}$$
(1.18)

Calcula-se a corrente média de saída normalizada:

$$\overline{I_{os}} = \overline{I_{op}} + \overline{I_{oa}} \tag{1.19}$$

$$\overline{Ios} = \overline{Io1} \cdot n_p + \overline{Io1} \cdot n_a \cdot \left(D + \overline{Io1} \cdot \frac{1 - 2 \cdot n_a \cdot q}{n_a \cdot q \cdot (1 - n_a \cdot q)} \right)$$
(1.20)

Substituindo (1.18) em (1.20) obtém-se a equação característica:

$$\overline{Ios} = \frac{D \cdot (1 - n_a \cdot q) - n_p \cdot q}{4} \cdot \frac{D \cdot (1 - n_a \cdot q) + n_p \cdot q}{q \cdot (1 - n_a \cdot q)}$$
(1.21)

Para verificar a consistência dos resultados obtidos considera-se a situação limite na qual não existe transferência de potência através de T_a . As equações devem coincidir, em forma, com as do FB-ZVS-PWM.

Neste caso:

$$E = 0, \ n_{\rm a} = 0 \tag{1.22}$$

A expressão da potência de entrada (1.11) transforma-se em:

$$Pi = Vi \cdot Iol \cdot \left(D - \overline{Iol}\right) \tag{1.23}$$

Para a potência de saída tem-se:

$$P_o = V_o \cdot I_{o1} \cdot n_p \tag{1.24}$$

Do balanço de potência obtém-se:

$$q = \frac{V_o}{V_i} = \frac{1}{n_p} \cdot \left(D - \overline{I_{o1}} \right) \tag{1.25}$$

expressão com forma da característica externa do FB-ZVS-PWM.

1.4.2 - Limite de funcionamento

.

Nesta seção define-se a região de operação do conversor no modo de condução descontínua (DCM). Impõe-se a condição limite: a etapa de roda livre finaliza no instante da comutação de Q_3 .

Verifica-se:

$$\Delta t_4 = t_4 - t_2 = \frac{T}{2} - D \cdot \frac{T}{2}$$
(1.26)

$$\Delta t_4 = I_{o1} \cdot \frac{L_{cd}}{E} \tag{1.27}$$

Operando com (1.18), (1.26) e (1.27) obtém-se a expressão da razão cíclica limite, Dl, máxima razão cíclica que permite a operação em condução descontínua de um conversor (n_a , n_p e L_{cd} fixos), para um ganho estático q.

$$Dl = q \cdot (n_a + n_p) \tag{1.28}$$

Quando se trabalha com a razão cíclica limite têm-se a máxima potência de saída possível para um determinado q. Substituindo (1.28) em (1.21) obtém-se a corrente de saída normalizada no limite de condução descontínua, \overline{Iosl} :

$$\overline{I_{osl}} = \frac{n_a \cdot q \cdot (1 - q \cdot (n_a + n_p))}{4} \cdot \frac{2 \cdot n_p + n_a \cdot (1 - q \cdot (n_a + n_p))}{(1 - n_a \cdot q)}$$
(1.29)

A Figura 1.4 apresenta a curva característica, válida na região limitada por (1.29) para diferentes valores das relações de transformação n_a e n_p e parametrizadas em D.

(b)

Figura 1.4 - Curvas características, ganho estático q em função da corrente média de saída normalizada, parametrizadas em D.

Nos gráficos apresentados observa-se que a forma da característica externa varia segundo os valores das relações de transformação n_p e n_a . Para um dado valor do ganho estático q existe um conjunto de gráficos possíveis, estes gráficos correspondem a diferentes valores de n_p e n_a . Por exemplo, para obter q = 0,16 pode-se empregar $n_p = 4$, $n_a = 1$ (Figura 1.4-a) ou $n_p = 1$, $n_a = 4$ (Figua 1.4-b), entre outras.

1.5 - CÁLCULO DOS ESFORÇOS NOS COMPONENTES DO CONVERSOR

Para o dimensionamento dos componentes do conversor são calculadas as correntes médias e eficazes principais. Emprega-se a Figura 1.3 e o equacionamento da seção anterior.

1.5.1 - Corrente eficaz nos interruptores

a) Para $Q_1 \in Q_2$

$$I_{ef} = \sqrt{\frac{1}{T} \cdot \left[\int_{0}^{\Delta t^{1}} \left(\frac{V_{i} - E}{L_{cd}} \cdot t \right)^{2} \cdot dt + \int_{0}^{\Delta t^{2} 1} (I_{o1})^{2} \cdot dt \right]}$$
(1.30)

$$\overline{I_{efQ1,Q2}} = \overline{I_{o1}} \cdot \sqrt{\frac{D}{2} - \overline{I_{o1}} \cdot \frac{2}{3 \cdot (1 - n_a \cdot q)}}$$
(1.31)

b) Para $Q_3 e Q_4$

$$I_{ef} = \sqrt{\frac{1}{T} \cdot \left[\int_{0}^{\Delta t^{1}} \left(\frac{Vi - E}{L_{cd}} \cdot t \right)^{2} \cdot dt + \int_{0}^{\Delta t^{2} l} (I_{o1})^{2} \cdot dt + \int_{0}^{t_{9} - t^{8}} \left(-I_{o1} + \frac{E}{L_{cd}} \cdot t \right)^{2} \cdot dt \right]}$$

$$\overline{I_{ef}} Q_{3,Q4} = \overline{I_{o1}} \cdot \sqrt{\frac{D}{2} + \overline{I_{o1}} \cdot \frac{1 - 3 \cdot n_{a} \cdot q}{3 \cdot n_{a} \cdot q \cdot (1 - n_{a} \cdot q)}}$$

$$(1.32)$$

1.5.2 - Corrente média nos interruptores

a) Para $Q_1 e Q_2$

$$I_{av}Q_{1,Q2} = \frac{1}{T} \cdot \left[\int_{0}^{\Delta t} \frac{V_{1} - E}{L_{cd}} \cdot t \cdot dt + \int_{0}^{\Delta t} I_{o1} \cdot dt \right]$$
(1.34)
$$\overline{I_{av}Q_{1,Q2}} = \overline{I_{o1}} \cdot \left(\frac{D}{2} - \frac{\overline{I_{o1}}}{2} \cdot \frac{1}{(1 - n_{a} \cdot q)} \right)$$
(1.35)

b) Para $Q_3 e Q_4$

$$I_{avQ3,Q4} = \frac{1}{T} \cdot \left[\int_{0}^{\Delta t^{1}} \frac{Vi - E}{L_{cd}} \cdot t \cdot dt + \int_{0}^{\Delta t^{2}} I_{o1} \cdot dt + \int_{0}^{t^{4} - t^{3}} \left(I_{o1} - \frac{E}{L_{cd}} \cdot t \right) \cdot dt \right]$$
(1.36)

$$\overline{I_{av}Q_{3,Q4}} = \frac{\overline{I_{o1}}}{2} \cdot \left(D + \overline{I_{o1}} \cdot \frac{1 - 2 \cdot n_{a} \cdot q}{n_{a} \cdot q \cdot (1 - n_{a} \cdot q)} \right)$$
(1.37)

1.5.3 - Corrente média nos diodos antiparalelo D_1 e D_2

$$I_{avD1, D2} = \frac{1}{T} \cdot \int_{0}^{t9-t8} \left(I_{01} - \frac{E}{L_{cd}} \cdot t \right) \cdot dt$$
(1.38)

$$\overline{I_{avD1,D2}} = \frac{\overline{I_{o1}}}{2} \cdot \frac{1}{n_a \cdot q}$$
(1.39)

1.5.4 - Corrente eficaz nos diodos retificadores de saída

a) Diodos de $T_p: D_p$

$$\overline{I_{ef}}_{Dp} = \overline{I_{o1}} \cdot n_p \cdot \sqrt{\left(\frac{1+D}{4} - \frac{\overline{I_{o1}}}{2 \cdot (1-n_a \cdot q)}\right)}$$
(1.40)

b) Diodos de $T_a: D_a$

$$\overline{I_{ef}}_{Da} = n_a \cdot \overline{I_{ef}}_{Q1..Q4} = n_a \cdot \overline{I_{o1}} \cdot \sqrt{\left(\frac{D}{2} + \overline{I_{o1}} \cdot \frac{1 - 3 \cdot n_a \cdot q}{3 \cdot n_a \cdot q \cdot (1 - n_a \cdot q)}\right)}$$
(1.41)

1.5.5 - Corrente média nos diodos retificadores de saída

A corrente média por cada diodo de saída é a metade da corrente média entregue à carga pelo transformador correspondente.

a) Diodos de T_p : D_p

$$\overline{I_{av}}_{Dp} = \overline{I_{o1}} \cdot \frac{n_p}{2} \tag{1.42}$$

b) Diodos de T_a: D_a

$$\overline{IavDa} = \overline{Io1} \cdot \frac{na}{2} \tag{1.43}$$

1.5.6 - Corrente eficaz na indutância L_{cd}

$$\overline{I_{ef}}_{Lrd} = \sqrt{2} \cdot \overline{I_{ef}}_{Q1..Q4} = \sqrt{2} \cdot \overline{I_{o1}} \cdot \sqrt{\left(\frac{D}{2} + \frac{\overline{I_{o1}}}{3} \cdot \frac{1 - 3 \cdot n_a \cdot q}{n_a \cdot q \cdot (1 - n_a \cdot q)}\right)}$$
(1.44)

1.6 - DIMENSIONAMENTO DO FILTRO DE SAÍDA

1.6.1 - Indutância do filtro de saída, $L_{\rm f}$

A Figura 1.5 apresenta o circuito de saída do transformador T_p , assim como as formas de onda de tensão e corrente relevantes. Para o cálculo aproxima-se o tempo *tc* de crescimento da corrente $i_{Lf}(t)$:

$$tc = D \cdot \frac{T}{2} - \Delta t_{\perp} \approx D \cdot \frac{T}{2}$$
(1.45)

O ripple ΔI da corrente é:

$$\Delta I = \frac{(V_i - E)/n_p - V_o}{L_f} \cdot tc \approx \frac{V_i - (n_a + n_p) \cdot V_o}{n_p \cdot L_f} \cdot D \cdot \frac{T}{2}$$
(1.46)

Obtém-se:

$$L_{f} \geq \frac{V_{i} - (n_{a} + n_{p}) \cdot V_{o}}{2 \cdot n_{p} \cdot \Delta I \cdot f} \cdot D$$
(1.47)

Figura 1.5 - a) Circuito para o cálculo de L₁. b) Formas de onda.

1.6.2 - Capacitância do filtro de saída, Co

Para o cálculo do capacitor C_o considera-se o *ripple* produzido pelas correntes de ambos T_p e T_a . Sejam C_p e C_a , necessários para filtrar as correntes de T_p e T_a respectivamente, deve-se verificar então:

$$C_o \ge C_p + C_a \tag{1.48}$$

A Figura 1.6 apresenta o circuito e as formas de onda de interesse.

Figura 1.6 - a) Circuito para o cálculo de C_o, b) Formas de onda.

$$C_p \ge \frac{A_1}{\Delta V_o} = \frac{\Delta I}{16 \cdot f \cdot \Delta V_o} \tag{1.49}$$

Para C_a tem-se:

$$A_2 \cong (n_a \cdot I_{o1} - I_{oa}) \cdot D_{max} \cdot \frac{T}{2}$$
(1.50)

$$C_{a} \geq \frac{A_{2}}{\Delta V_{o}} \cong \frac{\left(I_{o1} \cdot (n_{p} + n_{a}) - I_{os}\right) \cdot D_{max}}{2 \cdot f \cdot \Delta V_{o}}$$
(1.51)

Obtém-se:

$$C_o \ge \frac{\Delta I}{16 \cdot f \cdot \Delta V_o} + \frac{\left(I_{o1} \cdot \left(n_p + n_a\right) - I_{os}\right) \cdot D_{max}}{2 \cdot f \cdot \Delta V_o}$$
(1.52)

1.7 - CONCLUSÕES

Neste capítulo apresentou-se a análise teórica do conversor proposto, possibilitando assim, estabelecer uma metodologia de projeto.

Foram apresentadas as curvas que representam a característica externa do conversor, $q = \text{função}(I_{\text{os}}, n_{\text{p}}, n_{\text{a}}, \overline{D})$. Para um determinado ganho estático q existem vários gráficos possíveis, com differentes valores das relações de transformação n_{p} , n_{a} . A escolha de um deles pode ser feita, a priori, considerando a forma das curvas características adequada à aplicação.

CAPÍTULO 2

METODOLOGIA E EXEMPLO DE PROJETO

2.1 - INTRODUÇÃO

Neste capítulo é apresentada, através de exemplos, uma metodologia de projeto do conversor, utilizando o equacionamento matemático obtido no Capítulo 1. Efetua-se um estudo das perdas de condução dos interruptores e estabelecem-se os critérios para a escolha dos parâmetros do conversor. Os resultados são validados mediante simulações.

2.2 - CRITÉRIOS PARA A ESCOLHA DOS PARÂMETROS DO CONVERSOR

2.2.1 - Especificações

- Potência máxima, Po
- Tensão na carga, Vo
- Tensão de entrada, V_i
- Ripple de tensão na saída, ΔV_{\circ}

2.2.2 - Escolha da freqüência de operação

A escolha da freqüência de funcionamento depende do tipo de interruptor a ser empregado. O braço ZVS é adequado ao uso do MOSFET de potência devido à sua elevada capacitância intrínseca de saída, a freqüência de operação usualmente empregada no INEP é 100kHz. O braço ZCS é adequado a IGBT e a freqüência máxima de operação neste caso pode ser 60kHz.

2.2.3 - Escolha dos parâmetros n_p, n_a, e D_{máx}

Procura-se nesta seção estabelecer uma relação entre os parâmetros n_a , n_p , $D_{máx}$ e as perdas no conversor. Estuda-se a variação das perdas de condução dos interruptores com os parâmetros mencionados, quando comparadas com as perdas de condução dos interruptores no FB-ZVS-PWM. As perdas de comutação são desprezíveis devido ao conversor operar com comutação suave. As perdas no circuito secundário não foram consideradas.

Para o FB-ZVS-ZCS-PWM considera-se o braço ZVS implementado com MOSFET, e o braço ZCS com IGBT. No FB-ZVS-PWM emprega-se MOSFET em ambos os braços.

Na determinação das perdas de condução não é considerado o efeito dos circuitos auxiliares de comutação ZVS para nenhum dos conversores.

2.2.3.1 - Perdas de condução

O MOSFET em condução é modelado como uma resistência (R_{DSON}), sendo suas perdas de condução proporcionais à corrente eficaz. O IGBT é modelado em condução como uma f.c.e.m. ($V\gamma$), sendo suas perdas proporcionais à corrente média.

- Perdas de condução nos interruptores para o FB-ZVS-ZCS-PWM:

$$P1 = 2 \cdot RDSON1 \cdot lef 1^2 + 2 \cdot V\gamma \cdot lav1$$
(2.1)

- Perdas de condução nos interruptores para o FB-ZVS-PWM:

$$P_2 = 4 \cdot R_{DSON2} \cdot Ief_2^2 \tag{2.2}$$

- Perdas relativas:

$$K_1 = \frac{R_{DSON1}}{2 \cdot R_{DSON2}} \tag{2.3}$$

$$K_2 = \frac{V\gamma}{2 \cdot R_{DSON2}} \tag{2.4}$$

$$Pr = \frac{P_1}{P_2} = K_1 \cdot \frac{Ief_1^2}{Ief_2^2} + K_2 \frac{Iav_1}{Ief_2^2}$$
(2.5)

2.2.3.2 - Estudo comparativo de perdas

Projetam-se os conversores seguindo as mesmas especificações (P_o , V_o , V_i). Para o FB-ZVS-PWM escolhe-se o ponto de funcionamento dos protótipos implementados no INEP. Projeta-se o FB-ZVS-ZCS-PWM para várias combinações dos parâmetros (n_a , n_p , $D_{máx}$) e calculam-se as perdas de condução para todas elas. Logo após é calculado P_r .

Para escolher a forma em que percorre-se o domínio (n_a, n_p, D_{max}) considera-se o transformador T_a auxiliar, uma vez que ele é introduzido para obter uma certa forma de onda da corrente primária. Decide-se então seguir o diagrama de fluxo da Figura 2.1.

Na Figura 2.2 são apresentados graficamente os valores mínimos de Pr, obtidos ao variar n_a , para cada dupla de valores D, n_p .

Na Figura 2.3 apresenta-se a variação das perdas relativas Pr em função de n_a , para diferentes valores de D e n_p . Na Figura 2.4 apresentam-se as indutâncias L_{cd} obtidas nos projetos respectivos.

Figura 2.1 - Diagrama de fluxo.

Valores empregados nos cálculos:

- Potência de saída, $P_o = 1500 W$
- Tensão de saída, $V_{\rm o} = 60 \text{ V}$
- Tensão de entrada, $V_i = 400 V$
- Conversor FB-ZVS-PWM:
 - razão cíclica $D_2=0,9$
 - relação de transformação $n_2 = 5$
 - freqüência de operação $f_2 = 100$ kHz

- Resistências de condução, correspondentes à máxima resistência do IRFP460 indicada pelo fabricante a uma temperatura de 100°C (HARRIS Semiconductors)

 $-R_{\rm DSON1}=R_{\rm DSON2}=0,5~\Omega$

- Tensão $V\gamma$, correspondente à máxima tensão coletor-emisor do IRGPC40U indicada pelo fabricante a temperatura de 100°C (International Rectifier).

 $-V\gamma = 2,7V$

- Freqüência de operação do FB-ZVS-ZCS-PWM, f = 60kHz

Figura 2.2 - Perdas relativas Pr em função de D, parametrizadas em n_r.

Observa-se, na Figura 2.2, que P_r diminui ao aumentar a razão cíclica D para todos os pares (n_p, n_a) .

Nas Figuras 2.3 e 2.4 observa-se que, para cada dupla de valores D e n_p , Pr é decrescente com n_a , e que o valor da indutância L_{cd} resultante do projeto também é decrescente.

Conclui-se deste estudo que deve-se trabalhar com a máxima razão cíclica possível. Confirma-se assim uma regra intuitiva nos conversores PWM: maior razão cíclica implica melhor aproveitamento do conversor.

Conclui-se também que, para valores de D e n_p fixos, deve-se escolher o valor de n_a para obter a mínima indância L_{cd} compatível com as limitações tecnológicas, a saber: (1) a mínima L_{cd} é a soma das indutâncias de dispersão dos transformadores, (2) deve-se manter a comutação ZCS. A relação E/L_{cd} deve ser a maior possível, para que a forma de onda da corrente primária assemelhe-se mais à do conversor FB-HS-PWM, ou seja formato "retangular".

A relação n_p/n_a parece não afetar as perdas de condução, ou seja, pode-se obter o mesmo valor de Pr com valores diferentes de n_p/n_a .

2.3 - EXEMPLOS DE PROJETO

Dados para projeto:

- Potência máxima, $P_0 = 1500$ W

- Tensão na carga, $V_{o} = 60 \text{ V}$
- Tensão de entrada, $V_i = 400 \text{ V}$
- Freqüência de comutação, f = 100 kHz
- *Ripple* de tensão na saída, $\Delta V_o = 1\%$

a) Ganho estático:

q = 60/400 = 0.15

b) Escolhe-se para projeto os pares:

1) $n_{a}=1, n_{p}=4$

2)
$$n_{a}=4, n_{p}=1$$

c) Escolhe-se a corrente média de saída normalizada, procurando D > 0,6:

- 1) $\overline{Ios} = 0.06$
- $2) \overline{Ios} = 0.2$

d) Calcula-se a máxima razão cíclica utilizando a equação característica (1.22):

1) $D_{\text{max}} = 0,7353$

2) $D_{\text{max}} = 0,6638$

e) Cálculo da indutância de comutação:

$$L_{cd} = \frac{\overline{I_{os}}}{I_{os}} \cdot \frac{V_i}{f}$$
(2.6)

1) $L_{cd} = 9,6 \ \mu H$

2) $L_{cd} = 32 \ \mu H$

f) Cálculo da corrente Io₁, com a equação (1.18):

1) $\overline{Io_1} = 0,0125$ $Io_1 = 5,208A$ 2) $\overline{Io_1} = 0,05776$ $Io_1 = 7,22 A$

g) Cálculo da corrente I_{op} , com a equação (1.15):

1) *I*_{op} = 20,832 A 2) *I*_{op} = 7,22 A

h) Cálculo da indutância do filtro da saída (equação (1.43)), impõe-se condução contínua com 20% da carga:

$$\Delta I = 20\% I_{os}$$

1) $L_f = 22 \mu H$
2) $L_f = 230 \mu H$

i) Cálculo da capacitância de saída (equação (1.48)), impõe-se o *ripple* máximo da tensão de saída:

2.4 - RESULTADOS DE SIMULAÇÃO

Foi simulado o conversor para ambos os projetos anteriores, com o programa PSpice, simulador de circuitos elétricos [13].

2.4.1- Formas de onda obtidas

As Figuras 2.5 e 2.6 apresentam as principais formas de onda de tensão e corrente para o projeto 1, e as Figuras 2.7 e 2.8 para o projeto 2.

iq1(t), iq2(t), iq3(t) e iq4(t). Figura 2.5 - Projeto 1: np=4 e na=1.

 $i_{\mathrm{Da}}(t) \ e \ i_{\mathrm{Dp}}(t)$.

Figura 2.6 - Projeto 1: np=4 e na=1.

Corrente $i_{Led}(t)$ e tensão $V_{ab}(t)$. Figura 2.7 - Projeto 2: $n_p=1$ e $n_a=4$.

 $i_{Da}(t) e i_{Dp}(t)$.

Figura 2.8 - Projeto 2: n_p=1 e n_a=4.

2.4.2 - Quadro comparativo de valores

Na Tabela 2.1 é apresentada uma comparação entre os resultados obtidos por simulação e os calculados através das expressões matemáticas obtidas no Capítulo 1. Constatase uma boa concordância entre ambos.

Parâmetros	Projeto 1		Projeto 2	
	Valor	Valor da	Valor	Valor da
	calculado	simulação	calculado	simulação
V ₀ (V)	60	59,1	60	58,9
$\Delta V_{o}(V)$	0,6	0,52	0,6	0,37
I ₀₁ (A)	5,21	5,03	7,22	6,94
I _{op} (A)	20,83	20,32	7,22	6,94
ΔI (A)	4,16	3,79	1,44	0,734
I _{oa} (A)	4,17	4,08	17,78	17,60
I _{efQ1, Q2} (A)	3.10	3.12	3.54	3.51
I _{efQ3, Q4} (A)	3,27	3,24	3,76	3,69
$I_{avQ1}, Q2 (A)$	1,66	1,56	1,53	1,43
Iav Q3, Q4 (A)	2,09	2,13	2,22	2,24
I _{ef Dp} (A)	13,61	13,65	4,23	4,35
I _{ef Da} (A)	3,23	3,25	14,96	14,68
I _{ef Lcd} (A)	4,57	4,44	5,29	5,24

Tabela 2.1 - Quadro comparativo dos valores teóricos e obtidos por simulação.

2.5 - CONCLUSÕES

Os resultados das simulações realizadas confirmam a validade do estudo analítico efetuado no Capítulo 1.

Do estudo teórico simplificado de perdas realizado na seção 2.2 conclui-se, a priori, que o conversor proposto apresenta menores perdas de condução nos interruptores que o FB-ZVS-PWM, quando é projetado para uma razão cíclica máxima maior que 0,7 (Figura 2,2). Observou-se também que a inclinação E/L_{cd} deve ser a maior possível (Figuras 2.3 e 2.4), sendo a forma de onda da corrente primária mais semelhante à do conversor FB-HS-PWM.

É necessário mencionar que, quando a corrente primária é "retangular" (FB-HS), o conversor é, teoricamente, um PWM ideal (tensão de saída independente da carga). As menores perdas de condução no conversor proposto são, então, obtidas quando sua característica externa aproxima-se mais à de um conversor PWM ideal.

CAPÍTULO 3

VARIAÇÕES TOPOLÓGICAS DO FB-ZVS-ZCS-PWM

3.1 - INTRODUÇÃO

Neste capítulo são apresentadas três topologias que operam da mesma forma que o FB-ZVS-ZCS-PWM estudado nos capítulos anteriores. Derivam-se dos seguintes conversores:

 três níveis com comutação sob tensão nula e modulado por largura de pulso (TL-ZVS-PWM), [5];

- série ressonante com grampeamento da tensão do capacitor ressonante e modulado por largura de pulso (SRC-CVC-PWM), [6],

- três níveis série ressonante com grampeamento da tensão do capacitor ressonante e modulado por largura de pulso (TL-SRC-CVC-PWM), [7].

O procedimento de geração das topologias é semelhante ao empregado para o FB-ZVS-ZCS-PWM: adiciona-se um outro transformador em série ao já existente no conversor. A saída de um transformador deve ter característica de fonte de tensão e a do outro característica de fonte de corrente.

Para cada nova topologia as formas de onda da tensão entre os pontos médios do conversor, $V_{ab}(t)$, e da corrente primária, $i_{Lcd}(t)$, são idênticas as do FB-ZVS-ZCS-PWM. As três topologias apresentam transistores com comutação ZVS e ZCS.

3.2 - TOPOLOGIA DERIVADA DO CONVERSOR CC-CC TRÊS NÍVEIS, COM COMUTAÇÃO SOB TENSÃO NULA E MODULAÇÃO POR LARGURA DE PULSO

Nesta seção estuda-se uma topologia obtida a partir do conversor CC-CC a três níveis com comutação sob tensão nula (TL-ZVS-PWM).

A topologia obtida reduz o esforço de tensão nos interruptores, sendo uma boa alternativa perante o FB-ZVS-ZCS-PWM quando se dispõe de alta tensão no barramento CC de entrada.

A Figura 3.1 apresenta o diagrama do estágio de potência da nova topologia. Descrição dos componentes:

 Q_1 , Q_4 = transistores com comutação ZVS;

 Q_2 , Q_3 = transistores com comutação ZCS;

 D_1 , D_2 , D_3 , D_4 = diodos anti-paralelo dos interruptores;

 D_5 , D_6 = diodos de roda livre, divisores da tensão nos interruptores;

 C_1 , C_4 = capacitores de comutação de Q_1 e Q_4 , respectivamente;

 C_{c} = capacitância de comutação;

 $2*V_i$ = tensão de entrada;

 $L_{\rm c}$ = indutância de comutação;

 $n_{\rm a}$ = relação de transformação de $T_{\rm a}$;

 $n_{\rm p}$ = relação de transformação de $T_{\rm p}$;

 $L_{\rm f}$ = indutância do filtro de saída;

 C_{o} = capacitância do filtro de saída;

 $R_{\rm o}$ = resistência de carga.

Figura 3.1 - Diagrama do estágio de potência do conversor derivado do TL-ZVS-PWM.

3.2.1 - Descrição do funcionamento

O capacitor C_c é necessário para a realização da comutação ZVS em Q_1 e Q_4 . Sua tensão é constante e igual a V_i (metade da tensão de entrada).

Os diodos anti-paralelo D_1 , D_2 , D_3 , D_4 permitem a circulação da corrente magnetizante dos transformadores.

O conversor apresenta cinco estados topológicos em um semi-período de operação, os quais são apresentados na Figura 3.2. O segundo semi-período é idêntico.

Para simplificar a análise são feitas as seguintes considerações:

- o circuito opera em regime permanente;

- todos os componentes são ideais;

- o circuito de saída é referido ao primário, o transformador T_p é substituído por uma ponte retificadora R_p cuja carga é a fonte de corrente I_{o1} e o transformador T_a é substituído por uma ponte retificadora R_a , cuja carga é a fonte de tensão E;

- I_{o1} representa a corrente média do indutor L_f referida ao primário de T_p ;

- E representa a tensão média de saída V_o referida ao primário de T_a ;

- L_{cd} representa a indutância de comutação L_c e as de dispersão de ambos os transformadores;

- as correntes de magnetização de ambos os transformadores são desprezíveis.

Etapa 1 (t_0, t_1) - Durante esta etapa a corrente de carga circula através dos interruptores Q_1 e Q_2 . Verifica-se que $i_{\text{Led}} = I_{\text{ol}}$, $V_{\text{C1}} = 0$, $V_{\text{C4}} = V_i$, Figura 3.2 - a.

Etapa 2 (t_1, t_2) - Em $t=t_1$ o interruptor Q_1 é bloqueado, sua corrente comuta para C_1 e C_4 . C_1 carrega-se até atingir V_i e C_4 descarrega-se até zero, ambos com corrente constante igual a $I_{o1}/2$ (Figura 3.2 - b). Em $t=t_2$, quando $V_{C1} = V_i$, o diodo D_5 conduz e começa a etapa de roda livre.

Etapa 3 (t₂,t₃) - Etapa de roda livre. A fonte de corrente I_{o1} fica em curto-circuito através dos diodos da ponte R_p . A corrente i_{Lcd} decresce linearmente, com inclinação E/L_{cd} . A etapa finaliza quando i_{Lcd} atinge zero, em $t=t_3$, e o interruptor Q_2 bloqueia sob corrente zero.

Etapa 4 (t_3, t_4) - Nesta etapa a corrente i_{Led} é nula, da mesma forma que as correntes por todos os interruptores. Finaliza quando Q_3 e Q_4 conduzem, ambos sob corrente nula.

Etapa 5 (t_4, t_5) - A corrente i_{Lcd} cresce linearmente no sentido indicado na Figura 3.2-e, com inclinação $(V_i-E)/L_{cd}$. Finaliza quando i_{Lcd} atinge I_{o1} , em $t=t_5$, iniciando o segundo semi-período de operação.

(b) Etapa 2 (t₁, t₂)

(c) Etapa 3 (t₂, t₃)

(d) Etapa 4 (t₃, t₄)

(e) Etapa 5 (t₄, t₅)

Figura 3.2 - Estados topológicos para um semi-período de operação para o conversor derivado do TL-ZVS-PWM.

Transfere-se potência à carga durante as etapas 1, 3 e 5. Durante a etapa 1 através de T_a e T_p , e durante as etapas 3 e 5 através de T_a .

3.2.2 - Formas de onda relevantes

A Figura 3.3 apresenta as principais formas de onda junto com os sinais de comando.

Figura 3.3 - Principais formas de onda e sinais de comando.

Observa-se que a transferência de potência acontece da mesma forma que no conversor FB-ZVS-ZCS-PWM. As características externas são idênticas, variando apenas algumas formas de onda nos interruptores: 1 - para todos os interruptores a máxima tensão de bloqueio é V_i (metade da fonte de entrada), 2 - para os interruptores ZVS o diodo anti-paralelo não assume a corrente logo após a comutação, essa função é dos diodos D_5 e D_6 .

3.2.3 - Exemplo de projeto e resultados de simulação

Para efeito de comparação com o FB-ZVS-ZCS-PWM projeta-se e simula-se esta variação topológica segundo as mesmas especificações da seção 2.3. Considera-se o dobro para a tensão de entrada e escolhem-se os mesmos parâmetros no projeto, sendo os valores de correntes e componentes os mesmos da seção 2.3.

3.2.3.1 - Projeto do conversor

Especificações de projeto:

- Potência máxima, $P_o = 1500W$;
- Tensão na carga, $V_{\rm o} = 60 {\rm V};$
- Tensão de entrada, $2*V_i = 800V_i$;
- Freqüência de comutação, f = 100kHz;
- Ripple de tensão na saída, $\Delta V_0 = 1\%$.

Parâmetros e valores:

a)
$$q = 60/400 = 0.15$$
;
b) $n_a=1$, $n_p=4$;
c) $\overline{I_{os}} = 0.06$;
d) $D_{max} = 0.7353$;
e) $L_{cd} = 9.6 \mu$ H;
f) $\overline{I_{o1}} = 0.0125$;
 $I_{o1} = 5.208$ A;
g) $I_{op} = 20.832$ A;
h) $L_f = 22 \mu$ H;
i) $C_o = 10.7 \mu$ F.

Cálculo do capacitor $C_{\rm C}$:

 $C_{\rm C}$ se descarrega durante o intervalo de comutação t_2 - t_1 com corrente constante e igual a $I_{\rm o1}/2$. Calcula-se esse tempo assumindo um valor para C_1 que corresponde ao valor aproximado da capacitância de saída de um MOSFET adequado à potência considerada, 400pF:

$$t_2 - t_1 = \frac{2 \cdot C_1}{I_{o1}} \cdot V i \tag{3.1}$$

O ripple de tensão em $C_{\rm C}$ é:

$$\Delta V_{Cc} = \frac{t_2 - t_1}{Cc} \cdot \frac{I_{o1}}{2} \tag{3.2}$$

$$\Delta V_{Cc} = \frac{C_1}{Cc} \cdot V i \tag{3.3}$$

Impondo ripple máximo de tensão 0,05% tem-se::

 $C_{\rm C} > 80 {\rm nF}$

Nas simulações emprega-se:

$$C_{\rm C} = 100 {\rm nF}$$

3.2.3.2 - Formas de onda de simulação

As Figuras 3.4 e 3.5 apresentam as formas do onda obtidas por simulação.

3.3 - TOPOLOGIA DERIVADA DO CONVERSOR CC-CC SÉRIE RESSONANTE COM GRAMPEAMENTO DA TENSÃO DO CAPACITOR RESSONANTE MODULADO POR LARGURA DE PULSO

A segunda variação topológica estudada deriva do conversor série ressonante, com grampeamento da tensão do capacitor ressonante, operando a freqüência constante e modulado por largura de pulso (SRC-CVC-PWM).

A Figura 3.6 apresenta o estágio de potência do conversor a estudar.

Descrição dos componentes:

 Q_1, Q_2 = transistores com comutação ZCS;

- Q_3, Q_4 = transistores com comutação ZVS;
- D_1 , D_2 , D_3 , D_4 = diodos anti-paralelo dos interruptores;

 D_5 , D_6 = diodos de grampeamento da tensão do capacitor C_{C_i}

 $C_{\rm C}$ = capacitância de comutação de Q_3 e Q_4 ;

 $2*V_i$ = tensão de entrada;

 $L_{\rm c}$ = indutância de comutação;

 $n_{\rm a}$ = relação de transformação de $T_{\rm a}$;

 $n_{\rm p}$ = relação de transformação de $T_{\rm p}$;

 $L_{\rm f}$ = indutância do filtro de saída;

 C_{o} = capacitância do filtro de saída;

 $R_{\rm o}$ = resistência de carga.

Figura 3.6 - Diagrama do estágio de potência do conversor derivado do SRC-CVC-PWM.

3.3.1 - Descrição do funcionamento

Esta segunda variação topológica apresenta seis etapas de operação em um semiperíodo de funcionamento, Figura 3.7.

O circuito foi simplificado da mesma forma que na seção 3.2.

Etapa 1 (t_0, t_1) : Inicialmente $(t=t_0)$ a tensão no capacitor de comutação e igual a V_i , com a polaridade indicada na Figura 3.7-a, e a corrente i_{Lod} é zero. O interruptor Q_1 entra em condução sob corrente nula. A tensão V_{Cc} e a corrente i_{Lod} evoluem de forma ressonante até V_{Cc} atingir zero, no instante t_1 .

Etapa 2 (t_1, t_2) : Em $t=t_1$ os interruptores Q_3 e Q_4 entram em condução sob tensão zero. A corrente i_{Led} cresce linearmente até atingir o valor da fonte de corrente I_{o1} , em $t=t_2$.

Etapa 3 (t₂,t₃): Durante esta etapa a corrente i_{Lcd} é igual a I_{o1} . A etapa finaliza quando Q_3 e Q_4 são bloqueados, no instante t_3 .

Etapa 4 (t_3, t_4): No bloqueio de Q_3 e Q_4 a corrente comuta para C_c , a tensão V_{cc} cresce linearmente até atingir V_i , em $t=t_4$. Nesse momento o diodo D_5 começa a conduzir, grampeando V_{cc} .

Etapa 5 (t_4, t_5): A partir do instante t_4 a corrente i_{Led} decresce linearmente, com inclinação E/L_{cd} , até anular-se em $t=t_5$.

Etapa 6 (t₅,t₆): Durante esta etapa as correntes i_{Led} e i_{Q1} são nulas, e V_{Ce} é igual a V_i . A etapa finaliza quando Q_1 bloqueia e Q_2 pasa a conduzir, ambos sob corrente zero.

Figura 3.7 - Estados topológicos de operação para o conversor derivado do SRC-CVC-PWM.

3.3.2 - Principais formas de onda

A Figura 3.8 apresenta as principais formas de onda junto com os sinais de comando.

Figura 3.8 - Principais formas de onda e sinais de comando.

Observa-se que a transferência de potência ocorre da mesma forma que nos dois conversores estudados. A diferença é que a etapa de descarga do capacitor de comutação $C_{\rm C}$ é ressonante.

As formas de onda das correntes nos interruptores são iguais as da primeira variação topológica.

Observa-se que a máxima tensão sobre os interruptores ZCS é a fonte de entrada, $2*V_i$.

Observa-se também uma sobretensão na forma de onda de $V_{ab}(t)$, devido à etapa ressonante de descarga do capacitor $C_{\rm C}$.

3.3.3 - Exemplo de projeto e resultados de simulação

Para efeito de comparação simula-se a operação do circuito para as especificações da seção 3.2, empregando os mesmos valores de parâmetros e componentes. A Figura 3.9 apresenta os resultados da simulação.

derivado do SRC-CVC-PWM.

44

3.4 - TOPOLOGIA DERIVADA DO CONVERSOR CC-CC TRÊS NÍVEIS SÉRIE RESSONANTE, COM GRAMPEAMENTO DA TENSÃO DO CAPACITOR RESSONANTE E MODULADO POR LARGURA DE PULSO

A terceira variação topológica estudada deriva do conversor a três níveis, série ressonante com a tensão do capacitor ressonante grampeada, operando a freqüência constante e modulado por largura de pulso (TL-SRC-CVC-PWM).

A Figura 3.10 apresenta o estágio de potência do conversor a estudar.

Os interruptores Q_1 , Q_2 , Q_3 , Q_4 comutam ZCS, e Q_5 e Q_6 comutam ZVS. O funcionamento do circuito é idêntico ao do conversor descrito na seção 3.3 derivado do SRC-CVC-PWM, e distinguem-se as mesmas etapas de operação. Cada interruptor ZCS é substituído por dois interruptores, cada diodo D_7 e D_8 divide a tensão entre eles no bloqueio, de forma que cada novo interruptor suporta somente a metade da tensão da fonte de entrada. Esta topologia, da mesma forma que a primeira estudada, é adequada quando se dispõe de alta tensão no barramento CC de entrada.

Figura 3.10 - Diagrama do estágio de potência do conversor derivado do TL-SRC-CVC-PWM.

3.4.1 - Exemplo de projeto e resultados de simulação

Para efeito de comparação com as topologias descritas simula-se a operação do circuito para as especificações da seção 3.2, empregando os mesmos valores de parâmetros e componentes.

As Figuras 3.11 e 3.12 apresentam os resultados da simulação. Observa-se que a única diferença com as formas de onda da topologia anterior é a máxima tensão de bloqueio dos interruptores ZCS, agora é a metade da tensão de entrada, 400V.

Figura 3.11 - Formas de onda de simulação para o conversor derivado do TL-SRC-CVC-PWM.

Figura 3.12 - Formas de onda de simulação para o conversor derivado do TL-SRC-CVC-PWM.

3.5 - CONCLUSÕES

Neste capítulo estudaram-se três topologias, nas quais a transferência de potência acontece da mesma forma que no FB-ZVS-ZCS-PWM estudado nos Capítulos 1 e 2. Pode-se dizer, então, que são variações topológicas dele. Para todas as variações foi descrito o principio de funcionamento e foram efetuadas simulações que confirmam a validade da afirmação anterior.

As variações topológicas 1 e 3, derivadas de conversores "três níveis", são as indicadas para operação com alta tensão de entrada. A topologia 1 apresenta a vantagem de empregar apenas quatro interruptores, com os respectivos diodos anti-paralelo, enquanto que a topologia 3 emprega seis. A desvantagem que apresenta a topologia 1 é a necessidade de um circuito auxiliar para efetuar a comutação ZVS com baixos níveis de carga, na topologia 3 este circuito auxiliar não é necessário.

A variação topologia 2 deve-se comparar com o conversor FB-ZVS-ZCS-PWM original. Para valores iguais de potência de saída, tensão de saída e tensão de entrada, obtém-se:

- Para os transistores ZCS:
 - a tensão máxima é a mesma em ambos os conversores;
 - a corrente máxima na topologia 2 é o dobro que no FB-ZVS-ZCS original.
- Para os transistores ZVS:
 - a tensão máxima na topologia 2 é a metade que no FB-ZVS-ZCS;
 - a corrente máxima na topologia 2 é o dobro que no FB-ZVS-ZCS.

As observações anteriores sinalam ao conversor FB-ZVS-ZCS original como uma estrutura mais adequada para maiores potências que a variação topológica 2. A desvantagem do conversor original frente à topologia 2 é a necessidade de um circuito auxiliar para realizar a comutação ZVS com baixos níveis de carga.

CAPÍTULO 4

IMPLEMENTAÇÃO DO CONVERSOR E RESULTADOS EXPERIMENTAIS

4.1 - INTRODUÇÃO

Com a finalidade de verificar na prática o princípio de funcionamento do conversor estudado nos capítulos anteriores efetuou-se a montagem de dois protótipos de laboratório operando em malha aberta.

4.2 - TOPOLOGIA DERIVADA DO TL-SRC-CVC-PWM

4.2.1 - O circuito primário

Inicialmente implementou-se a terceira variação topológica estudada no Capítulo 3. Foi empregado um protótipo do conversor TL-SRC-CVC-PWM existente no INEP, [7], no qual foram feitas as modificações necessárias.

A Figura 4.1 apresenta o diagrama do circuito de potência implementado.

Figura 4.1 - Diagrama do circuito de potência experimental, derivado do TL-SRC-CVC-PWM.

Descrição dos componentes provenientes do conversor original:

- $Q_1, Q_2, Q_3, Q_4, Q_5, Q_6 = MOSFET (APT5040BN; V_{DS} = 500V, R_{DSON} = 0,4\Omega);$
- D_1, D_2 = SKN4F 25/8 (SEMIKRON; 800V, 25A, trr = 400ns);
- $D_3, D_4 = SK4F3/10$ (SEMIKRON; 1000 V, 3 A);
- $C_{\rm C} = 2,2nF / 1600 V$ polipropileno (ICOTRON);
- $D_a = MUR3020PT$ (Motorola; 200V, 10A);
- $C_o = 3 \times 10000 \mu F$ em paralelo (SIEMENS; resistência equivalente = 0,05 Ω);
- Circuito de comando operando a 100kHz. Para os interruptores Q_5 e Q_6 é implementado tiristor dual.

4.2.2 - O circuito de saída

Especificações para o projeto:

- Potência nominal de saída, $P_0 = 1300$ W;
- Tensão nominal de saída, $V_0 = 50$ V;
- Tensão de entrada, $2*V_i = 600V_i$;
- Frequência de operação, f = 100kHz.

O circuito de comando existente permite obter razão cíclica máxima próxima de 0,7; escolhe-se então para o projeto $D_{max} = 0,6$.

Considera-se que o indutor de comutação está formado apenas pela dispersão de ambos os transformadores. Assume-se para o projeto um valor aproximado dado pelos valores típicos da dispersão dos transformadores fabricados no INEP:

$L_{cd} = 8 \mu H$

Emprega-se o transformador do circuito original como transformador com saída em tensão, T_a :

- Potência processada = 1000W;
- Relação de transformação = 3,75;
- Núcleo EE 65/39 (Thornton).

Têm-se então:

- $n_a = 3,75;$
- $D_{\rm max} = 0,6;$
- $L_{cd} = 8\mu H;$
- q = 0,167;
- $\overline{I_{\rm os}} = 0,069.$

Escolhe-se n_p de forma que permita obter o ponto (q, I_{os}) acima calculado com a razão cíclica aproximada 0,6:

$$n_{\rm p} = 1$$

A Figura 4.2 apresenta a característica de saída correspondente.

Figura 4.2 - Característica externa para $n_p = 1$, $n_a = 3,75$; tendo D como parâmetro.

Descrição do transformador T_p implementado:

- Potência processada = 300W;
- Núcleo E 42/20 (Thornton, IP-6);
- Relação de transformação $n_p = 1, 1$.
- Número de espiras primárias = 22
- Número de espiras secundarias = 24, com ponto médio.

Os diodos Dp:

$-D_{p} = MUR850$ (Motorola)

A interação da indutância de dispersão do transformador com o processo de recuperação reversa dos diodos D_p causa oscilações e sobretensão. Para limitar este efeito emprega-se o circuito formado por R_s , $C_s e D_s$:

- $D_s = MUR440$ (Motorola);
- $R_{\rm s} = 22 \mathrm{k} \Omega;$
- $C_{\rm s} = 10 {\rm nF}$.

Descrição do indutor do filtro de saída L_{f} .

- $L_{\rm f} = 150 \mu {\rm H};$
- Núcleo de ferrite E 55/21 (Thornton IP 6);
- Número de espiras = 25;
- Entreferro = 1,5mm.

4.2.3 - Resultados experimentais

As Figuras 4.3 e 4.4 apresentam as formas de onda da tensão V_{ab} e da corrente primária i_{Lcd} obtidas por simulação e experimentação respetivamente, sob as seguintes condições:

- Potência de saída: $P_o = 700$ W;
- Tensão de entrada: $2*V_i = 400V_i$;
- Tensão de saída: $V_{o} = 33$ V.

Figura 4.3 - Formas de onda de simulação para P₀=700W, 2*V₁=400V e V₀=33V.

Figura 4.4 - Formas de onda experimentais para P₀=700W, 2*V₁=400V e V₀=33V. Escala de tensão: 100V/div. Escala de corrente: 2A/div. Escala de tempo: 2µs/div.

Observa-se a semelhança entre as formas de onda de simulação e experimentais.

Observa-se também o efeito da corrente magnetizante do transformador T_a . Esta corrente continua circulando pelo circuito primário logo após a etapa de roda livre, quando o transformador não transfere potência à carga, aumentando assim as perdas de condução nos interruptores. Para T_p a situação é diferente. Quando o transformador não transfere potência à carga, a corrente magnetizante circula pelo secundário por diferença de corrente entre os dois enrolamentos secundários, dessa forma não aumenta as perdas no conversor.

4.3 - CONVERSOR DERIVADO DO SRC-CVC-PWM

4.2.1 - O circuito primário

No circuito anterior eliminam-se os interruptores $Q_1 e Q_4 e$ os diodos $D_3 e D_4$, obtém-se assim a segunda variação topológica estudada no Capítulo 3. O circuito é apresentado na Figura 4.5.

Figura 4.5 - Diagrama do circuito de potência experimental, derivado do SRC-CVC-PWM.

4.2.2 - O circuito de saída

Neste caso escolheu-se:

$$n_{\rm a} = 1,5, n_{\rm p} = 2,3$$

O transformador T_p :

- Núcleo de ferrite E-65/26 (Thornton, IP-6);

- Número de espiras primárias = 15;

- Número de espiras secundarias = 7; com ponto médio.

O transformador Ta:

- Núcleo de ferrite E-65/13 (Thornton, IP-6);

- Número de espiras primárias = 26;

- Número de espiras secundarias = 18; com ponto médio.

O valor do indutor de comutação medido no laboratório foi:

$$L_{cd} = 20 \mu H$$

4.2.3 - Resultados experimentais

As Figuras 4.6 até 4.11 apresentam formas de onda de correntes e tensões para a seguinte situação:

- Potência de saída, $P_0 = 240$ W;
- Corrente de carga, $I_{os} = 10$ A;
- Tensão de entrada, $2*V_i = 300V_i$;
- Freqüência de operação, f = 100kHz.

Figura 4.6 - Formas de onda experimentais da tensão $V_{ab}(t)$ e da corrente $i_{Led}(t)$. Escala de tempo: 2 $\mu s/div$.

Escala de tempo: 2 µs/div.

Figura 4.8. - Tensão e corrente no transistor Q₁. Escala de corrente: 1 A/div. Escala de tensão: 100 V/div. Escala de tempo: 2 µs/div

Figura 4.9 - Tensão e corrente nos transistores Q_{3,4} Escala de corrente: 1 A/div. Escala de tensão: 50 V/div. Escala de tempo: 2 µs/div

Figura 4.10 - Corrente na indutância do filtro de saída L₁. Escala: 1 A/div. Tensão de saída de T_p retificada. Escala: 10 V/div.

Escala de tempo: 2 µs/div.

Figura 4.11 - Corrente em D_a, diodo de saída de T_a. Escala: 1 A/div. Escala de tempo: 2 µs/div.

Figura 4.12 - Característica de saída teórica (traço contínuo) e a experimental (pontos) correspondente.

4.4 - CONCLUSÕES

Foram obtidas formas de onda de tensões e correntes para duas variações topológicas do conversor proposto e em diferentes situações de carga. Em ambos os casos os resultados obtidos coincidem com os teóricos. Confirmam-se, em particular, as características esperadas de comutação suave nos interruptores, a forma de onda da corrente primária e a equação característica obtida no Capítulo 1.
Observa-se que a forma de onda da corrente nos diodos de saída de T_a é semelhante à de meio período da corrente primária, não tem os altos picos de corrente característicos das saídas em tensão.

Revelou-se importante procurar uma baixa corrente magnetizante, em relação ao valor da corrente i_{Lcd} , para o transformador T_a ; caso contrário aumentam-se as perdas de condução dos interruptores.

CAPÍTULO 5

CONVERSOR CC-CC SÉRIE RESSONANTE, MODULADO EM FREQÜÊNCIA, COM GRAMPEAMENTO DA TENSÃO DO CAPACITOR RESSONANTE E COM SAÍDA EM TENSÃO E CORRENTE.

5.1 - INTRODUÇÃO

Considera-se o conversor série ressonante modulado em freqüência, com grampeamento da tensão do capacitor ressonante (SRC-CVC-FM), [8], apresentado na Figura 5.1. O circuito apresenta dificuldade para ser empregado como fonte de alimentação acima de 1000W, devido ao elevado valor da corrente eficaz nos interruptores. Porém, a topologia apresenta a vantagem de empregar apenas dois interruptores.

Neste capítulo propõe-se uma nova topologia, derivada do conversor clássico acima mencionado e do conversor FB-ZVS-ZCS-PWM estudado nos capítulos anteriores, visando reduzir a fadiga de corrente nos interruptores.

Figura 5.1 - Conversor série ressonante, FM, com grampeamento da tensão do capacitor ressonante.

5.2 - CIRCUITO PROPOSTO E DESCRIÇÃO DO FUNCIONAMENTO

O circuito proposto é apresentado na Figura 5.2.

A corrente de saída está formada pela contribuição de dois transformadores conectados em série, T_a e T_p , os quais tem saída com característica de fonte de tensão e fonte de corrente respectivamente.

Os componentes restantes são descritos a seguir:

 Q_1, Q_2 = transistores com comutação ZCS;

 D_1 , D_2 = diodos anti-paralelo;

 D_3 , D_4 = diodos de grampeamento da tensão do capacitor ressonante;

 V_i = tensão de entrada;

 $C_{\rm r}$ = capacitor ressonante;

 $L_{\rm r}$ = indutor ressonante;

 $n_{\rm p}$ = relação de transformação de $T_{\rm p}$;

 $n_{\rm a}$ = relação de transformação de $T_{\rm a}$;

 V_{o} = tensão de saída;

 $L_{\rm f}$ = indutância do filtro de saída;

 C_{o} = capacitância do filtro de saída;

 $R_{\rm o}$ = resistência de carga.

Figura 5.2 - Estágio de potência do conversor proposto.

O circuito trabalha em condução descontinua (DCM): a corrente no indutor ressonante L_r , anula-se em cada semi-período de operação. Controla-se a potência de saída variando a

freqüência de funcionamento, da mesma forma que no conversor clássico. Distingue-se dois modos de funcionamento, Modos I e II, segundo o valor da tensão máxima no capacitor ressonante, V_{Cr} . No Modo I a tensão V_{Cr} atinge o valor da fonte $V_i/2$ e fica grampeada nesse valor através do diodo D_3 , da mesma forma que no circuito clássico. No Modo II a máxima tensão V_{Cr} é menor que a fonte $V_i/2$ e o diodo D_3 não conduz.

Para simplificar a análise do circuito efetuam-se as seguintes considerações:

- o circuito opera em regime permanente;

- todos os componentes são ideais;

- o circuito de saída é representado no primário. I_{o1} representa a corrente média no indutor do filtro de saída L_f referida ao primário de T_p , e E representa a tensão de saída V_o referida ao primário de T_a ;

- L_{rd} representa o indutor ressonante L_r e as indutâncias de dispersão dos transformadores.

5.2.1 - Modo I de funcionamento

Em um semi-período de operação o conversor apresenta cinco estados topológicos, Figura 5.3. O segundo semi-período é idêntico.

Etapa al (t₀,t₁): Inicialmente a tensão do capacitor ressonante V_{Cr} é igual a (- $V_i/2$), e a corrente i_{Lrd} é zero. Em $t=t_0$ o transistor Q_1 entra em condução sob corrente nula. A tensão V_{Cr} e a corrente i_{Lrd} evoluem de forma ressonante até i_{Lrd} atingir o valor da fonte de corrente I_{o1} .

Etapa b1 (t_1, t_2) : Durante esta etapa a corrente i_{Lrd} permanece constante e igual a I_{o1} e o capacitor ressonante carrega-se linearmente. A etapa finaliza quando a tensão V_{cd} se anula e a fonte I_{o1} fica em curto-circuito através de R_p .

Etapa c1 (t₂,t₃): Etapa ressonante na qual continua a carga do capacitor C_r . Finaliza quando a tensão V_{Cr} atinge $V_i/2$ (metade da fonte de entrada), nesse instante a corrente i_{Lrd} é diferente de zero.

Etapa d1 (t_i,t₄): No instante t_3 o diodo D_3 entra em condução grampeando a tensão V_{Cr} no valor $V_i/2$, e inicia-se uma etapa de roda livre. A corrente i_{Lrd} decresce linearmente, com inclinação E/L_{rd} . A etapa finaliza quando i_{Lrd} se anula.

Etapa e1 (t₄,T/2): Durante esta etapa as correntes i_{Lrd} e i_{Q1} são nulas. A etapa finaliza quando Q_1 é bloqueado e Q_2 entra em condução, ambos sob corrente nula.

Figura 5.3 - Etapas de operação no Modo I de funcionamento . (a1) t_0,t_1 (b1) t_1,t_2 (c1) t_2,t_3 (d1) t_3,t_4 (e1) $t_4,T/2$.

A transferência de potência à carga ocorre durante as etapas a1, b1 e c1. Nas etapas a1 e c1 através de T_a e na etapa b1 através de T_a e T_p .

A Figura 5.4 apresenta as principais formas de onda de tensão e corrente.

Figura 5.4 - Principais formas de onda para o Modo I de funcionamento.

5.2.2 - Modo II de funcionamento

As quatro etapas de operação do conversor neste modo de funcionamento são apresentadas na Figura 5.5.

Etapa a2 (t₀,t₁'): Esta etapa é semelhante à etapa a1 do Modo I, a tensão V_{Cr} e a corrente i_{Lrd} evoluem de forma ressonante. A diferença é o valor inicial da tensão no capacitor ressonante, V_{F} , que nesta situação é inferior a $V_i/2$.

*Etapa b2 (t*₁',*t*₂'): Nesta etapa, da mesma forma que em b1, i_{Lrd} permanece constante no valor I_{o1} e V_{Cr} cresce linearmente. A etapa finaliza quando a tensão $V_{cd}(t)$ se anula, fazendo com que a fonte I_{o1} fique em curto-circuito através de R_{p} .

Etapa c2 (t₂',t₃'): Esta etapa é similar à etapa c1, V_{Cr} e i_{Lrd} evoluem de forma ressonante. Neste caso a etapa finaliza quando a corrente i_{Lrd} se anula e C_r carregou-se até $V_F < V_i/2$.

Etapa d2 (t₃',t₄'): Esta etapa coincide com a etapa e1. As pontes retificadoras permanecem ambas bloqueadas e a fonte I_{o1} em curto-circuito. Finaliza quando o transistor Q_1 é bloqueado

e entra em condução Q_2 , ambos sob corrente nula, iniciando-se o segundo semi-período de operação.

Figura 5.5 - Etapas de operação no Modo II de funcionamento. (a2) t_0, t_1' (b2) t_1', t_2' (c2) t_2', t_3' (d2) t_3', t_4' .

A transferência de potência ocorre durante as etapas a2, b2 e c2, através de T_a e T_p na etapa b2 e através de T_a nas etapas a2 e c2.

A Figura 5.6 apresenta as principais formas de onda.

5.3 - EXPRESSÕES MATEMÁTICAS RELEVANTES.

A partir das etapas de funcionamento descritas para ambos os modos determinam-se as equações de corrente e tensão e os tempos envolvidos.

Consideram-se as seguintes definições:

- impedância característica,
$$z = \sqrt{\frac{L_{rd}}{Cr}}$$
;

- freqüência angular de ressonância, $wo = \frac{1}{\sqrt{L_{rd} \cdot Cr}}$;

- corrente normalizada,
$$\overline{Ixx} = \frac{Ixx \cdot z}{Vi}$$
;

- ganho estático, $q = \frac{V_o}{V_i}$.

5.3.1 - Modo I de funcionamento.

Etapa a1:

As condições iniciais são:

$$V_{Cr}(t=t_0) = -\frac{V_i}{2}$$
 (5.1)

$$i_{Lrd}(t=t_0)=0$$
 (5.2)

Obtém-se:

$$iLrd(t-t_0) = \frac{(Vi-E)}{z} \cdot sen(wo \cdot (t-t_0))$$
(5.3)

$$V_{Cr}(t-t_0) = (V_i - E) \cdot (1 - \cos(w_0 \cdot (t-t_0))) - \frac{V_i}{2}$$
(5.4)

Cálculo do intervalo de tempo $\Delta t_1 = t_1 - t_0$, impondo a corrente i_{Lrd} :

$$iLrd(t = t_1) = Io_1$$
 (5.5)

$$sen(wo \cdot \Delta t_1) = \frac{Io_1 \cdot z}{Vi - E}$$
(5.6)

Etapa b1:

As condições iniciais são:

$$iLrd(t=t_1) = Io_1 \tag{5.7}$$

$$V_{Cr}(t=t_1) = \frac{V_i}{2} - E - \sqrt{(V_i - E)^2 - (I_{01} \cdot z)^2}$$
(5.8)

Obtém-se:

$$i_{Lrd}(t-t_1) = Io_1$$
 (5.9)

$$V_{Cr}(t-t_1) = V_{Cr}(t=t_1) + \frac{I_{O1}}{Cr} \cdot (t-t_1)$$
(5.10)

Cálculo do intervalo de tempo $\Delta t_2 = t_2 - t_1$, impondo curto-circuito de I_{o1} através da ponte R_p :

$$Vcd(t-t_1) = \frac{Vi}{2} - E - Vc(t-t_1)$$
(5.11)

$$Vcd(t=t_2) = 0$$
 (5.12)

$$\Delta t_2 = \frac{Cr}{Io_1} \cdot \sqrt{(Vi - E)^2 - (Io_1 \cdot z)^2}$$
(5.13)

Verifica-se, para o valor final de V_{Cr} que:

$$V_{Cr}(t=t_2) = \frac{V_i}{2} - E < \frac{V_i}{2}$$
(5.14)

Etapa c1:

As condições iniciais são:

$$iLrd(t = t_2) = Io_1$$
 (5.15)

$$V_{Cr}(t=t_2) = \frac{V_i}{2} - E$$
 (5.16)

Obtém-se:

$$i_{Lrd}(t-t_2) = Io_1 \cdot cos(wo \cdot (t-t_2)) \tag{5.17}$$

$$V_{Cr}(t-t_2) = Io_1 \cdot z \cdot sen(wo \cdot (t-t_2)) + \frac{Vi}{2} - E$$
 (5.18)

Cálculo do intervalo de tempo $\Delta t_3 = t_3 - t_2$, impondo a tensão no capacitor ressonante:

$$V_{Cr}(\Delta t_3) = \frac{V_i}{2} \tag{5.19}$$

$$sen(wo \cdot \Delta t_3) = \frac{E}{Io_1 \cdot z}$$
(5.20)

Etapa d1:

Condições iniciais:

$$i_{Lrd}(t=t_3) = Io_1 \cdot cos(wo \cdot \Delta t_3) \tag{5.21}$$

$$V_{Cr}(t=t_3) = \frac{V_i}{2}$$
 (5.22)

Obtém-se:

$$iLrd(t-t_4) = iLrd(t=t_3) - \frac{E}{Lrd} \cdot (t-t_4)$$
 (5.23)

$$V_{Cr}(t - t_4) = \frac{V_i}{2}$$
(5.24)

Cálculo do intervalo de tempo $\Delta t_4 = t_4 - t_3$, impondo corrente i_{Lrd} nula:

$$i_{Lrd}(\Delta t_4) = 0 \tag{5.25}$$

$$\Delta t_4 = \frac{L_{rd}}{E} \cdot Io_1 \cdot cos(wo \cdot \Delta t_3) \tag{5.26}$$

Expressões normalizadas dos intervalos de tempo calculados:

$$\Delta t_1 = \frac{1}{wo} \cdot \operatorname{arcsen} \frac{\overline{Io_1}}{1 - na \cdot q}$$
(5.27)

$$\Delta t_2 = \frac{1}{wo \cdot \overline{Io_1}} \cdot \sqrt{(1 - na \cdot q)^2 - (\overline{Io_1})^2}$$
(5.28)

$$\Delta t_3 = \frac{1}{wo} \cdot \operatorname{arcsen} \frac{na \cdot q}{\overline{Io_1}}$$
(5.29)

$$\Delta t_4 = \frac{1}{wo \cdot na \cdot q} \cdot \sqrt{(\overline{Io_1})^2 - (na \cdot q)^2}$$
(5.30)

5.3.2- Modo II de funcionamento.

Etapa a2:

Condições iniciais:

$$i_{Lrd}(t=t_0)=0$$
 (5.31)

$$V_{Cr}(t=t_0) = V_F \tag{5.32}$$

Obtém-se:

$$iLrd(t-t_0) = \frac{Vi/2 - E + V_F}{z} \cdot sin(wo \cdot (t-t_0))$$
(5.33)

$$V_{Cr}(t-t_0) = \frac{V_i}{2} - E - \frac{V_i/2 - E + V_F}{z} \cdot \cos(w_0 \cdot (t-t_0))$$
(5.34)

Calcula-se o intervalo de tempo $\Delta t l' = t_1' - t_0$, impondo a corrente i_{Lrd} :

$$iLrd(\Delta t1') = Io_1 \tag{5.35}$$

$$sen(wo \cdot \Delta t_1') = \frac{Io_1 \cdot z}{Vi/2 - E + V_F}$$
(5.36)

Etapa b2:

Condições iniciais:

۰.

$$i_{Lrd}(t = t_1') = Io_1$$
 (5.37)

$$V_{Cr}(t=t_1') = \frac{V_i}{2} - E - \sqrt{(V_i/2 - E + V_F)^2 - (I_{01} \cdot z)^2}$$
(5.38)

Obtém-se:

$$iLrd(t-t1') = Ion \tag{5.39}$$

$$V_{Cr}(t-t1') = V_{C}(t=t1') + \frac{Io_{1}}{Cr} \cdot (t-t1')$$
(5.40)

Cálculo do intervalo de tempo Δt_2 ' = t_2 '- t_1 ', impondo o bloqueio da ponte R_p :

$$Vcd(t-t_{1}) = \frac{Vi}{2} - E - Vc(t-t_{1})$$
(5.41)

$$Vcd(t = t_2) = 0$$
 (5.42)

$$\Delta t z' = \frac{Cr}{Io_1} \cdot \sqrt{(Vi/2 - E + V_F)^2 - (Io_1 \cdot z)^2}$$
(5.43)

Valor da tensão em Cr:

$$V_{Cr}(t = t2') = \frac{Vi}{2} - E < \frac{Vi}{2}$$
(5.44)

Etapa c2:

Condições iniciais:

$$i_{Lrd}(t = t_2') = Io_1$$
 (5.45)

$$V_{Cr}(t = t2') = \frac{Vi}{2} - E$$
(5.46)

Obtém-se:

$$iLrd(t-t2') = Io_1 \cdot cos(wo \cdot (t-t2'))$$

$$(5.47)$$

$$V_{Cr}(t - t2') = Io_1 \cdot z \cdot sen(wo \cdot (t - t2')) + \frac{Vi}{2} - E$$
(5.48)

Cálculo do intervalo de tempo $\Delta t_3' = t_3' - t_2'$, impondo a corrente i_{Lrd} nula:

$$i_{Lrd}(t=t_{3}')=0$$
(5.49)

$$\Delta t_3' = \frac{1}{wo} \cdot \frac{\pi}{2} \tag{5.50}$$

Cálculo da tensão máxima de C_r , V_F :

5

$$V_F = Io_1 \cdot z + \frac{Vi}{2} - E \tag{5.51}$$

Expressões normalizadas dos intervalos de tempo calculados:

$$\Delta t 1' = \frac{1}{wo} \cdot \operatorname{arcsen} \frac{\overline{Io_1}}{1 - 2 \cdot na \cdot q + \overline{Io_1}}$$
(5.52)

$$\Delta t z' = \frac{1}{wo \cdot \overline{Io_1}} \cdot \sqrt{(1 - 2 \cdot na \cdot q + \overline{Io_1})^2 - (\overline{Io_1})^2}$$
(5.53)

$$\Delta t_3' = \frac{\pi}{2 \cdot w_0} \tag{5.54}$$

5.4 - CARACTERÍSTICA EXTERNA

Para ambos os modos de funcionamento realiza-se o balanço entre a potência de entrada e a de saída, obtém-se assim uma expressão que relaciona a corrente I_{o1} com os parâmetros do circuito: ganho estático, q, relações de transformação, n_p e n_a , e relação de freqüências. Logo após relaciona-se I_{o1} com a corrente média na carga, I_{os} .

Define-se:

- frequência de operação: $f = \frac{1}{T}$;
- freqüência angular de operação: $w = 2 \cdot \pi \cdot f$;
- freqüência de ressonância: $fo = \frac{wo}{2 \cdot \pi}$;
- relação de freqüências: $\frac{f}{fo} = \frac{w}{wo} = wr$.

5.4.1 - Modo I de funcionamento

Cálculo da potência de entrada, Pi:

$$Pi = 2 \cdot \frac{Vi}{2} \cdot \overline{Ii} \tag{5.55}$$

$$\overline{Ii} = \frac{1}{T} \cdot \int_{0}^{T} Ii(t) \cdot dt$$
(5.56)

$$\overline{Ii} = \frac{1}{T} \cdot \left[\int_{0}^{\Delta t^{1}} \frac{(Vi - E)}{z} \cdot sen(wo \cdot t) \cdot dt + \int_{0}^{\Delta t^{2}} Io_{1} \cdot dt + \int_{0}^{\Delta t^{3}} Io_{1} \cdot cos(wo \cdot t) \cdot dt \right]$$
(5.57)

$$Pi = \frac{Vi^2 \cdot f}{z \cdot wo} \tag{5.58}$$

Cálculo da potência de saída:

Define-se:

- I_{os} = corrente média na carga;

- I_{op} = corrente média de L_{f} , é a corrente média entregue por T_{p} à carga;

- I_{oa} = corrente média entregue por T_a à carga;

- I_{oa1} = corrente média entregue por T_a à carga referida ao primário.

$$P_o = V_o \cdot I_{op} + V_o \cdot I_{oa} \tag{5.59}$$

$$I_{\rm oa} = I_{\rm oa1} \, . \, na \tag{5.60}$$

$$I_{op} = I_{o1} \cdot np \tag{5.61}$$

$$I_{oa1} = \frac{2}{T} \cdot \left[\int_{0}^{T} \int_{0}^{2} iLrd(t) \cdot dt \right]$$
(5.62)

$$I_{oal} = \frac{2}{T} \cdot \left[\int_{0}^{\Delta t} \frac{(V_{1} - E)}{z} \cdot sen(wo \cdot t) \cdot dt + \int_{0}^{\Delta t} I_{01} \cdot dt + \int_{0}^{\Delta t} I_{01} \cdot cos(wo \cdot t) \cdot dt + \int_{0}^{\Delta t} (I_{01} \cdot cos(wo\Delta t_{3}) - \frac{E}{L} \cdot t) \cdot dt \right]$$
(5.63)

$$P_{o} = Io1 \cdot np \cdot V_{o} + \frac{2 \cdot f \cdot na \cdot V_{o}}{wo} \cdot \left(1 - \frac{na \cdot q}{2} + \frac{\overline{Io1}^{2}}{2 \cdot na \cdot q}\right)$$
(5.64)

Balanço de potência:

$$P_{\rm i} = P_{\rm o} \tag{5.65}$$

$$\frac{wr}{2\cdot\pi}\cdot\overline{Io1}^2 + np\cdot q\cdot\overline{Io1} + \frac{wr}{2\cdot\pi}\cdot\left(2\cdot na\cdot q - 1 - (na\cdot q)^2\right) = 0$$
(5.66)

Corrente média de saída normalizada:

$$\overline{I_{\rm os}} = \overline{I_{\rm op}} + \overline{I_{\rm oa}}$$
(5.67)

$$\overline{Ios} = np \cdot \overline{Io1} + \frac{na \cdot wr}{\pi} \cdot \left(\frac{\overline{Io1}^2}{2 \cdot na \cdot q} + 1 - \frac{na \cdot q}{2}\right)$$
(5.68)

Operando com as expressões (5.66) e (5.68) obtêm-se a equação característica:

$$\overline{Ios} = \frac{wr}{2 \cdot \pi \cdot q}$$
(5.69)

Observa-se que a potência de saída é proporcional à relação de freqüências wr, para um determinado ganho estático q.

5.4.2 - Modo II de funcionamento

Potência de entrada:

$$Pi = 2 \cdot \frac{Vi}{2} \cdot \overline{Ii} \tag{5.70}$$

$$\overline{Ii} = \frac{1}{T} \cdot \int_{0}^{T} Ii(t) \cdot dt$$
(5.71)

$$\overline{Ii} = \frac{1}{T} \cdot \left[\int_{0}^{\Delta t \, l'} \frac{Vi - 2 \cdot E + Io_1 \cdot z}{z} \cdot sen(wo \cdot t) \cdot + \int_{0}^{\Delta t \, 2'} Io_1 \cdot dt + \int_{0}^{\Delta t \, 3'} Io_1 \cdot cos(wo \cdot t) \cdot dt \right]$$
(5.72)

$$Pi = \frac{Vi}{2 \cdot \pi} \cdot \frac{w}{wo} \cdot \left(2 \cdot Io_1 + \frac{Vi - 2 \cdot E}{z}\right)$$
(5.73)

Potência de saída:

$$Po = Iop \cdot Vo + Ioa \cdot Vo \tag{5.74}$$

$$Po = Io_1 \cdot np \cdot Vo + Ioa_1 \cdot na \cdot Vo \tag{5.75}$$

$$Ioa_1 = 2 \cdot \overline{Ii} \tag{5.76}$$

$$Po = Io_1 \cdot np \cdot Vo + \frac{na}{\pi} \cdot \frac{w}{wo} \cdot Vo \cdot \left(2 \cdot Io_1 + \frac{Vi - 2 \cdot E}{z}\right)$$
(5.77)

Balanço de potência:

$$Pi = Po \tag{5.78}$$

$$= \frac{\frac{w}{wo} \cdot (1 - 2 \cdot na \cdot q)^2}{\frac{w}{wo}}$$
(5.79)

$$\overline{Io_1} = \frac{wo}{2 \cdot \pi \cdot np \cdot q - 2 \cdot \frac{w}{wo} \cdot (1 - 2 \cdot na \cdot q)}$$

Corrente de saída normalizada:

$$los = lop + loa = np \cdot lo_1 + na \cdot loa_1 \tag{5.80}$$

$$\overline{Ios} = \left(np + 2 \cdot \frac{na}{\pi} \cdot \frac{w}{wo}\right) \cdot \overline{Io_1} + \left(1 - 2 \cdot na \cdot q\right) \cdot \frac{na}{\pi} \cdot \frac{w}{wo}$$
(5.81)

Característica de saída:

$$\overline{Ios} = \frac{w}{wo} \cdot \frac{np \cdot (1 - 2 \cdot na \cdot q)}{2 \cdot \left[\pi \cdot q \cdot np - \frac{w}{wo} \cdot (1 - 2 \cdot na \cdot q)\right]}$$
(5.82)

5.5 - LIMITES DE FUNCIONAMENTO

No plano (q, \overline{Ios}) da característica externa existe uma curva $\overline{Ii}(q, na, np)$ que separa as regiões de validade das equações características calculadas. Essa curva representa a condição limite na qual o capacitor ressonante atinge a tensão da fonte $V_i/2$, no mesmo instante em que a corrente i_{Lrd} na etapa c_i anula-se.

Existe também a possibilidade de operação em condução descontínua para ambos os Modos I e II.

5.5.1 - Limite entre os modos I e II de funcionamento

Para um dado q, quando se aumenta a potência transferida à carga a partir de zero percorre-se a região II (Modo II de funcionamento) até atingir o limite mencionado no parágrafo anterior, passando logo à região I (Modo I). A condição $V_F < \frac{Vi}{2}$, válida no Modo II de funcionamento, normalizada, é:

$$Io_1 < na \cdot q \tag{5.83}$$

Existe para uma dado ganho estático q uma potência máxima ou uma relação de freqüências máxima para operação no Modo II:

$$\left(\frac{w}{wo}\right)_{\max} = \frac{2 \cdot \pi \cdot np \cdot na \cdot q^2}{1 - 2 \cdot na \cdot q}$$
(5.84)

A expressão da corrente de saída nessa situação é a curva procurada:

$$\overline{Il} = \frac{\left(\frac{w}{wo}\right)_{\max}}{2 \cdot \pi \cdot q} = \frac{na \cdot np \cdot q}{1 - 2 \cdot na \cdot q}$$
(5.85)

5.5.2 - Condução descontínua no Modo I

A condição de condução descontinua ocorre para:

$$\Delta t_1 + \Delta t_2 + \Delta t_3 + \Delta t_4 \le \frac{T}{2} \tag{5.86}$$

Substituindo as expressões dos intervalos de tempo:

$$\frac{w}{wo} \le \frac{\pi}{\operatorname{arcsen}\frac{\overline{Io_1}}{1 - na \cdot q} + \frac{\sqrt{(1 - na \cdot q)^2 - (\overline{Io_1})^2}}{\overline{Io_1}} + \operatorname{arcsen}\frac{na \cdot q}{\overline{Io_1}} + \frac{\sqrt{(\overline{Io_1})^2 - (na \cdot q)^2}}{na \cdot q}}{na \cdot q}$$
(5.87)

onde $\overline{Io_1}$ verifica à expressão (5.66).

Para um dado q existe uma potência, ou freqüência máxima $\left(\frac{w}{wo}\right)_{max1}$, para operar em condução descontínua que verifica a igualdade na expressão (5.87).

Para encontrar a curva representativa deste limite deve-se substituir $\left(\frac{w}{wo}\right)_{max1}$ na expressão da corrente de saída \overline{Ios} . Devido à complexidade das expressões envolvidas o problema foi resolvido numericamente com o programa Mathcad (programa para realizar cálculos matemáticos, gráficos de funções, etc.), [14].

5.5.3 - Condução descontínua no Modo II

A condição de condução descontínua ocorre para:

$$\Delta t_1' + \Delta t_2' + \Delta t_3' \le \frac{T}{2} \tag{5.88}$$

Substituindo as expressões dos intervalos de tempo obtém-se:

$$\frac{w}{wo} \le \frac{\pi}{\operatorname{arcsin}\frac{\overline{Io_1}}{1 - 2 \cdot na \cdot q + \overline{Io_1}} + \frac{\sqrt{\left(1 - 2 \cdot na \cdot q + \overline{Io_1}\right)^2 - \left(\overline{Io_1}\right)^2}}{\overline{Io_1}} + \frac{\pi}{2}}$$
(5.89)

onde $\overline{Io_1}$ corresponde à expressão (5.79).

Da mesma forma que no Modo I, existe uma freqüência máxima $\left(\frac{w}{wo}\right)_{max 2}$ de operação que garante condução descontínua, e verifica a igualdade na expressão (5.89).

A Figura 5.7 representa a característica externa do conversor válida na região de condução descontínua, junto com o limite entre os modos de funcionamento, para diferentes valores das relações de transformação $n_a e n_p$.

Figura 5.7 - Característica externa do conversor proposto, para diferentes valores de n_o, parametrizadas na relação de freqüências w_r.

5.6 - METODOLOGIA DE PROJETO E RESULTADOS DE SIMULAÇÃO

Nesta seção é apresentada uma metodologia que permite projetar o conversor com base nas suas especificações, empregando o equacionamento das seções anteriores.

a) - Especificações do projeto:

- Potência máxima: Po;
- Tensão de saída: V_{o} ;
- Tensão de entrada: V_i ;
- Freqüência máxima de comutação: f_{max} .

b) - Calcula-se o ganho estático:

$$q = \frac{Vo}{Vi}$$

c) - Escolhe-se as relações de transformação de forma a:

- ser possível obter o q calculado na região de condução descontínua do conversor;
- minimizar o valor de corrente I_{o1} ;
- ter a máxima faixa de variação possível da variável de controle, wr.

d) - Escolhe-se a máxima relação de freqüências para trabalhar em condução descontínua:

$$wr = f_m / f_0$$

e) - Calcula-se wo.

- f) Calcula-se $\overline{I_{os}}$ da equação característica correspondente (Modo I ou II).
- g) Calcula-se a impedância característica z com a definição de corrente de saída normalizada.
- h) Calcula-se L_{rd} e C_r com wo e z.
- i) Calcula-se o filtro de saída.

Com o propósito de verificar a validade do equacionamento das seções 4 e 5 projeta-se o conversor, tomando $n_a=1$, $n_p=1$, para as duas regiões de operação e simula-se com o programa PSPICE.

A Figura 5.8 apresenta as formas de onda da corrente i_{Lrd} e da tensão V_{Cr} obtidas por simulação. A Tabela 5.1 mostra os valores das tensões e correntes, teóricos e simulados.

Primeira situação, Modo I de funcionamento: As especificações de projeto são:

> - $V_0 = 48V;$ - $P_0 = 1500W;$ - $V_i = 400V;$ - $f_{máx} = 100kHz.$

Valores calculados:

$$-q = \frac{Vo}{Vi} = 0,12;$$

$$- \text{ escolhe-se: } \left(\frac{f}{fo}\right)_{\text{max}} = 0,5;$$

$$- \overline{Ios} = 0,663;$$

$$- z = \frac{0,663 \cdot 400}{31,25} = 8,49;$$

$$- C_{\text{r}} = 93,75\text{nF};$$

$$- L_{\text{rd}} = 6,75\mu\text{H}.$$

Segunda situação, Modo II de funcionamento: As especificações de projeto são:

-
$$V_{o} = 96V;$$

- $P_{o} = 1500W;$
- $V_{i} = 400V;$
- $f_{máx} = 100kHz.$

Valores calculados:

$$-q = 0,24;$$

$$-\left(\frac{f}{fo}\right)_{max} = 0,3;$$

$$-\overline{Ios} = 0,13;$$

$$-z = \frac{0,13 \cdot 400}{15,625} = 3,328;$$

$$-C_{r} = 143,47nF;$$

$$-L_{rd} = 1,59\mu H.$$

Figura 5.8 - Formas de onda de simulação, n_a=1, n_p=1. (a) Modo I e (b) Modo II de funcionamento.

	Região I - DCM		Região II - DCM	
	Simulação	Calculados	Simulação	Calculados
<i>P</i> _i [W]	1502	1500	1500	1500
<i>P</i> _° [W]	1475	1500	1490	1500
<i>P</i> _p [W]	926	915	781	717
<i>P</i> _* [W]	584	585	726	783
I ₀₁ [A]	19,3	19,0	8,4	8,15
<i>V</i> ₀ [V]	47,6	48	95,7	96
V _{Crmáx} [V]	201	200	132	131
<i>V</i> _{cp} [V]	162	152	105	104

Tabela 5.1 - Quadro comparativo de valores de simulação e calculados, n_a=1 n_p=1.

5.8 - ESTUDO COMPARATIVO DE DESEMPENHO COM O SRC-CVC-FM

Projeta-se o conversor para ser utilizado como fonte de alimentação para aplicações em telecomunicações. Compara-se o desempenho do conversor com o do conversor SRC-CVC-PWM projetado segundo as mesmas especificações.

a) - Primeira comparação:

 $-P_{o} = 1500W;$ $-V_{o} = 48V;$ $-V_{i} = 400V;$ $-f_{m} = 100kHz.$

O conversor clássico:

Considera-se para o projeto a referência [8].

- Escolhe-se o ganho estático q_c próximo da unidade, de forma de diminuir a energia reativa circulante no primário: $q_c = 0.8$.

- Escolhe-se a relação máxima de frequência próxima da unidade, de forma de ter uma grande faixa de variação da variável de controle: $\left(\frac{f}{fo}\right)_{max} = 0.8$.

Obtém-se:

- relação de transformação n = 3,33;

$$-C_r = 93,75 nF; L_r = 17,29 \mu H;$$

O conversor proposto:

$$-q = 0,12;$$

- Escolhe-se
$$n_a = 2$$
, $n_p = 1$;

- Escolhe-se
$$\left(\frac{f}{fo}\right)_{\text{max}} = 0,7;$$

- Corrente normalizada de saída, na região I: $\overline{Ios} = 0,975$;

- Obtém-se: $C_r = 93,075 nF$, $L_{rd} = 13,9 \mu H$.

A Figura 5.9 apresenta resultados de simulação para o conversor proposto. A Tabela 5.2 mostra os valores de tensão e corrente nos interruptores e diodos para ambos os conversores, obtidos por simulação.

Figura 5.9 - Formas de onda para o conversor proposto, n_a = 2 n_p = 1 (a) Tensão em C_r e corrente primária, (b) Correntes no diodo de roda livre e de entrada.

	Conversor proposto	Conversor clássico
Correntes nos interruptores,		
[A]		
I _{ef}	7,2	8
I _{av}	4,52	4,67
I _{máx}	13,2	18
Correntes nos diodos de saída		
de <i>T</i> _a , [A]		
I _{ef}	14,4	26,8
I _{av}	9	15,5
I _{máx}	26,5	60
Correntes nos diodos de saída		
de T _p , [A]		
$I_{ m ef}$	8,2	
I _{av}	6,5	-0-
I _{máx}	13	
Tensão de bloqueio dos		
interruptores [V]	400	400
Tensão de bloqueio dos diodos		
de saída [V]		
Ta	98 (teo: 96)	100,7 (teo: 96)
T _p	510 (teo:516)	

Tabela 5.2 - Quadro comparativo, com valores obtidos na simulação

para $n_{\rm p} = 2 \ n_{\rm p} = 1$.

b) - Segundo projeto:

- $P_{\rm o} = 1500 {\rm W};$

$$-V_{o} = 60 V;$$

- $V_{\rm i}$ = 400V;

$$-f_{\rm m} = 50 {\rm kHz}$$

O conversor clássico:

$$-q_{\rm c}=0,8;$$
$$-\left(\frac{f}{fo}\right)_{\rm max}=0,8;$$

Obtém-se:

- relação de transformação n = 2,67;

$$-C_r = 187,5nF, L_r = 34,58\mu H.$$

O conversor proposto:

$$-q = 0,16;$$

- Escolhe-se: $n_a = 1,5 e n_p = 1;$

- Escolhe-se:
$$\left(\frac{f}{fo}\right)_{\text{max}} = 0,7$$
, e calcula-se wo;

- Corrente normalizada de saída, na região I: $\overline{Ios} = 0,743$;

- $C_{\rm r} = 187,5 {\rm nF}$ $L_{\rm rd} = 26,49 {\rm \mu H}.$

A Figura 5.10 apresenta resultados de simulação para o conversor proposto e para o SRC-CVC-FM. A Tabela 5.3 mostra os valores de tensão e corrente nos interruptores e diodos para ambos os conversores, obtidos por simulação.

Figura 5.10 - Formas de ondas de simulação de V_{Cr} (t) $i_{Lrd}(t)$, (a) conversor proposto, $n_a = 1,5$ $n_p = 1$ (b) SRC-CVC-FM.

	Conversor proposto	Conversor clássico
Correntes nos interruptores,		
[A] .		
I _{ef}	6,9	8
I _{av}	4,4	4,7
I _{máx}	12,2 (teo: 13,8)	18
Correntes nos diodos de saída		
de T _a , [A]		
I _{ef}	10,3	21,5
I _{av}	6,6	12,5
I _{max}	18,4	48,4
Correntes nos diodos de saída		
de T _p , [A]		
I _{ef}	7,5	
I_{av}	5,8	
I _{max}	12	
Tensão de bloqueio dos		
interruptores [V]	400	400
Tensão de bloqueio dos diodos		
de saída [V]		
Ta	121,4 (teo: 120)	127,6 (teo: 120)
T _p	261 (teo: 263)	

Tabela 5.3 - Quadro comparativo, com valores obtidos na simulação, para $n_a = 1,5 n_p = 1$.

5.9 - CONCLUSÕES

Neste capítulo foi apresentado uma nova topologia "série ressonante". Foi efectuado o equacionamento do conversor e obtida a característica externa. Os resultados das simulações validam, a priori, a análise teórica.

O novo conversor foi comparado através de simulações com a topologia original, o conversor SRC-CVC-FM.

Os resultados de simulação das Tabelas 2 e 3 indicam que os diodos de saída do transformador T_a do conversor proposto estão submetidos à correntes média, eficaz e máxima de aproximadamente a metade das correspondentes no SRC-CVC. Porém, o novo conversor adiciona um transformador e suas perdas devem ser somadas às de T_a . Em relação às perdas no circuito de saída não é possível concluir qual é a melhor topologia.

Para os interruptores observa-se, nos dois exemplos, que as correntes médias são semelhantes, a corrente eficaz na nova topologia é aproximadamente 11% menor que no conversor clássico, e a corrente máxima é aproximadamente 1,38 vezes maior no SRC-CVC que na nova topologia.

Estes últimos resultados indicam que a nova topologia poderia substituir ao conversor SRC-CVC-FM no projeto de fontes de alimentação, diminuindo as perdas de condução dos interruptores. O novo conversor seria, então, indicado para maiores potências que a estrutura original.

CONCLUSÃO GERAL

Foi estudado um conversor CC-CC em ponte completa, com comutação suave e baixas perdas de condução, o FB-ZVS-ZCS-PWM. A nova topologia é adequada para substituir ao tradicional FB-ZVS-PWM no projeto de fontes de alimentação com alta densidade de potência.

O novo conversor mantem características importantes do FB-ZVS, tais como:

- a transferência de potência à carga ocorre a freqüência constante, por modulação por largura de pulso;

- a comutação dos interruptores é não dissipativa.

Perante ao FB-ZVS, a estrutura apresenta menores perdas de condução nos interruptores, se for corretamente projetada.

A quantidade de elementos magnéticos não aumenta. Introduz-se um novo transformador, mas o indutor de comutação do FB-ZVS é eliminado, sendo recomendável trabalhar com o mínimo indutor de comutação possível, que é a dispersão de ambos os transformadores.

É necessário adicionar dois diodos retificadores de saída para o novo transformador; mas agora a potência total transferida à carga divide-se entre os dois transformadores, sendo que todos os diodos de saída são dimensionados para menor potência que no FB-ZVS.

As três últimas observações indicam que o novo conversor possibilita reduzir o volume da fonte de alimentação.

Além, a estrutura não acrescenta nenhuma dificuldade de implementação frente ao conversor FB-ZVS-PWM.

A desvantagem da topologia apresentada é sua menor robustez devido ao braço com comutação ZCS. A comutação ZVS, quando o interruptor for implementado como tiristor dual aumenta a robustez do conversor. Os resultados obtidos nas simulações e no ensaio do protótipo validaram as análises teóricas efetuadas, apesar de no ter sido considerado o fator rendimento.

Como continuidade do trabalho sugere-se a construção de um protótipo para compará-lo com os conversores FB-ZVS construídos no INEP, verificando o rendimento e o volume do novo conversor. Particularmente deve-se pesquisar qual a relação de transformação n_p mais conveniente para o projeto do conversor, sendo que numa primeira aproximação este valor não influencia as perdas de condução do conversor.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] - J.L. Freitas Vieira and I. Barbi, "High-Power Full-Bridge Zero-Voltage Switching PWM Off-Line Power Supply with Wide Load Range", Congresso Brasileiro de Electrônica de Potência (COBEP), 1991, pp. 14-20.

[2] - K.Chen and T.A. Stuart, "A 16kW, 100kHz DC-DC converter optimized for IGBTs", IEEE PESC Rec. 1991, pp 139-147.

[3] - J.G. Cho, J.A. Sabaté, C. Hua and F.C. Lee, "Zero-Voltage and Zero-Current-Switching Full-Bridge PWM Converter for high power applications", IEEE PESC Rec. 1994, pp. 102-108.

[4] - S. Hamada, Y. Maruyama, M. Nakaoka, and Y. Murakami, "An improved Soft-Switching PWM Full-Bridge DC-DC Converter modification operating at reduced conduction loss", IEEE PESC Rec. 1993, pp.165-170.

[5] - J.R. Pinheiro and I. Barbi, "The Three Level ZVS PWM converter - A new concept in high voltage DC to DC conversion", IECON'92, pp. 173-178.

[6] - I.Barbi and J.L.F. Vieira, "Constant Frequency PWM Capacitor Voltage Clamped Series Resonant Power Supply", IEEE, APEC'91, pp. 52-57.

[7] - D.Souto Coelho, "Estudo e implementação de um conversor série ressonante três níveis, com a tensão no capacitor ressonante grampeada, modulado por largura de pulso", Dissertação de Mestrado, UFSC - INEP, 1993.

[8] - Freitas Vieira, J.L., Tese de Doutorado, UFSC - INEP.

[9] - INTERNATIONAL RECTIFIER, "Insulated Gate Bipolar Transistor, DESIGNER's MANUAL", 1991.

[10] - HARRIS Semiconductors, "Power MOSFETs", 1992.

[11] - I. Barbi, "Projeto de Fontes Chaveadas", Publicação interna, UFSC - INEP, 1990.

[12] - Thornton, "Catálogo de Ferrites".

[13] - MicroSim Corporation, "Pspice Circuit Analysis User's Guide", Version 5.0, 1991.

[14] - MathSoft, Inc., "Mathcad User's Guide", 1991.