UNIVERSIDADE FEDERAL DE SANTA CATARINA

A RESOLUÇÃO DE UMA CLASSE DE PROBLEMAS DE PROGRAMAÇÃO INTEIRA NÃO LINEAR, POR MEIO DO MÉTODO SIMPLEX

ZILDO ATAIDE BROERING

MA10 - 1986

A RESOLUÇÃO DE UMA CLASSE DE PROBLEMAS DE PROGRAMAÇÃO INTEIRA NÃO LINEAR, POR MEIO DO MÉTODO SIMPLEX

por

ZILDO ATAIDE BROERING

ESTA DISSERTAÇÃO FOI JULGADA ADEQUADA PARA A OBTENÇÃO DO TÍTULO DE

"MESTRE EM CIÊNCIAS"

ESPECIALIDADE EM MATEMÁTICA E APROVADA EM SUA FORMA FINAL PELO CURSO DE PÓS-GRADUAÇÃO EM MATEMÁTICA DA UNIVERSIDADE FEDERAL DE SANTA CATARINA.

Prof. William Glenn Whitley, Ph.D.
Coordenador

BANCA EXAMINADORA:

Prof. Plinio Stange, Dr. Orientador

Prof. Gur Dial, Ph.D.

Aos meus filhos Caroline e Pedro.

AGRADECIMENTOS

Ao Professor Plínio Stange, pela sugestão do assunto, pela orientação e dedicação demonstrada no acompanhamento desta pesquisa.

Ao Professor Méricles Thadeu Moretti, pela grande ajuda prestada no início das partes que exigiam conhecimentos computacionais.

À Secretaria de Educação do Estado de Santa Catarina que permitiu a realização deste trabalho.

A todos que de alguma forma contribuíram para a realização deste trabalho.

SUMÁRIO

INTRODUÇÃO	1
CAPÍTULO I - PROGRAMAÇÃO INTEIRA	3
CAPÍTULO II	
2.1. Noções sobre Topologia no Espaço Euclidiano	6
2.1.1. Espaço Vetorial	6
2.1.2. Produto Interno e Norma	8
2.1.3. Bolas	9
2.1.4. Conjunto Limitado	9
2.1.5. Sequência no Espaço Euclidiano	1.0
2.1.6. Ponto de Acumulação	13
2.1.7. Ponto Interior	13
2.1.8. Conjunto Aberto	13
2.1.9. Ponto Aderente	14
2.1.10.Conjunto Fechado	14
2.1.11.Conjunto Compacto	15
2.1.12.Fronteira	15
2.1.13.Combinação Linear Convexa	15
2.1.14.Segmento de Reta	16
2.1.15.Conjunto Convexo	17
2.1.16.Função Continua	18
2.1.17.Função Convexa	18
.2.2. Hiperplano em \mathbf{R}^{n}	20
2.2.1. Hiperplano Separador	21
2.2.2. Hiperplano Suporte	22
2.3. Matriz	24
2.3.1. Matriz Base	24
2.3.2. Solução Básica	25

	2.3.3. Conjunto das Soluções Viáveis	25
	2.3.4. Conjunto das Soluções Básicas Viáveis	26
	2.3.5. Combinação Linear Convexa Legitima	26
	2.3.6. Vértice	26
	2.3.7. Solução Ötima ou Ponto de Ötimo	26
	2.3.8. Função Objetivo	26
2.4.	Programação Linear	27
	2.4.1. Forma Padrão de um PPL para Utilizar o Al-	
	goritmo Simplex	27
	2.4.2. Método Simplex	27
	2.4.3. Algoritmo Dual do Simplex	33
	2.4.4. Teorema da Convergência Computacional	34
CAPÍTULO	III	
3.1. M	étodo do Plano Cortante de Kelley	36
CAPÍTULO	IV - MÉTODO DE GOMORY	49
4.1. A	lgoritmo Fracionário de Gomory	49
•		
CAPÍTULO	V - EXEMPLOS	59
CAPÍTULO	VI - CONCLUSÕES FINAIS	69
BIBLIOGR	CAFIA	70

.

.

.

RESUMO

Neste trabalho nos propomos a elaborar um método que minimize uma função linear sobre um conjunto compacto convexo $V = \{x \in \mathbf{R}^n/G(x) \leq 0\}$, tal que todas as coordenadas do ponto de ótimo sejam inteiras. A idéia básica é: 1) definir uma envoltória linear convexa para V, pois assim teremos todas as restrições lineares e poderemos fazer uso do método simplex para encontrar um ponto viável, isto é, um ponto pertencente a V; 2) determinar uma solução ótima em V, que tenha todas as coordenadas inteiras. Convém notar que em ambas as etapas acima, trabalhamos somente com problemas lineares e que podem, todos, serem resolvidos com o método simplex.

Assim temos uma maneira de resolver uma classe de problemas de programação inteira não linear usando adequadamente somente o método simplex.

ABSTRACT

In this dissertation our proposal is to elaborate a method for minimizing a linear function on a convex compact set $V = \{x \in \mathbb{R}^n/G(x) \le 0\}$, where all the coordinates of the optimal point are integers. The basic idea is as follows: 1) To define a convex hull for V, because then all the restrictions are linear and we may use the simplex method for finding a feasible point, that is a point in V; 2) To determine an optimal solution in V where all the coordinates are integers. Remember that in both cases we will be working only on linear programms and it will be possible to solve each one by the simplex method.

Hence, we have a way of solving a large class of nonlinear integer programming problems adequatly using only the simplex method.

INTRODUÇÃO

Neste trabalho aborda-se o problema:

min
$$f(x)$$

S.a $g_i(x) \le 0$, $i = 1, ..., m$
 $x \in Z^n$,

onde f é uma função linear e

g_i, i = 1, ..., m são funções convexas e diferenciáveis.

Trata-se, portanto, de um Problema de Programação Inteira Não Linear - PPINL, cuja conceituação está no Capítulo I. Dadas as características do problema, sua solução pode ser obtida utilizando-se adequadamente o método simplex, o qual é apresentado sucintamente no Capítulo II, juntamente com alguns conceitos básicos de análise matemática utilizados ao longo do trabalho. No Capítulo III é proposto um método que transforma o Problemas de Programação Inteira - PPI original numa sequência de Problemas de Programação Linear - PPL's, o qual se constitui no núcleo central do trabalho. No Capítulo IV é apresentado o método dos planos cortantes de Gomory, utilizado para

resolver Problemas de Programação Linear Inteira - PPLI's. No Capítulo V são apresentados alguns exemplos resolvidos pelo método proposto e, finalmente, no Capítulo VI, são apresentadas as conclusões finais a respeito do trabalho desenvolvido.

CAPÍTULO I

PROGRAMAÇÃO INTEIRA

O termo "Programação Inteira", se refere ao estudo de problemas de programação linear para os quais os domínios de todas as variáveis estão restritas a serem números inteiros. Por exemplo, suponha que estamos considerando um problema de transporte, onde as quantidades a serem embarcadas são veis, refrigeradores, soldados etc. ou um problema de produção onde as quantidades a serem produzidas são moradias, prédios, viões, etc. Certamente a solução ótima para tal problema não pode conter valores fracionários. Há vários outros problemas de otimização que podem ser formulados com êxito como problemas de programação inteira.

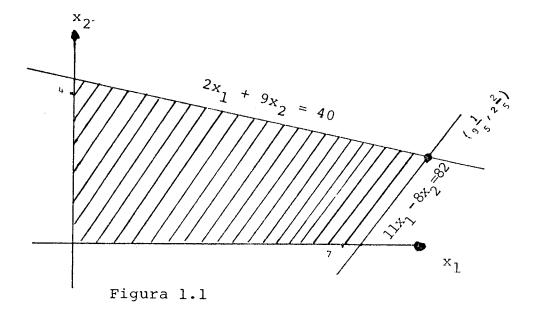
No caso de as restrições de integralidade recairem somente sobre algumas das variáveis, fala-se de "Programação Mista".

A seguir, apresentamos um exemplo de um "Problema de Programação Inteira" (PPI):

Exemplo 1:

MAX
$$f(x_1, x_2) = 3x_1 + 13x_2$$

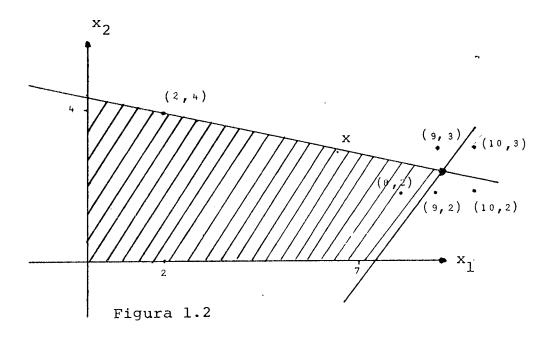
S.a


$$2x_1 + 9x_2 = 40$$

$$11x_1 - 8x_2 \le 82 \text{ e}$$

$$x_1, x_2 \in Z$$

Aplicando o método simplex encontramos como ponto de $\left(9\frac{1}{5},\ 2\frac{2}{5}\right)$


Graficamente:

Porém as coordenadas do ponto de ótimo não são inteiras e para o nosso problema x_1 , x_2 ϵ Z.

Precisamos então procurar um novo ponto de ótimo cujas coordenadas sejam inteiras.

A primeira idéia que nos surge seria arredondar a solução ótima para (9,2) ou (10,2) ou (10,3) ou talvez (9,3), contudo nenhum desses pontos é viável: os três primeiros não satisfazem a 2ª desigualdade e os dois últimos não satisfazem a 1ª desigualdade. Ver figura 1.2. Graficamente:

Pensamos então em ser razoável tomarmos o ponto com coordenadas inteiras que esteja mais próximo do ponto de ótimo e
que seja viável, no nosso caso, o ponto (8,2). No entanto, logo
verificamos que f(8,2) = 50 e que f(2,4) = 58 e portanto o ponto (8,2) não é ponto de ótimo. Assim, observamos que o método
SIMPLEX não nos fornece nenhuma informação proveitosa, logo
precisamos de um método que solucione PPLI's.

CAPÍTULO II

2.1. Noções sobre Topologia no Espaço Euclidiano

2.1.1. Espaço Vetorial.

Seja n um número natural; o Espaço Euclidiano n-dimensional é o produto cartesiano de n fatores iguais a R:

$$\mathbf{R}^{\mathbf{n}} = \mathbf{R} \times \mathbf{R} \times \dots \times \mathbf{R}.$$

Os pontos de \mathbf{R}^n são todas as n-uplas $\mathbf{x}=(\mathbf{x}_1,\,\mathbf{x}_2,\ldots,\mathbf{x}_n)$ cujas coordenadas $\mathbf{x}_1,\,\mathbf{x}_2,\ldots,\,\mathbf{x}_n$ são números reais. $\mathbf{R}^1=\mathbf{R}$ é a reta, isto é, o conjunto dos números reais. \mathbf{R}^2 é o plano, ou seja, o conjunto dos pares ordenados $(\mathbf{x},\,\mathbf{y})$ de números reais. \mathbf{R}^3 é o espaço euclidiano tri-dimensional da geometria euclidiana tradicional, cujos pontos são os termos ordenados $(\mathbf{x},\,\mathbf{y},\,\mathbf{z})$. Às vezes é conveniente considerar $\mathbf{R}^0=\{0\}$ o "espaço de dimensão zero".

No espaço vetorial \mathbf{R}^n , destaca-se a base canônica, ou base natural $\{\mathbf{e}_1, \, \mathbf{e}_2, \, \dots, \, \mathbf{e}_n\}$, formada pelos valores $\mathbf{e}_1 = (1, 0, \dots, 0), \, \mathbf{e}_2 = (0, 1, \dots, 0), \dots, \, \mathbf{e}_n = (0, 0, \dots, 1)$. Usa-remos indistintamente a notação $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ ou $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$, que é o vetor coluna associado a \mathbf{x} . Assim, se A, B $\mathbf{\epsilon}$ \mathbf{R}^n , A^tB indica o produto matricial do transposto de A por B.

A base canônica do espaço euclidiano permite estabelecer uma bijeção natural entre o conjunto $\zeta(\mathbf{R}^m; \mathbf{R}^n)$ das aplicações (ou transformações) lineares $A:\mathbf{R}^m \to \mathbf{R}^n$ e o conjunto $M(m \times n)$ das matrizes reais (a_{ij}) com m linhas e n colunas. Â matriz (a_{ij}) correspondente à transformação linear A é definida por:

A.e_j =
$$\sum_{i=1}^{n} a_{ij} e_i$$
, (j = 1, 2, ..., m) (2.1.1)

portanto, a matriz (a_{ij}) da transformação linear $A: \mathbb{R}^m \to \mathbb{R}^n$ tem como colunas as m vetores $A.e_j = (a_{1j}, \ldots, a_{nj})^t \in \mathbb{R}^n$, imagens (ou transformadas) por A dos vetores da base canônica do \mathbb{R}^m .

Reciprocamente, dada uma matriz (a_{ij}) com m linhas e n colunas, as igualdades 2.1.1 definem os valores de uma aplicação linear $A: \mathbb{R}^m \to \mathbb{R}^n$ nos m vetores da base canônica, o que é suficiente para definir o valor de A em qualquer vetor $x = (x_1, x_2, \ldots, x_n)^t$, já que

$$Ax = x_1 Ae_1 + x_2 Ae_2 + \dots + x_m Ae_m$$

Cada matriz real m x n pode ser considerada como um ponto do espaço euclidiano $R^{n.m}$.

Os funcionais lineares $f: \mathbb{R}^n \to \mathbb{R}$ representam um tipo simples de aplicações lineares. Dado o funcional linear f, sejam

 $a_1 = f(e_1)$, ..., $a_n = f(e_n)$ os valores que ele assume nos vetores da base canônica, para $x = (x_1, x_2, \ldots, x_n)^t$, com $x = \sum x_i e_i$, temos $f(x) = \sum x_i f(e_i)$, ou $f(x) = a_1 x_1 + \ldots + a_n x_n$. Notar que (a_1, a_2, \ldots, a_n) é a matriz $1 \times n$ da aplicação linear f.

Uma aplicação $\phi = \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^p$ chama-se bilinear quando for linear separadamente em relação a cada uma das suas variáveis. Portanto, temos:

$$\phi(x + x', y) = \phi(x, y) + \phi(x', y);$$

 $\phi(x, y + y') = \phi(x, y) + \phi(x, y');$
 $\phi(\alpha x, y) = \alpha \phi(x, y);$
 $\phi(x, \alpha y) = \alpha \phi(x, y),$

quaisquer que sejam x, x' ϵ \mathbb{R}^m ; y, y' ϵ \mathbb{R}^n e α ϵ \mathbb{R} . Se ϕ for bilinear, para x = $(x_1, x_2, \ldots, x_m)^t$ e y = $(y_1, y_2, \ldots, y_n)^t$, arbitrários, temos:

 $\phi(x, y) = \phi(\sum_{i=1}^{n}, \sum_{j=1}^{n}) = \sum_{i=1}^{n} y_{j} \phi(e_{i}, e_{j})$, de modo que ϕ fica inteiramente determinada pelos m.n valores

 $\phi(e_i, e_j)$ ϵ \mathbf{R}^p que assume nos pares ordenados de vetores básicos (e_i, e_j) . Notar que $\phi(x, 0) = \phi(0, y) = 0$ para quaisquer que sejam $x \epsilon$ \mathbf{R}^m , $y \epsilon$ \mathbf{R}^n . Ver |09|

2.1.2. Produto Interno e Norma

Um produto interno num espaço vetorial real E é uma função que faz corresponder a cada par de vetores $x,y \in E$ um número real, indicado por $\langle x,y \rangle$, de tal modo que, para quaisquer x,x', $y \in E \in \alpha \in \mathbb{R}$ se tenham.

a)
$$< x, y> = < y, x>$$

b)
$$< x + x', y> = < x, y> + < x', y>$$

c)
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle = \langle x, \alpha y \rangle$$

d)
$$x \neq 0 \implies \langle x, x \rangle > 0$$

Isto quer dizer que um produto interno é uma função real simétrica, bilinear, positiva definida, $E \times E \rightarrow R$.

Dados
$$x \in \mathbb{R}^n$$
, definimos $\langle x, x \rangle = \sum_{i=1}^n x_i^2$, escrevemos $|x| = \sqrt{\langle x, x \rangle}$, Logo,

$$|x| = \sqrt{x_1^2 + \ldots + x_n^2}$$
. Tem-se $|x|^2 = \langle x, x \rangle$, de modo que

 $|\mathbf{x}| = 0 \iff \mathbf{x} = 0 \text{ e } |\mathbf{x}| > 0 \iff \mathbf{x} \neq 0. \text{ O número } |\mathbf{x}| \text{ chama-se a norma euclidiana do vetor } \mathbf{x} \in \mathbf{R}^{\mathbf{n}}. \text{ Ver } |09|. \text{ Dados } \mathbf{x}, \text{ y } \in \mathbf{R}^{\mathbf{n}}, \text{ a norma de } \mathbf{x}\text{-y}, \text{ isto \'e } |\mathbf{x}\text{-y}| \'e \text{ a distância de } \mathbf{x} \text{ a y ou de y a } \mathbf{x}.$

2.1.3. Bolas

Def.: Uma bola aberta B de centro num ponto a ϵ \mathbf{R}^n e raio r>0 é o conjunto dos pontos \mathbf{x} ϵ \mathbf{R}^n cuja distância ao ponto a é menor do que r. Ou seja:

$$B(a; r) = \{x \in R^n; |x - a| < r \}.$$

Analogamente definiremos a bola fechada B[a; r] e a esfera S[a; r], ambas com centro a e raio r, anotando

$$B[a; r] = \{x \in \mathbb{R}^n; |x - a| \le r\}$$
 e
 $S[a, r] = \{x \in \mathbb{R}^n; |x - a| = r\}$. Segue-se que
 $B[a; r] = B(a; r)$ U $S[a; r]$. Ver $|09|$

2.1.4. Conjunto Limitado

Def.: Um conjunto X C R^n diz-se limitado quando existe um número real c > 0 tal que $|x| \le c$ para todo x ϵ X. Isto equivale a dizer que X está contido na bola fechada de centro na origem e raio c.

Se existir alguma bola B[a; r], de centro arbitrário,contendo X então, para todo x ϵ X, tem-se |x-a| = r. Pondo c = r + |a| temos então, $x \in X + |x| = |x-a+a| \cdot |x-a| + r$

+ $|a| \le r + |a| = c$, logo X é limitado. Assim um conjunto X C \mathbb{R}^n é limitado se, e somente se, estiver contido em alguma bola (cujo centro não é necessariamente a origem). Ver |09|

Teorema 2.1.1

Um conjunto X C \mathbf{R}^n é limitado se, e somente se, suas projeções $\mathbf{X}_1 = \pi_1(\mathbf{x})$, $\mathbf{X}_2 = \pi_2(\mathbf{x})$, ..., $\mathbf{X}_n = \pi_n(\mathbf{x})$ são conjuntos limitados em \mathbf{R} .

2.1.5. Sequências no Espaço Euclidiano

Uma seqüência em \mathbf{R}^n é uma aplicação $\mathbf{x}:\mathbf{N} \to \mathbf{R}^n$, definida no conjunto \mathbf{N} dos números naturais. O valor que essa aplicação assume no número \mathbf{k} é indicado com \mathbf{x}_k e chama-se o \mathbf{k} -ésimo termo da seqüência. Usaremos as notações (\mathbf{x}_k) , $(\mathbf{x}_k)_{k=0}$ ou $(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k, \ldots)$ para indicar a seqüência cujo \mathbf{k} -ésimo termo é $\mathbf{x}_k \in \mathbf{R}^n$.

Uma subsequência de (x_k) é a restrição da sequência a um subconjunto infinito $N' = \{k_1 < k_2 < \ldots < k_i < \ldots \}$ C N. A subsequência é indicada pelas notações $(x_k)_k$ ϵ N ou $(x_k)_i$ ϵ N.

Diz-se que uma sequência (x_k) é limitada quando o conjunto dos seus termos é limitado em \mathbf{R}^n , ou seja, quando existe $\mathbf{c} > 0$, $\mathbf{c} \in \mathbf{R}/|\mathbf{x}_k| \le \mathbf{c}$, $\forall k \in \mathbf{N}$.

Uma seqüência (x_k) em \mathbf{R}^n equivale a n seqüências de números reais. Com efeito, para cada \mathbf{k} \mathbf{N} temos $\mathbf{x}_k = (\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_2}, \mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_2}, \mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_$

as sequências das coordenadas de (x_k) . Assim, por exemplo, no plano \mathbf{R}^2 , uma sequência de pontos $\mathbf{Z}_k = (\mathbf{x}_k, \mathbf{y}_k)$ é o mesmo que um par de sequências (\mathbf{x}_k) , (\mathbf{y}_k) de números reais.

Seque-se imediatamente do Teorema 2.1.1 que uma sequência (x_k) em R^n é limitada se, e somente se, cada uma de suas sequências de coordenadas $(x_k)_k \in \mathbf{N}^{(i=1,\ldots,n)}$ é limitada em \mathbf{R} .

Diz-se que o ponto a ϵ \mathbf{R}^n é o limite de uma seqüência de pontos \mathbf{x}_k ϵ \mathbf{R}^n quando, para todo ϵ > 0 dado, é possível obter \mathbf{k}_0 ϵ \mathbf{N} tal que \mathbf{k} > \mathbf{k}_0 + $|\mathbf{x}_k|$ - a | < ϵ . Neste caso, diz-se também que (\mathbf{x}_k) converge para a ou tende para a,se escreve.

 $\lim_{k\to\infty} x_k = a, \text{ ou lim } x_k = a, \text{ ou lim } x_k = a \text{ ou simplesmente}$ $x_k + a.$

Quando existe o limite a = $\lim_{k\to\infty} x_k$, diz-se que a seqüên- $\lim_{k\to\infty} (x_k)$ é convergente. Caso contrário, diz-se que (x_k) é divergente.

Uma seqüência (x_k) chama-se crescente quando $x_1 < x_2 <$... isto é quando $x_k < x_{k+1}$ para todo $k \in \mathbb{N}$. Se tivermos $x_k \le x_{k+1}$ para todo k, a seqüência é chamada não decrescente.

Analogamente, quando $x_k > x_{k+1}$ para todo $k \in \mathbb{N}$, a sequência denomina-se decrescente e chama-se não-crescente quando $x_k \ge x_{k+1}$ para todo $k \in \mathbb{N}$.

As sequências crescentes, não decrescentes, decrescentes e não-decrescentes são denominadas de sequências monótonas. Ver

Teorema 2.1.2

Uma seqüência (x_k) em R^n converge para o ponto $a=(a_1,\ldots,a_n)$ se, e somente se, para cada $i=1,\ldots,n$ tem-se $\lim_{k\to\infty}x_k=a_i, \text{ ou seja, cada coordenada de }x_k \text{ converge para a coordenada correspondente de a.}$

Corolário 2.1.1

Sejam as sequências convergentes $x_k, y_k \in \mathbf{R}^n \in \mathbf{R}, \text{ sejam } \lim_{k \to \infty} x_k = a, \lim_{k \to \infty} y_k = b \in \lim_{k \to \infty} \alpha_k = \alpha.$ Então:

1)
$$\lim_{k \to \infty} (x_k + y_k) = a + b$$

2)
$$\lim_{k \to \infty} \alpha_k \cdot x_k = \alpha.a$$

3)
$$\lim_{k \to \infty} \langle x_k, y_k \rangle = \langle a, b \rangle$$

4)
$$\lim_{k \to \infty} |x_k| = |a|$$

Teorema 2.1.3 (Bolzano - Weierstrass)

Toda sequência limitada em $\mathbf{R}^{\mathbf{n}}$ possui uma subsequência convergente.

Para demonstrar teorema 2.1.1, 2.1.2, 2.1.3 e corolário 2.1.1 ver [09].

2.1.6. Ponto de Acumulação

Seja X C \mathbf{R}^n . Um ponto a ϵ \mathbf{R}^n chama-se ponto de acumulação do conjunto X quando toda bola aberta de centro a contém algum ponto de X, diferente do ponto a, isto é para todo $\epsilon > 0$, deve existir x ϵ X tal que 0 < $|\mathbf{x} - \mathbf{a}| < \epsilon$.

2.1.7. Ponto Interior

Seja X um subconjunto do espaço euclidiano $\mathbf{R}^{\mathbf{n}}$. Um ponto a ϵ X chama-se um ponto interior a X quando é centro de alguma bola aberta contida em X, ou seja, quando existe $\delta > 0$ tal que $|\mathbf{x} - \mathbf{a}| < \delta \rightarrow \mathbf{x}$ ϵ X. O interior de X é o conjunto int X, formado pelos pontos interiores de X. Quando \mathbf{x} ϵ int V, V C $\mathbf{R}^{\mathbf{n}}$, dizemos que o conjunto V é uma vizinhança do ponto \mathbf{x} .

Dizer que um ponto a ϵ X não é interior a X equivale a afirmar que toda bola aberta de centro a contém pontos do complementar de X, ou seja, que para todo δ > 0 existe y ϵ Rⁿ - X com $|y-a| < \delta$.

2.1.8. Conjunto Aberto

Um conjunto X C $\mathbf{R}^{\mathbf{n}}$ chama-se aberto quando todos os seus pontos são interiores, isto é, quando para cada x ϵ X existe $\delta > 0$ tal que B(x; δ) C X. Assim, X é aberto \iff int X = X.

Uma bola aberta B(a; r) C \mathbb{R}^n é um exemplo de conjunto aberto.

2.1.9. Ponto Aderente

Um ponto a ϵ \mathbf{R}^n diz-se aderente a um conjunto X C \mathbf{R}^n quando é limite de uma sequência de pontos desse conjunto. Por exemplo, todo a ϵ X é aderente a X pois podemos escrever \mathbf{R}^n a \mathbf{R}^n com \mathbf{R}^n , com \mathbf{R}^n a para todo \mathbf{R}^n . Mas, a pode ser aderente a X sem pertencer a X, neste caso a é necessariamente um ponto de acumulação do conjunto X. Por exemplo, se X = B(0, 1)C C \mathbf{R}^n é a bola aberta de centro na origem e raio 1 em \mathbf{R}^n , o ponto \mathbf{R}^n é a bola aberta de centro na origem e raio 1 em \mathbf{R}^n , o ponto \mathbf{R}^n (a ponto \mathbf{R}^n) não pertence a X. Mas, pondo \mathbf{R}^n e \mathbf{R}^n (b ponto \mathbf{R}^n) não pertence a X. Mas, pondo \mathbf{R}^n e \mathbf{R}^n in \mathbf{R}^n de \mathbf{R}^n e \mathbf{R}^n pondo \mathbf{R}^n e \mathbf{R}^n a pondo \mathbf{R}^n e \mathbf{R}^n e \mathbf{R}^n e aderente a X. O conjunto de pontos aderentes a X chama-se fecho de X e é indicado com a notação $\overline{\mathbf{X}}$.

2.1.10. Conjunto Fechado

Um conjunto X C \mathbb{R}^n chama-se fechado quando contém todos os seus pontos aderentes, isto é, quando X = \overline{X} .

Dizer que X C \mathbf{R}^n é fechado significa, portanto, o seguinte: se $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{a} \in \mathbf{x}_k$ ϵ X para todo k ϵ \mathbf{N} , então \mathbf{a} ϵ X. Por exemplo, uma bola fechada B[a; r] é um subconjunto fechado do espaço \mathbf{R}^n pois se $|\mathbf{x}_k| \le r$ para todo k e $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{b}$ então $|\mathbf{b}| = \lim_{k \to \infty} |\mathbf{x}_k| \le r$. Daí resulta que o fecho de todo conjunto limitado X C \mathbf{R}^n é limitado.

2.1.11. Conjunto Compacto

Um conjunto K C \mathbb{R}^n diz-se compacto quando forlimitado e fechado.

Assim, por exemplo, são compactos todas as esferas e bolas fechadas do espaço euclidiano, mas o espaço \mathbf{R}^n inteiro não é compacto, salvo se n = 0.

Em virtude do teorema de Bolzano-Weierstrass, um conjunto K C $\mathbf{R}^{\mathbf{n}}$ é compacto, se e somente se, toda seqüência de pontos $\mathbf{x}_{\mathbf{k}}$ ϵ K possui uma subseqüência que converge para um ponto K.

As seguintes propriedades decorrem imediatamente da definição:

- 1) K_1 , K_2 ,..., K_p compactos em $\mathbf{R}^n \rightarrow K_1 \cup K_2 \cup \ldots \cup K_p$ é compacto.
- 2) A intersecção de uma família de compactos K C ${\bf R}^n$ $\acute{\rm e}$ um conjunto compacto.
- 3) Se K C \mathbf{R}^{m} e L C \mathbf{R}^{n} são compactos então o produto cartesiano K x L C \mathbf{R}^{m+n} é compacto.

2.1.12. Fronteira

Def.

A fronteira de X em M compacto é o conjunto δX , formado pelos pontos b ϵ M tais que toda bela aberta de centro b contém pelo menos um ponto de X e um ponto do complementar M-X.

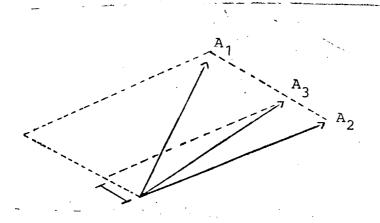
2.1.13. Combinação Linear Convexa

Def.:

Sejam p_1 , p_2 ,..., p_n vetores do \mathbf{R}^n e α_1 , α_2 ,..., α_n números reais.

 $p = \sum_{i=1}^{n} \alpha_i p_i \in \text{uma combinação linear convexa se } \alpha_i = 0$ $para i = 1, 2, ..., n e se \sum_{i=1}^{n} \alpha_i = 1.$

2.1.14. Segmento de Reta


Def.

Dados A, B \mathbb{R}^n , o segmento de reta que une A e B é conjunto S = {A + α (B-A); 0 $\leq \alpha \leq$ 1}. Notação |A, B|. De 2.1.6 até 2.1.14 ver |09|
Teorema 2.1.4

Qualquer ponto situado no segmento de reta que liga dois pontos contidos em $\mathbf{R}^{\mathbf{n}}$ pode ser expresso como uma combinação linear convexa desses dois pontos:

Dem.:

Sejam A_1 e A_2 dois pontos (vetores) pertencentes a \mathbf{R}^n . Considera-se a figura abaixo onde A_3 é um ponto qualquer entre A_1 e A_2 .

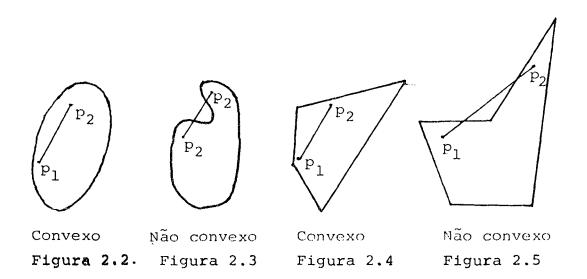
Para algum $0 \le \alpha \le 1$ tem-se por construção,

$$\alpha (A_1 - A_2) = A_3 - A_2$$

 $A_3 = \alpha A_1 + (1 - \alpha) A_2$

Como cada coeficiente de $A_3 = \alpha A_1 + (1 - \alpha)$ A_2 é maior ou igual a zero, e a soma deles igual a 1, então A_3 é uma combinação linear convexa de A_1 e A_2 .

A reciproca desse teorema é verdadeira, isto é, qualquer


ponto que for expresso como uma combinação linear convexa de ${\rm A_1}$ e ${\rm A_2}$ fica contido no segmento de reta que os une. Ver $|{\rm 02}|$

2.1.15. Conjunto Convexo

Def.:

Um conjunto de pontos M C \mathbb{R}^n chama-se convexo, se toda combinação linear convexa de qualquer par de pontos p_1 ϵ M e p_2 ϵ M também pertencer a M isto é, para todo λ $\epsilon[0, 1]$, e para todo p_1 , p_2 ϵ M, λp_1 + $(1 - \lambda)$ p_2 ϵ M. Ver |08|

Exemplos:

2.1.16. Função Contínua

Uma função $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ é continua no ponto a ϵ X quando, para todo $\xi > 0$ dado arbitrariamente, pudermos achar $\delta > 0$ tal que $x \in X \in [x - a] < \delta$ implique $|f(x) - f(a)| < \xi$.

Uma função $f:X \to \mathbf{R}$ é continua em X se for continua em todos os pontos de X.

2.1.17. Função Convexa

Def.:

Uma função $f: M \to \mathbb{R}$ é convexa sobre um conjunto convexo não vazio M se para todo par de pontos p_1 , $p_2 \in M$ e todo $\lambda \in [0, 1]$, $f[\lambda p_1 + (1 - \lambda)p_2] = \lambda f(p_1) + (1 - \lambda)f(p_2)$.

Lema 2.1.1

Se f(x) for uma função convexa sobre um conjunto T então, para todo k ϵ R, T_k = {x:f(x) \leq k, x ϵ T} será um conjunto convexo.

Dem.:

Se T_k for vazio ou unitário o lema é trivial. Se p_1 e p_2 forem dois pontos diferentes em T_k e λ ϵ |0,1|, então λp_1 + $(1-\lambda)p_2$ ϵ T_k $f[\lambda p_1 + (1-\lambda)p_2] = f(p_1) + (1-\lambda)f(p_2) = \lambda k + (1-\lambda)k = k \log [\lambda p_1 + (1-\lambda)p_2] \epsilon T_k$

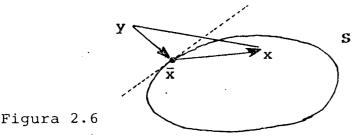
Lema 2.1.2

Se f_1, \ldots, f_n forem funções convexas sobre um conjunto convexo T, então $f(x) = \sum_{i=1}^{n} f_i(x)$ será uma função convexa em T.

Dem.:

Sejam p_1 e p_2 dois pontos em T, então, se $\lambda \in |0,1|$

$$f[\lambda p_{1} + (1 - \lambda)p_{2}] = \sum_{i=1}^{m} f_{1}[\lambda p_{1} + (1 - \lambda)p_{2}] \leq \sum_{i=1}^{m} [\lambda f_{1}(p_{1}) + (1 - \lambda) f(p_{2})] = \lambda \sum_{i=1}^{m} f_{1}(p_{1}) + (1 - \lambda) \sum_{i=1}^{m} f_{1}(p_{2}) = \lambda f(p_{1}) + (1 - \lambda) f(p_{2}).$$

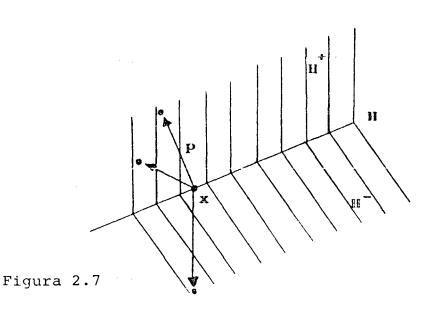

Teorema 2.1.5

Sejam S um conjunto convexo fechado em \mathbf{R}^n e y $\not\in$ S. Então existe um único ponto $\bar{\mathbf{x}}$ \in S que minimiza f. Outrossim $\bar{\mathbf{x}}$ é ponto de mínimo se e somente se $(\mathbf{x} - \bar{\mathbf{x}})^{\mathsf{t}}$ $(\bar{\mathbf{x}} - \mathbf{y}) \geq 0$ para todo \mathbf{x} \in S.

Ver demonstração em [02]

O teorema é ilustrado na figura abaixo.

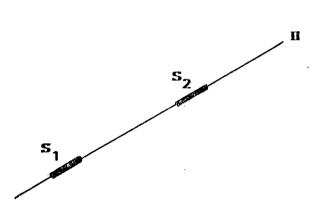
Note que o ângulo entre $x-\bar{x}$ e \bar{x} - y para qualquer ponto x ϵ S é menor ou igual que 90° e então $(x-\bar{x})^{\dagger}$ $(\bar{x}-y)$ \geq 0.

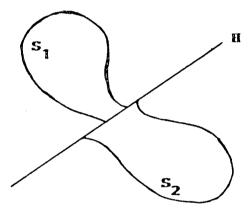


2.2. Hiperplano em Rⁿ

Def.:

Um hiperplano H em \mathbf{R}^n é uma coleção de pontos da forma $\{\mathbf{x} \in \mathbf{R}^n : \mathbf{p}^t \mathbf{x} = \alpha\}$, onde p é um vetor não nulo em \mathbf{R}^n e α é um escalar. O vetor p é chamado de vetor normal do hiperplano. Um hiperplano H define dois semi-espaços fechados $\mathbf{H}^+ = \{\mathbf{x} \in \mathbf{R}^n : \mathbf{p}^t \mathbf{x} \geq \alpha\}$ e $\mathbf{H}^- = \{\mathbf{x} \in \mathbf{R}^n : \mathbf{p}^t \mathbf{x} \leq \alpha\}$ e dois semi-espaços abertos $\mathbf{x} \in \mathbf{R}^n : \mathbf{p}^t \mathbf{x} > \alpha\}$ e $\{\mathbf{x} \in \mathbf{R}^n : \mathbf{p}^t \mathbf{x} < \alpha\}$. Ver |02|


Observe que se $x \in \mathbb{R}^n$, então $x \in H^+$ ou $x \in H^-$ ou $x \in H^+ \cap H^-$. Também um hiperplano H e o correspondente semi-espaço podem ser escritos em relação a um ponto $\overline{x} \in H$. Se $\overline{x} \in H$, então $p^t x = \alpha$, e então todo $x \in H$ deve satisfazer $p^t x - p^t \overline{x} = \alpha - \alpha = 0$, isto $ext{\'e}$, $ext{\'e}$, $ext{\'e}$ então todo $ext{\'e}$ então todo entêctica então todo entêctica entêcti



2.2.1. Hiperplano Separador

Def.:

Sejam S_1 , S_2 conjuntos não vazios em \mathbf{R}^n . Um hiperplano $\mathbf{H} = \{\mathbf{x} \in \mathbf{R}^n : \mathbf{p}^t \mathbf{x} = \alpha\}$ é dito separador de S_1 e S_2 se $\mathbf{p}^t \mathbf{x} \geq \alpha$ para cada $\mathbf{x} \in S_1$ e $\mathbf{p}^t \mathbf{x} \leq \alpha$ para cada $\mathbf{x} \in S_2$. Se S_1 U S_2 & H, então \mathbf{H} é dito uma separação própria de S_1 e S_2 . Um hiperplano \mathbf{H} é dito estritamente separador de S_1 e S_2 se $\mathbf{p}^t \mathbf{x} > \alpha$ para todo $\mathbf{x} \in S_1$ e $\mathbf{p}^t \mathbf{x} < \alpha$ para todo $\mathbf{x} \in S_2$. Um hiperplano \mathbf{H} é dito fortemente separador de S_1 e S_2 se $\mathbf{p}^t \mathbf{x} \geq \alpha + \xi$ para todo $\mathbf{x} \in S_1$ e $\mathbf{p}^t \mathbf{x} \leq \alpha$ para todo $\mathbf{x} \in S_2$ se $\mathbf{p}^t \mathbf{x} \geq \alpha + \xi$ para todo $\mathbf{x} \in S_1$ e $\mathbf{p}^t \mathbf{x} \leq \alpha$ para todo $\mathbf{x} \in S_2$ onde ξ é um escalar positivo. As figuras a seguir, mostram tipos de separações. Ver |02|

Separação Impropria

Figura 2.8

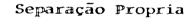
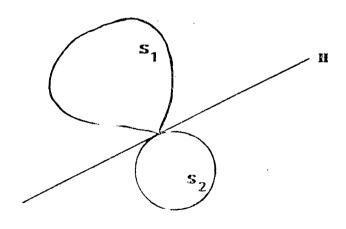
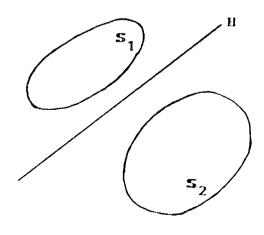




Figura 2.9

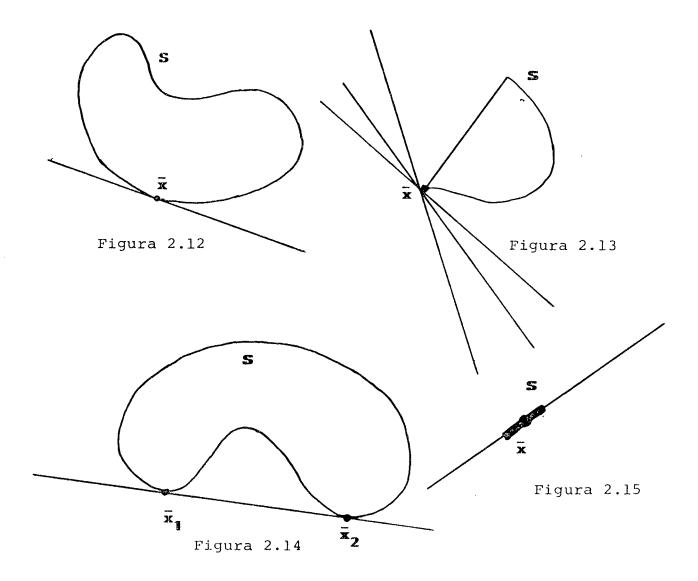
Separação Estrita

Separação Forte

Figura 2.10

Figura 2.11

Note que dados um conjunto fechado convexo S C $\mathbf{R}^{\mathbf{n}}$, não vazio e um ponto y $\not\in$ S, temos:


- a) Existe um hiperplano que separa estritamente S e y.
- b) Existe um hiperplano que separa fortemente S e y.
- c) Existe um vetor p tal que $p^{t}y > Sup \{p^{t}x:x \in S\}.$
- d) Existe um vetor p tal que $p^{t}y < inf \{p^{t}x:x \in S\}$.

2.2.2. Hiperplano Suporte

Def.:

Seja S um conjunto não vazio em \mathbf{R}^n , e seja $\bar{\mathbf{x}}$ ϵ ∂S . Um hiperplano $\mathbf{H} = \{\mathbf{x} \ \epsilon \ \mathbf{R}^n : \mathbf{p}^t (\mathbf{x} - \bar{\mathbf{x}}) = 0\}$ é chamado um hiperplano suporte de S em $\bar{\mathbf{x}}$ se $\mathbf{p}^t \bar{\mathbf{x}} = \inf \{\mathbf{p}^t \mathbf{x}; \ \mathbf{x} \ \epsilon \ S\};$ caso contrário $\mathbf{p}^t \mathbf{x} = \sup \{\mathbf{p}^t \mathbf{x}; \ \mathbf{x} \ \epsilon \ S\}.$ Ver |02|

As figuras 2.12, 2.13, 2.14 e 2.15 a seguir mostram tipos de hiperplanos suporte. Elas ilustram os casos de um único hiperplano suporte em um ponto de fronteira, um número infinito de hiperplanos suporte em um ponto de fronteira, um hiperplano que suporta o conjunto em mais que um ponto e finalmente um hiperplano suporte impróprio que contém o conjunto todo.

Teorema 2.2.1

Sejam Sum conjunto convexo fechado não vazio em \mathbf{R}^n e y \not S. Então existem um vetor p não nulo e um escalar α tal que $p^ty > \alpha$ e $p^tx = \alpha$ para cada $x \in S$.

Dem.:

O conjunto S é um conjunto convexo fechado não vazio e y $\not\in$ S. Então pelo teorema 2.1.5 existe um único ponto \bar{x} ε S tal que $(x - \bar{x})^{t}$ $(y - \bar{x}) \leq 0$ para cada $x \in S$.

Note que

$$\mid y - \bar{x} \mid^2 = (y - \bar{x})^t (y - \bar{x}) = y^t (y - \bar{x}) - \bar{x}^t (y - \bar{x}).$$

$$-\bar{x}^t (y - \bar{x}) \leq -x^t (y - \bar{x}) \text{ para qualquer } x \in S. \text{ Então} \qquad 2.1$$
implica que $p^t (y - x) \geq |y - \bar{x}|^2$ para cada $x \in S$, onde
$$p = y - \bar{x} \neq 0 \text{ isto mostra que } p^t y \geq p^t x + |y - \bar{x}|^2 \text{ para cada}$$

$$x \in S. \text{ q.e.d.}$$

2.3. Matriz

2.3.1. Matriz Base

Se uma matriz $A(m \times n)$ $m \le n$ tem n colunas A_i (i = 1, 2, ..., n) e tem m colunas A_{j1} , A_{j2} , ..., A_{jm} que são linearmente independentes, então a matriz quadrada $B = [A_{j1}, ..., A_{jm}]$, de ordem m, \tilde{e} uma base em A.

Exemplo:

$$A = \begin{bmatrix} 4 & 0 & 1 & 3 & 0 \\ 2 & 1 & 0 & -2 & 0 \\ 6 & 0 & 0 & 6 & 1 \\ & \uparrow & \uparrow & & \uparrow \\ & \lambda_{j1} & \lambda_{j2} & \lambda_{j3} \end{bmatrix}$$

então a matriz
$$B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 é uma base em Λ .

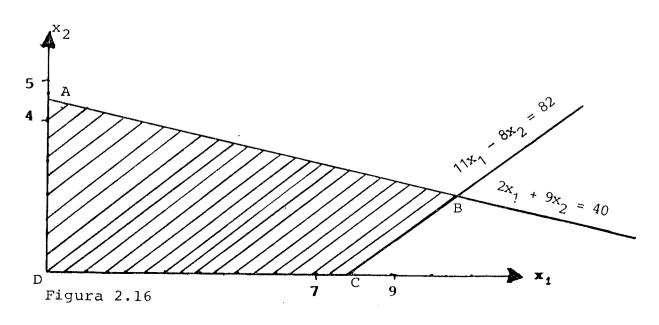
Se existir uma matriz base para a matriz A, então o sistema de equações lineares $\Lambda x = b$ tem uma solução x para qualquer b pertencente a \mathbf{R}^m . Ver |08|

2.3.2. Solução Básica

Seja $A_{(m \times n)}$ uma matriz com base $[A_{j1}, A_{j2}, \ldots, A_{jm}]_{pa}$ ra qualquer $b \in \mathbb{R}^m$, a solução básica de Ax = b, correspondente à base B, é achada resolvendo $A_{j1}x_{j1} + A_{j2}A_{j2} + \ldots + A_{jm}x_{jm} = b$ para $x_{j1}, x_{j2}, \ldots, x_{jm}$ e fazendo-se os restantes $x_{j} = 0$.

Se B = A_{j1} , A_{j2} , ..., A_{jm} é uma base de A e x_{ji} (i = 1, 2, ..., m) são as variáveis correspondentes às colunas A_{ji} (i = 1, 2, ..., m), então x_{ji} (i = 1, 2, ..., m) são as variáveis básicas e todas as outras restantes variáveis x_{j} são chamadas variáveis não básicas. Ver |08|

2.3.3. Conjunto das Soluções Viáveis


A região hachuariada da Figura 2.16 que é determinada pelas restrições do modelo abaixo, é denominada conjunto das soluções viáveis Ver |05|

Exemplo:

$$2x_{1} + 9x_{2} \le 40$$

$$11x_{1} - 8x_{2} \le 82$$

$$x_{1}, x_{2} \ge 0$$

2.3.4. Conjunto das Soluções Básicas Viáveis

São os vértices do conjunto de soluções viáveis. Na Figura 2.16, portanto, os pontos A, B, C e D.

2.3.5. Combinação Linear Convexa Legitima

Def.:

Sejam x_1 , x_2 , ..., x_k vetores do \mathbf{R}^n e α_1 ,..., α_k números reais. $\mathbf{x} = \sum\limits_{\substack{i=1 \\ i=1}}^{K} \alpha_i \mathbf{x}_i$ é uma Combinação Linear Convexa Legitima se α_i > 0 para \mathbf{i} = 1,..., \mathbf{k} e se $\sum\limits_{\substack{i=1 \\ i=1}}^{K} \alpha_i = 1$. Ver |05|

2.3.6. Vértice

Def.:

Um ponto x, de um conjunto convexo M, denomina-se vértice (ou ponto extremo) de M, quando ele não pode ser obtido como
Combinação Linear Convexa Legitima de nenhum par de pontos distintos de M. Ver |05|

2.3.7. Solução Otima ou Ponto de Otimo

É a melhor das soluções viáveis, isto é, aquela que minimiza (ou maximiza) a função objetivo, a qual é definida a seguir. Ver 05

2.3.8. Função Objetivo

O objetivo da programação linear e não linear consiste na maximização (ou minimização) de uma função, e essa função é denominada função objetivo.

2.4. Programação Linear

2.4.1. Forma Padrão de um PPL para Utilizar o Algoritmo Simplex

Sejam I = {1, 2, 3, ..., m}
$$J = \{1, 2, 3, ..., n\}$$

$$min Z = \sum_{j \in J} c^{t_{j}} \cdot x_{j}$$
S.a
$$\sum_{j \in J} a_{ij} \cdot x_{j} = b_{i}, b_{i} \ge 0 \quad i \in I$$

$$x_{i} \ge 0, \quad j \in J$$

onde as m componentes de x correspondentes aos vetores base, denominam-se VARIÁVEIS BÁSICAS (VB). As demais (n-m) componentes são VARIÁVEIS NÃO BÁSICAS (VNB). Ver |08|

2.4.2. Método Simplex

É um procedimento algébrico e iterativo, que fornece a solução exata de um PPL em um número finito de iterações e é capaz de indicar se o problema tem solução ilimitada, se não

tem solução ou se possui infinitas soluções.

Estas características do simplex permitem sua codificação em programas extremamente rápidos e eficientes.

C método simplex para dar início precisa conhecer uma solução básica viável (vertice), verifica se essa solução inicial é ótima, se for, então o processo está encerrado e esse "vertice" é solução ótima.

Se a solução básica apresentada não for ótima então o método simplex faz com que a nossa nova solução básica viável seja o vértice adjacente que mais aumente o valor da função objetivo. Note que no exemplo abaixo é o ponto (2,0).

Agora tudo o que foi feito para o ponto inicial será feito para este novo ponto no caso (2,0) e assim sucessivamente.

Exemplo:

Max f(x) =
$$5x_1 + 3x_2$$

S.a $3x_1 + 5x_2 \le 15$
 $5x_1 + 2x_2 \le 10$
 x_1 , $x_2 \ge 0$

Graficamente:

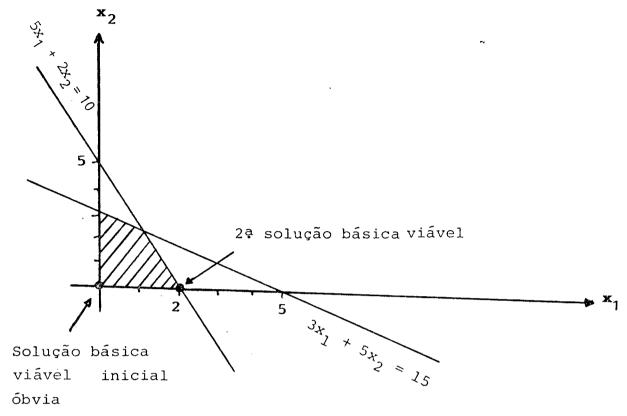


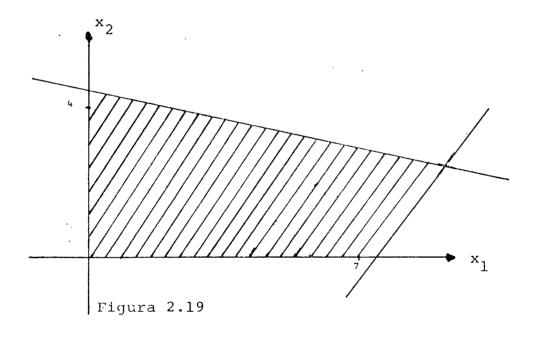
Figura 2.18

Tableau 2.4.1

	× ₁	× ₂	×3	×4	
× ₃	3	5	1	0	15
× ₄	5	2	0	1	10
	- 5	- 3	0	0	0

Quando todas as restrições forem do tipo \leq e os b não negativos como é o nosso caso, sempre se terá uma solução básica viável óbvia.

Agora vamos ver um exemplo fazendo algebricamente todas as passagens que o simplex faz. Não vamos nos preocupar com o embasamento teórico pois existe uma vasta bibliografia a respeito. Ver [05], [06], [07], [08].


Exemplo:

Max
$$f(x_1, x_2) = 3x_1 + 13x_2$$

S.a
$$2x_1 + 9x_2 \le 40$$

$$11x_1 - 8x_2 \le 82$$

$$x_1, x_2 \ge 0$$

Graficamente:

Reduzindo à forma padrão do simplex acrescentamos as variáveis de folga \mathbf{x}_3 e \mathbf{x}_4 e multiplicarmos a função objetivo por -1 assim:

Min
$$f(x_1, x_2) = 3x_1 + 13x_2$$

S.a
$$2x_{1} + 9x_{2} + x_{3} = 40$$

$$11x_{1} - 8x_{2} + x_{4} = 82$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

Tableau Inicial 2.4.2

	l	+			
	× ₁	× ₂	х ₃	×4	
+ x ₃	2	9	1	0	40
*4	11	-8	0	1	82
	- 3	-13	0	С	0

Como $C_1 = -3$ e $C_2 = -13$ são números negativos, não podemos garantir que a solução cujas coordenadas são $x_1 = 0$, $x_2 = 0$ VNB e $x_3 = 40$, $x_4 = 82$ VB, seja solução ótima.

Então colocaremos x_2 na base canônica já que 9 é o pivô pois:

Coluna Pivô
$$\rightarrow \min_{i/C_i < 0} \{C_i\} = \min_{\{-3, -13\}} = -13$$

Pivô a_{ij} $\rightarrow \min_{i \in k} \{\frac{bi}{a_{ij}}\} = \min_{\{\frac{40}{9}\}} = \frac{40}{9}$

Observe tableau inicial 2.4.2.

Já que x₂ precisa entrar na base canônica, o método simplex fará isso trabalhando com operações elementares sobre linhas até que todos os coeficientes da coluna Pivô sejam zeros, exceto o coeficiente Pivô que deverá ser a unidade. Assim teremos:

Tableau 2.4.3

	×1	× ₂	×з	×4	
× ₂	2/9	1	1/9	0	40/9
+ × ₄	115/9	0	8/9	1	1061/9
	-1/9	0	13/9	0	520/9

e assim encontramos a nova solução básica que é o ponto $x_1 = 0$, $x_3 = 0$ VNB e $x_2 = 40/9$, $x_4 = \frac{1061}{9}$ VB conforme tableau 2.4.3.

Mas como $C_1 = \frac{-1}{9}$ é um número negativo, então novamente não podemos garantir que essa nova solução básica seja ótima.

Então colocar-se-á x_1 na base já que $\frac{115}{9}$ é o pivô e é lógico sairá da base x_4 . E assim o simplex consegue uma nova solução básica que é o ponto $x_1 = 9\frac{1}{5}$, $x_2 = 2\frac{2}{5}$ VB e $x_3 = 0$, $x_4 = 0$ VNB, veja tableau 2.4.4.

Tableau 2.4.4

	× ₁	× ₂	^x 3	× ₄	
× ₂	0	1	<u>1</u> 1035	<u>-2</u> 115	2 2 2 5
×1	1.	0	$\frac{8}{115}$	9 115	$9\frac{1}{5}$
	0	0	167 115	<u>l</u> 115	5 8 4 5

Como $C_1=0$, $C_2=0$, $C_3=\frac{167}{115}$, $C_4=\frac{1}{115}$ são todos número não negativos então podemos garantir que o ponto $x_1=9\frac{1}{5}$, $x_2=2\frac{2}{5}$ VB e $x_3=0$, $x_4=0$ VNB é solução ótima, e min $f(x_1,x_2)=-58\frac{4}{5}$.

Graficamente:

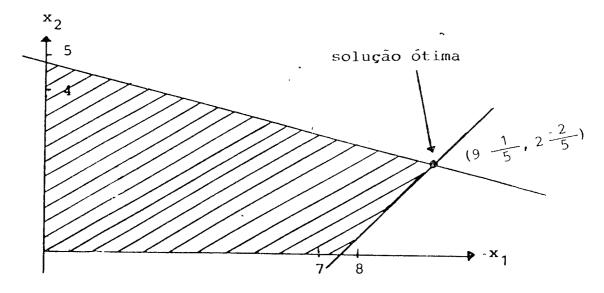


Figura 2.20

2.4.3. Algoritmo Dual do Simplex

Associado a um PPL, existe um outro PPL o qual chamamos de Dual, de modo que ao par de problemas podem ser atribuídas várias características e propriedades notáveis; basta por exemplo dizer, que através da solução ótima de um dos problemas, podemos encontrar a solução ótima do outro, e que, no caso de ambos possuírem soluções ótimas, o valor ótimo da função objetivo para ambos é o mesmo.

A aplicação de dual do simplex é particularmente importante nos problemas de pós-otimização, isto é, quando alteramos os parâmetros de um dado PPL. Também não vamos nos prolongar muito nesse assunto pois o mesmo já possui uma bibliografia bastante vasta. Ver por exemplo 05, 07, 08.

2.4.4. Teorema da Convergência Computacional

Seja G(x) uma função contínua convexa, definida sobre o conjunto convexo poliédrico compacto n dimensional $S = \{x \in \mathbb{R}^n / Ax \ge b\}$ onde A é uma matriz m x n, x é um vetor coluna de variável n x l e b é um vetor coluna m x l.

Suponha que em todo ponto t em S existe um hiperplano suporte, y = p(x, t), para o conjunto definido por $G(x) \leq 0$ com a propriedade que, para alguma constante k finita, $|\nabla p(x, t)| \leq k$ para todo x ϵ S. Suponha que o vetor gradiente é um vetor fila.

Sejac^tx uma forma linear, onde c é um vetor linha n x l e \mid c \mid \leq ∞ .

Seja V = $\{x \in \mathbb{R}^n/G(x) \le 0\}$ não vazio e V C S.

Podemos expor formalmente o problema de programação convexa como seque:

Calcule um vetor ζ tal que f = $c\zeta$ = min $\{c^{t}x/x \in V\}$.

Desde que V é compacto, o mínimo existe e é finito.

Agora deduzimos um algoritmo para resolver este problema.

Seja t um ponto arbitrário em S - V, um hiperplano suporte para o gráfico de G(x). Neste ponto pode ser escrito na forma $p(x, t) = G(t) + \nabla G(t)(x-t) = y$, onde G(x) é diferencial e y = p(x, t) é simplesmente o hiperplano tangente para o gráfico de G(x) em x = t.

Note que desde que G(x) é convexo, $p(x, t) \leq G(x)$ para todo $x \in S$. Assim se x está em V, $G(x) \leq 0$ de modo que $p(x, t) \leq 0$.

Por outro lado, desde que t não está em V, p(t, t) = G(t) > 0. Assim, o conjunto V e o ponto t estão em lados opostos do hi-

perplano p(x, t) = 0.

Agora observe que se temos uma sequência $\{s_k\}$ de conjuntos convexos com a propriedade que s_k C s_{k-1} e f_k = min $\{\ c^tx/x\in s_k\}$, então f_k \geq f_{k-1} .

Guardando este fato em mente, seja $S_0 = S$ e seja t_0 um ponto em S_0 que minimiza $c^t x$.

Suponha que \mathbf{t}_0 está em \mathbf{S}_0 - V porque se não \mathbf{t}_0 é uma solução para o problema.

Além disso seja $S_1 = S_0 \Omega \{x/p(x, t_0) \le 0\}$. t_0 não está em S_1 mas $V C S_1$. Podemos então achar um ponto t_1 diferente de t_0 que minimize $c^t x e \ f_1 \ge f_0$.

De modo geral, seja $S_k = S_{k-1} \cap \{x/p(x, t_{k-1}) \le 0\}$ e seja t_k o ponto que minimiza $c^t x$ em S_k . Neste caminho obtemos sequências $\{t_k\}$ e $\{f_k\}$ e desejamos conhecer se $\{t_k\}$ contém uma subsequência que converge para um ponto ζ , em V. Se há tal subsequência convergindo, então segue-se do método de computação que a sequência monótona crescente $\{f_k\}$ converge para f e f a desejada solução ótima. Ver 04

CAPÍTULO III

3.1. Método do Plano Cortante de Kelley

A seguir propomos um método para resolver problemas convexos. O método é um aperfeiçoamento de um estudo do método de CHEBYSHEV 04, para aproximação de funções. Seguindo a mesma linha CHENEY 04 e GOLDSTEIN 04 chegaram independentemente ao mesmo método, cuja idéia básica envolvida pode ser creditada a Remez 04.

A forma do problema de programação convexa segundo a qual procederemos é para minimizar uma função linear sobre um conjunto compacto V.

O algoritmo desenvolvido para resolver este problema envolve uma sequência de programas lineares.

Se V for somente fechado, então podemos restringir a investigação para um subconjunto convexo compacto de V, o qual contém o ponto de mínimo.

V é suposto como compacto com restrições reais, onde o problema tem um mínimo finito.

A principal razão para sucesso nesta área é que com funções convexas, todo mínimo local é mínimo global.

Vamos apresentar o método do plano cortante primeiramente por um exemplo.

Exemplo 1:

min
$$f(x) = x_1 - x_2$$

S.a $G(x) = 3x_1^2 - 2x_1 x_2 + x_2^2 - 1 \le 0$

É fácil ver que o limite da região na qual queremos minimizar fé uma elipse cujo raio maior é 1,3 e o menor é 0,54, pois fazemos uma rotação de eixos na equação $3x_1^2 - 2x_1 x_2 + x_2^2 - 1 = 0$ obtendo a equação $\frac{\bar{x}_1^2}{1/(2-\sqrt{2})} + \frac{\bar{x}_2^2}{1/(2+\sqrt{2})} = 1$, Ver |10|

Logo o nosso problema possui como restrições um conjunto convexo.

Nos termos da notação do teorema da convergência computacional escrevemos:

$$V = \{x/G(x) \le 0\}$$

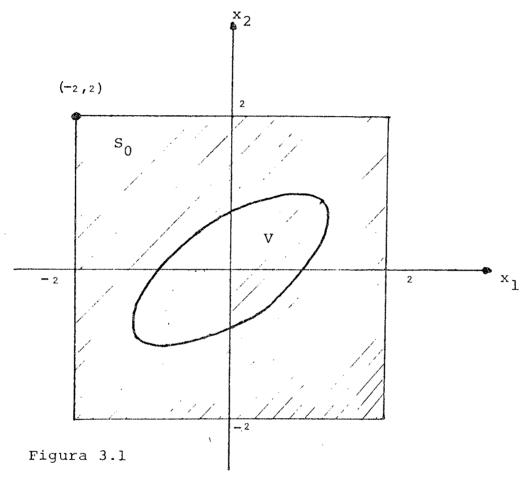
$$S_0 = \{(x_1, x_2)/ - 2 \le x_1, x_2 \le 2\}$$

$$t_k = (t_1^{(k)}, t_2^{(k)})$$

$$p(x, t_k) = G(t_k) + \nabla G(t_k) (x_1 - t_1^{(k)}, x_2 - t_2^{(k)})$$

$$\nabla G(t_k) = (6t_1^{(k)} - 2t_2^{(k)}, -2t_1^{(k)} + 2t_2^{(k)})$$

$$f_k = t_1^{(k)} - t_2^{(k)}$$


Inicialmente resolvemos o PPL.

min
$$f(x) = x_1 - x_2$$

S.a

$$-2 \le x_1 \le 2$$

$$-2 \leq x_2 \leq 2$$

Graficamente:

A solução deste problema pode ser encontrada em x = (-2,2) com $f_0 = -4$.

Portanto fixamos $t_0 = (-2, 2)$ e obtemos:

$$G(t_0) = 23$$

$$\nabla G(t_0) = (-16, 8)$$

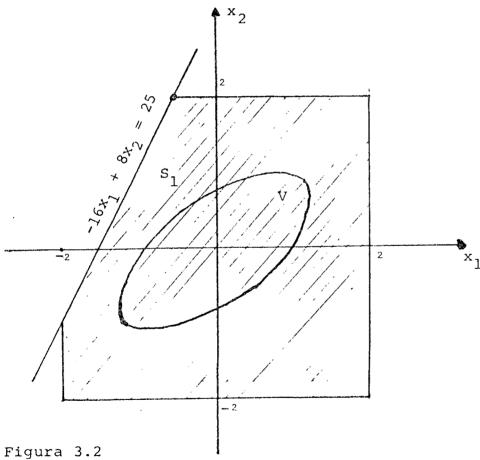
$$p(x, t_0) = -16x_1 + 8x_2 - 25 \le 0$$

Logo a nova restrição a ser acrescentada ao problema linear inicial é $-16x_1 + 8x_2 - 25 \le 0$

$$s_1 \text{ torna-se} \quad s_0 \in \{x/p(x, t_0) \leq 0\}$$

Agora vamos resolver o seguinte PPL.

$$\min f(x) = x_1 - x_2$$


S.a

$$-2 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$-16x_1 + 8x_2 \le 25$$

Graficamente:

A solução para este PPL é achada em x = (-0.56250; 2) com $f_1 = -2.5625.$

Portanto fixar-se- \tilde{a} t₁ = (-0,56250; 2) e obtemos

$$G(t_1) = 6,19922$$

$$\nabla G(t_1) = (-7,37500; 5,12500)$$

$$p(x, t_1) = -7,37500x_1 + 5,12500x_2 - 8,1922$$

Logo a nova restrição a ser acrescentada ao problema é:

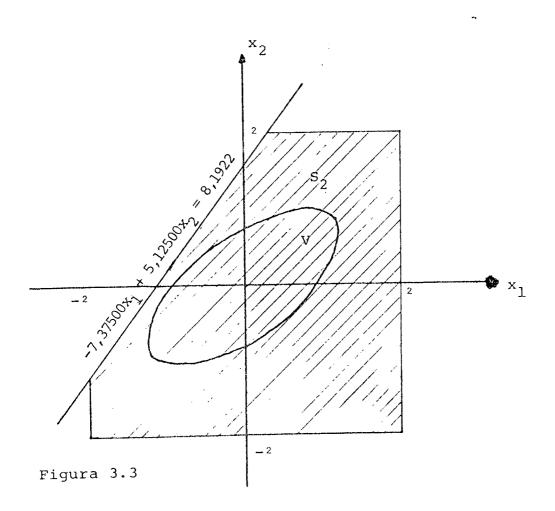
$$-7,37500x_1 + 5,12500x_2 - 8,1922 \le 0$$

$$S_2 \text{ torna-se } S_1 \cap \{x/p(x, t_1) \leq 0\}$$

Agora resolvemos o seguinte PPL.

$$\min f(x) = x_1 - x_2$$

S.a


$$-2 \leq x_1 \leq 2$$

$$-2 \le x_2 \le 2$$

$$-16x_1 + 8x_2 \le 25$$

 $-7,37500x_1 + 5,12500x_2 \le 8,1922$

Graficamente:

Agora continuar-se-ã como anteriormente, os resultados de alguns passos são dados a seguir.

$$t_{2} = (0,27807; 2,00)$$

$$G(t_{2}) = 2,11968$$

$$\Delta G(t_{2}) = (-2,33158, 3,44386)$$

$$p(x,t_{2}) = -2,33157x_{1} + 3,44386x_{2} - 4,11968$$

$$p(x,t_{3}) = -4,85328x_{1} + 2,73462x_{2} - 3,43063$$

$$p(x,t_{4}) = -2,63912x_{1} + 2,42678x_{2} - 2,47795$$

$$p(x,t_{5}) = -0,41001x_{1} + 2,11685x_{2} - 2,48442$$

$$p(x,t_{6}) = -1,38932x_{1} + 2,07204x_{2} - 2,13160$$

Exemplo 2:

min
$$f(x) = x_1 - x_2$$

S.a $G(x) = 17x^2$, $-12x$, $x_2 + 8x_2^2 - 80 \le 0$.

De maneira análoga ao exemplo anterior obtemos a equação

$$\frac{\bar{x}_1^2}{16} + \frac{\bar{x}_2^2}{4} = 1$$

$$V = x \in \mathbb{R}^{n}/G(x) \leq 0$$

$$S_{0} = (x_{1}, x_{2})/-4 \leq x_{1}, x_{2} \leq 4$$

$$t_{k} = (t_{1}^{(k)}, t_{2}^{(k)})$$

$$P(x, t_{k}) = G(t_{k}) + G(t_{k}) (x_{1} - t_{1}^{(k)}, x_{2} - t_{2}^{(k)})$$

$$\nabla G(t_{k}) = (34t_{1}^{(k)} - 12t_{2}^{(k)}, -12t_{1}^{(k)} + 16t_{2}^{(k)})$$

$$f_{k} = t_{1}^{(k)} - t_{2}^{(k)}$$

Inicialmente resolvemos o PPL

min f(x) =
$$x_1 - x_2$$

S.a $-4 \le x_1 \le 4$
 $-4 \le x_2 \le 4$

A solução é encontrada em x = (-4, 4)

$$com f_0 = -8$$

Portanto:

$$t_0 = (-4, 4)$$
 $G(t_0) = 512$

$$\nabla G(t_0) = (-184, 112)$$

$$p(x, t_0) = -184x_1 + 112x_2 - 672$$

Logo a nova restrição é -184x, +112 x_2 - 672 \leq 0 Então vamos resolver o seguinte PPL.

min f(x) =
$$x_1 - x_2$$

S.a $-4 \le x_1 \le 4$
 $-4 \le x_2 \le 4$
 $-184x_1 + 112x_2 \le 672$

Agora continuar-se-á de modo análogo, e para tal faremos um programa que solucione o nosso problema, assim, com o plex, (subrotina RVSA) encontrar-se-a o ponto de ótimo para PPL inicial, agora o nosso programa principal encontrará a restrição, acrescentando-a ao PPL inicial, para então chamar subrotina RSVA tantas vezes quantas forem necessárias para trar um ponto pertencente a V. Como precisamos acrescentar restrições ao PPL original, dimensionar-se-á a matriz A com 40 linhas e 2 colunas para o nosso exemplo. Como saída ter-se-ão impressas os dados de entrada a nova restrição, no caso - $184x_1 + 112x_2 \le 672$, o ponto de ótimo para o PPL inicial(-4,4) e a G(x) para x = (-4, 4), imprimirá novamente os dados iniciais com a nova restrição já acrescentada e posteriormente, só imprimirá as restrições, os pontos de ótimos e a G(x) para x ótimo, a seguir dar-se-á com mais detalhe entrada e saída.

No método do plano cortante de Keley o programa principal tem como parâmetros:

a) ENTRADA

A = matriz dos coeficientes das restrições dada no FORMAT (2 F 10.5);

RS = vetor dos termos independentes das restrições, dado no

FORMAT (4 F 11.6);

ZF = vetor dos coeficientes da função objetivo, dado no FORMAT
 (2 F 8.4)

M = número de variáveis do problema original;

N = número máximo de restrições do problema original;

M₁ = número de variáveis quaisquer do problema original;

N₁ = número de restrições de desigualdade do problema original;

NLINH = número de restrições que formam a envoltória linear convexa da região viável do problema original, que não é linear;

Glll = função que representa o conjunto de restrições não linear:

AUXILl = função que representa a derivada de G(x) em relação x_1 ;

AUXIL2 = função que representa a derivada de G(x) em relação x2;

AUXIL3 = função que representa p(x,t) que é o hiperplano suporte para o gráfico de G(x).

b) SAIDA

Glll = valor da função Glll dada como ENTRADA;

A(NLINH, 1) = valor do 19 coeficiente da última restrição acrescentada ao problema inicial;

A(NLINH, 2) = valor do 29 coeficiente da última restrição acrescentada ao problema inicial;

RS(NLINH) = valor do termo independente da última restrição;

X(1) = valor da la variável, ao final do programa;

X(2) = valor da 2ª variável, ao final do programa;

NLINH = número total de restrições do problema final.

Além destes, ainda os parâmetros IREINV, IPRINT, IERR, INPUT, EPI, que são de uso interno da subrotina RVSA, utilizada para o método simplex.

ILEO EXEMA

```
IMPLICIT REALAG (A-H, C-Z)
     N= NUM. DE LINHAS M= NUM. DE CELUNAS N1= NUM. DE DESIG.
    MI = NUM. DE VARIAVEIS GG.
                     A(N,M),Y(N+1,N),G(N),YCULO(N+1),KNB(M+N1),H5(N),
 DIMENCIUNAMENTOU
                     ZF(M), KIB(M+N1), YRCWC(N), RPRIM(N), RDUAL(M), X(M),
                     TI(V)
                 A(40,2),Y(41,40),G(40),YCOLO(41),KN3(42),F5(40),
    DIMENSION
    *ZF(2), KIb(42), YRCWC(40), RPRIM(40), RCUAL(2), X(2), L1(4C)
     DAIA M, N, MI, N1/2, 40, 2, 40/
     EPS=1.0-06
     IMARUI=1
     00.33 I = 1.N
     DU 33 J=1,2
 33 A(I,J)=0.
    DO 15 1=1.4
     READ (5,8)(A(I,J),J=1,2)
  15 CONTINUE
    DO 34 J=1.N
 34 RS(J)=0.
     READ (5,9) (FS(I), I=1,4)
     READ (5,10) (ZF(1), 1=1,2)
  8 FORMAT (2F10.5)
   S FORMAT (4F11.6)
  10 FORMAT (2F8-4)
     NL INH = 4
     IREINV=500
នន
     IDEINI=O
     IERR=32
     INFUT=0
     EPI=O.
     CALL RVSA (OPT, X, A, N, N, N1, N1, R5, ZF, Y, YCOLO, YFCWO, G, L1, KNH, KIE,
    *RPRIM, RDUAL, IREINV, EFI, IPRINT, IERR, INPUT)
     IMARUI= IMARUI+1
     IF (IMARUL, GT.3) GO TC 90
     WRITE 16,8)((A(I,J), J=1,2), I=1,40)
     WRITE (6,99) [RS[1], 1=1,40]
     WRITE (6,10)(ZF[I],I=1,2)
  99 FURMAT (4F10.5)
  SC G111=17. xx(1) +x(1) -12. *x(1) *x(2) +8. *x(2) *x(2) - 60
     NL INH=NLINH+1
     AUXIL1=-34. *X(1)+12. *X(2)
     AUXIL 2=-16. $x(2)+12. $x(1)
     AU \times 1 L B = -34. * X(1) * X(1) * X(1) * X(1) * X(2) - 16. * X(2) * X(2) + G111
     DO 957 NN= NLINH,40
     ALALIAH.1] = AUXIL1
     A(NLINH,2)=AUXIL2
 957 RS(NLINH)=AUXIL3
     WKITE (6,200) GI11
     WRITE (6,201) A(NLINH, 1), A(NLINH, 2), RS(NLINH), X(1), X(2), NLINH
     IF (EPS-G111) &B, 114, 114
    FORMAI ( G111 = 1 , F15 . 5 )
20C
     FURMAT(5(F12.5,1X), I5)
201
     WRITE(6,1234) I REINV, IPRINT, IERR, INPUT, EPI
114
1234 FORMAT(416, F3.1)
     STCF
```

```
.00000
          0 0
          0.0
.00000
. .
          -1.00000
• U
          1 00000
           ().7
را م
           0 0
m (J
           (0,\cdot)
• 13
           (). ()
• 3,7
.0
           Wed
           () ()
. 1)
• 0
           (1.1)
• 0
           0 0
.0
           0.0
• G
           G \cdot G
• 0
           -0.0
• 0
           0.0
           () ()
• Û
           0 - 0
. C
.0
           0.0
• ()
           0.0
• 0
           0.0
• Ū
           0.0
.0
           0.0
• 0
           0.0
           0.0
• 0
           0.0
• 0
           0.0
• C
           0.0
• 0
• Ü
           0.0
• 0
           \theta = 0
• U
           0.0
           0.0
• ()
           0 .0
- ()
           \theta 0
• 0
           6.0
• 0
           0 0
• 0
• C
           0.0
. 0
           (i,i)
ز) ਫ
           0 0
           ( )
. L
.(0000
         -4.00000
                      --4.00000 --4.00000
. 0
          (t,0)
                       () . ()
                                    U.(
· ()
          \psi \cdot 0
                       0.40
                                     ریدن)
          ( U
• 0
                        0.0
                                     0.4
          UU
                                     0.6
• (r
                        U.O.
. ()
           0.0
                        0.0
                                     0.4
. ()
           0.6
                        0.0
                                     0.0
• 0
           U \circ 0
                        0.0
                                     0 ...
• C
           0.0
                                     6.0
                        0.0
• 0
           0.0
                        0.0
                                     0.
0000 1.00 0
= 0.512.00+03
84.00000 -112.00000 -672.00000 -4.00000 -.00000 5
```

* C0000

. 00000

0 0 0 - 0

```
-- 1.00000
· . . 0
               1 000000
   1.43
184.000000-112.00000
   0.01
               0.0
                0.0
   0.0
   0.0
                0.0
   0.0
                0.0
               0.0
   0.0
   \mathbf{u} \cdot \mathbf{0}
                0 0
   0.0
                0.0
   0.0
                \theta \cdot \theta
   0 \cdot 0
                0.0
   0.0
                0.0
                0.0
   0.0
   L . 0
                UU
                0.0
   0.0
   0.0
                0.0
   0.0
                0.0
   0.0
               0.0
   0.0
               0.0
   0.0
               0 0
   0.0
                0 - 0
   U . C
                0.3
   0.0
                0.0
                0.0
   0.0
                0.0
   0.0
   0.0
                0.0
                0.0
   0.0
                0.0
   0.0
   () • U
                0 0
                0.0
   0.0
   0.0
                0 0
   \theta \bullet 0
                0.0
   0.0
                0.0
   0.0
                0.0
                0 0
   0.0
   0.0
               0 0
               0.0
   0.0
                           -4.00000
                                        -4.C0CC0
               -4.00000
   -4 • CAUUU
-672.00000
                            0.0
                                        0.0
               0.0
                                         0.0
               0.0
                            0.0
   0.0
   0.0
                0.0
                            0.0
                                         0.0
   0.0
               0.0
                            ().:)
                                         0.0
                            0.0
                                         6.4
                0.0
   0.0
                                         (1 - 1)
                0.0
                            () at1
   0 . 0
                                         G. 1
                \theta = 0
                            () = 0
   0.0
   444
                11-0
                            0.0
                                         6.0
              . 0.0
                            0.0
                                         0.5
   Uat
  1.0000 1.0000
.111 = 0.131 3D+03
                                                    -1...1735
                                  -241.67949
                                                                      4.CCCLC
    89.39130
                -78.60870
6111 = 0.368.10 + 02
                                                                      -.CC6.00
                                  -146.860aC
                                                     0.25512
    34.32600 -60.93859
SILL= 0.207.10+02
                                 1-180.72096
                                                     -0.97475
                                                                      . .66144
                                                                                     ٤
    64.35865
                  -53.31996
```

111 ==	0.602	50+01	•				
	6.19298		35	-166.00043	~C.24288	2.04753	ç
111=	0.183	00+01					
*5	3.20615	~49.533	55	161.83005	·C • 64224	2.61417	1 (
111=	· 0.485	00+00					
4	8.62666	-49.958	58	-160.40550	·144631	.78768	1.1
111=	0.123.	90+00				•	
5	66.66182	49.458	53	160-12333	16.04272	7.68413	12
111=	. 0.311.	10-01					
4	49.56443	-49.634	28	-lou.031.8.	-0.49355	73158	1.3
11i=	. 0.780?	3D-02					
63	50.09434	-49.527	13	-160.06781	-0.51776	1.706 ≥8	14
111=	0.1952	6D-02					
4	9.82445	-49.575	89	-160.00195	-C.50570	71522	1 5
111=	. 0.488	1D-03					
4	+9.68940	-49.600	29	-160.00049	·C * 49557	2.12534	1.4
111=	0.1220	9D-03					
4	19.62167	-49.612	53	-160.CCC12	-0.49649	2.72641	1/
111=	0.3152	6D-04					
4	9.58737	-49.618	72	-160.00003	-0.49493	2.72557	1.8
5 C	0 0	21	00.0				

E assim encontramos como ponto de ótimo $x_1 = -0.49493$ e $x_2 = 2.72997$ o qual pertence a V. Como podemos observar, as suas coordenadas não são inteiras mas nós precisamos que o sejam. Então necessitar-se-á de um método que encontre o ponto de ótimo cujas coordenadas sejam todas inteiras. Tal método apresentar-se-á no Capítulo IV.

CAPITULO IV

METODO DE GOMORY

4.1. Algoritmo Fracionário de Gomory

Foi um primeiro método que surgiu para solucionar PPLI's, o qual foi publicado em 1958.

A idéia do algoritmo fracionário de Gomory é procurar uma envoltória convexa linear dos pontos inteiros viáveis do PPLI. Executam-se cortes no conjunto viável sem deixar de fora nenhum ponto inteiro que lhe pertença, até que ao resolvermos o PPL com o novo conjunto viável, tenhamos para solução um vértice, cujas coordenadas sejam todas inteiras.

Tal método consta do seguinte:

Resolvemos o PPL original, ignorado as restrições de integralidade. Se esta solução possuir todas as coordenadas inteiras, ela será uma solução ótima para o PPLI. Caso contrário, geramos uma nova restrição para ser acrescentada ao problema.

Esta restrição terá duas propriedades fundamentais:

- a) A solução ótima não inteira para o PPL não satisfará esta restrição.
- b) Todas as soluções viáveis inteiras para o problema original satisfarão a nova restrição.

Teorema 4.1 "O corte de Gomory"

 $\Delta = \left[\begin{array}{cc} \mathbf{b_i} \right] - \sum\limits_{j} \left[\begin{array}{cc} \mathbf{a_{ij}} \end{array} \right] \mathbf{x_j} \text{ não elimina nenhuma solução inteira viável.}$

Teorema 4.2 "Cada restrições" (corte de Gomory)

Adicionada ao quadro do simplex pode ser expressa sob forma de restrição linear com coeficientes inteiros em função das variáveis não básicas do tableau inicial do simplex.

Dem.:

Teoremas 4.1 e 4.2 ver 07.

Vamos apresentar o algoritmo fracionário de GOMORY, primeiramente com um exemplo.

Seja o PPLI

$$\min f(x_1, x_2) = x_1 - 3x_2$$

S.a

$$x_1 - x_2 \leq 2$$

$$2x_1 + 4x_2 \leq 15$$

$$x_1, x_2 \ge 0 e x_1, x_2 \epsilon z$$

Adicionando variáveis de folga x_3 e x_4 restritas a assumirem só valores inteiros obtemos o PPL associado.

min
$$f(x_1, x_2) = x_1 - 3x_2$$

S.a
$$x_1 - x_2 + x_3 = 2$$

$$2x_1 + 4x_2 + x_4 = 15$$

$$x_1, x_2, x_3, x_4 \ge 0; x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

Inicialmente então, resolvemos o problema acima ignorando as restrições de integralidade.

Tableau Inicial 4.1.1

	× ₁	*2	*3	×4	
х ₃	1	-1	1	0	2
-x ₄	2	4	0	1	15
ACCOMMON AND AND ADDRESS OF THE PARTY.	1	` 4	0	0	О

Usando o algoritmo simplex obtemos o

Tableau Final 4.1.2

	× ₁	× ₂	× ₃	× ₄	
×3	3/2	0	1	1/4	23/4
× ₂	1/2	1	0	1/4	15/4
	5/2	0	О	3/4	45/4

Assim o valor mínimo da função objetivo, ignorando as restrições a valores inteiros é obtido em $x_1=0$, $x_2=\frac{15}{4}$, $x_3=\frac{23}{4}$, $x_4=0$.

Graficamente:

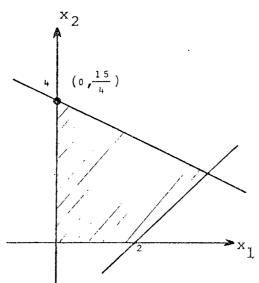


Figura 4.1

Já que este ponto possui coordenadas não inteiras, precisamos gerar uma nova restrição que ampute do conjunto viável anterior a solução ótima não inteira, no caso (0, 15/4).

Para isso o algaritmo fracionário de GOMORY, poderia trabalhar com qualquer uma das restrições do tableau final do simplex, que tenha um termo constante não inteiro. No entanto, na prática obtemos a solução mais rapidamente trabalhando com aquela restrição cujo b_i possuir parte fracionária maior.

No nosso caso elas são iguais.

Então vamos escolher a primeira restrição ou seja

$$\frac{3x_1}{2} + x_3 + \frac{x_4}{4} = \frac{23}{4}$$

Separando todas as constantes em partes inteiras e fracionárias temos:

$$(1 + \frac{1}{2})x_1 + 1x_3 + \frac{1}{4}x_4 = 5 + \frac{3}{4}$$

Logo

$$\frac{x_1}{2}$$
 + $\frac{x_4}{4}$ - $\frac{3}{4}$ = 5 - x_1 - x_3

Já que queremos soluções inteiras, o membro direito dessa equação deve ser inteiro, digamos \mathbf{x}_5 .

Assim

$$\frac{x_1}{2} + \frac{x_4}{4} - \frac{3}{4} = x_5, x_5 \in \mathbb{Z}$$

Como x_1 , $x_4 \ge 0$ e x_1 , x_4 , $x_5 \in Z$ então $x_5 \ge 0$.Logo a restrição gerada que será acrescentada ao problema anterior do tableau 4.1.2. é

$$\frac{x_1}{2} + \frac{x_4}{4} - \frac{3}{4} = x_5, x_5 \ge 0$$
 e inteiro.

Assim temos o PPLI

min
$$f(x_1, x_4) = \frac{5}{2}x_1 + \frac{3}{4}x_4 - \frac{45}{4}$$

S.a

$$\frac{3}{2}x_1 + x_3 + \frac{1}{4}x_4 = \frac{23}{4}$$

$$\frac{1}{2}x_1 + x_2 + \frac{1}{4}x_4 = \frac{15}{4}$$

$$\frac{1}{2}x_1 + \frac{1}{4}x_4 - x_5 = \frac{3}{4}$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0, x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in Z$$

Agora procedemos como antes, resolvendo o correspondente PPL. Para fazer isto já que simplesmente adicionamos uma restrição a um problema resolvido, podemos usar o ALGORITMO

DUAL SIMPLEX, uma vez que se trata de um problema de pós-otimização. (Ver 05, p.217-223)

Depois de multiplicar a nova restrição por (-1) obtemos o tableau inicial 4.1.3.

	× ₁	^x 2	х ₃	×4	* ₅	
	3/2	0	1	1/4	0	23/4
	1/2	1	0	1/4	0	15/4
* ₅	}	0	0	-1/4	1	-3/4
	F /2			2 / 4	^	45.74

Tableau Inicial 4.1.3

Usando o algoritmo dual simplex obtemos o tableau final 4.1.4.

Tableau Final 4.1.4

O ponto solução aqui tem todas as coordenadas inteiras e portanto temos a solução ótima para o PPLI original.

Assim, o valor mínimo da função objetivo é -9 que é obtido no ponto $x_1 = 0$, $x_2 = 3$, $x_3 = 5$, $x_4 = 3$ e $x_5 = 0$.

Geometricamente, aconteceu o seguinte:

Os pontos viáveis para o sistema de restrições original são os pontos do conjunto de soluções viáveis que possuem coordenadas inteiras, conforme figura abaixo.

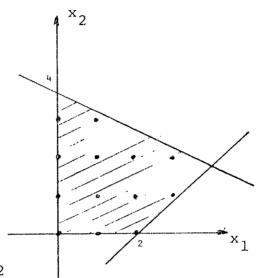


Figura 4.2

Agora a nova restrição pode ser expressa como

$$\frac{x_1}{2} + \frac{x_4}{4} - \frac{3}{4} \ge 0$$

Do tableau final do simplex no qual obtivemos a primeira solução ótima não inteira temos a restrição

$$\frac{1}{2}x_1 + x_2 + \frac{1}{4}x_4 = \frac{15}{4} \quad \log x_4 = 15 - 2x_1 - 4x_2.$$
 Usando
$$x_4 = 15 - 2x_1 - 4x_2 \quad \text{a desigualdade acima reduz-se a}$$

$$2x_1 + (15 - 2x_1 - 4x_2) \geq 3 \quad \text{ou} \quad x_2 \leq 3.$$

Esta nova restrição é equivalente a uma desigualdade que amputa do conjunto viável original a solução ótima de coordenadas não inteiras $(0, \frac{15}{4})$, mas não exclui de consideração nenhum ponto de coordenadas inteiras que seja viável, conforme podemos observar na Figura 4.3.

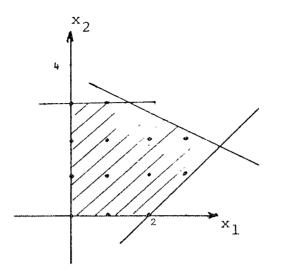


Figura 4.3

Agora vamos descrever com detalhe como estas novas restrições são geradas.

Suponhamos que depois de resolvido o PPL associado, a variável básica da i-ésima linha do final do tableau possua valor não inteiro. Então, precisamos acrescentar uma nova restrição.

Suponha que essa i-ésima restrição seja

$$\sum_{j} a_{ij} x_{j} = b_{i}$$

Vamos denotar por m o maior inteiro contido em m ou seja, o maior inteiro menor ou igual a m.

Exemplos:

a)
$$[2\frac{1}{2}] = 2$$

c)
$$\left[-4\frac{1}{3}\right] = -5$$

Agora vamos definir a parte fracionária de um número m por m - [m].

Exemplos:

a) a parte fracionária de
$$2\frac{1}{2}$$
 é $2\frac{1}{2}$ - $\left[2\frac{1}{2}\right]$ = $2\frac{1}{2}$ - 2 = $\frac{1}{2}$

b) a parte fracionária de 5 é 5 -
$$[5]$$
= 5- - 5 = 0

c) a parte fracionária de
$$-4\frac{1}{3}$$
 é

$$-4\frac{1}{3} - \left[-4\frac{1}{3}\right] = -4\frac{1}{3} - (-5) = -4\frac{1}{3} + 5 = \frac{2}{3}$$

Observe que a parte fracionária de um número é sempre não negativa e menor que 1.

Agora vamos denotar por f_{ij} a parte fracionária de a_{ij} e por f_i a parte fracionária de b_i , assim:

$$f_i = b_i - [b_i]$$

Já que a i-ésima restrição é $\int_{j}^{a} a_{ij} x_{j} = b_{i}$ podemos rescrevê-la como $\int_{j}^{c} (f_{ij} + [a_{ij}])x_{j} = f_{i} + [b_{i}]$.

Logo
$$\sum_{j} f_{ij} x_{j} - f_{i} = [b_{i}] - \sum_{j} [a_{ij}] x_{j}$$
 (4.1)

Note que todos os termos constantes do lado direito de (4.1) são inteiros. Logo, para qualquer solução inteira do sistema de restrições original, o lado esquerdo de (4.1) deve ser inteiro.

Além disso, desde que todas as coordenadas são não negativas e f é menor que 1, o lado esquerdo de (4.1) deve ser maior ou igual a zero. Assim, temos a nova restrição

$$\sum_{j} f_{ij} x_{j} - f_{i} \ge 0, \text{ e inteiro}$$
 (4.2)

Desenvolvemos (4.2) de modo que todas as soluções inteiras viáveis para o problema original satisfarão esta nova restrição e que pelo acréscimo desta restrição ainda temos um PPLI.

Além disso, a solução ótima básica viável não inteira de tableau final do PPL correspondente não satisfará esta restrição.

Escolhemos i tal que b_i não seja um inteiro, e assim $(f_i > 0)$. Agora as únicas variáveis x_j que podem aparecer em (4.2) são variáveis não básicas do tableau final. Os coeficientes das variáveis básicas são 0 ou 1, e assim temos a parte fracionária zero.

No exemplo, as variáveis da restrição acrescentada eram $x_1 \in x_4$ e as variáveis não básicas do tableau final eram solução do problema original.

Por isso a correspondente solução básica viável com $x_j = 0$ para todas as variáveis não básicas x_j não satisfaz (4.2). Portanto, temos que continuar o mesmo procedimento até que todas as coordenadas da solução viável encontrada sejam inteiras.

CAPITULO V

Neste Capítulo apresentar-se-ão os exemplos dados no Capítulo III resolvidos; com a condição de as coordenadas serem inteiras e para tal, acrescentamos ao programa do Capítulo III as subrotinas "RESTRI" e "INTE" que fazem com que o ponto de ótimo possua todas as suas coordenadas inteiras como vimos no Capítulo IV. Os dados de entrada serão os mesmos vistos no Capítulo III, e como saída deixamos de imprimir a matriz A, por ocupar muito espaço, já que tivemos que dimensioná-la com 40 linhas e 30 colunas.

O programa principal para o método de Gomory tem como parâmetros de:

a) ENTRADA:

- A = matriz dos coeficientes das restrições dada no FORMAT (2F10.5);
- RS = vetor dos termos independentes das restrições, dado no FORMAT (4F11.6);
- ZF = vetor dos coeficientes da função objetiva dado no
 FORMAT (2F8.4);

NLINH = número de restrições que formam a envoltória linear convexa da região viável do problema original;

M = número de variáveis do problema original;

N = número máximo de restrições do problema original;

M₁ = número variáveis quaisquer do problema original;

N₁ = número de restrições de desigualdade do problema original;

Glll = função que representa o conjunto de restrições não linear;

AUXILl = função que representa a derivada de G(x) em relação x_1 ;

AUXIL2 = função que representa a derivada de G(x) em relação x_2 ;

AUXIL3 = função que representa p(x,t) que é o hiperplano suporte para o gráfico de G(x).

b) SAIDA

Exatamente os mesmos parâmetros que os da SAÍDA do método de Kelley.

Este programa chama ainda as subrotinas INTE e RESTRI, descritas a seguir.

INTE (RS, N, II, IB, NLINH, B3, B2)

Objetivo: Selecionar a restrição que tem o termo independente com a maior parte fracionária.

Os parâmetros são:

a) ENTRADA:

RS = vetor dos termos independentes das restrições;

N = número máximo de restrições do problema original;

NLINH = número de restrições que formam a envoltória linear convexa da região viável do problema original.

b) SAÍDA:

II = indice da restrição com o termo independente de maior
 parte fracionária.

Os parâmetros IB, B2 e B3 são de uso interno da subrotina e representam:

IB = parte inteira do termo de maior parte fracionária;

B3 = parte fracionária do termo de maior parte fracionária;

B2 = o mesmo que B3.

RESTRI (II, M, A, N, B3, NLINH, RS, IA).

Objetivo: Construir a nova restrição a ser acrescentada ao PPL.

Os parâmetros são:

a) ENTRADA:

- II = indice da restrição com o termo independente de maior
 parte fracionária;
- M = número de variáveis do PPL antes de ser acrescentada a nova restrição;
- A = matriz dos coeficientes antes de ser acrescentada as restrições;
- N = número máximo de linhas da matriz A;
- B3 = parte fracionária do termo de maior parte fracionária;

NLINH = número de restrições antes de ser acrescentada as restrições.

b) SAIDA:

- M = número de variáveis do PPL após ser acrescentada as restrições;
- A = matriz dos coeficientes após ser acrescentadas as restrições;

NLINH = número de restrições após ser acrescentada as restrições;

RS = vetor dos termos independente das restrições após ser acrescentada as restrições;

IA = vetor de uso interno da subrotina.

```
IMPLICIT REAL#8 (A-H, 0-4)
      N= NUM. DE _INHAS M= NUM. DE JOEUNAS NI= NUM. DE DESIG.
C
      MI = NUM. TE VARIAVEIS 00.
(
                      A(M, M), Y(N+1, M), G(M), YCOLJ(N+1), KNB (M+N1), RS(M),
   CCTMSMANDISMBMIC
C
                      ZF(M), KID(M+N1), YROVD(N), RPRIM(N), RDUAL(M), X(M),
Ĉ
      DIMENSIO, A(4),30), Y(41,40), G(40), YUGLG(41), KNB(70), 85(4),
     *ZF(30),KIB(70),YROWO(40),PPRIM(40),ROUAL(30),X43(),HI(40)
      DIMENSIO + 1x(30),18(40),32(40),1A(40)
      DATA M, N, M1, N1/30, 40, 30, 40/
      EPS=1.0- 6
      IMARUI=1
      00 33 I = i, N
      DO 33 J=1,30
   33 A(I,J) = 0
      DO 15 I=1,4
      READ (5.8)(A(I,J),J=1.2)
      CONTINUE
      100.34 J = 1.N
   34 RS(J)=).
      DU 35 J=1,37
      ZF(J)=0.
      READ (5,9) (RS(I), I=1,4)
      READ (5,10) (ZF(1), 1=1,2)
    8 FURMAT (2F1).5)
    9 FORMAT (4F11.5)
   10 FORMAT (2F8.4)
      NLINH=+
 88
      IREINV=500
      IPRINT=0
      IERR=32
      C=TU9KI
      EPI=D.
      CALL RVS (1071, X, A, M, N, MI, NI, RS, ZF, Y, YCULD, YROWB, G, LI, KNB, KIB,
     *RPRIM, ROUAL, IREINV, EPI, IPRINT, IERR, INPUT)
      IMARUI=1MARJI+1
      IF (IMARUL ST. 3) GU TU 90
      WRITE (5,99)(RS(I),I=1,40)
      WRITE (6,13)(2F(1),1=1,33)
   39 FORMAT(4510.5)
   30 G111=3.*X(1)*X(1)-2.*X(1)*X(2)*X(2)*X(2)-1.
C 90 G111=17.\%X(1)\%X(1)-12.\%X(1)\%X(2)+8.\%X(2)+8.\%X(2)-80.
      NLINH=NLINH+1
      IF(NLINH, GT. 2)) NLINH=5
      AUXIL1 = -e.*X(1) + 2.*X(2)
      AUXIL1 = -34. #X(1) + 12. #X(2)
C
      AUXIL2= 2.4<(1)-2.4x(2)
      AUXIL2 = -16.*X(2) + 12.*X(1)
C
      AUXIL3=-6.*X(1)*X(1)+4.*X(1)*X(2)-2.*X(2)*X(2)+3111
      AUXIL3 = -34.4x(1)*x(1)+24.4x(1)*x(2)-16.4x(2)*X(2)+3111
C
      DO 957 NO NEINH,40
      A(NLIVH, 1) = AUXIL1
      A(NLIN+,2)=AJXIL2
  957
      RS(NLINH)=AJXIL3
      RS(NLINH)=AJXIL3
```

2.00000	2 00000	2.05600	2.00000			
U • 0	O Ù	0.0	6.6			
1.0	() ()	U.9	6.0			
		0.0	6.6			
		() a ()	0.0			
• 5		0.7	6.4			
		0.0	((.		•	
0.0 0.0		0.0	() → () () → (
0 • 0 2 • 0			0 • €,			
.0000 -1.		0.0				
1= 0.2						
) CUU	25.00000	-2.00000		' ?
			-2.00000			
5.00006			(.0			
υ . 0		() ()	Ç. • (.			
		0.0	0.0			
		0 • 1	C			
		0.0	C. 0			
0.0 0.0		0.0	0.0			
0.0		0.0 0.0	0 • 0 0 • 0			
U.O		0.0	0.0			
.0000 -1.		0.0	0 • 0			
1= 0.6						
	, -5.12	2500	-8.19322	, -û.J625c	2.6000.0	É
1= 0.2	21157D+01		,			
2.33157		¥ 336	.4.11968	1031501	Z.CCCC0	ì
1 = ().1						
4.85320		1462	-3.4 11.03	-6.52561	4 to 3 7 c 5	ç
1= 0.4			0 7 2 2 5	0 5340	1 1 (0 1 0	
2.63912 1= 0.4		16/6	2.4/1/0	0.05309	1.16010	ċ
		bash	~2.4:4.	0.42671	.48513	16
i = 0.1		. 00)		00001	* 10 2 2 2	£ "
1.38932		/204	-2.13160	0.17068	1.20670	1.1
1= 0.4						
1.97191	L 2 ()4	+53}	-2.64658	0.41837	1.641 6	12
1= 0.6	383 /9D-01					
		1310	-2-06834	6.16613	1.84642	13
1 = 0.1	172 5D-U1					
		1044	-2401722	0.67338	192584	14
i= 0.4	44374U~UZ	CONT.	the decreased	0.62629	and the second second	
1= 0.1)	7200	*Z+U0444	0.62629	₹.97523	15
2 - OOA 2 J	127500°02 1 2 (16	1125	m 1 111.1 26 '	-0.00124	1.99938	1.6
1= 0.5		,,,,,	2.00120	**************************************	1 4 7 7 7 7 7 7	1, C
1.93967	7 ・2・0・2・0・2・0・2・0・	Cus	-2.00653	0.01516	1-01514	17
	2.2 (2.0)					1 '
1.97234	-2.0	C04	-2.00013	0.06652	1.00654	18
l = 0.3	335 2D-04				1	
1.98870	2.00)(UZ	-2.00003	0.00283	1.0284	1 ç
$C = C \cdot A$	14.8 7.70 05					
1.99693	·-2.00	Coll ·	-2.Cl.Chi	U.LCC77	1.00077	20
i = 0.2	122.00-05		•			

2.00114	-2.69C00	-2.00000	-0.t0(28	1.99512	21
11= 0.555	390~06				
1.99903	-	-2.0(500	0.00024	1.00024	22
1)= 0.139	00-06				
2.00005	· 2 • 00 CO0	-2.0000	.0.00062	. 995₹8	23
11 = . 0.347	.0D-07				
1.49955	-2.00Cu)	-5.00 mig	0.00011	1.0001	24
11 = 0.868	40-08				
1.99982	2.01600	·2.666.	U.UCEC5		۷ "
11 = 0.217	7D-08				
1.99995		-2.00000	0.00001	1.006.1	26
11= 0.542					
2.00002	-2.00C0d	-2.00000	-0.00000	· . C C C C C	27
11 = 0.135					
1.99998		-2.00000	0.00000	1.00000	2.5
11 = 0.339					
2.00000	-2.00COC	-2.01000	0.40000	CCC10	25
500 U	31 00.0				

			C 7 11-24 4 1 C 44-44-4		an additional of the property and the state of	
-4.00000		u ~4.0€)€	∪ -4.CJUU			
Cac	0.0	J • U	(.)			
<u> </u>		0.0				
0.0	0.0	0.0	C.U			
0.0	0.0	U. 0	0 • 0			
	0.0		<u>C.O</u>			
C.€ C.⊖	0.0	U.(U • U ≒ • U	•		
0.0	0.0	0.0				
	0.0	0.0	0.0	The state of the s		
1.0000 -			•			
3111=0	.512000+C	3			**************************************	
				-4.00000	4.00000	ر٠
			0 -4.00000			
· ·		0.0			ALL THE PARTY OF T	
		0.0				
		0.0				
C.C	0.0		0.0	- Marriera, to -trans anti-refer to 1.1.5. This articular design conference of articular sector provides a		
		0.0	U.C			
	O.U	<u> </u>	<u> </u>			
		0.0				
		0.0	0.0			
_1_0000 -						
3111= 3			001 11 15	• • • • • • •	, , , , , , , , , , , , , , , , , , ,	
		.50870 -		• -1.21739	4.00060	<i>t.</i>
		2	196.86080	0.25512	4 . COUČC	7
39.320 3111= 0			1 35.30000	0.20012	4.0000	•
	6562	. 31996	186.72096	-(.97475	2.03144	. 5
3111= J				• • •		
			160.02349	-1.26263	3.,4793	د.
5111= C	.1830JD±i		· · · · · · · · · · · · · · · · · · ·			~
			161.83005	-C.64224	2.61417	l J
3111= 0					* "O. O. O. C. C.	1 1
			160.46550	-U.44631	2,70700	1 1
3111 = 0			360 12366	-6.354272	5 4441 ·	1)
50.661. 0			100412099		£ • CO 41C	* ·-
49.564	43 -45	.63428 -	166.03118	-0.49366	2.73195	1 4
G111= 0						
			1cC.C0781	-0.51796	2.70698	.14.
3111= U						
			160.00195	-0.50570	2.71922	1 5
61-1	<u>.4-2510-5</u>	3				
			160.00049	-0.49957	2.725.4	16
G111 = 0			100 00010	3 45645	2 70061	: 7
			156.06012	-0.45645	<u> </u>	<u>*</u> .'
G111= U 49.587.			166.66603	-0.49493	2.7.2997	1.
_						
49.504	50 -45	.61560 -	100.00001	-0.49571	2.72919	1 3
G111= 0						
			مالارداد ما	-c.49010		25
G111= 0	.49261D-C	6 .				

ICEO EXES	SAICA A1	VM/SF REL 3.1	SLU 305		68
	+45.61327	-160.00000	-0.49630	2.72861	
	2440-(5 -45.61725	-159,84312	-0.50172	2.73719	
47.33491		-158.90114	-0.30917	2.80971	7
	-47.01580	-158.C3510	-0.28165	2.67610	:
45.56e1:	6520-(2 	137.76091		37t	3
44.05748	-43.98137	-162.09271	-0.17264	2.98575	1 (
42.67261	-40.1(636 8100-02	-187.62815	-(.102Ce	2.93651	1 1
46.06271	7790-02	-135.26176	72c1		1.
39.7(320 11= -0.08	-39.83468	-190.89276	-6.00935	2.99076	1 =
38.90786	-37.86093 862D-02	-195.(9724	-0.00734	2.59734	1 4
37.6E547	-37.12603	-195,87638	-0.00088	2,55507	
36.5678C 11= -C.07	136D-02 -37.09276	-194.90478	-0.00057	2.89565	, 16
36.39012	-36.78037 0010-02	-195.83726	-0.00005	2.99991	1 7
35.7(2±1_	-36.23904	-193.28349 /	-C.CUC1	2,39998	18
11= -0.08 35.19029 11= -0.08	000D-02 -35.87309	-193.00378	-0.00000	2.93555	19
35.5(078	-35.2(931 9990-02	-193.00000	0.00000	4 . C. Sur & C	<u>.</u> .
	-36.16(67				5
· Internation White the state of the	regardestitus () papar marr s	<u> </u>	and the second s		
					•
TO SEE ME SECRETARISMENT A. M. M. MARKETTANIA OF MARKET					
	•				

CAPÍTULO VI

CONCLUSÕES FINAIS

É de fácil implementação o trabalho aparesentado já que o mesmo utiliza basicamente o método simplex para resolução de seus problemas. O mesmo poderia ser estendido como assunto para estudos mais avançados, o estudo sobre conjuntos convexos, mas não compactos como por exemplo Parábolas, Hipérboles, etc. Outro assunto que também poderia merecer atenção é o caso de conjunto não convexo. Por exemplo, uma envoltória linear convexa juntamente com o método de Branch and Bound seria um caminho bastante viável para solucioná-lo.

BIBLIOGRAFIA

- Ol Stanley Zionts. Linear and integer Programming. Ed.

 Prentice-Hall, inc., Englewood Cliffs, New Jersey, 1974.
- 02 M. S. Bazaraa & C. M. Shetty. Nonlinear Programming Thery and Algorithms. John Wiley & sons, New York, 1979.
- 03 J. Abadie. Integer and nonlinear Programming. North-holland Publishing Company, Amsterdam, 1970.
- 04 J. E. Kelley. The Cutting Plane Method for Soving Convex Programs, J. Soc. Industr. Appl., Math 8, 1960.
- 05 Paulo F. Bregalda et alii. Introdução à programação linear. Ed. Campus Ltda., Rio de Janeiro, 1981.
- 06 Nelson Maculan Filho & Mário Veiga Ferraz Pereira. Progra-mação linear. Atlas S.A., São Paulo, 1980.
- 07 Nelson Maculan Filho. Programação linear Inteira. Atlas S.A., São Paulo, 1980.

- 08 Abelardo de Lima Puccini. Introdução à programação linear.

 Ed. Livros Técnicos e Científicos editora S.A., Rio de
 Janeiro, 1972.
- 09 Elon Lages Lima. Curso de Análise. Vol. 2, Ed. IMPA/CNPq/ Projeto Euclides, Brasília, 1981.
- 10 Louis Leithold. O cálculo com Geometria Analítica. Vol. 1, Ed. Harper & Row do Brasil Ltda., São Paulo, 1968.
- 11 Elon Lages Lima. Curso de Análise. Ed. Instituto de Matemática Pura e Aplicada. CNPq/Projeto Euclides, 1976.
- 12 Paul R. Thie. An Introduction to linear Programming and
 Game Theory. John Wiley & Sons, USA, 1979.