DISTRIBUIÇÃO DE TEMPERATURA EM UM ESCOAMENTO DE UM FLUÍDO NEWTONIANO ENTRE DUAS PLACAS POROSAS COM GRADIENTE DE PRESSÃO PULSANTE

MÊRICLES THADEU MOPVETTI

Orientador

Prof. Dr. RAKESH KUMAR BHATNAGAR

Dissertação apresentada ao Instituto de Matemática, Estatística e Ciência da Computação da Universidade Estadual de Campinas como requisito parcial para obtenção do titulo de Mestre em Matemática.

?! Dezembro - 1979.

Ao meu saudoso pai à minha mãe, Sârâ à minha esposa, Saça Ao meu filho, Dãmian

AGRADECIMENTOS

Ao Prof. Dr. RAKESH KUMAR BHATNAGAR pela orientação e estímulos recebidos durante o transcorrer desta pesquisa.

ÍNDICE

CAPITULO	I -	INTRODUÇÃC) E	EQUAÇÕES	GERAI	S	•	٠	٠	•	•	٠	•	•	٠
CAPITULO	II -	FORMULAÇÃO	DO C	OS PROBLEM	IAS .	<i>/</i> ·	• .	٠	•	•	•	•	•	•	•
CAPITULO	III -	SOLUÇÕES	DAS	EQUAÇÕES	•••	<i>,</i> ,	•	•	•	•	•	•	•	•	•
CAPITULO	IV - I	DISCUSSÕES	DOS	RESULTADO	s.,	•	٠	•	•	•	•	•	•	٠	٠
														·	

REFERÊNCIAS .

RESUMO

Nesta pesquisa discutiremos as soluções das equações de Navier-Stokes e da energia para lam fluido viscoso incompressível entre duas placas paralelas e fixas com gradiente de pressão pu<u>l</u> sante.

Assumimos ainda que em uma das placas o fluido está sendo injetado com velocidade constante e a placa oposta absorve com a mesma velocidade.

As soluções da equação da energia obtidas sob dois tipos de condições térmicas, isto \hat{e} : (i) as placas são mantidas na tem peratura constante e diferentes, (ii) uma das placas se mantém na temperatura constante e a outra placa está isolada.

As soluções analíticas envolvem 4 parâmetros físicos e os gráficos para as soluções estáveis e instáveis são exibidos variando esses parâmetros.

De um modo geral a solução estável para ambos tipos de condições térmicas variam quase linearmente entre as placas.

Observamos também que para maiores valores do parâmetro de frequência, o perfil da solução instável para o tipo (i) de condição térmica, perde a forma parabólica achatada. E para o ti po (ii) , é interessante observar que a soluçãoi^jstável diminui com o axamento da frequência, tanto para a velocidade de injeção nula ou não.

Em geral, para uma certa frequência fixa, notamos que a temperatura aumenta com o número de Reynolds. E só acontecendo o mesmo para o niómero de Prandtl, quando a frequência que fixarmos for menor entre as quais escolhemos para o problema proposto.

CAPITULO I

INTRODUÇÃO E EQUAÇÕES GERAIS

1.1 - As equações de movimento de um fluido incompressível visco so são dados pelas seguintes equações, usando notação tensorial cartesiana;

EQUAÇÃO DE CONTINUIDADE:

$$\frac{8U_{i}}{\partial x_{i}} = 0$$
 (1)

EQUAÇÃO DE MOVIMENTO:

onde = $X_{(x^{*}, x_{2}, x_{2})}$ representa a força externa, T^{*} o tensor de terrsão que representa a ação do elemento de fluido em x^{*} no tem po t, p é a densidade do fluído e U^{*} representa o vetor de velocidade.

Num escoamento em que consideramos as forças externas au sentes, escrevemos = \mathbf{M}_{i}

A equação (1) também é chamada Equação de Conservação da Massa, nos diz que a variação de massa num mesmo sistema é igual a massa a ele fornecida, num mesmo tempo.

As equações (2) são chamadas Equações de Navier-Stokes , descrevendo o movimento de xam fluído viscoso. Essas equações tam bém são chamadas Equações da Quantidade de Movimento, dizendo que a variação da quantidade de movimento de um sistema é igual a ra zão em que a quantidade de movimento é fornecido pela aplicação de forças de campo e forças de contato, num mesmó tempo.

No escoamento bidimensional consideramos todas as propriedades e características do fluído como função apenas de duas co ordenadas x_1 e x_2 e do tempo t , não dependendo da direção Xypor exemplo, no instante t.

Examinando com cuidado as equações (2), vemos que para o estudo deste fluído devemos achar a solução de 4 equações diferenciais parciais não lineares sob dadas condições de contorno e iniciais. Nem sempre a solução dessas equações são fáceis, por isso nos restringimos a lam caso mais simples.

Além disso as 4 equações encolvem 10 incógnitas; 6 componentes de tensor de tensão, 3 componentes da velocidade e a pref são isotrõpica.

Fica evidente que se o tensor de tensão pudesse ser expresso em termos da velocidade e suas derivadas, o estudo do movimento tornaria mais fácil.

Em 1845, Sir Gabriel Stokes enunciou o seguinte, que é fundamental para a dinâmica dos fluídos: "Num mesmo tempo t, o tensor de tensão é função do tensor de deformação E^^", onde o tensor de deformação é simétrico e dado por:

$$\sum_{i j} \frac{1}{2} \frac{\partial U_{i}}{\partial x_{7}} \frac{\partial U_{j}}{\partial x_{7}} +$$

2

A equação do tensor de tensão para um fluído perfeito(ou fluído não viscoso) é dado por:

onde p significa a pressão isotrôpica e 6^{^^} é o Delta de Kronecker.

A equação (3) foi dada por Bernoulli em 1738 e foi o ponto de partida para o estudo da hidrodinâmica.

1.3 - FLUIDO NEWTONIANO

A equação em que o tensor de tensão é expresso por:

$$'' ij = 'p*ij + 2\mu E ij ' (4)$$

Os fluídos que obedecem a equação (4) são chamados Fluídos Newtonianos.

Observemos que a equação constitutiva de Newton tem apenas um parâmetro físico y de viscosidade que não depende do esta do de movimento e que o fluído em repouso tem apenas pressão hidrostática isotrôpica.

1.4 - AS EQUAÇÕES NAS COORDENADAS CARTESIANAS

Tendo em vista a equação constitutiva (4) e as equações

121

de movimento (2) e usando a convenção de soma, o sistema de quatro equações (1) e (2) nas coordenadas (x,y,z), passam â forma:

EQUAÇÃO DE CONTINUIDADE;

$$\begin{array}{c} 3^{u} \div 3^{v} \leftarrow 3^{w} - " \\ s_{J} 3^{\circ} -\tilde{a}i - - \end{array} \quad \lor \quad < = > \end{array}$$

EQUAÇÕES DE MOVIMENTO;

 $\rho \left[\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \mathbf{u} \ \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{v} \ \frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \mathbf{w} \ \frac{\partial \mathbf{u}}{\partial \mathbf{z}}\right] = \rho \mathbf{X}_{1} - \frac{\partial \mathbf{p}}{\partial \mathbf{x}} + \mu \nabla^{2} \mathbf{u},$ $\rho \left[\frac{\partial \mathbf{v}}{\partial \mathbf{t}} + \mathbf{u} \ \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v} \ \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \mathbf{w} \ \frac{\partial \mathbf{v}}{\partial \mathbf{z}}\right] = \rho \mathbf{X}_{2} - \frac{\partial \mathbf{p}}{\partial \mathbf{y}} + \mu \nabla^{2} \mathbf{v},$ (6)

 $\rho \left[\frac{\partial \mathbf{w}}{\partial \mathbf{t}} + \mathbf{u} \frac{\partial \mathbf{w}}{\partial \mathbf{x}} + \mathbf{v} \frac{\partial \mathbf{w}}{\partial \mathbf{y}} + \mathbf{w} \frac{\partial \mathbf{w}}{\partial \mathbf{z}}\right] = \rho \mathbf{X}_3 - \frac{\partial p}{\partial \mathbf{z}} + \mu \nabla^2 \mathbf{w},$

onde V e o operador de Laplace e e dado por;

² $3^{*}_{-V} = -j + -j + -j$ e onde u,v, e w são componentes do $3x^{*}_{-V} = 3z^{*}$

vetor de velocidade U, nas direções x,y e z respectivamente.

Desejamos informações sobre a temperatura, por isso es crevemos a equação da energia:

$$\rho c_{\mathbf{p}} \left[\frac{\partial \mathbf{T}}{\partial \mathbf{t}} + \mathbf{U}_{\mathbf{j}} \frac{\partial \mathbf{T}}{\partial \mathbf{x}_{\mathbf{j}}} \right] = \mathbf{k} \nabla^{2} \mathbf{T} + \phi , \qquad (7)$$

onde T representa a temperatura e k e a condutividade e o calor específico respectivamente, e $\langle J \rangle = E_{ij} \cdot T_{ij}$ é chamada Função Dissipação e é a taxa em que as tensões de cisalhamento realizam trabalho irreversível sobre o fluído.

Tendo em vista a equação constitutiva (4) e usando a convenção de soma, a equação (7) passa à forma:

$$\rho c_{p} \left[\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \right] = k \nabla^{2} T + \phi , \qquad (8)$$

onde <p em coordenadas cartesianas ê dada por;

$$\frac{1}{2}, \frac{9v}{27}, \frac{9w^2}{27}, \frac{1}{2}, \frac{9w}{27}, \frac{9w^2}{27}, \frac{1}{2}, \frac{9w}{27}, \frac{9w^2}{3z'}$$

No próximo capítulo faremos a formulação dos problemas f<u>í</u> sicos em consideração e obteremos as soluções sob várias condições térmicas.

CAPÍTULO II

FORMULAÇÃO DOS PROBLEMAS

Consideramos o escoamento laminar bidimensional de um fluído newtoniano incompressível entre duas placas paralelas e porosas distantes h uma da outra e supomos as forças externas ausentes.

Suponhamos ainda que em xama das placas o fluído está sen do injetado com velocidade constante V e a placa oposta absorve com a mesma velocidade.

Escoamento em placas porosas é importante na refrigeração por transpiração e no processo de difusão gasosa. No caso do escoamento ser puisante, tem a sua importância na diálise de san gue em rins artificiais [1] .

A equação (5) nos diz que u é função de y e t, e ainda v é identicamente igual a V.

Em vista das considerações acima as equações (6) tornamse :

$$\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial y} = -\frac{1}{P} \frac{\partial p}{\partial x} + \alpha \frac{\partial^2 u}{\partial x^2}, \qquad (9)$$

е

$$0 = -i_0 |E_{\mathbf{v}'}$$
(10)

onde $\alpha = \frac{\mu}{\rho}$ é a viscosidade cinemática.

-

Do fato que o fluído é viscoso, as condições de contorno são dadas por:

$$u = 0 para y = 0 e y = h.$$
 (11)

A equação da energia (8) passa a forma:

$$\rho c_{p} \left[\frac{\partial T}{\partial t} + V \frac{\partial T}{\partial y} \right] = k \frac{\partial^{2} T}{\partial y^{2}} + \mu \left(\frac{\partial u}{\partial y} \right)^{2} \qquad \bullet <12>$$

A solução da equação (12) será dada sob dois tipos de ccn dições térmicas;

TIPO (i)

$$T = T_{, 1} em y - 0^{-} e T = T_{, 2} em_{, 2} y = h.$$
 (13)

TIPO (ii)

$$T = Tj^{em} y=0 e - \frac{\partial T}{\partial y} 0 e m y = h.$$
 (14)

As condições do tipo (i) significam que a placa y = 0 e^ tá mantida a temperatuta constante T^ e a placa y = h a T_2 •

Por outro lado as condições do tipo (ii) significam que a placa y = 0 está mantida a temperatura constante T^ e no entanto a placa y = h está isolada.

Analisaremos o problema exposto acima sob quatro situações distintas. PROBLEMA 1: Quando a velocidade V 0 e≠o gradiente de pressão é puisante e dado por:

$$\frac{1}{\rho} \frac{\partial p}{\partial x} = A + B e^{i\omega t} , \qquad (15)$$

onde A e B são constantes conhecidas e w a frequência.

Deste modo a equação (9) passa ã forma:

$$\frac{\partial u}{\partial t} + V \frac{\partial u}{\partial y} = -A - B e^{i\omega t} + \alpha \frac{\partial^2 u}{\partial y^2} , \qquad (16)$$

e a equação da energia será dada pela equação (12).

PROBLEMA 2 : Quando a velocidade V = 0 e o gradiente de pressão é dado pela equação (15).

Assim a equação (9) passa ã forma:

$$-\frac{9u}{\partial t} = -'A^{T}_{'B} = \frac{it \ddot{u}t}{t} \cdot -\frac{9}{2} \frac{u}{4}$$
(17)

e a equação da energia (12) toma à forma; :

$$\rho c_{\mathbf{p}} \frac{\partial \mathbf{T}}{\partial t} = k \frac{\partial^2 \mathbf{T}}{\partial y^2} + \mu \left(\frac{\partial \mathbf{u}}{\partial y}\right)^2 .$$
 (18)

PROBLEMA 3: Consideramos o escoamento estacionário, a velocidade $V \neq 0$ e o gradiente de pressão constante, ou seja;

Deste modo a equação (9) passa a forma:

$$\int_{a}^{T7} \frac{du}{dy} = \frac{1}{A} + a + a + \frac{1}{A}, \qquad (20)$$

e a equação da energia (12) se torna:

$$\rho c_{p} V \frac{dT}{dy} = k \frac{d^{2}T}{dy^{2}} + \mu \left(\frac{du}{dy}\right)^{2} . \qquad (21)$$

the second s

PROBLEMA 4: Consideramos o escoamento estacionário, a velocidade V = 0 e o gradiente de pressão dado pela equação (19).

Assim a equação (9) passa ã forma:

$$0 = -\mathbf{A} + \mathbf{a} \frac{\mathbf{d}^2 \mathbf{u}}{\tilde{a}_Y} , \qquad (22)$$

e a equação de energia (12) toma ã forma:

$$\circ = \frac{k}{c_p} \frac{d^2 T}{dy_p^2} + \frac{\mu}{c} \left(\frac{du}{dy}\right)^2$$
(23)

Esse escoamento é chamado. Escoamento de Poissoville. A equação (10) justifica o gradiente de pressão dado pelas equações (15) e (19). 9

(19)

CAPITULO III

SOLUÇÕES DAS EQUAÇÕES

SOLUÇÕES DAS EQUAÇÕES DO PROBLEMA 1.

3.1 - SOLUÇÃO DA EQUAÇÃO (16)

Para acharmos a solução da equaçao (16) sob as condições (11), escrevemos o campo de velocidade na forma:

$$u(y,t) = u(y) + \ddot{u}(y,t) = u(y) + f(y)e^{n}$$
, (24)

onde u(y) representa a parte estável e $\ddot{u}(y,t)$ a parte instável.

Substituindo a equação (24) na equação (16), obtemosr 👘

 $i\omega f e^{i\omega t} + V[\frac{du}{dy} + e^{i\omega t} \frac{df}{dy}] = -A - Be^{i\omega t}$

$$\begin{array}{c} +a[^{+} + e^{i\omega t}] \\ dy \quad dy^{+} \end{array}$$
 (ZS)

Comparando os termos estáveis e instáveis e simplificando, obtemos respectivamente:

$$V_{W} = 7 \qquad \alpha \frac{d^2 \overline{u}}{dy^2}$$
 (26)

e

iu) f + v | i^ = -B + a
$$\frac{d^2 f}{dy^2}$$
, (27)

sujeitas as condições:

$$\ddot{u} = 0 e f = 0 para y = 0 e y = h$$
 (28)

3.1.1 - SOLUÇÃO DA EQUAÇÃO ESTAVEL (26)

Antes de calcularmos a solução desta equação a tornare mos adimensional fazendo ü H ü ^ e n = $\frac{y}{n}$ obtendo então:

$$\ddot{u}'' - R\ddot{u}' - R = 0$$
, (29)

onde as picas representam a derivada com respeito a n e R = $^{\circ}$ o número de Reynolds.

As condições de contorno passam à forma:

$$u(n) = 0$$
 para $n = 0$ e $n = 1$ » (30)

Usando o método dos coeficientes a determinar e as condições de contorno (30), vem;

$$\frac{-}{u(n)} = \frac{e^{-1} - 1}{e^{-1}} - n .$$
 (31)

Essa solução é a mesma que Berman [2] obteve para o es-

3.1.2 - SOLUÇÃO DA EQUAÇÃO INSTÁVEL (27)

Obtemos a equação adimensional fazendo f = f_^ $e = \frac{2}{a}$ e $\eta = \frac{\gamma}{h}$, tornando-se:

$$f'' - Rf - iM^{f} - 1 = 0 , \qquad (32)$$

onde M $\stackrel{2}{=}$ $-^{h} \stackrel{2}{\overset{\omega}{e}} \omega$ parâmetro de frequência.

As condições de contorno passam, â forma;

$$f(ri) = 0 para n = 0 e n = 1.$$
 (33)

Usando o mesmo método anterior e as condições (33), obtemos;

$$f(n) = - \sum_{M}^{n} \left[1 + \frac{(1 - e^{-1})e^{-1} - (1 - e^{-1})e^{-2}}{D - D} \right], \quad \blacksquare \quad (34)$$

$$(e \ 2 - e \ 1)$$

onde
$$D_{1,2} = \frac{1}{2} [R \pm (R^2 + 4iM^2)^{1/2}]$$
.

Recentemente Bhatnagar [3] generalizou o problema citado acima para o escoamento de um fluído viscoelâstico entre dois planos paralelos e porosos.

3.2 - SOLUÇÃO DA EQUAÇÃO DA ENERGIA (12)

T - TFazendo Teu adimensionais pelas relações, $T^* = = = -$, 1 $\blacksquare^2 2^{"} 1$

$$u \equiv u \frac{Ah}{V}$$
 e $\eta = \frac{Y}{h}$, a equação (12) torna-se:

Escrevemos a solução desta equação na forma; :

$$T^*(n,t) = T(n) + T(n,t) = T(n) + iCnOe^{+++},$$
 (36)

onde T(n) representa a parte estável e T(n,t) a instável.

Substituindo a equação (36) na equação (35), obtemos

$$\mathbf{pc}_{\tilde{p}}[\mathsf{ioaTe}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} + \frac{1}{n} (\mathsf{T}^{\mathsf{v}} + \mathsf{T}^{\mathsf{v}} \mathsf{e}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}})] = \sqrt{[\mathsf{T}^{\mathsf{v}} + \mathsf{T}^{\mathsf{v}} \mathsf{e}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}}]} + \mathbf{pc}_{\tilde{p}}^{\mathsf{v}}$$

$$+ -H \wedge 4 t | f >^{\bullet} \bullet$$

$$T_2 - T_1 \vee n$$
(37)

Comparando os termos estáveis e instáveis, obtemos respectivamente: .

$$\overline{\mathbf{T}''} - \mathbf{a}\mathbf{R}\overline{\mathbf{T}^*} = \mathbf{Ea}(\mathbf{u}')^{\wedge} , \qquad (38)$$

е

$$\tilde{T}'' - aR\tilde{T}' - iM^{a}\tilde{T} = -2EaR?f'u', \qquad (39)$$

onde a =
$$\frac{\mu c_p}{k}$$
 é o niomero de Prandtl e E = -----o número
Cp(T2-Tj)
de Eckert.

As condições térmicas (13) e (14) passam a forma:

TIPO (i)

$$\overline{T(0)} = 0$$
, $T(1) = 1$, (40)

е

$$T(0) = 0$$
 , $T(1) = 0$, (41)

TIPO (ii)

$$\overline{T}(0) = 0$$
, $T'(1) = 0$, (42)

е

$$T(0) = 0$$
, $T'(1) = 0$. (43)

Substituindo a expressão u dada pela equação (31), ob _____ temos a seguinte equação determinando T: _____

$$\overline{\mathbf{T}''} - \mathbf{a}\mathbf{R}\overline{\mathbf{T}'} = -\mathbf{a}\mathbf{E} - \frac{\mathbf{R}^2 \mathbf{e}^2 \mathbf{R}\eta}{(\mathbf{e}^R - 1)^2 - 5} - \frac{2\mathbf{R}\mathbf{e}^R \eta}{(\mathbf{e}^R - 1)^2 - 5} - \frac{2\mathbf{R}\mathbf{e}^R \eta}{(\mathbf{e}^R - 1)^2 - 5}$$
(44)

Similarmente si \pm istituindo as expressões de f dado por (34) e u, vem a seguinte equação determinando T:

$$\tilde{T}'' - oR\tilde{T}' - iM^{a}\hat{i} = -2EaR ? A \frac{P}{p} Dp D. \\ M^{-}(e^{-1}) (e^{-e^{-1}})$$

$$D_{n}(R + D)_{n} = D_{1}(R + D_{-})n$$

• $[D^{n}RU - e^{n}]e^{n} - D^{n}RU - e^{-n}e^{n}$

Para maior facilidade nos cálculos, escrevemos simples - mente :

$$\tilde{T}'' - aR\tilde{T}' - iM^{a}T = |(-a^{e} + D^{a})n + a_{20}$$
 (R + D,)n

D,ri D"n 33e **■" - a^e ^)**

onde.

$$"_{1} = \frac{2E\sigma R^{2}}{M^{2} (e^{R} - 1)} \frac{D - D}{(e^{R} - e^{-R})} D_{1}(1 - e^{D_{2}})$$

$$a_2 = 2E\sigma R^2 \frac{i}{M^2(e^R-1)(e^D - e^D)} D_2(1 - e^D)$$

$$a_3 = -2E_{\sigma}R - \frac{i}{M^2(e^D - e^D)} D_1(1 - e^D)$$
,

$$a_4 = 2E\sigma R - \frac{i}{M^2(e^{D_2} - e^{D_1})} D_2(1 - e^{D_1}).$$

3.2.1 - SOLUÇÃO DA EQUAÇÃO PARA T(n)

Usando o método de variação de parâmetros encontramos a solução da equação para T(n), que é;

 $\overline{T}(n) - C_{,} + C_{2} e^{\sigma R \eta} - \frac{\sigma E e^{2R \eta}}{2(2 - a)} - \frac{2\sigma E e^{R \eta}}{(e^{-1})^{n} R(1-a)(e^{-1})^{n} aR^{n}}$

Calculando agora as constantes C[^] e na s ${}^{61}_{2}$ ução T(n) para o tipo (i) de condição térmica (40) , vem;

$$T(n) = \frac{e^{\sigma R\eta} - 1}{e^{-1}} [1 + \frac{PE(e^{4} - 1)}{2(2-a)(e^{-1})} = \frac{E(1 \ 4-q)j}{R(1-a)} \frac{gEd-e^{-1}}{2(2-a)(e^{-1})}$$

e para o tipo (ii) de condição térmica (42);

$$\overline{T}(n) = \frac{(e^{\sigma R \eta} - 1)}{\sigma R e^{n}} E[- \frac{\alpha R e^{2R}}{(2 - \sigma) (e^{-D^{n}} (1 - \alpha) (e^{-1}))} +$$

(47)

$$\frac{\sigma E (1 - e^{2R\eta})}{2 (2 - a) (e^{-1})^{R(1-a)} (e^{-1})^{A}} = 3a^{A(1-a)} (e^{-1})^{A(1-a)} (e^{-$$

3.2.2 - SOLUÇÃO DA EQUAÇÃO PARA T(n).

Para acharmos a solução da equação para T(ri) usaremos o mesmo método anterior, obtemos então a solução geral:

$$\tilde{T}(\eta) = C_1 e^{\lambda_1 \eta} + C_2 e^{\lambda_2 \eta} + \frac{B}{A} \left[- \frac{a_1 e^{(R+D_1)\eta}}{(R+D^{\wedge} \lambda_1) (R+D^{\wedge} - X^{\wedge})} \right]$$

$$(R + D2)n \qquad D_1^n \qquad a.e^{D_2^n} \\ (R + D2 - X2) (R + D2 - A1) \qquad (D^{-} A^{-}) (D^{-} A^{-}) (D^{-} A^{-}) (D_2 - A_2)$$

onde $A^{-} = -| [aR \pm (a^{R} + 4iM^{a})^{-}]$.

*□

Determinando agora as constantes c_1 e C₂ na solução $\tilde{T}(n)$ para o tipo (i) de condição térmica (41), vem:

$$\begin{split} \mathbf{i}(\mathbf{n}) & \frac{e^{\lambda} 2^{\eta} \quad \lambda}{e - e} \mathbf{1}^{\eta} & R + D \setminus \mathbf{R} + \mathbf{D} \\ \mathbf{A} & \mathbf{e}^{2} \mathbf{e}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{e} \mathbf{1} \\ \mathbf{A} & \mathbf{e}^{2} \mathbf{e}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{e} \mathbf{1} \\ \mathbf{A} & \mathbf{e}^{2} \mathbf{e}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{e} \mathbf{1} \\ \mathbf{A} & \mathbf{e}^{2} \mathbf{e}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{e} \mathbf{1} \\ \mathbf{A} & \mathbf{e}^{2} \mathbf{e}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{e} \mathbf{1} \\ \mathbf{A} & \mathbf{e}^{2} \mathbf{e}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{e} \mathbf{1} \\ \mathbf{A} & \mathbf{e}^{2} \mathbf{e}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{e} \mathbf{1} \\ \mathbf{A} & \mathbf{e}^{2} \mathbf{e}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{e} \mathbf{1} \\ \mathbf{A} & \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{e}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{e}^{\lambda} \mathbf{1} \\ \mathbf{A} & \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} & \mathbf{1}^{\eta} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \\ \mathbf{A} & \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \\ \mathbf{A} & \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \\ \mathbf{A} & \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \\ \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} \\ \mathbf{E}^{\lambda} \mathbf{1} \mathbf{1} - \mathbf{E}^{\lambda}$$

$$(R + D)n x^n A^n D n - + h^[e] ^{-e^{-1}} + b^ie^{-e^{-1}}, \qquad (49)$$

,

.

onde

$$b_{1} = \frac{a_{1}}{(R + D^{*} - X^{*}) (R + D_{1}^{-} X_{2})}$$

$$b_2 = \frac{a_2}{(R + D_2 - X_2) (R + D_2 - X^*)}$$

$$b_3 = \frac{a_3}{(D^2 - X^2)(D^2 - X^2)}$$
, $b_4 = \frac{a_4}{(D_2 - X^2)(D_2 - X^2)}$

e para o tipo (ii) de condição térmica (43);

$$\frac{\tilde{\underline{T}(n)}}{\frac{\underline{B}}{\underline{A}}} \stackrel{\wedge}{\xrightarrow{}} \frac{e^{-\frac{2^{\wedge}}{-e}} \stackrel{1'^{\wedge}}{\xrightarrow{}} j_{-}}{\underline{X_{2}}} j_{-}^{-} \{ \text{bi}[(\underline{R} + \underline{Di})e^{-\frac{\pi}{N}}]$$

 $(R + D_{\mu})ri X-n \qquad x,n D fi \qquad X^n D-n \\ + b_2[e \qquad ^-e - ^1 + b^{^ie - ^-} - e - ^i) + b^{^ie - ^ie - ^ie$

SOLUÇÕES DAS EQUAÇÕES DO PROBLEMA 2:

3.3 - SOLUÇÃO DA EQUAÇÃO (17)

Para acharmos a solução da equação (17) sob as condições (11), escrevemos o campo de velocidade na forma (24).

Substituindo a equação (24) na equação (17) obtemos:

$$i\omega f e^{i\omega t} = -A - B e^{i\omega t} + a(^{+} e^{i\omega t}).$$

$$dy^{-} dy^{-} dy^{-}$$
(51)

Comparando os termos estáveis e instáveis e simplificando, obtemos respectivamente:

$$0 = -A + a^{2},$$
(52)

е

$$2'$$

 $iwf = -B + a^{-4-} / (53)$
 dy^{-}

sujeitas as condições (28).

3.3.1 - SOLUÇÃO DA EQUAÇÃO (52)

Tornamos a equação (52) adimensional fazendo $u = -_{u}^{AB} u^{2} - e^{w}h^{\frac{y}{2}}$ obtemos então:

 $\ddot{u}'' - 1 = 0$

Integrando a equação (54) duas vezes e fazendo uso das condições (30), obtemos a solução;

$$\overline{U(n)} = I (\eta^2 - \eta)$$
 (55)

3.3.2 - SOLUÇÃO DA EQUAÇÃO (53)

Tornamos a èquação (53) adimensional escrevendo $f = f_{-} \frac{Bh^2}{\alpha}$ e ^ = $\frac{Y}{b}$, obtemos então;

$$f'' - iM^{f} - 1 = 0$$
 (56)

cuja solução sob as condições (33) é;

$$f(n) = -\bigwedge_{M} [1 + \bigwedge_{M} \frac{1}{S} \frac{s_{1}}{S} \frac{s_{1}}{S} \frac{s_{1}}{S} \frac{s_{2}}{S}]$$
(57)

onde $S_{1,2} = \pm (iM^2)^{1/2}$.

3.4 - SOLUÇÃO DA EQUAÇÃO DA ENERGIA (18)

Fazendo Teu adimensionais pelas relações T* ==----- $\frac{1}{2}$, Ah2 u E u $\frac{\alpha}{\alpha}$ e n = ^ / a equação (18) torna-se;

$$\rho c_{p} \frac{9T^{\star}}{\partial t} - \frac{k}{h^{2}} \frac{3^{\star}T}{\partial \eta^{2}} + \frac{y}{(T_{2} - T_{1})h^{2}} \frac{f9u}{\partial \eta} \frac{2}{\alpha^{2}} \frac{AV}{\alpha^{2}}$$
(58)

Escrevemos a solução da equação (58) na forma (36), que substituída em (58), vem;

$$\frac{\mathrm{i}\omega h^2}{a} \tilde{T} e^{\mathrm{i}\omega t} = \frac{k}{yCp} (\tilde{T}'' + \tilde{T}'' e_{\mathbb{R}}^{\wedge \wedge \wedge}) + \frac{\lambda^2 h^4}{Cp(T2 - T^{\wedge})} (1 \ddot{u} 2 + \sqrt{cq})$$
(159)

Comparando os termos estáveis e instáveis e simplificando, obtemos respectivamente:

$$o = \underline{i}_{0} \overline{\mathbf{T}''} + \mathbf{E} (\underline{u'})^{\wedge} , \qquad (60)$$

е

$$IM^{T} = T^{T} + 2E I u'f$$
, (61)

onde E = $\frac{A^2h^4}{CpU2}$ é o número de Eckert assim definido quan

do o número de Reynolds é zero.

3.4.1 - SOLUÇÃO DA EQUAÇÃO (60)

Substituindo a equação (55) na equação (60), obtemos;

$$\begin{array}{c} aE \\ T'' + -J - (4n - 4n + 1) = 0 \end{array}$$
 (62)

Integrando duas vezes a equação (62), obtemos a solução

para o tipo (i) de condição térmica (40);

$$\frac{\sigma E}{T(n)} = -\frac{2}{4}(-n) + \frac{2}{-n} + \frac{3}{-n} + \frac{4}{-n} + \frac{3}{-n} + \frac{4}{-n} + \frac$$

e para o tipo (ii) de condição térmica (42);

$$\underline{aE} 2 . 3 4 T(n) = -45 - ^ - $\sqrt[7]{} \cdot$ (64)$$

3.4.2 - SOLUÇÃO DA EQUAÇÃO (61)

Substituindo as expressões de f dada por (57) e a expressão de u na equação (61), vem a seguinte equação determi – nando T(n):

$$2 \sim S_{1} \wedge S_{2} \eta S_{1} \eta S_{1} \eta$$

 $T'' - iM aT = (-2a^ne^+ + 2a^x)e^+ + a^e - a_2e^+)|', (65)$

onde

$$a_1 = \sigma E -r - \frac{1}{r - s} \frac{S_1(1 - s^2)}{S_1(1 - s^2)}$$

M^(e - e -^)

е

$$a_2 = \sigma E - \frac{i}{M^2 (e^{S_2} - e^{S_1})} S_2 (1 - e^{S_1}).$$

Usando o método de variação de parâmetros, obtemos a solução da equação (65) para o tipo (i) de condição térmica (41):

$$\frac{\tilde{r}(n)}{\tilde{R}} = \frac{e^{p_2 n}}{e^{1-e^{-r_1}}} - \frac{p_1 n}{1 + e^{-r_1}} = \frac{p_1}{1 + e^{$$

3.5 - SOLUÇÕES DAS EQUAÇÕES DO PROBLEMA 3

A solução da equação (2 0)é um caso particular da equação (16) com $\frac{\partial}{\partial \theta}$ e B=0 eé dada pela equação (31), para u.

Da mesma maneira a solução da equação da energia (21) é um caso particular da equação (12) ou da equação (38) na forma adimensional, cuja solução para os tipos (i) e (ii) de condições térmicas são dadas pelas equações (47). e <48) , Respectivamente para T.

Notamos que neste problema não temos parte instável T.

3.6 - SOLUÇÕES DAS EQUAÇÕES DO PROBLEMA 4

Como aqui V=0 e $|^{=A}$, as equações (22) e (23) para determinar u e T são formas especiais das equações (20) e (21), respectivamente. Por isso não precisamos resolver estas equações que na forma adimensional são as mesmas que as equações (54) e (60), cujas soluções são dadas pelas equações (55) para u e as equações (63) e (64) para T com os tipos (i) e (ii) de condições térmicas, respectivamente.

Notamos também que neste problema não existe parte instá vel para T .

CAPITULO IV

DISCUSSÕES DOS RESULTADOS

Para nossos cálculos de \overline{T} , \overline{T} e ambas condições térmicas, fixaremos o número de Prandtl a = 0,4 e 0,6,0 número de Eckert E = 0,5 e o parâmetro de frequência M = 5,10 e 15.

Para mostrar as diferenças entre a distribuição de temperatura, discutiremos primeiro o caso em que o número de Reynolds R = 0 e depois os casos para $\not = 0$. Escolhemos os valores de R = 0,2, 0,4, 0,6 e 0,8.

4.1 - COMPORTAMENTO DE T(n) PARA O TIPO (i) DE CONDIÇÃO TÉRMI-CA .

Na figura 1 mostramos \overline{T} contra n , calculados através da equação (63), para R = 0 , E = 0 , 5 , a = 0 , 4 e 0,6.

Observamos que para ambos valores do parâmetro \circ , \overline{T} varia linearmente de 0 a 1 e as diferenças entre \overline{T} para os dois valores de a são insignificantes.

Nas figuras 2 e 3 temos amostras de T, obtidos através da equação (47), para R=0, 2 , 0,4 , 0,6 e 0,8, E = 0,5e a = 0,4 , 0,6 respectivamente.

Aqui também observamos a variação quase linear de T de 0 a 1, mas acontece que T decresce com o aumento de R para um fixo a, por exemplo, a = 0,4 na figura 2. 0 mesmo acontece para a = 0,4 e 0,6 com R fixo, por exemplo, comparando as curvas de T para R = 0,4 nas figuras 2 e 3.

4.2-0 COMPORTAMENTO DE T(n)PARA O 29 TIPO DE CONDIÇÃO TERAICA

A figura 4 nos mostra os gráficos de \overline{T} , obtidos através da equação (64), para R = 0, E = 0,5 , o = 0,4 , 0,6 e a figura 5 para os casos R= 0,2, 0,4, 0,6, 0,8 eos mesmos E e a, calculados através da equação (48).

Observamos que ao contrário em T para o tipo (i)de con dição térmica, o comportamento de T para o tipo (ii) de condição térmica não é mais linear, acentuando-se perto das placas.

Na figura 4, T aumenta com a e tem valor máximo na pia ca isolada ri = 1. E na figura 5 este comportamento se repete, tomando qualquer R fixo.

Da mesma maneira \overline{T} aumenta com R, tomando \circ fixo e tem novamente máximo na placa isolada n = 1.

Comparando as figuras 4 e 5, notamos que T máximo para-R = 0 é maior do que os máximos para R = 0,2,0,4,0,6 e 0,8. Concluímos assim, também a discussão dos problemas 3 e 4.

4.3 - COMPORTAMENTO DE T(n) PARA 0 TIPO (i) DE CONDIÇÃO TERMICA

Nas figuras 6, 7 e 8 mostramos os gráficos de T para o tipo (i) de condição térmica, calculados através da equação (66), para o caso R = 0 , E = 0,5 , a = 0,4 e 0,6 escolhendo M = 5, 10 e 15 respectivamente.

Na figura 6 para M = 5, observamos que o perfil de tem-∎ peratura tem a forma de uma parábola achatada na região central de n e além disso T é simétrico e aumenta com a.

Nas figuras 7 e 8 a situação é totalmente diferente , \tilde{T} perde a forma parabólica, mas continua simétrica.

Na figura 7 para M = 10, observamos dois picos perto dos contornos no perfil de T. Assim acontece que T cresce rapidamente até o 19 pico e fica quase constante na região central em torno de n = 0,5 , depois cresce até o 29 pico e decresce r<u>a</u> pidamente perto de n = 1.

Em geral T para a = 0,4 é menor que T para \circ =0,6 perto dos contornos e maior na região central.

Na figura 8 para M = 15, o comportamento é o mesmo observado na figura 7, só que as distâncias entre os picos e a região central são maiores.

Passando do parâmetro de frequência de M =10 para M =15, ~ T aumenta perto dos contornos e diminui na região central.

Por outro lado comparando a figura 6 com a figura 7, é fâcil ver que T diminui.

Nas figuras 9, 10 e 11 temos T para R = 0,2, 0,4, 0,6 e 0,8, E = 0,5, a = 0,4,0,6 e M = 5, 10 e 15 res pectivamente, obtidos da equação (49).

Na figura 9 para M = 5, o perfil de T tem a forma parabólica achatada para cada R e a considerados, como anterio<u>r</u> mente observado na figura 6 para R = 0. Notamos que T aqui t^ bém cresce com Re o . e aumentando R a diferença de T para , a = 0, 4 e 0,6 se torna cada vez maior.

Nas figuras 113 e 11, como nas figuras 7 e 8 para o

caso R = 0, as curvas T perdem a forma parabólica e aparecem dois picos.

Na placa em que a temperatura é mais alta (T =1), T é maior.

Na figura 11, as curvas para a = 0, 4 e R = 0, 8 mostram que Tⁿñão tem caráter constante, acontecendo o contrário para R menores.

Comparando as figuras 10 e 11 para M = 10 e 15 respectivamente, notamos que T[°] aumenta com a frequência. Como ante riormente nas figuras 6 e 7 para M = 5 e 10 respectiva mente, T[°] diminui com o aumento da frequência, o mesmo acontece com as figuras 9 e 10.

4.4 - COMPORTAMENTO DE T(n) PARA 0 TIPO (ii) DE CONDIÇÃO TÉRMICA

Nas figuras 12, 13 e 14 temos os gráficos de T parao tipo (ii) de condição térmica, calculados através da equação (67), para os parâmetros R = 0, E = 0,5, o = 0,4, 0,6 e para M = 5, 10 e 15 respectivamente.

Na figura 12, para M = 5, observamos que T cresce rap[^] damente até certo n e depois varia quase linearmente atenuandose perto da placa isolada onde tem valor máximo.

Notamos também, como anteriormente que T para a =0,6 é maior do que para a = 0,4 em toda região, exceto numa pequena região central, e ainda T não tem a forma parabólica como no caso de T para o tipo (i) de condição térmica.e M = 5. Nas figuras 13 e 14 para M = 10 e 15 respectivamente, observamos que \tilde{T} cresce muito mais rápido em comparação com M = 5, tendo picos muito perto da placa n = 0. A partir do pico, decresce até certo valor de n e depois cresce continuamente até a placa isolada, onde também tem máximo.

Em geral T para a = 0,6 é maior do que para a = 0,4perto das placas e menor na região central.

Em contrário com T para o tipo (i) de condição térmica, T diminui mudando o parâmetro de M = 10 para M = 15, e de M = 5 para M = 10 ocorre o mesmo verificado em T para \tilde{o} tipo (i) de condição térmica.

Nas figuras 15, 16 e 17 estão desenhados os gráficos de \tilde{T} , obtidos da equação (50), para R = 0,2 , 0,4 , 0,6 e 0,8 E = 0 , 5 , a = 0 , 4 , 0 , 6 e M = 5 , 10 e 15 respectivamente.

Na figura 15, T tem o mesmo comportamento para, cada a e R 7[^] 0 como na figura 12 para R = 0. A única diferença é que os máximos de \tilde{T} para R = 0 são maiores que todos os máximos para R=0,2,0,4,0,6 e 0,8.

Nas figuras 16 e 17 os perfis de T para \cancel{R} 0 tem o mesmo comportamento como nas figuras 13 e 14 para R = 0, mas notamos, por exemplo, na figura 17 para M = 15 que T para maio res valores de R, cresce muito rapidamente perto da placa n = 0 e decresce também com muita rapidez aproximando-se do eixo n e depois cresce uniformemente com rapidez até a placa isolada.

Também aqui, em geral T cresce com Re a , exceto nas regiões centrais.

REFERÊNCIAS

- 1- WANG, C.Y., Pulsatile Flow in a Porous Channel, ASME Journal of Applied Mechanics, vol. 38,- 1971, p. 553-555.
- 2- BERMAN, A.S., Laminar Flow in an Annulus with Porous Walls, Journal of Applied Physics, vol. 29, 1958, p. 71-75.
- 3- BHATNAGAR, R.K., Fluctuating Flow of a Viscoelastic Fluid in a Porous Channel, ASME Journal of Applied Mechanics , vol. 46, 1979, p. 21-25.
- 4- HUGHES, W.F. e BRIGHTON, J.A., Dinâmica dos Fluidos, Editora McGraw-Hill do Brasil, 1974.
- 5- SHAMES, I.E., Mecânica dos Fluidos, Vols. I e II, Editora Edgard Bliicher, 1973.
- 6- SCHLICHTING, H., Boundary Layer Theory, Verlag G. Braun, 1965.
- 7- GOLDSTEIN, S., Modern Developments in Fluid Mechanics, vol. H, Dover Publications, New York, 1965.

LEGENDAS DAS FIGURAS

Figura 1 - Gráficos de T para o tipo (i) de condição térmica, para R = 0, E = 0, 5 e a = 0, 4 - - a = 0, 6 -----Figura 2 - Gráficos de T para o tipo (i) de condição térmica, para $R = 0, 2, 0, 4, 0, 6 \in 0, 8, E = 0, 5 \in a = 0, 4.$ Figura 3 - Gráficos de T para o tipo (i) de condição térmica, para R = 0, 2, 0,4, 0,6 e 0,8, E = 0,5 e a=40,6. Figura 4 - Gráficos de T para o tipo (ii) de condição térmica, para R = 0, E = 0, 5 e a = 0, 4 - - *a* = 0,6 -----Figura 5 - Gráficos de T para o tipo (ii) de condição térmica, para R=0,2 , 0,4 , 0,6 e 0,8 ,E=0,5 e a =0,4-----a =0,6 -----Figura 6 - Gráficos de T para o tipo (i) de condição térmica, para R = 0, E = 0, 5, M = 5 e a = 0, 4 - - a = 0, 6 -----Figura 7 - Gráficos de T para o tipo (i) de condição térmica , para R = 0, E = 0.5, $M_{1} = 10$ e a = 0.4 - -a = 0, 6 -----

Figura 8 - Gráficos de T para o tipo (i) de condição térmica, para R = 0 , E = 0 , 5 , M = 1 5 e o = 0 , 4 - - a = 0,6 -----

Figura 13 - Gráficos de T para o tipo (ii) de condição térmica, para R = 0 , E = 0 , 5 , M = 1 0 e a = 0 , 4 - - a = 0, 6 ------ Figura 14 - Gráficos de T para o tipo (ii) de condição térmica,

Fig. 2

11-

Fig. 3

Fig. 4

Fig 8

.

.

Fig II

Fio 19

•